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Abstract

Since Hawking proposed the theory of black hold evaporation in 1974,
the debate that whether Hawking radiation causes information loss attracts
theoretical physicists. One way to set down the debate is through direct ob-
servation. However, the Hawking radiation emitted by astrophysical black
holes is too weak to be observed due to the large mass of black hole. To
dig into this issue and verify the theoretical predictions, several schemes of
“Analog Black Hole” had been proposed to observe the black hole radiation
in the Lab. One of these Analog Black Hole models, the flying mirror model,
describes that a boundary with specific trajectory in Minkowski space can
mimic the physics around curved-spacetime. On the basis of this model and
the phenomenon that an intense laser can generate a relativistic flying mirror
in plasma, Chen and Mourou proposed the experiment “Analog Black Hole

via Lasers, AnaBHEL”.

This thesis mainly focuses on properties of laser-driven flying plasma mir-
ror, such as the reflectivity, the reflected spectrum as an incident laser pulse
interacts with the mirror and the relation between the trajectory of the flying
mirror and the background plasma density. These studies are based on nu-
merical simulations and cold collision-less plasma theory. These studies can

provide essential information for the AnaBHEL experiment.

In chapter 1, we briefly review the issue about Hawking radiation, in-
formation loss paradox and proposals about analog black hole. In the flying
mirror model, different trajectories of the flying mirror emit different energy
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flux and frequency spectrum. Besides, we introduce the simulation tool and
the theory to study laser plasma interaction. In simulation part, we explain
the concept and algorithm of Particle In Cell simulation. In theory part, we
review the basic plasma theory and the interaction between laser and plasmas.

In chapter 2, we describes how the background plasma density affects the
velocity of the flying mirror. The velocity of mirror plays an important role
in not only analog black hole experiment but also the Laser Wake Field Ac-
celerator (LWFA). We first introduce the one-dimensional nonlinear theory of
the laser-driven wakefield and utilize this theory to investigate the distance
between driver laser pulse and the flying mirror. Then, we review two meth-
ods to calculate the velocity of flying mirror in an inhomogeneous plasma
background. In previous literature, the distance between first plasma mirror
and the driver is thought to be a plasma wavelength. However, we find the
distance differs from plasma wavelength by a coefficient. With this corrected
term, the velocity of flying mirror can be calculated more accurately.

In chapter 3, we study the reflectivity of the flying mirror. The relativistic
flying plasma mirror is composed with a dense shell of electrons. The reflec-
tivity can be estimated by the density distribution of electrons and solving the
wave equations with proper boundary condition of an incident wave. First,
we review previous studies on this problem. We found previous model of
the electron distribution seems to overestimate the reflectivity compared to
1D simulation results. Therefore, we proposed a density distribution fitting
model and get results which agree well with simulation data. Besides, pre-
vious study mainly discussed the interaction between the flying mirror and a
plane incident wave. In the second half of this chapter, we extend the study
to a finite bandwidth incident wave (the Gaussian profile is considered). We
find a deviation of the peak frequency of reflected spectrum exists compared

to the result of a plane wave.

Keywords: Analog Black Hole, Particle In Cell Simulation, Laser Plasma
viii
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Chapter 1

Introduction

1.1 Analog Black Hole and Moving Mirror Model

Black holes are sites with enormous gravity. In classical theory, the gravitation of black
hole is so huge that nothing, not even photon can escape from this gravitational singular-
ity. However, in 1974, within the framework of quantum field theory in curved spacetime,
Stephen Hawking discovered that the quantum effect allows black hole to emit black body
radiation [2], the so-called Hawking radiation. The Hawking radiation reduces the mass
and angular momentum of the black hole, therefore leads to the “black hole evaporation™.
Such process may result in the loss of information [3]. Conservation of information, or
probability, in a physical process is a fundamental basis of quantum mechanics and quan-
tum field theory. The possibility that black hole evaporation may result in the loss of
information therefore implies a conflict between general relativity and quantum theory,
the two fundamental pillars of modern physics. There have been proposed solutions and
endless debates about this paradox over the past 40 years, but are essentially all theoret-
ical (see [4] for more details). The difficulties to observe black hole evaporation in our
universe is due to the gentle evaporating rate. Without absorbing extra energy, a solar
mass black hole will evaporate over 10%* years which is apparently longer than the life
of the universe. Accordingly, to conquer the information loss paradox, ideas of analog
black hole are resorted. Unruh proposed the idea of acoustic black hole [5] to construct

the horizon in the fluid system. Based on this scheme, analog black hole based on Bose-

1
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Einstein condensate [6, [7, 8] and Superconducting Quantum Interface Device (SQUID) [9]
are all demonstrated. On the other hand, it has been long recognized that a time-dependent
Dirichlet boundary condition in 1+1D Minkowski spacetime is possible to generate par-
ticles out of the initial vacuum state [|10, [11, 12]. The particle generation origins from
the interaction between a moving boundary and the vacuum fluctuation of the quantized
fields, therefore these phenomena are termed the names:“Dynamical Casimir Effect” or
“Moving Mirror Model”. The analogy between black hole evaporation and moving mir-
ror model had been investigated in [[13]. Based on this analogy, the idea of Analog Black

Hole Evaporation via Lasers (AnaBHEL) [[14] was proposed in 2017.

1.1.1 1+1D Moving Mirror Model

The moving mirror model in 1+1D can be described by a quantized massless scalar field
¥(t, ) in flat spacetime subjects to the Dirichlet boundary condition, ¢)(z = z(t),t) = 0,
where z(t) is the trajectory of the mirror. This boundary condition forces the field to
disappear on the boundary therefore describes a perfectly reflecting mirror. The scalar

field satisfies the Klein-Gordon equation,
Oy = (=02 +0*)p = 0. (1.1)
The inner product of any two solutions of Eq.([L.1)) is defined by,
(61,00) = =i [ 0,503 = =i [ @000 - ol (12)

where Y is a Cauchy surface and d>* is the unit-vector orthogonal to that surface. The
orthogonal basis of the solutions can be constructed with Eq.([.2), which obeys
(UZ',Uj) = 5ij7 (U* U*) = _5ij7 (ul,u*) = O (13)

ir U j
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After expanding the field operator with a given basis, the creation and annihilation oper-

.I.

ators a, , a; are obtained,

d(x) =) [agui(x) + aluf(x)]. (1.4)

The concept of particles is defined based on aj, a;, for example, the vacuum state is

constructed by a;|0) = 0.

In 1+1D moving mirror model, it is convenient to move x — ¢ coordinate to the u — v
null coordinate defined with u =t — x and v = t + = because the massless modes are all
null. Let us consider the condition without a moving mirror, the right-moving modes with

positive and negative frequency are

1 , 1 .
" — e—zwu’ :u — e’L(A}’LL7 1 .5
¢ dTw ¢ dTw (1.5)
respectively. The left-moving modes are,
1 4 1 .
oy = efzwv’ :v — Wy 1.6
¢ dTw ¢ dTw (1.6)

These modes form a set of basis to represent the scalar field in the whole spacetime
and the expansion is unique. However, if the moving mirror exists, two different sets of
mode, ¢, and Y., must be used to decompose the field due to the condition introduced
by the mirror. In the literature, w and w’ may be used to distinguish the different set of
modes. This leads to different definitions of creation and annihilation operators and there-
fore different definitions of particle states. The transformation between different modes

is the “Bogoliubov transformation”,

¢w = / dw/[a:/wa/ - ﬂw’wX:/]a (17)
0
Xw' = / dw[aw’w¢w + Bw’w¢2]7 (18)
0
3
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where o, and 3, are the Bogoliubov coefficients that can be evaluated as

Qe = (Xw’a gbw)a (19)

Burr = —(Xur, 03)- (1.10)

To see the physical meaning of the Bogoliubov coefficients, the expectation value of num-

ber operator N,, = a/ a,, in the vacuum of . is

(Oy_, | Ns[0y_,) =/ dw' | B |- (1.11)
0

Therefore, non-zero [3,,, implies that the vacuum state defined by the two mode functions
are different. The vacuum state for the first mode function is not vacuum for the second one
but particles exist. This is an important result in quantum field theory in curved spacetime

: vacuum state may not be universally unique.

Consider a perfectly reflecting moving mirror with timelike trajectory z(¢), the solu-

tions of Eq.([L.1)) are,

1 —iw'v —iw'p(u
Ginur = —= [e7™" — W], (1.12)
1 , .
= [e7 I — g7, (1.13)
4w

where p(u) and f(v) are called “ray tracing functions” which guarantee the mode functions

to vanish on the mirror,

p(u) = 2t, — u, U =1y — Z(tu) (1.14)

f(v) =2t, — v, v="t,+ 2(t,). (1.15)

The terms ¢, and ¢, can be understood as the time coordinate when the null rays and the

mirror intersect. For a non-asymptotically null mirror, the general expression of (3., can

4
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be derived [15],

Bore dv(w' — wf'(v))e Tl @ (1.16)

1 o

B A/ wW'w /—oo
1 > . o,

= du(W'p (1) — w)elwitiw'p() 1.17

= i - (1.17)

Generally speaking, the particle spectrum of any trajectory of mirror can be calculated
with the Bogoliubov coefficients. However, the analytical form of ray-tracing functions
are difficult to obtain for arbitrary trajectories. Therefore, the analytical result only exists
in quite limited case (see summary in [I5]). Here, we briefly introduce two different
famous trajectories which emit thermal radiation: the modified Davies-Fulling (DF) and

Carlitz-Willey (CW) trajectories.

The most famous moving mirror trajectory is DF trajectory [16] because it was the
first trajectory proposed to understand the appearance of a thermal spectrum. However,
the original calculation utilizes some subtle approximations such that Fulling concluded
that although the final results still hold, the approach may have an error [[17]. In [[15],
the author suggested a “late time Davies-Fulling” trajectory which can prevent obscure

approximations.

—t—Ae”* + Bt — oo,
2(t) = (1.18)

0 t <0,

where A, B are some constants and « characterizes the acceleration of the mirror. The
velocity of the mirror is 0 initially and approaches —1 in the future infinity (¢ — oo). The

Bogoliubov coefficient is,

1 1

2 ~
|ﬁw’w| ~ Imkw! e2mw/r—1

for w' > w,t — oo, (1.19)

which describes a late-time thermal emission in the high frequency limit, W’ > w.

On the other hand, the CW trajectory [|18] gives all-time thermal spectrum and constant

5
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energy flux. The trajectory written in the form of z(¢) is found in [|15],
1
2(t) = —t — =W (e ), (1.20)
K

where W is the Lambert W function (product logarithm) and x > 0 is a characteristic

parameter about the mirror acceleration. The Bogoliubov coefficient is

1 1
2k’ 627Tw/fi— 1’

|/6w’w|2 - (121)

which is a thermal spectrum in 1+1D. The corresponded temperature of CW trajectory,
kT = k/2m, is constant for all time, therefore may be an analogy to an “Eternal Black
Hole”.

