
國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

實現可再現的模糊測試

Toward Reproducible Fuzzing

謝啟仁

Chi-Jen Hsieh

指導教授: 蕭旭君博士

Advisor: Hsu-Chun Hsiao Ph.D.

中華民國 111年 8月

August, 2022

doi:10.6342/NTU202203969



doi:10.6342/NTU202203969



ii doi:10.6342/NTU202203969



Acknowledgements

特別感謝蕭旭君教授的指導，提供了許多想法與建議，讓我獲益良多。也要

感謝網路安全實驗室的同學提供的幫助與鼓勵。

iii doi:10.6342/NTU202203969



iv doi:10.6342/NTU202203969



摘要

模糊測試是一種自動化偵測軟體漏洞的技術，許多模糊測試工具已經被開發

出來，並且成功地辨識出真實世界軟體中的關鍵漏洞。然而，因為模糊測試工具

中的運算邏輯存在著非確定行為 (例如隨機生成的測試輸入與隨時間變化的條件)，

研究人員難以驗證關於模糊測試工具的說法 (例如更好的代碼覆蓋率或是發現更

多的漏洞)。目前的研究人員只能透過進行多次重覆實驗，並檢查結果是否一致來

驗證相關說法。

為了使驗證的過程更簡單，這篇論文探討了具有可重複性的模糊測試。可重

複性指的是經過相同的計算過程並產生完全一致的結果，這使得捏造數據或是偽

造結果變得更加困難。這篇論文顯示出我們可以在不影響其功能和性能的情況下

使得模糊測試具有可重複性。

為了實現這一目標，我們首先找出了使模糊測試無法重現的因素，並將其分

為五類:隨機性、環境、時間、平行化和目標程式。然後我們對每個因素提出補救

措施。按照所提出的準則，我們將 AFL修改成可重複性的版本並稱之為 ReAFL。

我們的評估表明，ReAFL成功地重現了各種目標程序的模糊測試實驗。此外，

ReAFL在實驗階段和重現階段都取得了與 AFL相當的性能。這篇論文可做為引導

使得其他研究人員可以自行將自己所進行的模糊測試實驗改為具有可重複性的版

本。

v doi:10.6342/NTU202203969



關鍵字：模糊測試、再現性

vi doi:10.6342/NTU202203969



Abstract

Fuzzing is a technique to automate the discovery of software vulnerabilities. Many

fuzzing tools have been developed and successfully identified critical vulnerabilities in

real-world software. However, claims about fuzzing tools are sometimes hard to vali-

date because they have ingrained non-deterministic behaviors in their algorithmic logic,

such as randomly generated test inputs and time-dependent conditions. To validate such

a claim (e.g., better code coverage or more bugs found), researchers today will repeat the

experiment multiple times and see whether the results are consistent.

This work aims to ease this validation process by exploring the concept of repro-

ducible fuzzing. Reproducibility requires generating identical computational procedures

and results, making it harder to fabricate data or falsify results.

We show that it is possible to make fuzzers reproducible without affecting their func-

tionality and performance. To achieve this, we first identify factors that make the fuzzing

non-reproducible and group them into five categories: randomness, environment, time,

vii doi:10.6342/NTU202203969



parallelization, and target program. We then propose remediation for each factor. Fol-

lowing the proposed guideline, we modify AFL to support reproducibility, and the re-

sulting tool is called ReAFL. Our evaluation shows that ReAFL successfully reproduces

the fuzzing results on a wide range of target programs. Also, ReAFL achieves comparable

performance to AFL during both the fuzzing and reproduction phases. Our work can serve

as a guideline for developing reproducible fuzzers.

Keywords: Fuzzing, Reproducibility

viii doi:10.6342/NTU202203969



Contents

Page

Verification Letter from the Oral Examination Committee i

Acknowledgements iii

摘要 v

Abstract vii

Contents ix

List of Figures xiii

List of Tables xv

Chapter 1 Introduction 1

Chapter 2 Background & Related Work 7

2.1 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 3 Factors of Non-reproducibility 11

3.1 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Pseudo-random number generators . . . . . . . . . . . . . . . . . . 11

3.1.2 True random number generators . . . . . . . . . . . . . . . . . . . 12

3.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ix doi:10.6342/NTU202203969



3.2.2 Software Dependency . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.3 Low-level System . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Execution Time Per Input . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 Overall Execution Time . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Target Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 4 Design Guidelines 17

4.1 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 PRNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.2 TRNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.1 Execution Time Per Input . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.2 Overall Execution Time . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 Target Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 5 Implementation 25

5.1 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4.1 Execution Time Per Input . . . . . . . . . . . . . . . . . . . . . . . 28

x doi:10.6342/NTU202203969



5.4.2 Overall Execution Time . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5 Target Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 6 Evaluation 33

6.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Target Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 7 Discussion 43

Chapter 8 Conclusion & Future Work 47

References 49

xi doi:10.6342/NTU202203969



xii doi:10.6342/NTU202203969



List of Figures

3.1 A race condition example when reproducing parallel fuzzing . . . . . . . 15

4.1 The record of synchronization avoids the happen of race conditions. . . . 17

4.2 Each fuzzer will run with the finished results of other fuzzers to reproduce. 18

5.1 The record of synchronization. . . . . . . . . . . . . . . . . . . . . . . . 26

6.1 Code coverage on real-world program and magma benchmark. . . . . . . 37

6.2 Comparison of fuzzing phase and reproduction phase on real-world pro-

gram and magma benchmark.(For each target program, we randomly se-

lected one of the 20 results to represent.) . . . . . . . . . . . . . . . . . . 40

xiii doi:10.6342/NTU202203969



xiv doi:10.6342/NTU202203969



List of Tables

6.1 ReAFL results of reproduction phase on real world programs and magma

benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 AFL++ results of reproduction phase on real world programs. . . . . . . 35

6.3 Comparison of ReAFL and AFL on real world programs. . . . . . . . . . 36

6.4 Comparison of ReAFL and AFL on magma benchmark programs. . . . . 38

6.5 Comparison of fuzzing phase and reproduction phase on real-world pro-

grams and magma benchmark. . . . . . . . . . . . . . . . . . . . . . . . 39

6.6 Extra record sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xv doi:10.6342/NTU202203969



xvi doi:10.6342/NTU202203969



Chapter 1 Introduction

Fuzzing is an automated testing technique to find bugs and vulnerabilities in software.

It automatically generates a large amount of random data as testcases to test the target

program and observes if any bugs or crashes occur. Today, fuzzing is one of the most

promising techniques and is used to find bugs in various types of real-world software.

As of July 2022, OSS-Fuzz [18] has discovered over 40,500 bugs in 650 open-source

projects since its launch in December 2016. Because of its popularity and usability, many

researchers are dedicated to making fuzzers more efficient and powerful.

While fuzzing techniques are constantly being improved, the community has strug-

gled to reproduce the fuzzing results, partly due to the randomness of fuzzing. Repro-

ducibility is important for scientific research. It allows other researchers to validate the

results and makes the work easier to be analyzed and extended. In the previous work of

fuzzing, the authors usually only provide descriptions of the environment and evaluations

of the results without the method to reproduce their results. Therefore, other researchers

can only use the information in the paper to speculate on the actual running process, or

they need to make multiple attempts on their own to achieve similar fuzzing results before

analyzing the vulnerabilities. If the probability of a specific outcome is not sufficiently

high, it may takemore time and resources to produce similar results. For example, suppose

the probability of a fuzzer finding a specific bug is ten percent. In that case, researchers

1 doi:10.6342/NTU202203969



can only encounter it once every ten times and observe how the fuzzer generates the input

of this bug. The lack of reproducibility also makes people difficult to find the overclaimed

benefits of a paper, leading to wrong or misleading evaluations.

This paper presents a general guideline to make the fuzzing experiment reproducible.

Before going any further, we need to describe the type of reproducibility we want to

achieve. We focus primarily on “reproducibility” as defined by the National Academies of

Sciences, Engineering, and Medicine [15], that is, “obtaining consistent results using the

same input data; computational steps, methods, and code; and conditions of analysis.” In

the fuzzing, this means that we can obtain the same results (including code coverage, seed

corpus, crashes, etc.) with the same resource budget, initial input seed, target program, and

random seed information. To achieve this, we need the whole fuzzing process, including

target program feedback, seed mutate, seed scheduling, etc., to be consistent with the

fuzzing phase.

