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Abstract

Dissolution is the rate that drug dissolves in human body from a solid
dosage form(tablet, capsule) after oral administration. It directly influences
the quantity of chemical compound releasing from drug. So dissolution is
important to the strength of drugs. The dissolution rate of each drug prod-
uct is then needed to be examined before it release to consumers. For testing
whether a drug product has an enough dissolution rate, the United States
Pharmacopeia and National Formulary (USP/NF) provides a three-stage dis-
solution testing procedure. The sponsors usually wants to establish in-house
passing probability. The USP/NF dissolution testing procedure is a three-
stages test and these stages are dependent. In addition, the criteria at each
stage consists of the characteristic of individual units (individual require-
ments) and the distribution of the sample means (average requirements). It
follows that the average requirement and individual requirement are not only
dependent within the stage but also correlated between stages. As a result,
approximated methods may provide over-estimation or under-estimation of
the true passing probability. In this thesis, we use Monte Carlo simulation
to provide accurate estimations. Tables of the passing probabilities are pro-

vided for practical use. An example is given to illustrate the application of
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the proposed methods.

Keyword: USP/NF dissolution test, passing probability, dependent three-

stage procedure, Monte Carlo simulation
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Chapter 1

Introduction

The United States Pharmacopeia and National Formulary (USP/NF) is an
official public standards-setting authority for all prescription and over-the-
counter medicines and other health care products manufactured or sold in the
United States(USP/NF, 2000). Pharmacopeia is a book containing a compi-
lation of pharmaceutical products with their formulas and methods of prepa-
ration. When a new drug was discovered and developed, all its properties
and specifications must be registered in the pharmacopeia. These standards
help to ensure the identity, quality, purity, strength, and consistency of phar-
maceutical products made for public consumption. For examining whether
each drug product satisfies the standards or not, the USP/NF defined sam-
pling plans, testing procedure, and acceptance criteria for each property of

the drug. These tests are content uniformity testing, disintegration test-



ing, dissolution testing, potency testing, weight variation testing, and others
(USP/NF, 2000). All above-mentioned tests are called USP/NF tests. These
standards of USP/NF are recognized and used in more than 130 countries
around the globe. Before a drug product is released to consumers, it must
pass USP/NF tests.

In this thesis, we will focus on the USP/NF dissolution testing. Dissolu-
tion is the rate that drug dissolves in human body from a solid dosage form
(tablet or capsule) after oral administration. It directly influences on the
quantity of the chemical compound releasing from drug. So dissolution is
important to the strength of drugs. It needs a sufficient dissolution rate of
drug to ensure that sufficiently pharmaceutical active ingredients will per-
meate across the gastrointestinal tract. Therefore, the dissolution rate is
equal to absorbability of a drug. The USP/NF dissolution test measures the
dissolution rate of a drug with the in-vitro condition.

The USP/NF dissolution test is a three-stage testing procedure. Let
Q be the amount of dissolved active ingredient specified in the individual
monograph of USP/NF. The first stage, 6 units are randomly selected from
the batch of drugs. The drug product passes the dissolution test if each unit
is not less than Q + 5%. If the drug product fails to pass the first stage,
it needs to sample additional 6 units randomly. The criteria for the second

stage are based on these 12 dosage units. For the second stage, the batch of



drugs passes this stage if each unit of the 12 units is not less than Q — 15%
and if the average of the 12 units is not less than Q. If the drug product fails
to pass the second stage, additional 12 dosage units are randomly sampled.
Based on the 24 dosage units from all three stages if each of the 24 units is
not less than Q — 25%, no more than two units are less than Q — 15%, and
the average of the 24 units is not less than Q, the batch of drugs passes the
USP/NF dissolution test. If the batch of drugs fails at the third stage, it
fails to pass the USP/NF dissolution test. Table 1.1 provides a summary of
the USP/NF three-stage dissolution test.

We could express each condition at these three stages with events. Let
yi,© = 1,...,6, be the 6 randomly selected units at the first stage, y;,i =
7,...,12, be the 6 randomly selected units at the second stage, y;,7 =
13,...,24, be the 12 randomly selected units at the third stage. And s
be the average of 6 units at the first stage, 712 be the average of 12 units at
the second stage, 924 be the average of 24 units at the third stage. These
stages are expressed by the events as follows:

Define:

S1={yi>Q+5,i=1,...,6},

Co={y; > Q —15,i=1,...,12},

Con={12>Q},

Csy ={y; > Q —25,i=1,...,24},
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(39 = {no more than two y;’s< Q —15,i=1,...,24}, and

Csg = {724 > Q }.

The event of the passing probability for the second stage is the intersection
of Uy and Cyy as

Sy = Uy N Cay.

Similarly, the event of the passing probability for the third stage is the
intersection of C31, C3, and Cs3 as

Sz = C31 N Csp N Css.

The event of passing the USP/NF dissolution test is then the union of
S1, S9, and S3 as S1US, U S; .

A graphical presentation of the USP/NF dissolution test by event is pro-
vided in Figure 1.1. Besides, S7, So, and S3 are dependent; Cy; and Cyy are
dependent; C31, C3, and Cs3 are dependent. These dependences results in
that the explicit form of the passing probability is difficult to derive.

The sponsors usually try to estimate the probability of passing the USP/NF
tests for each batch of drug.

Since the USP/NF dissolution test is not developed by statistician, the
passing probability has not an explicit form. The true passing probability is
too complicated to derive and unknown even the true population mean and
variance are known. The main interest is to find a method that unbiasedly
estimates the passing probability of USP/NF tests of certain drug products
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with high accuracy. This way can help sponsors understand the quality of
each batch of drug products, and could effectively make in-house decision.

Bergem(1990) suggests a lower bond of the passing probability that con-
structs the acceptance limit for multiple stage test. But the lower bound is
not established especially for the USP/NF dissolution test. Consequently,
it is a very crude estimate,which severely under-estimates the passing prob-
ability. Chow(2002) provides probability lower bounds for USP/NF con-
tent uniformity testing and dissolution testing respectively. But the lower
bound for USP/NF is conservative when the variation of population is large.
Wang(2007) gives an approximate formula for estimating the probability of
passing the USP/NF dissolution test. This approximation is based on the
assumption that population average and variation lie in the pre-defined re-
gion. If this assumption is violated, it could result in an over-estimation of
the true passing probability.

All the above methods should be compared to the true passing probability.
How could we getting the true probability? In the fact, the true probability
of passing the USP/NF tests could be estimated precisely by the Monte Carlo
algorithm if the number of replicates of simulation is large. Under certain
randomness assumption, we can set all the random units in program, then to
simulate the procedure of USP/NF tests for N times. Let N* be the numbers
of times for which the USP/NF test is passed. If the N large enough, the

>



passing probability could be estimated by N*/N with high accuracy . We
construct tables for estimated passing probability by the simulation method.
In addition, the passing probability at each stage will also be estimated
and discussed. Furthermore, within each stage, the passing probability the
individual characteristics and the mean characteristics are also estimated. On
the other hand, the estimated passing probability by the simulation method
are compared with those proposed by Bergum(1990) and Wang(2007). We
also provide the table of passing probability for practical use. A numerical
example is provided in Chapter 4 to illustrate the application of the proposed

method. Discussion and conclusion are given in Chapter 5.



Table 1.1: Acceptance Criteria for Dissolution

Stage Added units Pass if:

S 6 Each unit is not less than Q+5 %

So 6 Average of 12 units is equal to or greater than
Q, and no unit is less than Q—15%

Ss 12 Average of 24 units is equal to or greater than
Q no more than two units are less than Q—15%

, and no unit is less than Q—25%




Randomly draw 6 units

Passed

Randomly add 6 units l Failed

Cy={y,20-25,i=1,..,24}
8, =4 Cy, ={no more than two y,'s < 0 -15,i=1,...,24}
Cy = {Tz4 2 Q}

Passed

l Failed

Figure 1.1: Graphical presentation of USP/NF dissolution test



Chapter 2

Literatures review

2.1 Assumptions

The dissolution rates of all units are assumed to be identically independently
distributed(i.i.d) as a normal distribution with unknown mean ( g )and un-
known variance ( o2 ). The passing probability can be expressed by a function
of Q, p ,and o. Since p and o are unknown,we can estimate them by the
sample mean( Z ) and sample standard deviation( s ), respectively. Then the

probability of passing USP/NF dissolution test can be established.



2.2 Bergum’s method

Bergum(1990) provided a lower bound for multiple stages tests. For USP/NF
dissolution test, it is derived by following formula:

Since

P(S3) = P(Co N Cy) = P(Cy) + P(Ca) — P(Coy U Cyy)

> P(Cy) 4+ P(Cy) — 1 ,and

P(S3) = P(C51NC3NC3s3) = P(C31NCy2) +P(Caz) — P[(Ca1UCs2) UCs3]

> P(C31 N Cs) + P(Cs3) — 1,

it follows that

P(S1U S, U S3)

> Max (P(S1), P(S2), P(S3))

> Max (P(S1), P(Ca1) + P(C) — 1, P(Cs1 N Cz) + P(Ca3) — 1).

Furthermore

P(81) = [P(Q+5 <Yy,

P(Ca) + P(Cy) = [P(Q — 15 < Y)]"* + P(Q < Y1),

P(C51 N Cy) = ()[P(Q—25<Y; <Q—15)]2[P(Q — 15 < Y;)]*

+(HP(Q-25 <Y, < Q-15)[P(Q—15 < Y;)]3+[P(Q—15 < ¥;)]** and

P(Ci) = P(Q < Ya).