The correspondence between trajectories and the emitted particle spectrum provides
a way to investigate the evolution of black hole. Accordingly, different trajectories may
mimic different candidates of the end stage of black hole [[19]. In 2017, Pisin Chen and
Gerard Mourou proposed a novel experimental concept using ultra-intense lasers to in-
duce flying mirrors in plasmas with graded density [20]. With a tailored plasma density,
different trajectories can be fulfilled [21] and provide a way to investigate different evo-
lution of black hole. The relation between plasma density profile and the mirror trajectory

will be discussed with more details in Sec..

1.2 Plasma

The term “Plasma” is first introduced by Langmuir in 1928 [22] to describe the ionized gas
near the electrode and usually called the “fourth fundamental state of matter”. The plasma
consists of a gas of ions and free electrons. Unlike usual gas that is an insulator, the
conductivity of the plasma can be treated as infinity due to the free electrons. Typically,
the plasma only exists in vacuum. Otherwise, the surrounding air will cool down the
plasma such that free ions and electrons will recombine into neutral atoms. Therefore, on

the earth, plasma state is rare near ground due to the atmosphere. Only when high energy

6
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source exists, the plasma state can maintain, such as the gas near lightning or in ionosphere
where high energy cosmic rays intensely collide with the air molecular. On the other hand,
plasma state is common in the universe, such as the stellar interiors, gaseous nebulas and
the most part of galaxies.

The plasma can be defined as follows [23]:

“A plasma is a quasineutral gas of charged and neutral particles which exhibits col-
lective behavior.”

The “quasineutral” property describes the characteristic length scale of the plasma
system. A fundamental property of the plasma is the ability to shield the electric potential
applied on it. The shielding length is described by the Debye length A\p, = \/W ,
where kg is the Boltzmann constant, 7', e and n are temperature, charge and the number
density of electrons, respectively. Therefore, for the system with scale L much larger
than \p, the plasma can be considered as “neutral”. The second property “collective”
implies that the plasma oscillation frequency w, = \/m is much larger than the
collision frequency between electrons and neutral particles. This means the electrostatic

effect dominates over the gas kinetics of neutral gas.

1.3 Laser Plasma Interaction

After Einstein investigated the relation between the stimulated and the spontaneous emis-
sion, people were considering a new way to amplify the electromagnetic field using this
phenomenon. Tens of years later, the first working optical laser was finally invented by
Maiman in 1960 [24] using the Ruby crystal as the gain medium. After that, this intense
and coherent light source got success in quite diverse field, such as military and industry,
not to mention the scientific research. In the past tens of years, new techniques to deliver
high power and short pulse or extend available wavelength had been developed. Among
these progress, we mainly focus on the blooming of the ultra-short pulse laser, which usu-
ally refers to the laser with pulse duration from pico-second (ps, 10~!2s) to femto-second
(fs, 10~'%). In Fig.([L.1)), the progress of peak intensity of the laser since 1960 is shown.

The increase of the intensity reaches a plateau in around 1970. At that time people can not

7
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amplify the light pulse further without damaging the laser gain medium. The invention of
Chirped Pulse Amplification (CPA) [25] conquered this dilemma and opened a new era
of ultra-short high intensity laser. Thanks to this technique, the laser peak intensity is still
growing nowadays. Due to the short interaction time between the laser and the material,
the ultra-short-pulse laser is widely used in material processing, cornea surgeries, molec-
ular interaction, and so on. Among these applications, the one relevant to this thesis is
the Laser Wakefield Accelerator [26]. When an intense laser propagates in the plasma,
a wake field (longitudinal electric field) will be generated. The wake field can realize
an accelerating gradient (~ 100 GV /m) [27] that is much larger than the conventional
radio-frequency accelerator (~ 100 MV /m). This provides a promising way to construct

next-generation accelerator for pursuing higher particle energies or more compact facili-

ties.
Intensity (W/cm ) Electron
energy
102 Theoretical tipit_ |
- . 41 Gev
10%+
- -1 MeV
Hard X-ray flash lamps
I Hot dense matter
L - 1 keV
150 CPA
10 — -
F Field ionisation of hydrogen - - - = = = - - oo __
o Multiphoton physics -4 1eV
Laser medicine
1010 - - 1 meV
i 1 i 1 L 1 i L i 1
1960 1970 1980 1990 2000 2010
Year

Figure 1.1: Progress of peak laser intensity since 1960 []1]].

The intensity of laser can be linked to a Lorentz invariant dimensionless “laser strength
parameter”, ag = eFy/m.wc, where Ej and w are the electric field and angular frequency

of the laser, with the relation

ag = 0.85\[um]\/I[1018Wem—2], (1.22)
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where \, [ are the wavelength and intensity of the laser. For ay > 1, the laser is called
“relativistic laser” or referred to as in the “nonlinear regime”. Roughly speaking, this
terminology can be understood as follows. eFEj/m,. is the acceleration of electrons in
electric field and 1/w is roughly the order of a laser period. Therefore, ¢Fy/m.w stands
for the velocity that electrons can be accelerated in a laser period. Accordingly, ag > 1
implies the electric field can accelerate electrons to near speed of light during one laser
cycle, therefore relativistic effect should be taken into account. The intensity of the state-
of-the-art 800nm Ti:Sapphire laser can achieve 10%Wem =2 [28], which corresponds to
ag ~ 70. This highly intense laser provides extreme light pressure within a very short time
scale and acquires wide applications in the frontier scientific research (see review [29] for

more discussions).

The interaction of ultra-short-pulse laser and matter can be studied from a simple case:
the interaction between a single electron and planar electromagnetic field. The motion of

electrons can be described by the Lorentz equation,

dp vxB
— =—¢ | E 1.23

where p = ym,c? is the momentum and v = /1 + p2/m2c? is the Lorentz factor associ-

ated with the electron. The evolution of electron energy follows

%(vme&) — _¢(v-E). (1.24)

Note that the magnetic force v x B is always perpendicular to the trajectory of the electron,
therefore does not contribute to the change of the electron energy. Besides, the laser pulse
with frequency wy can propagate in the plasma provided the plasma density is less than

the “critical density” n.. that is defined by

e2n,

(1.25)

2
WO = 9
Me€o

which corresponds to a plasma density such that the nature oscillatory frequency of the
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plasma is equal to the applied EM field frequency. As the nature frequency w, being higher
than wy, the electrons can react to the external field and damp it away. This makes the EM
wave can only propagate into the plasma with a skin depth L, = ¢/w,. On the other hand,
if the plasma frequency is much smaller than the EM field frequency (w, < wy), referred

to as “underdense plasma”, the EM field can propagate inside the plasma.

1.4 Particle In Cell Simulation

Traditionally, the investigations of phenomena in nature are carried out by experimental
and theoretical techniques. Thanks to the rapid advance in computational power, computer
simulation gradually becomes the third choice and benefits from the low cost compared to
doing actual experiments and the ability to deal with complex physical systems. To numer-
ically study the plasma behavior, there are two widely adopted methods. The first one is
Magneto-hydrodynamics / Hydrodynamics (MHD/HD), in which the plasma is treated as
fluid. The other one is particle-in-cell (PIC) simulation [30], where plasma is statistically
sampled as macro-charged particles and the equation of motion is calculated kinetically.
In general, MHD/HD methods are mostly used for investigating phenomenon of time scale
larger than nanometer. On the other hand, PIC is for shorter time scale interaction, such
as pico-second or femto-second , where the thermal equilibrium state is not arrived. In
the scope of this thesis, the driver pulse is in fs scale and the interaction period is sub-ps.
Therefore, we choose PIC as our numerical tool to study the laser plasma interaction.
PIC method combines the kinetic theory of plasma with Electromagnetic theory. Pro-
vided that the collision frequency between plasma is much smaller than the nature os-
cillation frequency of plasma, the system can be described by the collision-less Vlasov

equation. In relativistic regime, the equation takes the form,

9, p ¢E+vXB)
ot myy Mg

’ vp] fS(t7x7 p) = 07 (126)

where subscript s denotes species. In the implement of simulation code, the procedures
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can be divided into two main parts: particle pusher and field solver. As the name suggests,
particle pusher is responsible for moving particles with known electromagnetic force and
field solver accounts for solving electromagnetic field from charge density and current.

The routine of PIC simulation is summarized in Fig.([.2).

In the following subsections, we briefly introduce the concept and algorithm used in

PIC simulation.

Particle—~Cell Field Solver
(x,p) > (p,))

Initial

Y

(E,B)— |End

v

Condition

Particle Pusher

Figure 1.2: Schematic of PIC routine.

1.4.1 Finite Sized Particles

In principle, the particle simulation code should calculate the position and momentum
of all particles in the system. However, even with the state-of-art supercomputer, it is
impractical to consider interaction between 102" particles, which is a typical number en-
countered in the plasma experiment. On the basis that the phenomena we usually concern
about plasma are “collective ” or “macroscopic ” effect, huge amount of particles can be
represented by a quasi-/pseudo-/macro- particle. This strategy drastically reduces the sim-
ulation particle numbers and makes computer simulation of plasma possible. Instead of
treating the macro-particle as a point charge, finite sized particle is introduced. The reason
comes from the fact that macro-particles overestimate Coulomb force, which is proportion
to the multiplication of charge, among themselves and have divergent force in short range.
Finite sized particles can eliminate the overestimation, more detail about this problem can

be found in [30].
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1.4.2 Field Solver

The electromagnetic fields (E, B) generated by charge density p and current J are de-

scribed by Maxwell equations:

v.E=" (1.27)
€o
V-B=0 (1.28)
OB
E=— 1.2
V x ™ (1.29)
1 OE

To solve the field numerically, the problem domain is discretized into grids/cells. Sev-
eral techniques for solving the electromagnetic field on the grids are available, e.g. finite-
difference time-domain (FDTD), finite element method (FEM) and fast Fourier transform
(FFT). The last two methods transform the partial differential equation problems into a
global Eigen-value problem. Here, “ global ” means the solution of a specific point may
depend on all the points in the problem domain. This property makes global field solver
hard to be implemented efficiently in parallel computation. In modern PIC code, the
widely used parallization technique, domain decomposition, demands the minimization
of exchanging data between subdomains and implement of local equation solvers. There-
fore, the FDTD method is in common use. The procedure begins with obtaining the density
of plasma, which is extrapolated from the macro-particles onto the grid. After acquiring

the density, the current can be evaluated with the help of continuity equation,

dp
VIt =0. (1.31)

Combining with Maxwell equations, electromagnetic field, which is discretized on the
so-called Yee-grid [31]], can be obtained. The detail of this algorithm can be found in the
book [32].
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1.4.3 Particle Pusher

