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Abstract

Point clouds are among the popular geometry representations in 3D vision. How-
ever, unlike 2D images with pixel-wise layouts, such representations containing
unordered data points which make the processing and understanding the asso-
ciated semantic information quite challenging. Although a number of previous
works attempt to analyze point clouds and achieve promising performances, their
performances would degrade significantly when data variations like shift and
scale changes are presented. In this thesis, we propose 3D Graph Convolution
Networks (3D-GCN), which is designed to extract local 3D features from point
clouds across scales, while shift and scale-invariance properties are introduced.
The novelty of our 3D-GCN lies in the definition of learnable kernels with a graph
max-pooling mechanism. I show that 3D-GCN can be applied to 3D classifica-
tion and segmentation tasks, with ablation studies and visualizations verifying the

design of 3D-GCN.
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Chapter 1

Introduction

3D vision has been an active research topic, closely related to applications such
as augmented reality, drones and self-driving vehicles [4, 5]. Existing 3D data
representations include the use of voxel, mesh or point cloud features. Voxels [6, 7]
describe 3D objects as voxel grids but generally suffer from insufficient resolution
and high memory costs. Meshes are common in animations, while such represen-
tations are not directly associated with the 3D sensor outputs [8, 9]. Finally, 3D
point clouds focus on describing shape information of 3D objects and can be easily
acquired by 3D sensors, but the resulting unordered set of 3D points might limit

the subsequent analysis tasks.

With the recent remarkable progress of deep learning techniques, in particular
the Convolutional Neural Network (CNN), promising performances have been
observed in a variety of computer vision tasks [10, 11]. However, image data are
generally presented in terms of grid structures (e.g., pixels or cells over scales),
which makes the convolution operation feasible. For irregular and unstructured
data like 3D point clouds, it is not possible to learn and deploy kernels with fixed
sizes or patterns on such data. In order to process such an unstructured/unordered
set of points, PointNet [1] applies multiple fully connected layers to encode 3D
point clouds, followed by global max-pooling operation, and shows impressive
results for 3D data recognition and segmentation. Since global pooling operation

1
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Figure 1.1: Convolution in (a) 2D images and (b) 3D graphs. Note that standard
2D CNN cannot be easily applied to handle 3D point cloud data, since the kernels
in 3D graph convolution networks need to exhibit additional deformation in shape

due to unstructured inputs.

is deployed, locally structured information of 3D point cloud might not be properly
observed. Moreover, it is not designed to be invariant to global transformation like
shift or scaling, as we later discuss and verify.

To better describe local information of 3D data, some research works utilize
mesh data and their corresponding graph structures (i.e., vertices and associated
edges) for extracting desirable information. For example, [12] choose to propagate
and aggregate features of adjacent vertices for deriving the final representation,
while others [8, 13] define kernels with fixed patterns to observe local information.
Motivated by the above works, [14, 15, 16, 17, 2] attempt to construct graph-like
structures for 3D point clouds. Since such methods consider global coordinates in
representing their graphs, shift and scaling effects would degrade the performances
of their models.

In this thesis, we propose a novel deep learning model of 3D Graph Convolution
Networks (3D-GCN) for processing and learning structural information of 3D point

clouds. Motivated by 2D CNN, we aim at deriving deformable 3D kernels, whose

doi:10.6342/NTU202100248



shape and weights are learnable during the training stage. Moreover, similar to the
max pooling operation in standard CNN, we perform a unique graph max pooling
operation in 3D-GCN to summarize the processed features across different scales.
As aresult, our 3D-GCN is able to observe and extract structural information of
unordered 3D point clouds with arbitrary shape and size. As detailed and confirmed
later, our 3D-GCN is invariant to 3D point cloud shift and scaling changes, which
are the key properties for real-world 3D vision applications.

We now summarize our main contributions as follows:

* we propose a 3D Graph Convolution Network (3D-GCN) for processing 3D
point cloud data, exhibiting shift and scale-invariant properties for promising

classification/segmentation performances.

* The shape and weights of each kernel in our 3D-GCN are learnable during
training, which show capabilities in describing local structural information

from unordered 3D point clouds.

* A novel graph max pooling is also introduced in 3D-GCN, allowing extrac-
tion and summarization of point cloud features across different scales for

improved performances.
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Chapter 2

Related work

2.1 Multi-view and voxelized methods

Since standard Convolutional Neural Networks cannot be directly applied to handle
unstructured data like 3D point clouds, existing works typically choose to convert
point clouds into proper representation for further processing purposes. For exam-
ple, [7, 6, 18, 19, 20] register point features into voxel grid or directly use voxelized
3D shapes as the model input, so that standard 3D CNN can be performed on such
input data. Although octree-based methods like [21, 22] have been proposed to
refine the resolution of the predicted output, voxel-based methods are generally
known to suffer from insufficient resolution and enormous memory consumption

for 3D voxel representation.

Alternatively, a number of works [23, 24, 25, 26, 16] choose to project 3D
shapes onto 2D planes in multiple views, followed by 2D CNN for feature extrac-
tion. While impressive results are reported, it cannot be easily extended to 3D data
segmentation or reconstruction [11, 10].

