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摘要 

 這篇論文是 Hopf 分歧的文獻探討，Hopf 分歧是關於出現週期解的分歧現

象，由於Hopf分歧的現象廣泛的出現在許多領域，所以這篇論文主要在陳述Hopf

分歧定理的性質和證明，而特別的是證明的過程中也給出了計算的方法與公式，

從中我們可以得到關於週期解，週期，穩定性的一些性質，最後給出幾個簡單的

應用例子。 

 關鍵字：Hopf，分歧，Floquet 定理，週期解，中央流型。 
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 Abstract 

This paper is a survey on Hopf bifurcation, Hopf bifurcation is very important in 

many areas. In this paper, we focus on the properties and proofs of Hopf bifurcation. 

The proof in this paper give the bifurcation formula, and we give some examples after 

we proved the theorem. 

Keywords: Hopf, bifurcation, Floquet theorem, center manifold, periodic 

solution. 
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A Survey On Hopf Bifurcation

Tseng, Chung-Lin

July 5, 2010

1 Introduction

In history, many interesting examples arise in engineering have periodic behaviors,

like James Watt’s centrifugal governor. Now, periodic phenomena can be observed in

many place, like biology and chemistry. The Hopf bifurcation is discussing about this

phenomena. In this survey, we focus on the autonomous system with one parameter, and

state the properties and proofs of Hopf bifurcation. The Hopf bifurcation can be proved

in many ways [3, 8]. The proof in this survey give the bifurcation formula, and we will

give examples in the last section.

2 Statement of the Theorem

We investigate the autonomous system of differential equations

dX
dt

= F(X ,µ) (1)

where X ∈ Rn and µ is a real parameter on an open interval I.

Theorem. (CL−Hopf Bifurcation)[5] If

(1) F(0,µ) = 0 for µ in an open interval containing 0, and 0 ∈ Rn is an isolated

stationary point of F.

(2) All partial derivatives of F of order ≤ L+2 (L≥ 2) exist and are continuous in X

and µ in a neighborhood of (0,0) in Rn×R1
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(3) A(µ) = DX F(0,µ) has a pair of complex conjugate eigenvalue λ and λ such that

λ (µ) = α(µ)+ iω(µ),

where

ω(0) = ω0 > 0, α(0) = 0, α
′(0) 6= 0.

(4) The remaining n−2 eigenvalues of A(0) have strictly negative real parts,

then the system (1) has a family of periodic solutions satisfies the following properties:

(a) There exist an C > 0 and a CL+1 function µ(ε),

µ(ε) =
[ L

2 ]

∑
i=1

µ2iε
2i +O(εL+1) (0 < ε < C )

such that for each ε ∈ (0,C ) there exists a periodic solution Pε(t), occurring for µ =

µ(ε). There is a neighborhood N of X = 0 and an open interval I containing 0 such that

for any µ ∈ I the only nonconstant periodic solutions of (1) that lie in N are the members

of the periodic solution Pε(t) which satisfies µ(ε) = µ , ε ∈ (0,C )

(b) The period T (ε) of Pε(t) is a CL+1 function

T (ε) =
2π

ω0

1+
[ L

2 ]

∑
i=1

τ2iε
2i

+O(εL+1) (0 < ε < C )

(c) The periodic solution Pε(t) has two exactly Floquet exponents [2, 4, 6] approach

0 as ε → 0, one is 0 for ε ∈ (0,C ) and the other is a CL+1 function

β (ε) =
[ L

2 ]

∑
i=1

β2iε
2i +O(εL+1) (0 < ε < C )

the periodic solution Pε(t) is orbitally asymptotically stable with asymptotic phase if

β (ε) < 0, is unstable if β (ε) > 0.
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3 Proof of the Theorem

The proof is divided into three main parts:

• Part1 : The proof of 2×2 systems in Poincaré normal form;

• Part2 : The reduction of general 2×2 systems to Poincaré normal form;

• Part3 : Application of the Center Manifold Theorem to reduce general n× n sys-

tems to the 2×2 case on center manifold.

Part1(A) Existence

Assume we have the 2×2 Poincaré normal form[1]:

Ẋ = A(µ)X +
[ L

2 ]

∑
j=1

B j(µ)X |X |2 j +O(|X ||(X ,µ)|L+1) = F(X ,µ) (2)

where

X =

 x1

x2

 A(µ) =

 α(µ) −ω(µ)

ω(µ) α(µ)

 λ (µ) = α(µ)+ iω(µ)

B j(µ) =

 ReC j(µ) −ImC j(µ)

ImC j(µ) ReC j(µ)

 (1≤ j ≤ [
L
2
])

and F(X ,µ) is jointly CL+2 in X and µ .

If we let ζ = x1 + ix2 then (2) can be written as

ζ̇ = λ (µ)ζ +
[ L

2 ]

∑
j=1

c j(µ)ζ |ζ |2 j +O(|ζ ||(ζ ,µ)|L+1).

Let X = εY . We have

Ẏ = A(µ)Y +
[ L

2 ]

∑
j=1

ε
2 jB j(µ)Y |Y |2 j +O(|Y ||(εY,µ)|L+1), (3)
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with initial condition Y (0) = (1,0)T , which is X(0) = (ε,0)T . Since F(X ,µ) is CL+2

jointly in X and µ , the R.H.S of (3) is CL+1 jointly in Y , µ , ε . We let Y = Y (t,ε,µ)

denote the solution of (3) satisfies initial condition (1,0)T . Now for ε = 0 and µ small,

Y (t,0,µ) will cross y1-axis for t = T0(µ), where

T0(µ) =
2π

ω(µ)
+O(µ

L+1).