The force experienced by a (relativistic) charged particle in electromagnetic field is de-
scribed by the Lorentz force (cf. Eq.([.23)). It should be noted that the fields are defined
on the grid but particles are not. To calculate the field experienced by the macro-particles,
the field should be interpolated to the position of particles first. After acquiring fields on
each particle, the force can then be calculated. When updating the position of particles,

the “leap-frog ” scheme [33] is implemented :

Tpy1 — T
Ukt1/2 = Vk-1/2 _ i(E Vg+1/2 + Vk—1/2 B ) 133
AL o (e + 5 X by (1.33)

The subscript £ denotes the time steps. Velocity is defined at half-integer time steps,
on the other hand, position and fields are defined at integer time steps. Therefore, the pro-
cedure of the scheme is: update half-step quantity (v) with full-step one (£, B), and then
update full-step value (z) with half-step one (v). This method can prevent the numerical
instability in the naive method, that is updating all quantities in integer time steps. The

discussion about the stability with different updating strategy can be found in [34].
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Chapter 2

Velocity of the Flying Mirror in

Inhomogeneous Plasma

2.1 Introduction

The property of nonlinear plasma oscillation had been investigated in 1956 by Akhiezer
and Polovin [35]. For the plasma wakefields (driven electron plasma waves) excited by an
intense laser, a nonlinear one-dimensional theory was developed by Bulanov et al. [36];
Sprangle et al. [37, 38]; Berezhiani and Murusidze [39]. A set of coupled equations is
derived to describe the vector potential of the laser field and the electrostatic potential
of the plasma (wake potential). This model provides a self-consistent description of the

interaction of intense laser with plasmas.

The wakefields can be a promising way to accelerate electrons due to its ability to
sustain extremely large acceleration gradients. The scheme was first proposed by Tajima
and Dawson [26], where the plasma wakefield is induced by the laser that traverses the
plasma. Later, electron-bunch-driven accelerator was also proposed [40]. Among various
laser plasma accelerator (LPA) configurations, the laser wake field accelerator (LWFA) is
the most adopted scheme in modern LPA experiments. The phase velocity of the wake
wave is a critical factor for determining the maximum energy gain, minimum injection

energy, and the dephasing length of electrons. In an uniform plasma background, if the
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evolution of driver is neglected as it propagates, the phase velocity of the plasma wave is
equal to the group velocity of the driver, which is called the principle of wakefield. On the
other hand, by introducing density gradient in the plasma background, the phase velocity
is no longer equal to the group velocity and can be controlled artificially. This technique

had been applied to fulfill the “self-injection” of electrons in LWFA [41, 42].

On the pure theoretical side, in 1993, Wilczek [|13[] suggested that a flying mirror can
serve to investigate the information loss paradox [3] using suitable mirror trajectories.
Based on this analogy, an experimental scheme was proposed by Chen and Mourou [20]
with the intent to investigate the information loss paradox using a laser-induced plasma
flying mirror in a tailored plasma target. By carefully designing the plasma density, differ-
ent trajectories can be realized to mimic different candidate resolutions to the information

loss paradox [19].

In this section, we start from reviewing the procedure to calculate the solution of wake
potential induced by a nonlinear laser field. The solution exists when an optimal-length
flat-top laser is considered. After that, the term “bubble width” is defined as the distance
from the energy average position of driver and the first density cusp, that is the first flying
mirror. This distance has been long considered as equal to the plasma wavelength. How-
ever, it is shown the ratio between bubble width and plasma wavelength is generally not

equal to one. In the linear limit (ay — 0), the ratio is found to be three quarters.

For an inhomogeneous plasma background, the optimal-length condition of the driver
can not be maintained due to the change of local plasma density. We therefore extend
previous studies on optimal-length to a driver with non-optimal length in Section 2.4.
Unfortunately, a generally analytical solution can not be found in this case due to the
inverse function appears in the solution is hard to be solved. However, as the driver is
ultra-short, the approximated solution of wake potential can be found [37, 38]. Therefore,

the ratio can be calculated and is found to be three quarters.

The bubble width ratio is important in calculation about the phase velocity of the flying
mirror. In previous literature, based on the principle of wakefield, studies about the phase

velocity of wake wave focuses on the nonlinear correction to the group velocity [43, 44,
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45]. For an inhomogeneous plasma, the phase velocity of the wake wave was studied both
analytically and numerically using the dispersion relation in [46]. This method focuses on
the local phase velocity. On the other hand, another method which focuses on the velocity
of the flying mirror is proposed in [21]] recently. With the fact that the flying mirror is a
bubble width behind the driver, if the rate of bubble size change can be known, the velocity
of flying mirror can be obtained. Therefore, the bubble width should be carefully treated
to acquire accurate result. In Section 2.5, we use this method and the derived formulae to

calculate the velocity of flying mirror and compare with PIC data.

2.2 Wave Excitation by an Electromagnetic Pulse

To study the wakefield excited by an EM pulse, one can consider a 1D model based on
cold relativistic hydrodynamics and Maxwell’s equations. The plasma is assumed to be
unmagnetised and ions are immobile. Consider the fluid is moving in z direction, the

equation for electron momentum is

ap op 1
E—l—vza——e(E—i—EVXB), (2.1)

where p = mgyv, v = /1 + p?/m3c?, mg and v are the electron rest mass and velocity,
respectively.
The electromagnetic field (from here referred as “driver”) which propagates along z

direction can be described by

_ 10A, 0%
B=V xA,, (2.3)

where A | = A, +JA, is the vector potential and ¢ is the potential for charge separation
in the plasma (also called wake potential). Note here that the Coulomb gauge is considered
(V-A=0).

With Eq.(R.1))- (2.3)), the perpendicular component of electron momentum can be found
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to be

P Al=a(0) (2.4)
mocC moc

This shows the conservation of momentum in the transverse direction. The Lorentz factor

can be separated into transverse and longitudinal direction:

) 07 1/2
1+<p—L> +(pz ) ] = Y (2.5)
mocC mocC

where v, = (1 4 @*)"? and v = (1 — v?/c®)'/? are the transverse and longitudinal

7:

gamma factor. To complete the description of the plasma fluid, we need the longitudinal
component of Eq.(2.1)), continuity equation, Poisson equation and the wave equation for

the driver. The longitudinal component of Eq.(R.1]) is,

10 o, . op
—a(%\/vu —1)+ &(%ﬁu) =35, (2.6)

c
where ¢ = |e|¢/mqc? is the normalized scalar potential. The continuity equation is

10n

0
25 + &(nﬁll) =0, 2.7)

where 3 = v./c. The Poisson’s equation is,

where p is the charge density. In the system, the ion is assumed to be immobile due to
the large mass compared to electrons (n;,, = ng everywhere). Therefore, the charge
density is p = n, — nj,, = n — ng. With the definition of ambient plasma wave number
k2 = 4mle|*ng/moc?, the Poisson equation can be written into

o _ e (ﬁ _ 1) | (2.9)

072 no
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The wave equation is

PA10PA  —dn
022 2oz ¢

(2.10)

where the current J = ngev . With the definition of normalized vector potential a and the

conservation of transverse momentum (Eq.(R.4)), the equation can be reformed into,

,0%a  0%a BL—kjn a

It is convenient to transform from the lab frame coordinate (z,t) to a co-moving co-
ordinate with the speed of the driver (£, 7), where £ = © — v,t and 7 = ¢. The derivative
in the co-moving coordinate is 9/0x = 0/0¢ and 0/0t = 0/01 — v,0/0¢. With this
transformation, Eq.(2.6),(2.7).(2.9) and (R.11)) become

385[ (1= BoB1) — ¢l = —%a%(%ﬁn), (2.12)

g%f =k, (%— 1), (2.13)

Selnts = ) = 15 014)

(15; Lfgagaaf%aiﬁa:ki%% (2.15)

where 5, = v,/c. Eq.(2.12)-(2.15) form a complete set of fully nonlinear, relativistic,
cold fluid equations which describe the 1D laser-plasma interaction. The 1D model is
valid provided that the spot size of driver is much larger than the plasma wavelength,
i.e., s > \,. The set of equations can be further simplified with the so-called quasistatic
approximation [37]. This approximation implies that if the laser pulse is sufficiently short,
there exist a quasistatic state for the macroscopic quantities, n, 3 and y. More explicitly,

this approximation means that the right-hand side of Eq.(mb and (2.14) can be neglected,

that is 0/01 < 0/0¢ for the macroscopic quantities. In this case, the first integral of
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Eq.(M) and (2.14) can be evaluated:

V(L= BeBy) —p =1 (2.16)

n(By — B1) = nofy, (2.17)

with integration constant chosen such that for v, = 1, n = ng, 8 = 0, ¢ = 0. The initial

condition means that when there is no driver field initially, no perturbation of density and

wake potential exists. With Eq.(2.16) and (2.17), Eq.(2.12)-(2.13) can be reduced to,

d* _ 2 B
2 (1= BB = ko .18
J (. Oa 2“’208230_ 9 By
e o Rl ¥ e e R

In the ultra-relativistic limit (3, ~ 1), the equations can be simplified (using the potential

p from Eq.(2.16)),

d*p kﬁo Ta
5 lmery  ew
2 (. dag wyo 0%ag ®
25 (Zwan + Cﬂoa—g) + C2w—pg 852 = —w;omao. (221)

These two equations together describe the evolution and coupling between the wake po-

tential and the driving laser field.

2.3 Bubble Width with an Optimal-Length Pulse

The evolution of wake field which excited by a driver laser pulse can be described by the
coupled equations discussed in previous subsection. Providing that the propagation dis-
tance is smaller than the depletion distance, the evolution of driver pulse can be neglected.
Under this condition, the evolution of wake field can be simply described by Eq.(2.20).

In the following derivation, we follow the notation and normalization using in [39]. The
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equation for scalar potential (Eq.(2.20))) can be written in the form

2 2
% = % (% - 1) , (2.22)
where y = 1 + ¢, ¢ is the scalar potential, vy, is the Lorentz factor of electron in per-
pendicular direction and x = k,¢ is the co-moving normalized spatial coordinate. For a
linearly polarized driver pulse, 72, = 1+ a3/2 by conservation of transverse momentum.
Here we consider a flat-top driver such that vp;, = o, for =L < z < 0and vy, = 1
elsewhere. The potential inside the driver (—L < x < 0) can be analytically solved as
follows.