For consistency throughout this paper, we introduce two terms, “the fuzzing phase”

and “the reproduction phase.” The fuzzing phase refers to the original run of the experi-

ment. The reproduction phase refers to the reproduction run of the experiment. We aim to

regenerate the same input sequence as the fuzzing phase using roughly the same resource

in the reproduction phase.

Although we can log the details of the fuzzing phase, such as the timeout, execution,

and mutation, and reproduce the complete process step by step according to the record, it

will require considerable space to log all the details. What is more serious is that using

this method to reproduce may not achieve the original performance. We believe that the

efficiency of the fuzzer is also one of the results that need to be considered. Therefore, the

2 doi:10.6342/NTU202203969



ideal approach is to keep the minimum data and maintain the same (or better) efficiency

during the reproduction phase.

To improve the reproducibility of fuzzing techniques, we analyzed the fuzzing pro-

cess and found out why the fuzzing is challenging to reproduce. Then we divide the

factors that affect reproducibility into five categories: randomness, environment, time,

parallelization, and target program.

Randomness Because fuzzing is inherently random, the outcomes of a fuzzing can be

quite different each time. The fuzzer cannot generate the same input sequence without

controlling the randomness, which makes it non-reproducible.

Environment For an experiment to be reproducible, the researcher must capture the

environment in which the fuzzer was built. However, Klees et al. [10] found that“most

papers treated the choice of seed casually, apparently assuming that any seed would work

equally well, without providing particulars.＂The lack of information about the execution

environment and configuration makes other researchers hard to reproduce the results.

Time Many fuzzers use the execution time of seeds to determine the strategy and re-

source allocation. It is hard to reproduce a fuzzing because we cannot guarantee that the

program execution time will be the same every run.

Parallelization Running fuzzers in parallel is an excellent way to improve the perfor-

mance when running on a multi-core system. However, the presence of race conditions

makes the fuzzer unable to get the right input seeds from other fuzzers in the reproduction

phase, which makes parallel fuzzing non-reproducible.

3 doi:10.6342/NTU202203969



Target Program All the above four categories will affect the target program too. If we

cannot get the same output from the target programs in the reproduction phase, the results

of the whole experiment will be different.

These factors will be discussed in detail in the subsequent section.

We propose the corresponding solutions for each factor and present a reproducible

fuzzer architecture. For environment and target program, in the fuzzing phase, the fuzzer

needs to record sufficient information about the environment, parameters, and settings.

And for randomness, the fuzzer needs to ensure the random number generator can provide

the same random number set in the reproduction phase. To solve the time problem, we

propose “BasicBlockCounter” and “BasicBlockOut” to replace execution time and time-

out. Our approach is based on a simple yet intuitive observation: the more basic blocks

are executed, the more time the execution takes. Hence, replacing the execution time with

the number of basic blocks executed will have a similar effect. For reproducibility, ex-

ecution time and timeout are challenging to reproduce because even the same input may

lead to different results, which are different from basicblock count. For a reproducible

target program, the same input will go through the same control flow; That is, the same

input will have the same basic block count. In summary, using the number of basic blocks

makes it easier to reproduce while maintaining the same effect and strategy compared to

the execution time. As for parallelization, we can successfully reimplement the process of

different fuzzers exchanging seeds without race conditions occurring in the reproduction

phase by recording the necessary information in the fuzzing phase.

To prove the feasibility, we implemented a proof of concept on AFL [20], one of the

most popular fuzzers, and called it ReAFL. We tested ReAFL on three real-world programs

4 doi:10.6342/NTU202203969



and three Magma benchmark [7] programs and compared them with AFL. The results

show that ReAFL has reproducibility and can reproduce experiments conducted on five

of the six target programs. And the performance of ReAFL is similar to that of AFL,

which shows that the implementation of our design does not cause a significant decrease

in performance. Finally, we also compared the efficiency difference between the fuzzing

phase and the reproduction phase. In our experiment, the time spent to reproduce the

complete fuzzing phase was at most 5% more than the original time, showing that the

reproduction efficiency was not much worse than that of the fuzzing phase.

Our methods are applicable to general fuzzers, and we hope that in the future, more

and more fuzzers can become reproducible by referring to our solutions.

In summary, we make the following contributions:

• We analyzed the fuzzing process and identified factors that undermine reproducibil-

ity.

• We presented a general guideline to overcome these factors during fuzzer design

and implementation.

• Following our guideline, we developed ReAFL, a fuzzer supporting methods repro-

ducibility, by modifying AFL, a popular fuzzer.

• We plan to evaluate ReAFL on different benchmarks to validate its correctness and

evaluate its efficiency.

5 doi:10.6342/NTU202203969



6 doi:10.6342/NTU202203969



Chapter 2 Background & Related

Work

2.1 Reproducibility

The definition of reproducibility varies in literature and is often confused with repli-

cability. Stanford geophysicist Jon Claerbout defined [4]“reproducing” as “running the

same software on the same input data and obtaining the same results.” And he also de-

fined “replicating” as “re-implementing a new software based on the method provided in

the original publication, and running it with the same input data to obtain similar results.”

On the other hand, Association for ComputingMachinery (ACM) [1] slices these concepts

into three kinds: repeatability, reproducibility, and replicability. In this paper, we use the

terminology proposed by National Academies of Sciences, Engineering, and Medicine

(NASEM), which is the closest to our situation.

According to their definition, reproducibility is the ability to use the same data, in-

put, and other details to repeat the same computational procedures and generate identical

results. In the field of fuzzing, computational procedures contain the execution, mutation,

seed schedule, feedback analysis, etc., performed during the fuzzing process. At the same

time, results refer to the state at the end of the fuzzing, which contains code coverage,

7 doi:10.6342/NTU202203969



found seeds, and crashes. In addition, fuzzing experiments are all about how fuzzer can

produce good results in a comparative time. Therefore, we believe that for the fuzzing,

the result also includes efficiency; if the time spent in the reproduction phase is too much

than the fuzzing phase, it is not a successful reproduction.

NASEM also define the meanings of replicability. Replicability is the ability to “ob-

tain consistent results across studies aimed at answering the same scientific question, each

of which has obtained its own data.” For the field of fuzzing, the consistent results refer to

achieving similar code coverage or the ability to find same bugs. If we run an experiment

several times and the average of the code coverage or triggered bugs are similar to the

original experiment results, the experiment has replicability.

In summary, we believe that a reproducible fuzzer must be able to duplicate the code

coverage and bug counts in any experiments using sufficient details of environment set-

tings and inputs. And the time spent in the reproduction phase must be as close as possible

to the time spent in the fuzzing phase. In this definition, the method of logging all com-

putational processes and replaying them one by one cannot be used because it is difficult

to reproduce the computational process in the same efficient way by logging; Also, it re-

quires too much logging. In this paper, our goal is to achieve a reproducible fuzzer while

using as little additional record data as possible and maintaining the same efficiency as

possible.

2.2 Related work

FuzzBench [14] is a platform for evaluating fuzzer performance. Everyone can easily

integrate a fuzzer with FuzzBench and compare it with other fuzzers. It provides real-

8 doi:10.6342/NTU202203969



world software as benchmark programs and uses both code coverage and bug counts for

comparison. Every fuzzer running on FuzzBench has the same computing power by using

Google’s compute resources. And it claims that it provides reproducible experiments by

pinning the versions of both fuzzers and target programs. Different from our work, the

reproducibility they claimed refers to replicability. When a user runs an experiment on

FuzzBench multiple times, the user can get an average score similar to the original one.

But the user may not obtain the same coverage and same seeds for every reproduction run.

AFL++ [5] is a fork of AFL. In addition to the features of AFL, AFL++ added lots of

techniques from other state-of-art fuzzers to make it more powerful. AFL++ also claims

that it has reproducibility by fuzzing the target with the same random seeds. After testing,

we found that it can generate the same testcases at the beginning of the fuzzing, but after a

while, it can not reproduce the same testcase sequence because the occurrence of timeouts

is uncontrollable.

