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Abstract

This thesis presents an extended version of the £-SNE visualization method.
In the original paper [9] of ¢-SNE, the ¢;-distribution was used to embed the
data into a low dimensional space. The distribution ¢; has very fat tails that
can reduce the effect of the crowding problem. However, data sets may vary
in different aspects, such as the data set size, dimensionality, or feature prop-
erties, etc. It seems not adequate to use only the ¢; distribution for modeling
the low dimensional similarity. Hence, it is natural to extend the degrees of
freedom in ¢-SNE to general ¢,,. To measure the discrepancy between data dis-
tribution and model distribution, the original paper [9] used KL-divergence.
In this work, we also make an extension by using gamma-divergence, which
includes KL-divergence as a special case. The gradient of minimum gamma-
divergence t,-SNE is derived and used in the implementation algorithm. Two

numerical examples are presented.

Keywords: gamma-divergence, t-SNE (stochastic neighborhood embedding),

unsupervised dimension reduction, visualization.
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Chapter 1

Introduction

t-SNE (¢-Distributed Stochastic Neighbor Embedding) is a nonlinear unsupervised dimen-
sion reduction method, also an improvement of an earlier SNE algorithm of Hinton and
Roweis (2002) [6]. It was proposed by van der Maaten and Hinton (2008) [9]. They used
t-distribution to embed the data to a low-dimensional space and to compute the similarity
between two points. The KL-divergence was used to measure the discrepancy between the
data distribution and the model distribution. The low-dimensional embedding was solved
by minimum KL-divergence estimation.

In the conclusion of van der Maaten and Hinton (2008), they gave a discussion on
the degrees of freedom of the t-distribution. It can be helpful for dimension reduction,
if the low-dimensional space has many dimensions. As the degrees of freedom increase,
t-distribution will get closer to the Gaussian. A more Gaussian-like distribution can be
useful for big datasets.

Furthermore, for the purpose of reducing the influence of outliers, we can use more
robust divergence measure than the widely used KL-divergence [}, [7]. The main reason
is that KL-divergence is more sensitive to outliers than gamma-divergence. The latter

includes the KL-divergence as a special case.

doi:10.6342/NTU202001485
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Chapter 2

Literature Review

In this chapter, we give a brief review for {-SNE and gamma-divergence.

2.1 SNE and ¢-SNE

In SNE, the similarity of high-dimensional data points z; to z; is a conditional probability,
Pj|i> which is measured by a Gaussian probability density centered at z; with Euclidean

distance between data points. Precisely, the conditional probability p;; is given by

exp(— ||z — ; [|* /207)
2 i XP(— || @i — @i ||* /207)

Pjli = 2.1)

where o; is the Gaussian standard deviation and its value is determined by Perp, the per-

plexity. Set p;; = 0. The perplexity of the distribution P; = {p;;}}_, is defined as
Perp(P;) = 29 where H(P,) = — ij‘i log, pjii-
J

The perplexity can be interpreted as the effective number of local neighbors, and is usually
chosen by hand between 5 and 50 [9]. Let y; € R? denote embedded points in the low-
dimensional space. Here the dimensionality d is often set to d = 2, or 3. The similarity

between points y; and y;, denoted by g;;, is based on a similar conditional probability

3
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model and is given by

exp(— [l i — y; [I*)

4jli = . (2.2)
o=y — e IP)
Similarly, set ¢;; = 0. Consider the cost function
Djli
C = KLP|Q) = pjlog q?',, (2.3)
i i, JI

where Q; = {q¢jji}}—,. To estimate the low-dimensional embedding {y; € R4, we
seek the minimum KL-divergence estimation via gradient descent. The gradient is given
by

oC
oy, =2 Z(pjli — i + Pily — 9i5)(Yi — Yj)- (2.4)

J

The optimization problem of the original SNE is difficult to solve due to the curse of
intrinsic dimensionality problem. Later, --SNE was developed as an alternative to SNE.
There are two major differences from SNE. The first one is that {-SNE has used sym-
metrized conditional probabilities and with some adjustment about the weight to every
data point x; that makes them all have enough contribution to the cost function. The prob-

abilities are set as follows.
Djli + Di|j
= | o g (2.5)
The second difference is that -SNE has used the Student-¢ distribution with 1-degree of
freedom to replace the Gaussian distribution for low-dimensional embedding. The simi-

larities, or say the joint probabilities g;;, in the model space are defined to be

—1
L e 1)
k#l

Use the same KL-divergence-based cost function. The gradient of t-SNE is given by

oC B
Oy B

AT (U = D) 0 — a) (i — ). 2.7)
J

4
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From now on we will use ¢;-SNE to reflect its degree of freedom is one.