By multiplying g—g on both sides of Eq.(2.22), we have

which can be organized into

=5 (B ry) 224
Integrate both sides over x, we have:

(y) =~ (% + y> +C (2.25)

where C' = 1 + ~2, is the integration constant which can be determined by the boundary
condition : y(0) = 1,%/(0) = 0. With the demand that real solution of ¢/’ exists ((y/)* > 0),

the value of y is bounded by

1<y <q3,. (2.26)
Eq.(2.23) can be written into
d - 13, -
ﬁ:iV@ ) 227
dx Y
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After integrating y from 1 to 43, and z from 0 to x on both sides, we obtain the solution

of y

2(y) = 2901 E(¢r, ki) + 2\/ =1 (;(QM —Y) (2.28)

where E(¢, k) is elliptical integral of the second kind with argument ¢; = sin™* M

Y%~y
2
1
and k; = /WOWLT.
0

By substituting 4. = 73, into Eq.(2.28), the maximum scalar potential is found at
r = —27, E(k;). Here E(k) is the complete elliptical integral of the second kind. This
means the excited wake field becomes maximum when the flat-top pulse has an optimal

length,

L= Lopt = QVOLEO%')' (229)

The scalar potential behind the pulse (x < —L) can be solved by noting that v, =1

due to the absence of driver pulse in this region. Therefore, Eq.(2.22) becomes

Py 1/1

—Z2=|==1 2.30

Ox* 2 (?ﬂ ) (230
with boundary condition y(z = —L,y) = 75, and y'(x = —L,p) = 0. With similar

procedure above, the range and the solution of ¥ in this region are

1
- <y<. (2.31)
YoL
2(y) = —Lopt — 2701 E(Qe, Ke) (2.32)
where ¢, = sin~! ﬁ?—&;y) and kK, = % The longitudinal electric field is
oL
described by Ej| = —dy/dx and has the form :
441 1
By=y /L (Z 4y (2.33)
oL Y
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The maximum FE)| (sometimes referred to as the “wave-breaking” field) is given by mini-

mizing i + yin Eq.(2.33),

V(i —1
YoL

B maz = (2.34)

The wavelength of plasma wave can be determined by the distance between adjacent
maximum wake potential 3 in Eq.(2.32). Consider 3,,,, = 72, , the argument of elliptic
integral becomes @ (Ymaz) = sin ' (0) = nx, where n € Z;. With the periodic property

of elliptic integral of the second kind, E(z + km,m) = E(z,m) + 2nE(m), we have
E(0+nm, k.) = E(0, ke) + 2nE(k.) = 2nE(k.). (2.35)

Therefore, the position of first and second potential peak, which corresponds to n = 0 and

n = 1 respectively, are

To = _Lopt (236)

Ty = _Lopt - 470J_E(K:e) (237)

After recovering the normalization constant, the non-linear wavelength of the wake wave

is [39]

1 — 2o

4 27901 E (ke
; _ %LCE(RB) _ YoL (FG )
P

Wy T

ANP = Ap (2.38)

In non-relativistic limit (7o, — 1), F(ke) — /2, the definition of linear plasma wave-
length is recovered (Axyp — Ap).

With the definition of the plasma wavelength, we can discuss the problem of “Bubble
width”. In our context, “Bubble width” is defined as the distance between driving laser
pulse and the position of first maximum density perturbation. Usually, this distance is
treated as the plasma wavelength (Eq.2.38). However, in the following, we demonstrate
that there is a factor between plasma wavelength and bubble width. This factor plays an

important role when calculating the phase velocity of the flying mirror.
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Position of driver can be defined as the energy average position,

[ xE7dx
_ JrElde 239

where E/| is the amplitude of electric field of driver. Position of mirror is at where Ej = 0

with aE”/aI < 0.

For a flat-top driver with optimal length, the energy average position is,

*Lopt
v — N T - addr _ _Lopt‘ (2.40)

7Lopt 2 2
N agdx

The position of mirror is at where y = v%’ ¢ =sin ' (£1) = 7/24+n7. n=0,1,2...
oL
corresponds to the first, second ... peak density. Therefore, the position of first density

peak is at
Tp1 = —Lopt — 2701 E(Ke) (2.41)

The distance between driver and first density is

L opt
2

T — Tpl = + 2701 E(ke). (2.42)

After putting normalization factors back and using the definition of L,,, we have the

definition of bubble width,

Mg = — oL B(k) + 2700 E (k). (2.43)

Wp

Compare with plasma wavelength,

FE(k; 2790 E (ke
:P)/UJ_ (H);_ YoL (K)*APEQA
e

Ap ) (2.44)

Note that the definition of bubble width differs from the non-linear plasma wavelength

(cf. Eq.(2.38)). Generally speaking, the ratio a between Ap and Ap doesn’t equal to one.
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Consider the linear limit (7o, ~ 1, F(k;) = F(k.) ~ 7/2), we have :

3
AB ~ Z)\p as Yl — 1. (2.45)

This implies that in the linear limit, the bubble width is only three quarters of the plasma
wavelength. The factor 3/4 can be understood as follows. In Fig.(R.3), the solution of the
wake potential and density perturbation are numerically obtained with a linear optimal-
length flat-top driver. The auxiliary vertical grey dash lines are separated equally by A, /2
. In the linear limit, the optimal-length L.,; = 2701 E(k.)/k, = Ap/2. Accordingly,
the energy average position of driver is at x;, = —L,,;/2 = —\, /4. The end point of the
driver is the first peak of the wake potential. Besides, the first peak of density perturbation,
or the first mirror, is at where wake potential is minimum. This implies the distance from

the end point of driver to the first mirror is half the wavelength of wake wave. Therefore,

the distance between the driver and the first mirror is A, /4 + A\, /2 = 3/4\,,.
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Figure 2.1: Wake wave potential with an optimal-length driver in linear limit. The bubble
width is three quarters of linear plasma wavelength.

2.4 Bubble Width with a Non-Optimal-Length Pulse

In the previous section, we discuss the analytical solution of wake wave equation with an

optimal-length flat-top driver. However, the optimal-length condition is hard to maintain
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in the scheme that controls phase velocity through graded background plasma density
[46, 21]]. The optimal-length, Eq.(2.29), depends on k,, or on the background plasma
density. Therefore, a fixed pulse length driver, which is an usual case in experiment, can
not maintain optimal as graded density presented.

Here, we extend previous studies on an optimal-length flat-top laser to a non-optimal
one. The coupled wave equation with non-optimal-length pulse can be solved by sepa-
rating the solution domain into three regions as Fig.(R.4) shows. Consider a flat-top laser

with arbitrary pulse length L.

ag for—L <zx<0
a= (2.46)

0 X elsewhere.

Region I corresponds to where driver pulse exists and the end point is denoted as B. Region
I1I starts at point A where the spatial derivative of potential equals to 0, that is ¢/ = (1 +
¢)" = 0. For an optimal-length pulse, the pulse length L is chosen such that the potential
at the end of driver is maximum, which means point B is same as A. On the other hand, for
a non-optimal-length driver, there exists a region between A and B. We denote this zone

as region II.

T T T T
I T I
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Figure 2.2: Solution domain of the wakefield with a non-optima-length driver pulse. The
domain is separated into three regions.

Analytical solutions of i in region I and III exist. In region I, by considering the initial

26

doi:10.6342/NTU202001324



condition : 3/,—¢ = 1,¢/,_, = 0, the solution is the same as Eq.(2.28). The potential in both
region IT and 11T satisfy Eq.(2.30) due to the absence of laser field. With initial condition

Yo=zs = YA » Yp—y, = 0, the solution in region III is,

r=—24 — 2/YsaE(¢e, ke), (2.47)
where ¢, = sin™!] %], Ke = yfy,; L and yy4 is a constant that is determined by
A A

solutions in region I and II.

In region II, after integrating both sides of Eq.(2.30), we have

, 1
y2:C—(§+y), (2.48)

where C' is the constant of integration. With the initial condition at point B : y,—,, = yp

and y,_, . = yp, the constant C'is :
1
C= y'32 + y_B + yB. (2.49)

With Eq.(2.48).(2.49), the value of y is bounded by

C—v(C%—4 C+vC? -4

<y < 2.50
5 <y< 5 (2.50)

The upper (lower) bound corresponds to the maximum (minimum) value of y in the case

L < Loy (L > Ley). According to the definition that y 4 is the extreme value (. ¥y, = 0),

we know,
C++V/C?—14
#,L < Lopt
Ya = 5 (2.51)
— —4
CVETT

The solution of y is symmetric about point A in region II and III. Therefore, yz also

satisfies Eq.(2.47)

Ip = —TA— 2\/y_AE(¢f7 Kf)? (2.52)
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where ¢; = sin”!| %] and Ky = 4/ y%;. By defining the length of region II as

Li; = |xp — (—z4)| and put the normalization factor back, we have

Ly — Qx/y_Ai(qﬁf, kiy) (2.53)
P

As discussed in the optimal-length driver case, the energy average position of a flat-
top laser is at L /2 and the distance between x4 and first density peak is 2,/y4 E(k.)/k,.
Therefore, the bubble width with non-optimal-length pulse is the sum of above two dis-

tance and the length of region I,

Ay = Ly 2VIALEG] | 2GAE Sy k)

5 » o (2.54)
_ (% n \/y_A[E(ﬁe);‘E(Qbfv“f)]) A = ad, (2.55)

In above equations, A\ depends implicitly on 3 through Eq.(2.49), (2.51)). Generally
speaking, vz is hard to be solved analytically from Eq.(2.28), therefore Az need to be
determined by numerical method. However, in the ultra-short pulse limit (L < ),

analytical form of \g can be found.

2.4.1 Ultra-Short Pulse Limit

Each term in the right hand side of Eq.(2.59) are treated respectively. The first term L/ 2,
can be safely drop under the ultra-short limit (L/\, < 1). The second term depends on
the constant C, yp and y through the argument x.. It is shown in [37, 38] that as long
as L < ), , the wake potential y = 1 + ¢ ~ 1 inregion —L < z < 0. This implies
yp ~ 1 and y3 ~ 0. Besides, this result can be extended to driver pulse with shape other
than flat-top. For a pulse with envelope given by a = agsin(nz/L) for —L < z < 0 and
a = 0 otherwise, the wake potential is y|,—_;, = (aok,L/4)?. It should be noted here that
a driver with delta function shape a = §(x) apparently satisfies L < A, but may break
the conclusion, yp ~ 1, due to the infinity electric field in the origin. Therefore, we may

generalize the ultra-short pulse constraint to (agk,L/4)? < 1 to include the effect of ay.
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With the approximation (yp ~ 1 and y; ~ 0), Eq.(2.49) and (2.51)) give C' = /2 +

1 ~
y—B—l—yBNQand

2 _
ya = CHver-4 1. (2.56)

With x. = 0 in this limit, the second term becomes

VYyaE(0 1
VYaE(0) ~ (2.57)
T 2
Furthermore, #; =~ sin~'(0) = 0, ¢ ~ 7/4. The third term is therefore,
E0,m/4 1
VIAEQ /) 1 (2.58)
s 4
To sum up, under the ultra-short pulse limit the analytical form of Ap is,
L JyalE(og, kf) + E(ke
Ag = (KJF yalB(¢s, ky) + E(r )]) \
P T (2.59)

In Fig.(2.4.1)), ¢ and n/n are solved with an ultra-short sin driver with L/ Ap = 0.05.
Under the ultra-short pulse condition, the driver hardly excite the wake wave. It is clear
that the distance from the driver, at the origin, to first density peak is three-quarters of the
wake wave. Let us refer the region where ¢ goes from 0 to the first maximum as region
A. In the optimal-length case, region A is prolonged to be \,/2 with driver at A\,/4. On
the other hand, the region A remains the same length \,/4 here with driver at the origin.
Therefore, the factor “three quarters” appears in both case but are from different reasons.
It should be noted that the wake is not excited efficiently under ultra-short-pulse condition,
actually this is the physical meaning of y5 =~ 1. This is more clear when we consider the
equation of scalar potential. As ¢ — 0, Eq.(2.22) becomes

Py Loz -, (2.60)
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The solution of y will be just a sinusoidal function, no nonlinear effect exists. Therefore,
the ultra-short pulse limit makes analytical calculation simple but may need to be avoided

when an intense electron flying mirror is needed.
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Figure 2.3: Wake wave potential with an ultra-short driver. The bubble width is shown to
be three quarters of the plasma wavelength.