Now,

Y (T0(µ),0,µ) =

 1

0

 · [e 2πα(µ)
ω(µ) +O(µ

L+1)],

Y ∈CL+1 jointly in t, ε , µ , and

Ẏ (T0(µ),0,µ) =

 α(µ)

ω(µ)

 · [e 2πα(µ)
ω(µ) +O(µ

L+1)].

Since ω(µ)> 0 for µ in a neighborhood of 0, y2(t,ε,µ)= 0 for t = T (ε,µ) with T (0,µ)=

T0(µ) and T ∈ CL+1 jointly in ε , µ , if we let I(ε,µ) ≡ y1(T (ε,µ),ε,µ), then I ∈ CL+1

for ε ,µ small, and since

∂ I
∂ µ

(0,0) = lim
µ→0

y1(T (0,µ),0,µ)− y1(ω0,0,0)
µ

= lim
µ→0

e
2πα(µ)

ω(µ) +O(µL+1)− e
2πα0

ω0

µ

= 2π
α ′(0)
ω(0)

6= 0.

By the implicit function theorem, we have µ = µ(ε), µ ∈CL+1 for ε ∈ [0,C ) such that

I(ε,µ(ε)) = 1, so we got a family of periodic solutions for each ε ∈ (0,C ) that satisfies

the system Ẋ = F(X ,µ) with initial condition X(0) = (ε,0)T . This completes the prove

of the existence of periodic solutions for the Poincaré normal form.
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Part1(B) Bifurcation Formula

In Part(A) we have proved the existence of periodic solutions. In this part, we are going

to prove the following lemma

Lemma. If the Poincaré normal form of (1) is

ζ̇ = λ (µ)ζ +
[ L

2 ]

∑
j=1

c j(µ)ζ |ζ |2 j +O(|ζ ||(ζ ,µ)|L+1)

≡ H(ζ ,ζ ,µ)

(4)

where H(ζ ,ζ ,µ) is CL+2 jointly in ζ , ζ , µ in a neighborhood of 0 ∈ C×C×R1, then

the periodic solution of period T (ε) such that ζ (0,µ) = ε of (4) has the form

ζ = εe
2πit
T (ε) +O(εL+2), (5)

where

T (ε) =
2π

ω0
[1+

L

∑
i=1

τiε
i]+O(εL+1), (6)

and

µ(ε) =
L

∑
i=1

µiε
i +O(εL+1). (7)

Proof. From Part(A), we see that T (ε) and µ(ε) are in CL+1 with T (0) = 2π

ω0
, µ(0) = 0.

So T (ε) and µ(ε) can be written as (6) and (7). We use the change of variables (τ,η)

with

τ =
t

T (ε)
and ζ = εe2πiτ

η .

Then because dζ

dt = ε2πie2πiτη
dτ

dt +εe2πiτ dη

dτ

dτ

dt and dτ

dt = 1
T (ε) , so put τ , η in (4) we have

2πiη +
dη

dτ
= T (ε)η [λ (µ)+

[ L
2 ]

∑
j=1

c j(µ)(ηη̄) j
ε

2 j]+O(εL+1). (8)

By the smoothness of H(ζ , ζ̄ ,µ) we can write the solution η with initial condition η(0) =
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1 as

η(τ) =
L

∑
i=0

ηi(τ)ε i +O(εL+1), with η0(0) = 1 , ηi(0) = 0 (1≤ i≤ L). (9)

We want to show that η0(τ) ≡ 1, and ηi(τ) ≡ 0 for 1 ≤ i ≤ L, which means (5) is true.

We put (6) and (9) into (8). Then at O(ε0), (8) have the relations

2πiη0 +
dη0

dτ
= 2πiη0,

so dη0
dτ

= 0 and we know that η0(0) = 1. This implies η0 ≡ 1.

At O(ε1), (8) have the relations

2πiη1 +
dη1

dτ
= 2πiη1 + v1

where v1 = τ1η0ω0 + 2π

ω0
η0µ1 is a constant independent of ε . Thus η1 = v1τ + v2, where

v2 is a constant. But since η(τ) is a periodic solution with period 1, so does η1. Hence

v1 = 0. On the other hand, we know η1(0) = 0. Hence, v2 = 0 which implies η1 ≡ 0.

At O(ε2),

2πiη2 +
dη2

dτ
= 2πiη2 + v3,

where v3 = 2π

ω0
(α ′(0)+ iω ′(0))τ1µ1 +2πiτ2 + 2π

ω0
[(α ′(0)+ iω ′(0))µ2 + α ′′(0)+iω ′′(0)

2 µ2
1 ] is

a constant. Thus η2 = v3τ + v4. Notice that η2 has period 1 as well. Therefore, v3 = 0

and v4 = 0. By η2(0) = 0, we obtain η2 ≡ 0. Using the same argument, we have

ηi = 0 (1≤ i≤ L).

Next we want to derive the coefficients in the expansions of µ(ε) and T (ε). To do

this, we put (5) into (4). Then we get

ε
2πi

T (ε)
e

2πit
T (ε) = λ (µ)εe

2πit
T (ε) +

[ L
2 ]

∑
j=1

c j(µ)εe
2πit
T (ε) |εe

2πit
T (ε) |2 j +O(...),
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which implies

2πi
T (ε)

= λ (µ)+
[ L

2 ]

∑
j=1

c j(µ)ε2 j +O(...). (10)

Inferring from (10), we have

2π

T (ε)
= Imλ (µ)+

[ L
2 ]

∑
j=1

Imc j(µ)ε2 j + ImO(...), (11)

0 = Reλ (µ)+
[ L

2 ]

∑
j=1

Rec j(µ)ε2 j +ReO(...) (,12)

where O(...) is a term with order at least εL+1. Next, we want to derive the coefficients of

the expansions of T (ε) and µ(ε) with order smaller then εL+1. In what follows, we omit

the high order term in (11), (12), and (6), (7) in the discussion. Moreover, we assume

α ′(0) 6= 0.