The probabilities of above-mentioned events all can be calculated. There-
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fore the lower bound can be estimated by substituting population mean and

standard deviation by the sampling mean and standard deviation.

2.3 Wang’s Method

Wang(2007) gives an approximation of the passing probability of USP/NF
dissolution test. It assumes that u lies in the interval (Q —[,Q + 1) and o is
small. And [ is a constant that is not large. The passing probability can be
reexpressed as follows:

Since

P(Ss) = P(S1NS3) + P(S{N.Sy), and

P(S;) = P(S1NS;) + P(S{fN.Ss)

the passing probability can then be factorized as

P(S; U S, U S3)

= P(S)) + P(S2) + P(S3) — P(S1 N Sy) — P(S1NS3) — P(Sy N S3)

+P(S1 N S3NS3)

= P(S1) + P(SfN Sy) + P(S{N S3) — P(S2NS;) + P(S; NSy N S3)

Further assume that all tailed probability involving the unit characteris-
tics are assumed zero, i.e., P(Y; > Q +5) =0, P(Y; < Q — 15) = 0, and
P(Y; < @ —25) = 0. In other words, all tailed probability are ignored. So

the terms involving S; are deleted. These events SY, Cy , Cs; ,and Csy are

11



bounded to occur with probability 1. It follows that approximation formula
is given as

P(S1U S, U S3)

~ P(S¢NSy) + P(S¢N Ss) — P(Sy N Ss).

Because

Yia ~ N(pu,0%/12) , and

Yoy ~ N(p,0?/24),

these terms are approximated by

P(Sf N Sz) & P(S) = P(Coy N Cho) = P(Cop) = 1 — D(4K),

P(S§N S3) ~ P(S3) = P(Cst N Cs N C33) & P(C3) = 1~ B(;774;), and
P(S3N83) = P(Cy NG N C3 N C M Cs3) = P(Coy N Cs3)

Let

X1 =YY=+ +Y)/12, and

Xy =2Yy —Yig = (Yig+ -+ + Yay) /12

The event Chy N Cy3 is equal to D' = {(21, x2) : 21 > Q, 8322 > Q1.
Furthermore

X1 ~ N(u,0%/12),

Xy ~ N(p,0%/12),and

X1 and X, are independent

Let W; and W5 be the standardized variables of X; and X5 as

Wi = (X1 — u)/(0/V12), and

12



Wy = (X2 — p)/(0/V12).

Wy, Wy are independent standard normal variables.

Now the probability P(Cy N C33) can be derived by integration from
the joint distribution of W; and W,. The approximation of the passing
probability can be obtained by following formula:

P(Sl U SQ U 53) ~ P(CQQ) + P(C33) - P(CZQ N CV33)

Q—p
o /12

Q—p
o/\/24

= [1 =& )]+ [1 = & )]

— (7)26.%])[— ! |dwydws
/1262412“ /2462—24;111;2 V2711202 2402

The integration can be calculated by numerical method.

13



Chapter 3

Proposed Method - Monte

Carlo Simulation

The simulation method is to randomly generate N sets of samples and per-
form the testing procedure based on each data set. Let N* denote the number
of sets of samples that the USP/NF dissolution test is passed. The passing
probability P(S; U Sy U S3) can be approximated by the proportion N*/N
if N is large enough. Since the passing probability is a function of Q , u
,and o. More precisely, it is a function of y—Q and o. The range of o is
from 0.5 to 10, dividing by 0.1 . Compaq Visual Fortran 6.5 and IMSL’s
STAT/LIBRARY FORTRAN subroutines RNNOA were used to generate
the normal variables with specified means and standard deviations.

All the simulations follow the procedure of the USP/NF dissolution test.

14



In the beginning, we set a combination of parameters(u, o and Q) and ran-
domly generate 6 units. At first stage,if these 6 units satisfy the S; event,
then it passes the test; if not, we randomly add other 6 units and begin next
stage. At second stage, we combine these 12 units. If these 12 units satisfy
the Sy event, it passes the test; if not, we randomly add other 12 units and
begin next stage. At third stage, we combine these 24 units. If these 24 units
satisfy the S3 event, it passes the test; if not, it fails the test. Each combi-
nation of parameters is simulated 100,000 times. Then we can use the times
of passing the test to estimate the passing probability on each combination
of parameters. The program code is applied in Appendix A.

According to the simulation results, when y—Q = 0, the passing prob-
ability over all possible value of o is only up to 0.6. When u—Q = 5 and
o < 9, the passing probabilities exceeds over 0.99 . The passing probability is
increases as 1 — @ increases. When o — () < 0 has a low passing probability.
On the other hand, when p—(@) > 5 has a high passing probability. Therefore
for our simulation study the range of u—@Q is chosen from 0 to 5, dividing
by 0.1. There are 96x51 = 4876 combinations. For each combination, we
conducted Monte Carlo simulation with N =1,000,000(10°) for estimation of

the passing probability. The 95% maximum error bound for each estimation

is 1.96 1/[0.5 x 0.5 x 10-6] ~ 0.001(0.1%) . Since most of the passing prob-
abilities are expressed as the percentage, therefore, for practical application,
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a maximum error bound of 0.001 is sufficient to provide an accurate estimate
of the passing probability.

The estimated passing probabilities for all 4876 combinations are pre-
sented from Tables B.1 to B.15 of Appendix B. Figure 3.1 and 3.2 provide
response surfaces of the estimated probability as function of the means and
standard deviations. For the purpose of illustration, an abbreviate table of
the estimated passing probabilities is given in Table 3.1 for p— Q from 0 to
5 by 0.5; for o from 0.5 to 10 by 0.5.

From Figure 3.1 , 3.2 and Table 3.1, the passing probability increases as
1—Q increases and as o decreases. When p—Q = 0, all estimated passing
probabilities are below 0.65. This indicates that when the population is equal
to the amount of the dissolved active ingredient specified in the USP/NF
monographs. The drug product will fail the dissolution test with more than
35%. On the other hand, when the standard deviation is less than 2, except
for p—Q = 0, the estimated passing probabilities are greater than 90%. In
addition when p—Q > 2, the estimated passing probabilities exceed 95%
even when the standard deviation is as large as 6.5 . The above relationships
clearly depicted in Figure 3.1 and 3.2.

Comparisons of the estimated passing probabilities between three meth-
ods are provided in Figures 3.3, 3.4, 3.5, and 3.6 for u—Q = 0, 1, 2, and 3,
respectively. It shows that lower bound of Bergum’s method under-estimates

16



the passing probability. On the other hand, the approximation of Wang’s ap-
proach over-estimates the passing probability when o is large. From Figures
3.3 to 3.6, the probability curve of our proposed simulation method always
lies between those of Bergum’s method and Wang’s method. However the
difference in estimated passing probabilities between the Bergum’s method
and our proposed simulation are layer that between the Wang’s approach
and our proposed simulation. On the other hand, when p—Q increases and
o decrease, the difference among the three methods diminish.

Additional simulations were conducted to investigate the passing proba-
bilities for each individual stage and for the criteria based on the character-
istic of individual units and based on the mean characteristic. The results
are provided from Table 3.2 to Table 3.7 for u—Q = 0 to 5 by 1. The passing
probability at first stage can be directly derived by P(S;) = [1 — @(@)]6.
The passing probability at first stage are less than 2% in the range for our
simulation studies. At the second stage, P(S{NC$,) is the failed probability
due to individual requirements. P(Sf N C%,) is the failed probability due
to average requirements. As a result, P(S{ N Cs§ N C5,) is the failed prob-
ability due to both criteria. Similarly, define A; = S{ NS5 N (Cs; U Cs)S,
Ay = S;N S5 N (Csp UC3)° N CSy, and Ay = S§NSSNCS;. At the third
stage, P(A;) is the failed probability due to individual requirements, P(Aj3)

is the failed probability due to average requirements, and P(A3) is the failed
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probability due to both criteria. Through the simulations, we could compare
the failed probabilities due to average and individual criteria.

From the results given in Tables 3.2 to 3.7, at the second stage, the failed
probability due to average and individual requirements both decreases as p
increases. In addition, the failed probability due to individual requirements
increases sharply when o is large. On the contrary, the failed probability due
to average requirements increases gradually when o increases.

Similar pattern of the failed probability due to individual and average
requirements can be observed at the third stage. Furthermore, the failed
probability due to average requirements is a dominant term at the third
stage. However, the dominance disappears when p increases. Since failure at
the third stage means that the the drug product fail the USP/NF dissolution
test. As u increases, the passing probability increases. Then the failed prob-
ability due to the average and individual requirements decreases. Therefore
individual requirements are dominant terms when p and o are large. But
the failed probability due to individual requirements are still small and its
impact negligible.