2.5 Phase Velocity of the Flying Mirror

The phase velocity of the wake field plays an important role in waketfield accelerators. The
roles include the accelerated length and the injection mechanism of electrons. Bulanov et
al. proposed an self-injection mechanism [41]] based on the fact that down-ramp plasma
background can reduce the phase velocity of wake field. As Wave breaking happened,
that is when the phase velocity equals to the quiver velocity of electrons, electrons will
be trapped into the wakefield. The trapped electrons are from the background plasma
rather than an external source in this scheme, therefore is termed as “self-injection”. In
this scheme, to determine whether or when the wave breaking happened, a robust relation
between background plasma density and the phase velocity is needed. In the following
text, we briefly introduce two different ways to calculate the phase velocity and how the
factor o between plasma wavelength and bubble width corrects the result.

The first method is using the dispersion relation of the plasma wave. In [46], the phase

velocity under an inhomogeneous plasma is discussed. Consider the eikonal of the plasma
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wave 0(x,t), the angular frequency w, and wave number k, are, w, = —0,0, k, = 0,0
respectively. With the cross differentiation property, frequency and wave number have

such relation,

Orky = — Oy, (2.61)

After integrating over ¢, this gives k, = k, o — 0,w,, where k,, ; is the initial wave number.

Phase velocity, defined as v,, = w,/k,, is therefore

Wp

=\ 2.62
Uph kp@ — &rwp ( )
The plasma frequency w, depends on the local electron density, w,(z) = "ﬂgg:Q Ina
mildly graded plasma, that is |0,w,| is small,
Y AP (2.63)
Vph, RV — 0/ | :
ph pho Me€o kp,O

For a down ramp density profile, d,,/n. < 0, the phase velocity decrease with time.

The other method to calculate phase velocity is proposed in [21]. As we discussed in
previous subsection, the flying mirror is a bubble width behind the driver. Therefore, the

position of flying mirror can be described by

xM:IL—/\B, (264)

where x); and z;, are the position of flying mirror and the driver respectively. Let & =

dx /dt, the velocity of mirror is then

Ty = L — \p. (2.65)

This shows that the velocity of the flying mirror depends on the velocity of driver and the
variation of the bubble width. In a homogeneous plasma, the bubble width can be treated

as a constant provided that the depletion of driver can be neglected. This leads to the
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velocity of flying mirror equals to the group velocity, which is the principle of wakefield.
However, in an inhomogeneous plasma, with d/dt = 0/0t + x3,0/0x, we can write the
velocity of mirror as

Ty
1+ XN

(2.66)

Gy =
Recall that the bubble width can be described by A = a\, (cf. Eq.(.44)), the velocity
can be written as

a 1+oz/\;,+o/)\p'

Ty (2.67)
In general, « is a function of the position of flying mirror when graded background density
is presented. In Fig.(2.4), we show the numerical result about the relation between
and the ratio between driver pulse length and the ambient plasma wavelength L/\,. As
mentioned in the non-optimal-length case, the ratio L /), varies for a fixed length driver

in an inhomogeneous plasma background. This makes o not a constant.

L I I L I
0 0.2 04 0.6 0.8 1 12 14

Figure 2.4: Dependence of o on the normalized pulse length.

Therefore, for an arbitrary density profile and pulse length, numerically solving Eq.(2.55)
and Eq.(2.66) is needed. In Fig.(2.9), a flat-top driver with fixed pulse duration L/c =
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47.5fs is used. The background density profile is
2
n(z) = no (1 + e—x2/2D2> : (2.68)

with ng = 10?m =3 and the characteristic length D = 100um. The numerical result

agrees well with 1D PIC simulation data.

«108 Numerical solution of Wave Equation with PIC
T T T T T T

285 W

—N ao=1.ﬂ
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Figure 2.5: Comparison between PIC data and theoretical results of velocity of the fly-
ing mirror. Curves are calculated numerically from Eq.(2.59), (2.66). Circles are PIC
simulation data. Driver with different ag are considered.

As we find previously, a equals to a constant 3/4 in two limits. The first one is a non-
relativistic optimal-length driver. However, this approximation is not valid in a graded
plasma background because the optimal condition can not be maintained. The other one
is the ultra-short pulse limit. Even for a graded plasma, the condition can be satistied
provided that L < A,,.

Consider the Gaussian-like down-ramp density profile (Eq.(2.68)). To satisfy the ultra-

short approximation, the FWHM pulse length L of the gaussian driver is chosen such that

L < ),. The condition guarantees o = 3/4. With Eq.(2.67), Eq.(2.68) and applying the

underdense approximation (wz Jw? < 1), the velocity of mirror can be described by [21]]

Tos 1
M _ . 2.69
¢ 1+ (36/2)(0ga/D2)e P02 (2.69)

1D PIC simulations are performed to verify the predictive ability of Eq.(2.69) with pa-
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rameters: n(0) = 4ng = 1.0 x 10%*m =3, D = 100m. The simulations are separated into
two groups. The first one is fixing L = 2.4pum but varying the intensity of driver with
ap = 1.5,2.1,2.19,2.5. The second group is fixing the intensity of driver to ag = 2.0
but varying the pulse duration L/c = 4,6, 10, 14, 20, 25, 30 fs. The comparison between
analytical results (Eq.(2.69)) and 1D PIC simulation is shown in Fig.(2.6). The subplot (a)
demonstrates the comparison among analytical prediction with « = 1 and o = 0.75 and
1D PIC data with driver pulse of different a, . The curve with o = 0.75 agrees well with
PIC data for cases of different ay. The subplot (b) shows the agreement between analytical
curve and PIC data with different length driver. This verifies the argument that as long as

ultra-short pulse limit holds, Ag = 0.75),, is a good approximation.

In the end of this section, we hope to discuss about the two different methods when

applied to compute the velocity of the flying mirror. They are

. xr
= — 2.70
(Y
Uph =~ (2.71)
9z ko

As we demonstrated earlier, Eq.(2.70) can provide well prediction about the velocity of
flying mirror. Here, we wonder whether Eq.(2.71)) gives the same result. The Upho 1N
the numerator is the phase velocity in the homogeneous region. Based on the wake field
principle, we know the velocity of the mirror can be approximated with the velocity of
driver pulse, that is ;. For the denominator, first we need to clarify the meaning of ¢.
The time here means the time after the wake wave formed. In the scheme of laser-driven
wakefield, the wake wave is induced by the driver pulse. Therefore, the time ¢ corresponds
to how long after the driver pulse passed. Here, we are discussing about the first flying
mirror. According to the result in previous sections, the first mirror always trails behind the
laser by a distance 3/4\,, under ultra-short pulse condition. This implies ¢ = (3/4)(\,/c).

Other terms in the denominator can be rewritten as dw,/dx = —2mc/A2 X and 1/k, o =
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Figure 2.6: Phase velocity of the flying mirror in a gaussian down-ramp plasma back-
ground. Solid lines are analytical predictions. Dots are 1D PIC data. It can be seen that
a = 3/4 is a good approximation as long as the ultra-short pulse condition holds.
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\p/27. After putting these terms back into Eq.(2.71)), we get

SL"L

k- 2.72
1+ 3/4N, b

Uph,M =

which recovers Eq.(2.70) in the ultra-short pulse limit. A short conclusion is that these
two methods are consistent with each other but focus on different face. Eq.(2.70)) cares
mainly about the flying mirror, it is more straightforward and easily-implemented if the
problem is about the flying mirror like the study of trajectory of the mirror [21]. On the
other hand, Eq.(2.71)) can describe the phase velocity of all parts in the wake wave. This
is useful in the discussion of electron self-injection scheme because we are only curious

about “whether” but not “where” the electrons are injected [46].

2.6 Conclusion

In this section, we investigate the bubble width which is defined as the distance between
the driver and the flying mirror based on the coupled equations of laser-driven wakefield.
We showed that the bubble width differs from the plasma wavelength. In certain limit,
the ratio between bubble width and plasma wavelength can be found analytically. Such
as the wakefield excited by a linear optimal-length driver or an ultra-short-pulse driver,
the ratio is found to be three quarters. Furthermore, we examine two different methods
to calculate the velocity of the flying mirror and show the equivalence between these
two procedures. These studies can help to calculate the velocity of flying mirror in an
inhomogeneous plasma background. This may benefit the design of plasma density profile

to realize different trajectories which can mimic different evolution of black holes.
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Chapter 3

Reflectivity and Reflected Spectrum of

a Relativistic Flying Mirror

3.1 Introduction

In 1905, Einstein first studied [47] the interaction between light and a reflecting mirror
moving with arbitrary velocity in vacuum. Since then, the concept of flying mirrors has
attracted wide attention for theoretical and experimental applications. An optical laser
pulse reflected from such a relativistic flying plasma mirror would not only upshift its
frequency by a factor 472, where ~ is the Lorentz factor of the mirror but also reduce its

diffraction-limited volume due to the much shorter reflected wavelength.

