

Master Program in Statistics Center for General Education National Taiwan University

Master Thesis

離群值自動檢測系統應用於時雨量資料品管

An Automated Outlier Detection System for

Hourly Rainfall Data Quality Control

周卉敏

Hway-Min Chou

指導教授:鄭克聲 教授

Advisor: Professor Ke-Sheng Cheng

中華民國 109 年 7 月

July 2020

#### 摘要

近十年來,資料品質保證越來越受到水文領域的重視。有了品質良好的降雨資料, 才能確保使用它們進行水文應用相關的風險分析及決策管理時獲得可靠的研究 結果。臺灣中央氣象局管理著一個由超過600個氣象站組成的自動雨量計網路系 統,每日提供即時降雨觀測。有時一個雨量站觀測到的降雨量會明顯高於或低於 附近其他測站的降雨量觀測值,由於相鄰測站的降雨量往往高度相關,這可能表 示異常值存在於這些觀測值中。為了控制降雨資料的品質,我們必須將這些異常 值區分出來。然而,目前為止,我們缺乏明確的標準以有效地判別。

在本研究中,我們運用統計方法以建立一個自動時雨量的異常值檢測系統。首先, 我們根據臺灣四種常見的降雨類型的雨季,將收集到的時雨量資料分為四組。接 著利用 K-Means 分群法對欲研究的雨量站按其地理位置和不同的降雨特性進行 分群。然後,我們分別對每一種降雨類型的每一群進行主成分分析,計算出前幾 個主成分,並建立一個表示降雨量資料異常程度的指標。

一旦某個測站的降雨量觀測值符合我們定義異常的指標,我們便可以立刻找出可 能發生異常值的測站。最後,我們建立了自動離群值檢測系統,並將其呈現為線 上的互動式網頁。本研究的目的在於對時雨量觀測值建立一個可靠的異常值檢測 系統,使我們能有效地篩選出可能發生異常值的測站,以達到時雨量資料品質控 制的目標。

**關鍵字:**時雨量,資料品質控制,離群值檢測,主成分分析,K-Means分群法

ii

### Abstract

Data quality assurance has been receiving increasing attention in the field of hydrology in the last decade. Only high-quality data ensures data-driven risk analysis and decisionmaking strategies of hydrology applications. In Taiwan, the Central Weather Bureau manages an automated rain gauge network system of over 600 stations to obtain realtime precipitation observations. Occasionally, rainfall observations of one station are markedly higher or lower than those of nearby stations, suggesting the presence of anomalies because rainfall observations of neighboring stations are often highly correlated. To obtain reliable results based on hourly rainfall data, these anomalies should be identified in advance. However, there is a lack of definite criteria for effectively identifying anomalies.

In this study, we established an automated anomaly detection system for precipitation observations. First, we categorized the data into four groups according to the four fundamental storm types in Taiwan (frontal rain, Meiyu, convective storms, and typhoons). Second, we adopted K-means clustering analysis to classify all rain gauge stations of interest by their geographical location and rainfall characteristics. For each cluster, principal component analysis was conducted to acquire the first few principal components, aiming to construct an index representing the extent of anomalies. Once the criteria are determined, identifying anomalies is straightforward. Eventually, we established the detection system and presented it as an online interactive web page. Thus, in this study, a dependable anomaly detection system was created for effectively screening out possible anomalies to achieve hourly rainfall data quality control.

Keywords: Hourly Precipitation, Data Quality Control, Anomaly Detection, Principal Component Analysis, K-Means Clustering Analysis

# Table of Contents

| Table of Contents                                                         |
|---------------------------------------------------------------------------|
| 1. Introduction                                                           |
| 2. Data                                                                   |
| 3. Methods9                                                               |
| 3-1. Abnormal Situations                                                  |
| 3-2. Cutoff Point                                                         |
| 3-3. K-Means Clustering Analysis14                                        |
| 3-4. PCA                                                                  |
| 4. Results                                                                |
| 4-1. Anomalies Discovered Using the Cutoff Point Method                   |
| 4-2. Results of the K-Means Clustering Method                             |
| 4-3. Possible Anomalies Identified Using PCA                              |
| 4-3-1. Detected Anomaly at Station Donghe on March 27, 2020               |
| 4-3-2. Criteria for Anomaly Detection and Nine Categories of Anomalies.43 |
| 4-3-3. The Automated Anomaly Detection System                             |
| Conclusion                                                                |
| References                                                                |
| Appendix                                                                  |
| A. Table of 297 Stations                                                  |
| B. Table of Warning Typhoons from 1998 to 201978                          |
| C. Identified Hourly Rainfall Anomalies Caused by Malfunction             |

# List of Figures

| XXX                                                                                       |
|-------------------------------------------------------------------------------------------|
| List of Figures                                                                           |
| Figure 1. Clustering Results for Four Preliminary Storm Types                             |
| Figure 2. Nine Main Paths of Typhoons Hitting Taiwan                                      |
| Figure 3. Variable Correlation Plot from Temporal Variation Aspect                        |
| Figure 4. The New Coordinate System after PCA from Temporal Variation Aspect              |
| Figure 5. Variable Correlation Plot from Spatial Variation Aspect                         |
| Figure 6. The New Coordinate System after PCA from Spatial Variation Aspect               |
| Figure 7. Rainfalls Observed by Donghe Station and Nearby Stations on Mar 27, 2020        |
| Figure 8. Anomaly Detected on Mar 27, 2020, in Cluster 4 of Frontal Rain                  |
| Figure 9. The Bar Chart of Nine Categories of Anomalies of Each Storm Type                |
| Figure 10. Rainfalls Observed by Xingaokou Station and Nearby Stations on Jul 18, 200546  |
| Figure 11. Anomaly Detected on Jul 18, 2005, in Cluster 2 of Typhoon                      |
| Figure 12. Rainfalls Observed by Siyuan Station and Nearby Stations on Jun 2, 2017        |
| Figure 13. Anomaly Detected on Jun 2, 2017, in Cluster 1 of Meiyu                         |
| Figure 14. Rainfalls Observed by Daping Station and Nearby Stations on Nov 27, 199850     |
| Figure 15. Anomaly Detected on Nov 27, 1998, in Cluster 8 of Frontal Rain51               |
| Figure 16. Rainfalls Observed by Tongmen Station and Nearby Stations on Jun 17, 199852    |
| Figure 17. Anomaly Detected on Jun 17, 1998, in Cluster 3 of Meiyu53                      |
| Figure 18. Rainfalls Observed by Taipingshan Station and Nearby Stations on Nov 7, 201754 |
| Figure 19. Anomaly Detected on Nov 7, 2017, in Cluster 7 of Frontal Rain55                |
| Figure 20. Rainfalls Observed by Taitung Station and Nearby Stations on Aug 27, 200156    |
| Figure 21. Anomaly Detected on Aug 27, 2001, in Cluster 2 of Convective Storms            |
| Figure 22. Rainfalls Observed by Shigang Station and Nearby Stations on Jun 25, 199858    |
| Figure 23. Anomaly Detected on Jun 25, 1998, in Cluster 8 of Meiyu                        |
| Figure 24. Rainfalls Observed by Guoxing Station and Nearby Stations on Jul 10, 199960    |
| Figure 25. Anomaly Detected on Jul 10, 1999, in Cluster 7 of Convective Storms            |