Define 7' = 51, Ty, = S{ NSy, and T35 = S{ N S§ N S3. The results
given in Figures 3.7 to 3.11 demonstrate that the P(T}) is negligible for
all conditions. On the other hand, P(75) are greater than both P(7}) and
P(T3). In addition, the passing probability at second stage is at least twice

18



as that of the third stage. Therefore, the second stage is the dominant
stage for determination of the passing probability for the USP/NF dissolution
test. Besides, we can observe that P(T3) decreases as o increases and P(T3)
increases as o increases. The third stage allows that the dissolution rate
of two units is between Q—25% and Q—15% while at the second stage, the
dissolution rate of all units should be at least Q—15%. Therefore, the above
simulation results may be due to the fact that a more relaxed requirement

of individual characteristic is used at the third stage than the second stage.
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Table 3.1: Abbreviated list of the estimated passing probabilities by Monte

Carlo Simulation

L—-Q 0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
o 05 0.625 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
1 0.625 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 0.624 0967 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
2 0.625 0.926 0.996 1.000 ~ 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.5 0.626 0.889 0.984 0.999 1.000 1.000 1.000 1.000 1.000 1.000  1.000
3 0.625 0.856 0.966 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.5 0.625 0.831 0947 0.989 0.998 1.000 1.000 1.000 1.000 1.000 1.000
4 0.625 0.809 0.926 0.979 0.996 0.999 1.000 1.000 1.000 1.000 1.000
4.5 0.625 0.792 0.906 0.967 0.991 0998 1.000 1.000 1.000 1.000 1.000
5 0.624 0.776 0.887 0.953 0.984 0996 0.999 1.000 1.000 1.000 1.000
5.5 0.623 0.764 0.871 0.939 0.976 0992 0.998 0.999 1.000 1.000 1.000
6 0.620 0.751 0.854 0.925 0.966 0.987 0.995 0.999 1.000 1.000  1.000
6.5 0.616 0.738 0.838 0.910 0.955 0.980 0.992 0.997 0.999 1.000 1.000
7 0.612 0.726 0.822 0.894 0.943 00972 0.988 0.995 0998 0.999 1.000
7.5 0.602 0.711 0.805 0.878 0.929 0962 0.981 0.991 0.996 0.998  0.999
8 0.593 0.696 0.786 0.859 0.913 0949 0.972 0.985 0992 0.996 0.998
8.5 0579 0.677 0.764 0.836 0.892 0.932 0.959 0.976 0.986 0.992  0.995
9 0.560 0.653 0.737 0.810 0.866 0910 0.941 0.962 0975 0.984 0.989
9.5 0539 0.626 0.705 0.777 0.836 0.881 0.916 0.942 0959 0.971 0.980
10 0510 0.593 0.669 0.738 0.797 0.846 0.885 0.914 0937 0.953 0.964
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Figure 3.1: Response surface of passing probability

21



Figure 3.2: Response surface of passing probability
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Table 3.2: The failed probability due to average and individual requirements

for p—Q =0

p=Q =0

o P(SiNCs) P(STNCNCs5) P(STNC3) P(A) P(A2)  P(As)
0.5 0.000 0.000 0.500 0.000  0.000  0.375
1.0 0.000 0.000 0.500 0.000  0.000  0.375
15 0.000 0.000 0.500 0.000  0.000  0.375
2.0 0.000 0.000 0.500 0.000  0.000  0.376
2.5 0.000 0.000 0.500 0.000  0.000  0.375
3.0 0.000 0.000 0.500 0.000  0.000  0.375
3.5 0.000 0.000 0.500 0.000  0.000  0.375
4.0 0.001 0.001 0.500 0.000  0.000  0.375
4.5 0.005 0.004 0.499 0.000  0.000  0.375
5.0 0.016 0.013 0.499 0.000  0.000  0.375
5.5 0.038 0.031 0.501 0.000  0.000  0.378
6.0 0.072 0.057 0.500 0.001  0.001  0.379
6.5 0.119 0.092 0.500 0.003  0.003  0.384
7.0 0.177 0.134 0.501 0.009  0.008  0.388
7.5 0.241 0.179 0.500 0.023  0.021  0.395
8.0 0.310 0.224 0.501 0.047  0.041  0.402
8.5 0.378 0.267 0.500 0.083  0.071  0.409
9.0 0.444 0.306 0.501 0.133  0.110  0.417
9.5 0.506 0.340 0.500 0.193  0.155  0.424
10.0 0.563 0.370 0.500 0.260  0.203  0.431
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Table 3.3: The failed probability due to average and individual requirements

for p—Q =1

p—Q =1

o P(SiNCs) P(STNCNCs5) P(STNC3) P(A) P(A2)  P(As)
0.5 0.000 0.000 0.000 0.000  0.000  0.000
1 0.000 0.000 0.000 0.000  0.000  0.000
1.5 0.000 0.000 0.010 0.000  0.000  0.000
2 0.000 0.000 0.042 0.000  0.000  0.004
2.5 0.000 0.000 0.083 0.000  0.000  0.016
3 0.000 0.000 0.124 0.000  0.000  0.033
3.5 0.000 0.000 0.161 0.000  0.000  0.054
4 0.000 0.000 0.193 0.000  0.000  0.074
4.5 0.002 0.001 0.221 0.000  0.000  0.094
5 0.008 0.005 0.244 0.000  0.000  0.112
5.5 0.022 0.013 0.264 0.000  0.000  0.129
6 0.045 0.027 0.282 0.000  0.000  0.145
6.5 0.080 0.048 0.298 0.001  0.001  0.162
7 0.126 0.075 0.310 0.004  0.003  0.177
7.5 0.180 0.105 0.322 0.010  0.008  0.191
8 0.241 0.138 0.332 0.024  0.017  0.207
8.5 0.305 0.172 0.342 0.047  0.032  0.221
9 0.370 0.204 0.351 0.081  0.054  0.237
9.5 0.432 0.234 0.357 0.126  0.082  0.249
10 0.491 0.262 0.365 0.182  0.114  0.264
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Table 3.4: The failed probability due to average and individual requirements

for p—Q =2

p—Q =2

o P(SiNCs) P(STNCNCs5) P(STNC3) P(A) P(A2)  P(As)
0.5 0.000 0.000 0.000 0.000  0.000  0.000
1 0.000 0.000 0.000 0.000  0.000  0.000
1.5 0.000 0.000 0.000 0.000  0.000  0.000
2 0.000 0.000 0.000 0.000  0.000  0.000
2.5 0.000 0.000 0.003 0.000  0.000  0.000
3 0.000 0.000 0.010 0.000  0.000  0.000
3.5 0.000 0.000 0.024 0.000  0.000  0.002
4 0.000 0.000 0.042 0.000  0.000  0.005
4.5 0.001 0.000 0.062 0.000  0.000  0.009
5 0.004 0.001 0.083 0.000  0.000  0.016
5.5 0.012 0.004 0.104 0.000  0.000  0.024
6 0.027 0.011 0.124 0.000  0.000  0.034
6.5 0.052 0.021 0.143 0.000  0.000  0.044
7 0.087 0.036 0.161 0.002  0.001  0.056
7.5 0.131 0.054 0.177 0.005  0.002  0.068
8 0.185 0.076 0.194 0.012  0.006  0.082
8.5 0.240 0.099 0.207 0.026  0.012  0.094
9 0.301 0.124 0.221 0.048  0.023  0.108
9.5 0.361 0.148 0.233 0.080  0.037  0.122
10 0.421 0.171 0.244 0.122  0.055  0.134
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Table 3.5: The failed probability due to average and individual requirements

for p—Q =3

p—=Q =3

o P(SiNCs) P(STNCNCs5) P(STNC3) P(A) P(A2)  P(As)
0.5 0.000 0.000 0.000 0.000  0.000  0.000
1 0.000 0.000 0.000 0.000  0.000  0.000
15 0.000 0.000 0.000 0.000  0.000  0.000
2 0.000 0.000 0.000 0.000  0.000  0.000
2.5 0.000 0.000 0.000 0.000  0.000  0.000
3 0.000 0.000 0.000 0.000  0.000  0.000
3.5 0.000 0.000 0.001 0.000  0.000  0.000
4 0.000 0.000 0.005 0.000  0.000  0.000
4.5 0.000 0.000 0.011 0.000  0.000  0.000
5 0.002 0.000 0.019 0.000  0.000  0.001
5.5 0.006 0.001 0.029 0.000  0.000  0.002
6 0.016 0.003 0.041 0.000  0.000  0.004
6.5 0.033 0.008 0.055 0.000  0.000  0.008
7 0.059 0.014 0.069 0.001  0.000  0.012
7.5 0.094 0.024 0.083 0.002  0.001  0.017
8 0.137 0.036 0.097 0.006  0.001  0.024
8.5 0.187 0.051 0.111 0.014  0.004  0.031
9 0.240 0.067 0.124 0.028  0.008  0.039
9.5 0.298 0.085 0.137 0.049  0.014  0.048
10 0.354 0.102 0.150 0.080  0.022  0.058
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Table 3.6: The failed probability due to average and individual requirements

for u—Q =4

p=Q =4

o P(SiNCa) P(SINC5:NC5)  P(SINC3) P(A)  P(A2)  P(As)
0.5 0.000 0.000 0.000 0.000  0.000  0.000
1 0.000 0.000 0.000 0.000  0.000  0.000
1.5 0.000 0.000 0.000 0.000  0.000  0.000
2 0.000 0.000 0.000 0.000  0.000  0.000
2.5 0.000 0.000 0.000 0.000  0.000  0.000
3 0.000 0.000 0.000 0.000  0.000  0.000
3.5 0.000 0.000 0.000 0.000  0.000  0.000
4 0.000 0.000 0.000 0.000  0.000  0.000
4.5 0.000 0.000 0.001 0.000  0.000  0.000
5 0.001 0.000 0.003 0.000  0.000  0.000
5.5 0.003 0.000 0.006 0.000  0.000  0.000
6 0.009 0.001 0.010 0.000  0.000  0.000
6.5 0.020 0.002 0.016 0.000  0.000  0.001
7 0.039 0.005 0.024 0.000  0.000  0.002
7.5 0.065 0.009 0.032 0.001  0.000  0.003
8 0.100 0.015 0.042 0.003  0.000  0.005
8.5 0.142 0.023 0.052 0.007  0.001  0.008
9 0.189 0.033 0.062 0.016  0.002  0.011
9.5 0.240 0.044 0.072 0.030  0.004  0.015
10 0.293 0.056 0.083 0.051  0.007  0.020
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Table 3.7: The failed probability due to average and individual requirements

