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摘要 

與核糖核酸(RNA)結合的蛋白質在核糖核酸中序列的辨識上占有很重要的位

置，因為這些資訊是去氧核糖核酸(DNA)的作用來源。為了符合各種功能的需求，

與核糖核酸結合的蛋白質是由許多重覆的結合區段組成，而這些區段各有其結構

上的位置以提供不同的功能。應用機器學習方法於預測核糖核酸與蛋白質結合位

置，可以協助分子生物研究人員快速過濾可能與 RNA 作用位置及機制。 

ProteRNA 為本論文所提出的預測方法，融合了支援向量機(SVM)與 WildSpan

蛋白質序列探勘兩種工具的結果，其中 SVM 利用 PSSM 及蛋白質二級結構資訊

預測，而 WildSpan 則利用序列保留特質做預測。單純使用 SVM 方法的預測效能

其 F-score 為 0.5127，合併 WildSpan 的預測結果 F-score 提升至 0.5362，相較目

前其他預測方法表現較好。進行獨立測試時，ProteRNA 可達到整體精確度 89.55 

%、Matthew`s 相關係數(MCC) 0.2686、及 F-score 0.3185，超越其他現有的線上

RNA 與蛋白質結合位置預測服務。 

 

關鍵字：機器學習、支援向量機、核糖核酸與蛋白質結合位置預測 
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Abstract 

RNA-binding proteins (RBPs) are vital for recognition sequences of ribonucleic 

acids, which is the genetic material that is derived from the DNA. For satisfying 

diverse functional requirements, RNA binding proteins are composed of multiple 

repeated blocks of RNA-binding domains presented in various structural arrangements 

to provide versatile functions. The ability to predict computationally RNA-binding 

residues in a RNA-binding protein can help biologists to have clues on site-directed 

mutagenesis in wet-lab experiments. “ProteRNA” is the proposed prediction 

framework in this thesis, combining Support Vector Machine (SVM) and WildSpan for 

identifying RNA-interacting residues in a RNA-binding protein. SVM utilizes PSSM 

and protein secondary structure information to predict, while WildSpan bases on 

conserved domain information. The performances of SVM predictor are F-score of 

0.5127; however, the performances of the WildSpan hybrid predictor achieve F-score 

of 0.5362. In the independent testing dataset, ProteRNA has been able to deliver 

overall accuracy of 89.55 %, MCC of 0.2686, and F-score of 0.3185. ProteRNA 

surpasses the other web servers no matter in terms of accuracy, MCC, or F-score.  

 

Keyword: Machine Learning, Support Vector Machine, RNA Binding Residues 

Prediction 
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Chapter 1 Introduction 

1-1  Background 

i. RNA-Binding Proteins 

Proteins that interact with RNA are RNA-binding proteins (RBPs). RBPs play vital 

roles in many fundamental biological activities for instance protein synthesis, gene 

expression and regulation, post-transcriptional replication, viral infectivity, and 

stabilizers of ribosomal RNA molecules within the ribosome. To satisfy a variety of 

functional requirements, RBPs are composed of multiple repeated blocks. As Figure 1-1 

shows, these repeats are built from basic domains that are arranged in different 

formations. The RBPs can be classified into different families based on their basic 

binding motifs that have their individual characteristic and binding preference. For 

example: the RNA recognition motif, the K-homology (KH) domain, the double 

stranded RNA-binding domain, the zinc finger motif, and RNA-targeting enzyme [1]. 

Identification of protein interaction sites is of great importance in molecular recognition 

and is considered as a good starting point to form hypotheses in searching for potential 

pharmacological targets in the design of drugs, as well as down-regulation of unwanted 

genes.  
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Figure 1-1 Common RNA-binding protein families [2] 

ii. Introduction of Machine Learning 

Machine Learning is a branch of Artificial Intelligence, which mainly aims to 

design systems or intelligent agents to perceive their environment and to make 

responses. A major focus of machine learning is to develop principles, methods, or 

computer algorithms that are capable of acquiring knowledge from the given data 

automatically. According to the input of the algorithms, there are several types 

including supervised learning, unsupervised learning and so on. Supervised learning, 

such as classification and regression, generates functions or rules from labeled examples 
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to predict the unknown. In contrast, unsupervised learning models unlabeled inputs to 

find patterns, for example data clustering and density estimation.  

Applying techniques like machine learning algorithms on molecular biology 

increases our understanding of biological processes. Traditionally, biologists conduct in 

vivo or in vitro experiments. It is time-consuming and expensive to collect and to store 

these experimental results. As biological data being produced at a phenomenal rate, in 

silico analysis can handle large quantities of data with lower cost and faster speed when 

compared to traditional ways. Bioinformatics is the application of information 

technology and computer science to biology. 

iii. Prediction of RNA-Binding Sites 

Roughly speaking, computational methods for predicting RNA-binding sites can 

be categorized into two groups. One is prediction with known structures, and the other 

is prediction without knowing the structure. However, the amount of protein structures 

is significantly smaller than that of protein sequences is. For example, by April 2010, 

there are 516,081 sequence entries in Uniprot/Swissprot [3] and only 64,500 known 

protein structures in Protein Data Bank (PDB) [4]. What is more, “sequence specifies 

structure” is universal knowledge that provokes the assumption of the amino acid 

sequence making sufficient estimation on interacting propensity between RNA and 

protein. Thus, it is important to develop algorithms to identify protein interaction sites 
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only from amino acid sequences. That is also known as sequence-based interaction site 

prediction.  

1-2  Motivation 

The study of RNA-binding proteins is essential to the fundamental biologic system 

including viral infectivity, gene expression and regulation, and post-transcriptional 

replication. In addition, its potentially practical applications in drug discovery gives 

rises to researchers’ interests because it might provide insights into mechanisms of 

human diseases. This study may revolutionize the pipeline of drug discovery by 

specifically modulate the disease-related pathways [5]. However, because RNA 

sequences have high flexibility on conformational structure, it is more complicated and 

harder to identify RNA binding sites than the sites in DNA-protein or protein- protein 

interactions [6]. Furthermore, there are many experimental factors, such as 

cross-validation ways, affecting the results of prediction that we could adjust [7].  

We try to tackle the problem of predicting RBPs interaction sites, proposing the 

hybrid prediction framework named “ProteRNA” with the combination of SVM-based 

classifier and conserved residue discovery. We discuss over data normalization and 

sequence-based k-fold cross validation of the SVM classifier. Moreover, we propose the 

hybrid model and explain the reason as well as how it works. To deal with imbalanced 

data in our training set, performance evaluation on positive class and negative class 
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should be valued individually. In this study, we focus not only on the overall accuracy 

but also complementally on measurement of overestimation and underestimation. 

Therefore, precision, sensitivity, MCC, and F-score are applied to assess the prediction 

performance. 

1-3  Summary of Paper Organization 

Chapter 1 includes the introductory information and the background of this thesis. 

In Chapter 2, fundamental concepts of RNA-binding proteins are introduced along with 

the features we use in this study, including the theory of core algorithms SVM[8] and 

WildSpan[9]. Different methods and features are discussed in the last section in this 

chapter, as well as the previous studies proposed methods and performances. The 

experimental methods are covered in Chapter 3. We describe the framework of the 

hybrid model as well as other techniques and features. With the results demonstrated, 

we discuss the performance of different normalization methods, single predictors, 

multiple predictors and independent testing case study in Chapter 4. Finally, we make 

conclusions and propose future works in Chapter 5. 
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Chapter 2  Literature Review 

2-1  Central Dogma 

The central dogma is a biological principle for understanding the residue-by- 

residue transformation of sequential information [10]. There are three major classes 

involved in the dogma: DNA and RNA, and protein. 