2.2 The gamma-divergence

Fujisawa and Eguchi [§] proposed a robust estimation method by gamma-divergence. This
divergence also measures the discrepancy between data distribution and the corresponding
model distribution, but it can reduce the influence of outliers better than KL-divergence,

and is a generalization of KL-divergence.

Definition 2.2.1 (Gamma norm). For v > 0, p is a probability distribution function, then

the gamma norm is defined as

2. () I p 1= ( / p@)wdm) el 2.8)

Definition 2.2.2 (Gamma divergence [2]). Let p, q be both probability distribution func-

tions, then the gamma-divergence is

1

D, (p,q) = PP

{@,(p) — @,(q) = (VP,(q),p — @)} - (2.9)

We expressing the inner product in gamma-divergence and simplify it:

1 1

D) = g (Il =lall= [ a7 64 000 0)

_ ﬁ (Hp I=lall- [ (ﬁ)vp+ quulv)
1 ;
- s (- (7))

From the definition, we can see that when v — 07, the gamma-divergence will converge

to the KL-divergence.
For minimizing the divergence D, (p, ¢), or say minimizing the cost function, since

p is fixed, we can turn this minimization problem into a maximization of the following

5
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cross-entropy:

o =smrn) (1n) »

For the case of t;-SNE, C, takes the following form:

Y (qz—’“)yplk, (210)
o+ Il

1k

where ||q|| is given by

n n 1/(v+1)
lall = llally+1 :{ > Zq}ﬁfl} -

I1=1,l#k k=1

doi:10.6342/NTU202001485



Chapter 3

t,~-SNE with KL-divergence

The main focus of this chapter is to formulate the #,-SNE with minimum KL-divergence

estimation and to compute the gradient of its corresponding cost function.

3.1 The formulation

Recall that Student’s t-distribution has the probability density function given by

e e
f(t)_m<1+;) . 3.1)

By applying the ¢, -distribution to the model of the data points, the new affinity function

of data 1 to data j (or data j to data 1, or between data i and data j) is

5 _ v+l
(1+ llyi—y;ll ) 2
14
qij = PRSI

3 (1 + Ika—yzHQ)_Q'

k£l

We can compare to (2.6) and see the similarities and differences.

doi:10.6342/NTU202001485



The cost function computed by using KL-divergence to the data P and the model Q is

pi
C = KL(P||Q) = melOg =L =% " pij(logpi; — logayy).

i.j g ij

Since p;;’s are fixed, so if we want to minimize the cost function, we can just deal with

the second term of the above equation, i.e. > —p;; log g;;.
Z'7j

3.2 The gradient

Proposition 3.2.1. The gradient of the cost function of t,-SNE with KL-divergence is

oCc 2 1 = 12\ 7
ayi:?Z(“rM) (Pij — i) (Wi = ;)- (3.2)

J

Proof. Define two auxiliary variables:

(
dij =l vi —y; |l 2N\
()
S o= L (3.3)
_v+1
z=3 (1+%) 7
\ il

Note if y; changes, only d,; and d;; changes for all j, and by using norm derivative, we

can get

8ij = (y; — y;)/d;;, then with chain rule we have:

oC oC oC
- - —2 4
o ; <3dz’j " 5djz‘) v - Z 3% )/ G4

a rough form of gradient. Then with appropriate assumption p; = ¢; = 0, now we

8
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oC

compute

0> —pulogq
90 - 1%;1 k1 108 Gk
Gdij N adz]
= — Zpklﬁlog At
o 0d;;
d(log qrZ — log Z)
k£l K
S [ o(1+%) | 07
= — Pkl
] q lZ 8dl] Z adz;
Because the term il
o1+ ) 7
od;;

is nonzero when k = i and [ = j, and ) py; = 1, also use representations in (B.3), the
k#l
above result becomes to

v+3

v+1 A2\ 2d;; 1
14+ Y Yy B —
2 ( * y) v ] Zpkl(Z)

2 v v
k£l

-1 -1
v+1 d; v+1 2
—Dij (1 + —j) L (1 + = dij
v v v v

-1
v+1 d2;
= (pij — 4i3) (1 + ﬁ) dij.