# List of Tables

| List of Tables                                                                        |
|---------------------------------------------------------------------------------------|
| Table 1. Rainy Seasons and Duration for Four Storm Types                              |
| Table 2. Reorganization of CWB's Codes Corresponding to Specific Circumstance10       |
| Table 3. Codes Corresponding to Specific Circumstances for a Station in One Day       |
| Table 4. Identified Hourly Rainfall Anomalies Caused by Delay Returns                 |
| Table 5. Identified Hourly Rainfall Anomalies Caused by Malfunctions                  |
| Table 6. Threshold for Anomaly Detection and Anomalies Detected of Four Storm Types44 |
| Table 7. Nine Categories of Anomalies Detected by PCA Method for Each Storm Type      |

# **1. Introduction**



Rainfall data are essential to agricultural farming, travel planning, and performing nearly all daily activities. The Central Weather Bureau (CWB) manages an automated rain gauge network system of over 600 stations to obtain real-time precipitation observations in Taiwan. Countless decisions required for livelihood activities rely on the analyses of these rainfall observations. Accordingly, the quality of rainfall data is paramount, necessitating rainfall data quality assurance (QA) and rainfall data quality control (QC). Data QA investigates inconsistencies and anomalies in the original data. Data QC uses the information from the QA process to determine whether the data can be used for analysis or applications. QA approaches utilized in manufacturing have wide applications, including observation, data archiving, and processing and dissemination of environmental information (Hudson et al., 1999). In the field of hydrology, data QA has been received increasing attention (You et al., 2007; Branisavljević et al., 2009).

Occasionally, anomalies occur the hourly observations provided by rain gauge stations. For example, when a station fails to send the observations in time because of malfunctions, delays, or unknown reasons, the amount of delayed observation becomes exceptionally high because it has been accumulating for several hours. Moreover, the rainfall data returned by a station may be notably higher or lower than those reported by nearby stations, suggesting the presence of anomalies because the rainfall amounts of neighboring stations are often highly correlated. To guarantee the reliability of hourly rainfall data, these anomalies must be identified. However, no definite criteria exist for instantly and effectively discovering these anomalies, and manual identification would be inefficient and infeasible. Therefore, in this study, we established an automated anomaly detection system for hourly precipitation observations. Using this system, rainfall data QC can be accomplished in a cost-effective manner.

Different methods have been reported for detecting rainfall anomalies. You et al. (2007) proposed three approaches for data QA of daily precipitation. First, to establish a QA test, they used a single gamma distribution with estimated statistical parameters instead of a normal distribution. Only values crossing a certain threshold are considered anomalies. Second, they developed the Q-test using a metric based on comparisons with neighboring stations. Third, they developed the multiple interval gamma distribution (MIGD) method, which assumes that meteorological conditions that produce average precipitation at surrounding stations will result in a predictable range at the target station.

This method bins the average rainfall at nearby stations, and for events in a particular bin, it derives a gamma distribution by fitting the same events for the target station. Eventually, a QC test can be performed using the threshold of the new gamma distribution. The aforementioned three approaches consider the relationship between the rainfall at surrounding stations and the rainfall at the target station. However, they do not consider the rainfall characteristics of different seasons. Moreover, these approaches are more suitable when the number of stations required is relatively small.

Toe et al. (2017) conducted K-means cluster analysis and principal component analysis (PCA) to investigate the spatial and temporal variation patterns in the Central Dry Zone (CDZ) of Myanmar. They considered the influence of the climatological monsoon break on precipitation in the CDZ. Additionally, they divided the stations into different clusters to reveal the orographic effect and distinct climate dynamics. Their data revealed that the first and second principal components (PCs) mainly accounted for the spatial variabilities and seasonal (temporal) variation in average monthly precipitation in the CDZ, respectively. Before employing PCA, Toe et al. (2017) performed clustering to classify the original stations. Stations belonging to the same cluster possess

similar rainfall characteristics. Furthermore, the obtained PCs could fully capture both spatial and temporal variations in precipitation.

In this study, we used statistical methods to generate the criteria for identifying anomalies. Because rainfall amounts are greatly affected by various rainfall characteristics (Boyle & Chen, 1987; Chen et al., 1999; Chen & Chen, 2003), we grouped the stations of interest to identify anomalies. Inspired by the method of Toe et al. (2017), we conducted adopt K-means cluster analysis (Cox, 1957; Fisher, 1958; Engelman & Hartigan, 1969) of the stations based on the features related to geographical locations and primary storm types in Taiwan (Wang & Cheng, 1982). Then, we performed PCA (Pearson, 1901; Hotelling, 1933; Jolliffe, 2002) for detecting outliers.

Rousseeuw and Hubert (2018) proposed the PCA outlier map for detecting outliers in a data set. They used three-dimensional data and fitted the data with two PCs. The map's vertical axis measures the orthogonal distance, which is the Euclidean distance of the data point to its 2-dimensional projection. The horizontal axis represents the score distance, which is the Mahalanobis distance of the data's projection relative to all projected data points. Both high orthogonal and score distances indicate a possible outlier. In the present study, we used a similar approach. We plotted the newly transformed coordinates of the first two PCs. Then, we defined that once the Euclidean distance between any projected data point and the origin of the plot exceeds the threshold (Section 3-4) we set, suggesting the existence of anomalies.

The rest of the paper is structured as follows. Chapter 2 presents data collection and preprocessing. Chapter 3 illustrates the two methods used to identify the two types of anomalies. The K-means clustering results, detected anomalies, and the system we developed are presented and discussed in Chapter 4. Chapter 5 provides the conclusion.

## 2. Data

This chapter illustrates the data collection and analysis process. The CWB operates a rain gauge network of more than 600 stations around the country. We used the hourly rainfall data recorded by 297 rain gauge stations (Appendix A) set up by the CWB because they provide consistent rainfall data of better quality. The unit of each hourly rainfall is millimeter per hour.

Next, we web-scraped the hourly rainfall data from January 1, 1998, to May 30, 2020, from the Central Weather Bureau Observation Data Inquire System (CODiS). CODiS is an online open data platform that offers free observation data of CWB's automatic weather stations. Once users input the city where the preferred station is, the periodicity of data, and the period, CODiS will generate a report of weather data. We inspected the result page and ran the Python script to access and extract the column named Precp (24 observed precipitation a day) for each station.

We then preprocessed the collected data according to the rainfall characteristics of Taiwan. Taiwan is affected by the northeasterly monsoon from September to April and the southwesterly monsoon from May to August each year (Boyle & Chen, 1987; Chen et al., 1999; Chen & Chen, 2003). Wang and Cheng (1982) categorized the rainfall regimes in Taiwan into five categories:

- 1. Winter (from December to February)
- 2. Spring transition (March and April)
- 3. Mei-yu season (from mid-May to mid-June)
- 4. Typhoon season (from mid-July to August)
- 5. Autumn rainfall (from September to November)



We simplified the classification of Wang and Cheng (1982) into four regimes (Table 1) representing the four main storm types of Taiwan: frontal rain, Meiyu, convective storms, and typhoons.