In other domains, researchers hold reproducibility challenges to encourage people to

share their research results that are reproducible. For example, in the field of machine

learning, Neural Information Processing Systems (NeurIPS) [17] [16] conference intro-

duced a program to improve reproducibility in machine learning research. The program

provided a code submission policy, a reproducibility challenge, and a checklist. These

tools help researchers check whether their work provides enough complete information

for reproduction. For another example, in the field of information retrieval, European

Conference on Information Retrieval (ECIR) [8] encourages researchers to submit papers

that repeat, reproduce, generalize, and analyze prior work. It also claims that “repro-

ducibility is key for establishing research to be reliable, referenceable, and extensible for

the future.”

9 doi:10.6342/NTU202203969



In fuzzing field, some researchers are beginning to focus on the importance of repro-

ducibility. In 2022, the first International Fuzzing Workshop (FUZZING) [6] introduce

preregistration [2], which makes the reproducibility of the submitted work more impor-

tant. It also suggested that the evaluation of high quality papers must be soundness and

reproducible.

10 doi:10.6342/NTU202203969



Chapter 3 Factors of

Non-reproducibility

We identify common factors of non-reproducible fuzzing results and group them into

five categories. This section describes each of them in detail. Later in Section 8, we will

also discuss other non-reproducibility factors that we are currently unable to handle.

3.1 Randomness

A basic factor of non-reproducibility is randomness. Because many fuzzers rely on

random number generators to produce inputs to target programs, select mutation strategies,

and schedule input seeds, the input sequence constructed in the reproduction phase tends

to be different from fuzzing phase.

There are two types of random number generators, each requiring different handling

to ensure reproducibility.

3.1.1 Pseudo-random number generators

One is pseudorandom number generators (PRNGs), whose output sequence is deter-

mined solely by an initial value or seed. In other words, by using the same seed, one can

11 doi:10.6342/NTU202203969



easily re-generate the same sequence of numbers.

3.1.2 True random number generators

The other is true random number generators (TRNGs), which extract randomness

from external sources such as timings of keystrokes or thermal noise. Because of their

non-determinism, their output sequence is considered true random. Unlike PRNGs, there

is no efficient way to re-generate the output of TRNGs.

For example, AFL and AFL++ use a PRNG provided by the C library to obtain ran-

dom numbers. After generating 50000 to 100000 numbers, they will switch to a TRNG

provided by Linux to create a new random seed. The mixed-use of the two further com-

plicates the reproduction of the fuzzing results.

3.2 Environment

A fuzzer may exhibit different behaviors when running in different environments,

including fuzzer configurations, software dependencies, and low-level systems.

3.2.1 Configuration

A fuzzer often uses parameters and environment variables to configure customized

features or strategies. The details of the initial seed corpus are also vital for the fuzzing.

Using different initial seed corpus for the same target program will lead to quite different

performance [10]. Thus, using the same parameters, environment variables, and initial

seed corpus is vital for generating consistent results in the reproduction phase.

12 doi:10.6342/NTU202203969



3.2.2 Software Dependency

If a fuzzer uses additional packages or plug-ins, their versions and settings must re-

main the same. For example, AFL++ has a feature called NeverZero. In complex pro-

grams, the counters that collect the edge coverage may be zero at the end of the program

because it was filled up and wrapped around, which causes the fuzzer to think that the

edge has not been traveled mistakenly. NeverZero will add an extra 1 when a counter is

wrapped around so that the path traveled is never zero. If the user’s LLVM [11] version

is 8.0 or lower, AFL++ will not use NeverZero due to the performance costs. However,

if the user’s LLVM version is 9.0 or greater, AFL++ enables NeverZero because the im-

plementation will be optimal in LLVM 9.0 or greater. Therefore, the different versions

of LLVM will make AFL++ use different features, and other strategies, which affects the

performance and results.

3.2.3 Low-level System

Some fuzzers invoke functions that depend on low-level systems, such as OSes,

filesystems, and hardware. Thus, researchers may encounter non-reproducibility when

conducting the reproduction phase on different low-level systems.

For example, AFL uses the readdir functions to read the other fuzzing instances’

directories when running in the parallel mode. However, the readdir system call does not

specify the order of the returned data. When using readdir to read a folder, the order of

the returned data depends on the underlying filesystem. Thus, if readdir returns a different

order of seeds in the reproduction phase, the fuzzing result will also differ.

13 doi:10.6342/NTU202203969



3.3 Time

As time is a scarce resource in fuzzing, many fuzzing strategies are time-dependent.

For example, an input that runs for more than a timeout threshold (e.g., 1 second) may be

deemed wasteful and get discarded.

Aswewill show later, time is themost challenging factor of non-reproducibility in the

reproduction phase because attempting to control it may affect the core logic of fuzzing.

3.3.1 Execution Time Per Input

Fuzzers often use an input’s execution time to assess the input’s quality and take ac-

tions accordingly. For example, both libFuzzer [13] and AFL prioritize seeds with shorter

execution times and allocate more resources to them to improve efficiency. Thus, the vari-

ance in an input’s execution time will affect the resource allocation and seed scheduling

and result in non-reproducible fuzzing results.

Also, fuzzers usually discard inputs whose execution time is longer than a timeout

to avoid being blocked or hanged. If timeout events occur inconsistently in the fuzzing

and reproduction phases, the results will diverge. More subtlely, when a timeout occurs

during AFL’s trimming operation (which aims to shorten a seed while maintaining code

coverage), AFL will use the original seed without trimming. Inconsistent timeout events,

in this case, will result in different seed lengths and possibly affect the seeds generated

subsequently.

14 doi:10.6342/NTU202203969



Fuzzer1 Fuzzer2

a

a,ab

a

a,ac
Sync with
Fuzzer2 dir

Get“ac＂

a,ab,ac

Find ”a”

Find ”ab”

After sync

Find ”a”

Find ”ac”

Fuzzer1 Fuzzer2

a

a,ab

a

a,ac

Sync with
Fuzzer2 dir

Get“ac＂,”ad”

a,ab,ac,
ad

Find ”a”

Find ”ab”

Find ”a”

Find ”ac”

a,ac,ad
Find ”ad”

a,ac,ad
Find ”ad” After sync

Fuzzing phase Reproduction phase

Figure 3.1: A race condition example when reproducing parallel fuzzing

3.3.2 Overall Execution Time

Besides an input’s execution time, some fuzzers use the overall execution time to

determine when to adjust their fuzzing strategies. For example, AFL will adjust its muta-

tion strategy after running for ten minutes, and AFL++ will switch to a different mutation

strategy if no new coverage is found for a long time. Because there is no guarantee that

a fuzzer will always make the same progress (e.g., generating the same number of seeds)

within the same time budget, such time-based conditions will lead to non-reproducible

results.

3.4 Parallelization

Parallelization improves resource utilization and computing performance in a mul-

ticore system. Some single-core fuzzers, such as AFL and libFuzzer, provide a parallel

mode for running multiple instances simultaneously on multicore systems. Several recent

fuzzers, such as PAFL [12] and EnFuzz [3], support better synchronization among paral-

15 doi:10.6342/NTU202203969



lelized instances, each of which can use a different strategy or explore a different region

of code. We deem parallel fuzzing reproducible if each parallelized instance can generate

the same input sequence in both the original and reproduction phases.

In Parallel fuzzing, fuzzer instances will exchange their produced seeds with each

other to share progress. There are two common approaches to sharing seeds between

instances. One uses the same corpus folder, and the other keeps separate corpus folders

per instance but regularly synchronizes them. Both may become non-reproducible due to

race conditions among fuzzer instances. Figure 3.1 shows an example: Fuzzer1 obtains a

seed fromFuzzer2 in the synchronization round during the fuzzing phase, but Fuzzer2 does

not generate that seed before the end of the synchronization round during the reproduction

phase. This leads to diverged results.

3.5 Target Program

The aforementioned factors may also affect the target program’s reproducibility. If

the target program behaves inconsistently between the original and reproduction phases,

the fuzzing results may be inconsistent.

Addressing those aforementioned non-reproducibility factors will also help improve

the target program’s consistency. However, as we will see in the next section, some require

modifying the program logic, which may not be an option if such modification affects the

vulnerabilities we intend to find. For example, some fuzzers aim to find race conditions

or time bombs in the target program. In this case, the fuzzing results will be questionable

if we modify how the target program handles multi-processing or time-based conditions.

Consequently, we put “target program” into a separate category.