We use (12) to calculate the coefficients of µ(ε). Expanding (12) in µ , and noting that

Reλ (µ) = α(µ), we have

α(0)+α
′(0)µ +

α ′′(0)
2!

µ
2 + ...+Rec1(0)ε2 +Rec′1(0)µε

2 + ...

+Rec2(0)ε4 +Rec′2(0)µε
4 + ..... = 0. (13)

Plugging (7) into (13), by α(0) = 0, we have

α
′(0)(

L

∑
j=1

µ jε
j)+

α ′′(0)
2!

(
L

∑
j=1

µ jε
j)2 + ...+Rec1(0)ε2+

Rec′1(0)(
L

∑
j=1

µ jε
j)ε4 + ...+Rec2(0)ε4 + ... = 0. (14)

By the above equation, at O(ε1), (14) implies

α
′(0)µ1 = 0.

Since α ′(0) 6= 0, we obtain

µ1 = 0.
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At O(ε2), (14) and µ1 = 0 imply

α
′(0)µ2 +Rec1(0) = 0.

We therefore obtain

µ2 =
−Rec1(0)

α ′(0)
.

At O(ε3), (14) and µ1 = 0 imply

α
′(0)µ3 = 0.

Hence,

µ3 = 0.

At O(ε4), (14) and µ1 = µ4 = 0 imply

α
′(0)µ4 +

α ′′(0)
2

µ
2
2 +Rec′1(0)µ2 +Rec2(0) = 0.

Thus

µ4 =
−1

α ′(0)
[
α ′′(0)

2
µ

2
2 +Rec′1(0)µ2 +Rec2(0)],

where µ2 is given as above. Continuing the same process, we get µi = 0, when i is odd.

We therefore obtain the formula stated in the Theorem property (a)

µ(ε) =
[ L

2 ]

∑
i=1

µ2iε
2i +O(εL+1).

By the same argument on (11), and noting that T (0) = 2π

ω0
= 2π

ω0
τ0, we see τ0 = 1.

Thus, the L.H.S of (11) can be written as

2π

T (ε)
=

ω0

∑
L
i=0 τiε i

=
ω0

1+∑
L
i=1 τiε i

= ω0 +ω0(−
L

∑
i=1

τiε
i)+ω0(−

L

∑
i=1

τiε
i)2 + ....,

and the terms Imλ (µ) = ω(µ) and Imc j(µ) of R.H.S of (11) can be expended in terms
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of µ . Hence,

ω0 +ω0(−
L

∑
i=1

τiε
i)+ω0(−

L

∑
i=1

τiε
i)2 + .... = ω0 +ω

′(0)µ+

ω
′′(0)µ

2 + ...+ Imc1(0)ε2 + Imc′1(0)µε
2 + ...+ (15)

Imc2(0)ε4+Imc′2(0)µε
4 + ... .

Plugging the formula of µ into (15), we can write (15) as an equation in ε as

ω0(−
L

∑
i=1

τiε
i)+ω0(−

L

∑
i=1

τiε
i)2 + .... = ω

′(0)(µ2ε
2 + µ4ε

4 + ...)+

ω
′′(0)(µ2ε

2 + µ4ε
4 + ...)2 + ...+ Imc1(0)ε2+ (16)

Imc′1(0)(µ2ε
2 + µ4ε

4 + ...)ε2 + ...+ Imc′2(0)ε4 + ... .

Applying the same argument at O(ε), we have

−ω0τ1 = 0.

Since ω0 6= 0, we see

τ1 = 0.

At O(ε2),

−ω0τ2 = ω
′(0)µ2 + Imc1(0),

so

τ2 =
−1
ω0

(ω ′(0)µ2 + Imc1(0)).

At O(ε3), we have

−ω0τ3 = 0.

Hence,

τ3 = 0.

9



At O(ε4), we get

−ω0τ4 +ω0τ
2
2 = ω

′(0)µ4 +
ω ′′(0)

2
µ

2
2 + Imc′1(0)µ2 + Imc2(0).

Thus,

τ4 =
−1
ω0

[ω ′(0)µ4 +
ω ′′(0)

2
µ

2
2 + Imc′1(0)µ2 + Imc2(0)−ω0τ

2
2 ].

Comparing the terms in R.H.S of (16) have even order with respect to ε , we get τi = 0 if

i is odd. This proved property (b) in Theorem

T (ε) =
2π

ω0

1+
[ L

2 ]

∑
i=1

τ2iε
2i

+O(εL+1).

Part1(C) Stability

We have already proved property(a) and (b) in Theorem, in this part, we are going to

prove the stability about the periodic solutions, which is quite important. The approach

we use is Floquet theory, which is stated as follow and can be found in [2, 4, 6]

Theorem. If A(t) is a continuous, T-periodic matrix, then for all t ∈ R any fundamental

matrix solution for the nonautonomous linear system

ẋ = A(t)x (17)

can be written in the form

Φ(t) = Q(t)eBt

where Q(t) is a nonsingular, differentiable, T-periodic matrix and B is a constant matrix.

Furthermore, if Φ(0) = I then Q(0) = I.

The eigenvalues λi, i = 1, ....,n of the matrix B are called characteristic exponents,

the eigenvalues eλiT of eBT are called characteristic multipliers.