for uy—Q =5

p=Q =5

o P(SiNCs) P(STNCNCs5) P(STNC3) P(A) P(A2)  P(As)
0.5 0.000 0.000 0.000 0.000  0.000  0.000
1.0 0.000 0.000 0.000 0.000  0.000  0.000
15 0.000 0.000 0.000 0.000  0.000  0.000
2.0 0.000 0.000 0.000 0.000  0.000  0.000
2.5 0.000 0.000 0.000 0.000  0.000  0.000
3.0 0.000 0.000 0.000 0.000  0.000  0.000
3.5 0.000 0.000 0.000 0.000  0.000  0.000
4.0 0.000 0.000 0.000 0.000  0.000  0.000
4.5 0.000 0.000 0.000 0.000  0.000  0.000
5.0 0.000 0.000 0.000 0.000  0.000  0.000
5.5 0.002 0.000 0.001 0.000  0.000  0.000
6.0 0.005 0.000 0.002 0.000  0.000  0.000
6.5 0.012 0.000 0.004 0.000  0.000  0.000
7.0 0.025 0.001 0.007 0.000  0.000  0.000
7.5 0.045 0.003 0.010 0.001  0.000  0.000
8.0 0.071 0.005 0.015 0.002  0.000  0.001
8.5 0.105 0.009 0.021 0.004  0.000  0.001
9.0 0.146 0.014 0.027 0.009  0.000  0.002
9.5 0.191 0.020 0.034 0.018  0.001  0.004
10.0 0.239 0.028 0.042 0.032  0.002  0.006
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Figure 3.7: Estimated passing probability at each stage for yu—Q=0
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Chapter 4

A Numerical Example

If a sponsor needs to establish in-house specification limits of passing USP/NF
dissolution test for a batch of a drug product. The sponsor has to select ran-
domly units as a sample with size n. The sample mean = and sample standard
deviation s can be calculated. Then replaced p and o are by & and s, re-
spectively. Finally, we can use the Tables in Appendix B to find the passing
probability of the batch of drugs product.

For example, let 7=76.2765% , s = 4.1873% , and Q = 75%. It follows
that 2—Q = 1.2765% . To be conservative, round off Q—pu as 1.2% , and o
as 4.2%. From the table given in B.5, we can find the passing probability is

0.946.
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Chapter 5

Discussion and Conclusion

The USP/NF dissolution testing procedure is a multiple-stage test and the
stages are dependent. At the same stage, the average and individual re-
quirements are also dependent and are too complicate to separate. The
true passing probability can not be found even when p and o are known.
Therefore, we applied the Monte-Carlo Simulation approach to estimate the
passing probabilities which are given from Table B.1 to B.15 in Appendix B.
The Fortran codes for estimation of the passing probabilities are provided in
Appendix A.

Although simulation is a reasonable method to derive the estimates of the
passing probability. The estimation still depends on the sample statistics. In
the other words, the sampling error is unavoidable. It is important to ensure

the sample size is large enough for estimation.
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The passing probability also can be estimated by confidence interval.
Base on a sample, we can construct a (1-5)100% lower confidence bound of
v and (1-5)100% upper confidence bound of o. We use these two value and
tables in Appendix B to find the estimate of the passing probability. By
the Bonferroni inequality, the estimate is an approximate (1-a)100% lower
confidence bound of the passing probability.

In this thesis, we propose the Monte-Carlo simulation to estimate the
passing probability. Since these is a normality assumption, the parametric
bootstrap could be another method to estimate the passing probability.

So far the normality is assumed for all methods. But the dissolution rate
is percentage with a range from 0 to 100%. When the population mean is near
to 100%, the distribution of the population is skew. Therefore the normal
assumption may be violated. Under this circumstance, the Beta distribution
may provide an alternative distribution to generate the random sample for

the proposed simulation procedure.
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Appendix A

Program code

Use the Fortran program. As an example of Monte Carlo Simulation, this code is written
for estimating passing probabilities when u—Q = 0 and o = 0.5 to 10 by 0.1.

program main

use msimsl

implicit none

real :: s1(6) , 52(12), s3(24) , b2 ,b3

real :: Q , mu , sig, pi

real :: T(96,7)

integer :: 1, j

character(5) headl

character(98) head2

pi = acos(-1.0)

headl (1:5) = ”Sigma”

head2(10:11) = "T1”

head2(24:25) = "T2”

head2(38:41) = ”C21F”

head2(52:55) = ” C22F”
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head2(63:70) = » C21&C22F”
head2(80:81) = "T3”
head2(93:96) = ”Pass”

open(10,file="75.0.txt”)

! Setting the Combination of Parameters

Q=750
mu = 75.0
do i=1, 96

sig = i*0.14+0.4

do j=1, 1000000

! First Stage

CALL RNNOA (6, s1)

CALL SSCAL (6, sig, s1, 1)
CALL SADD (6, mu, s1, 1)

if (all(s1>Q+5)) then

T@,1) = T(i,1) + 1

else

! Second Stage

s2(1:6) = sl

CALL RNNOA (6, s2(7:12))
CALL SSCAL (6, sig, s2(7:12), 1)
CALL SADD (6, mu, s2(7:12), 1)
b2 = sum(s2)/12

if(b2>Q .and. all(s2>Q-15)) then
T(,2) = T(1,2) + 1

else if(any(s2<Q-15)) then

T(,3) = T(1,3) + 1

end if

if(b2<Q) then

T(i,4) = T(i,4) + 1
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end if

if(b2<=Q .and. any(s2<=Q-15)) then

T(,5) = T(i,5) + 1

end if

| Third Stage

s3(1:12) = s2

CALL RNNOA (12, s3(13:24))

CALL SSCAL (12, sig, s3(13:24), 1)

CALL SADD (12, mu, s3(13:24), 1)

b3 = sum(s3)/24

if(b3>Q .and. count(s3<Q-15)j3 .and. all(s3>Q-25)) then
T(i,6) = T(i,6)+1

else

T(1,7) = T(i,7)+1

end if

end if

end if

end do! j

end do ! i

write(10,” (A3,F4.1,A3,F4.1)”) ?mu=",mu ,”Q=",Q
write(10,” (A5,A98)”) headl, head2

doi=1,96

T(i,1:7) = T(i,1:7)/1000000.0

write(10,” (F5.1,7F14.6)”) i*0.140.4 , T(i,1:6) , 1.0-T(i,7)
end do

write(10,*) 7"

end program
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Appendix B

Estimated Passing Probabilities

by Monte Carlo Simulation
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Table B.1: Estimated Passing Probabilities by Monte Carlo Simulation for

p—Q =0t009,0=0.51t039

n—Q 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
o 05 0.624 0.888 0.984 0.999 0.999 1.000 1.000 1.000 1.000 1.000
0.6 0.624 0.856 0.966 0.995 0.999 0.999 1.000 1.000 1.000 1.000
0.7 0.625 0.830 0.946 0.988 0.998 0.999 0.999 0.999 1.000 1.000
0.8 0.625 0.809 0.926 0.978 0.995 0.999 0.999 0.999 0.999 1.000
0.9 0.625 0.791 0.905 0.966 0.990 0.997 0.999 0.999 0.999 1.000
1 0.624 0.777 0.888 0.953 0.984 0.995 0.999 0.999 0.999 0.999
1.1 0.625 0.764 0.871 0.939 0975 0.991 0.997 0.999 0.999 0.999
1.2 0.625 0.754 0.856 0.926 0.966 0.986 0.995 0.998 0.999 0.999
1.3 0.625 0.745 0.843 0913 0.956 0.981 0.992 0.997 0.999 0.999
1.4 0.626  0.737 0.830 0.900 0.946 0974 0.988 0.995 0.998 0.999
1.5 0.624 0.729 0.819 0.888 0.935 0.966 0.984 0.992 0.997 0.999
1.6 0.624 0.723 0.809 0.876 0.926 0.958 0.978 0.989 0.995 0.998
1.7 0.625 0.719 0.800 0.866 0.916 0.950 0.972 0.986 0.993 0.997
1.8 0.624 0.713 0.791 0.857 0.906 0.942 0.966 0.981 0.990 0.995
1.9 0.623 0.709 0.784 0.847 0.897 0.934 0960 0977 0.987 0.993
2 0.624 0.705 0.777 0.839 0.888 0.926 0.953 0.972 0.984 0.991
2.1 0.624 0.701 0.771 0.830 0.879 0918 0.946 0.966 0.979 0.988
2.2 0.624 0.697 0.765 0.823 0.871 0.910 0.939 0.960 0975 0.985
2.3 0.625 0.695 0.759 0.816 0.864 0.902 0.933 0.955 0.970 0.982
2.4 0.624 0.692 0.754 0.808 0.856 0.895 0.925 0.949 0.966 0.978
2.5 0.625 0.690 0.749 0.803 0.849 0.888 0.919 0.943 0.961 0.975
2.6 0.625 0.687 0.745 0.797 0.842 0.881 0913 0.937 0.956 0.971
2.7 0.624 0.685 0.741 0.792 0.836 0.874 0.906 0.932 0.951 0.966
2.8 0.625 0.683 0.737 0.787 0.830 0.868 0.900 0.925 0.946 0.962
2.9 0.624 0.680 0.733 0.781 0.824 0.862 0.894 0.920 0.941 0.957
3 0.625 0.679 0.730 0.777 0.819 0.856 0.888 0914 0.936 0.953
3.1 0.624 0.677 0.727 0.773 0.814 0.851 0.882 0.909 0.930 0.948
3.2 0.625 0.675 0.724 0.769 0.809 0.845 0.876 0.904 0.925 0.944
3.3 0.624 0.674 0.721 0.764 0.804 0.840 0.871 0.898 0.921 0.939
3.4 0.624 0.673 0.718 0.761 0.800 0.835 0.866 0.893 0916 0.935
3.5 0.624 0.671 0.716 0.757 0.795 0.830 0.861 0.888 0.911 0.930
3.6 0.625 0.669 0.712 0.754 0.792 0.826 0.857 0.883 0.906 0.926
3.7 0.625 0.669 0.711 0.751 0.788 0.821 0.851 0.878 0.901 0.921
3.8 0.625 0.667 0.709 0.748 0.784 0.817 0.847 0874 0.897 0.917
3.9 0.624 0.666 0.706 0.745 0.781 0.814 0.842 0.869 0.892 0.912
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Table B.2: Estimated Passing Probabilities by Monte Carlo Simulation for