5
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6 2. Related work

2.2 Point-cloud based methods

Various computer vision and computer graphic tasks involve shape analysis, which
require a robust representation of local geometry. Since it is difficult to describe
point cloud shapes due to the irregular structure, some previous works proposed
various hand-crafted feature descriptors designed for different tasks and exhibit
distinct properties. Some works uses descriptors which is derived from the point
coordinates in 3D space, including methods like shape context [27], distance-based
descriptors [28], point feature histograms [29, 30], and normal histograms [31].
A comprehensive overview of hand-designed feature descriptors could be found

in [32, 33].

There are also learning-based methods. PointNet [1] has multiple shared fully
connected layers to handle unordered 3D point inputs, followed by channel-wise
max-pooling to extract global features to represent 3D point cloud data. While
PointNet is able to handle 3D point cloud data without limitation to its unordered
property, it essentially learns key point representation of the input object for
deriving the final features. Local geometric information is not directly encoded,
and this model would be sensitive to input translation and scaling variation, as we

later verify.

To alleviate the aforementioned problem, researchers propose to sort the 3D
points into an ordered list, where neighboring points have smaller euclidean dis-
tances in the 3D space. For example, [34] sorts all the points along different
dimensions, then employ Recurrent Neural Networks (RNN) to extract features
from the resulting sequences. [35, 36] convert the 3D points into an 1D list via
kd-tree according to their coordinates, followed by 1D CNNs to extract the corre-
sponding features. Nevertheless, sorting a 3D point set into an 1D list is not trivial;
moreover, local geometric information may not be easily preserved in such ordered

lists.

doi:10.6342/NTU202100248



2.3. Geometry-based methods 7

2.3 Geometry-based methods

Geometry-based methods are highly-related to Graph Neural Networks (GNN),
which extracts features from graphs composed of nodes and edges. Graphs are
representative data structure but are tricky for processing due to its irregularity.
[37] proposed Graph Convolution Network (GCN), generalizing convolution
operations over graphs, where features are updated by averaging over adjacent
nodes. Some other works [38, 39, 40] proposed GCN variants with different feature
aggregation algorithm. Since the details are out of the scope of this thesis, we refer
readers to [41] for comprehensive discussion.

Aside from other applications, GCN could also be applied in shape analysis.
[42, 43, 12] used GCN to extract features from the mesh object, where mesh is
of graph structures. While point clouds shapes are not graphs since points are
not connected, such edges could be constructed by considering various metrics,
including euclidean distances. Different from the aforementioned works which take
the entire 3D data as the input, another branch of methods [3, 2, 14, 15, 44, 45, 17,
46, 47] choose to learn local geometric information from a subset of 3D points. By
dividing the 3D points into smaller groups, this type of approach extracts features
from each local group for representation purposes. For example, PointCNN [45]
learns to construct a transformation matrix for local points set, aligning points in a
certain order, followed by 1D convolution operation. While good performances are
reported in their work, the feature extraction strategy named X'-Conv are vulnerable
to point order since the operation is not permutation-invariant. PointNet++ [3]
divides 3D point clouds into several ball regions, and apply [1] to each ball for local
feature extraction. DGCNN [2] dynamically constructs local graphs by identifying
the nearest neighbors of points in the feature space, followed by the EdgeConv
operation for feature extraction. Shen er al. [14] establish graphs according
to euclidean distances and learn geometry information with kernel correlation.
RS-CNN [15] applies weighted sum of neighboring point features, where each

weight is learned with MLPs according to geometric relation between two points.

doi:10.6342/NTU202100248



8 2. Related work

ShellNet [47] divides local points set into several shell area, aggregating features
extracted from each shell. SPH3D [46] proposed discrete spherical kernels in
3D space, which is a deformed version of traditional 3D CNN. While the kernels
in [46] are constructed in predefined structure, we proposed deformable kernels
whose structure change in the training to describe various local geometry. These
works attempt to extract geometrical information within local regions of 3D point
clouds. However, existing methods typically use exact coordinates of points or
distance vectors as the input features, and thus the model performance would
be influenced by shifting and scaling effects, which would not be preferable for
real-world applications like scene segmentation and multi-object detection. In this
thesis, we propose a novel 3D-GCN with learnable 3D graph kernels and Graph
Max-Pooling mechanism, resulting in effective geometric features across different

scales while exhibiting scale and shift-invariance.

doi:10.6342/NTU202100248



Chapter 3

3D Graph Convolution

In this thesis, we propose a 3D Graph Convolution Network (3D-GCN) for point
cloud analysis. Our 3D-GCN is designed to process and analyze geometric patterns
of 3D point clouds, while sharing several principles and properties with those of
2D Convolution Networks. In this section, we will introduce our proposed network,
including the definition of 3D receptive fields representing local geometry of point
clouds, learnable kernels, and the 3D convolution operation which enables the
kernels to extract features from each receptive field. These components are used to
construct model structures performing various tasks, which will be discussed in

the following section.