If P(t) is a nonconstant periodic solution of below equation (17), then P(t) is asymptotically,

orbitally stable with asymptotic phase if and only if there exists an ε > 0 such that if ϕ(t)

10



is any solution of (17) for which |ϕ(t0)−P(t0)|< ε at some t0, then there exists a constant

c, called the asymptotic phase, that satisfies

lim
t→0
|ϕ(t)−P(t + c)|= 0.

The proof is based on the following Theorem,

Theorem. If

(1) P(t) is a nonconstant T-periodic solution of

ẋ = f (x) ( f ∈C1(Rn,Rn)) (17)

(2) The characteristic multiplier 1 of the first variation of (17) with respect to the periodic

solution P, namely of
dy
dt

=
∂ f (P(t))

∂x
y,

is simple,

(3) All other characteristic multipliers of (17) have modulii less than 1, then P(t) is asymp-

totically, orbitally stable with asymptotic phase.

We shall use this theorem to prove the stability if the 2× 2 system (2). By Part(B),

µ(ε) is CL+1. Hence, the nonconstant periodic solution of (2), Pε(t) = εy(t,ε,µ(ε)) is

CL+1 jointly in t and ε with period T (ε), and Ṗε(t) is a nontrivial T (ε) period solution

of the variational system ẏ = A(t;ε)y. This is because Ṗε(t) = F(Pε(t),µ(ε)). Thus

P̈ε(t) = DX F(Pε(t),µ(ε))Ṗε(t), where DX F(Pε(t),µ(ε)) = A(t;ε). By Floquet’s theory,

if Φ(t) is a fundamental matrix solution of the variational system, then it can be written as

Φ(t) = Q(t)eBt . Thus Ṗε(t) can be written as Q(t)eBtc for some constant vector c. Since

Φ(t +T (ε)) = Φ(t), Q(t +T (ε)) = Q(t), we have Q(t +T (ε))eB(t+T )c = Q(t)eB(t+T )c =

Q(t)eBtc, which means eBT c = c, thus eBT has characteristic multiplier 1. Thus character-

istic exponent 0. If the other characteristic exponent is β (ε), we use the following theory.

11



I f λi (i = 1, ...,n) are the characteristic exponents o f (17), then

n

∑
i=1

λi =
1
T

ˆ T

0
trA(s)ds.

where trA(s) = ∑
n
i=1 Aii(s).

We define

β (ε) =
1

T (ε)

ˆ T (ε)

0
trA(s;ε)ds.

Since T (ε) is CL+1, A(t;ε) is CL+1 jointly in t and ε , β (ε) is CL+1 in ε . The system (2)

is written as

ẋ1 = αx1−ωx2 +[(Rec1)x1− (Imc1)x2]r2 +O(ε4)≡ F1,

ẋ2 = ωx1 +αx2 +[(Rec1)x2 +(Imc1)x1]r2 +O(ε4)≡ F2.

Note that

∂F1

∂x1
= α + (Rec1)r2 +2(Rec1)x2

1−2(Imc1)x1x2,

∂F2

∂x2
= α +(Rec1)r2 +2(Rec1)x2

2 +2(Imc1)x1x2.

Hence,

tr
∂F
∂X

(P(t,µ(ε))) = 2α(µ(ε))+4[Rec1(µ(ε))]ε2 +O(ε3),

where µ(ε) = O(ε2), and r2 = ε2 +O(ε5). Hence,

1
T (ε)

ˆ T (ε)

0
trA(s;ε)ds = 2α(µ(ε))+4[Rec1(µ(ε))]ε2 +O(ε3).

By

α(µ(ε)) = α
′(0)µ2ε

2 + ... =−Rec1(0)ε2 + ...,

we have

β (ε) = 2Rec1(0)ε2 +O(ε3).
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Thus β (ε) < 0 for sufficient small ε if Rec1(0) < 0.

Part2 Reduction of Two-dimensional Systems to Poincarè Normal Form

In previous part, we have shown the Hopf bifurcation in the Poincarè normal form. In

this part, we shall show how general autonomous systems satisfying the hypotheses of the

Hopf bifurcation can be transformed into Poincarè normal form. We use single complex

equation to replace 2×2 real system in the following proof. Consider

ż = λ z+g(z,z; µ), (18)

where

g(z,z; µ) = ∑
2≤i+ j≤L

gi j(µ)
ziz j

i! j!
+O(|z|L+1) (19)

and

λ (µ) = α(µ)+ iω(µ).

Here z = y1 + iy2, and (18) is equivalent to the 2×2 system

ẏ1 = f1(y1,y2; µ),

ẏ2 = f2(y1,y2; µ),

with an isolated stationary point at origin and

Dy f (0,0,µ) =

 α(µ) −ω(µ)

ω(µ) α(µ)

 .

We use the transformation

z = ζ + χ(ζ ,ζ ; µ)

= ζ + ∑
2≤i+ j≤L

χi j(µ)
ζ iζ

j

i! j!
, (20)

13



where χi j ≡ 0 for i = j +1 to transform (18) into the Poincarè normal form

ζ̇ = λ (µ)ζ +
[ L

2 ]

∑
j=1

c jζ |ζ |2 j +O(|ζ ||(ζ ,µ)|L+1) (21)

= λ (µ)ζ +φ(ζ ,ζ ; µ).

Formally, transformation (19) can take (18) into (20). We then compute the coeffi-

cients in the expansion of φ . After all, our computation validate the above transformation.