p—Q =0t009,0=41t06.9

n—Q 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
o 4 0.624 0.666 0.704 0.742 0.776 0.809 0.839 0.865 0.888 0.908
4.1 0.624 0.665 0.703 0.739 0.774 0.806 0.835 0.860 0.883 0.904
4.2 0.624 0.663 0.702 0.737 0.770 0.801 0.830 0.856 0.880 0.900
4.3 0.625 0.663 0.700 0.735 0.768 0.798 0.825 0.852 0.875 0.896
4.4 0.624 0.662 0.698 0.732 0.765 0.795 0.823 0.848 0.871 0.892
4.5 0.625 0.660 0.696 0.730 0.761 0.791 0.819 0.845 0.867 0.888
4.6 0.624 0.661 0.694 0.727 0.759 0.788 0.816 0.840 0.863 0.884
4.7 0.625 0.659 0.693 0.725 0.757 0.785 0.812 0.837 0.859 0.880
4.8 0.624 0.658 0.691 0.723 0.754 0.783 0.808 0.834 0.856 0.876
4.9 0.623 0.657 0.690 0.721 0.751 0.779 0.805 0.830 0.852 0.872
5 0.624 0.657 0.688 0.720 0.749 0.776 0.803 0.826 0.850 0.870
5.1 0.623 0.656  0.687 0.718 0.746  0.773 0.800 0.823 0.845 0.866
5.2 0.623 0.655 0.685 0.716 0.744 0.771 0.796 0.820 0.842 0.862
5.3 0.622 0.654 0.685 0.713 0.741 0.768 0.794 0.817 0.839 0.858
5.4 0.623 0.654 0.683 0.712 0.739 0.766 0.790 0.814 0.835 0.855
5.5 0.622 0.652 0.682 0.710 0.738 0.764 0.788 0.811 0.832 0.852
5.6 0.622 0.652 0.681 0.708 0.735 0.760 0.785 0.808 0.829 0.848
5.7 0.621 0.651 0.679 0.707 0.732 0.758 0.781 0.804 0.826 0.845
5.8 0.621 0.650 0.678 0.704 0.731 0.755 0.779 0.801 0.823 0.842
5.9 0.621 0.648 0.677 0.702 0.728 0.7563 0.776 0.799 0.819 0.839
6 0.619 0.647 0.676 0.701 0.726 0.751 0.774 0.796 0.816 0.836
6.1 0.619 0.647 0.673 0.699 0.724 0.748 0.771 0.793 0.813 0.833
6.2 0.618 0.645 0.672 0.697 0.722 0.745 0.768 0.790 0.810 0.830
6.3 0.618 0.643 0.670 0.696 0.720 0.743 0.765 0.787 0.807 0.826
6.4 0.617 0.643 0.669 0.693 0.718 0.741 0.763 0.785 0.805 0.823
6.5 0.616 0.642 0.666 0.691 0.716 0.738 0.759 0.782 0.802 0.820
6.6 0.615 0.640 0.665 0.689 0.712 0.736 0.757 0.778 0.798 0.817
6.7 0.614 0.639 0.663 0.687 0.711 0.733 0.755 0.775 0.796 0.814
6.8 0.612 0.637 0.662 0.685 0.709 0.731 0.751 0.773 0.792 0.810
6.9 0.612 0.636 0.660 0.683 0.705 0.728 0.750 0.769 0.788 0.808
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Table B.3: Estimated Passing Probabilities by Monte Carlo Simulation for

p—Q =0t00.9,0="7to 10

n—Q 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
o 7 0.611 0.634 0.657 0.682 0.704 0.726 0.746 0.766 0.787 0.804
7.1 0.608 0.633 0.656 0.679 0.701 0.723 0.744 0.763 0.783 0.802
7.2 0.608 0.631 0.653 0.677 0.699 0.721 0.741 0.760 0.780 0.798
7.3 0.606 0.629 0.652 0.675 0.696 0.718 0.738 0.757 0.776  0.795
7.4 0.605 0.627 0.650 0.672 0.694 0.714 0.735 0.754 0.772 0.791
7.5 0.602 0.626 0.647 0.670 0.692 0.711 0.731 0.751 0.769 0.787
7.6 0.601 0.623 0.645 0.667 0.688 0.708 0.728 0.747 0.766 0.784
7.7 0.599 0.622 0.643 0.664 0.685 0.706 0.726 0.745 0.763 0.780
7.8 0.597 0.618 0.640 0.662 0.681 0.702 0.723 0.740 0.759 0.777
7.9 0.594 0.617 0.637 0.658 0.679 0.698 0.718 0.737 0.755 0.773
8 0.592 0.614 0.635 0.655 0.676 0.696 0.715 0.733 0.751 0.769
8.1 0.590 0.611 0.632 0.652 0.672 0.692 0.711 0.730 0.747 0.765
8.2 0.588 0.609 0.629 0.649 0.668 0.688 0.708 0.725 0.743 0.760
8.3 0.585 0.605 0.627 0.644 0.665 0.684 0.702 0.723 0.739 0.756
8.4 0.582 0.601 0.622 0.641 0.661 0.680 0.699 0.717 0.734 0.752
8.5 0.578 0.598 0.618 0.638 0.658 0.676 0.695 0.713 0.730 0.747
8.6 0.575 0.596 0.615 0.634 0.653 0.672 0.690 0.707 0.726 0.743
8.7 0.572 0.590 0.612 0.631 0.648 0.668 0.685 0.704 0.720 0.737
8.8 0.568 0.587 0.606 0.626 0.644 0.663 0.681 0.698 0.716 0.731
8.9 0.564 0.585 0.603 0.620  0.640 0.658 0.675 0.693 0.709 0.727
9 0.560 0.579 0.598 0.617 0.636 0.653 0.671 0.688 0.704 0.721
9.1 0.556  0.575 0.593 0.612 0.630 0.648 0.665 0.682 0.700 0.715
9.2 0.552  0.570 0.588 0.607 0.625 0.642 0.659 0.676 0.692 0.709
9.3 0.548 0.566 0.584 0.602 0.619 0.636 0.654 0.670 0.686 0.703
9.4 0.543 0.560 0.578 0.597 0.614 0.630 0.647 0.665 0.681 0.697
9.5 0.538 0.556 0.573 0.590 0.607 0.625 0.641 0.657 0.675 0.690
9.6 0.533 0.550 0.567 0.586 0.601 0.617 0.635 0.651 0.667 0.683
9.7 0.527 0.544 0.562 0.579 0.596 0.612 0.629 0.645 0.661 0.676
9.8 0.523 0.538 0.556 0.573 0.589 0.606 0.622 0.638 0.653 0.669
9.9 0.518 0.533 0.550 0.566 0.583 0.599 0.614 0.631 0.646 0.662
10 0.510 0.528 0.544 0.560 0.576 0.592 0.608 0.623 0.638 0.654
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Table B.4: Estimated Passing Probabilities by Monte Carlo Simulation for