14

oC Dij
8dij QijZ

Therefore, the gradient is

gi — (B2) = 2(1/; 2 Zj:(pij — qij) (1 + M) b= 4s).
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Chapter 4

t1-SNE with gamma-divergence

The main focus of this chapter is to formulate the ¢;-SNE with minimum gamma-divergence

estimation and to compute the gradient of its corresponding cost function.

4.1 The cost function with gamma-divergence

By replacing the KL-divergence with the gamma-divergence in t-SNE, we have the fol-

lowing cost function (which is the negative cross-entropy in (2.10)):

1
ECESIPD

k£l

v Y
ki 1 Qi Pkl
| Pri=— ) 4.1)
(H(JH) v(v+1); T
S g
m#n

-1
A+ [y —y; [I”)

Sy —w 127
k£l

where ¢;; =

4.2 The gradient

Proposition 4.2.1. The cost function of t,-SNE with gamma-divergence has gradient:

quzlpkl
oD, 4 o1 | Wiris A Y1
oy 1l T e e | ) (42)
J

11
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Proof. Define d;; =|| y; — y; ||, and known that

and define Z = > (1 + dy;) ™!, then we have:
k2l

(1+d5)~

~ (4.3)

qij =

By using same method in (B.4)), the gradient from of C, is:

00, §~0C,
oy - ad;;

(%‘ - yj)/dij' (4.4)

&

Then we compute the partial term 7
(]

by changing the form of C, in d;; first:

1 QuPr T
C — kl y+1
BTG kz = 7+1 2 G 2 i
oy < > q’Y+1) —— s

'mn
m#n

> (1 c;m)] o [Z (o +;zl>-1>7pkl]

m#n k#1

1
Y(y+1)

0

= ﬁ <Z<1+din)(v+l)> K (Z(1+dil)7pkl>'

m#n k#£l

12
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By using the similar differential techniques in ¢;-SNE with gamma-divergence,

_29+1
oC, 1 2 \—(7+1) " 2 \—y—2 2\
0di; — 7 +1 (Z(l + ) (L+ df) ™22 { ) _(1+ diy) pu

m#n k#l

0
1 _ ! -
T <Z(1 +d,) (Wl)) (14 d;) " 2dipy

m#n

2 o B RS
?dij(l +d12j) e (Z(l +d3m) (7+1)>

m#n
-1
(1+dj)™" (Z(l + dfm)‘”“)) (Z(l + dil)‘”pkl> — pij
m#n k#l

2 _ _
= ﬁdij(z%j)%l | Zq I ((Z%) I Zg |77 (Zaw) P _pij>
kAl

2 1 _ _
:?diquZf lal™ (qij | q|I~0*Y Z%M-%)
Y k1

qulpm
2 4 (1+d2)‘1( & )7 a
= 1%y ij qij — Dij
y+1Y ! | qll g [pt™ 7Y

So the gradient computed in (4.4) is:

4 q ¥ ;szpkl
2 \—1 i k£l o -
’7+1 - (1+dz]) (H q ||) || q ||’Y+1 qij Dij (yz y])

Hence, the gradient of the cost function in (4.1 is:

oD, B o,
yi B Yy
Z qupm
4 o | Gipi kA 1
- v+1 Z(l + dij) g o | ¢ ||27+1qu (vi —y;).  (45)

J

Then we can observe that as 7y — 0, we have || ¢ ||— 1 by the definition of gamma norm.
13
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The result in (4.5) becomes
4 Z (pij — @ij) (L+ )" (yi — uj)-
J

This is the gradient of the cost function of ¢;-SNE with KL-divergence. It follows that

when v — 0, y-divergence will go to KL-divergence.

4.3 A comparison of gradient with others

In this section, we compare this case to one of the others who also done #;-SNE with
gamma divergence, but with a little different form.
In Stochastic neighbor embedding (SNE) for dimension reduction and visualization using

arbitrary divergences [|1], their gamma-divergence used has the form:

[ prHidr] /O [ [ grtdr] Y 0D
(Jp-qrdr)'/

D,(p || q) = log

It’s some different from ours in 2.2.2), especially for taking a logarithm. And they had also

computed the gradient of £;-SNE with gamma-divergence:

y+1

s v
430+ g - H2>1< ek K ><yi—yj> (4.6)
J

> ki pquZl Zkl qng

We mark the part of our gradient(#.2) in red where is different from above:

4> Prd, N Pijdi; g
LN oy = 1)) . : (v — y;)
J

v+1 || q ||7 ZklkaQZl H q H7+1

Although the gradient is not the same, but the numerical example practice in the last chap-
ter seems almost the same. Probably that it is no different in the direction of the gradient,

only the scalar part.

