
doi:10.6342/NTU202100248

國立臺灣大學電機資訊學院電信工程學研究所

碩士論文

Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

學習三維圖卷積網路於點雲分析

Learning of 3D Graph Convolution Networks

for Point Cloud Analysis

林志皓

Zhi-Hao Lin

指導教授：王鈺強 博士

Advisor: Yu-Chiang Frank Wang, Ph.D.

 中華民國 109 年 12 月

December 2020

doi:10.6342/NTU202100248

doi:10.6342/NTU202100248

致謝

在許多人的鼓勵和幫助下，這篇論文才終於得以完成。感謝我的指導教授王鈺

強老師，一直以來都非常用心的指導每個學生。我從大學的專題研究開始，就跟老

師一起做研究，然而回想當時的狀況，自己並不是相當認真，報告的技巧也滿糟糕

的。但是老師一直都很用心地告訴我該怎麼改進，不管是表達的方式技巧，做研究

的心態，撰寫論文的方式，還有待人處事的細節，都能感受到老師的用心。我也因

此在即將畢業的這個時候，感受到自己確實進步了許多。很感謝老師對於題目的開

放態度，讓我能嘗試各種可能性，也因為老師對於每一篇論文的堅持，影響我對研

究的態度，凡事盡力以赴，即使結果不如人意，就修正過再試試。

感謝 VLL的夥伴們，我一直覺得實驗室的討論風氣很棒，互相激勵各種想法，

也能在一起去參加會議時玩得很開心，或是在研究生的平凡日常中一起約吃飯、打

球、幫彼此慶生。大家不管在研究或是將來申請上，都給了很多超棒的建議。感謝

聖喻，從大學專題開始就一起在 3D組努力，不論是討論想法、跑實驗、研究別人

的論文細節，都幫助了我許多。很懷念當初趕投稿，互吐苦水的日子。之後研究還

有很長一段路，VLL的大家要一起努力，做出好研究，發出好論文。

感謝家人朋友，會一直關心我的近況，維持我心理狀態的健康。在之前投稿結

果出來的時候，也能夠一起分享喜悅。特別感謝媽媽努力工作，讓我和妹妹能夠專

心的讀大學及研究所，雖然可能不太知道我都在幹嘛，但對於我的選擇都很支持。

在各方面我還有許多不足的地方，這篇論文代表碩士生涯的結束，但不是研究的終

點，接下來我也會繼續努力，做出厲害的研究。

2020.12.29 林志皓

doi:10.6342/NTU202100248

中文摘要

在自駕車、無人機、擴增實境等應用當中，電腦如何利用三維資料來感知空

間資訊，是至關重要的問題。其中，點雲在三維電腦視覺領域是一種相當普遍且重

要的資料型式。然而，不像是二維影像由規則的相素組成，點雲是由一堆點所形成

的集合，能有效率地描述物體表面的資訊，卻也因為無規則排列，在分析處理上具

有相當大的挑戰。

雖然近年來有許多研究團隊及學者，針對分析點雲提出了各種演算法，並也

在一些簡單的任務達到了不錯的表現，然而這些演算法皆會在點雲被平移、縮放、

旋轉等變化後，準確率會大為下降，這在許多應用當中都是不被允許的。在這篇論

文中，我們提出了三維圖卷積網路，該演算法能夠在不同解析度下分析點雲的幾何

特徵，經過適當的訓練，能夠進行點雲的分類、語意分割、室內場景辨識。藉由實

驗在虛擬或是真實感測到的點雲資料上，我們驗證了三維圖卷積網路能夠用相對

輕量化的模型，達到與其他團隊一樣甚至更好的表現，並在各種劇烈的平移、縮放

下維持準確率不變。

doi:10.6342/NTU202100248

Learning of 3D Graph Convolution

Networks for Point Cloud Analysis

Zhi-Hao Lin

Advisor: Yu-Chiang Frank Wang

Graduate Institute of Communication Engineering

National Taiwan University

Taipei, Taiwan

December 2020

doi:10.6342/NTU202100248

ii

doi:10.6342/NTU202100248

Abstract

Point clouds are among the popular geometry representations in 3D vision. How-

ever, unlike 2D images with pixel-wise layouts, such representations containing

unordered data points which make the processing and understanding the asso-

ciated semantic information quite challenging. Although a number of previous

works attempt to analyze point clouds and achieve promising performances, their

performances would degrade significantly when data variations like shift and

scale changes are presented. In this thesis, we propose 3D Graph Convolution

Networks (3D-GCN), which is designed to extract local 3D features from point

clouds across scales, while shift and scale-invariance properties are introduced.

The novelty of our 3D-GCN lies in the definition of learnable kernels with a graph

max-pooling mechanism. I show that 3D-GCN can be applied to 3D classifica-

tion and segmentation tasks, with ablation studies and visualizations verifying the

design of 3D-GCN.

i

doi:10.6342/NTU202100248

ii Abstract

doi:10.6342/NTU202100248

Contents

Abstract i

List of Figures v

List of Tables ix

1 Introduction 1

2 Related work 5

2.1 Multi-view and voxelized methods 5

2.2 Point-cloud based methods . 6

2.3 Geometry-based methods . 7

3 3D Graph Convolution 9

3.1 Notations . 9

3.2 Receptive Fields in 3D-GCN . 10

3.3 Learnable Kernels in 3D-GCN 11

3.4 3D Graph Convolution . 12

3.5 Property analysis . 14

4 3D Graph Convolution Network 17

4.1 3D Graph Convolution . 17

4.2 3D Graph Max-Pooling . 18

4.3 Classification Model . 19

iii

doi:10.6342/NTU202100248

iv CONTENTS

4.4 Semantic Segmentation Model 19

5 Experiments 23

5.1 3D Model Classification . 23

5.1.1 Dataset . 23

5.1.2 Network configuration 23

5.1.3 Results and Discussions 26

5.2 3D Model Part Segmentation . 27

5.2.1 Dataset . 27

5.2.2 Network configuration 27

5.2.3 Results . 27

5.3 Scene Segmentation . 32

5.3.1 Dataset . 32

5.3.2 Network configuration 32

5.3.3 Results . 35

6 Ablation Study 37

6.1 Neighbor number M in receptive fields. 37

6.2 Support number S in kernels . 37

6.3 Learning of directional vector ks for each kernel. 38

6.4 Aggregation function . 39

6.5 Visualization and Complexity analysis 40

7 Conclusion 43

Reference 45

doi:10.6342/NTU202100248

List of Figures

1.1 Convolution in (a) 2D images and (b) 3D graphs. Note that

standard 2D CNN cannot be easily applied to handle 3D point

cloud data, since the kernels in 3D graph convolution networks

need to exhibit additional deformation in shape due to unstructured

inputs. 2

3.1 Illustration of receptive field RM
n and kernel KS . We have RM

n

indicates the M neighboring points for the nth point pn, and ker-

nel KS composes of S supports with center at kC = (0, 0, 0).

Note that directional vector dm,n and ks are used to measure the

similarity in (3.4). 10

3.2 3D Graph Convolution. As in (3.4), sim(pm,ks) calculates the

inner product between f(pm) and w(ks) based on the cosine

similarity between dm,n and ks. For each support ks, the largest

sim output among all neighbors pm is obtained. Summing up with

〈f(pn),w(kC)〉 produces the final convolution output (i.e., (3.5)). 13

3.3 Illustration of the lack of invariance property. Recent models

like PointNet [1] require techniques like zero-mean normalization

for 3D point cloud representation, which might be sensitive to

noisy 3D input points (as verified in Sect. 5). 15

v

doi:10.6342/NTU202100248

vi LIST OF FIGURES

3.4 Illustration of rotation effects on 3D-GCN Directional vector d

of a 3D point and the kernel k (with support number as 1), where

(a) and (b) consider the learned kernels in along and away from

z-axis, respectively. 16

4.1 Graph Max-Pooling. This pooling process performs channel-

wise max-pooling from the features in the receptive field of each

pn ∈ P in, followed by randomly sampling a subset from P in with

a sampling rate r. 18

4.2 Architecture of 3D-GCN for (a) classification and (b) part seg-

mentation. Note that grey and yellow blocks denote point and

feature inputs, respectively. Green arrows denote 3D Graph Convo-

lution Layers, while green triangles denote the Graph Max-Pooling

layer. We have MLP and outputs denoted in brown and blue, re-

spectively. For part segmentation in (b), blocks in pink denote the

up-sampled feature maps from the consecutive layer, which are

concatenated with those at the layer of interest (shown in yellow)

as the feature map for performing 3D graph convolution. 21

5.1 Evaluation of invariance properties on ModelNet40. (a) Shift:

Objects randomly shifted within a distance along all directions

(with unshifted version denoted as 0), (b) Scale: Objects scaled to

different sizes (with the original size denoted as 1), (c) Rotation:

Objects rotated along the upward direction (degree is denoted in

this figure). Note that DGCNN in [2] was pre-trained on objects

with scale variants (i.e., scale within [0.5, 1.5]), but it cannot handle

unseen scale variants as shown in (b). 25

doi:10.6342/NTU202100248

LIST OF FIGURES vii

5.2 Effects on the presence of outlier points for the ModelNet40

dataset. Outlier points of different ratio numbers are added to the

3D point cloud input. Take a point cloud input with 1000 points

for example, 10% indicates additional 100 outliers introduced.