First, we take derivative of (19) with respect to t,

ż = ζ̇ + χζ ζ̇ + χ
ζ

ζ̇ . (22)

By (18)-(20), we rewrite (21) as

λ (ζ + χ)+g(ζ + χ,ζ + χ; µ) = λζ +φ + χζ (λζ +φ)+ χ
ζ
(λζ +φ),

or

λζ χζ +λζ χ
ζ
−λ χ = g(ζ + χ,ζ + χ)− (φ + χζ φ + χ

ζ
φ). (23)

Since χζ = ∑2≤i+ j≤L iχi j
ζ i−1ζ

j

i! j! , ζ χζ = ∑2≤i+ j≤L iχi j
ζ iζ

j

i! j! . Similarly, ζ χ
ζ

= ∑2≤i+ j≤L jχi j
ζ iζ

j

i! j! .

The L.H.S of (22) can be written as

∑
2≤i+ j≤L

(iλ + jλ −λ )χi j
ζ iζ

j

i! j!
. (24)

By (19) and (24), to express χi j in terms of gi j. We do the following comparison of |ζ |2

terms of (23). L.H.S of (23) is

λ χ20
ζ 2

2
+λ χ11ζ ζ +(2λ −λ )χ02

ζ
2

2!
, (25)

and the R.H.S of (23) is
g20

2
ζ

2 +g11ζ ζ +
g02

2
ζ

2
. (26)
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Hence,

χ20 =
g20

λ
, χ11 =

g11

λ
, χ02 =

g02

2λ −λ
. (27)

For the ζ 2ζ term, the L.H.S of (23) is 0. Since χ21 ≡ 0, we have

0 = g20χ11 +g11χ11 +g11
χ20

2
+g02

χ02
2

+
g21

2
− c1(µ). (28)

Plugging (27) into (28), we have

c1(µ) =
g20g11

λ
+

g11g11
λ

+
g11g20

2λ
+

g02g02

2(2λ −λ )
+

g21

2

=
g20g11(2λ +λ )

2|λ |2
+
|g11|2

λ
+
|g02|2

2(2λ −λ )
+

g21

2
. (29)

If µ = 0, we have

c1(0) =
i

2ω0
(g20g11−2|g11|2−

|g20|2

3
)+

g21

2
.

Since the possible of transformation into Poincaré normal form is assumed apriori,

we have to prove that transformation is valid. More precisely, we use the smoothness,

existence of φ , and assume the expansion of φ in (21) apriori. To prove this. We define

Λ(ξ ,ζ ; µ) = ∑
2≤i+ j≤L

χ
(k)
i j (0)ζ iζ

j
µk

i! j!k!
,

where the coefficient χi j(µ) are expressed as in above discussion. Note that the difference

between function Λ and χ in (20) is that Λ has better smoothness, and has only finite order

terms. Thus, to calculate the normal form, we can replace χ by Λ in (23). Since Λ is a

function of ζ , ζ , and µ , (23) can be viewed as a function of Reζ , Imζ , Reφ , and Imφ .

Express it in the form

F(Reζ , Imζ ,Reφ , Imφ ; µ) = 0,

where F is at least C1 and F(0,0,0,0;0) = 0. Since ReF = c + Reφ + ReΛζ Reφ −

15



ImΛζ Imφ +ReΛ
ζ

Reφ +ImΛ
ζ

Imφ , where c is independent of φ , thus ∂ReF
∂Reφ

= 1+ReΛζ−

ImΛζ , and ∂ReF
∂Imφ

= −ImΛζ + ImΛ
ζ

. In the same way, ∂ImF
∂Reφ

= ImΛζ + ImΛ
ζ

, and

∂ImF
∂Imφ

= 1+ReΛζ +ReΛ
ζ

. Evaluating

 ∂ReF
∂Reφ

∂ReF
∂Imφ

∂ImF
∂Reφ

∂ImF
∂Imφ


at (0,0,0,0;0), we get  1 0

0 1

 .

Thus, by the implicit function theorem, there exists a unique φ = φ(ζ ,ζ ; µ) with φ(0,0;0)=

0 and for fixed µ both g and Λ are CL+2. Thus φ can be written in Taylor expansion as

φ(ζ ,ζ ; µ) = ∑
2≤i+ j≤L

φi j(µ)
i! j!

ζ
i
ζ

j
+O(|ζ |L+2).

By direct computation, we have

φi j(µ) = O(|µ|L−i− j+2), for i 6= j +1, 2≤ i+ j ≤ L+1,

and

φ j+1, j(µ) = ( j +1)! j!c j(µ)+O(|µ|L−2 j+1), for 1≤ j ≤ [
L
2
].

Thus, (18) can be transformed into (21) by means of (20) with the function Λ.

Part3 Reduce the n-dimensional System to the Two-dimensional Sys-

tem by Center Manifold Theorem

For the n-dimensional system

Ẋ = F(X ; µ), (30)
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where (X ,µ) ∈ Rn×R. We consider the suspended system

Ẋ = F(X ; µ),

µ̇ = 0,
(31)

and apply the center manifold theorem to (31) at (X ,µ) = (0,0). The center manifold

theorem is stated as

Theorem. (The Center Manifold Theorem) For the system

ẋ = f (x). (*)

Let f∈Cr+1(E), where E is an open subset of Rn containing the origin and r≥1. Suppose

that f (0) = 0 and that D f (0) has c eigenvalues with zero real parts and s eigenvalues

with negative real parts, where c + s = n. The system then can be written in diagonal

form

ẋ = Cx+F(x,y)

ẏ = Py+G(x,y),

where (x,y) ∈ Rc×Rs, C is a square matrix with c eigenvalues having zero real parts,

P is a square matrix with s eigenvalues with negative real parts, and F(0) = G(0) = 0,

DF(0) = DG(0) = O, furthermore, there exist a neighborhood V of 0 in Rn and a Cr

submanifold M of V of dimension c, passing through 0 and tangent to the generalized

eigenspace of C at 0, such that

(a) (Local Invariance ): If to each x in M the solution x(t) of the system (*) with initial

condition x(0) = x remains in M for some interval 0≤ t ≤ τ , where τ = τ(x) > 0.