- Frontal rain: the rainfall caused by the northeast monsoon and the spring rainfall, which are caused by the frontal systems to northern Taiwan.
- 2. Meiyu: a type of stationary front that usually occurs in May and June. It forms when the warm and cold fronts meet, and neither of them has the force to move the other.
- 3. Convective storms: the sun heats the ground, resulting in warm air rising, which cools to form heavy clouds. When rainstorms occur (often from July to October), they usually include thunder and lightning and have a short duration (the length of time that a rainfall event lasts at an observed location).

4. Typhoons: a region-specific term for a tropical cyclone that usually occurs within the northwestern region of the Pacific Ocean and west of the International Date Line, with a much higher duration than convective storms.

The hourly rainfall data were divided into four groups according to the rainy seasons, as they have different rainfall characteristics. Table 1 presents the rainy seasons and duration of the four storm types. We easily separated frontal rain and Meiyu by their rainy seasons. However, both convective storms and typhoons tend to occur from July to October. To successfully distinguish the two events, we considered the duration of each rainfall event from July to October. Furthermore, we referred to the list of warning typhoons from 1998 to 2020 (Appendix B) issued by the CWB. If the duration of a rainfall event exceeded 12 h and corresponded with a typhoon warning, hourly rainfalls of that event were classified as typhoons instead of convective storms.

#### Table 1.

| Storm Type        | Rainy Season | Duration           |
|-------------------|--------------|--------------------|
| Frontal Rain      | Nov Apr.     | More than 1 hour   |
| Meiyu             | May and June | -                  |
| Convective Storms | July - Oct.  | From 1 to 12 hours |
| Typhoons          | July - Oct.  | More than 12 hours |

Rainy Seasons and Duration for Four Storm Types

*Note*. Duration = The length of time that a rainfall event lasts at an observed location or in a particular area.

# 3. Methods

Although anomalies have many causes, the effective identification of the anomalies is crucial. This chapter illustrates the methods for establishing the criteria for identifying anomalies. On examining the hourly rainfall data, we found two primarily abnormal situations. First, failure to return observations in time due to malfunctions or delays. Second, the time series of hourly rainfalls of a station differs markedly from that of nearby stations. We used the cutoff point method to identify the former situation and PCA to identify the latter situation. This chapter is structured as follows: Section 3-1 describes the two abnormal situations. Section 3-2 introduces the cutoff point method. Before adopting PCA, K-means clustering analysis was performed, the results of which are presented in Section 3-3, to group 297 stations for each storm type. Finally, Section 3-4 describes the PCA method.

### **3-1.** Abnormal Situations



Situation I: Failure to return observations because of malfunctions or delay

The CWB defines the following codes in Table 2 for specific circumstances that occur when a rainfall gauge station returns observations. Codes-9991, -9995, -9997, and -9999 all denote different circumstances with no observations. Code-9996 indicates that an instrument delayed returning observations, causing the value of hourly rainfall to accumulate over a period before being returned. Code-9998 indicates that the observed amount of rain is minimal. We reorganized these codes into three categories—A1, A2, and A3.

#### Table 2.

#### Reorganization of CWB's Codes Corresponding to Specific Circumstance

| Circumstance                                                 | CWB Code                                                                                                                                                                                       |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The instrument observed trace                                | -9998                                                                                                                                                                                          |
|                                                              | -9991                                                                                                                                                                                          |
| The instrument failed to return OBS due to malfunctions or   | -9995                                                                                                                                                                                          |
| unknown reasons                                              | -9997                                                                                                                                                                                          |
|                                                              | -9999                                                                                                                                                                                          |
| The instrument delayed returning accumulated OBS for a while | -9996                                                                                                                                                                                          |
|                                                              | Circumstance<br>The instrument observed trace<br>The instrument failed to return OBS due to malfunctions or<br>unknown reasons<br>The instrument delayed returning accumulated OBS for a while |

Note.

Trace = An amount of precipitation that is smaller than 0.1 millimeter;

OBS = Observations;

-9996 and A3 have the same meaning;

-9998 and A1 have the same meaning;

<sup>-9991 =</sup> Instrument malfunctions waiting for repair;

<sup>-9995 =</sup> The instrument failed to return OBS due to malfunctions;

<sup>-9997 =</sup> The instrument failed to return OBS for unknown reasons;

<sup>-9999 =</sup> The instrument did not observe rainfall.

Situation II: Rainfall time series of a station differs markedly from that of nearby stations.

When hourly rainfall data of a specific station are considerably lower or higher than those of neighboring stations, this may be an anomaly. Table 3 lists nine circumstances for a station in 1 day that may be abnormal and cause apparently different rainfall time series between a specific station and neighboring stations. B1 indicates that the recorded rainfall of the station at some hours is higher than that of nearby stations. B2 indicates that the observations are almost 0, indicated as "trace," whereas neighboring stations have rainfall observations. B3 and B4 indicate a lack of recording rainfall because of mechanical failures (A2) and delays (A3), respectively, whereas nearby stations do. B5, B6, and B7 are the opposite of B2, B3, and B4, respectively. B8 represents that rainfall records have accumulated for a while before being returned. Finally, B9 indicates that the rainfall trend of the station is significantly different from that of nearby stations. B1, B2, B5, and B9 are circumstances requiring further verification for anomalies, whereas B3, B4, B6, B7 and B8 are obvious abnormal circumstances.

| Table 3. |                                                                 | 大港王政              |
|----------|-----------------------------------------------------------------|-------------------|
| Codes (  | Corresponding to Specific Circumstances for a Station in One Da | y. Chan           |
| Code     | Circumstance                                                    | Need Verification |
| B1       | OBS at some hours were higher than that of nearby stations      | · 4 2 . 4 M       |
| B2       | Observed trace; nearby stations, rainfalls                      | $\checkmark$      |
| B3       | Did not observe OBS due to malfunctions                         |                   |
| B4       | Did not observe OBS due to delays                               |                   |
| B5       | Observed rainfalls; nearby stations, trace                      | $\checkmark$      |
| B6       | Observed rainfalls; nearby stations did not due to malfunctions |                   |
| B7       | Observed rainfalls; nearby stations did not due to delays       |                   |
| B8       | Delayed return of accumulated rainfall records                  |                   |
| B9       | Rainfall trend was different from that of nearby stations       | $\checkmark$      |

Note.

Trace = an amount of precipitation that is  $\leq 0.1$  millimeter; OBS = Observations.

#### **3-2.** Cutoff Point

You et al. (2007) established the threshold approach for QC of daily precipitation of six specific stations, which fitted the daily observations to a gamma distribution for each station. This method is ideal when the number of stations to be analyzed is relatively small. However, it is not necessary to fit the daily precipitation to a gamma distribution for every station when the number of stations is large. Furthermore, our goal was to identify those accumulated observations that are exceptionally high (rainfall >150 mm/h) because of delayed returns. Therefore, we proposed the cutoff point method for detecting possible anomalies.