Note that all the outlier points are sampled from a fixed Gaussian

distribution. 29

6.1 Example kernel responses in different layers (segmentation on

ShapeNetPart). Note that points with larger responses are colored

in darker red. As expected, the dominant responses are shifted

from point (low) to part (high) levels in 3D-GCN. 41

doi:10.6342/NTU202100248

viii LIST OF FIGURES

doi:10.6342/NTU202100248

List of Tables

5.1 Shape classification results on ModelNet40. Note that “normal”

denotes the normal vectors of object surfaces. We see that our

method achieved comparable or improved results with inputs of

size only 1k points. 24

5.2 Part segmentation results on ShapeNetPart. Note that while

our method achieved comparable results as state-of-the-art models

did, our model complexity was significantly less than others as

discussed in Sect. 6.5. 30

5.3 Visualization of part segmentation on ShapeNetPart. We com-

pare our segmentation results with those produced by PointNet++ [3]

and DGCNN [2]. In addition, shift (by 100), scale (by 10 times)

and rotation (by 30 degree) variations are presented for evaluating

the invariance capacity for each model. 31

5.4 Part segmentation in terms of class mIoU with shift, scale and

rotation variations. Note that the 3D model is rotated around the

y-axis, which is the upward direction. 32

ix

doi:10.6342/NTU202100248

x LIST OF TABLES

5.5 Scene segmentation on S3DIS. The results of area 5 and 6-fold

are in the upper and lower tables, respectively. All the methods

are reproduced with same data processing, training and evaluation

procedures, while the results of original paper are also shown in

column mIoU(*). For each object category, the proportion of the

whole dataset is denoted as (x%), with the IoU scores are shown

in each entry. 33

5.6 Visualization of scene segmentation. From left to right, we show

the input scene, ground truth segmentation, the results producd by

PointNet [1], PointNet++ [3], DGCNN [2], and 3D-GCN, respec-

tively. Note that each semantic category is illustrated in a distinct

color, while the categories of ceiling, and wall are not shown for

visualization clarity. 34

6.1 Effects on shape classification on ModelNet40 with varying

neighboring number. Note that insufficient numbers of neighbors

are not expected to properly represent the receptive fields, while

the performances would be less sensitive to larger numbers due to

our learnable kernels. 38

6.2 Performances of shape classification on ModelNet10 and Mod-

elNet40 with varying support number S 38

6.3 Effects on shape classification using learnable directional vec-

tor or not. A: no directional information, B: assign three unit

vectors (along 3 axes) as ks, and C: our learnable directional vectors. 39

6.4 Effect of the aggregation function. Max- and mean- aggrega-

tion function are evaluated in the tasks of classification, part-

segmentation, and scene-segmentation. We see that max-aggregation

is preferable for all tasks. 39

doi:10.6342/NTU202100248

LIST OF TABLES xi

6.5 Number of parameters in different models for various tasks.

The table list the parameter number in millions (M) and inference

time for each model, while the performances are also shown. . . . 40

doi:10.6342/NTU202100248

xii LIST OF TABLES

doi:10.6342/NTU202100248

Chapter 1

Introduction

3D vision has been an active research topic, closely related to applications such

as augmented reality, drones and self-driving vehicles [4, 5]. Existing 3D data

representations include the use of voxel, mesh or point cloud features. Voxels [6, 7]

describe 3D objects as voxel grids but generally suffer from insufficient resolution

and high memory costs. Meshes are common in animations, while such represen-

tations are not directly associated with the 3D sensor outputs [8, 9]. Finally, 3D

point clouds focus on describing shape information of 3D objects and can be easily

acquired by 3D sensors, but the resulting unordered set of 3D points might limit

the subsequent analysis tasks.

With the recent remarkable progress of deep learning techniques, in particular

the Convolutional Neural Network (CNN), promising performances have been

observed in a variety of computer vision tasks [10, 11]. However, image data are

generally presented in terms of grid structures (e.g., pixels or cells over scales),

which makes the convolution operation feasible. For irregular and unstructured

data like 3D point clouds, it is not possible to learn and deploy kernels with fixed

sizes or patterns on such data. In order to process such an unstructured/unordered

set of points, PointNet [1] applies multiple fully connected layers to encode 3D

point clouds, followed by global max-pooling operation, and shows impressive

results for 3D data recognition and segmentation. Since global pooling operation

1

doi:10.6342/NTU202100248

2 1. Introduction

(a) (b)

Figure 1.1: Convolution in (a) 2D images and (b) 3D graphs. Note that standard

2D CNN cannot be easily applied to handle 3D point cloud data, since the kernels

in 3D graph convolution networks need to exhibit additional deformation in shape

due to unstructured inputs.

is deployed, locally structured information of 3D point cloud might not be properly

observed. Moreover, it is not designed to be invariant to global transformation like

shift or scaling, as we later discuss and verify.

To better describe local information of 3D data, some research works utilize

mesh data and their corresponding graph structures (i.e., vertices and associated

edges) for extracting desirable information. For example, [12] choose to propagate

and aggregate features of adjacent vertices for deriving the final representation,

while others [8, 13] define kernels with fixed patterns to observe local information.

Motivated by the above works, [14, 15, 16, 17, 2] attempt to construct graph-like

structures for 3D point clouds. Since such methods consider global coordinates in

representing their graphs, shift and scaling effects would degrade the performances

of their models.

In this thesis, we propose a novel deep learning model of 3D Graph Convolution

Networks (3D-GCN) for processing and learning structural information of 3D point

clouds. Motivated by 2D CNN, we aim at deriving deformable 3D kernels, whose

doi:10.6342/NTU202100248

3

shape and weights are learnable during the training stage. Moreover, similar to the

max pooling operation in standard CNN, we perform a unique graph max pooling

operation in 3D-GCN to summarize the processed features across different scales.

As a result, our 3D-GCN is able to observe and extract structural information of

unordered 3D point clouds with arbitrary shape and size. As detailed and confirmed

later, our 3D-GCN is invariant to 3D point cloud shift and scaling changes, which

are the key properties for real-world 3D vision applications.

We now summarize our main contributions as follows:

• we propose a 3D Graph Convolution Network (3D-GCN) for processing 3D

point cloud data, exhibiting shift and scale-invariant properties for promising

classification/segmentation performances.

• The shape and weights of each kernel in our 3D-GCN are learnable during

training, which show capabilities in describing local structural information

from unordered 3D point clouds.

• A novel graph max pooling is also introduced in 3D-GCN, allowing extrac-

tion and summarization of point cloud features across different scales for

improved performances.

doi:10.6342/NTU202100248

4 1. Introduction

doi:10.6342/NTU202100248

Chapter 2

Related work

2.1 Multi-view and voxelized methods

Since standard Convolutional Neural Networks cannot be directly applied to handle

unstructured data like 3D point clouds, existing works typically choose to convert

point clouds into proper representation for further processing purposes. For exam-

ple, [7, 6, 18, 19, 20] register point features into voxel grid or directly use voxelized

3D shapes as the model input, so that standard 3D CNN can be performed on such

input data. Although octree-based methods like [21, 22] have been proposed to

refine the resolution of the predicted output, voxel-based methods are generally

known to suffer from insufficient resolution and enormous memory consumption

for 3D voxel representation.

Alternatively, a number of works [23, 24, 25, 26, 16] choose to project 3D

shapes onto 2D planes in multiple views, followed by 2D CNN for feature extrac-

tion. While impressive results are reported, it cannot be easily extended to 3D data

segmentation or reconstruction [11, 10].

5

doi:10.6342/NTU202100248

6 2. Related work

2.2 Point-cloud based methods

Various computer vision and computer graphic tasks involve shape analysis, which

require a robust representation of local geometry. Since it is difficult to describe

point cloud shapes due to the irregular structure, some previous works proposed

various hand-crafted feature descriptors designed for different tasks and exhibit

distinct properties. Some works uses descriptors which is derived from the point

coordinates in 3D space, including methods like shape context [27], distance-based

descriptors [28], point feature histograms [29, 30], and normal histograms [31].

A comprehensive overview of hand-designed feature descriptors could be found

in [32, 33].

There are also learning-based methods. PointNet [1] has multiple shared fully

connected layers to handle unordered 3D point inputs, followed by channel-wise

max-pooling to extract global features to represent 3D point cloud data. While

PointNet is able to handle 3D point cloud data without limitation to its unordered

property, it essentially learns key point representation of the input object for

deriving the final features. Local geometric information is not directly encoded,

and this model would be sensitive to input translation and scaling variation, as we

later verify.

To alleviate the aforementioned problem, researchers propose to sort the 3D

points into an ordered list, where neighboring points have smaller euclidean dis-

tances in the 3D space. For example, [34] sorts all the points along different

dimensions, then employ Recurrent Neural Networks (RNN) to extract features

from the resulting sequences. [35, 36] convert the 3D points into an 1D list via

kd-tree according to their coordinates, followed by 1D CNNs to extract the corre-

sponding features. Nevertheless, sorting a 3D point set into an 1D list is not trivial;

moreover, local geometric information may not be easily preserved in such ordered

lists.

doi:10.6342/NTU202100248

2.3. Geometry-based methods 7

2.3 Geometry-based methods

Geometry-based methods are highly-related to Graph Neural Networks (GNN),

which extracts features from graphs composed of nodes and edges. Graphs are

representative data structure but are tricky for processing due to its irregularity.