(b) (Local Attractivity): If x(t) ∈V for all t ≥ 0, x(t) approaches M as t→ ∞.
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Since the linear part of (31) at (0,0) is

 FX(0;0) 0

0 0


has eigenvalues 0, iω0, −iω0 and other eigenvalues with negative real part by the hy-

potheses. Thus by the center manifold theorem, system (31) has locally invariant, locally

attractive, three-dimension center manifold C in Rn×R with 0 ∈ C and |µ| < µ0. Note

that, we apply the center manifold theorem on the suspended system (31) instead of (30)

because we got a center manifold with |µ| < µ0 in (31). If we apply center manifold

theorem in (30), we need to assume µ = 0 which is more restricted.

Let q(µ) be the eigenvector of

A(µ) = FX(0; µ),

and q∗(µ) be the eigenvector for AT , corresponding to the simple eigenvalues

λ (µ) = α(µ)+ iω(µ) and λ̄ (µ).

We normalize q∗ with respect to q, that is

〈q∗,q〉= 1,

where 〈�, �〉 denotes the Hermitian product

〈u,v〉=
n

∑
i=1

ūivi.

Let P0 = (Req(0),−Imq(0),e1, ...,en−2) be the n×n real matrix where e j, j = 1, ...,n−2,

satisfies the condition
〈
q∗(0),e j

〉
= 0, j = 1, ...,n− 2. Use the change of variables X =

18



P0Y the system (31) can be transformed into the canonical form

Ẏ =


0 −ω0

...

ω0 0
...

· · · · · · D0

+G(Y ; µ),

µ̇ = 0,

where · · · and
... are all zero, D0 is real (n−2)×(n−2) matrix with eigenvalues λ3(0), ...,λn(0),

and G(Y ; µ) = O(|(Y,µ)|2) is CL+2 jointly in Y and µ . The canonical system has a center

manifold

C = {(Y,µ)|(Y,µ) = (y1,y2,W (y1,y2,µ),µ), |(y1,y2,µ)|< δ},

where δ is sufficient small, and

W : R3→ Rn−2

is CL+2 jointly in y1, y2, µ , and W (y1,y2,µ) = O(|(y1,y2,µ)|2). In the X-coordinates,

C = {(X ,µ)|(X ,µ) = (y1Req(0)− y2Imq(0)+
n−2

∑
j=1

e jWj,µ), |(y1,y2,µ)|< δ}.

To discuss the system (30), we restrict C for fixed µ , and write it as

Cµ = {X |(X ,µ) ∈ C }.

Since C is CL+2 in X and µ , thus Cµ is CL+2 in X .

We define a new coordinate related to the system (31). The system (31) can be written

as

Ẋ = A(µ)X + f (X ,µ), (32)

where f (X ,µ) = F(X ,µ)−A(µ)X . If x(t) is a solution of (32), we define

z(t) = 〈q∗(µ),x(t)〉 , (33)
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and regard z and z̄ as local coordinate in the direction q and q̄. Next, we define

w(t) = x(t)− z(t)q(µ)− z̄(t)q̄(µ). (34)

In the variables z and w, we can relate the system (32) with z and w. Since z = 〈q∗,x〉,

〈q∗,Ax〉 = 〈A∗q∗,x〉 =
〈
λ̄q∗,x

〉
= λ 〈q∗,x〉 = λ z. We have ż = 〈q∗, ẋ〉 = 〈q∗,Ax+ f 〉 =

〈q∗,Ax〉+ 〈q∗, f 〉. We can get a differential equation in z, in the same manner in w, we

have
ż = λ (µ)z+G(z, z̄,w; µ)

ẇ = A(µ)w+H(z, z̄,w; µ),
(35)

where
G(z, z̄,w; µ) = 〈q∗, f (w+2Re[zq]; µ)〉

H(z, z̄,w; µ) = f (w+2Re[zq]; µ)−2Re[qG].
(36)

Note that, since 〈q∗,w〉 = 0, the orthogonality relations imply two components of w are

linear combinations of the other components.

From the center manifold theorem, the restricted manifolds Cµ where |µ|< δ may be

locally represented as a real vector-valued function

w = w(z, z̄; µ),

where w is CL+1 in z, z̄, and µ , and satisfies

wz(0,0; µ) = wz̄(0,0; µ) = 0, and 〈q∗,w〉= 0.

Since the information about the periodic solutions we care about is all included in the

center manifold, thus we restrict (35) to Cµ by setting

w(t) = w(z(t), z̄(t); µ),
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and the system on Cµ is expressed as

ż = λ z+g(z, z̄; µ), (37)

where

g(z, z̄; µ) = G(z, z̄,w(z, z̄; µ); µ),

and for w(z, z̄; µ), ẇ = wzż+wz̄ ˙̄z = wz(λ z+g)+wz̄(λ̄ z̄+ ḡ). Using (35), we can determine

w(z, z̄; µ) by

ẇ = wz(λ z+g)+wz̄(λ̄ z̄+ ḡ) = A(µ)w+H(z, z̄,w; µ). (38)

Note that the right hand side of (37) is CL+1 in z, z̄, and µ , and g is CL+1 in z and z̄, for

fixed µ , and satisfies

gz(0,0; µ) = gz̄(0,0; µ) = 0.

Thus (37) is the desired form for the two dimension case.

To complete the prove, we need to show the stability in Rn is the same with the sta-

bility in the R2 case as we discuss in part2 and 1. To do this, we show that β (ε) which

we discuss the stability in two dimensional case is also a characteristic exponent for the

n-dimensional system (31). The verification is as follows.