3.1 Notations

For the sake of completeness, we define the notations used in this thesis as follows.
A point cloud instance is viewed as a set, which contains a total of N points
P ={p,|n=12,...,N} located on the surface of an object of interest. Note
that p,, denotes the n-th point of this instance, and its attributes may describe

coordinates (x,, Yy, z,), normal vector (v*,v¥ ), or RGB color information

(T'ns Gn, bn ). For example, if the point cloud describes only the coordinates of each
point on the object surface, we have p, = (x,, Yn, 2, ), and thus a 3D point cloud

9
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10 3. 3D Graph Convolution

Feafure f(om) Weight w(k;)
Directiond,,,,, = Pm — Pn 'Direction k;

* Lo

Pn = (X0, Yn, Zn)

Kernel K°
(M = 5) (5 =23)

Receptive field RY of point p,,

Figure 3.1: Illustration of receptive field 2}/ and kernel K°. We have RM
indicates the M neighboring points for the nth point p,,, and kernel K composes
of S supports with center at ko = (0,0, 0). Note that directional vector d,,, ,, and

k are used to measure the similarity in (3.4).

object is represented by a matrix of size N x 3.

For classification tasks, 3D-GCN takes the point cloud input and produces the
predicted output scores c for each class of interest. On the other hand, for semantic
segmentation, we need to predict the part/scene label for each point in a 3D object.
Thus, the output would be of size N x ¢, which also indicates that the 3D-GCN

performs point-wise classification in the task of semantic segmentation.

3.2 Receptive Fields in 3D-GCN

In 2D cases, square patches describe local patterns of images, and features are
represented by either intensity, RGB value, or high dimensional vectors. Similarly,
receptive fields of point clouds are defined to indicate various local geometry.

A 3D point cloud object with N points is denoted as P = {p, | n =
1,2,...,N},p, € R3 To describe the feature derived at each point in 3D-GCN,

doi:10.6342/NTU202100248



3.3. Learnable Kernels in 3D-GCN 11

we have f(p) € R denote the associated D-dimensional feature vector. To cap-
ture local geometric information of each point p,,, we determine the 3D receptive
field of p,, by a set of M neighboring points. As illustrated in Figure 3.1, we

denote RM as the receptive field of point p,, with size M as:

RY ={p,. P | VP, € N(p,, M)}, 3.1)

where N (p,,, M) denotes M nearest neighbors of p,, based on the euclidean

distance ||p,, — p,||2, and we have the corresponding directional vector d,, ,, =
p,, — P,, calculated for later convolution purposes, which indicates the relative
position neighboring and center points. We note that, given a 3D point cloud
object, we only need to determine the receptive fields for each point once. If the
pooling operation is performed in later stages (as discussed in Sect. 4.2), receptive
fields for the pooled point clouds at that scale needs to be constructed again. In
3D-GCN, the features within the receptive field of p,, with size M is expressed
as {f(p,), f(Pn)|VD,, € N(p,,M)}. These features will be calculated and
updated during the convolution operation, as later discussed.

It is worth noting that, recent models for 3D point clouds [3, 17] select neigh-
boring points for each point within a sphere with predefined radius . While
parameter r can be tuned to properly describe the local structures of 3D point

clouds, their models are vulnerable to different point density, and cannot deal with

scale variations as we later discuss and verify in Sect. 5.

3.3 Learnable Kernels in 3D-GCN

In standard 2D CNN models, the kernel is composed of weight parameters in
grids, sharing the same patterns across image patches (as depicted in Figure 1.1a).
However, for 3D point cloud data, the data points are viewed as an unordered set,
and it is limited to extract diverse geometric features with fixed-structured kernels.

To perform convolution in 3D point cloud structures, we propose deformable

3D Graph Convolution Kernel K*°, where S denotes the number of supports in that

doi:10.6342/NTU202100248



12 3. 3D Graph Convolution

kernel. More precisely, we have K composed of S + 1 kernel points k; € R?,
i.e.,

K% = {kc, ki, ko, ... ks}. (3.2)

where k¢ = (0,0, 0) is the center of the kernel, and k; to ks denote the associated
supports. Directional vectors k, = k, — ko, s = 1,2,...,.S are utilized in the
convolution operation.

In 2D CNN, each element in a kernel is the learned weight which describes
the spatial patterns of interest. In our 3D-GCN, we define the weight vector
w(k) € RY for each kernel point k. Thus, the weighted-sum of features f(p)
using the corresponding weights would achieve the convolution operation. As
illustrated in Figure 3.1, except for kc = (0, 0, 0), the kernel in 3D-GCN is now
defined as {w(k¢), (ks,w(ks))|s =1,2,...,5}, where each element is learned
via training. Kernels are deformable due to the learnable directional vectors k,
enabling 3D-GCN to extract complicated patterns.

Compared to 2D image patches and the CNN kernels are grid-structured, the
receptive fields R} and the learnable kernels K in 3D cloud can be viewed as
simple graphs. Graph nodes are composed of point features f(p) or weight vectors
w(k). The nodes in such graphs are connected by edges, which are directional
vectors d,, ,,, ks, indicating the relations between nodes. Note that the support
number S of a kernel is not necessarily equal to the neighbor number M of a

receptive field R}, while convolution operation is well-defined in the Sect. 3.4.