Relativistic flying mirror can be generated from irradiating an intense laser pulse on
a plasma target. Such a plasma mirror is composed of a dense electron thin shell that
moves with relativistic velocity. There are different mechanisms proposed to generate
relativistic flying mirrors. Among them the idea of using the plasma wakefield [26, 40] in
the nonlinear perturbation regime as a relativistic flying plasma mirror [48] is particularly
attractive. This scheme had been experimentally proven to be feasible by Kando et al.
[49, 50, 51]]. Other ideas include, e.g. double-sided mirror [52], oscillating mirror [53],

sliding mirror [54], nonlinear Langmuir waves [55, 56], and electron density singularities
[57D).
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The relativistic flying mirror has wide practical applications, ranging from higher har-
monic generation (HHG) [55], attosecond pulse generation [56], to XUV laser production
[49, 50]. On the pure physics side, flying mirror with different trajectories has been theo-
retically investigated as a model to mimic phenomena associated with the quantum field
theory in curved spacetime [|11], 58, 12], which is closely associated with the physics of the
black hole Hawking radiation [2]. On the basis of this theoretical analogy, an experimen-
tal scheme was recently proposed by Chen and Mourou [|14] with the intent to investigate
Hawking evaporation through laser-driven relativistic flying plasma mirrors. In the pro-
posal, an underdense plasma target with a tailored density gradient is invoked to realize a
desired trajectory of the flying plasma mirror [59]. Currently, there is an on-going project,
AnaBHEL (Analog Black Hole Evaporation via Lasers) that attempts to carry out such an
experiment. Ifrealized, it may help to shed more lights on the solution to the long-standing

information loss paradox [3].

Considering the reality that flying plasma mirrors tend to have a low reflectivity [60]
and with a finite size, which deviate from the highly idealized theoretical studies in the lit-
erature, the analog Hawking radiation spectrum from flying plasma mirrors with a partial
reflectivity and finite dimensions have been calculated recently [61], 62], which should
help to guide the design of the AnaBHEL experiment. To measure the trajectory of a
flying mirror, which is closely related to the characteristic temperature of the Hawking
radiation, the velocity of the plasma mirror at different instants (therefore different lo-
cations) should be measured so as to cross compared with the detected analog Hawking

radiation spectrum.

To reconstruct the flying mirror trajectory and its relation to the reflected Hawking
spectrum, the reflectivity and the Lorentz factor of the plasma mirror should be carefully
studied. Bulanov et al. have analytically investigated the reflectivity of a near-wave-
breaking flying plasma mirror using the collisionless cold plasma theory [60]. From our
one-dimensional particle-in-cell (1D PIC) simulations, we found that the formula of Bu-
lanov et al. tends to overestimate the reflectivity. We therefore propose a fitting model

based on the PIC data. This model can provide better prediction about the reflectivity of

38

doi:10.6342/NTU202001324



the flying plasma mirror. Furthermore, we extend the previous study on the interaction be-
tween a flying mirror and a plane wave to an incident wave with a finite bandwidth, which
is closer to a realistic experimental setup. The peak frequency of the reflected spectrum
from an incident wave with a Gaussian temporal profile is found to be deviated from the
standard value of [(1 4+ )/(1 — f)]w, due to the dependence of the reflectivity on the
incident wave (source) frequency w,. We suggest that the deviation can be treated as a
correction term, which may serve to improve the precision of the Lorentz factor derived

from the reflection spectrum.

This section is organized as follows: in Section B.2 we review previous studies on the
reflectivity and propose a new model based on the numerical fitting of our PIC simulation
data, which is different from that based on the near-wave-breaking condition. The validity
of different density models are examined by analyzing the reflectivity of the flying mirror
through 1D PIC simulations. Furthermore, we briefly describe the feasibility of generating
water window X-ray from a relativistic flying mirror in underdense plasma. In Section 3.3
we discuss the reflected spectrum of the incident wave with Gaussian temporal profile and

compare theoretical calculations with 1D PIC simulation results.

3.2 Reflectivity of a Flying Mirror

The reflectivity of a relativistic flying plasma mirror has been studied by Bulanov [60]
and H.-C Wu [63]. Their procedures are different but construct the same relation between
density profile of electrons and the reflectivity. Here, we first introduce Bulanov’s method

and then the one proposed by H.-C Wu.

Consider the electromagnetic wave polarized in z direction and propagates along x

axis. The vector potential A, (z, t) satisfies the wave equation

A, L0%A,
o —c 50 +wlA, =0, (3.1)
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where wy, is the plasma frequency. Consider A, is in the form

A, = A (x)e ™, (3.2)
Eq.(B.1)) becomes
PA,  wi—w
A, =0. 33
ox? * c? (3-3)

After normalizing by defining a(z) = eA,(z)/m.c* and performing the Lorentz transfor-

mation to a frame moving with phase velocity of the plasma wave, which is defined by

¢ = Ypn(T — vpnt). Eq.(B.3) then becomes

& (wp)® —w (<)

d—CQ + 2 CL(C) = O, (34)
where ‘“ ” denotes quantities in mirror’s proper frame. We can represent the solution to
Eq.(3.4) as

a(C) = by exp(is¢) + b_exp(—isC), (3.5)

where s = w(/c and b4 (¢) and b_(() are the amplitudes of reflected and transmitted
waves. In the limit { — —oo, b (() is the amplitude of the incident wave and b_ (—o0) =
p is the amplitude of the reflected wave. For ( — +o00, by (00) is equal to the amplitude
of transmitted wave and b_(oco) = 0. Therefore, with definition of the reflective and
transmit coefficient R and T, we have |b, (—o0)|* = 1, |b_(—o0)|* = R, |by(0)|* =T

and b_(o0) = 0.

Because two unknown functions b, (¢) and b_(() are introduced, instead of one a((),
we need to impose extra conditions on the solution. The derivative of vector potential is

required to satisfy

j—z = is[by (¢) exp(is¢) — b_(¢) exp(—is()], (3.6)
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that is

CZ)_S exp(isC) = —% exp(—is(). (3.7)

After substituting Eq.(B.3) into Eq.(8.4) and taking Eq.(B.6) into account, the system of

solution can be expressed in the form [64]

d | b+ _ iv(¢) -1 —exp(—2is() b,

il (3.8)
ac \ p 2s exp(2is() 1 b_

where v(¢) = w,(¢)/c. Consider the case that the reflectivity is small, R < 1. The
solution of system (B.8§) corresponds to a known approximation in quantum mechanics
with the potential considered as a perturbation [65]. By integrating the equation of db_ /d(

from ( = —oo to oo, we have

b_(c0) —b_(—00) = — /OO dC v(¢)[by exp(2isC) + b_]. (3.9)

—00

Due to the small reflectivity, b, and b_ in the right hand side can be replaced by the zeroth
order solution (a plane wave): a(?)(¢) = exp(is(), that is bgf) — 1and b = 0. This leads

to

/l: o0

0—p=— d¢ v(C) exp(2is(). (3.10)

T 2s oo

After redefining the variable ( = —( , the result is

o

p=— v(¢) exp(—2isC)dC. (3.11)

2s J_

Eq.(B.11)) constructs the relation between the electron density profile (#(¢)) and the

ratio between incident wave and reflected wave p.

On the other hand, the method utilized in [63] is shown as follows. Starting from the

wave equation of the vector potential,
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(3_2 - la—2>A’(ﬂf,t) = S'(x,1) = wp ()

55 3 Al(z,1t), (3.12)

02
where A is the vector potential of the radiation, S is the source term and “"*is used to

indicate quantities in the mirror’s proper frame. The solution of A’ can be written in the

form
Auw):A“%b//}mﬂﬁﬂx—fx—ﬂﬂﬂff% (3.13)

where A’') is the zeroth order solution which corresponds to the solution of Eq.(B.12)
without source, that is a planar wave. G(x — 2/, t —t') = —(¢/2)H[(t — ') — |x — 2'| /(]
is the Green’s function of Eq.(B.12) that satisfies

(82 1 02

a2 2ot

)G = 5(a', t). (3.14)

H is the Heaviside step function. The vector potential can be expressed in the iterative

style

/2 12
Az, t) = A +/G~ 2 (A’<0> +/G.°‘%A’)
C C

:A’(o>+/g. “po 4o o (3.15)

=A0 4 A0 . ..

If the contribution of the source term is small compared to the zeroth order term, that
is when reflectivity is small, Eq.(B.13) is a perturbative equation to describe the vector po-
tential. Here, we only keep terms up to the first order. Consider the zeroth order solution,
a right-moving plane wave, to be A) = A exp[i(w,t — ksx)] where Ay, w, and k, are the

amplitude, the angular frequency, and the wave number of incident wave, respectively.
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The transmitted and reflected part of the incident wave can then be written as

A A4 AW (- 400,t), (3.16)

Al = AW (= —o0,t), (3.17)

respectively. After substituting the Green’s function into the first order term of Eq.(3.15),

we have

[oe] S -
Al(l)(I,t) _ _g/ dl'// dt’H[(t—t/)— |IL'—3L”|/C] W%A’(O)
oo —oo ¢
00 t—|z—2'|/c 12
_ _E/ d{E// dt/wiA/(O)7 (3.18)
2) o ) c*

where the property of the step function is used to arrive at the second equation. After

carrying out the integration over ¢’

) Ay [ W’
AW (z,t) = Zka? / dx’ C—g expli(wit — K|z — 2| — K.2")], (3.19)

where the relation &, = ' /c is used. Consider the limit (z — —oo) where A’ ~ A’,
|z — 2’| = 2’ — . After collecting terms, we have
iAo -

o0 w N oy ’
Al(x,t) = ST / da! =BT it (3.20)
s C

—00

= Aloei(wgt—i—kgx)
-

It can be found that the reflected wave is left-moving as expected. The ratio of amplitude

between reflected wave and incident wave is

Ay i [ W)
AO :2—k/ B dwl?e ST (321)

It is noteworthy that the result is the same no matter using the method proposed by Bulanov
et al. (Eq.(.11])) or the one by H.-C, Wu (8.21)) for calculating the reflection coefficient.

After substituting the definition of w, and considering the ratio between amplitude of elec-

43

doi:10.6342/NTU202001324



tric field, Eq.(3.21) can be expressed as

E)(x,t > o
| r<x7 )l _ Hoce / dz’ n/(x/)e—sz’sx. (3.22)

|Eo|  2mew,

It is clear that the reflected electric field depends on the electron density distribution of
the flying plasma mirror, n(x). Here we discuss three different density distributions: Slab

[63], Cusp [66], and Square-Root Lorentzian Distribution (SRLD), defined as

Slab : nge(x) = Npear[H (x + 2D) — H(z)], (3.23)
—2/3

Cusp: neusp() = 2'/° X 3.24

S ey () = 2y (3052 ) (3.24)

LQ
SRLD: nmd(x) = Npeak\/ m, (325)

where ng and n,..; are the unperturbed background plasma density and peak density of
the distribution, separately. v and (3 are the Lorentz factor and the normalized velocity,
respectively, calculated from the phase velocity of the flying mirror. To compare the results
from different density distributions, we unify the definition of mirror density in these three
distributions. For Slab and SRLD, the peak density and thickness of the mirror can be
associated with wave-breaking limit of the background plasma, under which the flying
mirror contains half of the total electrons within the volume encompassed by the nonlinear

plasma wavelength. Therefore, we have

Anp/4 A
/ dx ngiap(x) = 2DNpeqr = ﬂng, (3.26)
Anp/4 2
Avp /4 AnP
/ A2 Ngria (1) = 2L1peqr sinh ™ Ay p/4L) = ZXng, (3.27)
Anp/4 2

where Ayp is the nonlinear plasma wavelength defined as Axp ~ (24/1+ a3/2/m)N,
[B9] (see also Sec.(2.3))), Ap 1s the linear plasma wavelength and @, the normalized vector

potential of a linearly polarized driver pulse. Then, we can link 7., with background
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density ng, such as in SRLD case

ANPT
4Lsinh ' (Ayp/4L)

(3.28)

Npeak =

Besides, to make the comparison on an equal basis, we consider the same peak density
of both Slab and SRLD distributions. The cusp distribution is with infinite peak density
therefore can not be normalized in this way. With these considerations, Eq.(3.23)-(B.29)

can be written as

Nslab (l’) C’slab i

lab : = H 2D) — H 2

st "8) _ S € 17, 1 20) — () (3.29
—2/3
Cusp:mL”(gc):Ql/%(:sxﬂ) , (3.30)
no Bphc
nsrld($) Osrld c L?