First of all, Deoxyribonucleic acid (DNA) is a nucleic acid composed of four bases 

of nucleotides, viz. adenine (A), thymine (T), guanine (G), and cytosine (C). Each type 

of bases on one strand bonds with only one type of bases on the opposite strand. 

Because of this complementary base pairing, two long strands entwine in the shape of a 

double helix and duplicate each other. This specific interaction between complementary 

base pairs is critical for all the functions of DNA in living organisms. 

Secondly, ribonucleic acid (RNA) is also a nucleic acid that consists of adenine 

(A), cytosine (C), guanine (G) or uracil (U). There are not only base pairing but also 

numerous modified bases and sugars in RNAs. Unlike DNA, RNA is a single-stranded 

molecule in most of its biological roles and has a much shorter chain of nucleotides. 

Hence, RNAs can transform to diverse shapes to play specific roles in biological 

process. There are many types of RNA in the cells including messenger RNA (mRNA), 

ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snoRNA), small 
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RNA (sRNA), and viral RNA (vRNA). According to the target RNA types of RBPs, 

RBPs have different structures to satisfy specific needs as shown in Figure 2-1.  

mRNA (PDB ID: 2PJP) tRNA (PDB ID: 2DER) 

RNA as ligand (PDB ID: 2G8K) rRNA (PDB ID:1JJ2) 

Figure 2-1 RBPs with different target RNA 
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Finally yet importantly, protein is an organic compound made of twenty amino 

acids arranged in a linear chain and folded into a globular form. Like the previous 

biological macromolecule-nucleic acids, proteins are essential parts of organisms and 

participate in virtually every process within cells. 

The general transfers describe the normal flow of biological information, as shown 

in Figure 2-2. DNA can be copied to DNA, which is DNA replication. DNA 

information can be copied into mRNA, which is called transcription. Then proteins can 

be synthesized using the information in mRNA as a template, which is translation. In 

addition, some RNAs, such as viruses, are able to replicate RNA or reverse-transcribe 

RNA into DNA. 

 

Figure 2-2 Flow chart of central dogma [10] 



 

9 

 

2-2  The Attributes of Amino Acid 

Amino acid is the basic molecules of proteins both as building blocks of proteins 

and as intermediates in metabolism. There are 20 kinds of amino acids found within 

proteins. Each amino acids type has its specific side-chain and properties and be linked 

together in various sequences to form a vest variety of protein structures. Nevertheless, 

several classifications had proposed since some of the amino acids share common 

properties. As Figure 2-3 shows, the concept map portrays the common amino acid 

properties and the relationship between them. For instance, positive set is the subset of 

charged set and charged set is subset of polar set.  

 

Figure 2-3 Amino acid properties [11] 
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The amino acid properties give information of the individual residues that may 

help us identify the RNA-Binding residues. The interaction interfaces of RBPs are often 

positive electrostatics surface in order to complements the negative electrostatics charge 

of the RNA [6, 12]. As a result, we try to add electrostatics to distinguish the binding 

sites from the non-binding ones. 

The 20 amino acids could be clustered into seven groups based on the dipoles and 

volumes of the side chains [13]. Amino acids within the same group likely involve 

synonymous mutations because of their similar characteristics. Table 2-1 enumerates 

amino acids in each group. 

Table 2-1 List of Amino Acid in 7 groups 

No. Amino acid 

Group 1 Ala, Gly, Val  

Group 2 Ile, Leu, Phe, Pro 

Group 3 Tyr, Met, Thr, Ser 

Group 4 His, Asn, Gln, Tpr 

Group 5 Arg, Lys 

Group 6 Asp, Glu 

Group 7 Cys 
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2-3  Position-Specific Scoring Matrix 

Position-Specific Scoring Matrix (PSSM) can be generated by PSI BLAST [14] by 

searching against National Center for Biotechnology Information (NCBI) 

non-redundant (nr) database. A protein sequence in FASTA format is calculated by 

position-specific scores for each residue independently in the alignment. The score in 

PSSM is the sum of log-likelihoods under a product-multinomial distribution. Highly 

conserved residues receive high scores and weakly conserved residues receive low 

scores. Figure 2-4 depicts the content of PSSM; the query sequences are shown in rows 

and the types of amino acids comprised of log-likelihoods for 20 amino acids are shown 

in columns.  

 

Figure 2-4 Part of PDB ID: 1JJ2_1 PSSM 
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2-4  Secondary Structure Information 

Protein secondary structure is the general three-dimensional form of local sequence 

segments. The most common secondary structures are helices and sheets. Each of these 

two secondary structure elements has a regular geometry, namely stabile hydrogen 

bonding patterns. The coil is not a bona fide secondary structure, but is the class of 

conformations that indicates an absence of regular secondary structure. 

We obtain protein secondary structures information (SS) by PSIPRED Protein 

Structure Prediction Server developed by Bryson et al. [15]. The server predicts 

secondary structures based on amino acid evolutionary information that is PSSM in our 

thesis.  

2-5  Classifier - Support Vector Machines 

Support vector machine (SVM) is a powerful machine-learning algorithm 

developed from statistical learning theory which is based on structural risk minimization 

proposed by Vladimir Vapnik [8]. Nowadays, SVM is one of the most popular solutions 

for classification, regression, and novelty detection. Briefly speaking, a SVM constructs 

a hyper-plane in multi-dimensional space that optimally separates input data into two 

categories. In the following section, we illustrate the framework of SVM.  
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 To begin with, the given data in the multi-dimensional space consist of predictor 

variables. The predictor variables are called attributes. A transformed attribute that is 

used to define the hyper-plane is called a feature. A set of n points of data is in the form: 

   
n

i
,

i
,labeld

i
x

i
,label

i
xDataset

1
 1 0  ∈ ∈ 







        (2-1) 

A set of features that describes one case (i.e., a row of predictor values) is called a 

vector. So the goal of SVM modeling is to find the optimal decision boundary (called 

hyper-plane) that separates clusters of vectors in such a way that cases with one 

category of the target variable are on one side of the plane and cases with the other 

category are on the other side of the plane. The vectors near the hyper-plane are the 

support vectors that construct the hyper-plane.  

We discuss SVMs by a linear separable case. The linear model can be presented in 

the form: 

bbxy  xWxW T)(                    (2-2) 

where (．) means dot product of the W  vector and data x, b is a bias parameter. 

As illustrated in Figure 2-5, the margin is defined as the perpendicular distance 

between hyper-plane and the closest data points. Maximizing the margin leads to a 

particular choice of hyper-plane which is in the form: 

0)(  bxy xWT             (2-3) 
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The two dashed lines in the figure are support hyper-plane, and each satisfied the 

form respectively: 

1)(  bxy xWT             (2-4) 

1)(  bxy xWT            (2-5) 

If a data point in the space satisfied the inequality 2-6, this data would be classified 

as square-shaped points; or, if a data point satisfied the inequality 2-7, it would be 

denoted the circular points. 

1)(  bxy xWT             (2-6) 

1)(  bxy xWT            (2-7) 

 

 

Figure 2-5 Hyper-plane of SVM 

 

1)(  bxy xWT  

b 
X

Y 

 

margin 

1)(  bxy xWT  

0)(  bxy xWT  
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The two inequalities above can be rewritten as: 

1)(  bxlabel ii
TW   for all ni 1        (2-8) 

Under the constraint, the hyper-plane therefore has independent data points instead 

of support vectors. The intuition behind the result is that the decision boundary is 

increasing dominant by nearby data points relative to the distant ones.  