—Q=1t019,0=05t03.9

n—Q 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
o 05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.1 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.2 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.3 0.999 0999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.4 0.999 0999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
1.5 0.999 0999 0.999 0.999 0999 0999 1.000 1.000 1.000 1.000
1.6 0.999 0999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000
1.7 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000
1.8 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000
1.9 0.996 0.998 0.999 0.999 0.999 0.999 0.999 0999 0.999 1.000
2 0.995 0.997 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999
2.1 0.993 0.996 0.998 0.999 0.999 0999 0.999 0.999 0.999 0.999
2.2 0.991 0.995 0.997 0.998 0.999 0.999 0.999 0.999 0.999 0.999
2.3 0.989 0.994 0.996 0.998 0.999 0.999 0.999 0.999 0.999 0.999
2.4 0.986 0.992 0.995 0.997 0.998 0.999 0999 0.999 0.999 0.999
2.5 0.984 0.990 0.994 0.996 0.998 0.998 0.999 0.999 0.999 0.999
2.6 0.980 0.988 0.992 0.995 0.997 0998 0.999 0.999 0.999 0.999
2.7 0.977 0.985 0.990 0.994 0.996 0.997 0.998 0.999 0.999 0.999
2.8 0.974 0.982 0.988 0.993 0.995 0.997 0.998 0.999 0.999 0.999
2.9 0.970 0.979 0.986 0.991 0.994 0.996 0.997 0.998 0.999 0.999
3 0.966 0.976 0.984 0.989 0.993 0.995 0.997 0.998 0.998 0.999
3.1 0.962 0973 0981 0.987 0991 0994 0.996 0.997 0.998 0.999
3.2 0.958 0.970 0978 0.985 0.989 0.993 0.995 0.997 0.998 0.998
3.3 0.954 0.966 0.975 0.982 0.988 0.991 0994 0996 0.997 0.998
3.4 0.950 0.963 0.973 0.980 0.985 0.990 0.993 0.995 0.997 0.998
3.5 0.946 0.959 0.969 0.977 0.983 0.988 0.992 0.994 0.996 0.997
3.6 0.942 0.956 0.966 0.975 0.981 0.98 0.990 0.993 0.995 0.997
3.7 0.938 0.952 0.963 0.972 0979 0.984 0989 0.992 0.994 0.996
3.8 0.934 0948 0.959 0.969 0977 0983 0987 0991 0.993 0.995
3.9 0.929 0944 0957 0.966 0974 0980 0.985 0.989 0.992 0.994
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Table B.5: Estimated Passing Probabilities by Monte Carlo Simulation for

p—Q =1t019,0=41%06.9

w—Q 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
o 4 0.925 0.940 0.953 0.963 0972 0978 0.983 0.988 0.991 0.993
4.1 0.922 0.937 0.950 0.960 0.969 0.976 0.982 0.986 0.990 0.992
4.2 0.918 0.933 0.946 0.957 0.966 0.974 0.980 0.985 0.988 0.991
4.3 0.914 0929 0.943 0.954 0964 0971 0977 0.983 0.987 0.990
4.4 0.910 0.926 0.939 0.951 0.960 0.968 0.975 0.981 0.985 0.989
4.5 0.905 0.922 0.936 0.948 0.958 0.966 0.973 0979 0.984 0.987
4.6 0.902 0918 0.932 0945 0955 0.964 0971 0977 0.982 0.986
4.7 0.898 0.915 0.928 0.941 0952 0.961 0.968 0975 0.980 0.984
4.8 0.894 0911 0926 0.938 0949 0958 0.966 0973 0.978 0.983
4.9 0.891 0.908 0.922 0.935 0946 0.956 0.964 0970 0976 0.981
5 0.887 0.904 0.918 0.932 0.943 0.953 0.961 0.969 0974 0.979
5.1 0.884 0.901 0.915 0.929 0.940 0.950 0.958 0.966 0.972 0.978
5.2 0.881 0.897 0.912 0.925 0.937 0.948 0956 0.964 0970 0.976
5.3 0.877 0.894 0.908 0.922 0.934 0.945 0.953 0961 0.968 0.973
5.4 0.874 0.890 0.905 0.919 0.931 0942 0.951 0.959 0.966 0.972
5.5 0.870 0.887 0.903 0.915 0.928 0.939 0.948 0.957 0.964 0.970
5.6 0.867 0.884 0.899 0.913 0.925 0.936 0.945 0.954 0.961 0.968
5.7 0.864 0.880 0.895 0.909 0.922 0.933 0943 0.952 0.959 0.966
5.8 0.860 0.877 0.892 0.906 0919 0.930 0.940 0.949 0.957 0.963
5.9 0.857 0.873 0.889 0.903 0916 0.927 0.938 0.947 0.954 0.962
6 0.854 0.871 0.885 0.900 0.913 0.924 0.935 0.944 0.952 0.959
6.1 0.850 0.867 0.883 0.897 0.910 0.921 0.931 0.941 0.949 0.957
6.2 0.847 0.864 0.879 0.893 0.907 0919 0.929 0.939 0.947 0.954
6.3 0.844 0.861 0.877 0.891 0903 0916 0926 0936 0.945 0.952
6.4 0.841 0.858 0.873 0.888 0.900 0.913 0.923 0.934 0.942 0.950
6.5 0.838 0.855 0.869 0.884 0.898 0.909 0.920 0.931 0.939 0.947
6.6 0.835 0.851 0.867 0.881 0.895 0.906 0918 0.928 0.937 0.945
6.7 0.831 0.848 0.863 0.878 0.892 0.903 0915 0.925 0.934 0.943
6.8 0.828 0.845 0.860 0.874 0.888 0.900 0.912 0.922 0.931 0.940
6.9 0.825 0.841 0.857 0.871 0.885 0.897 0.908 0919 0.928 0.937
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Table B.6: Estimated Passing Probabilities by Monte Carlo Simulation for

p—Q =1t01.9,0 = "7to 10

w—Q 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
o 7 0.822 0.838 0.853 0.867 0.881 0.894 0.905 0916 0.926 0.934
7.1 0.818 0.835 0.850 0.865 0.878 0.890 0.902 0913 0.923 0.932
7.2 0.815 0.831 0.847 0.861 0.875 0.887 0.899 0910 0.920 0.929
7.3 0.812 0.827 0.843 0.859 0.872 0.885 0.896 0.907 0916 0.926
7.4 0.808 0.825 0.840 0.854 0.868 0.881 0.893 0.903 0.913 0.923
7.5 0.805 0.820 0.836 0.851 0.865 0.877 0.889 0.900 0.910 0.920
7.6 0.801 0.818 0.832 0.847 0.861 0.873 0.88 0.897 0.907 0.916
7.7 0.797 0.813 0.830 0.843 0.857 0.870 0.882 0.893 0.904 0.913
7.8 0.794 0.809 0.824 0.839 0.854 0.866 0.878 0.890 0.900 0.910
7.9 0.789 0.807 0.821 0.835 0.849 0.862 0.874 0.886 0.897 0.906
8 0.786 0.802 0.816 0.832 0.845 0.858 0.870 0.882 0.892 0.903
8.1 0.782 0.798  0.812 0.827 0.840 0.854 0.866 0.877 0.889 0.899
8.2 0.778 0.793 0.808 0.823 0.836 0.849 0.862 0.874 0.884 0.895
8.3 0.773 0.788 0.804 0.818 0.832 0.845 0.858 0.869 0.880 0.891
8.4 0.769 0.783 0.799 0.813 0.827 0.840 0.853 0.865 0.876 0.886
8.5 0.764 0.780 0.795 0.809 0.822 0.836 0.848 0.860 0.871 0.882
8.6 0.758 0.774 0.790 0.803 0.817 0.831 0.844 0.855 0.866 0.877
8.7 0.753 0.768 0.784 0.799 0.812 0.825 0.838 0.850 0.861 0.872
8.8 0.748 0.763 0.778 0.793 0.807 0.820 0.833 0.845 0.855 0.867
8.9 0.742 0.758 0.774 0.787  0.801 0.815 0.827 0.839 0.850 0.861
9 0.736  0.753 0.768 0.781 0.795 0.809 0.822 0.834 0.845 0.856
9.1 0.731 0.746 0.761 0.776 0.789 0.802 0.815 0.827 0.839 0.849
9.2 0.725 0.740 0.755 0.769 0.783 0.796 0.809 0.821 0.832 0.844
9.3 0.718 0.734 0.749 0.763 0.776 0.790 0.803 0.815 0.826 0.837
9.4 0.712 0.727 0.742 0.756 0.770 0.784 0.795 0.808 0.820 0.831
9.5 0.705 0.721 0.736 0.749 0.763 0.776 0.789 0.801 0.813 0.824
9.6 0.698 0.714 0.728 0.742 0.755 0.768 0.781 0.794 0.806 0.817
9.7 0.691 0.706 0.721 0.735 0.748 0.761 0.774 0.786 0.798 0.809
9.8 0.684 0.699 0.714 0.727 0.740 0.754 0.766 0.779 0.791 0.802
9.9 0.675 0.692 0.706 0.719 0.733 0.746 0.758 0.771 0.782 0.794
10 0.669 0.684 0.697 0.711 0.724 0.738 0.751 0.762 0.775 0.786
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Table B.7: Estimated Passing Probabilities by Monte Carlo Simulation for