14
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Chapter 5

t,~-SNE with gamma-divergence

In this chapter we discuss the general case, i.e., ,-SNE with minimum gamma-divergence

estimation.

5.1 The formulation and the cost function

The cost function with gamma-divergence here is also D, in R.2.2. Here want to compute

the gradient of it, then the question is to maximize C,, in (2.10)) when the distribution is

C. — ;Z <(ﬂ—k)7plk
7oAy +1) | q| ’

1k

t,, where

where ||q|| is given by

- 1(r41)
lall = llglls+1 = { >, Z(Jﬁjl}

I=1,l#k k=1
with Vs
<1+ ”yi_yjHQ)_T
qij = S
5 (1 4 ||yk—yz||2> 2
k£l v
and where
. _ Pjli TPy
" 2n
15
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with
exp(— || w; — z; || /207)
> ki €Xp(— || @i — . [|2 /207)

By plugging the new ¢;; above into C,, we can get the general cost function for ¢,-SNE

Pjli =

with gamma divergence.

5.2 The gradient

The gradient of the £,,-SNE with minimum gamma-divergence estimation is derived below.

Proposition 5.2.1. The cost function of t,-SNE with ~-divergence has gradient:

2 7y qulpkl
oD, _ 2(v+1) S |y =y |l o PR
dy; (’7 + 1)7/ Vi 1% ” q ”v ” q ”2~/+1 ij j

We can observe that the above result is quite similar to the gradient form in ¢;-SNE

oD, N oC
0y Yy ’

gradient of t,,-SNE with KL-divergence in (8.2)). Moreover, also let v to be 1, the gradient

with gamma divergence in Chapter 4. When v — 07, it is clear that the

here will be the original gradient of t-SNE in (2.7).

. oC.
Proof. By the gradient form in (#.4), we have to compute the partial term 5d " first, where
]
the C, is already given in above section, then use the same process in the proof of h.2.1.

Define two auxiliary variables same as (B.3):

= qij =
d2 71/;1 I Z
z=3 (1+%)
\ kAL
16
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By the form-changing method of C, in the

[

Then the partial term is

o
Yy +1)

i
= Z(1+7

m#n

Cy

-
7+
)_(V+1)2(’Y+1)> (

proof of #.2.1], C,, turns into

2(1 + i
1%

k£l

_ (vtl)y
2

) pkl) =/ (5.2)

_ 29+1
aC, v+1 3 weneen T A _eaneen d2, . wiiy
- (14 Ty )y Syt (S S,
adi;  v(y+1) (% v v J ; v
_
v+1 d? wineen \ A% win
_ T 1 4 Jmny— g 1+ -y g
V(7+1)<7§L(+ V) ) (+I/) ]pJ
__
v+1 d? wineqen \ T d? i
S N 1 Smny— ety 1+ —y- -1
1
2 . d? (v+1) (v+1) A2, w1y
AT 1 4 Jmny— g 14 Ckly—52 — Dy
(1+-7) n;(+”> ;(+V> pu | =Py
v+1 T4 - —(7+1) gl
- vy + 1)dij(qu'j) 1 Zq | (Zgi3) | Zq | Z(Zle) Dkl — Dij
Y k£l
qupkl
viy+1) v | qll I q[pt™ ¥

Hence, the gradient of the cost function about ¢,-SNE with ~y-divergence is

> duPw
oC, v+1 d? g\ )
— =2 —(1 A 1 Y i — (i i — Y 53
o, et Tl (P e | ) 69

J

17
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At last, we show all the gradients computed above together to see their similarities and

differences easily:

oc
Ay

t; -SNE with KL-divergence:

t, -SNE with KL-divergence: %€ - 2"+ 1 T (

Ay v -
J

t;-SNE with y—divergence: 22 = S~y |y, -y, )

Oy y+1

J

aD, Q(HI)ZU .