By far, we discussed the condition in two-dimension. In the following, we further 

apply these formulas to the multi-dimensional problems. We could obtain the distance 

of a point x to the hyper-plane: 

W

W bx 
Distance

           (2-9) 

If we calculate the distance between support hyper-plane and 

hyper-plane, 1 bxTW , than we have 

WW

11
Distance 




bb           (2-10) 

Thus, the maximum margin solution is found by solving the sum of the two 

support hyper-planes to the hyper-plane
W

2  that is in the form 

Find w and b, maximize
W

2  , or minimize
2

WW T

                 (2-11) 

It seems that the bias parameter b has disappeared from the optimization. However, 

it is determined implicitly via the constraints, since this requires that changes to W  

be compensated by changes to b. 
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Since the input data might have various distributions in feature space, the linear 

model might not be suitable for the input data in reality. A kernel technique is 

developed to map the nonlinear input spaces to linear ones. We can apply Lagrange 

number α to vector w and rewrite formula (2-8) as: 

1)(labeli  j i
T
jj bxx    for all ni 1       (2-12) 

, where xj is the support vectors. 

The kernel function is given by the relation 

)()(),( i
T

jij xxxxK                     (2-13) 

, where )(x  is a space mapping function. 

The concept of the kernel formula allows us to build extensions of many 

well-known algorithms. The common kernel functions are listed below. 

Radial basis function: )exp(),(
2

2


ij

ij

xx
xxK


  

Linear function: 
i

T
jij xxxxK ),(  

Polynomial function: Degree
i

T
jij bxxxxK )(),(   

Sigmoid function: ))(tanh(),( bxxxxK ijij    

In the general case, we have to consider another problem: data overlapping. We 

might prefer a solution that better separates the bulk of the data while ignore a few 
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weird noises. In 1995, Corinna Cortes and Vladimir Vapnik proposed soft margin 

method that allows for mislabeled examples [16]. The previous discussion is based on a 

hard margin concept that no data exists between two support hyper-planes. On the 

contrary, the soft margin method introduces a slack variable, ξ, which measures the 

degree of misclassification of the data x. Moreover, the cost value, C, is a regularization 

parameter that controls the trade-off between maximizing the margin and minimizing 

the training error. A small cost value tends to emphasize the margin while ignoring the 

outliers in the training data, while a large cost value may tend to over-fit the training 

data. If the penalty function is linear, the optimization problem can be written as: 

Minimize: 
i

iC 2

2

1
W  

Subject to: 
ij i

T
jj bxx   1)(labeli

       (2-14) 

for all ni 1 , 0i  

This thesis utilized LIBSVM, developed by Chang et al. [17] The LIBSVM 

package provides classification model construction, regression, multi-class SVM, etc. 

With a user-friendly interface and adjustable parameter settings, LIBSVM has been 

used by many researches in recent years. We choose the Radial basis kernel to 

implement our predictor. 
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2-6  WildSpan 

As we mention, we attempt to extract information only from amino acid sequences. 

Mining subsequence that frequently occurs among a set of training sequence, we may 

obtain information of function annotation, the functional sites, and RNA-protein 

interaction sites.  

WildSpan (http://biominer.bime.ntu.edu.tw/wildspan/) [18] has been embedded in 

many applications to discover functional signatures and diagnostic patterns of proteins 

directly from a set of unaligned protein sequences. Therefore, we apply WildSpan to 

discover conserved residues as RNA-binding residues in a protein sequence to improve 

prediction performance. For protein-based mining, the authors suggested at most 150 

unique homologous proteins with sequence identity ranged from 30% to 90% are 

required by searching against Swiss-Prot sequence database with PSI-BLAST 

(blastpgp –j 6). WildSpan cannot generate any patterns in the case of not enough 

homologous proteins selected from Swiss-Prot protein sequence database or too similar 

homologous proteins. 

2-7  Related Works 

Due to the importance of RNA-protein interaction, there are many related studies 

in the last decade. In 2004, one of the earliest attempts on prediction of RNA-binding 

sites is Jeong et al. [19] using an artificial neural network (ANN) based on amino acid 
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sequence and secondary structure information in sliding windows. They achieved a 

maximum Matthew's correlation coefficient (MCC) of 0.294 with five-fold 

cross-validation by residues. Jeong and Miyano [20] then endeavored to improve the 

RNA interacting residues prediction based on evolutionary information from the PSSM 

and achieved MCC, overall accuracy, specificity, and sensitivity of 0.39, 80.20%, 

91.04%, and 43.40%, respectively. They established a dataset containing 86 protein 

chains that has been used most frequently in the studies afterwards. Furthermore, amino 

acid evolutionary information from the PSSM plays a crucial role and has widely usage.  

Scientists have been seeking to find other critical features to improve the 

performance of their predictors. In 2006, Wang and Brown [21] put forward another 

method utilizing SVM with side chain pKa, hydrophobicity index and molecular mass 

of amino acids on 107 protein chains within 25% sequence identities and achieved a 

maximum accuracy of 69.32% with 66.28% sensitivity. Additionally, they provided a 

web server predicting both DNA and RNA protein binding sites called BindN [22]. Kim 

et al. [23] studied the propensities of individual amino acids and amino acid pairs in 

RNA-protein interfaces on the previous 86 protein chains dataset by Jeong et al. [19]. 

They reported 50% sensitivity and 57% specificity for a method that combined doublet 

propensities and evolutionary information.  
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As time goes by, the number of known RBPs has rose up to a considerable degree. 

Terribilini et al. [24] developed a Naive Bayes Classifier on a larger dataset on PSSM, 

and achieved maximum MCC of 0.35 in 2007. Tong et al. [25] applied SVM on the 

same dataset and features as Terribilini did, and obtained a higher MCC 0.365. Wang et 

al. [26] reported MCC 0f 0.457 and accuracy of 87.4% by using PSSM, observed 

secondary structure information and solvent accessibility information on SVM. In 2008, 

Kumar et al. [27] utilized a SVM with a second order polynomial kernel and PSSM as 

input features on 86 protein chains, achieving an MCC of 0.45 (specificity: 89.6%, 

sensitivity: 53.0%). Cheng et al. [5] encoded PSSM into a new smooth PSSM on SVM 

classifier, performed a MCC up to 0.68 with five-fold cross-validation on residue-level 

on 86 protein chains. A high prediction accuracy with a MCC of 0.50 with five-fold 

cross-validation on residue-level has been reported by Spriggs et al. [28] utilized SVM 

to analyze input features such as sequence profiles, interface propensities, accessibility 

and hydrophobicity on only 81 protein chains. Maetschke et al. [29] examined many 

structural and topological information on both SVM and Naive Bayes Classifier, 

including constructing graph-theoretical and geometrical sliding windows on 144 

protein chains, and reported MCC 0.39 (specificity: 82.0%, sensitivity: 66.8%). All the 

related works are summarized in Table 2-2. 
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Table 2-2 List of previous RNA-binding prediction works 

Authors Methods feature Performance 

Jeong et al.[19] 
Artificial Neural 

Network 
AA sequence and SS MCC 0.29 

Jeong and 

Miyano [20] 

Artificial Neural 

Network 
PSSM MCC 0.39 

Wang and 

Brown [21] 
SVM 

side chain pKa, 

hydrophobicity index and 

molecular mass of AA 

69% accuracy and 

66% sensitivity 

Kim et al.[23] Scoring Function 
doublet propensities and 

evolutionary information

50% sensitivity 

and 57% 

specificity 

Terribilini et al. 

[24] 
Naive Bayes Classifier PSSM MCC 0.35 

Tong et al.[25] SVM PSSM MCC 0.37 

Wang et al. [26] SVM 
PSSM, SS and solvent 

accessibility information
MCC 0.46 

Kumer et al. 

[27] 
SVM 

PSSM and interface 

propensities 
MCC 0.45 

Cheng et al. [5] SVM smooth-PSSM MCC 0.68 

Spriggs et al. 