16 doi:10.6342/NTU202203969



Chapter 4 Design Guidelines

This section presents design guidelines to address the non-reproducibility factors

listed in Section 3.

4.1 Randomness

4.1.1 PRNG

To eliminate the inconsistency introduced by PRNGs, one can record every random

seed used in fuzzing phase and reuse it in reproduction phase. AFL++ has implemented

an option to support this method.

Fuzzer1

id:0,a
id:1,ab

Fuzzing phase Reproduction phase

Fuzzer2

Fuzzer1 Sync with Fuzzer2 dir

id:0,a
id:1,ac

1. Scan and test
seeds (id:0~1)

2. Get interesting
seeds.

Record:
Sync01: Fuzzer2, id 0 ~1

3. Record scan
range to file

Fuzzer1

id:0,a
id:1,ab

Fuzzer2

Fuzzer1 Sync with Fuzzer2 dir

id:0,a
id:1,ac
id:2,ad

1. Scan according to
the record(id:0~1)
and test seeds

2. Get interesting
seeds.

Record:
Sync01: Fuzzer2, id 0 ~1

Figure 4.1: The record of synchronization avoids the happen of race conditions.

17 doi:10.6342/NTU202203969



Fuzzing phase Reproduction phase

Fuzzer1

Fuzzer2

Fuzzer3
.
.
.

FuzzerN

Parallel
Run

Fuzzer1 Fuzzer 2 ~ N Results

Fuzzer1 reproduction

Fuzzer2 Fuzzer 1,3 ~ N Results

Fuzzer2 reproduction

.

.

.

FuzzerN Fuzzer 1 ~ N - 1 Results

FuzzerN reproduction

Figure 4.2: Each fuzzer will run with the finished results of other fuzzers to reproduce.

4.1.2 TRNG

A TRNG outputs true random bits that cannot be regenerated from a random seed.

Thus, one needs to save the TRNG’s output in fuzzing phase and directly reuses the saved

output in the reproduction phase.

4.2 Environment

We recommend recording the entire environment used in the fuzzing phase, including

parameters, variables, software dependency, and low-level systems. The easiest way is to

use virtualization tools such as Docker. Research can build the container image for others

to produce the same environment as the fuzzing phase. We also recommend integrating

the commands of reproduction into an automation script. Automation scripts can make

sure that the user uses the same parameters as in the fuzzing phase.

18 doi:10.6342/NTU202203969



4.3 Time

To deal with non-reproducibility caused by time, we recommend replacingwall-clock

time with measures closely related to fuzzer operations. More concretely, we will explain

using the number of executed basic blocks to measure the duration of target program

execution; and using the total number of execution to measure the duration of the fuzzing

procedure itself.

4.3.1 Execution Time Per Input

We introduce a basic block counter, BBCounter, which measures the number of ex-

ecuted basic blocks. We use BBCounters to replace the use of wall-clock timers. This

replacement is reasonable in most scenarios because the execution time increases with

the number of executed basic blocks. We will later discuss scenarios (e.g., infinite loops

within one basic block) where BBCounter may be unsuitable.

Unlike a wall-clock timer, the number of basic blocks that a target program executes

for a given input is always the same (assuming that the target program itself is repro-

ducible). Therefore, fuzzers that require evaluating inputs by their execution duration (for

example, used for seed scheduling or resource allocation) can now perform this evaluation

consistently in both the fuzzing and reproduction phases.

Similarly, we introduce a basic block timeout, BBOut, to replace a timeout. Thus, if

a fuzzer wants to discard inputs that take too long to execute, it can abort the program after

executing more than a threshold number (i.e., the BBOut value) of basic blocks. Unlike

the timeout set by a wall-clock timer, the trigger condition of BBOut is consistent and easy

19 doi:10.6342/NTU202203969



to reproduce.

It is also possible to use instructions as the measurement unit. We use basic blocks

instead of instructions to reduce instrumentation overhead, as shown in the implementation

section. Some optimizations speed up fuzzing by reducing the number of basic blocks that

need to be instrumented [9]. However, since we need to track the program’s progress in

real-time, omitting the insertion of basic blocks would make it impossible to count the

number of passed basic blocks. Therefore, we cannot use this kind of optimization to

reduce our overhead.

Now, we discuss the case that a program hangs inside a basic block, such as waiting

for I/O. We will be unable to detect this type of hangs by using BBOut. To solve this

problem, we need to use a hang timeout to detect hang events, but we treat hang events

with special care to ensure reproducibility. Specifically, during the fuzzing phase, if a

hang occurs and is caught by the hang timeout, the fuzzer records the ID of the current

execution. During the reproduction phase, if the ID of the current execution is marked as

a hang execution, the fuzzer skips this run and reports directly as a hang. If the current

execution is not marked, the fuzzer gives it a ten times hang timeout to execute because

the previous results showed that this input should not be stuck in a basic block. A ten

times hang timeout may still be triggered and may lead to non-reproducible results, but at

least it can prevent the fuzzer from getting stuck and completing the whole experiment.

Although this solution is less than ideal, we believe it has little effect on the soundness

of reproducibility because hang events do not occur frequently. In our evaluation, not a

single hang timeout had occurred.

20 doi:10.6342/NTU202203969



4.3.2 Overall Execution Time

Although BBCounter can approximate how long a target program has been running

for a given input, it does not account for the overall execution time of the fuzzing, which

includes the time taken by the fuzzer itself and the accumulated time for testing multiple

inputs.

To make them reproducible, we should replace the overall execution time with the

total number of execution. There are three advantages of using total number of execution.

First, this method can achieve the same effect when the correct number is set. Second,

this approach is easier to adjust for different targets to achieve better results. Lastly, this

method is also easy to reproduce.

4.4 Parallelization

In parallel fuzzing, the fuzzing and reproduction phasesmay yield inconsistent results

due to race conditions among parallel-running fuzzer instances.

To ensure consistency, we must satisfy two conditions: The first point is that the tim-

ing of the synchronization is consistent. For example, libFuzzer uses time as an indicator

of whether sync is required or not. In this case, we must use the design proposed in Sec-

tion 4.3 to make the synchronization timing the same, whether in the reproduction phase

or the fuzzing phase.

Second, we must ensure that the result of each synchronization in the reproduction

phase is the same as in the fuzzing phase. To achieve this goal, we must first understand

the fuzzer synchronization process.

21 doi:10.6342/NTU202203969



When the fuzzer synchronizes, it scans the target seeds of this synchronization and

selects the ones it wants (such as those that can increase coverage) to add them to its own

seed pool. We can reproduce the synchronization process by recording the scanned range

during synchronization. The details are as follows:

In the fuzzing phase, each fuzzer instance must record the range of seeds scanned

in each synchronization. When it comes to the reproduction phase, each fuzzer instance

can use its own record to reproduce the same synchronization process. As shown in Fig-

ure 4.1, in the fuzzing phase, fuzzer1 recorded the range of seeds scanned in the first

synchronization and scanned the same content in the reproduction phase according to the

record.

As mentioned above, our method can guarantee that the range of seeds in each syn-

chronization is correct, but if the seeds are not read-only, it means that the content of the

seeds synchronized in the reproduction phase may not match the content of the fuzzing

phase, which will fail to reproduce. Therefore, we must ensure that each seed file is read-

only. Our proposed method is very simple; when the fuzzer needs to change the content

of the seed, we save the modified seed to a new file instead of overwriting it. In this way,

the fuzzer will not change the original content of the seed and make the seed read-only.

In addition to preventing race conditions, efficiency is also essential. However, the

reproduction phase may run much slower than the fuzzing phase due to such locking be-

havior in the solutions mentioned above. To speed up reproduction, we suggest reproduc-

ing each fuzzer instance independently by emulating its exchange with others. As shown

in Figure 4.2, each fuzzer records its own synchronization details during the fuzzing phase.

Regarding the reproduction phase, each fuzzer will run with the results of other fuzzers.

22 doi:10.6342/NTU202203969



For example, fuzzer1 will use its record plus the complete results of fuzzer2 to N to re-

produce the process of fuzzer1.

4.5 Target Program

Similar to recording the fuzzing environment, we need to record the version and the

parameter of the target program. However, suppose the target program is non-reproducible.