[37] proposed Graph Convolution Network (GCN), generalizing convolution

operations over graphs, where features are updated by averaging over adjacent

nodes. Some other works [38, 39, 40] proposed GCN variants with different feature

aggregation algorithm. Since the details are out of the scope of this thesis, we refer

readers to [41] for comprehensive discussion.

Aside from other applications, GCN could also be applied in shape analysis.

[42, 43, 12] used GCN to extract features from the mesh object, where mesh is

of graph structures. While point clouds shapes are not graphs since points are

not connected, such edges could be constructed by considering various metrics,

including euclidean distances. Different from the aforementioned works which take

the entire 3D data as the input, another branch of methods [3, 2, 14, 15, 44, 45, 17,

46, 47] choose to learn local geometric information from a subset of 3D points. By

dividing the 3D points into smaller groups, this type of approach extracts features

from each local group for representation purposes. For example, PointCNN [45]

learns to construct a transformation matrix for local points set, aligning points in a

certain order, followed by 1D convolution operation. While good performances are

reported in their work, the feature extraction strategy namedX -Conv are vulnerable

to point order since the operation is not permutation-invariant. PointNet++ [3]

divides 3D point clouds into several ball regions, and apply [1] to each ball for local

feature extraction. DGCNN [2] dynamically constructs local graphs by identifying

the nearest neighbors of points in the feature space, followed by the EdgeConv

operation for feature extraction. Shen et al. [14] establish graphs according

to euclidean distances and learn geometry information with kernel correlation.

RS-CNN [15] applies weighted sum of neighboring point features, where each

weight is learned with MLPs according to geometric relation between two points.

doi:10.6342/NTU202100248

8 2. Related work

ShellNet [47] divides local points set into several shell area, aggregating features

extracted from each shell. SPH3D [46] proposed discrete spherical kernels in

3D space, which is a deformed version of traditional 3D CNN. While the kernels

in [46] are constructed in predefined structure, we proposed deformable kernels

whose structure change in the training to describe various local geometry. These

works attempt to extract geometrical information within local regions of 3D point

clouds. However, existing methods typically use exact coordinates of points or

distance vectors as the input features, and thus the model performance would

be influenced by shifting and scaling effects, which would not be preferable for

real-world applications like scene segmentation and multi-object detection. In this

thesis, we propose a novel 3D-GCN with learnable 3D graph kernels and Graph

Max-Pooling mechanism, resulting in effective geometric features across different

scales while exhibiting scale and shift-invariance.

doi:10.6342/NTU202100248

Chapter 3

3D Graph Convolution

In this thesis, we propose a 3D Graph Convolution Network (3D-GCN) for point

cloud analysis. Our 3D-GCN is designed to process and analyze geometric patterns

of 3D point clouds, while sharing several principles and properties with those of

2D Convolution Networks. In this section, we will introduce our proposed network,

including the definition of 3D receptive fields representing local geometry of point

clouds, learnable kernels, and the 3D convolution operation which enables the

kernels to extract features from each receptive field. These components are used to

construct model structures performing various tasks, which will be discussed in

the following section.

3.1 Notations

For the sake of completeness, we define the notations used in this thesis as follows.

A point cloud instance is viewed as a set, which contains a total of N points

P = {pn | n = 1, 2, . . . , N} located on the surface of an object of interest. Note

that pn denotes the n-th point of this instance, and its attributes may describe

coordinates (xn, yn, zn), normal vector (νx
n, ν

y
n, ν

z
n), or RGB color information

(rn, gn, bn). For example, if the point cloud describes only the coordinates of each

point on the object surface, we have pn = (xn, yn, zn), and thus a 3D point cloud

9

doi:10.6342/NTU202100248

10 3. 3D Graph Convolution

Figure 3.1: Illustration of receptive field RM
n and kernel KS . We have RM

n

indicates the M neighboring points for the nth point pn, and kernel KS composes

of S supports with center at kC = (0, 0, 0). Note that directional vector dm,n and

ks are used to measure the similarity in (3.4).

object is represented by a matrix of size N × 3.

For classification tasks, 3D-GCN takes the point cloud input and produces the

predicted output scores c for each class of interest. On the other hand, for semantic

segmentation, we need to predict the part/scene label for each point in a 3D object.

Thus, the output would be of size N × c, which also indicates that the 3D-GCN

performs point-wise classification in the task of semantic segmentation.

3.2 Receptive Fields in 3D-GCN

In 2D cases, square patches describe local patterns of images, and features are

represented by either intensity, RGB value, or high dimensional vectors. Similarly,

receptive fields of point clouds are defined to indicate various local geometry.

A 3D point cloud object with N points is denoted as P = {pn | n =

1, 2, . . . , N},pn ∈ R3. To describe the feature derived at each point in 3D-GCN,

doi:10.6342/NTU202100248

3.3. Learnable Kernels in 3D-GCN 11

we have f(p) ∈ RD denote the associated D-dimensional feature vector. To cap-

ture local geometric information of each point pn, we determine the 3D receptive

field of pn by a set of M neighboring points. As illustrated in Figure 3.1, we

denote RM
n as the receptive field of point pn with size M as:

RM
n = {pn,pm | ∀pm ∈ N (pn,M)}, (3.1)

where N (pn,M) denotes M nearest neighbors of pn based on the euclidean

distance ‖pm − pn‖2, and we have the corresponding directional vector dm,n =

pm − pn calculated for later convolution purposes, which indicates the relative

position neighboring and center points. We note that, given a 3D point cloud

object, we only need to determine the receptive fields for each point once. If the

pooling operation is performed in later stages (as discussed in Sect. 4.2), receptive

fields for the pooled point clouds at that scale needs to be constructed again. In

3D-GCN, the features within the receptive field of pn with size M is expressed

as {f(pn),f(pm) | ∀pm ∈ N (pn,M)}. These features will be calculated and

updated during the convolution operation, as later discussed.

It is worth noting that, recent models for 3D point clouds [3, 17] select neigh-

boring points for each point within a sphere with predefined radius r. While

parameter r can be tuned to properly describe the local structures of 3D point

clouds, their models are vulnerable to different point density, and cannot deal with

scale variations as we later discuss and verify in Sect. 5.

3.3 Learnable Kernels in 3D-GCN

In standard 2D CNN models, the kernel is composed of weight parameters in

grids, sharing the same patterns across image patches (as depicted in Figure 1.1a).

However, for 3D point cloud data, the data points are viewed as an unordered set,

and it is limited to extract diverse geometric features with fixed-structured kernels.

To perform convolution in 3D point cloud structures, we propose deformable

3D Graph Convolution Kernel KS , where S denotes the number of supports in that

doi:10.6342/NTU202100248

12 3. 3D Graph Convolution

kernel. More precisely, we have KS composed of S + 1 kernel points kj ∈ R3,

i.e.,

KS = {kC ,k1,k2, . . . ,kS}. (3.2)

where kC = (0, 0, 0) is the center of the kernel, and k1 to kS denote the associated

supports. Directional vectors ks = ks − kC , s = 1, 2, . . . , S are utilized in the

convolution operation.

In 2D CNN, each element in a kernel is the learned weight which describes

the spatial patterns of interest. In our 3D-GCN, we define the weight vector

w(k) ∈ RD for each kernel point k. Thus, the weighted-sum of features f(p)

using the corresponding weights would achieve the convolution operation. As

illustrated in Figure 3.1, except for kC = (0, 0, 0), the kernel in 3D-GCN is now

defined as {w(kC), (ks,w(ks)) | s = 1, 2, . . . , S}, where each element is learned

via training. Kernels are deformable due to the learnable directional vectors ks,

enabling 3D-GCN to extract complicated patterns.

Compared to 2D image patches and the CNN kernels are grid-structured, the

receptive fields RM
n and the learnable kernels KS in 3D cloud can be viewed as

simple graphs. Graph nodes are composed of point features f(p) or weight vectors

w(k). The nodes in such graphs are connected by edges, which are directional

vectors dm,n, ks, indicating the relations between nodes. Note that the support

number S of a kernel is not necessarily equal to the neighbor number M of a

receptive field RM
n , while convolution operation is well-defined in the Sect. 3.4.

3.4 3D Graph Convolution

In 2D CNN, the convolution operation can be regarded as calculating the similarity

between the 2D kernel and the associated image patch. Larger output values

indicate higher visual similarity, describing strips, curves, or semantic patterns.

With the aforementioned receptive field and kernel definitions for 3D point cloud

data, we define 3D Graph Convolution by calculating the similarity between RM
n

doi:10.6342/NTU202100248

3.4. 3D Graph Convolution 13

Figure 3.2: 3D Graph Convolution. As in (3.4), sim(pm,ks) calculates the inner

product between f(pm) and w(ks) based on the cosine similarity between dm,n

and ks. For each support ks, the largest sim output among all neighbors pm is

obtained. Summing up with 〈f(pn),w(kC)〉 produces the final convolution output

(i.e., (3.5)).

and KS , denoted as Conv(RM
n , K

S).