RLD: = — 3.31

5 no L w,V a2+ L% (3.31)

where the normalization constants are defined as

Caa =1/ 1+ a3/2, (3.32)

1+a}/2
sinh™ ' (Ayp/4L)

Csrld = (333)

The respective parameters used and suitable scene of these different distributions are
explained as below. The Slab Distribution is a simplified model to describe the flying
mirror with the thickness of the slab is defined as 2. This may be an approximated model
in the interaction between intense laser and a solid target when all the electrons in the thin
film are pushed away and formed a slab flying mirror. The Cusp Distribution is derived
from the 1D cold, collisionless plasma theory and the nonlinear coupled wave equation at
the wave breaking situation [60]. The SRLD is a fitting function that we deduced from
the PIC simulation. From 1D PIC simulations, the peak density of the flying mirror was
found to be not as spiky as the Cusp Distribution but more rounded instead. Actually, the
singularity in the Cusp Distribution at the wave-breaking point may suggest the breakdown

of the cold plasma description. For a typical Laser Wakefield Accelerator scheme, warm
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plasma theory should take place as the flying mirror approaches the wave-breaking point,
which in turn renders the maximum density finite [67]. Without solving the complex
equations based on the warm plasma theory, we deduced the SRLD distribution as a good
approximation to the flying mirror density near the wave-breaking limit (see the Inset of

Fig.(B.1])). Here, L is the characteristic thickness of the flying mirror.

The reflectivity in terms of the photon number can be calculated from Eq.(3.22) by
R = |E'/E}|?. To transform the density function (Eq.(B.31))) into mirror’s frame, it can
be noted that the total electrons number in the distribution, /N, is a Lorentz invariant. Thus,

we have

/Oo drn(x) = /OO dx'n'(z') = N. (3.34)

—00 o0

Here, we take the SRLD case as an example

& [ L2 > dz’ / L2
/_Oo AT Npear a2 T2 /_OO Tnpeak —(37’/7)2 T (3.35)

To arrive at the right hand side, the transformation ' = ~x and dx’ = ~ydz between

mirror’s frame and lab frame are used. Accordingly, the SRLD in mirror’s frame is

1o Npeak (’)/L)Q
n'(z") = 5 )2+ (L) (3.36)

The integration in Eq.(B.22)) can then be carried out

/ da' n'e” 2% = 9n . LKo(2yLEL), (3.37)

—00

where K is modified Bessel function of the second kind [68]. This gives the amplitude

of the reflected wave for a SQLD mirror

El(z,t ce? ¢
| TE?’| )l = _2’1:7(; — % 2nOCsrzdw—K0<27Lk;)
0 e¥¥sg p
Csr
_ Wp / ldKO(Q’yLk’;) (338)
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The definition w, = nge?/me€y is used to simplified the equation. This leads to the
reflection coefficient

E/

R=|-—-1
L

(2 LK) | (3.39)

S

2 2
o {wpcsrld

Note that this expression is calculated in the mirror’s frame. In the lab frame, this repre-
sents the reflectivity in terms of number of photons (from here simply referred as “reflec-
tivity”).

The reflectivity for three different distributions are summarized as follows, parameters

are all expressed with quantities in the lab frame [60, 63],

Cotap . 2
Slab: Rp(ws) = {M smc(4’yzwsD/C)} , (3.40)
dywy
[2(2/3) fw,\8/3 1
CuSp: Rcusp(ws) = QQ—W’(W_S> m, (341)
wpcsrld 2 2
SRLD: Ry 14(ws) = | ——Ko(4v* Lws/c)| (3.42)

where the sinc function is defined as sinc(x) = sin(z)/z, I is the gamma function. From
Eq.(B.40)-(B.42), it is clear that the reflectivity quickly decays as the frequency of incident
wave w; increases. In addition, the reflectivity decreases as ~ increases. This means that

there exists a trade-off between high reflectivity and high frequency in the reflected wave.

The tendencies of such decrease in reflectivity are different among the three different
density distributions of the sinc, the exponential (ws 8/ 3) and the K functions, respec-
tively. The decaying and oscillating behavior of the sinc function has been explained as
the result of the modulations due to the constructive and destructive interferences [63]. It
should be noted that the argument in the sinc function and K, are of the same form, de-
fined as s = 492 Lw,/c = 27 L/\,, where \, = 2mc/(4v%w;) is the reflected wavelength
in the lab frame. As s > 1, both sinc and K|, functions decay quickly, which in turn
highly suppress the reflectivity. Therefore, s can serve as a parameter to define the qual-
ity of the flying mirror. A good mirror is one whose thickness is roughly the same order

of magnitude as the doubly Doppler shifted wavelength, i.e., L < O(\,). This explains

47

doi:10.6342/NTU202001324



why in an experiment one usually tunes the collision point at the wave-breaking limit so
as to minimize the thickness of the flying mirror [49, 50], which is an optimum point for

trade-off between the reflectivity and the frequency of the reflected wave.

To examine the validity of Eq.(8.40)-Eq.(8.42), we numerically study the property of

relativistic flying mirror traversing a uniform plasma in the underdense regime with PIC
simulations in 1D Cartesian geometry. The 1D configuration is a good approximation to
the case of a driver pulse with a large focal spot in a higher dimension. This corresponds
to the condition that > A, where 7 is the spot radius of the driver pulse and A, is
the wavelength of the background plasma. The simulations are performed with the fully

relativistic electromagnetic PIC code EPOCH [69].

In our simulation, the relativistic flying mirror is generated by a highly intense driver
pulse (referred to as the driver” from here on), which enters from the left boundary and
propagates in the +x direction. Along its way, the driver induces a flying mirror (wake-
field) that follows behind it. The incident wave (referred to as the ’source”) enters, on the
other hand, from the right boundary and propagates in the —z direction. The collision point
between the flying mirror and the source is tuned in such a way that the wave-breaking
condition is reached with the flying mirror thickness minimized. Below we use subscripts
“m”,“d”,“s” “r” to denote quantities that are associated with the flying mirror, the driver,

the source and the reflected pulse, respectively.

The driver is characterized by the wavelength \; = 800nm and the normalized vector
potential a; = 5.0. The temporal profile is Gaussian with full-width-at-half-maximum
(FWHM) duration of 7, &~ \,/2, which is chosen to excite the wakefield resonantly. The

driver is linearly polarized with the electric field pointing in the y-direction.

To study the dependence of reflectivity on the source frequency, ws, several source
wavelengths are chosen: 266nm, 400nm, 800nm, 1600nm, 2400nm and 4000nm. The
normalized vector potential a; = 0.004 is set to be small enough to prevent the recoil
effect [55, [70]. The temporal profile is Gaussian with FWHM duration 7, = 27, where
Ts = \/c is the source cycle period. To distinguish the reflected pulse from the driver,

we set the source linearly polarized in z-direction.
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The background plasma density is uniform with a density n, = 0.025n., where n, =
meeow3/€? is the critical plasma density with respect to the driver. The simulation box
size is 80pum in the = direction with 160, 000 cells. For shorter A, the finer the grid size
so as to guarantee the spatial resolution is sufficient for tracking the blue-shifted reflected
pulse. In our strictest case, the resolution of the Cartesian grid size is roughly 8.3 cells
per reflected wavelength )., which is estimated by A\, &~ \,/4v2 . Outflow conditions are

applied to each simulation boundary for both electromagnetic waves and quasi-particles.

102 ‘
——Cusp
——Slab
——SRLD
1073F o 266nm
a 400nm
800nm
+ 1600nm
10-4 A

Figure 3.1: Reflectivity of the relativistic flying mirror as a function of the source fre-
quency w;. Solid lines are calculated from different reflectivity models (Eq.(B.40)-(3.42)).
Distinct symbols are PIC simulation results with different A;. SRLD model agrees well
with PIC results and the cusp model approaches SRLD when a longer wavelength source
is applied. Inset: Comparison between three density distribution (Eq.(3.29)-(B.31])) mod-
els and the density of flying mirror from PIC simulations. Note that the PIC data (circles)
is almost overlapped by SRLD (blue line).

The comparison between the analytic formula and the simulation result on reflectivity
is shown in Fig.(B.1}). Parameters used in the analytic formulas (Eq.(3.40)-(3.42)) are
wp, = 3.72x10Msec™, ag = 5,n9 = 4.35x10*m 3,y = 4.08 and L = 1.12nm. The first
three parameters are fixed in the simulation setup while the last two are the values of the
flying mirror at the collision point.The rightmost PIC data point is the one with the source
wavelength A\; = 266nm which corresponds to the frequency tripling of the frequency
of the conventional 800nm Ti:Sapphire laser. In this setup, the double-Doppler-shifted

wavelength A\, ~ 4nm corresponds to the water-window X-ray wavelength, which can
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be a useful tool for life science research. The reflectivity in terms of the photon number
is R ~ 5 x 1078, which is deduced from the ratio of the electric fields in the frequency

spectrum between the reflected and the incident waves.

The reflectivity formula with the Cusp Distribution (Eq.(8.41))) may be a good esti-
mation for long wavelength sources (A, > \,), such as the leftmost point in Fig.(B.1))
or the case in [70] with A, = 5\;. However, as shown in Fig.(B.1]), the discrepancy be-
tween Eq.(B.41]) and the PIC result is found to grow as w, increases. With A\, = 266nm
(As = Ag/3), we found that Eq.(8.41)) tends to over-estimate the reflectivity by roughly
two orders of magnitude. Within these three different models, the SRLD reflectivity for-
mula gives the best agreement with the simulation results. This may not be surprising

because one additional parameter, the thickness, was introduced in SRLD.