3.4 3D Graph Convolution

In 2D CNN, the convolution operation can be regarded as calculating the similarity
between the 2D kernel and the associated image patch. Larger output values
indicate higher visual similarity, describing strips, curves, or semantic patterns.
With the aforementioned receptive field and kernel definitions for 3D point cloud

data, we define 3D Graph Convolution by calculating the similarity between R
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Sim(pl, kl) =100

Y -
o

sim(p,, k) = —80

|
|
|
i
|
I
| {(f(pn). w(kc)) =60
|

.

sim(py, k2) = =20 - max; = 40 (fOf kZ) ;

= ‘\_.—-VO

hX

Sim(FZJ kz) =40

Conv(RY,K*) = 60 + 100 + 40 = 200
(M=2,5=2)

Figure 3.2: 3D Graph Convolution. As in (3.4), sim(p,,, k) calculates the inner
product between f(p,,) and w(k;) based on the cosine similarity between d,,, ,,
and k. For each support k;, the largest sim output among all neighbors p,, is
obtained. Summing up with ( f(p,,), w(kc¢)) produces the final convolution output

(i.e., (3.5)).

and K, denoted as Conv(RM, K¥%).

However, unlike 2D CNN in which both kernel and image patches are of the
same grid structures, it is not trivial to perform convolution in 3D graph structures,
where no apparent one-to-one relations between graphs are provided. Thus, to
measure the similarity between the features within the receptive field RM (i.e.,
f(p.), f(®n), VP, € N(p,, M) as defined in (3.1)) and weight vectors of kernel
K centered at ko with S supports (i.e., w(kc), w(k,),Vs = 1,2,...,95), we
consider all possible pairs between (p,,,, k;). Thus, Conv(RM  K%) in 3D-GCN

is defined as:

Conv(R)!, K%)= (f(p,), w(ke)) + g(A), (3.3)
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14 3. 3D Graph Convolution

where (-) denotes the inner-product operation, and A = {sim(p,,, ks) | Vm €

(1, M),Vs € (1,5)}. Note that the sim/() function in (3.3) is defined as:

(- k)

B L i (3.4)
|1

$im(py, ks) = (£(p,,), wiks))

which calculates the inner product between f(p,,,) and w(k;) based on their cosine

dm,nyks

similarity cosf = | It can be observed that large sim() value results

dm,nllll ks
from large inner product in feature space R” and similar direction in euclidean
space R3. The function g in (3.3) sums up the maximum similarity sim(p,,, k)
among all neighboring points for each support k; in that kernel. With the above

definitions, the 3D Graph Convolution operation in our 3D-GCN is derived as:

Conv(RM, KS) = <f(pn>7’w<k’0)>
S

+> rr%ax : {sim(pm, ks)}

s—1 M€ 1,M

(3.5)

Recall that the neighbors M and supports S are the hyper-parameters (similar to
the kernel sizes in 2D CNN), and are flexible to be unequal in our formulation.

Figure 3.2 illustrates 3D Graph Convolution operation in our 3D-GCN.

3.5 Property analysis

3D graph convolution kernel K is applied to every receptive fields R centered
at each points p,,, exhibiting weight-sharing property, which is also essential in
traditional 2D CNN. Some previous works [35, 45] extract permutation-dependent
point features, however, 3D-GCN formulates receptive fields via nearest-neighbor
algorithm, and take advantages of symmetric functions such as max(), sum()
in 3.5, these operations are permutation-invariant, which is desirable in point
cloud analysis.

While existing works like [15, 1, 3, 14, 17] report promising performances,
they typically consider global coordinates or require point cloud normalization

to alleviate such data variances, which would limit their invariance properties
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r“\
L X
v

noise point

Normalized 3D object Normalized 3D object
with noisy data

Figure 3.3: Illustration of the lack of invariance property. Recent models like
PointNet [1] require techniques like zero-mean normalization for 3D point cloud
representation, which might be sensitive to noisy 3D input points (as verified in

Sect. 5).

(see examples in Figure 3.3). On the other hand, convolution formulation (3.5)
of 3D-GCN utilizes directional vectors d,,,, = p,, — p,, within RY instead of
global coordinates, which introduces shift-invariant property. In addition, the
similarity function in (3.4) simply calculates the cosine similarity between d,, ,,
and k; regardless of their lengths. Therefore, the scale-invariant property can be
jointly observed by our 3D-GCN.

Last but not the least, 3D-GCN is more robust to shape rotations, compared to
other convolution-based methods. [3, 2, 17] generally take global and/or relative
coordinates between 3D points as input features, and rotation would result in the
significant differences in their convolution outputs. Take Fig. 3.4 with support .S
= 1 for our learned kernel k as an example, if k is close to the z-axis, rotation in

yaw (with respect to z-axis) would produce negligible difference when calculating

(o)

l[dlfl%] "

cosine similarity cos § = On the other hand, if & is away from z-axis, small
rotation variations would not result in significant changes in the associated cosine
similarities. The above observations can be supported by results and comparisons

in Sect. 5.
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Figure 3.4: Illustration of rotation effects on 3D-GCN Directional vector d of a
3D point and the kernel k& (with support number as 1), where (a) and (b) consider

the learned kernels in along and away from z-axis, respectively.
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Chapter 4

3D Graph Convolution Network

With the fundamental elements of 3D-GCN defined in the previous section, we
now explain how the convolution and pooling are performed for processing 3D

point cloud data, and how the classification and segmentation tasks are conducted.