[28] 
SVM 

PSSM, interface 

propensities, accessibility 

and hydrophobicity 

MCC 0.50 

Maetschke et al. 

[29] 
SVM 

graph-theoretical sliding 

window PSSM with 

structural and topological 

information 

MCC 0.39 

Some of the previous studies reported acceptable results of macromolecular 

sequence data on k-fold cross validation on window-base data splitting which is 

residue-level cross validation. In spite of that, Caragea et al. [7] pointed out the 

problems of accessing the performance of classifiers on imbalance data like 

macromolecular sequence dataset. In comparison of window-based k-fold cross 
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validation and sequence-based k-fold cross validation, window-based cross validation 

can yield overly optimistic estimates of the performance of classifier relative to the 

estimates obtained using sequence-based cross validation. This kind of data division has 

homologous issue biologically that might occur overlapping between these data subsets.  

As Table 2-2 shows, SVM has been adopted as a core classifier due to its low bias, 

high customizability and better performance. Therefore, we choose SVM as one of the 

core classifiers in this paper. Furthermore, SVM-based single predictors have limited 

improvement [28]; therefore, we propose a hybrid method named “ProteRNA”. 
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Chapter 3 Method 

3-1  Problem Definition 

We aim to provide a useful RBP binding site predictor that can assist biologists to 

have clues on site-directed mutagenesis in wet-lab experiments. With protein sequence 

information only, we predict the binding residues and output binary label. 

The definition of protein-RNA interaction residues is based on molecular distance 

which is a good indication for existence of intermolecular forces. An amino acid residue 

was designated as a binding site if the side chain or backbone atoms of the residue fell 

within a cutoff distance from any atoms of the RNA partner molecule in the complex. 

All the other residues were regarded as non-binding sites. 

3-2  Data Set 

We adopt two training sets and one testing set to perform the experiment. 

i. RNA Binding Protein Chain 86 (RBPC86)  

As mentioned in the related work, RBPC86 is the most common dataset in the field 

of RNA-Protein interaction sites prediction. The RBPC86 data set consists of 86 protein 

chains extracted from RNA-protein complexes with X-ray crystallography resolution 

better than 3.0 Å in PDB.  

This dataset first defined by Jeong and his colleagues [19, 20] as a distance cutoff 

6.0 Å to include a wide range of protein-RNA interactions, and the homology is 70% 
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sequence identity over 90% overlap on both sequences and BLASTClust [30]. RBPC86 

then used by Kumar et al. [27], and adapted by Cheng et al. [5] as well as Spriggs et al. 

[28]. We utilized the Cheng et al. [5] version which has removed non-RBP chains. The 

resultant data set contains 4,568 RNA interacting residues and 15,503 non-interacting 

residues, in total of 20,071 residues. 

ii. RBPC147 

Another training dataset of protein–RNA interactions is RBPC147 extracted from 

structures of known protein–RNA complexes in the PDB solved by X-ray 

crystallography resolution better than 3.5 Å. Proteins with larger than 30% sequence 

identity were removed using PISCES [31].  

Terribilini et al. [32] introduced RBPC147 in the RNABindR web-based server. In 

addition, Tong et al. [25] used RBPC147 as a benchmark dataset. Based on the cut-off 

distance of 5.0 Å, a total of 32,324 amino acids are included in RBPC 147, which 

contains 6,157 RNA-binding residues and 26,167 non-binding residues. 

iii. RBPC33 

An independent testing dataset of protein–RNA interactions is RBPC33 extracted 

from structures of known protein–RNA complexes that were added after January 2006. 

RBPC33 contains chains longer than 40 residues. We performed a redundancy 

reduction on BLASTClust [30] to ensure that none of the chains showed a sequence 
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similarity of more than 30% within the dataset and to the previous RBPC86 and 

RBPC147 dataset. A distance cutoff of 5.0 Å was used to annotate interface residues.  

RBPC33 is a testing set modified from 36 binding protein chains which were used 

by Maetschke et al. [29] in 2009.   

3-3  Performance Measure 

To benchmark our performance and compare with the other studies, we calculate 

the following measurements:  

Recall
FNTP

TP
=ySensitivit 


, 

FPTN

TN
=ySpecificit


,
 

FPTP

TP
=Precision


, 

FNFPTNTP

TNTP
=Accuracy




, 

FN)(TNFP)(TNFN)(TP)FPTP(

FNFPTNTP
=MCC




, 

F-score
RecallPrecision

RecallPrecision
2




 , 

where TP is the number of true positives, FP is the number of false positives, TN is the 

number of true negatives and FN is the number of false negatives. An MCC of +1 

reaches its best correlation between the observed and the predicted classes of the 

samples, and a MCC of −1 is perfect anti-correlation; whereas a MCC of zero denotes 
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no correlation at all. F-score (also called F-measure) is a harmonic mean of precision 

and recall, where 1 denotes perfect results and 0 denotes the worst [33].  

 In this study, we use two cross-validation ways to assess the performance of the 

SVM models. One is leave-one-out cross-validation, using a single chain from the 

RBPC86 as the validation data and the rest of chains as the training data. The 

cross-validation process is repeated 86 times. The other way is by using 5-fold 

cross-validation on RBPC147 due to the data over-fitting and the time-consuming 

problem; we use 5-fold cross-validation on both RBPC86 and RBPC147. RBPC86 and 

RBPC147 are randomly split into 5 non-overlapping subsets on protein-chain level to 

avoid homological issue. One subset is the validation data, and the remaining subsets 

are the training set. Then repeat 5 times to generate the performance of our predictor.  

3-4  Feature Selection 

To obtain the best performance of prediction, we explore distinct features and 

PSSM schema to apply to our experiments.  

i. PSSM 

PSSM encoded from PSI BLAST is composed of log-likelihoods for 20 amino 

acids for individual query residues.  
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ii. PSSM in 7 groups 

PSSM encoded according to amino acid properties of 7 groups shown in Table 2-1 

in Chapter 2. After the PSSM turn into a 7-column matrix, we encoded to a sequence 

patch using sliding window technique. 

iii. PSSM added secondary structure information (SS) 

The PSIPRED outputs consist of three probability values represented for helix, 

sheet and coil respectively, for instance (H, E, C) = (0.75, 0.25, 0.25). We add three 

features to a normalized PSSM features then do the sliding window, that is to say, the 

added secondary structure information is not normalized. 

iv. PSSM added interface propensities 

The interface propensities calculate the proportion of the interface to surface of a 

given residue in RBPs.  





k

k

S
k

S
k

I
k

I
k

N
N

N
N

propensity Interface          (3-1) 

where I
kN  is the number of interface residues of certain type of amino acid k,  

k

I
kN  the total number of interface residues,  S

kN  is the number of surface residues 

of type k, and k

S
kN are the number of surface. We adopt a new interface propensity 

calculated by Laura Pe´rez-Cano et al. [34] The interface propensities are normalized in 

linear model due to its range from 0 to1. 
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v. PSSM added Electrostatics propensities 

PSSM is added one column of electrostatics propensities based on amino acid 

attributes, ascertained by Fauchere, J.L. et al. [35] In our schema, 0 means negative 

charge, 0.5 represents neural and 1 means positive charge.  

3-5  Normalization 

Normalization is a crucial topic in the process of handling data. The most 

important purpose of normalization is to avoid attributes in greater numeric ranges 

dominating those in smaller numeric ranges. On the other hand, it is utilized to avoid 

numerical difficulties or even computation crashes during the calculation when 

dimension grows large. On a common basis, researchers normalize each attribute of the 

data instance to the range [0,1] or [-1,1]. 