Let x0 denote a point on the orbit of the n-dimensional solution Pε(t), write it as

x0 = Pε(t0). We want to use the Poincaré map about the periodic solution Pε(t). To define

the Poincaré map. Let en denote the unit vector in the direction of ṗε(t0) = F(x0; µ(ε)),

and denote Λ the hyperplane

Λ = {x|(x− x0) · en = 0}.

The hyperplane Λ has n− 1 dimension, thus we can find a set of orthogonal unit vector
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{e1,e2, ...,en−1} with the properties

e j · en = 0; for j = 1, ...,n−1,

Λ = {x = x0 +
n−1

∑
j=1

η je j, η ∈ Rn−1}.

Using Poincaré map [6], for x ∈ Λ closed enough to x0, we have a solution x(t) for t =

τ(η) nearest to T (ε) and the solution x(τ(η))∈Λ. If we let ψ = ψ(η) be the vector such

that

x(τ(η)) = x0 +
n−1

∑
j=1

ψ j(η)e j.

Then ψ : η → Rn−1 is the corresponding Poincaré map. It has been show that [6] the

eigenvalues of the matrix ∂ψ

∂η
(0) are precisely n− 1 of the characteristic multiplier asso-

ciated with the periodic solution.

For the system ẋ = F(x; µ), Pε(t) is a periodic solution lies on the two dimensional

invariant manifold Cµ . Thus the manifold Cµ intersects the hyperplane Λ, and the inter-

section describes a curve Γ in Rn. Since Γ belongs to Λ, it can be parametrized as

Γ = {xs = x0 +
n−1

∑
j=1

η j(s)e j, |s|< σ},

where η j(0) = 0 for j = 1, ...,n− 1, σ > 0 is sufficiently small, where s denote the ar-

clength. For each xs ∈ C , there are points zs ∈ C and ζs ∈ C such that

xs = zsq+ z̄sq̄+w(zs, z̄s; µ)

zs = ζs + χ(ζs, ζ̄s; µ).

Define the tangent vector

v =
dη

ds
(0).

We claim this vector is an eigenvector of the Jacobian matrix ∂ψ

∂η
(0) with eigenvalue

eβ (ε)T (ε). To prove this, we denote η̃(s) = ψ(η(s)), and let x̃s, z̃s, ζ̃s, correspond to η̃(s).
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Since by the above discussion about β (ε) in Part2, we have

lim
s→0

|ζ̃s−ζ0|
|ζs−ζ0|

= eβ (ε)T (ε).

Using the Taylor expansion for w(z, z̄; µ), we have

lim
s→0

|η̃(s)|
|η(s)|

= lim
s→0

|z̃s− z0|
|zs− z0|

= lim
s→0

|ζ̃s−ζ0|
|ζs−ζ0|

= eβ (ε)T (ε).

If we write η̃(s) = η(s̃(s)) for some s̃ = s̃(s), then

lim
s→0

s̃(s)
s

= lim
s→0

|η̃(s)|
|η(s)|

= eβ (ε)T (ε).

Thus, use Taylor expansion of the Poincaré map ψ , we have

η̃(s) = ψ(η(s)) =
∂ψ

∂η
(0)η(s)+O(|s|2),

s̃
s

η(s̃)
s̃

=
∂ψ

∂η
(0)

η(s)
s

+O(|s|).

Thus, let s approach 0, we see

eβ (ε)T (ε)v =
∂ψ

∂η
(0)v.

Hence eβ (ε)T (ε) is an eigenvalue of ∂ψ

∂η
(0) as claimed.

The stability about the periodic solution Pε(t) is determined by its characteristic mul-

tipliers, and we know that the characteristic multipliers are the eigenvalues of ∂ψ

∂η
(0).

One of these is 1, and from above we know another is eβ (ε)T (ε). The remaining n− 2

multipliers are

ρ j = e
2πλ j(0)

ω(0) +o(1) ( j = 3, ...,n)

for ε is small, this is due to the continuity at ε = 0. Thus, by the Hopf hypotheses, ρ j

have moduli strictly less than 1. The proof is now complete.
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4 Examples

The proof we gave in the above has the advantage which tells us how to calculate the

parameter µ(ε), the period T (ε), and the characteristic exponent β (ε) i.e., the stability

about the periodic solution. Moreover, the periodic solution can also be approximated.

Recall that since the coefficient

µ2 =
−Rec1(0)

α ′(0)
,

τ2 =
−1
ω0

(ω ′(0)µ2 + Imc1(0)),

β2 = 2Rec1(0).

Hence, to calculate the above coefficients, we only need to evaluate c1(0). By Part2,

c1(0) =
i

2ω0
(g20g11−2|g11|2−

|g20|2

3
)+

g21

2
.

To get c1(0), we have to know the coefficients of g(z, z̄; µ) in Taylor expansion with

older 2, and g21. By (37) g(z, z̄; µ) = G(z, z̄,w(z, z̄; µ); µ), and G(z, z̄,w(z, z̄; µ); µ) =

G(z, z̄,0; µ)+Gw(z, z̄,0; µ)w+O(|w|2). Note that w(z, z̄; µ)= O(z2). Thus g20 = Gzz(0,0,0; µ)=

G20(µ), g02 = Gz̄z̄(0,0,0; µ)= G02(µ), g11 = G11(µ), and g21 = G21(µ)+ ∂ 2G
∂w∂ z(0,0,0; µ)2w11(µ)+

∂ 2G
∂w∂ z̄(0,0,0; µ)w20(µ). To calculate w11 and w20, inferring from (38) we have

Lw = H(z, z̄,w; µ)−gwz− ḡwz̄, (39)

where

L≡ (λ z
∂

∂ z
+ λ̄ z̄

∂

∂ z̄
−A).