In that case, we cannot guarantee that entering the same input into the target program will

lead to the same result, which makes fuzzing challenging to reproduce. One method is to

modify the code of the target program to make it reproducible. The other is to make re-

producibility one of the necessary conditions when selecting a target program. Target pro-

grams that use time, multi-thread or TRNG cannot be reproduced. For example, OpenSSL

cannot be reproduced because it uses TRNG to create random numbers for encryption.

23 doi:10.6342/NTU202203969



24 doi:10.6342/NTU202203969



Chapter 5 Implementation

To demonstrate the feasibility of our proposed design, we implement a fuzzer called

ReAFL to support reproducibility. This section presents our implementation based on AFL

with LLVM-based instrumentation.

We have modified 1775 lines of AFL source code. The main modified parts are: ran-

dom seed related, synchronization related, seed corpus score related, and timeout related

source code. We also changed the instrumentation inserted in the compile phase for BBOut

and BBCounter. In the process of modifying, we mainly look for keywords or functions

related to the factor mentioned in Section 3 and check whether they need to be changed;

for example, search for words like “timeout, random seed function” or “synchronize” in

the source code. If the fuzzer still cannot reproduce the correct result after being changed,

we then trace the code and experiment to find out the reason that affects reproducibility.

5.1 Randomness

AFL uses random numbers during both compilation and fuzzing. We will explain

how to record random numbers and regenerate them during the reproduction phase.

When compiling the target program, AFL uses a PRNG provided by the C library to

25 doi:10.6342/NTU202203969



generate a basic block ID and decidewhether to instrument a basic block if AFL_INST_RATIO

is set. For the latter, AFL_INST_RATIO is a parameter that indicates the ratio of instru-

mented basic blocks. Setting a small ratio will reduce the instrumentation overhead and

thus speed up fuzzing.

We add the functions of recording and reading random seeds to the ReAFL compiler,

so that we obtain identical instrumented binaries after compilation.

During fuzzing, AFL uses both PRNG and TRNG. It uses a TRNG to create new

random seeds and a PRNG to generate random numbers from the seeds. Although we can

record all the random numbers generated by TRNG and used in the reproduction phase,

this will reduce efficiency. Therefore, we refer to the practice of AFL++. When AFL+

+ is in “Fix Seed mode,” its PRNG will use a single random seed from beginning to end.

Therefore, it is not necessary to use TRNG to create more random seeds for PRNG. In this

way, ReAFL only needs to record a random seed to reproduce the same set of numbers

successfully.

sync : 2 , Fuzzer 2, 7 ∼ 10;

Sync Times

Target Fuzzer

Seeds file range
Figure 5.1: The record of synchronization.

5.2 Parallelization

For synchronization timing, AFL uses cycles to judge whether synchronization is

necessary. When a fuzzer has used all seeds in the queue, it is called a cycle. The cycle is

independent of time, so it can ensure that the synchronization timing of the fuzzer is fixed.

26 doi:10.6342/NTU202203969



When AFL is in the parallel mode, each fuzzer will have an independent folder to

save its own seeds. Fuzzer will read the folders of other fuzzers to get the seeds when it is

synchronized. In addition, AFL will name seeds in the order in which they are produced

when saving seeds.

To prevent race conditions, ReAFL will record the details of the synchronization and

the range of the seeds when synchronizing. As shown in Figure 5.1, in the second synchro-

nization, fuzzer1 reads the 7th to 10th seeds of fuzzer2; ReAFL will record it as “sync:2

fuzzer2 id 7-10” and use it as a basis to reproduce the fuzzing in the reproduction phase.

Saving the record is not enough to reproduce the results due to the trimming phase.

We must ensure that the seeds are read-only. AFL will trim the input seed to make it

smaller and more efficient after saving it, which will change the content of the input seed

file. Unlike AFL, ReAFL will trim the input seed before saving it. Since each input seed

will only be trimmed once, changing the order of trim execution will not cause different

results and will make it read-only.

Finally, to avoid dragging down the performance by other fuzzer, ReAFL will run

with the finished results of other fuzzers to reproduce. We provide an automated script

that will reproduce each fuzzer instance using the record of each fuzzer instance and the

results of other fuzzer instances to implement the methods mentioned in Section 4.4.

5.3 Environment

We provide docker images to reproduce the fuzzing. The docker image will prepare

the environment, the fuzzer, and the target program. To easily reproduce the results of the

fuzzing, we provide an automation script that records information such as the parameters

27 doi:10.6342/NTU202203969



executed in the fuzzing phase.

AFL uses the function readdir when scanning and reading folders, which relies on

low-level systems. However, readdir does not guarantee the reading order; the order de-

pends on the implementation by the underlying filesystem. In ReAFL, we replace readdir

with scandir, which guarantees reading in the alphabetical order.

5.4 Time

5.4.1 Execution Time Per Input

To eliminate the timing factor, we implement BBCounter and BBOut in ReAFL.

BBCounter keeps track of the number of basic blocks executed, and BBOut defines the

maximum number of basic blocks that the target program can execute before being killed.

To support both, we insert several lines of instrumentation code at the beginning

of each basic block of the target program. The instrumentation code will increment the

BBCounter and check whether BBOut has been reached. If so, the programwill terminate.

We use an LLVM pass [11] to insert the instrumentation code, shown in Listing 1.

// Enter the basic block
1 Counter ← Counter + 1;
2 if Counter > BasicBlockOut then
3 exit();
4 end

Listing 1: Basic block Counter

Besides adding instrumentation, we also modify AFL’s code to remove reliance on

wall clocks.

28 doi:10.6342/NTU202203969



Execution time AFL calculates the score of an input seed based on its execution time. A

seed with a higher score (shorter execution time) will obtain more resources. In this spirit,

ReAFL replaces the execution time in the calculation with the number of basic blocks

passed, obtained from BBCounter.

Timeouts ReAFL uses BBOut to replace the original timeout. ReAFL will calculate the

ratio of time to basic blocks and convert timeout to BBOut in the fuzzing phase. When

reproducing, ReAFL will automatically set BBOut to the same value as the fuzzing phase,

ensuring that computers with different computer power can get the same results. ReAFL

still uses a large timeout in the fuzzing phase to prevent hanging within a basic block. If

the ReAFL timeout expires in the fuzzing phase, it records the current execution time. In

the reproduction phase, ReAFL checks whether the execution was timeout or not before

running it. ReAFL skips the execution and reports it as timeout if the executionwasmarked

by the record. Otherwise, ReAFL runs it without setting a timeout.

5.4.2 Overall Execution Time

AFL switches to a different havoc mutation method after running for ten minutes.

Since ten minutes is very short for a fuzzing experiment and will not affect efficiency,

ReAFL directly removes this flag according to the practice of AFL++.

5.5 Target Program

The docker image will provide information such as the parameters and the version of

the target program. For those non-reproducible targets, we will try to use LD_PRELOAD

29 doi:10.6342/NTU202203969



to overwrite the original non-reproducible library functions. For example, mktemp is used

to create a temporary file or directory and will use the current time to produce random

file names. In the reproduction phase, we have no control over the time factor, so we

cannot create the same file name. Different file names will cause the target program to

go through different basic blocks, which will lead the reproduction to fail. We rewrite

a reproducible version of mktemp to use PRNG instead of the current time to generate

it, so we can generate the same filename by setting the same random seed. And we use

LD_PRELOAD to overwrite the original function. In this way, when the target program

uses mktemp, it will be changed to use our changed version.

If it is not because of the library function that cannot be reproduced, we will also

try to change the code directly to make the target program reproducible. For example,

Magma [7] is a ground-truth benchmark in which the Target program has not only lots of

real bugs but also inserted instrumentation to enable people to check whether the inputs

have triggered bugs. Magma provides a tool to collect the number of times each bug has

been passed or triggered when fuzzing the target program. This tool allows us to regu-

larly check the progress of the fuzzer and make it easier to compare with other fuzzers.

However, this tool will make the currently running target program copy the number of

times each bug was passed or triggered to shared memory when passing the instrumenta-

tion section, further causing target programs to have different control flows and affecting

reproducibility. To prevent it from affecting reproducibility, we have to change the instru-

mentation code in the target program. Originally, the instrumentation would only copy the

data to shared memory at regular intervals. After our changes, the data is copied to shared

memory every time, which makes the control flow of the target program consistent and

can be reproduced correctly.