4.1 3D Graph Convolution

A 3D Graph Convolution layer is composed of a pre-determined number L of
kernels K°, each with a constant support number, which can be denoted as
{K?|i = 1,2,...,L}, and has large convolution response with diverse geom-
etry and semantics. Taking the 3D point cloud input P € R"*3 with the corre-
sponding D-dimensional features 7 € RY*P, our 3D Graph Convolution Layer
applies (3.5) with each kernel respectively, producing output features F°% € RV*L,

Thus, each output channel 7 = 1,2, ..., L can be expressed as:
ConvLayer((P, F™), K7) = (P, F"), 4.1)

where F7“ € RY*! is the i-th channel of F°%. To initialize the convolution
and learning process for point clouds without intrinsic feature 7™, we simply set
f(p) =1,Vp € P,and w(k) = 1,Vk in the first input layer. In other words, we
only consider directional information to initialize 3D-GCN operations.

17
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18 4. 3D Graph Convolution Network

Channel-wise

Max-pooling

N
= — aggregated feature pout ¢ 7 >3
features in RY

Figure 4.1: Graph Max-Pooling. This pooling process performs channel-wise
max-pooling from the features in the receptive field of each p,, € P, followed by

randomly sampling a subset from P with a sampling rate 7.
4.2 3D Graph Max-Pooling

Pooling operation plays an important role in standard 2D CNN, which summarizes
the dominant responses within each scale for later high-level processing purposes,
resulting in fine-to-course feature extraction. In 3D-GCN, we also propose a down-
pooling operation, 3D Graph Max-Pooling, for performing similar mechanisms in
3D point clouds.

Our 3D Graph Max-Pooling layer takes the receptive field of each point R,
and applies channel-wise max-pooling to aggregate features f(p),Vp € RM,

which could be formulated as:

fi(p,) =max{f,(p)|Vp e R)},i=1,2,....D (4.2)

where the aggregated feature f'(p,,) € R” contains geometric information in a
larger scale.
The aggregation operation is followed by sampling a subset of P with a sam-

pling rate . Some works [3, 45, 48] utilized Farthest Point Sampling (FPS)
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4.3. Classification Model 19

technique, which iteratively select points according to its distance to others. While
guaranteeing more uniform sampling results, such algorithm is time-consuming
due to heavy computational complexity, and is not feasible in real-world appli-
cations. In 3D-GCN, we followed [49] and use Random Sampling technique,
where the subset points are sampled randomly. The technique accelerates the
process of point cloud process, which is more desirable for large point clouds, such

as those sampled from scenes. Thus, this pooling process can be formulated as:
POOlLayerr(Pm,]:"m) _ (Pout,f"om), (43)

where 'Pm c RNX?)’ Pout c R(N/T)X?’, and f‘m c RNXD’ Fout o R(N/T’)XD' As
depicted in Figure 4.1, this pooling layer enables us to learn multi-scale 3D point
cloud features, and make learning and calculation more efficient, which are crucial

factors in 3D deep learning models.

4.3 Classification Model

To train 3D-GCN to recognize 3D point cloud data as particular categories, we
apply and combine multiple 3D graph convolution and max-pooling layers. After
applied with the last 3D graph convolution layer, model obtains representative
feature by global max-pooling, which is followed by adding multi-layer perceptron
(MLP) for predicting the desirable outputs. Standard soft-max losses and back-
propagation can be calculated to learn such 3D-GCN models (see Figure 4.2a for

example architectures).

4.4 Semantic Segmentation Model

Semantic segmentation task had been noticed for decades in the fields of computer
vision. In 2D world, previous works [50, 51, 52] proposed model aggregating
cross-scale features from images, and achieve outstanding performance. Motivated

by them, we proposed a U-shaped model structure, illustrated in Fig. 4.2b. Model
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20 4. 3D Graph Convolution Network

learns features in various scales by down sampling points with 3D Graph Max-
pooling layer. However, fusing such features is not trivial since point number varies
in different scales due to the pooling mechanism.

We provided a solution as following. For example, features of two scales are

noted as points sets P; C Ps. For each points in P, feature is updated by:

F'(p2) = (F(1), f(p2)), Py € P (4.4)

py = argmin{[|p — p,| | Vp € P1} (4.5)

where point features in coarse scale (P;) are up-sampled to the fine scale (Ps).
As a result, features from different scales are able to be fused via concatenation,
followed by next 3D graph convolution layer. Decoder architecture of model take
advantage of this mechanism, generating final dense prediction for each points.