However, unlike 2D CNN in which both kernel and image patches are of the

same grid structures, it is not trivial to perform convolution in 3D graph structures,

where no apparent one-to-one relations between graphs are provided. Thus, to

measure the similarity between the features within the receptive field RM
n (i.e.,

f(pn),f(pm),∀pm ∈ N (pn,M) as defined in (3.1)) and weight vectors of kernel

KS centered at kC with S supports (i.e., w(kC),w(ks), ∀s = 1, 2, . . . , S), we

consider all possible pairs between (pm,ks). Thus, Conv(RM
n , K

S) in 3D-GCN

is defined as:

Conv(RM
n , K

S) =
〈
f(pn),w(kC)

〉
+ g(A), (3.3)

doi:10.6342/NTU202100248

14 3. 3D Graph Convolution

where 〈·〉 denotes the inner-product operation, and A = {sim(pm,ks) | ∀m ∈

(1,M),∀s ∈ (1, S)}. Note that the sim() function in (3.3) is defined as:

sim(pm,ks) =
〈
f(pm),w(ks)

〉 〈dm,n,ks

〉
‖dm,n‖‖ks‖

, (3.4)

which calculates the inner product between f(pm) and w(ks) based on their cosine

similarity cos θ =

〈
dm,n,ks

〉
‖dm,n‖‖ks‖ . It can be observed that large sim() value results

from large inner product in feature space RD and similar direction in euclidean

space R3. The function g in (3.3) sums up the maximum similarity sim(pm,ks)

among all neighboring points for each support ks in that kernel. With the above

definitions, the 3D Graph Convolution operation in our 3D-GCN is derived as:

Conv(RM
n , K

S) =
〈
f(pn),w(kC)

〉
+

S∑
s=1

max
m∈(1,M)

{
sim(pm,ks)

}
.

(3.5)

Recall that the neighbors M and supports S are the hyper-parameters (similar to

the kernel sizes in 2D CNN), and are flexible to be unequal in our formulation.

Figure 3.2 illustrates 3D Graph Convolution operation in our 3D-GCN.

3.5 Property analysis

3D graph convolution kernel KS is applied to every receptive fields RM
n centered

at each points pn, exhibiting weight-sharing property, which is also essential in

traditional 2D CNN. Some previous works [35, 45] extract permutation-dependent

point features, however, 3D-GCN formulates receptive fields via nearest-neighbor

algorithm, and take advantages of symmetric functions such as max(), sum()

in 3.5, these operations are permutation-invariant, which is desirable in point

cloud analysis.

While existing works like [15, 1, 3, 14, 17] report promising performances,

they typically consider global coordinates or require point cloud normalization

to alleviate such data variances, which would limit their invariance properties

doi:10.6342/NTU202100248

3.5. Property analysis 15

Figure 3.3: Illustration of the lack of invariance property. Recent models like

PointNet [1] require techniques like zero-mean normalization for 3D point cloud

representation, which might be sensitive to noisy 3D input points (as verified in

Sect. 5).

(see examples in Figure 3.3). On the other hand, convolution formulation (3.5)

of 3D-GCN utilizes directional vectors dm,n = pm − pn within RM
n instead of

global coordinates, which introduces shift-invariant property. In addition, the

similarity function in (3.4) simply calculates the cosine similarity between dm,n

and ks regardless of their lengths. Therefore, the scale-invariant property can be

jointly observed by our 3D-GCN.

Last but not the least, 3D-GCN is more robust to shape rotations, compared to

other convolution-based methods. [3, 2, 17] generally take global and/or relative

coordinates between 3D points as input features, and rotation would result in the

significant differences in their convolution outputs. Take Fig. 3.4 with support S

= 1 for our learned kernel k as an example, if k is close to the z-axis, rotation in

yaw (with respect to z-axis) would produce negligible difference when calculating

cosine similarity cos θ =

〈
d,k

〉
‖d‖‖k‖ . On the other hand, if k is away from z-axis, small

rotation variations would not result in significant changes in the associated cosine

similarities. The above observations can be supported by results and comparisons

in Sect. 5.

doi:10.6342/NTU202100248

16 3. 3D Graph Convolution

Figure 3.4: Illustration of rotation effects on 3D-GCN Directional vector d of a

3D point and the kernel k (with support number as 1), where (a) and (b) consider

the learned kernels in along and away from z-axis, respectively.

doi:10.6342/NTU202100248

Chapter 4

3D Graph Convolution Network

With the fundamental elements of 3D-GCN defined in the previous section, we

now explain how the convolution and pooling are performed for processing 3D

point cloud data, and how the classification and segmentation tasks are conducted.

4.1 3D Graph Convolution

A 3D Graph Convolution layer is composed of a pre-determined number L of

kernels KS , each with a constant support number, which can be denoted as

{KS
i |i = 1, 2, . . . , L}, and has large convolution response with diverse geom-

etry and semantics. Taking the 3D point cloud input P ∈ RN×3 with the corre-

sponding D-dimensional features F in ∈ RN×D, our 3D Graph Convolution Layer

applies (3.5) with each kernel respectively, producing output featuresFout ∈ RN×L.

Thus, each output channel i = 1, 2, . . . , L can be expressed as:

ConvLayer((P ,F in), KS
i) = (P ,Fout

i), (4.1)

where Fout
i ∈ RN×1 is the i-th channel of Fout. To initialize the convolution

and learning process for point clouds without intrinsic feature F in, we simply set

f(p) = 1,∀p ∈ P , and w(k) = 1, ∀k in the first input layer. In other words, we

only consider directional information to initialize 3D-GCN operations.

17

doi:10.6342/NTU202100248

18 4. 3D Graph Convolution Network

Figure 4.1: Graph Max-Pooling. This pooling process performs channel-wise

max-pooling from the features in the receptive field of each pn ∈ P in, followed by

randomly sampling a subset from P in with a sampling rate r.

4.2 3D Graph Max-Pooling

Pooling operation plays an important role in standard 2D CNN, which summarizes

the dominant responses within each scale for later high-level processing purposes,

resulting in fine-to-course feature extraction. In 3D-GCN, we also propose a down-

pooling operation, 3D Graph Max-Pooling, for performing similar mechanisms in

3D point clouds.

Our 3D Graph Max-Pooling layer takes the receptive field of each point RM
n ,

and applies channel-wise max-pooling to aggregate features f(p),∀p ∈ RM
n ,

which could be formulated as:

f ′i(pn) = max{f i(p) | ∀p ∈ RM
n }, i = 1, 2, . . . , D (4.2)

where the aggregated feature f ′(pn) ∈ RD contains geometric information in a

larger scale.

The aggregation operation is followed by sampling a subset of P with a sam-

pling rate r. Some works [3, 45, 48] utilized Farthest Point Sampling (FPS)

doi:10.6342/NTU202100248

4.3. Classification Model 19

technique, which iteratively select points according to its distance to others. While

guaranteeing more uniform sampling results, such algorithm is time-consuming

due to heavy computational complexity, and is not feasible in real-world appli-

cations. In 3D-GCN, we followed [49] and use Random Sampling technique,

where the subset points are sampled randomly. The technique accelerates the

process of point cloud process, which is more desirable for large point clouds, such

as those sampled from scenes. Thus, this pooling process can be formulated as:

PoolLayerr(P in,F in) = (Pout,Fout), (4.3)

where P in ∈ RN×3,Pout ∈ R(N/r)×3, and F in ∈ RN×D,Fout ∈ R(N/r)×D. As

depicted in Figure 4.1, this pooling layer enables us to learn multi-scale 3D point

cloud features, and make learning and calculation more efficient, which are crucial

factors in 3D deep learning models.

4.3 Classification Model

To train 3D-GCN to recognize 3D point cloud data as particular categories, we

apply and combine multiple 3D graph convolution and max-pooling layers. After

applied with the last 3D graph convolution layer, model obtains representative

feature by global max-pooling, which is followed by adding multi-layer perceptron

(MLP) for predicting the desirable outputs. Standard soft-max losses and back-

propagation can be calculated to learn such 3D-GCN models (see Figure 4.2a for

example architectures).

4.4 Semantic Segmentation Model

Semantic segmentation task had been noticed for decades in the fields of computer

vision. In 2D world, previous works [50, 51, 52] proposed model aggregating

cross-scale features from images, and achieve outstanding performance. Motivated

by them, we proposed a U-shaped model structure, illustrated in Fig. 4.2b. Model

doi:10.6342/NTU202100248

20 4. 3D Graph Convolution Network

learns features in various scales by down sampling points with 3D Graph Max-

pooling layer. However, fusing such features is not trivial since point number varies

in different scales due to the pooling mechanism.

We provided a solution as following. For example, features of two scales are

noted as points sets P1 ⊂ P2. For each points in P2, feature is updated by:

f ′(p2) =
(
f(p1),f(p2)

)
, ∀p2 ∈ P2 (4.4)

p1 = arg min
p
{‖p− p2‖ | ∀p ∈ P1} (4.5)

where point features in coarse scale (P1) are up-sampled to the fine scale (P2).

As a result, features from different scales are able to be fused via concatenation,

followed by next 3D graph convolution layer. Decoder architecture of model take

advantage of this mechanism, generating final dense prediction for each points.

Experiment results in Sect. 5 validates the high performance of the model.

doi:10.6342/NTU202100248

4.4. Semantic Segmentation Model 21

(a) Classification

(b) Part segmentation

Figure 4.2: Architecture of 3D-GCN for (a) classification and (b) part seg-

mentation. Note that grey and yellow blocks denote point and feature inputs,

respectively. Green arrows denote 3D Graph Convolution Layers, while green

triangles denote the Graph Max-Pooling layer. We have MLP and outputs de-

noted in brown and blue, respectively. For part segmentation in (b), blocks in

pink denote the up-sampled feature maps from the consecutive layer, which are

concatenated with those at the layer of interest (shown in yellow) as the feature

map for performing 3D graph convolution.

doi:10.6342/NTU202100248

22 4. 3D Graph Convolution Network

doi:10.6342/NTU202100248

Chapter 5

Experiments

5.1 3D Model Classification

5.1.1 Dataset

We evaluate 3D-GCN for 3D shape classification on the ModelNet40 [7] dataset,

which consists of 12311 CAD models of 40-categories, splitting into 9843 3D

objects for training and 2468 for testing. To generate point clouds for training and

testing, we sample 1024 points uniformly from the surface of each object without

any normalization during training and testing.