 

Figure 3-1 Linear model (in dashed), Logistic model (in blue) 
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We adopt two major model of normalization: linear model and logistic model. By 

instinct, the linear model is scaling to proportion of maximum and minimum. For 

scaling to [-1,1], the linear model is 

1
minmax

min
2modelLinear 





x

 ,         (3-2) 

where min stands for minimum and max for maximum. 

For linearly separable data, over-fitting might occur, since the extreme value of 

maximums or minimums affect the scaling curve. We can use local maximum and local 

minimum of each protein chain or normalize input value by each amino acid in column 

to resolve such situations. 

In addition, another solution is adapting logistic model, the so called sigmoid 

model [36]. To scale data attributes to [0,1], the logistic model uses the following 

equation: 

xe


1

1
model Logistic            (3-3) 

Since we try to avoid data bias, we propose a modified version of the logistic model 

that shifts the curve according to their mean and variance. 

te


1

1
model Logistic ,


xx

t


          (3-4) 

where x  is the mean value and σ is the standard deviation. 

Table 3-1 is the detailed normalization functions categorized in linear or logistic 

models discussed in this thesis. 
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Table 3-1 List of normalization functions 

Category Function Name Detail 

Linear 

1
minmax

min
2 





x  

Chain linear model 
Linear by chain-wise 

extreme value 

Linear Column linear model 
Linear by column-wise 

extreme value 

Linear Global linear model 
Linear by whole dataset 

extreme value 

Logistic 

te1

1  

Logistic model t=x 

Logistic Chain logistic model 


xx

t


  

where x  and σ are 

chain-wise 

Logistic Column logistic model


xx

t


  

where x  and σ are 

column-wise 

The results of distinct normalization ways are reported in 4-1 . We find out that 

Logistic model outperform the others methods; hence, Logistic model are adopted in the 

following experiment. 

3-6  Single Predictor Model 

The performance of the SVM classifier depends on the combination of several 

parameters. In general, our experiment involves two groups of parameters: parameters 

relative to input featured PSSM and SVM classifier adjustment.  
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The first one is the sliding window size of featured PSSM. PSSM generates 

evolutional information of individual residue and added amino acid properties. Since a 

residue cannot act as a lonely wolf in biochemical process, we cluster neighboring 

residues to a central residue and construct sequential patches. By using sliding windows, 

the sequence properties were integrated into a feature vector covering the whole 

subsequence and all the information is used to describe the center residue.  

 

Figure 3-2 Sliding window framework 

For the SVM classifier, we take two parameters into account. The first one is cost 

value C, and the other is γ gamma value in the radial basis function. The cost value C is 

a regularization parameter that controls the trade-off between maximizing the margin 

and minimizing the training error, while the gamma value γ regulates the amplitude of 

the kernel function to dominate the generalization ability of SVM. 
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We test a wide range of window sizes according to the featured type of PSSM. 

Since 7-group PSSM extracts features vector out of 7 columns, we obtain a larger 

window size of 31 to gather enough information. The others window sizes of featured 

PSSM are about 23, which is around the domain size in RBPs.  

Table 3-2 List of optimal parameters of single predictors 

Data set PSSM features Window size Cost(log2n ) gamma(log2n )

RBPC86 PSSM 23 1 -5 

RBPC86 7 groups PSSM 31 1 -4 

RBPC86 PSSM + SS 23 1 -5 

RBPC86 
PSSM + Interface 

Propensities 
23 1 -5 

RBPC86 PSSM +Electrostatics 23 1 -5 

RBPC147 PSSM 23 1 -5 

RBPC147 7 groups PSSM 31 1 -4 

RBPC147 PSSM + SS 23 1 -5 

RBPC147 
PSSM + Interface 

Propensities 
23 1 -5 

RBPC147 PSSM +Electrostatics 23 1 -5 

The corresponding results are listed and discussed in Section 4-2 . Since the 

improvements of the single predictors are limited, we propose a hybrid model.  
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3-7  Hybrid Model 

Besides diverse PSSM schemas and features as single predictor, we devote to seek 

models that predict more positive values which mean RBP binding sites. Since the 

protein functional signatures are strongly related to the conservation domains, we 

consider RNA-protein interaction as a kind of protein function and utilize WildSpan to 

find conservation domains. We combine SVM-based single predictors which combined 

PSSM and secondary structure information together with WildSpan to construct a new 

model. 

We applied the default parameter setting to obtain patterns by WildSpan. As the 

authors recommend, we input our query to search against Swiss-Prot database [3] with 

PSI-BLAST (blastpgp –j 6) and obtain maximum 150 unique target sequences. These 

target sequences share 30% ~ 90% sequence identity with the query sequence, since we 

would like to find remote homologous domains and to remove the similar protein 

sequence. Then we utilize WildSpan to obtain the top-one conservation pattern as the 

binding residues. Since WildSpan cannot generate patterns under certain conditions, we 

have several chains without WildSpan patterns. There are 14 chains out of RBPC86, 21 

chains out of RBPC147, and 11 chains out of RBPC33. The detailed list of protein 

chains with no WildSpan patterns are enumerated in Table 3-3. 
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Table 3-3 List of protein chains with no WildSpan patterns 

Data set PDB ID chain list 

RBPC86 1B23_P, 1C0A_A, 1C9S_L, 1E6T_C, 1EFW_B, 1F8V_A, 1FJG_L, 1IVS_B, 

1JBR_A, 1N35_A, 1NB7_B, 1QF6_A, 1QU2_A, 2BBV_C 

RBPC147 1A34_A, 1B23_P, 1C0A_A, 1FFY_A, 1FJG_L, 1FJG_V, 1GTF_Q, 1H2C_A, 

1JBR_A, 1N35_A, 1NB7_A, 1Q2S_A, 1QF6_A, 1RPU_A, 1U0B_B, 

1UVJ_A, 1YVP_A, 2AZ0_A, 2BGG_A, 2BTE_A , 2BU1_A 

RBPC33 2DER_B, 2F8S_A, 2G8K_A, 2GJE_A, 2GJE_D, 2GTT_G, 2HVR_A, 

2HYI_D, 2PJP_A, 2Q66_A 

We test and integrate three single predictors includes PSSM on SVM classifier, 

PSSM added secondary structure information on SVM classifier as well as pattern 

information by WildSpan. The new model incorporates all the positive sites that 

identified by single predictors. We name this Protein-RNA sites prediction method 

ProteRNA. 

3-8  System Architecture 

Our experimental method has two main parts as Figure 3-3. Firstly, sequence 

queries are prepared in FASTA format. Secondly, we input sequence queries to runs on 

SVM to get a prediction model. Finally, WildSpan provides the conservation 

information and outputs the second model. After we combine the entire prediction 

model, the result is done. 
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Figure 3-3 Overall framework flowchart 

The detailed experiment steps are shown in Figure 3-4 and Figure 3-5. In Figure 

3-4, we depict SVM part. Firstly, sequence queries are encoded to PSSM by PSI 

BLAST and normalized by logistic function. Secondly, we prepare the PSSM by adding 

secondary structure information provided by PSIPRED. The PSSM with secondary 

structure information combined and do the sliding window to be the training data. The 

training data runs on SVM to get a prediction model. 

The WildSpan part is shown in Figure 3-5. We input our query to search against 

Swiss-Prot database [3] and obtain maximum 150 unique target sequences that share 

30% ~ 90% sequence identity with the query sequence. Then we input these sequences 

to WildSpan and obtain the top-one conservation pattern as the binding residues. Since 
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WildSpan cannot generate patterns under certain conditions, we have several chains 

without WildSpan patterns as enumerated in Table 3-3. 

 

Figure 3-4 Secondary structure information prediction flowchart 



 

37 

 

 

Figure 3-5 WildSpan prediction flowchart 
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Chapter 4 Results and Discussion 

4-1  Distinct Normalization Results 

Data normalization is the very first step to handle data instances, namely, sequence 

evolutional information in our study. We use two different categories which are linear 

normalization and logistic normalization. Each normalization method in the same 

category shares the same features with minor modifications on the equation.  