—Q=2t029,0=05t03.9

n—Q 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
o 05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.6 1.000 1.000 1.000 1.000 1.000 1.000 = 1.000 1.000 1.000 1.000
1.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000
1.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.1 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.2 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.3 0.999 0999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
2.4 0.999 0999 0999 0.999 0.999 1.000 1.000 1.000 1.000 1.000
2.5 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000
2.6 0.999 0.999 0.999 0.999 0.999  1.000 0.999 1.000 1.000 1.000
2.7 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 0.999 1.000
2.8 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 0.999 1.000
2.9 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000
3 0.999 0.999 0.999 0.999 0999 0999 0.999 0.999 0.999 1.000
3.1 0.999 0.999 0.999 0.999 0999 0999 0999 0.999 0.999 0.999
3.2 0.999 0.999 0.999 0.999 0999 0999 0.999 0999 0.999 0.999
3.3 0.999 0999 0.999 0.999 0999 0999 0.999 0999 0.999 0.999
3.4 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
3.5 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
3.6 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
3.7 0.997 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999
3.8 0.996 0.997 0.998 0.999 0999 0999 0.999 0.999 0.999 0.999
3.9 0.996 0.997 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999
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Table B.8: Estimated Passing Probabilities by Monte Carlo Simulation for

p—Q =2t029,0=4%06.9

w—Q 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
o 4 0.995 0.996 0.997 0.998 0.998 0.999 0.999 0.999 0.999 0.999
4.1 0.994 0.996 0.997 0.998 0.998 0.999 0.999 0.999 0.999 0.999
4.2 0.993 0.995 0.996 0.997 0.998 0.998 0.999 0.999 0.999 0.999
4.3 0.992  0.994 0.996 0.997 0.998 0.998 0.999 0.999 0.999 0.999
4.4 0.991 0.993 0.995 0.996 0.997 0.998 0.998 0.999 0.999 0.999
4.5 0.990 0.993 0.994 0.996 0.997 0.998 0.998 0.999 0.999 0.999
4.6 0.989 0.992 0.993 0.995 0.996 0.997 0.998 0.998 0.999 0.999
4.7 0.988 0.990 0.993 0.994 0996 0.997 0.997 0.998 0.998 0.999
4.8 0.986 0.989 0.992 0.994 0995 0996 0.997 0.998 0.998 0.999
4.9 0.985 0.988 0.991 0.993 0.994 0.996 0.997 0.997 0.998 0.998
5 0.983 0.987 0.990 0.992 0.994 0.995 0.996 0.997 0.998 0.998
5.1 0.982 0.986 0.988 0.991 0.993 0.994 0996 0.997 0.997 0.998
5.2 0.980 0.984 0.987 0.990 0.992 0.994 0995 0.996 0.997 0.998
5.3 0.979 0.983 0.986 0.989 0.991 0.993 0.994 0996 0.996 0.997
5.4 0.977 0981 0.985 0.988 0.990 0.992 0.994 0995 0.996 0.997
5.5 0.975 0.980 0983 0.987 0.989 0.991 0.993 0.994 0.996 0.996
5.6 0.973 0978 0.982 0.985 0.988 0.990 0.992 0.994 0.995 0.996
5.7 0.971 0976 0.980 0.984 0987 0989 0991 0.993 0.994 0.995
5.8 0.969 0974 0979 0983 098 0.988 0.990 0.992 0.994 0.995
5.9 0.968 0.973 0977 0.981 0.984 0.988 0.990 0.992 0.993 0.994
6 0.965 0.971 0976 0.980 0.983 0.98 0.988 0.991 0.992 0.994
6.1 0.964 0.969 0.974 0978 0.982 0.985 0988 0.990 0.992 0.993
6.2 0.961 0.967 0.972 0.977 0981 0.984 0.987 0.989 0.991 0.992
6.3 0.959 0965 0971 0975 0979 0.982 0.985 0.988 0.990 0.992
6.4 0.957 0.963 0.969 0973 0977 0981 0984 0987 0.989 0.991
6.5 0.955 0.961 0.967 0972 0976 0.980 0.983 0.98 0.988 0.990
6.6 0.953 0959 0.964 0.970 0974 0978 0.981 0.984 0.987 0.989
6.7 0.950 0.957 0.963 0.968 0.972 0977 0980 0.983 0.986 0.988
6.8 0.948 0.954 0.961 0.966 0971 0975 0978 0.982 0.985 0.987
6.9 0.945 0.952 0.958 0.964 0.969 0.973 0977 0980 0.983 0.986
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Table B.9: Estimated Passing Probabilities by Monte Carlo Simulation for

p—Q =2t029,0="7to 10

w—Q 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
o 7 0.942 0950 0.956 0.962 0.967 0971 0976 0979 0.982 0.985
7.1 0.940 0948 0954 0.959 0965 0.969 0974 0978 0.981 0.984
7.2 0.937 0945 0.951 0.958 0.962 0.968 0.972 0976 0.979 0.982
7.3 0.935 0.942 0949 0.955 0.961 0965 0970 0974 0978 0.981
7.4 0.932 0939 0946 0.953 0.959 0.963 0.968 0972 0976 0.979
7.5 0.928 0.937 0.944 0.950 0.956 0.962 0.966 0970 0974 0.978
7.6 0.925 0.934 0941 0948 0954 0959 0964 0968 0972 0.976
7.7 0.922 0930 0.938 0.945 0951 0.957 0962 0966 0970 0.974
7.8 0.919 0927 0.935 0942 0948 0.954 0.959 0964 0.968 0.972
7.9 0.916 0924 0.932 0.939 0945 0951 0956 0.962 0.966 0.970
8 0.912 0920 0.928 0.936 0942 0.949 0954 0.959 0.964 0.968
8.1 0.908 0.917  0.925 0.933 0.939 0.945 0951 0.956 0.961 0.965
8.2 0.904 0.913 0.921 0.929 0.936 0.942 0.948 0.953 0.958 0.963
8.3 0.901 0.909 0.918 0.926 0.932 0.939 0945 0.950 0.956 0.960
8.4 0.896 0.905 0.914 0.922 0.929 0.935 0.941 0.947 0.953 0.957
8.5 0.892 0.901 0.910 0.917 0.925 0.931 0.938 0943 0.949 0.954
8.6 0.887 0.896 0.905 0.913 0920 0.928 0.934 0940 0.946 0.950
8.7 0.882 0.891 0.900 0.909 0916 0.923 0930 0.936 0.942 0.947
8.8 0.877 0.887 0.895 0.904 0912 0919 0926 0932 0.938 0.943
8.9 0.871 0.882 0.891 0.899  0.907 0914 0.921 0928 0.934 0.940
9 0.865 0.876 0.885 0.894 0.902 0.909 0917 0.923 0.930 0.935
9.1 0.860 0.870 0.879 0.888 0.896 0.904 0912 0918 0.925 0.931
9.2 0.854 0.864 0.874 0.883 0.891 0.898 0.906 0.913 0.920 0.926
9.3 0.848 0.858 0.867 0.877 0.885 0.893 0.900 0.908 0915 0.921
9.4 0.841 0.851 0.861 0.870 0.879 0.887 0.895 0.902 0.909 0.915
9.5 0.835 0.844 0.854 0.864 0.873 0.881 0.889 0.896 0.903 0.910
9.6 0.827 0.838 0.847 0.858 0.866 0.875 0.883 0.890 0.897 0.904
9.7 0.821 0.831 0.841 0.850 0.859 0.868 0.876 0.884 0.891 0.898
9.8 0.812 0.824 0.834 0.843 0.852 0.861 0.869 0.877 0.885 0.892
9.9 0.805 0.815 0.825 0.835 0.845 0.853 0.862 0.870 0.877 0.884
10 0.796 0.808 0.818 0.827 0.836 0.846 0.854 0.862 0.870 0.878
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Table B.10: Estimated Passing Probabilities by Monte Carlo Simulation for

u—Q =3t039,0=0.5t039

n—Q 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
o 05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.6 1.000 1.000 1.000 1.000 1.000 1.000 = 1.000 1.000 1.000 1.000
1.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000
1.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.6 1.000 1.000 1.000 1.000  1.000  1.000 1.000 1.000 1.000 1.000
2.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.1 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.2 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.3 0.999 0999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.4 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.5 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000
3.6 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000
3.7 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000
3.8 0.999 0.999 0.999 0.999 0999 0.999 1.000 0.999 1.000 1.000
3.9 0.999 0.999 0.999 0.999 0999 0999 0.999 1.000 0.999 1.000
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Table B.11: Estimated Passing Probabilities by Monte Carlo Simulation for

p—Q =3t039,0=4%06.9

n—Q 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
o 4 0.999 0.999 0.999 0.999 0999 0999 0.999 0.999 1.000 0.999
4.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000
4.2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
4.3 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
4.4 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
4.5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
4.6 0.999 0.999 0.999 0.999 0999 0.999 0999 0.999 0.999 0.999
4.7 0.999 0.999 0.999 0.999 0999 0.999 0.999 0.999 0.999 0.999
4.8 0.999 0999 0.999 0.999 0999 0999 0999 0.999 0.999 0.999
4.9 0.999 0.999 0.999 0.999 0999 0.999 0999 0.999 0.999 0.999
5 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
5.1 0.998 0.999  0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
5.2 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
5.3 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0999 0.999 0.999
5.4 0.998 0.998 0.998 0.999 0.999 0999 0.999 0.999 0.999 0.999
5.5 0.997 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999
5.6 0.997 0.997 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999
5.7 0.996 0.997 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999
5.8 0.996 0.997 0.997 0.998 0.998 0.998 0.999 0.999 0.999 0.999
5.9 0.995 0.996 0.997 0.998 0.998 0.998 0.999 0.999 0.999 0.999
6 0.995 0.996 0.997 0.997 0.998 0.998 0.998 0.999 0.999 0.999
6.1 0.994 0.995 0.996 0.997 0.997 0.998 0.998 0.999 0.999 0.999
6.2 0.994 0.995 0.996 0.997 0.997 0.998 0.998 0.998 0.999 0.999
6.3 0.993 0.994 0.995 0.996 0.997 0.997 0.998 0.998 0.998 0.999
6.4 0.992 0994 0.995 0.996 0.996 0.997 0.998 0.998 0.998 0.999
6.5 0.992 0993 0.994 0.995 0996 0.997 0.997 0.998 0.998 0.998
6.6 0.991 0992 0.994 0.995 0996 0996 0.997 0.998 0.998 0.998
6.7 0.990 0.992 0.993 0.994 0.995 0.996 0.997 0.997 0.998 0.998
6.8 0.989 0.991 0.992 0.994 0.995 0.996 0.996 0.997 0.997 0.998
6.9 0.988 0.990 0.991 0.993 0.994 0995 0.996 0.996 0.997 0.997
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Table B.12: Estimated Passing Probabilities by Monte Carlo Simulation for