5.1.2 Network configuration

Our 3D-GCN model structure for classification is shown in Figure 4.2a. The

feature-extracting part is composed of 5 3D graph convolution layers, with kernel

numbers (32, 64, 128, 256, 1024) from low to high-level layers. We set the support

number S = 1 for our kernels, and neighbor number M = 25 for the receptive

fields. There are 2 3D Graph max-pooling layers in model structure, all with a fixed

sample ratio r = 4. Following PointNet [1], the output feature of last 3D Graph

Convolution Layer in our 3D-GCN is applied with global max-pooling, resulting a

final feature representation of 1024 dimension. For classification, the MLP is of 2

23

doi:10.6342/NTU202100248

24 5. Experiments

Method input #points Acc.(%)

ECC [12] xyz 1k 87.4

PointNet [1] xyz 1k 89.2

Kd-Net (depth=10) [35] xyz 1k 90.6

PointNet++ [3] xyz 1k 90.7

KCNet [14] xyz 1k 91.0

MRTNet [36] xyz 1k 91.2

DGCNN [2] xyz 1k 92.9

SO-Net [53] xyz 2k 90.9

KPConv rigid [17] xyz 6.8k 92.9

SPH3D-GCN [46] xyz 10k 92.1

PointNet++ [3] xyz, normal 5k 91.9

SO-Net [53] xyz, normal 5k 93.4

Ours xyz 1k 92.1

Table 5.1: Shape classification results on ModelNet40. Note that “normal” de-

notes the normal vectors of object surfaces. We see that our method achieved

comparable or improved results with inputs of size only 1k points.

layers, where Batchnorm and Dropout with drop ratio of 0.3 applied after the fist

layer of MLP. We train our network with batch size 8, learning rate 0.0001 which

is decayed half every 10 epochs, using the ADAM optimizer.

doi:10.6342/NTU202100248

5.1. 3D Model Classification 25

(a
)

(b
)

(c
)

Fi
gu

re
5.

1:
E

va
lu

at
io

n
of

in
va

ri
an

ce
pr

op
er

tie
s

on
M

od
el

N
et

40
.(

a)
Sh

ift
:

O
bj

ec
ts

ra
nd

om
ly

sh
if

te
d

w
ith

in
a

di
st

an
ce

al
on

g
al

l

di
re

ct
io

ns
(w

ith
un

sh
if

te
d

ve
rs

io
n

de
no

te
d

as
0)

,(
b)

Sc
al

e:
O

bj
ec

ts
sc

al
ed

to
di

ff
er

en
ts

iz
es

(w
ith

th
e

or
ig

in
al

si
ze

de
no

te
d

as
1)

,(
c)

R
ot

at
io

n:
O

bj
ec

ts
ro

ta
te

d
al

on
g

th
e

up
w

ar
d

di
re

ct
io

n
(d

eg
re

e
is

de
no

te
d

in
th

is
fig

ur
e)

.N
ot

e
th

at
D

G
C

N
N

in
[2

]w
as

pr
e-

tr
ai

ne
d

on

ob
je

ct
s

w
ith

sc
al

e
va

ri
an

ts
(i

.e
.,

sc
al

e
w

ith
in

[0
.5

,1
.5

])
,b

ut
it

ca
nn

ot
ha

nd
le

un
se

en
sc

al
e

va
ri

an
ts

as
sh

ow
n

in
(b

).

doi:10.6342/NTU202100248

26 5. Experiments

5.1.3 Results and Discussions

The classification results of our 3D-GCN are listed in Table 5.1, in which we also

compare our results with a number of recent approaches including PointNet [1],

PointNet++ [3], DGCNN [2] and KPConv [17]. From this table, we see that our 3D-

GCN is generally comparable or performs favorably against several state-of-the-art

models when the test data are without any shift or scale variations presented.

To further evaluate the invariance properties of our model, we compare to the

above models using 3D point cloud data with 1024 points, normalized to a unit

sphere with zero mean, without data augmentation. We test them under three

different situations: coordinate shift, shape scaling, and shape rotation. The results

are shown in Figure 5.1a, 5.1b, and 5.1c, respectively. From the results shown in

these figures, we see that the performance of PointNet and DGCNN significantly

dropped with coordinate shifts, which is caused by extracting features from global

coordinates. When scale variants are presented, only our model was able to perform

recognition with satisfactory performances. As for shape rotation, better invariance

ability was exhibited by our 3D-GCN.

We also test the robustness of our 3D-GCN to the presence of outlier points,

and show the results in Figure 5.2. Note that methods to be compared in Figure 5.2

require point cloud data to be normalized in a unit sphere before performing

inference. Thus, as illustrated in Figure 3.3, such methods were not able to

produce satisfactory results. On the other hand, 3D-GCN does not require such

normalization during feature extraction. Therefore, our classification accuracy was

clearly above those reported by other approaches (see Figure 5.2a).

doi:10.6342/NTU202100248

5.2. 3D Model Part Segmentation 27

5.2 3D Model Part Segmentation

5.2.1 Dataset

To evaluate the use of 3D-GCN for part segmentation, we consider the ShapeNet-

Part dataset [54], which consists of 16881 CAD models from 16 object types, with

each point in an object corresponding to a part label. With a total of 50 categories,

2 to 6 part categories are available for each object type. In our work, we sample

2048 points from each 3D model for training and testing.

5.2.2 Network configuration

The model architecture is shown in Figure 4.2b. The feature-extracting part is

composed of 9 layers with 256 kernels, and two 3D Graph Max-pooling layers with

a fixed sample ratio r = 4 are deployed. In the decoder architecture, features from

coarse scale are up-sampled and concatenated, which is formulated as equation 4.4.

We set the support number S = 1 for each kernel, and neighbor number M = 50

for the receptive field in 3D-GCN. Following [1, 2], we also have one-hot vectors

indicating object type concatenated to the features, while single model was trained

to classify 50 part types. We train the 3D-GCN with learning rate 0.001 and

decayed half every 10 epochs, using the ADAM optimizer.

5.2.3 Results

We evaluate the segmentation performance in terms of mean intersection over

union (mIoU), which is the average IoU of each part type in that object category.

Note that the mIoU of each category is calculated by averaging mIoUs of all the

shape instances. More specifically, class mIoU is the average of mIoU over all

16 categories, while instance mIoU is the average of mIoU over all instances.

The part segmentation results are listed in Table 5.2. Note that without using

global coordinates, our 3D-GCN achieved comparable or better results than recent

doi:10.6342/NTU202100248

28 5. Experiments

approaches did.

Furthermore, we demonstrate the robustness of 3D-GCN by visualizing the

segmentation result under different transformations of an object. We shift the

center/coordinates of each object by 100 and enlarge object size by 10 times, and

Table 5.3 compares our segmentation visualization with others. We found that

KPConv [17] and PointNet++ [3] failed to properly segment the corresponding

parts in all cases. On the other hand, our 3D-GCN exhibited very promising

invariance capabilities regardless of shift and scale variations. The quantitative

results are reported in Table 5.4.

doi:10.6342/NTU202100248

5.2. 3D Model Part Segmentation 29

(a) Classification accuracy with outliers.

(b) Point cloud visualization with outliers.

Figure 5.2: Effects on the presence of outlier points for the ModelNet40

dataset. Outlier points of different ratio numbers are added to the 3D point

cloud input. Take a point cloud input with 1000 points for example, 10% indicates

additional 100 outliers introduced. Note that all the outlier points are sampled from

a fixed Gaussian distribution.

doi:10.6342/NTU202100248

30 5. Experiments

M
et

ho
d

cl
as

s

m
Io

U

in
st

an
ce

m
Io

U

ai
r

pl
an

e
ba

g
ca

p
ca

r
ch

ai
r

ea
r

ph
on

e
gu

ita
r

kn
if

e
la

m
p

la
pt

op
m

ot
or

bi
ke

m
ug

pi
st

ol
ro

ck
et

sk
at

e

bo
ar

d
ta

bl
e

K
d-

N
et

[3
5]

77
.4

82
.3

80
.1

74
.6

74
.3

70
.3

88
.6

73
.5

90
.2

87
.2

81
.0

84
.9

87
.4

86
.7

78
.1

51
.8

69
.9

80
.3

M
R

T
N

et
[3

6]
79

.3
83

.0
81

.0
76

.7
87

.0
73

.8
89

.1
67

.6
90

.6
85

.4
80

.6
95

.1
64

.4
91

.8
79

.7
87

.0
69

.1
80

.6

Po
in

tN
et

[1
]

80
.4

83
.7

83
.4

78
.7

82
.5

74
.9

89
.6

73
.0

91
.5

85
.9

80
.8

95
.3

65
.2

93
.0

81
.2

57
.9

72
.8

80
.6

K
C

N
et

[1
4]