We take RBPC86 to examine the performance of each normalization functions. 

Table 4-1shows the results of 5-fold cross-validation of RBPC86 using PSSM.  

Table 4-1 Results of different normalization functions (order by MCC) 

Name Sensitivity Specificity Precision Accuracy MCC F-score

Logistic 

model 
45.73% 95.68% 75.74% 84.31% 0.5043 0.5702 

Chain linear 

model 
43.18% 95.59% 74.25% 83.66% 0.4796 0.5460 

Chain logistic 

model 
43.04% 95.17% 72.43% 83.31% 0.4685 0.5400 

Column 

logistic model 
40.79% 95.72% 73.73% 83.22% 0.4615 0.5253 

Column 

linear model 
39.61% 95.97% 74.34% 83.14% 0.4570 0.5168 

Global linear 

model 
27.67% 97.89% 79.43% 81.91% 0.3966 0.4104 
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From Table 4-1, we can tell that logistic model achieve the highest accuracy, MCC 

and F-score of 84.31%, 0.5043, and 0.5702 respectively. There is a gap between logistic 

model and chain-based linear model of MCC 2.47% and F-score 2.42%. To sum up, 

logistic models outperform linear models, and chain-based information is better than 

column-based or amino acid features normalization ways.  

4-2  Performance of Single Predictor 

We explore different features on a single predictor to gain knowledge from the 

RNA prediction. The following tables report the results different cross validation ways 

on each datasets. The top-one accuracy, F-score and MCC are marked in bold. 

Table 4-2 Results of single predictor using leave one out cross validation on RBPC86 

Name Sensitivity Specificity Precision Accuracy MCC F-score

PSSM 45.64% 95.57% 75.22% 84.21% 0.5008 0.5681

7 groups 

PSSM 
40.72% 95.78% 73.99% 83.25% 0.4623 0.5253

PSSM + SS 47.15% 95.19% 74.30% 84.26% 0.5051 0.5769

PSSM + 

Interface 

Propensities 

46.30% 95.41% 74.81% 84.23% 0.5027 0.5720

PSSM 

+Electrostat

ics 

43.89% 96.03% 76.53% 84.17% 0.4969 0.5579

 



 

40 

 

Table 4-3 Results of single predictor using five cross validation on RBPC86 

Name Sensitivity Specificity Precision Accuracy MCC F-score

PSSM 45.73% 95.68% 75.74% 84.31% 0.5043 0.5702

7 groups 

PSSM 
39.44% 95.83% 73.59% 83.00% 0.4519 0.5136

PSSM + SS 44.28% 95.80% 75.67% 84.08% 0.4947 0.5587

PSSM + 

Interface 

Propensities 

45.91% 95.53% 75.19% 84.24% 0.5023 0.5701

PSSM 

+Electrostat

ics 

42.54% 95.90% 75.37% 83.76% 0.4817 0.5438

The previous tables show the results of RBPC86 with different cross validation 

procedures in each measurement. They show slightly different in models peak values 

and performances ranking between models. In leave-one-out cross validation, PSSM 

added secondary structure information achieve 0.5051 MCC, 0.5769 F-score and 

84.26% accuracy, while PSSM only achieve 0.5008 MCC, 0.5681 F-score, and 84.21% 

accuracy. On the other hand, in 5 fold cross validation, PSSM added secondary 

structure information only achieve 0.4947 MCC, 0.5587 F sore, and 84.08% accuracy, 

whereas PSSM reach 0.5043 MCC, 0.5702 and 84.31% accuracy.  
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Table 4-4 Results of single predictor using five cross validation on RBPC147 

Name Sensitivity Specificity Precision Accuracy MCC F-score

PSSM 38.60% 96.85% 74.26% 85.76% 0.4661 0.5080 

7 groups 

PSSM 
33.07% 97.13% 73.05% 84.93% 0.4224 0.4553 

PSSM + SS 38.85% 97.01% 75.35% 85.93% 0.4732 0.5127 

PSSM + 

Interface 

Propensities 

37.71% 97.03% 74.90% 85.73% 0.4632 0.5016 

PSSM 

+Electrostat

ics 

38.04% 96.98% 74.77% 85.75% 0.4648 0.5042 

Table 4-4 shows the performance of RBPC147 in 5 fold cross validation. The peak 

values are PSSM added secondary structure information of MCC, F-score and accuracy 

of 0.4732, 0.5127 and 85.93%; on the contrary, the bottom values are PSSM in 7 groups 

of 0.4224 MCC, 0.4553 F-score, and 33.07% accuracy. The plan PSSM delivers 0.4661 

MCC, 0.5080 F-score, and 85.76% accuracy.  
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Figure 4-1 Performances of single predictors in line chart in F-score 

As Figure 4-1 illustrates, RBPC86 using leave-one-out cross validation delivers 

better overall performance on F-score than the others. Since some studies shows 

leave-one-out cross validation may occur over-fitting, we conclude that RBPC86 

performs on F-score around 0.57 are the same level that correspond to previous study. 

Due to the data imbalance problem, that is to say the negative to positive ratio of 

RBPC147 is 5.25:1 which is higher than that of RBPC86 (3.27:1), the F-score of 

RBPC147 in 5 fold cross validation is lower than that of RBPC86 by about 6 percents. 

On the contrary, since the proportion of true negative value is higher in RBPC147 

results, accuracy of RBPC147 is higher than RBPC86 by around 2 percents.  
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To sum up, not all of the proposed features have significant improvement. Besides 

the 7 group PSSM schema, the added feature might have a chance to elevate the 

performance by a limited degree. Yet the true positive number must be raised up a 

certain level to be useful to biologists on the site-direct mutagenesis. This conclusion 

agrees the previous study by Spriggs et al. that they stated the overlap between their 

single predictors is high and inferred the single predictors have limited improvement. 

[17] As a result, we propose hybrid model. 

4-3  Performance of Hybrid Model 

We select top-two single predictors o integrate with data from Wildspan . The 

following tables report the results different cross validation ways on each datasets with 

standard deviation. The top-one accuracy, F-score and MCC are marked in bold. 

Table 4-5 Results of hybrid model using leave-one-out cross validation on RBPC86  

Name Sensitivity Specificity Precision Accuracy MCC F-score

WildSpan(1) 8.36% 97.28% 47.51% 77.04% 0.1206 0.1422 

PSSM(2) 45.64% 95.57% 75.22% 84.21% 0.5008 0.5681 

(1)+(2) 49.65% 93.18% 68.19% 83.27% 0.4829 0.5746 

PSSM+SS(3) 47.15% 95.19% 74.30% 84.26% 0.5051 0.5769 

(1)+(3) 50.88% 92.80% 67.54% 83.25% 0.4858 0.5804 

(1)+(2)+(3) 53.88% 91.97% 66.41% 83.30% 0.4954 0.5949 
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The highest F-score is 0.5949 of the model combine PSSM, PSSM+SS, and 

WildSpan in leave-one-out cross validation. The F-score of PSSM is improved from 

0.5681 to 0.5949 for more than 2 percents, mainly because sensitivity is improved for 8 

percents. We can see from the table that merge WildSpan information and each single 

predictor together improved less than one percent. However, the highest accuracy and 

MCC are still located in PSSM+SS. 