Experiment results in Sect. 5 validates the high performance of the model.
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3,D,
, D, 3, D,

Ds
Ds k
-> N/ zI I 1 I
Global feature prediction

(a) Classification

3,D4

mlmlﬂaﬂm =Y

I@l @l |@| @I

Up- sample

, Ds

(b) Part segmentation

Figure 4.2: Architecture of 3D-GCN for (a) classification and (b) part seg-
mentation. Note that grey and yellow blocks denote point and feature inputs,
respectively. Green arrows denote 3D Graph Convolution Layers, while green
triangles denote the Graph Max-Pooling layer. We have MLP and outputs de-
noted in brown and blue, respectively. For part segmentation in (b), blocks in
pink denote the up-sampled feature maps from the consecutive layer, which are
concatenated with those at the layer of interest (shown in yellow) as the feature

map for performing 3D graph convolution.
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4. 3D Graph Convolution Network
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Chapter 5

Experiments

5.1 3D Model Classification

5.1.1 Dataset

We evaluate 3D-GCN for 3D shape classification on the ModelNet40 [7] dataset,
which consists of 12311 CAD models of 40-categories, splitting into 9843 3D
objects for training and 2468 for testing. To generate point clouds for training and
testing, we sample 1024 points uniformly from the surface of each object without

any normalization during training and testing.

5.1.2 Network configuration

Our 3D-GCN model structure for classification is shown in Figure 4.2a. The
feature-extracting part is composed of 5 3D graph convolution layers, with kernel
numbers (32, 64, 128, 256, 1024) from low to high-level layers. We set the support
number S = 1 for our kernels, and neighbor number M = 25 for the receptive
fields. There are 2 3D Graph max-pooling layers in model structure, all with a fixed
sample ratio r = 4. Following PointNet [1], the output feature of last 3D Graph
Convolution Layer in our 3D-GCN is applied with global max-pooling, resulting a
final feature representation of 1024 dimension. For classification, the MLP is of 2

23
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Method input #points  Acc.(%)
ECC [12] XyZ 1k 87.4
PointNet [1] Xyz 1k 89.2
Kd-Net (depth=10) [35] Xyz 1k 90.6
PointNet++ [3] Xyz 1k 90.7
KCNet [14] Xyz 1k 91.0
MRTNet [36] XyZ 1k 91.2
DGCNN [2] Xyz 1k 92.9
SO-Net [53] Xyz 2k 90.9
KPConv rigid [17] Xyz 6.8k 92.9
SPH3D-GCN [46] XyZ 10k 92.1
PointNet++ [3] Xyz, normal 5k 91.9
SO-Net [53] Xyz, normal 5k 934
Ours Xyz 1k 92.1

5. Experiments

Table 5.1: Shape classification results on ModelNet40. Note that “normal” de-

notes the normal vectors of object surfaces. We see that our method achieved

comparable or improved results with inputs of size only 1k points.

layers, where Batchnorm and Dropout with drop ratio of 0.3 applied after the fist

layer of MLP. We train our network with batch size 8, learning rate 0.0001 which

is decayed half every 10 epochs, using the ADAM optimizer.
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5.1. 3D Model Classification
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5.1.3 Results and Discussions

The classification results of our 3D-GCN are listed in Table 5.1, in which we also
compare our results with a number of recent approaches including PointNet [1],
PointNet++ [3], DGCNN [2] and KPConv [17]. From this table, we see that our 3D-
GCN is generally comparable or performs favorably against several state-of-the-art

models when the test data are without any shift or scale variations presented.

To further evaluate the invariance properties of our model, we compare to the
above models using 3D point cloud data with 1024 points, normalized to a unit
sphere with zero mean, without data augmentation. We test them under three
different situations: coordinate shift, shape scaling, and shape rotation. The results
are shown in Figure 5.1a, 5.1b, and 5.1c, respectively. From the results shown in
these figures, we see that the performance of PointNet and DGCNN significantly
dropped with coordinate shifts, which is caused by extracting features from global
coordinates. When scale variants are presented, only our model was able to perform
recognition with satisfactory performances. As for shape rotation, better invariance

ability was exhibited by our 3D-GCN.

We also test the robustness of our 3D-GCN to the presence of outlier points,
and show the results in Figure 5.2. Note that methods to be compared in Figure 5.2
require point cloud data to be normalized in a unit sphere before performing
inference. Thus, as illustrated in Figure 3.3, such methods were not able to
produce satisfactory results. On the other hand, 3D-GCN does not require such
normalization during feature extraction. Therefore, our classification accuracy was

clearly above those reported by other approaches (see Figure 5.2a).
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5.2 3D Model Part Segmentation

5.2.1 Dataset

To evaluate the use of 3D-GCN for part segmentation, we consider the ShapeNet-
Part dataset [54], which consists of 16881 CAD models from 16 object types, with
each point in an object corresponding to a part label. With a total of 50 categories,
2 to 6 part categories are available for each object type. In our work, we sample

2048 points from each 3D model for training and testing.

5.2.2 Network configuration

The model architecture is shown in Figure 4.2b. The feature-extracting part is
composed of 9 layers with 256 kernels, and two 3D Graph Max-pooling layers with
a fixed sample ratio » = 4 are deployed. In the decoder architecture, features from
coarse scale are up-sampled and concatenated, which is formulated as equation 4.4.
We set the support number S = 1 for each kernel, and neighbor number M = 50
for the receptive field in 3D-GCN. Following [1, 2], we also have one-hot vectors
indicating object type concatenated to the features, while single model was trained
to classify 50 part types. We train the 3D-GCN with learning rate 0.001 and
decayed half every 10 epochs, using the ADAM optimizer.