First, with the empirical distribution computed by hourly rainfall of every rain gauge station (0 values excluded), we obtained the cutoff point  $v_{1-p}$ . If the hourly rainfall x(i, t) exceeds the threshold  $v_{1-p}$ , it was regarded as an anomaly.

$$x(i,t) \ge v_{1-p} \tag{1}$$

where p is a given probability, x(i, t) denotes the hourly rainfall at station i and time t, and  $v_{1-p}$  denotes the  $(1-p)^{\text{th}}$  quantile of the empirical distribution.

#### **3-3. K-Means Clustering Analysis**

The second anomaly is the marked difference between rainfall data of a station from those of nearby stations. To effectively detect this type of anomaly, we employed the K-means clustering method to classify 297 rain gauge stations because rainfall characteristics vary with diverse geographical location and storm type.

According to Bock (2008), the K-means clustering approach is based on the sum-ofsquares (SSQ) criterion. Several scientists in different fields under various assumptions have proposed different types of this K-means algorithm, and this method has been investigated and modified for decades. By either considering continuous analogs of the SSQ criterion (Cox, 1957; Fisher, 1958; Engelman & Hartigan, 1969) or studying the asymptotic behavior under random sampling strategies (Hartigan, 1975; Pollard, 1982; Bock, 1985), the application of the K-means algorithm has been extended to numerous novel data types and probabilistic models.

The K-means clustering method partitions a data set into *K* distinct and nonoverlapping clusters. Before clustering, the desired *K* clusters need to be determined. Then, the algorithm allocates each observation to one of the *K* clusters. Assuming *n* observations in our data set,  $C_1, C_2, \ldots, C_K$  denotes sets that include the indices of observations in each cluster. These sets satisfy the following two properties.

- 1.  $C_1 \cup C_2 \cup \ldots \cup C_K = \{1, 2, \ldots, n\}$ . Each observation belongs to at least one cluster.
- 2.  $C_k \cap C_{k'} = \phi$ ,  $\forall k \neq k'$ . Namely, the clusters are nonoverlapping.

The K-means clustering method aims to minimize the within-cluster variation among K clusters. The within-cluster variation of cluster  $C_k$  is denoted as  $V(C_k)$ , which yields the following equation:

$$\min_{C_1,\dots,C_k} \{ \sum_{k=1}^K V(C_k) \}$$

$$\tag{2}$$

Then,  $V(C_k)$  is defined using the squared Euclidean distance.

$$V(C_k) = \frac{1}{|C_k|} \sum_{x_i \in C_k} \| x_i - \bar{x}_k \|^2$$
(3)

where  $|C_k|$  denotes the number of observations in the  $k^{\text{th}}$  cluster, and  $\bar{x}_k$  is the mean of cluster  $C_k$  (also called the cluster centroid).

$$\min_{C_1,\dots,C_k} \{ \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{x_i \in C_k} \| x_i - \bar{x}_k \|^2 \}$$
(4)

The algorithm work to solves Equation (4) in the following way:

- 1. Each observation is randomly allocated a number from 1 to *K*, which serves as the initial cluster assignment.
- 2. Iterations occur until the alteration of assignments stops:
  - (a) The centroid  $\bar{x}_k$  is computed for each K cluster (i.e., the mean for the observations in cluster  $C_k$ ).
  - (b) Each observation is allocated to the cluster whose centroid is the closest, as defined by the Euclidean distance.

#### **3-4. PCA**

K-means clustering on 297 rain gauge stations was performed by geographical location and storm type; it was found that the rainfall characteristics of the stations within each cluster were noticeably similar. Then, PCA was used to develop the criteria for the automatic system for detecting anomalies. In this section, we introduce PCA and describe how the standards were established.

K-means clustering on 297 rain gauge stations was performed by geographical location and storm type; it was found that the rainfall characteristics of the stations within each cluster were noticeably similar. Then, PCA was used to develop the criteria for the automatic system for detecting anomalies. In this section, we introduce PCA and describe how the standards were established.

PCA, a technique for summarizing the information of a data set, was developed by Pearson (1901), Hotelling (1933), and Jolliffe (2002); the PCA method developed by Jolliffe (2002) is the best modern reference. PCA reduces the dimensionality of multivariate data while preserving meaningful information as much as possible. It uses unsupervised learning, relying entirely on the input data itself instead of the corresponding target data. PCA transforms the original data to a new coordinate system. The new set of variables, known as PCs, is a linear transformation of the original variables. Each new variable is uncorrelated with other new variables. After projecting the initial data, the first coordinate lies in the direction with the largest variance, the second coordinate with the second largest variance, and so on.

The equation of PCA is given by

$$\boldsymbol{Z} = \boldsymbol{\Phi} \boldsymbol{X} \tag{5}$$

where Z denotes the PCs,  $\Phi$  is a matrix of coefficients called loads determined by PCA, and X is a data matrix with n observations and a set of p features.

Equation (5) yields p linear transformations that form the PCs using the original variables. The first PC is written as

$$Z_1 = z_{i1} = \phi_{11} x_{i1} + \phi_{21} x_{i2} + \dots + \phi_{p1} x_{ip}, i = l, 2, \dots, n$$
(6)

This has the largest sample variance (Var(Z1) is maximum) and is subject to the constraint that  $\sum_{j=1}^{p} \phi_{j1}^2 = 1$ . Without the constraint, these elements can result in an arbitrarily large variance. The remaining  $Z_i$  values are computed such that their variances are maximized and subject to another constraint, so that the covariance between  $Z_i$  and  $Z_j$   $(i \neq j)$  equals to 0. For example, the optimization problem is solved to obtain the first PC.

$$\max_{\phi_1,\dots\phi_p} \sum_{i=1}^n z_{i1}^2 = \max_{\phi_1,\dots\phi_p} \{ \frac{1}{n} \sum_{i=1}^n (\sum_{j=1}^p \phi_{j1} x_{ij})^2 \}$$
(7)

We calculated the matrix  $\boldsymbol{\Phi}$  using the covariance matrix  $\boldsymbol{S}$ , which is written as follows:

$$s_{ij} = \frac{\sum_{k=1}^{n} (x_{ik} - \overline{x}_i)(x_{jk} - \overline{x}_j)}{n-1}$$
(8)

Therefore, the singular decomposition of S solves the PCA problem.

$$\boldsymbol{U}^T \boldsymbol{S} \boldsymbol{U} = \boldsymbol{L} \tag{9}$$

where L is a diagonal matrix containing the eigenvalues of S, and U is a matrix containing the eigenvectors of S.  $\Phi$  can be computed by these two matrices.

$$\boldsymbol{\Phi} = \boldsymbol{U}\boldsymbol{L}^{-\frac{1}{2}} \tag{10}$$

If we scale the variables and make their variances equal to one, then  $\boldsymbol{\Phi}$  is simply the eigenvector matrix  $\boldsymbol{U}$ . The covariance matrix becomes a correlation matrix  $\boldsymbol{R}$ .

$$r_{ij} = \frac{u_{ij}\sqrt{l_i}}{s_{jj}} \tag{11}$$

where  $u_{ii}$  is an element of U.  $l_i$  is a diagonal element of L ( $\lambda_i$ ) and  $s_{jj}$  is a diagonal element of S. When S is replaced with R, the principal components can be calculated by

$$\boldsymbol{Z} = \boldsymbol{\Phi}^T \boldsymbol{D}^{\frac{-1}{2}} \boldsymbol{X}$$
(12)

where **D** is the diagonal matrix obtained by **S** with each  $s_{jj}$  equals to one.