2y —1
=) (1 lwi—y 1)) (5 — ) (% — ;)
i

a2y —1
7”) [JU:_; - (Ial;)(}‘}r - .q;)

Z C!;:;P;d

L ‘H—I) (yr - Uj)

5 2y i
gl g+

t,-SNE with y—divergence: 5, = 51y,
’ ! J

~ —"
gl gl

E qum
i .\
ai™ | (i —w)

Figure 5.1: Comparison of gradients with different case

18
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Chapter 6

Numerical Examples

In this chapter, we present two numerical examples to visualize the low-dimensional em-
bedding by t,-SNE with various degrees of freedom (v = 1, 2, 3), various gamma values
(v = 0.1,1073,107?), and various perplelxity levels (Perp = 50, 100, 150, 200).

The first data example is the MNIST dataset, a set of well-known hand-written digits
data, which can be downloaded from Kaggle. Please refer to Visualizing data using t-SNE
(2008) [9] and van der Maaten’s website [§]. The authors have provided Python code for
t1-SNE with minimum KL-divergence estimation. We modified and extended their code
to t,-SNE with minimum gamma-divergence estimation.

The second data is also from Kaggle and is about the ‘Dogs vs. Cats’, which was
originally used for distinguishing between dog and cat images. This is a very easy task
for human eyes, but it might be quite difficult for computer to do it. There is a transfer-

learning method to extract dog-cat data features using a pre-trained model VGG16.

6.1 MNIST data

The original MNIST data set has 60000 digits as training set. Each digitis a 28x28 array (or
a 784-vector), with elements taking values in {0,1,...,255} by representing the grayscale
of an image pixel. Since the size is quite large for a typical personal computer, we ran a
random stratified sampling to take 5000 or 10000 digits from the original data and also

used fewer iterations than the original code. Here we first demonstrate the part of 5000

19
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data size with Perp = 100. From Fig.l~b.3, we can see different effects of ~ values.

0 =30 -0 -1o 0 0 20 0 -0 =30 -20 -1 0 10 20 0

(b)yy=10"" (¢) y=10"°

Figure 6.1: t with degree of freedom v=1 (¢;-MNIST5000)

(@ y=10"" (b) y=10"° (c) y=107°

Figure 6.2: t with degrees of freedom v=2 (to-MNIST5000)

15
"addmg i -
A Veu'
. __!_r. S
o

-15 -10 -5 0 5 10 15 -5  -10 -5 0 5 10 15 0

(b) y=10"7 (¢) y=107°

Figure 6.3: t with degrees of freedom v=3 (¢t3-MNIST5000)

For larger v (v = 0.1), the performance is obviously worse than others. It seems similar
when v = 1072 or v = 10~°. For the effect of degrees of freedom of ¢, we can see that
for larger v, the group of same digits become looser, and the boundaries between different
digit groups are likely more clear but near. Moreover, the influence of the size of v’s is

decreased.

20
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For larger data size, it seems that only the density of points in the graphs is changed.

Fig6.4 is the 10000 size MNIST, with v = 2, and also with Perp = 100.

(@ y=10"" (b) y=10"° (c) y=107°

Figure 6.4: v =2 (to-MNIST10000)

6.2 Dogs v.s. Cats dataset

The original Dogs vs. Cats dataset has size 25,000, with half of the dogs and the other half
the cats. These images have different shapes and pixels. We first do some preprocessing
for preparation to feed into the pre-trained VGG16 deep neural network. This VGG16 was
developed by Karen Simonyan and Andrew Zisserman in 2014, which is a convolution
network that has been trained on the ImageNet dataset. The ImageNet dataset has huge
labeled images and thousands of different classes, and the images contain various animals
include our characters: dogs and cats. Hence the pre-trained VGG16 might be a nice
feature extractor for the Dogs and Cats dataset. For the procedures of pre-trained VGG16,
we refer the reader to the book “Deep Learning with Python” [4] in chapter 5, and the
implementation code is available on github [3].

Here we use only partial data (n = 6000, half dogs and half cats) for demonstration.
Given blue points are the dogs, and the red ones are the cats. We set Perp = 100, and

vary v and v. The graphs are on the next page.
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(a) v = by v=2 ©) v=3

Figure 6.6: v = 1072 (DC6000-g3)

Figure 6.7: v = 107° (DC6000-g5)

From Fig6.3~6.7 we see that with smaller + or larger v under the same perplexity 100,
the cats and dogs seem to be more away from each other. When the v becomes larger, the

group of points of either the cats or dogs becomes more concentrated.
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With different perplexity (Perp = 150, 200) and with v = 107, we have the following

results (Fig6.8, 6.9).