In the simulation, the resolution of the cell depends on the reflected wavelength A,.
For a higher source frequency, a higher resolution is needed. However, with the help of
Eq.(3.42)), one can estimate the reflectivity directly from the property of the flying mir-
ror. This helps to greatly accelerate the process to search for an appropriate experimental

parameter space.

3.3 Frequency Deviation of the Reflected Spectrum

In the previous section, the incident wave was assumed to be a plane wave. In an actual
experiment, however, the incident laser pulses are expected to have finite bandwidth. Here
we consider such a pulse by a Gaussian wave packet with central frequency w; and pulse

duration 7,:
Ein(,t) = Eget/ gilhst—wst), (3.43)

To calculate the reflection of a finite-bandwidth pulse, we can use Fourier transform into

the frequency space and discuss different frequency components separately. The electric
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field amplitude in frequency space is

Ep(w) = /dt Ein(z,t)e™" = Eyto\/Texp [_(%ws)gﬁ} . (3.44)

The transformation of E;,(w) into mirror’s proper frame can be realized by noting that
the phase of electric field is a Lorentz invariant, that is ko — wst = klz’ — Wit'. The

1/24. For simplifying the

frequency in the co-moving frame is ' = [(1 + B,,)/(1 — Bm)]
equation form, we consider the ultra-relativistic limit (3 — 1), this gives W), = 27,,ws.

Therefore we have the electric field amplitude in mirror’s frame

’ / _(w; - 2’7mws)2 Ts ?
E; (W) = Egts\/Texp 1 5 : (3.45)
Tm

It is clear that in this frame the central frequency of the wave packet is blue-shifted to
2vmws and the pulse duration shortened by the same factor 2v,,. The amplitude of the

reflected wave can be calculated frequency by frequency
E (W)=Y () E (&), (3.406)

where Y’ (w') is the ratio between the amplitude of incident wave and reflected wave for a
specific frequency w’ (cf. Eq.(8.22)). Accordingly, the electric field of the reflected wave
from a flying mirror with a square-root Lorentzian distribution (Eq.(8.31])) in the mirror’s
proper frame can be calculated. After transforming back to the lab frame, the reflected

electric field is

L —(w — 42W,)% [ T \?2
=2\/77, L Crta 2 Ko( ) x exp | o = Hyyete) ()] 64
W c 4 4~2

m

‘ E(w)
Ey

It should be noted that, when the background plasma density is sufficiently low (
n,/n. < 1), the parametric Doppler effect [60] due to the frequency dispersion in the
background medium can be ignored. The exponential term describes a pulse with the
central frequency at 472w, and the pulse duration that is compressed by a factor 4+2.

However, the w-dependent and decaying term, i.e., Ko(Lw/c)/w, will distort the reflected
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spectrum. Fig.(B.2) shows the normalized reflected spectrum with 7, = 5, L = 15nm,
and A\; = 800nm. The red curve is the normalized exponential term. The blue curve is
calculated from Eq.(B.47) and the black curve is the value of the decaying term. The distor-
tion of the spectral shape, shown in the blue curve, is not evident, while both the frequency

and the amplitude at the peak of the spectrum clearly deviate from the red curve.

1.4 w w w 400

— Naive Estimation

1.2F —Eq.(11) 1350

—— Decay Factor

1300

1250

1200

o
o
Decay Ratio

1150

Normalized Amplitude

1100

150

; * ‘0
0.5 1 1.5 2

w x10"7

Figure 3.2: Normalized reflected electric field amplitude calculated by Eq.(8.47) (blue
curve) and the naive estimation with w = 4+2 wj (red curve). The black curve shows the
decaying term in Eq.(B.47) and is also normalized to the value calculated with w = 42 wy.
The deviation of both the frequency and amplitude at the peak of spectrum is demonstrated.

The deviation ratio between the frequency associated with the maximum amplitude,

Wpeak»> and the naively estimated frequency, wey = 472 w, is defined as

5 Wpeak — West (348)

West

From Eq.(B.47), 6 depends mainly on three parameters: the pulse duration of source 7,
the Lorentz factor of the flying mirror ,,, and the characteristic thickness of the mirror L.
Fig.(B.3) shows the dependence of § on 7, and ,,, which are accessible in an experiment.
Ts can be measured with an auto-correlator and +,, can be estimated by the background
plasma density, 7., &~ wo/w, [26], or the energy of the accelerated electrons [50, [71].

The frequency associated with the maximum amplitude, wy.q, can be calculated through
dE,(w)/dw = 0atw = wyeqair. However, due to the existence of the modified Bessel

function of the second kind, wyeq; of Eq.(8.47) can not be found analytically. To have a
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(a) Frequency Deviation Ratio and pulse du-  (b) Frequency Deviation Ratio and ~,,
ration

Figure 3.3: Dependence of § on the pulse duration 7" and the Lorentz factor v with other
parameters fixed. The deviation is evident for few cycle source pulse or flying mirror with
higher lorentz factor.

sense about the amount of deviation, we numerically solve the deviation with Eq.(3.47)
based on the typical parameters of intense lasers: 30fs pulse duration and v, = 4. ¢ is
found to be roughly —1%, which may be hard to detect. However, from Fig.(3.3)), it can
be seen that the deviation is more significant for fewer-cycle sources and flying mirrors
with higher Lorentz factors. This implies that the correction cannot be neglected when
few-cycle pulses are employed or high blue-shift reflections are demanded, such as the

situation for generating attosecond pulses with relativistic flying mirrors [56].

To study the validity of Eq.(3.47), the code EPOCH [69] was used. Instead of fly-
ing mirrors induced by a driver laser, we imposed the mirror as an initial condition. The
flying mirror was constructed as an electron sheet with a given longitudinal density distri-
bution and propagating in the +x direction with an initially assigned velocity. To prevent
electrons from expelling each other during propagation, positive charge (proton) was in-
troduced to co-move with the relativistic electron sheet. The interaction between protons

and the source is negligible because of their large mass.

We used the simplified Square-Root Lorentzian Distribution, n,, () = ny 0/ L2,/ (22 + L2,),
to characterize the density distribution of the flying mirror. There are three parameters to
be determined: the peak density n,, o, the characteristic thickness L,,, and the Lorentz
factor of flying mirror ,,. The peak density only affects the reflectivity. We therefore
chose n,, 9 = 3n., where n, is the critical density for a 800nm electromagnetic wave, to

guarantee that the reflected pulse is intense enough for observation. v,, = 4 and L,,, ranges
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from 1nm to 20nm according to the PIC results from the laser-driven flying mirror. The
source is a linearly polarized pulse with a wavelength A\, = 1.6m, which is long enough
to increase the reflectivity. The normalized vector potential is a;, = 0.004. The temporal
profile is Gaussian with FWHM duration 7, = 1.57; where T, = \;/c is the source cycle
period. The source enters from right boundary and propagates in —z direction.The sim-
ulation box size is 50um in x direction with 25000 cells. Therefore, the resolution of the
Cartesian grid is 12.5 cells per reflected wavelength, A, ~ 472 \,. Boundary conditions

remained the same as the setup in the previous section.

8><1016

7r —Theoretical|
° PIC
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Figure 3.4: Comparison among the estimated double-Doppler shift frequency (yellow
line), the theoretical prediction of wy.,, from Eq.(8.47) (blue line), and the PIC simulation
result (red dots). v, = 4, N, 0 = 3n. and 7, = 1.57 are used as the initial condition. The
1D PIC result agrees reasonably with theoretical prediction and the linear dependence of
the deviation on mirror thickness is also illustrated.

The comparison between the theoretical prediction of the frequency at the peak ampli-
tude from Eq.(8.47) and the PIC simulation results is shown in Fig.(B.4). The horizontal
yellow line is the estimated naive frequency 42 w, and the blue one is the maximum value
of Eq.(8.47) solved numerically. Red circles are the PIC simulation results with differ-
ent characteristic thicknesses L,,. We see that the PIC results are in reasonable agreement
with the theoretical prediction from Eq.(8.47). The discrepancy is resulted from the statis-
tical fluctuations in the initialization of the SRLD distribution due to the limited number of
macro-particles in our PIC simulations. From Fig.(B.4), the magnitude of the deviation,
which is always negative, increases linearly as the characteristic thickness of the flying

mirror L, increases, where the slope depends on the Lorentz factor, ,,, and the source

pulse duration, 7.
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In an actual experiment, +,,, can be deduced through the measurement of the reflected
wave spectrum. Usually, this is estimated from the peak frequency of the reflected spec-
trum and the naive double-Doppler shifted relation, wpeqr = 47ymws. The deviation from
this idealized value, as we have shown, can serve as its correction that can further improve
the precision of this method.

We have shown in Section II that the plasma mirror thickness is an important parameter
that determines the reflectivity and the reflected spectrum. In actual experiments, multiple
tools can be employed to diagnose the dynamics of the wakefield, i.e., the mirror, such as
the relativistic electron bunch probe [[72] and the optical probe [73]. However, the spatial
and the temporal resolutions of these methods are still not precise enough to measure the
thickness of a flying mirror near the wave-breaking condition, which is typically of tens
of nanometer scale. Our investigation shows that the frequency deviation can serve as a
diagnosis on the thickness. As Eq.(B.47) shows, the peak frequency of the reflected wave
depends on wy, 75, Vi, and L,,. Among them w, and 7, are laser parameters that can be
measured accurately. In principle, v,, can be determined by conventional methods such
as that based on the background plasma density [26] or the accelerated electron energy
[50,71], from which the mirror thickness can be deduced. However, the diagnostic scheme

suggested here may require highly stable condition of lasers and plasmas.

3.4 Conclusion

In this section, we extended previous studies on the reflectivity of relativistic flying mir-
rors with incident plane waves. We showed that the Square Root Lorentzian Distribution
can accurately describe the flying mirror density distribution, and can provide a better
estimation about the reflectivity. We defined a dimensionless parameter, s = 27 L,, /.,
to characterize the quality of the flying mirror. To attain a high enough reflectivity, the
condition, s < 2, must be satisfied, which means that the mirror must be thinner than
the wavelength of the reflected pulse. In our simulations, we demonstrated the feasibil-
ity of the generation of the water-window X-ray through plasma mirror reflection based

on state-of-the-art laser parameters, which would provide great utility to life science re-
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searches. We found that the reflectivity in this case is ~ 5 x 107® in photon numbers,
which is encouraging. We also found that, for an incident wave with a Gaussian temporal
profile, the peak frequency of the reflected spectrum is red-shifted from its expected value,
4~2 w,. The magnitude of the deviation is positively correlated to the thickness of the mir-
ror and its Lorentz factor, but negatively correlated with the duration of the source pulse.
This deviation helps to provide a better description of the reflected spectrum, which can
serve as a diagnostic tool about the dynamics of the wakefield. These studies about the

reflectivity and the reflected spectrum may benefit future experiments such as AnaBHEL.
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