Now, we establish the criteria for automatic detecting anomalies that may exist in the hourly rainfall observations. Our anomaly detection system analyzes the rainfalls within each cluster by different storm types in terms of spatial and temporal variables daily.

According to Toe et al. (2017), the first two principal components (PCs) obtained from the PCA fully explained the spatial and seasonal variations in the rainfall. Each PC is a linear combination of the normalized variables. PC loads represent the correlation coefficients of the normalized variables and a PC (Figure 3, Figure 5). I. PCA from Temporal Variation Aspect: to find the temporal variation in rainfalls at each station.

Given a specified cluster, the data matrix X of this cluster on one day is

$$\boldsymbol{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} & \dots & x_{1m} \\ x_{21} & x_{22} & x_{23} & \dots & x_{2m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & x_{n3} & \dots & x_{nm} \end{bmatrix}, \text{ where each column vector } \boldsymbol{X}_j = \begin{bmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{nj} \end{bmatrix} \text{ denotes}$$

the hourly rainfall of *n* raingauge stations at hour *j* (the length of *j* must be at least larger than two). Next, we normalize each variable  $X_j$  to obtain the correlation matrix *R*. The original data set is normalized because PCA computes a novel projection based on the standard deviation of the variables. A variable with an extremely high standard deviation will be given a higher weight for composing the new axis than a variable with a low standard deviation. If we normalize the data set in advance, then every variable will retain the same weight. By using Equation (12), we gain the first and second PCs  $Z_1$  and  $Z_2$ .

Thereafter, we calculate the Euclidean distance between the origin and  $X_j$  being projected on the PCA subspace of the first two PCs.

$$d = \sqrt{Z_1^2 + Z_2^2} \ge d_{i,j,p}$$
(13)

Considering n as the number of days in which PCA can be performed, the number of rainy days with  $i^{\text{th}}$  storm type and  $j^{\text{th}}$  cluster is  $n_{i,j}$ . For these  $n_{i,j}$  days, each day

the maximum distance from the farthest projected data point to the origin can be computed. We obtained  $d_{i,j,p}$  by taking the  $p^{\text{th}}$  quantile of those maximum  $n_{i,j}$ distances and set  $d_{i,j,p}$  as the threshold for determining anomalies. If d (the Euclidean distance from any projected data point to origin) exceeds  $d_{i,j,p}$ , this suggests the existence of anomalies at a specific station because PC1 ( $Z_1$ ) captures the largest spatial variation, and PC2 ( $Z_2$ ) accounts for the remaining variation of those normalized variables. The spatial variation explained by each PC is nonoverlapping.

**II. PCA from Spatial Variation Aspect:** determining the spatial variation in rainfalls at each hour.

Given a specified cluster, the data matrix X' of this cluster on one day is the transpose

is 
$$\mathbf{X}^{\mathrm{T}} = \begin{bmatrix} x_{11} & x_{21} & x_{31} & \dots & x_{n1} \\ x_{12} & x_{22} & x_{32} & \dots & x_{n2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{1m} & x_{2m} & x_{3m} & \dots & x_{nm} \end{bmatrix}$$
, where each column vector  $X_i = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{im} \end{bmatrix}$ 

denotes the *m* hourly rainfall at station *i* (the length of *i* must be at least larger than two). Next, each variable  $X_i$  is normalized to obtain the correlation matrix  $\mathbf{R}'$ . Similarly, the first two PCs are gained using Equation (12). Finally, *d'* is acquired using Equation (13) and compared with the threshold  $d_{i,j,p}'$ . If *d'* exceeds  $d_{i,j,p}'$ , this suggests the existence of anomalies at a specific hour because PC1( $Z_1$ ) captures the largest temporal variation, and PC2 ( $Z_2$ ) accounts for the remaining variation of those normalized variables. The temporal variation explained by each PC is nonoverlapping.

## 4. Results

In this chapter, the results are presented and discussed as follows. Section 4-1 contains the anomalies caused by malfunctions or delays detected using the cutoff point method. Section 4-2 describes the K-means clustering analysis of 297 stations based on features such as geographical locations and rainfall characteristics by the four storm types. Finally, Section 4-3 displays the possible anomalies identified using PCA.

### 4-1. Anomalies Discovered Using the Cutoff Point Method

We calculated the cutoff point with p = 0.001 (the rainfall value for the 99.9% corresponding percentile with empirical distribution) for each rain gauge station using rainfall observations from 1998 to 2019. Next, we attained 5106 hourly precipitations that exceeded the cutoff points of 297 stations. We gained the previous hourly rainfall for each detected value. Using Table 2, the observations were assigned the values of A2 and A3. Eventually, 205 values were labeled A3 and 15 as A2 (Tables 4 and 5). Table 4 presents A3 data only for hourly rainfall > 200 mm (see Appendix C for complete results).

Table 4.

| 0    | 2          | 0          | <i>y y</i>       | 8 · 37 |                     |
|------|------------|------------|------------------|--------|---------------------|
| Item | Station ID | Station    | Time             | HR     | <b>A</b>            |
| 1    | C0A931     | Sanhe      | 2008/11/09 05:00 | 936    | 要、學「                |
| 2    | C0A940     | Jinshan    | 2008/12/24 19:00 | 735.5  | 9/07/07/07/07/07/07 |
| 3    | C0AI40     | Shipai     | 2008/10/21 14:00 | 283    |                     |
| 4    | C0C490     | Bade       | 1998/07/14 15:00 | 388.5  |                     |
| 5    | C0M640     | Zhongpu    | 2001/09/19 10:00 | 741.5  |                     |
| 6    | C0O970     | Hutoupi    | 2004/10/21 13:00 | 201    |                     |
| 7    | C0R130     | Ali        | 2001/05/21 11:00 | 544    |                     |
| 8    | C0R140     | Majia      | 2001/05/21 11:00 | 828    |                     |
| 9    | C0R140     | Majia      | 2001/05/31 10:00 | 434    |                     |
| 10   | C0R280     | Binlang    | 2012/08/28 15:00 | 666    |                     |
| 11   | C0R341     | Mudan      | 2011/09/03 13:00 | 320.5  |                     |
| 12   | C0R341     | Mudan      | 2012/08/25 04:00 | 460.5  |                     |
| 13   | C0S660     | Siama      | 2016/07/09 14:00 | 369    |                     |
| 14   | C0S710     | Luye       | 2016/07/09 15:00 | 226.5  |                     |
| 15   | C0S760     | Hongshih   | 1999/09/04 19:00 | 216.5  |                     |
| 16   | C0S760     | Hongshih   | 1999/10/09 11:00 | 237    |                     |
| 17   | C0V310     | Meinong    | 2001/05/21 10:00 | 312.5  |                     |
| 18   | C0V350     | Xipu       | 2001/05/21 10:00 | 342    |                     |
| 19   | C0V740     | Qishan     | 2001/05/21 11:00 | 292    |                     |
| 20   | C1A630     | Siapen     | 2001/07/21 14:00 | 216    |                     |
| 21   | C1E480     | Fongmei    | 1998/02/25 18:00 | 268    |                     |
| 22   | C1F891     | Shaolai    | 1998/02/20 17:00 | 223.5  |                     |
| 23   | C1F941     | Xueling    | 1998/02/20 18:00 | 251.5  |                     |
| 24   | C1R110     | Gusia      | 2001/05/21 14:00 | 579.5  |                     |
| 25   | C1R110     | Gusia      | 2001/05/31 16:00 | 334    |                     |
| 26   | C1R120     | Shangdewun | 2001/05/21 11:00 | 711    |                     |
| 27   | C1S670     | Motian     | 2016/07/09 13:00 | 216.5  |                     |
| 28   | C1U690     | Sinliao    | 2009/10/12 14:00 | 734.5  |                     |
| 29   | C1Z130     | Tongmen    | 2005/09/23 09:00 | 364.5  |                     |