5.2.3 Results

We evaluate the segmentation performance in terms of mean intersection over
union (mloU), which is the average IoU of each part type in that object category.
Note that the mIoU of each category is calculated by averaging mIoUs of all the
shape instances. More specifically, class mloU is the average of mloU over all
16 categories, while instance mloU is the average of mloU over all instances.
The part segmentation results are listed in Table 5.2. Note that without using

global coordinates, our 3D-GCN achieved comparable or better results than recent
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approaches did.

Furthermore, we demonstrate the robustness of 3D-GCN by visualizing the
segmentation result under different transformations of an object. We shift the
center/coordinates of each object by 100 and enlarge object size by 10 times, and
Table 5.3 compares our segmentation visualization with others. We found that
KPConv [17] and PointNet++ [3] failed to properly segment the corresponding
parts in all cases. On the other hand, our 3D-GCN exhibited very promising
invariance capabilities regardless of shift and scale variations. The quantitative

results are reported in Table 5.4.
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(a) Classification accuracy with outliers.

Original Ratio=5% Ratio=10% Ratio=50% Ratio=100%

(b) Point cloud visualization with outliers.

Figure 5.2: Effects on the presence of outlier points for the ModelNet40
dataset. Outlier points of different ratio numbers are added to the 3D point
cloud input. Take a point cloud input with 1000 points for example, 10% indicates
additional 100 outliers introduced. Note that all the outlier points are sampled from

a fixed Gaussian distribution.
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Shift Scale Rotation
Method 1 5 10 50 100 | 0.1 05 1.5 5 10 30 60 90 120 150
PointNet [1] 237 17.1 16.1 160 158 |30.8 66.6 73.1 40.8 35.1|68.0 585 545 50.8 50.0

PointNet++ [3] | 43.3 279 239 17.6 15.1|29.1 54.7 738 38.8 362|745 66.6 62.0 588 58.0
DGCNN [2] 455 224 194 168 16.1 |379 692 769 505 274|725 670 642 61.1 60.6
KPConv [17] 36.8 23.1 222 21.1 209|305 460 673 512 489|722 61.1 514 472 427
Ours 822 825 821 825 825|824 822 824 824 824|806 749 68.6 655 650

Table 5.4: Part segmentation in terms of class mIoU with shift, scale and
rotation variations. Note that the 3D model is rotated around the y-axis, which is

the upward direction.
5.3 Scene Segmentation

5.3.1 Dataset

We consider the Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) [55],
which consists of point clouds sampled from 6 different indoor area, containing
272 rooms in total. Each point belongs to one of 13 semantic categories, including
ceiling, floor, chair, wall ... etc. We followed the setting of [1, 2], where all indoor
areas are split into 1m x 1m blocks, and each point is represented as a 9D vector
of XYZ, RGB and normalized location in the room (from O to 1). 4096 points for

each block are sampled during training and testing.

5.3.2 Network configuration

The model architecture is shown in Figure 4.2b, which is very similar to the one
used in part segmentation task. The model is composed of 9 convolution layers
with 160 kernels and 2 graph max-pooling layers. Batch normalization is applied
after each convolution layer, and batch size equals 4 during training. We trained

the model with learning rate 0.0001 and ADAM optimizer for total 50 epochs.
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5.3.3 Results

We evaluated the performance on Area 5 explicitly and 6-fold validation over six
areas, and results are shown in Table 5.5. Note that it is a common practice to
separately analyze performance on Area 5, because this area is in the building that
does not contain the other five areas, therefore it could be used to measure the
generalization ability. For [1, 3, 2], we showed the performance reported in their
paper, and the reproduced results are also listed. To reproduce, data processing and
training details followed the same settings for fairness. We compare the overall
accuracy, IoU score for each categories, and their mean (i.e. mloU) in Table 5.5.
Since 3D-GCN is able to describe geometrical information with deformabel
kernels, and provided properties such as shift- and scale-invariance, our algorithm
is preferable in scene segmentation tasks, where multiple objects are contained
in a scene and normalization operation can not be applied to each object. From
Table 5.5, all methods perform similar on ceiling and floor, since they can be
easily classified by the location in the room. However, 3D-GCN outperforms [1,
3, 2] with a large margin on categories like column, table and chair, which share
category-related shape information but are distributed in different positions in
rooms. Furthermore, our overall mloU score outperforms others, which indicates

that 3D-GCN has stronger capability to recognize local geometry.
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Chapter 6

Ablation Study

6.1 Neighbor number M in receptive fields.

We now conduct experiments on 3D-GCN by varying the neighbor number when
constructing the receptive fields in 3D-GCN. The results are shown in Table 6.1.
From this table, we see that insufficient or excessive neighbor numbers would
affect the performance of 3D-GCN in describing local structural information of

3D point clouds, thus moderate neighbor number leads to better performance.

6.2 Support number S in kernels

We conduct experiments on 3D-GCN by varying the support number S of the
proposed learnable kernels. The results are shown in Table 6.2. From this table, we
see that kernels with more support numbers (e.g., S = 3 and 5) generally showed
comparable classification accuracy, the performance difference was marginal. More
importantly, the model complexity would grow significantly with more support
numbers, leading to large memory and computation loads. As aresult, S = 1 in
our work is a reasonable choice.