Table 4-6 Results of hybrid model using five-fold cross validation on RBPC86 

Name Sensitivity Specificity Precision Accuracy MCC F-score

WildSpan(1) 8.36% 97.28% 47.51% 77.04% 0.1206 0.1422 

PSSM(2) 45.73% 95.68% 75.74% 84.31% 0.5043 0.5702 

std 0.36% 0.06% 0.35% 0.11% 0.40% 0.37%

(1)+(2) 49.64% 93.31% 68.60% 83.37% 0.4855 0.5760 

std 0.32% 0.06% 0.29% 0.11% 0.36% 0.31%

PSSM+SS(3) 44.28% 95.80% 75.67% 84.08% 0.4947 0.5587 

std 0.47% 0.21% 0.85% 0.14% 0.45% 0.35%

(1)+(3) 48.09% 93.55% 68.71% 83.20% 0.4770 0.5658 

std 0.72% 0.14% 0.21% 0.07% 0.36% 0.46%

(1)+(2)+(3) 53.08% 92.46% 67.48% 83.50% 0.4981 0.5942 

std 0.31% 0.05% 0.21% 0.08% 0.29% 0.26%
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The integrated model of PSSM, PSSM added secondary structure information, and 

conservation information from WildSpan delivers 0.5942 F-score in 5 fold cross 

validation. Which is also improved more than 2 percents of F-score, because of a 7 

percent sensitivity improvement. On the contrary, the peak value of accuracy and MCC 

are the original PSSM. 

Table 4-7 Results of hybrid model using five fold cross validation on RBPC147 

Name Sensitivity Specificity Precision Accuracy MCC F-score

WildSpan(1) 14.28% 94.68% 43.60% 76.69% 0.1432 0.2151 

PSSM(2) 38.60% 96.85% 74.26% 85.76% 0.4661 0.5080 

std 0.44% 0.08% 0.38% 0.05% 0.27% 0.35%

(1)+(2) 44.83% 93.44% 61.66% 84.18% 0.4351 0.5192 

std 0.37% 0.08% 0.16% 0.04% 0.19% 0.23%

PSSM+SS(3) 38.85% 97.01% 75.35% 85.93% 0.4732 0.5127 

std 0.46% 0.09% 0.48% 0.08% 0.36% 0.40%

(1)+(3) 45.04% 93.64% 62.48% 84.38% 0.4413 0.5235 

std 0.37% 0.09% 0.25% 0.06% 0.27% 0.27%

(1)+(2)+(3) 47.75% 92.86% 61.15% 84.27% 0.4482 0.5362 

std 0.30% 0.08% 0.21% 0.05% 0.20% 0.20%
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For RBPC147, the integrated model of PSSM, PSSM+SS, and WildSpan delivers 

noticeably higher F-score of 0.5942 in 5 fold cross validation, which is improved more 

than 3.5 percents of PSSM F-score, because of almost 10 percent sensitivity 

improvement. By contrast, the peak value of accuracy and MCC are the PSSM added 

secondary structure information. 

 

Figure 4-2 Performances of hybrid models in line chart in F-score 

From Figure 4-2, we can tell that the combined models outperform the original 

single predictors. We notice that even though logically PSSM added secondary structure 

information predictor should include the information form plain PSSM predictor, there 

are still slightly different between the two models. Since the best F-score are obtained 
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from the three single predictors integrated together. Therefore we obtain the three 

predictor combined results as our final model.  

Previous research on RNA-binding domains figured out that RNA binding proteins 

are composed of multiple repeated blocks of RNA-binding domains to provide diverse 

functions. Therefore, conserved residues in the same RNA-binding domain from 

different RNA-binding proteins would not always involve interacting with RNA at the 

same location. Furthermore, while combining prediction results predicted by single 

predictors and WildSpan, WildSpan detected additional RNA-binding residues by 

providing domain-wise conservation information that single predictors did not predict. 

The greatest improvement is on RBPC147, since RBPC147 is a larger dataset with high 

proportion of hard-predicted tRNA. It shows that our method provide more positive 

values which might help biologists do in vitro experiments. 

4-4  Comparison with Other Approaches 

We use RBPC86 in order to compare with the previous studies on the same basis. 

The followings are the previous work using RBPC86. The work Jeong2004 is using an 

artificial neural network by Jeong et al. [19]. Then Jeong improved his work using 

PSSM, which is called Jeong2006. PPRint is a web service developed by Kumar et al. 

[27] in 2008.  
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Table 4-8 Performance comparison on RBPC86 order by F-score 

Name Sensitivity Specificity Precision Accuracy MCC F-score

ProteRNA 53.08% 92.46% 67.48% 83.50% 49.80% 0.5942 

PPRint 53.05% 89.55% 60.20% 81.16% 45.00% 0.5642 

Jeong2006 43.40% 91.00% 58.79% 80.20% 39.00% 0.4994 

RNABindR 43.00% - 47.00% 76.60% 30.00% 0.4491 

Jeong2004 40.30% - 46.70% 77.50% 29.40% 0.4326 

As Table 4-8 shows, our performance delivers accuracy, MCC, and F-score of 

83.50%, 49.8%, and 0.5942, respectively that outperforms all the previously published 

methods on RBPC86.  

The RBPC147 dataset is the latest and largest dataset used in RBP sites prediction. 

We only find two previous studies report their performance: RNABindR (Terribilini et 

al., 2007) and RISP (Tong et al., 2007).  

Table 4-9 Performance comparison on RBPC147 order by MCC 

Name Sensitivity Specificity MCC 

ProteRNA 47.75% 92.86% 44.8% 

RISP 66.4% 75.8% 36.5% 

RNABindR 33.0% 95.0% 36.0% 
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Since the RISP reported only these three measurements, we compare our 

performance on MCC. Our methods ProteRNA reports MCC of 44.8%, which improves 

for 8.3% than RISP. We could conclude that ProteRNA achieve a better performance 

than the previous works on both PBPC86 and PBPC147.  

4-5  Independent Test and Comparison with Other Approaches 

We use RBPC33 as a testing set to verify our performance and the others web 

servers. Since cross validation way does not affect independent test, we use RBPC86 

and RBPC147 as two training model. For comparison, we use web server BindN, Pprint, 

PRIP, PiRaNha. These predictions were carried out using default parameters settings. 

The top-one measure matrixes are marked in bold. 

Table 4-10 Independent Test order by F-score 

Name Sensitivity Specificity Precision Accuracy MCC F-score

ProteRNA(147) 27.10% 95.73% 38.61% 89.55% 0.2686 0.3185

ProteRNA(86) 30.39% 93.88% 32.96% 88.16% 0.2518 0.3162

PiRaNhA 30.05% 93.96% 33.00% 88.20% 0.2504 0.3145 

PPRint 50.68% 79.98% 20.05% 77.34% 0.2094 0.2873 

RNAProb(147)  35.26% 88.67% 23.56% 83.85% 0.2006 0.2825 

RNAProb(86)  39.57% 85.38% 21.14% 81.25% 0.1907 0.2756 

BindN 39.46% 81.88% 17.75% 78.06% 0.1527 0.2449 

PRIP 14.85% 90.62% 13.56% 83.79% 0.0526 0.1418 
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As Table 4-10 shows, our predictor surpasses the other web servers no matter in 

terms of accuracy, MCC, or F-score. ProteRNA performs better when RBPC147 is 

training set because it has more information than RBPC86. Although PPRint [27] 

achieve better sensitivity of 50.68% by adjusting probability thresholds in SVM, it 

predicts too much binding residues so that precision falls to a considerable degree 

20.05% and MCC drops significantly 20.94%. It shows that our method can predict the 

unknown RBPs successfully.  

Since the RBPC86 annotate its binding residue as cut-off distance 6.0 Å which is 

are consistent with the independent dataset, we recalculate the cut-off distance of 

RBPC33 as 6.0 Å based on the latest PDB files(2010 June). The results are shown in 

Table 4-11.  