Identified Hourly Rainfall Anomalies Caused by Delay Returns

Note.

HR = Hourly Rainfall (mm);

The instrument failed to return the observation in time; the value had accumulated for several hours.

2 章 6

| Table | 5 |
|-------|---|
|-------|---|

| Table 5.   |            |               |                     | T-      |       |
|------------|------------|---------------|---------------------|---------|-------|
| Identified | Hourly Rai | nfall Anomali | ies Caused by Malfu | nctions | 2.9   |
| Item       | Station ID | Station       | Time                | HP      | A     |
| 1          | C0A870     | Wujhihshan    | 2000/08/18 16:00    | 75      |       |
| 2          | C0D360     | Meihua        | 2019/07/01 14:00    | 108.5   | 翠。學"吗 |
| 3          | C0R150     | Sandimen      | 2000/11/01 12:00    | 83      |       |
| 4          | C0R190     | Chishan       | 2000/11/01 14:00    | 85      |       |
| 5          | C0R190     | Chishan       | 2000/09/24 09:00    | 77.5    |       |
| 6          | C0S760     | Hongshih      | 2000/07/03 08:00    | 63      |       |
| 7          | C0S760     | Hongshih      | 2000/07/06 08:00    | 44.5    |       |
| 8          | C0S760     | Hongshih      | 2000/07/18 07:00    | 47.5    |       |
| 9          | C0S760     | Hongshih      | 2000/08/04 08:00    | 43      |       |
| 10         | C0S760     | Hongshih      | 2000/08/07 09:00    | 56.5    |       |
| 11         | C0V350     | Xipu          | 2000/04/18 16:00    | 82.5    |       |
| 12         | C1H9B1     | Amei          | 2019/06/14 16:00    | 131.5   |       |
| 13         | C1I121     | Da-An         | 2000/03/21 15:00    | 150     |       |
| 14         | C1I121     | Da-An         | 2000/11/09 14:00    | 158     |       |
| 15         | C1I131     | Tongtou       | 2000/11/09 14:00    | 103     |       |

I. Dainfall A. 1: . **T** 1 .... I II

Note.

HP = Hourly Precipitation;

The instrument failed to return the observation in time due to malfunctions.

Even though not every detected value was an anomaly, from Tables 4 and 5, we could successfully identify the abnormal observations (-9996 and -9995) through the cutoff point method.

## 4-2. Results of the K-Means Clustering Method

Because the rainfall amount changes with the location and type of storm, we calculated the following five variables for each storm type and used them to conduct the K-means clustering analysis of 297 stations.

- 1. *ALT*: the altitude of a station.
- 2. *LONG*: the longitude of a station.
- 3. *LAT*: the latitude of a station.
- 4.  $\overline{X}$ : the average annual rainfall from 1998 to 2019 of a specified storm type.
- 5. *sd*: the standard deviation of the average annual rainfall from 1998 to 2019 of a specified storm type.

The first three variables are related to locations, whereas the other two variables captured the rainfall characteristics of each storm type. We examined the clustering outcomes for the number of clusters K=4, 6, 8, 9, 10, 12, and 15 for the types of frontal rain, Meiyu, convective storms, and typhoons. Finally, we divided 297 stations into 10 clusters for convective storms and eight clusters for each of the other three storm types. The ideal clustering results of four storm types are presented in Figure 1 (See Appendix A for the detailed clustering result of each storm type).

Taiwan is affected by the northeast monsoon from November to April. The monsoon strengthens and causes strong winds in the coastal areas and northern Taiwan. Some stations located in the northeast area receive rainfall in winter. From Figure 1-(a), we noticed that these stations were categorized into the same cluster (Group 8).

Both Siberian High and Pacific High affect Taiwan during the Meiyu period (in May and June). The prevailing wind at this time is usually from the southwest. Figure 1-(b) displays three clusters in the southwest area and only one cluster in the north and east areas.

A convective storm usually occurs on a summer (July to October) afternoon with heavy rainfall and for a short duration. When the sun heats the surface of the ground, the high temperature causes water to evaporate, cool, condense, and form tiny drops of water as it rises in the atmosphere. This process continues until rainfall occurs. Figure 1-(c) shows 10 clusters, because a convective storm often covers a small area.

On average, at least three or four typhoons hit Taiwan every year, primarily from July to October. Figure 2 presents the nine main paths of typhoons hitting Taiwan from the Typhoon Database established by the CWB. The clustering result for typhoons (Figure 1-(d)) seems roughly in line with those paths (Figure 2).





Figure 1. Clustering Results for Four Preliminary Storm Types


*Figure 2.* Nine Main Paths of Typhoons Hitting Taiwan These paths are from the Typhoon Database of the CWB.

## 4-3. Possible Anomalies Identified Using PCA

Following the clustering results, we performed PCA to establish the criteria for automated detection of anomalies for each storm type using the precipitation data from 1998 to 2019. We present the anomalies identified in this section. Section 4-3-1 demonstrates how to compute the Euclidean distance of the new transformed coordinate system, with one detected anomaly of the Donghe station on March 27, 2020, taken as an example. Section 4-3-2 describes the division of the identified anomalies of four storm types into nine categories (Table 3). Finally, Section 4-3-3 introduces the automated anomaly detection system.

## 4-3-1. Detected Anomaly at Station Donghe on March 27, 2020

We employed the PCA method on the hourly precipitation of each day from 1998 to 2019. In short, the dimension of our data matrix was  $n \times 24$  (data from 24 h a day of a cluster containing *n* stations). However, not all 24-h data were available for PCA for some days because it did not rain on those days. Therefore, we set two conditions that needed to be satisfied before performing the anomaly detection technique.