82
.2

84
.7

82
.8

81
.5

86
.4

77
.6

90
.3

76
.8

91
.0

87
.2

84
.5

95
.5

69
.2

94
.4

81
.6

60
.1

75
.2

81
.3

R
S-

N
et

[3
4]

81
.4

84
.9

82
.7

86
.4

84
.1

78
.2

90
.4

69
.3

91
.4

87
.0

83
.5

95
.4

66
.0

92
.6

81
.8

56
.1

75
.8

82
.2

SO
-N

et
[5

3]
81

.0
84

.9
82

.8
77

.8
88

.0
77

.3
90

.6
73

.5
90

.7
83

.9
82

.8
94

.8
69

.1
94

.2
80

.9
53

.1
72

.9
83

.0

Po
in

tN
et

++
[3

]
81

.9
85

.1
82

.4
79

.0
87

.7
77

.3
90

.8
71

.8
91

.0
85

.9
83

.7
95

.3
71

.6
94

.1
81

.3
58

.7
76

.4
82

.6

D
G

C
N

N
[2

]
82

.3
85

.2
84

.0
83

.4
86

.7
77

.8
90

.6
74

.7
91

.2
87

.5
82

.8
95

.7
66

.3
94

.9
81

.1
63

.5
74

.5
82

.6

K
PC

on
v

de
fo

rm
[1

7]
85

.1
86

.4
84

.6
86

.3
87

.2
81

.1
91

.1
77

.8
92

.6
88

.4
82

.7
96

.2
78

.1
95

.8
85

.4
69

.0
82

.0
83

.6

O
ur

s
82

.7
85

.3
82

.8
86

.1
84

.8
79

.2
91

.1
74

.9
91

.6
87

.4
83

.6
95

.8
69

.3
94

.9
82

.4
61

.1
75

.6
82

.2

Ta
bl

e
5.

2:
Pa

rt
se

gm
en

ta
tio

n
re

su
lts

on
Sh

ap
eN

et
Pa

rt
.N

ot
e

th
at

w
hi

le
ou

rm
et

ho
d

ac
hi

ev
ed

co
m

pa
ra

bl
e

re
su

lts
as

st
at

e-
of

-t
he

-a
rt

m
od

el
s

di
d,

ou
rm

od
el

co
m

pl
ex

ity
w

as
si

gn
ifi

ca
nt

ly
le

ss
th

an
ot

he
rs

as
di

sc
us

se
d

in
Se

ct
.6

.5
.

doi:10.6342/NTU202100248

5.2. 3D Model Part Segmentation 31

Ta
bl

e
5.

3:
V

is
ua

liz
at

io
n

of
pa

rt
se

gm
en

ta
tio

n
on

Sh
ap

eN
et

Pa
rt

.
W

e
co

m
pa

re
ou

r
se

gm
en

ta
tio

n
re

su
lts

w
ith

th
os

e
pr

od
uc

ed
by

Po
in

tN
et

++
[3

]a
nd

D
G

C
N

N
[2

].
In

ad
di

tio
n,

sh
ift

(b
y

10
0)

,s
ca

le
(b

y
10

tim
es

)a
nd

ro
ta

tio
n

(b
y

30
de

gr
ee

)v
ar

ia
tio

ns
ar

e
pr

es
en

te
d

fo
r

ev
al

ua
tin

g
th

e
in

va
ri

an
ce

ca
pa

ci
ty

fo
re

ac
h

m
od

el
.

doi:10.6342/NTU202100248

32 5. Experiments

Shift Scale Rotation

Method 1 5 10 50 100 0.1 0.5 1.5 5 10 30 60 90 120 150

PointNet [1] 23.7 17.1 16.1 16.0 15.8 30.8 66.6 73.1 40.8 35.1 68.0 58.5 54.5 50.8 50.0

PointNet++ [3] 43.3 27.9 23.9 17.6 15.1 29.1 54.7 73.8 38.8 36.2 74.5 66.6 62.0 58.8 58.0

DGCNN [2] 45.5 22.4 19.4 16.8 16.1 37.9 69.2 76.9 50.5 27.4 72.5 67.0 64.2 61.1 60.6

KPConv [17] 36.8 23.1 22.2 21.1 20.9 30.5 46.0 67.3 51.2 48.9 72.2 61.1 51.4 47.2 42.7

Ours 82.2 82.5 82.1 82.5 82.5 82.4 82.2 82.4 82.4 82.4 80.6 74.9 68.6 65.5 65.0

Table 5.4: Part segmentation in terms of class mIoU with shift, scale and

rotation variations. Note that the 3D model is rotated around the y-axis, which is

the upward direction.

5.3 Scene Segmentation

5.3.1 Dataset

We consider the Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) [55],

which consists of point clouds sampled from 6 different indoor area, containing

272 rooms in total. Each point belongs to one of 13 semantic categories, including

ceiling, floor, chair, wall ... etc. We followed the setting of [1, 2], where all indoor

areas are split into 1m× 1m blocks, and each point is represented as a 9D vector

of XYZ, RGB and normalized location in the room (from 0 to 1). 4096 points for

each block are sampled during training and testing.

5.3.2 Network configuration

The model architecture is shown in Figure 4.2b, which is very similar to the one

used in part segmentation task. The model is composed of 9 convolution layers

with 160 kernels and 2 graph max-pooling layers. Batch normalization is applied

after each convolution layer, and batch size equals 4 during training. We trained

the model with learning rate 0.0001 and ADAM optimizer for total 50 epochs.

doi:10.6342/NTU202100248

5.3. Scene Segmentation 33

M
et

ho
d

A
cc

ur
ac

y
m

Io
U

(*
)

m
Io

U
ce

ili
ng

(2
1.

7%
)

flo
or

(1
8.

9%
)

w
al

l

(2
7.

4%
)

be
am

(0
.0

%
)

co
lu

m
n

(1
.4

%
)

w
in

do
w

(3
.0

%
)

do
or

(3
.4

%
)

ta
bl

e

(3
.5

%
)

ch
ai

r

(2
.0

%
)

so
fa

(0
.3

%
)

bo
ok

ca
se

(8
.7

%
)

bo
ar

d

(1
.1

%
)

cl
ut

te
r

(8
.4

%
)

Po
in

tN
et

[1
]

79
.0

-
42

.2
88

.9
96

.3
69

.1
0.

4
6.

2
42

.7
14

.0
56

.1
51

.0
24

.3
44

.6
22

.1
33

.1

Po
in

tN
et

++
[3

]
83

.8
-

51
.5

91
.4

97
.9

74
.3

0.
0

3.
7

48
.9

36
.3

69
.4

76
.2

26
.5

53
.5

49
.3

41
.9

D
G

C
N

N
[2

]
83

.2
-

49
.0

91
.1

97
.3

74
.5

0.
0

11
.9

49
.5

33
.5

66
.9

69
.4

20
.5

47
.5

34
.7

40
.8

O
ur

s
84

.6
51

.9
51

.9
91

.4
97

.1
75

.9
0.

1
22

.3
43

.5
30

.1
71

.5
79

.4
21

.9
53

.7
42

.9
44

.9

A
re

a
5

M
et

ho
d

A
cc

ur
ac

y
m

Io
U

(*
)

m
Io

U
ce

ili
ng

(2
1.

4%
)

flo
or

(1
9.

0%
)

w
al

l

(2
5.

6%
)

be
am

(1
.8

%
)

co
lu

m
n

(1
.7

%
)

w
in

do
w

(2
.0

%
)

do
or

(5
.5

%
)

ta
bl

e

(3
.0

%
)

ch
ai

r

(3
.6

%
)

so
fa

(0
.4

%
)

bo
ok

ca
se

(5
.1

%
)

bo
ar

d

(1
.1

%
)

cl
ut

te
r

(9
.9

%
)

Po
in

tN
et

[1
]

79
.7

47
.7

49
.9

89
.5

93
.9

68
.3

42
.0

25
.9

45
.2

52
.1

53
.9

41
.2

24
.0

41
.5

32
.7

38
.1

Po
in

tN
et

++
[3

]
83

.5
-

57
.6

91
.7

93
.9

73
.5

54
.7

20
.7

53
.0

57
.0

63
.0

59
.3

36
.4

49
.0

49
.2

47
.0

D
G

C
N

N
[2

]
83

.4
56

.1
56

.0
92

.0
94

.5
73

.9
50

.4
32

.5
54

.9
59

.2
62

.5
53

.9
16

.6
45

.7
46

.3
45

.4

O
ur

s
85

.8
60

.8
60

.8
91

.7
95

.5
77

.2
53

.0
38

.4
52

.3
59

.0
67

.6
70

.8
28

.1
51

.5
51

.9
53

.2

6-
fo

ld

Ta
bl

e
5.

5:
Sc

en
e

se
gm

en
ta

tio
n

on
S3

D
IS

.T
he

re
su

lts
of

ar
ea

5
an

d
6-

fo
ld

ar
e

in
th

e
up

pe
r

an
d

lo
w

er
ta

bl
es

,r
es

pe
ct

iv
el

y.
A

ll
th

e

m
et

ho
ds

ar
e

re
pr

od
uc

ed
w

ith
sa

m
e

da
ta

pr
oc

es
si

ng
,t

ra
in

in
g

an
d

ev
al

ua
tio

n
pr

oc
ed

ur
es

,w
hi

le
th

e
re

su
lts

of
or

ig
in

al
pa

pe
ra

re
al

so

sh
ow

n
in

co
lu

m
n

m
Io

U
(*

).
Fo

re
ac

h
ob

je
ct

ca
te

go
ry

,t
he

pr
op

or
tio

n
of

th
e

w
ho

le
da

ta
se

ti
s

de
no

te
d

as
(x

%
),

w
ith

th
e

Io
U

sc
or

es
ar

e

sh
ow

n
in

ea
ch

en
tr

y.

doi:10.6342/NTU202100248

34 5. Experiments

Ta
bl

e
5.