Table 4-11 Independent Test with cut-off distance 6.0 Å 

Name Sensitivity Specificity Precision Accuracy MCC F-score

ProteRNA(86) 27.32% 94.20% 38.38% 86.40% 0.2504 0.3192 

RNAProb(86) 37.09% 85.76% 25.32% 80.15% 0.1948 0.3009 

Table 4-12 shows the Top-10 rank predicted by different predictors order by the 

MCC and precision in descent respectively among 33 independent testing samples. In 

term of MCC, we can find that at least four predictors have predictions in six protein 

chains of Top-10 ranking. 
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Table 4-12 Comparison with other predictors in the Top-10 MCC ranking  

Rank ProteRNA PiRaNhA Pprint BindN PRIP 

1 2PJP_A 2QAM_Z 2QAM_Z 2QAM_Z 2PY9_C 

2 2QAM_Z 2QBE_T 1VS8_O 2PY9_C 2QAM_Z 

3 1VS8_O 2DER_B 2PJP_A 1VS8_O 2HYI_D 

4 2PY9_C 2G4B_A 2PY9_C 2QBE_T 2NQP_B 

5 2G4B_A 1VS8_O 2GYA_3 2G4B_A 2IY5_A 

6 2QBE_T 2PY9_C 2DER_B 2DER_B 1VS8_O 

7 2DR2_A 2G8K_A 2G4B_A 2J0Q_A 2I82_C 

8 2Q66_A 2OZB_B 2QBE_T 2IPY_B 2V47_C 

9 2I82_C 2V47_C 2DR2_A 2HVR_A 2GJE_A 

10 2DER_B 2GJE_D 2QKK_F 2GTT_G 2JEA_B 

MCC of Rank 1 0.6668 0.6415 0.6006 0.4364 0.5521 

MCC of Rank 10 0.3161 0.2629 0.2390 0.1951 0.0517 

1. Background in pink means that at least 5 predictors predict in the list of Top-10 ranking. 

2. Background in blue means that at least 4 predictors predict in the list of Top-10 ranking. 

4-6  Independent Test Case Discussion 

In the following, we demonstrate several cases with better performances and worse 

performances in our independent test.  

Residues colored by green, red, and blue represent true positive, false positive and 

false negative, respectively. 
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Figure 4-3 Predicted RNA-binding residues 2PJP_A by ProteRNA 

First case is PDB ID: 2PJP_A that only SVM gives prediction result because 

WildSpan does not generate any patterns for the given protein chain. In the first case, 

2PJP is mRNA-binding domain of E. coil SelB protein as Figure 4-3~4-5 show. The left 

 

Figure 4-4 Predicted 2PJP_A by PiRaNhA Figure 4-5 Predicted 2PJP_A by PPRint 
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side is RNA strand and the right side is the given RBP. It seems workable to combine 

PSSM added SS and PSSM model. 

The other case is PDB ID: 2I82C, which has the conservation information. In the 

second case, Figure 4-6~4-8 show RNA-binding residues in the case of RluA. Residues 

colored by green, red, and blue represent TP, FP and FN, respectively. 

RluA is a dual-specificity enzyme responsible for post-transcriptional isomerizing 

specific uridine residues in 23S rRNA and several tRNAs. These dual-specificity 

enzymes are hard to predict no matter on finding binding sites or doing RNA target 

classifying. The previous study concluded that this type of RBP would be misclassified 

to tRNA target RBPs rather than rRNA target RBPs[12]. In addition, tRNA target RBPs 

are harder to predict in comparison to rRNA and mRNA. Our method performs better 

than the previous studies on this case. 
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Figure 4-6 Predicted RNA-binding residues 2I82_C by ProteRNA 

 

 

Figure 4-7 Predicted 2I82_C by PiRaNhA Figure 4-8 Predicted 2I82_C by PPRint 
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In the following, we present two of our worst cases. The first bad case is PDB ID: 

2NQB_B. The RBP is pseudoudirinde synthase TruA in complex with leucyl tRNA. Residues 

colored by green, red, and blue represent TP, FP and FN, respectively. 

 

Figure 4-9 Predicted RNA-binding residues 2NQB_B by ProteRNA 

 

Figure 4-10 Predicted 2NQB_B by PiRaNhA Figure 4-11 Predicted 2NQB_B by PPRint 
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The tRNA target RBPs are harder to predict as we mentioned. Comparing with the 

size of RNA-binding proteins in terms of interacting target, we find that the order in 

descent is tRNA > mRNA > rRNA. However, the binding residues in tRNA RBPs are 

less than the others. Take 2NQB_B for example, there are two binding residues out of 264 

amino acid residues, namely positive residues rate is 0.76%. Therefore, we predict 

poorly in this case so as the others predictors do. 

The other case is PDB ID: 2OZB_B, which is a human Prp31-15.5K-U4 snRNA 

complex. Since there are few snRNA target RBP in our database, we predict poorly on 

this case. In contrast, PPRint predict better in this case because their predictor adjust the 

threshold in SVM and predict more positive than the others predict.  

 

Figure 4-12 Predicted 2OZB_B by ProteRNA Figure 4-13 Predicted 2OZB_B by PPRint 
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Chapter 5 Conclusion and Further Directions 

5-1  Conclusion 

We apply machine learning and pattern mining approaches to design a sequence 

based predictor aiming to identify the RNA-binding residues in a RNA-binding protein.  

RNA-binding proteins play essential and distinct roles while interacting with different 

categories of RNAs to represent diverse functions. However, RNA-binding proteins are 

accommodated by multiple blocks of these RNA-binding domains presented in various 

structural arrangements to expand the specific functional repertoire of RNA-binding 

proteins.  Therefore, the flexibilities and diversities are still challenging to predict 

RNA-binding residues in a RNA-binding protein. Furthermore, predicting RNA-binding 

residues in a RNA-binding protein can assist biologists to have clues on site-directed 

mutagenesis in wet-lab experiments. 

In the reported experiments, ProteRNA utilizes not only evolutionary profile with 

predicted secondary structure but also sequence conservation information on Support 

Vector Machine classification. Although these conserved residues can be functional 

conserved residues or structural conserved residues, they also provide clues to indicate 

the important residues in a protein sequence. In the independent testing dataset, 

ProteRNA is able to deliver overall accuracy of 89.55%, MCC of 0.2686, F-score of 

0.3185. ProteRNA surpasses the other web servers no matter in terms of accuracy, 
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MCC, or F-score. It is anticipated that the prediction accuracy delivered by ProteRNA 

could be improved as the number of protein-RNA complexes deposited in the PDB 

continues to rise and the number of training samples that can be exploited continues to 

increase accordingly. Nevertheless, it is computational biologists’ primary interest to 

develop more advanced prediction mechanisms. With respect to our good performance 

on the independent set, we believe that, as the number of protein-RNA complexes 

deposited in the PDB increases, we can obtain more insights about the key 

physiochemical properties that play essential roles in protein-RNA interactions. 

5-2  Further Directions 

During our experiment process, we take sequence conservation information from 

WildSpan and integrate into our PSSM-based SVM prediction. However, RBPs are 

composed of multiple repeats that are built from basic domains that are arranged in 

different formations, while these multiple repeats of the sequence conservation 

information may perform different functional repertoire under various biochemical 

conditions. There may be a better threshold or post processing filters to cut off those 

unbinding situations of binding domains to make our prediction more precise.  

On the contrary, the different RNA types of the RBPs partners affect the binding 

mechanism and tragedies of RBPs. We believe that different families of RNA may lead 

to dramatically changes of binding characteristics. As the number of protein-RNA 
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complexes in each binding families accumulates, we can gain enough information from 

them and then we will be capable of developing more advanced prediction mechanisms 

accordingly. Therefore, concerning a specific type of proteins, a specifically designed 

predictor should be able to deliver superior performance in comparison with a 

general-purpose predictor.  
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