- 1. If the maximum hourly rainfall among all stations in the cluster is  $\geq 5$  mm, then retain the corresponding hour instead of removing it.
- 2. Retain the data of a day if it rained for at least 3 h that day; else, remove it

Condition 2 was included to reduce the dimensions from at most 24 to 2 using PCA, and it is unnecessary to use PCA if data are available from only 2 h (i.e., only two variables).

#### I. Temporal Variation Aspect

Performing PCA from a temporal variation aspect enables us to observe the temporal variation patterns in rainfall for each rain gauge station. We took March 27, 2020, as an example. The data matrix of this day is a  $36 \times 9$  matrix because Cluster 4 of the frontal rain type contains 36 stations (Table 7), and the  $13^{th}$ ,  $14^{th}$ ,  $15^{th}$ ,  $16^{th}$ ,  $17^{th}$ ,  $18^{th}$ ,  $22^{th}$ ,  $23^{th}$ , and  $24^{th}$  h of this day satisfied the first condition. After normalizing the data matrix and conducting PCA, we obtained the variable correlation plot (Figure 3) and the new coordinate system (Figure 4) formed by PC1 and PC2.

First, we interpreted Figure 3. The horizontal axis represents PC1, which accounts for 50.5% variation in our original data matrix; the vertical axis represents PC2, accounting for 18.5% variation. Thus, the first two PCs explain 69% variation of the rainfall of this day. Figure 3 shows the correlation coefficients r between 2 PCs and the nine original variables (the 13<sup>th</sup>, 14<sup>th</sup>, 15<sup>th</sup>, 16<sup>th</sup>, 17<sup>th</sup>, 18<sup>th</sup>, 22<sup>th</sup>, 23<sup>th</sup>, and 24<sup>th</sup> h), which can be obtained as

$$r = \frac{v_{ij} \times e_j}{Std(X_i)} \tag{14}$$

where  $v_{ij}$  denotes the *i*<sup>th</sup> element of the *j*<sup>th</sup> unit-length eigenvector of the covariance matrix,  $e_j$  denotes the eigenvalue of  $PC_j$  ( $Var(PC_j)$ ), and  $Std(X_i)$  denotes the standard deviation of the variable  $X_i$ . Because the data matrix is normalized, the value of  $Std(X_i)$  is 1. Using Equation (14), the relationship between each PC and a specific variable can be obtained. For instance, the correlation coefficient of PC1 with the 13<sup>th</sup> hour is 0.84, whereas that of PC2 and the 13<sup>th</sup> hour is 0.12.

The colors in Figure 3 represent the expected contribution of a variable to the PCs. The contribution of a variable to a given PC (in percentage) is computed as follows:

$$contrib = \frac{r_{ij}^2 \times 100}{\sum_j \sum_i r_{ij}^2}$$
(15)

where  $r_{ij}$  denotes the correlation coefficient of variables  $X_i$  and  $PC_j$ . The expected contribution is attained using

$$\frac{\sum_{j}(contrib \times e_{j})}{\sum_{j} e_{j}} \tag{16}$$

where  $e_j$  denotes the  $j^{th}$  eigenvalue (variance) of  $PC_j$ . For example, the contributions of the 13<sup>th</sup> hour to PC1 and PC2 are 15.51% and 0.86%, respectively, whereas the expected contribution is approximately 11.57%.

Figure 4 displays the new coordinate system after the transformation. Similarly, the horizontal axis and the vertical axis of Figure 4 are PC1 and PC2, respectively. The dimensions are reduced from nine (hours) to two (PCs) for the precipitation data of 36 stations. Because PC1 and PC2 lie in the two directions with the first two greatest variances, the point that is the farthest from the origin indicates that the rainfall pattern of this station is much more distinct from that of the other stations. For each day available for PCA, we computed the Euclidean distance of each point to the origin and considered the largest distance. Given a cluster of a specified storm type, all these distances are obtained, and the threshold is determined using Equation (13) by setting  $p = 90^{\text{th}}$  quantile. Thus, the criterion for detecting the anomalies is 10.185 (Table 7). The Donghe station is considered to have anomalies because its distance from the origin is 12.17, which exceeds the threshold of 10.185 (Figure 4). The other stations are very close to the origin except for the Hualien station (the distance = 5.63). This plot implies that the variation of rainfall of the Donghe station is mainly captured by PC1, whereas that of the Hualien station is explained by PC2. In other words, among 36 stations, the temporal variation of the Donghe station is the largest.

The colors in Figure 4 indicate the quality of representation of individuals. cos2 equals to squared r in Equation (14). A high cos2 indicates a good representation of the individual by the PCs, and a low cos2 means that the individual is not perfectly represented by the PCs. From the color of the point Donghe station, we find that it is well represented by PC1. Moreover, the Hualien station is represented by PC2.



*Figure 3.* Variable Correlation Plot from Temporal Variation Aspect The horizontal axis represents PC1; the vertical axis represents PC2. The colors represent the contribution (in percentage) of a variable to the principal components.



*Figure 4.* The New Coordinate System after PCA from Temporal Variation Aspect The colors indicate the quality of representation of the individuals. Similar individuals are grouped together.

#### **II. Spatial Variation Aspect**

Performing PCA from a spatial variation aspect helps us observe the spatial variation patterns in rainfall for each hour. The data matrix of this day is a 9 × 36 matrix. Each variable contains the nine hourly rainfalls: 13<sup>th</sup>, 14<sup>th</sup>, 15<sup>th</sup>, 16<sup>th</sup>, 17<sup>th</sup>, 18<sup>th</sup>, 22<sup>th</sup>, 23<sup>th</sup>, and 24<sup>th</sup> h, which satisfies the first condition. Cluster 4 of the frontal rain storm type has 36 stations (Table 7). After normalizing the data matrix and conducting PCA, the variable correlation plot is obtained (Figure 5), and the new coordinate system (Figure 6) formed by PC1 and PC2 is also obtained.

In Figure 5, the horizontal axis represents PC1, which accounts for 33.7% variation in our original data matrix, and the vertical axis represents PC2, accounting for the other 21.8% variation, amounting to a total of 55.5% variation of the rainfall on that day. The circled stations in Figure 5 are the Donghe station and its seven nearby stations: in the order of distance, Chenggong, Chihshang, Luye, Hongshih, Mingli, Taitung, and Hongyeshan. The Donghe, Chihshang, Hongshih, and Mingli stations are negatively related to both PC1 and PC2, whereas the Chenggong, Luye, Taitung, and Hongyeshan stations are negatively related to PC1 and positively to PC2.

Figure 6 displays the new coordinate system after the transformation. The horizontal axis and the vertical axis are PC1 and PC2, respectively. The dimensions are reduced from 36 (stations) to two (PCs) for the precipitation data of 36 stations. Compared with Figure 4, identification of the existence of anomalies is relatively harder in Figure 6. However, both the 15<sup>th</sup> and 17<sup>th</sup> h represent the 2 PCs well.