Figure 6.9: Perp =200 (DC6000-p200)

From Fig[6.8, 6.9, we see that with larger perplexity it will be more suitable to visualize
this data since we can see that for Perp = 200, it becomes more clear between cats and

dogs.
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Appendix

Python code for ¢,-SNE with gamma-divergence

Please refer to Visualizing data using t-SNE (2008) [9] and van der Maaten’s website [8]

for the original work and code for ¢;-SNE with minimum KL-divergence. We modified

and extended their code to ¢,-SNE with minimum gamma-divergence estimation.

This is an implementation of MNIST with 5000 data points, t-distribution’s degrees

of freedom = 3, v value = 1073, and Perp = 100.

\# t nu_gamma—SNE. py
\#

\# Original version was created by Laurens van der Maaten on 20—12-08.

\# Source from : https://Ivdmaaten. github.io/tsne/

\# This is an adaptation by Chiou Yu Hsuan in 2019.

import numpy as np
import pylab

import matplotlib.cm as cm

nu of t =3 ## t—distribution ’s freedom

Gamma = 0.001 ## gamma value of the used Gamma-divergence

perplexity = 100 ## perplexity variable

data nums = 5000 ## data form

def Hbeta(D=np.array ([]), beta=1.0):

999999
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Compute the perplexity and the P-row for a specific value of the

precision of a Gaussian distribution.

999999

# Compute P—row and corresponding perplexity
P = np.exp(—D.copy() #* beta)
sumP = sum(P)

H

np.log(sumP) + beta * np.sum(D % P) / sumP

P

P / sumP

return H, P

def x2p(X=np.array ([]), tol=le—5, perplexity=perplexity ):

print (”Computing pairwise distances...”)

(n, d) = X.shape

sum X = np.sum(np.square(X), 1)

D = np.add(np.add(—2 % np.dot(X, X.T), sum X).T, sum X)
P = np.zeros((n, n))

beta = np.ones((n, 1))

logU

np.log(perplexity)

# Loop over all datapoints

for i in range(n):

# Print progress
if i % 500 == 0:

print (”Computing P—values for point %d of %d...” % (i, n))

# Compute the Gaussian kernel and entropy for the current precision

betamin = —np.inf
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betamax = np.inf

Di = D[i, np.concatenate((np.r_[0:1], np.r_[i+1l:n]))]

(H,

thisP) = Hbeta(Di, beta[i])

# Evaluate whether the perplexity is within tolerance

Hdiff = H — logU

tries = 0

while np.abs(Hdiff) > tol and tries < 50:

# If not, increase or decrease precision

if Hdiff > 0:

betamin = beta[i].copy()

if betamax == np.inf or betamax == —np.inf:

beta[i] = beta[i] * 2.

else:

beta[i] = (beta[i] + betamax) / 2.

else:

betamax = beta[i].copy()

if betamin == np.inf or betamin == —np.inf:

beta[i] = beta[i] / 2.

else:

beta[i] = (beta[i] + betamin) / 2.

# Recompute the values

(H,

thisP) = Hbeta(Di, beta[i])

Hdiff = H — logU

tries += 1

# Set the final row of P

P[i, np.concatenate ((np.r_[0:1], np.r [i+1l:n]))]
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# Return final P—matrix
print (”Mean value of sigma: %f” % np.mean(np.sqrt(l / beta)))

return P

def pca(X=np.array([]), no_dims=50):
Runs PCA on the NxD array X in order to reduce its dimensionality to

no_dims dimensions.

999999

print (” Preprocessing the data using PCA...”)
(n, d) = X.shape

X =X — np.tile(np.mean(X, 0), (n, 1))

(I, M) = np.linalg.eig(np.dot(X.T, X))

Y

np.dot(X, M[:, 0O:no_dims])

return Y

def gamma norm( Array, gamma = Gamma):
99999

”””To compute the gamma norm of Q

return np.sum(np.power( Array, gamma+1))#**(1l/(gamma+1))

def tsne(X=np.array([]), no dims=2, initial dims=50, perplexity , gamma, nu):

# Check inputs

if isinstance (no _dims, float):

print (” Error: array X should have type float.”)

return —1

if round(no_dims) != no_dims:

print (” Error: number of dimensions should be an integer.”)