6:
V

is
ua

liz
at

io
n

of
sc

en
e

se
gm

en
ta

tio
n.

Fr
om

le
ft

to
ri

gh
t,

w
e

sh
ow

th
e

in
pu

ts
ce

ne
,g

ro
un

d
tr

ut
h

se
gm

en
ta

tio
n,

th
e

re
su

lts

pr
od

uc
d

by
Po

in
tN

et
[1

],
Po

in
tN

et
++

[3
],

D
G

C
N

N
[2

],
an

d
3D

-G
C

N
,r

es
pe

ct
iv

el
y.

N
ot

e
th

at
ea

ch
se

m
an

tic
ca

te
go

ry
is

ill
us

tr
at

ed
in

a

di
st

in
ct

co
lo

r,
w

hi
le

th
e

ca
te

go
ri

es
of

ce
ili

ng
,a

nd
w

al
la

re
no

ts
ho

w
n

fo
rv

is
ua

liz
at

io
n

cl
ar

ity
.

doi:10.6342/NTU202100248

5.3. Scene Segmentation 35

5.3.3 Results

We evaluated the performance on Area 5 explicitly and 6-fold validation over six

areas, and results are shown in Table 5.5. Note that it is a common practice to

separately analyze performance on Area 5, because this area is in the building that

does not contain the other five areas, therefore it could be used to measure the

generalization ability. For [1, 3, 2], we showed the performance reported in their

paper, and the reproduced results are also listed. To reproduce, data processing and

training details followed the same settings for fairness. We compare the overall

accuracy, IoU score for each categories, and their mean (i.e. mIoU) in Table 5.5.

Since 3D-GCN is able to describe geometrical information with deformabel

kernels, and provided properties such as shift- and scale-invariance, our algorithm

is preferable in scene segmentation tasks, where multiple objects are contained

in a scene and normalization operation can not be applied to each object. From

Table 5.5, all methods perform similar on ceiling and floor, since they can be

easily classified by the location in the room. However, 3D-GCN outperforms [1,

3, 2] with a large margin on categories like column, table and chair, which share

category-related shape information but are distributed in different positions in

rooms. Furthermore, our overall mIoU score outperforms others, which indicates

that 3D-GCN has stronger capability to recognize local geometry.

doi:10.6342/NTU202100248

36 5. Experiments

doi:10.6342/NTU202100248

Chapter 6

Ablation Study

6.1 Neighbor number M in receptive fields.

We now conduct experiments on 3D-GCN by varying the neighbor number when

constructing the receptive fields in 3D-GCN. The results are shown in Table 6.1.

From this table, we see that insufficient or excessive neighbor numbers would

affect the performance of 3D-GCN in describing local structural information of

3D point clouds, thus moderate neighbor number leads to better performance.

6.2 Support number S in kernels

We conduct experiments on 3D-GCN by varying the support number S of the

proposed learnable kernels. The results are shown in Table 6.2. From this table, we

see that kernels with more support numbers (e.g., S = 3 and 5) generally showed

comparable classification accuracy, the performance difference was marginal. More

importantly, the model complexity would grow significantly with more support

numbers, leading to large memory and computation loads. As a result, S = 1 in

our work is a reasonable choice.

37

doi:10.6342/NTU202100248

38 6. Ablation Study

Neighboring number M 5 10 25 50

ModelNet40(%) 87.7 90.4 92.1 91.4

Table 6.1: Effects on shape classification on ModelNet40 with varying neigh-

boring number. Note that insufficient numbers of neighbors are not expected

to properly represent the receptive fields, while the performances would be less

sensitive to larger numbers due to our learnable kernels.

Support number S 1 3 5

#params(M) 0.89 1.51 2.13

ModelNet10 (%) 93.3 93.9 93.6

ModelNet40 (%) 91.7 91.5 91.4

Table 6.2: Performances of shape classification on ModelNet10 and Model-

Net40 with varying support number S

6.3 Learning of directional vector ks for each ker-

nel.

To demonstrate the power of learnable/deformable kernels in 3D-GCN, we consider

three possible uses of directional vectors ks in kernelKS (we fix the support number

S as 3). We first consider the inner product between the receptive field and the

kernel as simply a correlation between the associated features, regardless of their

geometry/cosine similarity. That is, (3.4) is simply replaced by sim(pm,ks) =〈
f(pm),w(ks)

〉
. The resulting accuracy is shown in the first column in Table 6.3.

We next consider and assign 3 unit vectors along each axis (e.g., (1, 0, 0) along

x-axis) as the 3 directional vectors ks. Since these vectors are not learnable, and

results shown in the second column of Table 6.3 was not satisfactory either. Finally,

as shown in the last column of the table, we verify that the use of our learnable ks

doi:10.6342/NTU202100248

6.4. Aggregation function 39

Directional vector A B C

ModelNet10(%) 89.5 92.2 93.9

ModelNet40(%) 90.8 91.0 91.5

Table 6.3: Effects on shape classification using learnable directional vector or

not. A: no directional information, B: assign three unit vectors (along 3 axes) as

ks, and C: our learnable directional vectors.

ModelNet40 ShapeNetPart S3DIS

Function Acc.(%) class mIoU(%) mIoU(%)

mean 89.5 80.2 58.3

max 92.1 82.7 60.8

Table 6.4: Effect of the aggregation function. Max- and mean- aggregation

function are evaluated in the tasks of classification, part-segmentation, and scene-

segmentation. We see that max-aggregation is preferable for all tasks.

would be desirable. Note that directional information is important for extracting

geometric information, and learnable ks makes kernel deformable and fitting the

object of interest, which is why improved recognition performance can be achieved.

6.4 Aggregation function

In section 3.4, 3D graph convolution is formulated as equation 3.5, where the simi-

larity values sim(., .) are aggregated by selecting maximum value for each kernel

supports. We validated the design by experimenting mean value for aggregation

instead, and the results are shown in Table 6.4. For classification and segmentation

tasks, max-aggregation outperforms mean-aggregation. We conclude that the max

operation is able to better preserve information in feature extracting procedure,

sharing similar concept with the design of max-pooling layers in conventional 2D

doi:10.6342/NTU202100248

40 6. Ablation Study

ModelNet40 ShapeNetPart S3DIS

Method #params(M) Time(s) Acc(%) #params(M) Time(s) class mIoU(%) #params(M) Time(s) mIoU(%)

PointNet [1] 3.5 0.17 89.2 1.67 0.17 80.4 3.53 0.18 49.9

PointNet++ [3] 1.48 0.33 91.9 1.74 0.36 81.9 0.97 0.52 57.6

DGCNN [2] 1.81 0.18 92.9 1.46 0.18 82.3 0.99 0.18 56.0

Ours 0.89 0.17 92.1 1.64 0.21 82.7 0.58 0.23 60.8

Table 6.5: Number of parameters in different models for various tasks. The

table list the parameter number in millions (M) and inference time for each model,

while the performances are also shown.

CNN.

6.5 Visualization and Complexity analysis

In Figure 6.1, we visualize the points of an object which have large response

values at each layer of our 3D-GCN. From low to high-level layers, we can see

that responses were shifted from point to part levels, which confirms our ability in

processing and summarizing 3D information across scales, which is equivalent to

the use of 2D CNN in describing image data. On the other hand, we compare the

number of parameters of recent 3D point cloud models, and list the comparison

results in Table 6.5. From this table, we see that our model achieves comparable

recognition performances as state-of-the-art models did, while our model required

the fewest amount of parameters. It can be seen that our 3D-GCN performs

favorably against recent approaches with only about half parameters required. This

confirms both effectiveness and efficiency of our proposed 3D-GCN.

doi:10.6342/NTU202100248

6.5. Visualization and Complexity analysis 41

Figure 6.1: Example kernel responses in different layers (segmentation on

ShapeNetPart). Note that points with larger responses are colored in darker red.

As expected, the dominant responses are shifted from point (low) to part (high)

levels in 3D-GCN.

doi:10.6342/NTU202100248

42 6. Ablation Study

doi:10.6342/NTU202100248

Chapter 7

Conclusion

In this work, we introduced 3D-GCN which learns geometrical information of

3D point clouds across scales, and thus exhibits properties of shift and scale

invariance. The technical contributions of our 3D-GCN lie in the design and

learning of learnable kernels in 3D graphs, and the proposed scheme for graph

max-pooling from 3D point clouds. While our model achieved comparable or

improved classification and segmentation performances than recent state-of-the-art

models did, we confirmed that our model is invariant to shift and scale changes

and is computationally more efficient.