37
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Neighboring number M | 5 10 25 50
ModelNet40(%) 87.71904 | 92.1 | 914

Table 6.1: Effects on shape classification on ModelNet40 with varying neigh-
boring number. Note that insufficient numbers of neighbors are not expected
to properly represent the receptive fields, while the performances would be less

sensitive to larger numbers due to our learnable kernels.

Support number S | 1 3 5

#params(M) 0.89 | 1.51 | 2.13
ModelNet10 (%) | 93.3 | 93.9 | 93.6
ModelNet40 (%) | 91.7 | 91.5 | 91.4

Table 6.2: Performances of shape classification on ModelNet10 and Model-
Net40 with varying support number S

6.3 Learning of directional vector &, for each ker-

nel.

To demonstrate the power of learnable/deformable kernels in 3D-GCN, we consider
three possible uses of directional vectors k, in kernel K (we fix the support number
S as 3). We first consider the inner product between the receptive field and the
kernel as simply a correlation between the associated features, regardless of their
geometry/cosine similarity. That is, (3.4) is simply replaced by sim(p,,, ks) =
< f(p,), w(k5)> The resulting accuracy is shown in the first column in Table 6.3.
We next consider and assign 3 unit vectors along each axis (e.g., (1, 0, 0) along
x-axis) as the 3 directional vectors k. Since these vectors are not learnable, and
results shown in the second column of Table 6.3 was not satisfactory either. Finally,

as shown in the last column of the table, we verify that the use of our learnable £,
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Directional vector | A B C
ModelNet10(%) 89.5 1 92.2 1939
ModelNet40(%) 90.8 | 91.0 | 91.5

Table 6.3: Effects on shape classification using learnable directional vector or
not. A: no directional information, B: assign three unit vectors (along 3 axes) as

ks, and C: our learnable directional vectors.

ModelNet40 | ShapeNetPart S3DIS
Function Acc.(%) class mloU(%) | mloU(%)
mean 89.5 80.2 58.3
max 92.1 82.7 60.8

Table 6.4: Effect of the aggregation function. Max- and mean- aggregation
function are evaluated in the tasks of classification, part-segmentation, and scene-

segmentation. We see that max-aggregation is preferable for all tasks.

would be desirable. Note that directional information is important for extracting
geometric information, and learnable k£ makes kernel deformable and fitting the

object of interest, which is why improved recognition performance can be achieved.

6.4 Aggregation function

In section 3.4, 3D graph convolution is formulated as equation 3.5, where the simi-
larity values sim(.,.) are aggregated by selecting maximum value for each kernel
supports. We validated the design by experimenting mean value for aggregation
instead, and the results are shown in Table 6.4. For classification and segmentation
tasks, max-aggregation outperforms mean-aggregation. We conclude that the max
operation is able to better preserve information in feature extracting procedure,

sharing similar concept with the design of max-pooling layers in conventional 2D
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ModelNet40 ShapeNetPart S3DIS
Method #params(M) Time(s) Acc(%) | #params(M) Time(s) class mloU(%) | #params(M) Time(s) mloU(%)
PointNet [1] 35 0.17 89.2 1.67 0.17 80.4 3.53 0.18 49.9
PointNet++ [3] 1.48 0.33 91.9 1.74 0.36 81.9 0.97 0.52 57.6
DGCNN [2] 1.81 0.18 92.9 1.46 0.18 823 0.99 0.18 56.0
Ours 0.89 0.17 92.1 1.64 0.21 82.7 0.58 0.23 60.8

Table 6.5: Number of parameters in different models for various tasks. The
table list the parameter number in millions (M) and inference time for each model,

while the performances are also shown.

CNN.

6.5 Visualization and Complexity analysis

In Figure 6.1, we visualize the points of an object which have large response
values at each layer of our 3D-GCN. From low to high-level layers, we can see
that responses were shifted from point to part levels, which confirms our ability in
processing and summarizing 3D information across scales, which is equivalent to
the use of 2D CNN in describing image data. On the other hand, we compare the
number of parameters of recent 3D point cloud models, and list the comparison
results in Table 6.5. From this table, we see that our model achieves comparable
recognition performances as state-of-the-art models did, while our model required
the fewest amount of parameters. It can be seen that our 3D-GCN performs
favorably against recent approaches with only about half parameters required. This

confirms both effectiveness and efficiency of our proposed 3D-GCN.
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Figure 6.1: Example kernel responses in different layers (segmentation on

ShapeNetPart). Note that points with larger responses are colored in darker red.

As expected, the dominant responses are shifted from point (low) to part (high)

levels in 3D-GCN.
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Chapter 7

Conclusion

In this work, we introduced 3D-GCN which learns geometrical information of
3D point clouds across scales, and thus exhibits properties of shift and scale
invariance. The technical contributions of our 3D-GCN lie in the design and
learning of learnable kernels in 3D graphs, and the proposed scheme for graph
max-pooling from 3D point clouds. While our model achieved comparable or
improved classification and segmentation performances than recent state-of-the-art
models did, we confirmed that our model is invariant to shift and scale changes

and is computationally more efficient.

43
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