return —1
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# Initialize variables
X = pca(X, initial dims).real
(n, d) = X.shape

max_iter = 130 #1000

initial momentum = 0.5
final momentum = 0.8
eta = 500

min_gain = 0.01

Y = np.random.randn(n, no dims)
dY = np.zeros ((n, no dims))

iY = np.zeros((n, no dims))

gains = np.ones((n, no_dims))
# Compute P—values

P = x2p(X, le—5, perplexity)
P =P + np.transpose (P)

P =P / np.sum(P)

P=P x4

P = np.maximum(P, le—12)

# Run iterations

for iter in range(max_iter):

# Compute pairwise affinities
sum Y = np.sum(np.square(Y), 1)

num = —2. % np.dot(Y, Y.T)

## modified by t nu distributed :

# early exaggeration

num = (1. + np.add(np.add(num, sum Y).T, sum Y)/nu)**(—(nu + 1)/2)

num_recipr = numx**(2/(nu+l))

num[range(n), range(n)] = 0.
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Q = num / np.sum(num)
Q = np.maximum(Q, le—12)

Q n = gamma norm(Q)

# Compute gradient ## my gradient part
PQ = Q#xgamma*P/Q nkxgamma/(gamma+1)

— Qxx(gamma+1)*np.sum(Q*xkgammaxP )/ Q nk*x(2%«gamma+1)/(gamma+1)

for i in range(n):
dY[i, :] = 2%(nu+tl)/nuxnp.sum(np.tile (PQ[:, 1]

% num_recipr[:, i], (no dims, 1)).T % (Y[i, :] —Y), 0)

# Perform the update

if iter < 20:

momentum = initial momentum
else:
momentum = final momentum
gains = (gains + 0.2) % ((dY > 0.) != (i¥ > 0.)) + \
(gains * 0.8) * ((dY > 0.) == (i¥Y > 0.))
gains[ gains < min_gain] = min_gain
1Y = momentum * iY — eta * (gains * dY)
=Y + 1Y

Y — np.tile (np.mean(Y, 0), (n, 1))

# Compute current value of cost function
if (iter + 1) % 10 ==
C = (gamma norm(P)—np.sum(Q#%kgamma * P)/gamma norm(Q))/( gammas*(gamma+1))

print (” Iteration %d: error is %f” % (iter + 1, C))

# Stop lying about P—values
if iter == 100:
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# Return solution

return Y

.,

if name == "_main__

print ("Run Y = tsne (X, no_dims, perplexity) to perform modified t—SNE.”)

print (”Running example on 5,000 MNIST digits ...”)

with open(”mnist Train.txt”, ”r”) as f:

data = f.read ()

labels = []

label lines = data.split(’labels ’)

for i in range(data nums):
for j in range(10):
if label lines[4%i+1][2%j] == ’1°:

labels .append(j)

X =1l

lines = data.split(’ features )

for i in range(data nums):

raw = lines[4%i+1].split(’\n’)[0].split(’
for j in range(784):

raw[]j] = int(raw[]j])/255

X.append (raw)
raw = []

X=np.asarray (X)
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# Visualized

Y = tsne(X, 2, 50, perplexity)

Color=cm. rainbow (np. linspace (0, 1, 10))
for i in range(data nums):
pylab.scatter (Y[i, O], Y[i, 1], 5, c=Color[int(labels[i])])

pylab .show ()

Python code of pre-trained Dogs and Cats dataset with VGG16

Here, we list the python code of pre-training the ‘Dogs and Cats’ image data with VGG16
network by using some method to convert the images to the size we want to use for running

the t,-SNE code above.

import tensorflow as tf;

import tensorflow.keras;

from PIL import Image;

from tensorflow.keras.preprocessing import image;
import os;

os.environ [ ’KMP\ DUPLICATE\ LIB\ OK’]=’True ’;

import numpy as np;

# load data
test datagen = image.ImageDataGenerator(rescale=1./255)
data generator = test datagen.flow from directory (

b

>train_data ’,
target size=(150, 150),

color mode="rgb”,
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shuffle = False ,

class mode=’binary ’,

batch size=1)

filenames = data generator.filenames;

n = len(filenames);

vggl6 model = tf.keras.applications.vggl6.VGGl6(include top=False,
weights="1magenet ’,

input_tensor=tf.keras.layers.Input(shape=(150,150,3)));

output = vggl6 model. predict generator(data generator ,steps = n);
output_vec = np.reshape(output,(6000,—1))

np.save(’vggout.npy’, output vec);
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