30 doi:10.6342/NTU202203969



Lastly, if the above two methods are complicated to make the target program repro-

ducible, we do not use them as the testing target.

31 doi:10.6342/NTU202203969



32 doi:10.6342/NTU202203969



Chapter 6 Evaluation

We performed an evaluation on ReAFL to examine its ability to reproduce the results

and the impact of design on its performance. In particular, we aim to answer the following

research questions:

RQ1 Can ReAFL reproduce the results?

RQ2 Will the modification of AFL significantly affect its performance?

RQ3 Will the execution time of the fuzzing phase significantly differ from the reproduc-

tion phase?

RQ4 What is the size of the extra records used for the reproduction phase?

6.1 Environment

Experiments were performed on Ubuntu Server 18.04 LTS with an AMD Ryzen 9

5950X Processor (16 cores) and 128 GB of RAM.

33 doi:10.6342/NTU202203969



6.2 Target Selection

We selected target programs from the Magma benchmark and open source programs

in the real world to test our implementation. Magma is a ground-truth fuzzing benchmark

that collects the history bugs from the target and inserts them into the same version. We

modified the instrumentation of the magma benchmark programs so that the control flow

of the target program is not affected when we use the tool to get information about the

bugs. The detailed implementation is in Chapter 5. We are using our modified version to

ensure its reproducibility.

6.3 Experiment

We performed ReAFL and AFL with LLVM-based instrumentation 20 times for each

target selected previously. We refer to each of these runs as trials and each trial runs 24

hours by default. In addition to the standard mode, we examined the parallel mode of

ReAFL and AFL with one master instance and one secondary instance. ReAFL and AFL

in parallel mode were also run 20 times on real-world targets. Finally, we reproduced

every trial run by ReAFL.

Since AFL++ provides a fixed seed mode and claims that it has reproducibility, we

also use AFL++ to perform 20 runs against the real-world programs and reproduce each

run.

We plot the code coverage over time, and the interval shows a 95% confidence inter-

val around the mean coverage. We use the edge coverage calculated by AFL to evaluate

the code coverage.

34 doi:10.6342/NTU202203969



Targets Seed Files Crashed Files Code Coverage
readelf 283214/283214 0/0 1310720/1310720
objdump 89359/89359 0/0 1310720/1310720
nm 72310/72310 0/0 1310720/1310720
readelf-parallel 1273190/1273190 0/0 1310720/1310720
objdump-parallel 259477/259477 0/0 1310720/1310720
nm-parallel 215666/215666 0/0 1310720/1310720
libpng 29521/29521 1307/1307 1310720/1310720
libtiff 50698/50698 1879/1879 1310720/1310720
libsndfile 15564/26686 272/532 1300920/1310720

Table 6.1: ReAFL results of reproduction phase on real world programs and magma
benchmark.

Targets Seed Files Crashed Files Code Coverage
readelf 68543/389404 0/0 512244/563200
objdump 21852/120995 0/0 1049631/1076480
nm 4851/117036 0/46 667858/709120
readelf-parallel 44273/878270 0/0 1067283/1126400
objdump-parallel 34984/307706 0/0 2103616/2152960
nm-parallel 11590/353535 0/88 1354058/1418240

Table 6.2: AFL++ results of reproduction phase on real world programs.

RQ1: Reproduciblity To ensure reproducibility, we used ReAFL to reproduce each

trial and compared the results of fuzzing phase and reproduction phase, including crashes,

seeds, and code coverage (bitmap). To be regarded as successfully reproduced, the results

of the reproduction phase must be identical to the fuzzing phase.

Table 6.1 shows that eight out of nine (except libsndfile) the results of reproduction

phase are the same as those of fuzzing phase; Column seed files represent the number of

successfully reproduced seeds and the number of seeds generated in the fuzzing phase;

Column crashes files represent the number of successfully reproduced crashes files and

the number of crashes files generated in the fuzzing phase. Since ReAFL did not find any

crashes on real-world programs, so it was considered a successful reproduction. Column

code coverage represent the number of successfully reproduced bitmap bytes and the total

number of bitmap bytes. For AFL, the bitmap size is fixed to 65536 bytes, so the total

35 doi:10.6342/NTU202203969



bitmap bytes is 65536 multiplied by 20 times. We can see that all the experiments except

libsndfile have the same code coverage in the reproduction phase as in the fuzzing phase.

From the above, we can judge that ReAFL can correctly reproduce the experiment in both

normal and parallel modes. Although we only use edge coverage as the basis for determin-

ing code coverage, we can actually reproduce any kind of coverage since we reproduced

the entire fuzzing phase process and the results.

We found that libsndfile uses time-dependent functions, which causes it to go through

a different number of basic blocks even if we feed it the same input, making our repro-

duction fail.

And from Table 6.2, we can see that AFL++ can only reproduce the first few minutes

of the fuzzing phase and will fail to reproduce in the middle because of the time factor, so

it cannot reproduce successfully in seed files, crashes files, and code coverage.

Coverage Executions per Second
Targets AFL ReAFL Decrease AFL ReAFL Decrease
readelf 19.63% 19.35% 1.41% 3992.6 3769.2 5.6%
objdump 11.38% 11.58% -1.74% 1998.4 2167.8 -8.48%
nm 10.47% 10.05% 4.08% 1573.2 1494.5 5.00%
Average 1.25% 0.71%

Parallel Coverage Executions per Second
Targets AFL ReAFL Decrease AFL ReAFL Decrease
readelf 20.30% 20.42% -0.59% 2866.5 3239.2 -13%
objdump 12.16% 12.34% -1.51% 1599.9 2207 -37.95%
nm 10.87% 10.90% -0.35% 1240.9 1566 -26.19%
Average -0.82% -25.56%

Table 6.3: Comparison of ReAFL and AFL on real world programs.

RQ2: Performance Difference of ReAFL and AFL To compare the performance of

the fuzzers, we evaluated the performance of the fuzzer against the target programs with

different evaluation metrics. For Magma, we evaluated using the total bugs found in the

36 doi:10.6342/NTU202203969



0 5 10 15 20 25
time

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

co
ve
ra
ge

readelf

AFL

ReAFL

0 5 10 15 20 25
time

2

4

6

8

10

12

co
ve
ra
ge

objdump

AFL

ReAFL

0 5 10 15 20 25
time

2

4

6

8

10

co
ve
ra
ge

nm

AFL

ReAFL

0 5 10 15 20 25
time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

co
ve
ra
ge

readelf parallel

AFL

ReAFL

0 5 10 15 20 25
time

2

4

6

8

10

12

co
ve
ra
ge

objdump parallel

AFL

ReAFL

0 5 10 15 20 25
time

2

4

6

8

10

co
ve
ra
ge

nm parallel

AFL

ReAFL

0 5 10 15 20 25
time

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

co
ve
ra
ge

libpng

AFL

ReAFL

0 5 10 15 20 25
time

4

6

8

10

12

co
ve
ra
ge

libtiff

AFL

ReAFL

0 5 10 15 20 25
time

5.50

5.75

6.00

6.25

6.50

6.75

7.00

7.25

7.50

co
ve
ra
ge

libsndfile

AFL

ReAFL

Figure 6.1: Code coverage on real-world program and magma benchmark.

37 doi:10.6342/NTU202203969



Coverage Executions per Second
Targets AFL ReAFL Decrease AFL ReAFL Decrease
libpng 3.65% 3.66% -0.27% 15026.4 18970.1 -26.24%
libtiff 13.20% 11.88% 10% 1987.4 1153.5 38.31%
libsndfile 6.98% 7.38% -5.73% 744.3 1221.6 -64.12%
Average 1.33% -16.13%

Crashes
Targets AFL ReAFL Decrease
libpng 59.9 65.35 -9.1%
libtiff 152.3 93.95 38.31%
libsndfile 17.7 26.6 -50.28%
Average -7.02%

Table 6.4: Comparison of ReAFL and AFL on magma benchmark programs.

trials. As for target programs from real-world open-source programs, we use the original

code coverage provided by AFL.