43

doi:10.6342/NTU202100248

44 7. Conclusion

doi:10.6342/NTU202100248

Reference

[1] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep Learning on

Point Sets for 3D Classification and Segmentation,” in Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017. v, x,

1, 6, 7, 14, 15, 23, 24, 26, 27, 30, 32, 33, 34, 35, 40

[2] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon,

“Dynamic graph cnn for learning on point clouds,” Acm Transactions On

Graphics (tog), 2019. vi, ix, x, 2, 7, 15, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35,

40

[3] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep Hierarchical

Feature Learning on Point Sets in a Metric Space,” in Proceedings of Neural

Information Processing Systems (NIPS), 2017. ix, x, 7, 11, 14, 15, 18, 24, 26,

28, 30, 31, 32, 33, 34, 35, 40

[4] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum PointNets for 3D

Object Detection from RGB-D Data,” in Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018. 1

[5] W. Luo, B. Yang, and R. Urtasun, “Fast and Furious: Real Time End-to-End

3D Detection, Tracking and Motion Forecasting with a Single Convolutional

Net,” in Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 1

45

doi:10.6342/NTU202100248

46 REFERENCE

[6] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3D-R2N2: A

Unified Approach for Single and Multi-view 3D Object Reconstruction,” in

Proceedings of European Conference on Computer Vision (ECCV), 2016. 1,

5

[7] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D

ShapeNets: A Deep Representation for Volumetric Shapes,” in Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2015. 1, 5, 23

[8] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst, “Geodesic con-

volutional Neural Networks on Riemannian Manifolds,” in Proceedings of

IEEE International Conference on Computer Vision (ICCV), 2015. 1, 2

[9] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein,

“Geometric Deep Learning on Graphs and Manifolds Using Mixture Model

CNNs,” in Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017. 1

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. 1, 5

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Proceedings of Neural Information

Processing Systems (NIPS), 2012. 1, 5

[12] M. Simonovsky and N. Komodakis, “Dynamic Edge-Conditioned Filters

in Convolutional Neural Networks on Graphs,” in Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 2, 7,

24

doi:10.6342/NTU202100248

REFERENCE 47

[13] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein, “Learning Shape Corre-

spondence with Anisotropic Convolutional Neural Networks,” in Advances

in Neural Information Processing Systems, 2016. 2

[14] Y. Shen, C. Feng, Y. Yang, and D. Tian, “Mining Point Cloud Local Struc-

tures by Kernel Correlation and Graph Pooling,” in Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 2, 7,

14, 24, 30

[15] Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-Shape Convolutional Neural

Network for Point Cloud Analysis,” in Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2019. 2, 7, 14

[16] M. Atzmon, H. Maron, and Y. Lipman, “Point Convolutional Neural Networks

by Extension Operators,” arXiv preprint arXiv:1803.10091, 2018. 2, 5

[17] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J.

Guibas, “KPConv: Flexible and Deformable Convolution for Point Clouds,”

in Proceedings of IEEE International Conference on Computer Vision (ICCV),

2019. 2, 7, 11, 14, 15, 24, 26, 28, 30, 32

[18] H.-Y. Meng, L. Gao, Y. Lai, and D. Manocha, “VV-Net: Voxel VAE Net

with Group Convolutions for Point Cloud Segmentation,” arXiv preprint

arXiv:1811.04337, 2018. 5

[19] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural Network

for Real-time Object Recognition,” in Proceedings of IEEE International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2015. 5

[20] X. Roynard, J.-E. Deschaud, and F. Goulette, “Classification of Point

Cloud Scenes with Multiscale Voxel Deep Network,” arXiv preprint

arXiv:1804.03583, 2018. 5

doi:10.6342/NTU202100248

48 REFERENCE

[21] G. Riegler, A. Osman Ulusoy, and A. Geiger, “OctNet: Learning Deep 3D

Representations at High Resolutions,” in Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017. 5

[22] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-CNN: Octree-

based Convolutional Neural Networks for 3D Shape Analysis,” ACM Trans-

actions on Graphics (TOG), vol. 36, no. 4, p. 72, 2017. 5

[23] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view Convolu-

tional Neural Networks for 3D Shape Recognition,” in Proceedings of IEEE

International Conference on Computer Vision (ICCV), 2015. 5

[24] A. Kanezaki, Y. Matsushita, and Y. Nishida, “RotationNet: Joint Object

Categorization and Pose Estimation Using Multiviews from Unsupervised

Viewpoints,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018. 5

[25] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas, “Volumetric

and Multi-view CNNs for Object Classification on 3D Data,” in Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2016. 5

[26] M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou, “Tangent Convolutions

for Dense Prediction in 3D,” in Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. 5

[27] S. Belongie, J. Malik, and J. Puzicha, “Shape context: A new descriptor for

shape matching and object recognition,” in Proceedings of Neural Information

Processing Systems (NIPS), 2001. 6

[28] H. Ling and D. W. Jacobs, “Shape classification using the inner-distance,”

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

2007. 6

doi:10.6342/NTU202100248

REFERENCE 49

[29] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (fpfh)

for 3d registration,” in Proceedings of IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2009. 6

[30] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning point cloud

views using persistent feature histograms,” in Proceedings of IEEE Interna-

tional Conference on Intelligent Robots and Systems (IROS). IEEE, 2008.

6

[31] F. Tombari, S. Salti, and L. Di Stefano, “A combined texture-shape descriptor

for enhanced 3d feature matching,” in Proceedings of IEEE International

Conference on Image Processing (ICIP). IEEE, 2011. 6

[32] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3d object recognition

in cluttered scenes with local surface features: a survey,” IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI), 2014. 6

[33] O. Van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or, “A survey on shape

correspondence,” in Computer Graphics Forum. Wiley Online Library, 2011.

6

[34] Q. Huang, W. Wang, and U. Neumann, “Recurrent Slice Networks for 3D Seg-

mentation of Point Clouds,” in Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. 6, 30

[35] R. Klokov and V. Lempitsky, “Escape From Cells: Deep Kd-Networks for

the Recognition of 3D Point Cloud Models,” in Proceedings of IEEE Interna-

tional Conference on Computer Vision (ICCV), 2017. 6, 14, 24, 30

[36] M. Gadelha, R. Wang, and S. Maji, “Multiresolution Tree Networks for

3D Point Cloud Processing,” in Proceedings of European Conference on

Computer Vision (ECCV), 2018. 6, 24, 30

doi:10.6342/NTU202100248

50 REFERENCE

[37] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph

Convolutional Networks,” arXiv preprint arXiv:1609.02907, 2016. 7

[38] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional Neural

Networks on Graphs with Fast Localized Spectral Filtering,” in Proceedings

of Neural Information Processing Systems (NIPS), 2016. 7

[39] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning

on large graphs,” in Proceedings of Neural Information Processing Systems

(NIPS), 2017. 7

[40] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,

“Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017. 7

[41] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A compre-

hensive survey on graph neural networks,” IEEE Transactions on Neural

Networks and Learning Systems, 2020. 7

[42] N. Verma, E. Boyer, and J. Verbeek, “FeastNet: Feature-steered Graph

Convolutions for 3D Shape Analysis,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2018. 7

[43] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and D. Cohen-Or,

“Meshcnn: a network with an edge,” ACM Transactions on Graphics (TOG),

2019. 7

[44] B.-S. Hua, M.-K. Tran, and S.-K. Yeung, “Pointwise Convolutional Neural

Networks,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018. 7

[45] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN: Convolution

on X-Transformed Points,” in Advances in Neural Information Processing

Systems, 2018. 7, 14, 18

doi:10.6342/NTU202100248

REFERENCE 51

[46] H. Lei, N. Akhtar, and A. Mian, “Spherical kernel for efficient graph con-

volution on 3d point clouds,” IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 2020. 7, 8, 24

[47] Z. Zhang, B.-S. Hua, and S.-K. Yeung, “Shellnet: Efficient point cloud con-

volutional neural networks using concentric shells statistics,” in Proceedings

of IEEE International Conference on Computer Vision (ICCV), 2019. 7, 8

[48] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks on 3d

point clouds,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2019. 18

[49] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and

A. Markham, “Randla-net: Efficient semantic segmentation of large-scale

point clouds,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2020. 19

[50] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for

semantic segmentation,” in Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2015. 19

[51] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” in International Conference on Medical

image computing and computer-assisted intervention. Springer, 2015. 19

[52] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional

encoder-decoder architecture for image segmentation,” IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI), 2017. 19

[53] J. Li, B. M. Chen, and G. Hee Lee, “SO-Net: Self-Organizing Network for

Point Cloud Analysis,” in Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. 24, 30

doi:10.6342/NTU202100248

52 REFERENCE

[54] L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang,

A. Sheffer, and L. Guibas, “A Scalable Active Framework for Region Anno-

tation in 3D Shape Collections,” SIGGRAPH Asia, 2016. 27

[55] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and

S. Savarese, “3d semantic parsing of large-scale indoor spaces,” in Pro-

ceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016. 32

	Abstract
	List of Figures
	List of Tables
	Introduction
	Related work
	Multi-view and voxelized methods
	Point-cloud based methods
	Geometry-based methods

	3D Graph Convolution
	Notations
	Receptive Fields in 3D-GCN
	Learnable Kernels in 3D-GCN
	3D Graph Convolution
	Property analysis

	3D Graph Convolution Network
	3D Graph Convolution
	3D Graph Max-Pooling
	Classification Model
	Semantic Segmentation Model

	Experiments
	3D Model Classification
	Dataset
	Network configuration
	Results and Discussions

	3D Model Part Segmentation
	Dataset
	Network configuration
	Results

	Scene Segmentation
	Dataset
	Network configuration
	Results

	Ablation Study
	Neighbor number M in receptive fields.
	Support number S in kernels
	Learning of directional vector ks for each kernel.
	Aggregation function
	Visualization and Complexity analysis

	Conclusion
	Reference