p—Q =3t039,0="7to 10

n—Q 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
o 7 0.987 0.989 0.991 0.992 0993 0.994 0995 0.996 0.997 0.997
7.1 0.986 0.988 0.990 0.991 0993 0.994 0995 0.995 0.996 0.997
7.2 0.985 0.987 0.989 0.990 0.992 0.993 0.994 0.995 0.996 0.996
7.3 0.984 0.986 0.988 0.990 0.991 0.992 0.993 0.994 0.995 0.996
7.4 0.982 0.984 0.987 0.988 0.990 0.992 0.993 0.994 0.995 0.995
7.5 0.980 0.983 0.986 0.987 0.989 0.991 0.992 0.993 0.994 0.995
7.6 0.979 0982 0984 0986 0.988 0.990 0.991 0.992 0.993 0.994
7.7 0.977 0980 0.983 0.985 0.987 0.989 0990 0.991 0.992 0.993
7.8 0.976 0978 0.981 0.983 098 0.987 0.989 0.990 0.991 0.993
7.9 0.973 0977 0979 0982 0984 098 0.988 0.989 0.991 0.992
8 0.971 0975 0978 0.980 0.983 0.984 0987 0.988 0.989 0.991
8.1 0.969 0.972 0975 0.979 0981 0.983 0.985 0.987 0.988 0.990
8.2 0.967 0.970 0.974 0.977 0979 0.981 0.984 0985 0.987 0.988
8.3 0.964 0.968 0.971 0.975 0977 0.980 0.982 0.984 0.986 0.987
8.4 0.961 0.965 0.969 0.972 0975 0978 0.980 0.982 0.984 0.985
8.5 0.959 0.963 0.966 0.969 0.973 0976 0.978 0980 0.982 0.984
8.6 0.955 0.959 0.964 0.967 0970 0.973 0976 0978 0.980 0.982
8.7 0.952 0.956 0.960 0.964 0.967 0.970 0973 0975 0.978 0.980
8.8 0.949 0953 0.957 0.961 0.964 0.968 0970 0973 0976 0.978
8.9 0.944 0949 0.954 0.958  0.961 0.964 0.968 0970 0973 0.975
9 0.941 0945 0.950 0.954 0.958 0.962 0.964 0.967 0970 0.973
9.1 0.936 0.941 0945 0.950 0.954 0.957 0.961 0.964 0.967 0.970
9.2 0.931 0.937 0941 0946 0.951 0.954 0.957 0.961 0.964 0.967
9.3 0.926 0.932 0.937 0.941 0946 0.950 0.954 0.957 0.960 0.963
9.4 0.921 0927 0.932 0937 0942 0945 0949 0953 0.957 0.960
9.5 0.916 0.922 0927 0.932 0936 0941 0945 0949 0.952 0.956
9.6 0.911 0916 0.922 0.927 0932 0.936 0941 0.945 0.948 0.952
9.7 0.905 0.910 0916 0921 0926 0.931 0935 0.940 0.944 0.947
9.8 0.898 0.904 0.910 0.915 0.921 0926 0930 0.934 0.939 0.942
9.9 0.891 0.898 0.904 0.909 0915 0.920 0.925 0.929 0.933 0.937
10 0.884 0.890 0.897 0.903 0.909 0.914 0919 0924 0.928 0.932
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Table B.13: Estimated Passing Probabilities by Monte Carlo Simulation for

p—Q =4tob,0=0.5t03.9

w—Q 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
o 05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.6 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.8 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.4 1.000 1.000 1.000 © 1.000 1.000 1.000 1.000 ~1.000 1.000 1.000 1.000
2.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.6 1.000 1.000 1.000 1.000 ~1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table B.14: Estimated Passing Probabilities by Monte Carlo Simulation for

p—Q =4tob,0=4t06.9

w—Q 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

o 4 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
4.1 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4.2 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4.3 0.999 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4.4 0.999 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4.5 0.999 0999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.999
4.6 0.999 1.000 0.999 1.000 1.000 0.999 1.000 0.999 1.000 1.000 1.000
4.7 0.999 0999 0999 0.999 0999 0.999 1.000 1.000 1.000 1.000 1.000
4.8 0.999 0999 0.999 0.999 1.000 0.999 0.999 1.000 0.999 1.000 1.000
4.9 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000
5 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0999 1.000 1.000 0.999
5.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000
5.2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 0.999 1.000
5.3 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0999 0.999 0.999 0.999
5.4 0.999 0.999 0.999 0.999 0999 0999 0.999 0.999 0.999 0.999 1.000
5.5 0.999 0999 0.999 0.999 0999 0999 0999 0999 0.999 0.999 0.999
5.6 0.999 0.999 0.999 0.999 0999 0999 0.999  0.999 0999 0.999 0.999
5.7 0.999 0.999 0.999  0.999 0999 0.999 0999 0.999 0999 0.999 0.999
5.8 0.999 0.999 0.999 0.999 0999 0999 0999 0.999 0.999 0.999 0.999
5.9 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
6 0.999 0.999 0.999 0.999 0.999 0.999 0999 0.999 0.999 0.999 0.999
6.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0999 0.999 0.999 0.999
6.2 0.999 0.999 0.999 0999 0999 0999 0999 0999 0999 0.999 0.999
6.3 0.999 0.999 0.999 0999 0999 0999 0999 0999 0999 0.999 0.999
6.4 0.999 0999 0.999 0999 0999 0999 0999 0999 0999 0.999 0.999
6.5 0.999 0.999 0.999 0.999 0999 0999 0999 0.999 0.999 0.999 0.999
6.6 0.998 0.999 0.999 0.999 0999 0999 0999 0999 0999 0.999 0.999
6.7 0.998 0.999 0.999 0.999 0.999 0.999 0999 0999 0.999 0.999 0.999
6.8 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
6.9 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
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Table B.15: Estimated Passing Probabilities by Monte Carlo Simulation for

p—Q =4tob,0="71%0 10

w—Q 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

o 7 0.998 0.998 0.998 0.998 0.999 0.999 0999 0999 0.999 0.999 0.999
7.1 0.997 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999
7.2 0.997 0.997 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999
7.3 0.997 0.997 0.997 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999
7.4 0.996  0.997 0.997 0.997 0.998 0.998 0.998 0.998 0.999 0.999 0.999
7.5 0.995 0.996 0.997 0.997 0.997 0.998 0.998 0.998 0.998 0.999 0.999
7.6 0.995 0.996 0.996 0.997 0.997 0.997 0.998 0.998 0.998 0.998 0.998
7.7 0.994 0995 0.996 0.996 0.997 0.997 0.997 0.998 0.998 0.998 0.998
7.8 0.993 0994 0.995 0.996  0.996 0.997 0997 0.997 0.997 0.998 0.998
7.9 0.993 0994 0994 0995 0995 0996 0.996 0.997 0.997 0.997 0.998
8 0.992  0.993 0.994 0.994 0995 0.996 0.996 0.996 0.997 0.997 0.997
8.1 0.991 0.992 0.993 0.993 0.994 0.995 0.995 0.996 0.996 0.997 0.997
8.2 0.990 0.991 0.992 0.993 0.993 0.994 0995 0995 0996 0.996 0.996
8.3 0.988 0.990 0.991 0.992 0.992 0.993 0.994 0994 0995 0.995 0.996
8.4 0.987 0.988 0.990 0.991 0991 0.992 0993 0.993 0994 0.995 0.995
8.5 0.985 0.987 0.988 0.989 0.990 0.991 0992 0993 0.993 0.994 0.994
8.6 0.984 0985 0.987 0988 0989 0990 0.991 0991 0.992 0.993 0.993
8.7 0.982 0983 0985 0.986 0.988 0.988 0989 0990 0.991 0.992 0.992
8.8 0.980 0.981 0.983 0.984 098 0.987 0.988 0989 0.990 0.991 0.991
8.9 0.977 0979 0.981 0.982 0.984 0.985 098 0.987 0.988 0.989 0.990
9 0.975 0977 0979 0.980 0.982 0.983 0.985 0.98 0.987 0.988 0.989
9.1 0.972 0974 0976 0.978 0.980 0.981 0.983 0.984 0985 0.986 0.987
9.2 0.969 0972 0974 0976 0977 0979 0980 0.982 0.983 0.984 0.985
9.3 0.966 0.969 0971 0972 0975 0976 0978 0980 0.981 0.982 0.984
9.4 0.962 0.965 0.968 0970 0972 0974 0975 0977 0979 0.980 0.981
9.5 0.959 0962 0.964 0.966 0969 0971 0973 0975 0976 0977 0.979
9.6 0.955 0.958 0.960 0.963 0.965 0.967 0969 0972 0973 0975 0.976
9.7 0.951 0.954 0.957 0.959 0.962 0.964 0966 0.968 0970 0.972 0.974
9.8 0.946 0.949 0.952 0.955 0.958 0.960 0.962 0.965 0.967 0.969 0.970
9.9 0.941 0944 0948 0.951 0.954 0.957 0.958 0.961 0.964 0.966 0.967
10 0.936 0.940 0.943 0.946 0949 0.952 0.954 0.958 0.960 0.962 0.964
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