Table 6.3 show the difference in performance between AFL and ReAFL in real-world

programs. From the perspective of Execution per Second, ReAFL inserts additional instru-

mentation into the target to implement BBCounter, so the speed of one execution should

be slower than that of ReAFL. According to Table 6.3, the difference between ReAFL and

AFL is not greater than 10%. In parallel mode, ReAFL even outperforms AFL. From the

perspective of code coverage, ReAFL is very similar to AFL. We speculate that it is be-

cause ReAFL uses the same strategy as AFL, and it can be seen from Figure 6.1 that the

code coverage of these three targets grows very slowly after 12 hours, so the impact of the

difference in the number of executions is limited.

Table 6.4 show the difference in performance between AFL and ReAFL in magma

benchmark. Since the target programs in the magma benchmark are larger than the real-

world programs we selected, the shortcoming that the ReAFL basic block counter cannot

be accurately converted to time is magnified. Table 6.4 and Figure 6.1 shows that ReAFL’s

38 doi:10.6342/NTU202203969



performance ismuchworse thanAFL on libtiff butmuch better thanAFL on libsndfile. We

speculate that this is because the initial basic block out was incorrectly estimated, resulting

in a different performance than AFLwith a timeout, possibly ending the execution early or

spending too much time on a single execution. On average, ReAFL is comparable to AFL

in terms of coverage, execution per sec, and crashes. We believe that if we can estimate

the relationship between basic block and time more accurately, we can simulate the effect

of timeout more accurately. In the subsequent Section 7, we will propose a solution to the

inability to convert the timeout accurately.

Single Core
Targets Fuzzing Reproduction Ratio
readelf 24h 24.71h 102.95%
objdump 24h 23.39h 97.45%
nm 24h 24.15h 100.61%
libpng 24h 24.44h 101.86%
libtiff 24h 23.58h 98.25%
Average 100.22%

Parallel Fuzzing
Targets Fuzzing Reproduction Ratio
readelf 24h 24.23h 100.97%
objdump 24h 24.81h 103.37%
nm 24h 23.52h 97.99%
Average 100.78%

Table 6.5: Comparison of fuzzing phase and reproduction phase on real-world programs
and magma benchmark.

RQ3: Difference in efficiency of fuzzing phase and reproduction phase To evaluate

its efficiency, we compared the time it took to reproduce the entire experiment with the

time spent by fuzzing phase.

Table 6.5 shows that the average time spent in the reproduction phase is within 5%

increase of fuzzing phase, which is not much difference.

39 doi:10.6342/NTU202203969



0 5 10 15 20 25
time

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

co
ve
ra
ge

readelf repro-1

Fuzzing

Reproduction

0 5 10 15 20 25
time

2

4

6

8

10

co
ve
ra
ge

objdump repro-1

Fuzzing

Reproduction

0 5 10 15 20 25
time

2

4

6

8

10

co
ve
ra
ge

nm repro-1

Fuzzing

Reproduction

0 5 10 15 20 25
time

0.0

0.2

0.4

0.6

0.8

1.0
co
ve
ra
ge

readelf parallel repro-1

Fuzzing

Reproduction

0 5 10 15 20 25
time

0.1

0.2

0.3

0.4

0.5

0.6

co
ve
ra
ge

objdump parallel repro-1

Fuzzing

Reproduction

0 5 10 15 20 25
time

0.1

0.2

0.3

0.4

0.5

co
ve
ra
ge

nm parallel repro-1

Fuzzing

Reproduction

0 5 10 15 20 25
time

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

co
ve
ra
ge

libpng repro-1

Fuzzing

Reproduction

0 5 10 15 20 25
time

4

6

8

10

co
ve
ra
ge

libtiff repro-1

Fuzzing

Reproduction

Figure 6.2: Comparison of fuzzing phase and reproduction phase on real-world program
and magma benchmark.(For each target program, we randomly selected one of the 20
results to represent.)

40 doi:10.6342/NTU202203969



To understand whether the process of the reproduction phase is similar to that of the

fuzzing phase, for each fuzzing experiment, we randomly selected one of the 20 sets of

results to observe. Figure 6.2 shows that most of the code coverages of the fuzzing phase

and the reproduction phase are similar at the same time, which means that ReAFL also

tries to restore the part of the fuzzing phase process in the reproduction phase.

Targets normal parallel (master + slave)
readelf 28 Bytes 204.1KB
objdump 27.95 Bytes 126.54KB
nm 27.8 Bytes 62.66KB
libpng 28.8 Bytes
libtiff 30.45 Bytes
libsndfile 27.8 Bytes
Average 28.47 Bytes 131.1KB

Table 6.6: Extra record sizes.

RQ4: What is the size of the extra records used for the reproduction phase? To

successfully reproduce the fuzzing experiment, we use the extra records collected in the

fuzzing phase during the reproduction phase. The extra record includes random seed,

bbout size, and so on. Table 6.6 shows that in the normal mode case, we use a very small

amount of extra records for reproduction. But in the parallel mode case, the file is slightly

larger because of the synchronization information. In addition, we will reproduce each

fuzzer instance independently in parallel mode and need to use the seed files created by

other fuzzer instances. Although this will make the amount of extra data spent go up

significantly, it is a trade-off to speed up the reproduction phase.

41 doi:10.6342/NTU202203969



42 doi:10.6342/NTU202203969



Chapter 7 Discussion

The effect of replacing execution time with BBCounter. The above experiment shows

that, for different targets, ReAFL will have different performances. For example, when

using one core, ReAFL performs better than AFL in objdump and libsndfile, while in nm

and libtiff, ReAFL performs worse than AFL. It is because that ReAFL is based on the

number of basic blocks passed instead of time, but the time spent on basic blocks varies

according to the content of the basic blocks, so it does not simulate the timeout result

perfectly. To simulate the timeout more accurately, in future work, we consider not only

the number of basic blocks but also the weight of different kinds of instruction. By giving

different weights to different types of instruction, we can estimate the approximate time

that different basic blocks will take, which is more accurate than just basic blocks. How to

set the BBOut that matches the timeout is also very important. For example, AFL is judged

by the execution time of the initial seeds on the target program to set how long the timeout

is. To calculate the corresponding BBOut, ReAFL calculates the ratio of time and number

of basic blocks by using the execution time and the number of basic blocks passed of the

initial seeds in the target program. And using the ratio to convert the timeout into BBOut.

This method relies heavily on the information provided by the initial seeds to calculate

the BBOut. In some cases, the BBOut may be too large or too small, making it unable to

simulate the timeout accurately. We may be able to adjust the BBOut dynamically (e.g.,

43 doi:10.6342/NTU202203969



according to the proportion of BBOut triggered, etc.) to make the BBOut performance

match the expected timeout.

The effect of our approach on the original fuzzer’s ability. The above experiment

also shows that our approach does not affect the fuzzing strategy much. All the factors

except time rely on recording additional information to make the reproduction successful.

For time, since we use BBOUT and BBCounter to replace timeout and execution time, as

long as we can accurately estimate the relationship between time and basicblock, we can

successfully replace the time without affecting the ability of the fuzzer.

Additional time spent in reproduction phase. We also found that the time spent in

reproduction phase is usually more than that spent in fuzzing phase because fuzzing in

reproduction phase needs to check the fuzzing end conditions and check if there is a hang

frequently. And for parallel fuzzing, reproduction phase adjusts the range of files to be

read based on the logs. These additional things cause reproduction phase not perfectly to

reproduce the fuzzer speed. Suppose the goal of a fuzzer is to speed up the computational

procedures of fuzzing. For example, RIFF [19] can speed up the fuzzer operation while

maintaining the same strategy, so that an experiment that originally took 24 hours to run

can be completed in only 6.53 hours. In that case, it is difficult to reproduce it using our

method because there is no guarantee that reproduction phase can reproduce the speed of

fuzzing phase.

Reduce the overhead ofmaking fuzzer reproducible. Following our approach tomak-

ing fuzzer reproducible still requires a lot of manual changes. Automating more parts of

the process (e.g., automatically converting time to the number of basic blocks) or modu-

44 doi:10.6342/NTU202203969



larizing specific steps would make it easier and more desirable for people to make their

fuzzer reproducible. The biggest challenge of automation is how to modify the fuzzer

source code; because each fuzzer implementation is different, we can hardly find the code

corresponding to the factor. One solution is to list the functions or keywords related to the

factor (for example, “srand”, “random” which affects randomness and “time”, “execution

time”) to assist in finding the factor. We also considered making AFL++ reproducible in

the future work. Since AFL++ is a modular framework, any researcher can add their own

features to AFL++ and test them. If we can make AFL++ reproducible, then other re-

searchers can check whether their added features have affected the reproducibility, which

reduces the overhead of implementation.