Considering the expansion w(z, z̄; µ) = ∑
L+1
i+ j=2

wi j(µ)
i! j! ziz̄ j + O(|z|L+2), the L.H.S of (39)

can be written as

Lw =
L+1

∑
i+ j=2

[(λ i+ λ̄ j)I−A]wi j(µ)
ziz̄ j

i! j!
+O(|z|L+2). (40)
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To obtain w11, and w20, we just write the R.H.S of (39) into the Taylor expansion, and find

the corresponding coefficient. For the convenience, we will only show how to compute

w11, and w20.

Example 4.1. van der Pol’s equation

ẋ =−y+ µx+ x3,

ẏ = x.

This system has stationary point (x,y) = (0,0), and the system can be written as

 ẋ

ẏ

=

 µ −1

1 0


 x

y

−
 x3

0

 .

The linear part of the system has eigenvalues

λ1,2 =
µ±

√
µ2−4

2
.

If µ ≤−2, the eigenvalues are real and negative. While −2 < µ < 0, the eigenvalues are

complex conjugate number with negative real part. In case 0 < µ < 2, the eigenvalues are

complex conjugate number with positive real part, and for µ ≥ 2, the eigenvalues are real

and positive. As µ is increased past µ = 0, the stationary solution lose stability. Write

λ1,2 = α(µ)± iω(µ),

where α(µ) = µ

2 , ω(µ) =
√

µ2−4
2 . Since α(0) = 0 and α ′(0) = 1

2 6= 0, we can apply the

Hopf’s theorem to obtain the existence of periodic solutions bifurcating from (0,0).

From the above, if we want to know µ2, τ2, β2, we need to evaluate c1(0). For the

sake of convenience, we translate the stationary point and the bifurcating point to 0, and

use the change of variables to put the Jacobian matrix of the system which evaluate at

the stationary point into the canonical form. In this example, the Jacobian matrix of the
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system is already in real canonical form. We let

F1(x,y;0) =−y− x3, F2(x,y;0) = x.

From the above we know g11(0) = Gzz(0,0;0). Since ∂

∂ z = 1
2( ∂

∂x − i ∂

∂y), and ∂

∂ z̄ = 1
2( ∂

∂x +

i ∂

∂y), we get

g11 =
1
4

[
∂ 2F1

∂x2 +
∂ 2F1

∂y2 + i
(

∂ 2F2

∂x2 +
∂ 2F2

∂y2

)]
.

In a similar way we can get g02, g20, and g21. In this example we get

g11 = g02 = g20 = 0, g21 =−3
4

, c1(0) =−3
8

,

thus we have

µ2 =
3
4

, τ2 = 0, and β2 =−3
4

.

Since µ2 > 0 and β2 < 0, we know the periodic solutions exist for µ > 0 and are stable.

The following example is a three dimensional case.

Example 4.2. Langford’s system

ẋ1 = (µ−1)x1− x2 + x1x3,

ẋ2 = x1 +(µ−1)x2 + x2x3,

ẋ3 = µx3− (x2
1 + x2

2 + x2
3).

This system has the following two stationary points

x0
∗ = (0,0,0)T and x1

∗ = (0,0,µ)T .
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Linearized the system about x0
∗, the coefficients matrix of the linear part is


µ−1 −1 0

1 µ−1 0

0 0 µ

 ,

and the corresponding eigenvalues are

λ
0
1 = µ , λ

0
2,3 = µ−1± i.

Thus, for µ < 0, x0
∗ is stable; while for µ > 0, x0

∗ is unstable.

Linearized about x1
∗ we have


2µ−1 −1 0

1 2µ−1 0

0 0 −µ

 ,

the eigenvalues are

λ
1
1,2 = 2µ−1± i, λ

1
3 =−µ .

So x1
∗ is linearly stable for 0 < µ < 1

2 , and is unstable for µ < 0 or µ > 1
2 . For µ = 1

2 ,

we have a pair of eigenvalues with zero real part λ 1
1,2(

1
2) = ±i and an eigenvalue with

negative real part λ 1
3 (1

2) =−1
2 . Thus, the Hopf bifurcation theorem can be applied to this

case.

Let x = x1
∗+ y, the system becomes

ẏ1 = (2µ−1)y1− y2 + y1y3 ≡ F1,

ẏ2 = y1 +(2µ−1)y2 + y2y3 ≡ F2,

ẏ3 =−µy3− (y2
1 + y2

2 + y2
3)≡ F3.

At y = 0. The system is in real canonical form. To get µ2, τ2 and β2. We apply the
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formulae as in Example3.1. Since ∂ 2Fk

∂yi∂y j
= 0 at y = 0, µ = 1

2 for i, j,k = 1,2. We have

g11 = g02 = g20 = G21 = 0.

Next we need to calculate w11 and w20. By (40), we obtain

−Aw11 = H11, (2iω0I−A)w20 = H20. (41)

Since w11 = (0,0,w11)T and H11 = (0,0,F3
11)

T , by (41), 1
2w11 = −1 and (−11

2)w20 = 0.

Therefore, we get

w11 =−2, w20 = 0.

By ∂ 2G
∂w∂ z(0,0,0, 1

2) = ∂

∂y3
(1

2( ∂

∂y1
− i ∂

∂y2
))(F1 + iF2) = 1, we see Gwz̄ = 0 and

g21 =−4.

To sum up, we obtain

c1(
1
2
) =−2, µ2 = 1, τ2 = 0, and β2 =−4.

Since µ2 = 1 > 0, the periodic solution P(t; µ) exist for µ > 1
2 , and is asymptotically

orbitally stable.
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