Compare the importance of different factors. Each factor is equally essential for our

guide because the whole fuzzing experiment will fail to reproduce if any one of them is not

handled properly. Moreover, our definition of reproducibility is only success or failure,

meaning there is no indication of the degree of reproducibility. However, some factors

only need to be handled in special targets, or fuzzer, such as parallelization factors only

need to be handled when using parallel fuzzing. In contrast, the time environment and

random number are problems that every fuzzer needs to deal with.

Support more factors. Currently, our guide does not support making fuzzer or target

programs that use multithread, TRNG reproducible. We may be able to avoid race con-

ditions during the reproduction phase by recording the order of threads that use the same

resource during the fuzzing phase. Although we have proposed a solution in the guide,

our method is not as efficient if we need to make a lot of use of TRNG to generate random

numbers. To improve efficiency, we can replace the TRNG used in the target program and

45 doi:10.6342/NTU202203969



fuzzer with the PRNG so that fuzzing can be reproduced by using random seeds during

the reproduction phase. In addition, as shown in RQ1 6.3, the current reproducible fuzzer

is challenging to reproduce for target programs that use the time factor. We may be able

to replace the return value of the time-related function with a fixed value to ensure that

the target program can have the same control flow when receiving the same input.

Reduce the time and resources spent on reproduction phase. Fuzzing experiments

usually run over a long period of time. If the process of reproduction can be accelerated,

it will make it easier and more willing for the researcher to verify the work of others.

Currently, we can only completely reproduce an experiment with the same time and com-

putational resources. By cutting a fuzzing experiment into fractions, we can reproduce

and check the results from a particular time to a particular time. In that case, we can do a

sample check and save time by not having to run the whole experiment. To implement this

method, we have to solve some problems, such as how to access the fuzzing state halfway

through the run, how to compare the two fuzzing states to see if they are the same, and

how to continue fuzzing from the intermediate fuzzing state.

Practical uses of reproducible fuzzing If reproducible fuzzing becomes widespread, it

can provide other usages. For example, a conference or workshop can provide a random

seed set to prevent researchers from picking a favorable result report when running fuzzing

experiments. Alternatively, the researcher can also specify which random seed set they

will use when registering reports to increase the persuasiveness of the work.

46 doi:10.6342/NTU202203969



Chapter 8 Conclusion & Future Work

Due to factors such as time-dependent behaviors and random numbers, fuzzing has

always been challenging to reproduce as a complete experiment. In this paper, we list the

factors that cause non-reproducibility in the fuzzing and propose corresponding solutions

for each factor. Finally, we tested the implementation on AFL and called it ReAFL.

The evaluation results show that our method can successfully give reproducibility

to AFL on most of the target programs and that ReAFL does not lose much performance

compared to AFL. The evaluation also indicates that ReAFL can reproduce in both parallel

and normal modes.

Our proposed guideline for reproducible fuzzing has some future work that can be

improved. We will improve our guide to support more types of fuzzer and targets and try

to add automation to lower the overhead of implementation, which makes more people

willing and able to make their fuzzer reproducible through our work. We will also work

toward accelerating the speed of the reproduction phase and explore other use cases of

reproducible fuzzing. This way, we can make researchers more willing to value and utilize

the reproducibility of fuzzing.

47 doi:10.6342/NTU202203969



48 doi:10.6342/NTU202203969



References

[1] ACM. Artifact review and badging - current, https://www.acm.org/publications/

policies/artifact-review-and-badging-current.

[2] M. Böhme, �. Szekere, B. Ray, and C. Cadar. Journal special issue on fuzzing:what

about preregistration?, Apr 2021.

[3] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and Z. Su. En-

Fuzz: Ensemble fuzzing with seed synchronization among diverse fuzzers. In 28th

USENIX Security Symposium (USENIX Security 19), pages 1967–1983, Santa

Clara, CA, Aug. 2019. USENIX Association.

[4] J. F. Claerbout andM. Karrenbach. Electronic documents give reproducible research

a new meaning: 62nd ann. In SEG Technical Program Expanded Abstracts 1992,

1992.

[5] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse. Afl++: Combining incremental

steps of fuzzing research. In 14th {USENIX}Workshop on Offensive Technologies

({WOOT} 20), 2020.

[6] fuzzingworkshop. Fuzzing workshop 2022. https://fuzzingworkshop.github.io/.

49 doi:10.6342/NTU202203969



[7] A. Hazimeh, A. Herrera, and M. Payer. Magma. Proceedings of the ACM on

Measurement and Analysis of Computing Systems, 4(3):1–29, nov 2020.

[8] D. Hiemstra, M.-F. Moens, J. Mothe, R. Perego, M. Potthast, and F. Sebastiani.

Advances in Information Retrieval: 43rd European Conference on IR Research,

ECIR 2021, Virtual Event, March 28–April 1, 2021, Proceedings, Part I, volume

12656. Springer Nature, 2021.

[9] C.-C. Hsu, C. Wu, H.-C. Hsiao, and S.-K. Huang. Instrim: Lightweight instrumen-

tation for coverage-guided fuzzing. 2018.

[10] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. Evaluating fuzz test-

ing. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’18, page 2123–2138, New York, NY, USA, 2018.

Association for Computing Machinery.

[11] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program

analysis & transformation. In International Symposium on Code Generation and

Optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

[12] J. Liang, Y. Jiang, Y. Chen, M.Wang, C. Zhou, and J. Sun. Pafl: Extend fuzzing opti-

mizations of single mode to industrial parallel mode. In Proceedings of the 2018 26th

ACM JointMeeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, ESEC/FSE 2018, page 809–814, New

York, NY, USA, 2018. Association for Computing Machinery.

[13] llvm-admin team. Libfuzzer–a library for coverage-guided fuzz testing. https://

llvm.org/docs/libfuzzer.html, Aug 2022.

50 doi:10.6342/NTU202203969



[14] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya. Fuzzbench: an

open fuzzer benchmarking platform and service. In Proceedings of the 29th ACM

Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, pages 1393–1403, 2021.

[15] National Academies of Sciences, Engineering, and Medicine. Reproducibility and

Replicability in Science. The National Academies Press, Washington, DC, 2019.

[16] NeurIPS. Reproducibility report for ml reproducibility challenge 2022. https://open-

review.net/forum?id=s9ilqhz7hak.

[17] J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Larivière, A. Beygelzimer, F. d＇Alché

Buc, E. Fox, and H. Larochelle. Improving reproducibility in machine learning re-

search: a report from the neurips 2019 reproducibility program. Journal of Machine

Learning Research, 22, 2021.

[18] K. Serebryany. Oss-fuzz-google’s continuous fuzzing service for open source soft-

ware. In 26th USENIX Security Symposium, 2017.

[19] M. Wang, J. Liang, C. Zhou, Y. Jiang, R. Wang, C. Sun, and J. Sun. RIFF: Re-

duced instruction footprint for Coverage-Guided fuzzing. In 2021 USENIX Annual

Technical Conference (USENIX ATC 21), pages 147–159. USENIX Association,

July 2021.

[20] M. Zalewski. American fuzzy lop (2.52b). https://lcamtuf.coredump.cx/afl/, Jun

2020.

51 doi:10.6342/NTU202203969


	Verification Letter from the Oral Examination Committee
	Acknowledgements
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background & Related Work
	Reproducibility
	Related work

	Factors of Non-reproducibility
	Randomness
	Pseudo-random number generators
	True random number generators

	Environment
	Configuration
	Software Dependency
	Low-level System

	Time
	Execution Time Per Input
	Overall Execution Time

	Parallelization
	Target Program

	Design Guidelines
	Randomness
	PRNG
	TRNG

	Environment
	Time
	Execution Time Per Input
	Overall Execution Time

	Parallelization
	Target Program

	Implementation
	Randomness
	Parallelization
	Environment
	Time
	Execution Time Per Input
	Overall Execution Time

	Target Program

	Evaluation
	Environment
	Target Selection
	Experiment

	Discussion
	Conclusion & Future Work
	References