*Figure 5.* Variable Correlation Plot from Spatial Variation Aspect The horizontal axis represents PC1; the vertical axis represents PC2. The colors represent the contribution (in percentage) of a variable to the principal components.



*Figure 6.* The New Coordinate System after PCA from Spatial Variation Aspect The colors indicate the quality of representation of the individuals. Similar individuals are grouped together.



*Figure 7*. Rainfalls Observed by Donghe Station and Nearby Stations on Mar 27, 2020 Donghe Station is detected to have anomalies. The neighboring stations are Chenggong, Chihshang, Luye, Hongshih, Mingli, Taitung, and Hongyeshan, from near to far.

Figure 7 shows the hourly rainfalls of the Donghe station and the other seven stations. It rained a lot at the Donghe station from 1 pm to 4 pm and from 10 pm to 12 am on this day (recorded rainfall: 86.5 mm at 2 pm and 80.5 mm at 3 pm). Hence, the temporal variation pattern in rainfall of the Donghe station is quite different from that of the other neighboring stations, classified as B1 (Table 3). Although our system identified that the Donghe station might have anomalies, further verification is needed to ensure whether anomalies exist. Figure 8 shows the detected result on March, 27, 2020. The red cross represents the Donghe station, and the blue circles represents the other stations in

Cluster 4 of frontal rain.





Figure 8. Anomaly Detected on Mar 27, 2020, in Cluster 4 of Frontal Rain

The red cross represents where Donghe Station is located, while there exist anomalies in the rainfalls that Donghe Station observed. The blue circles are other rain gauge stations, observing no anomalies, in Cluster 4.

#### 4-3-2. Criteria for Anomaly Detection and Nine Categories of Anomalies

Tables 6 presents the anomaly detection results of each cluster of each storm type. The available days for PCA of shows the number of days that satisfy the two conditions mentioned in Section 4-3-1. For each day, we computed the Euclidean distance from the subspaces of PC1 and PC2. Then, we obtained the 90<sup>th</sup> quantile distance as the criterion for detecting anomalies. Taking Cluster 1 of the frontal rain type as an example, we calculated 424 maximum distances and set 8.925 (90<sup>th</sup> quantile of these distances) as the threshold. The detected anomalies of each table present the number of anomalies (approximately one over ten of the available days) for each cluster of a specific storm type. After our system discovered these anomalies, we examined them thoroughly and identified the possible anomalies for each cluster by visual verification (PAIVV).

According to Table 3, PAIVV of all storm types were divided into nine categories and are presented in Table 7. Categories B1, B2, B5, and B9 require satellite or weather radar images for anomaly verification. By contrast, anomalies belonging to categories B3, B4, B6, B7, and B8 were successfully identified. Figure 9 shows that for each storm type, the number of category B1 is the most, and the number of B5 is the second most.

| Storm Type           | Cluster | Number of Stations | Days Available | Threshold | Anomalies Detected | PAIVV |
|----------------------|---------|--------------------|----------------|-----------|--------------------|-------|
| Frontal<br>Rain      | 1       | 61                 | 424            | 8.925     | 43                 | 4     |
|                      | 2       | 27                 | 514            | 6.859     | 52                 | 78 7  |
|                      | 3       | 50                 | 1401           | 12.039    | 140                | 23    |
|                      | 4       | 36                 | 947            | 10.185    | 95                 | 12    |
|                      | 5       | 55                 | 551            | 10.391    | 55                 | 11    |
|                      | 6       | 47                 | 682            | 7.641     | 69                 | 9     |
|                      | 7       | 15                 | 592            | 6.093     | 60                 | 5     |
|                      | 8       | 6                  | 1153           | 5.234     | 116                | 5     |
| Meiyu                | 1       | 7                  | 392            | 4.511     | 40                 | 8     |
|                      | 2       | 45                 | 604            | 9.444     | 61                 | 8     |
|                      | 3       | 38                 | 618            | 9.239     | 62                 | 17    |
|                      | 4       | 55                 | 707            | 10.463    | 71                 | 13    |
|                      | 5       | 12                 | 653            | 5.906     | 66                 | 9     |
|                      | 6       | 74                 | 805            | 11.967    | 81                 | 17    |
|                      | 7       | 25                 | 774            | 6.947     | 78                 | 12    |
|                      | 8       | 41                 | 887            | 8.836     | 89                 | 17    |
| Convective<br>Storms | 1       | 39                 | 787            | 8.61      | 79                 | 6     |
|                      | 2       | 37                 | 1084           | 8.708     | 109                | 13    |
|                      | 3       | 25                 | 895            | 6.854     | 90                 | 11    |
|                      | 4       | 21                 | 929            | 7.841     | 93                 | 9     |
|                      | 5       | 40                 | 1568           | 8.715     | 157                | 18    |
|                      | 6       | 44                 | 1363           | 9.952     | 137                | 7     |
|                      | 7       | 25                 | 1077           | 7.703     | 108                | 16    |
|                      | 8       | 41                 | 970            | 10.745    | 97                 | 10    |
|                      | 9       | 15                 | 843            | 6.228     | 85                 | 3     |
|                      | 10      | 10                 | 892            | 4.883     | 90                 | 8     |
| Typhoons             | 1       | 36                 | 276            | 10.961    | 28                 | 3     |
|                      | 2       | 10                 | 308            | 7.484     | 23                 | 1     |
|                      | 3       | 45                 | 278            | 17.227    | 31                 | 0     |
|                      | 4       | 43                 | 285            | 13.033    | 28                 | 3     |
|                      | 5       | 26                 | 237            | 9.653     | 29                 | 8     |
|                      | 6       | 55                 | 237            | 10.343    | 24                 | 2     |
|                      | 7       | 62                 | 324            | 13.88     | 33                 | 4     |
|                      | 8       | 20                 | 280            | 10.626    | 28                 | 1     |

 Table 6. Threshold for Anomaly Detection and Anomalies Detected of Four Storm Types

*Note.* PAIVV = Possible anomalies identified by visual verification from the detected anomalies

Threshold = The  $90^{\text{th}}$  quantile of the maximum distances computed by PCA from temporal variation aspect

Table 7.

|                   |     |     |    |    |     |    | <i>J</i> |    | •   |     |
|-------------------|-----|-----|----|----|-----|----|----------|----|-----|-----|
| Code              | B1* | B2* | В3 | B4 | B5* | B6 | B7       | B8 | B9* | Sum |
| Frontal Rain      | 50  | 0   | 3  | 2  | 10  | 7  | 2        | 1  | 1   | 76  |
| Meiyu             | 56  | 1   | 9  | 3  | 18  | 5  | 0        | 4  | 5   | 101 |
| Convective Storms | 87  | 1   | 4  | 0  | 4   | 0  | 1        | 0  | 4   | 101 |
| Typhoons          | 20  | 1   | 0  | 0  | 0   | 0  | 0        | 0  | 1   | 22  |
| Sum               | 213 | 3   | 16 | 5  | 32  | 12 | 3        | 5  | 11  | 300 |

Nine Categories of Anomalies Detected by PCA Method for Each Storm Type

Note.

\* indicates that this category of anomalies needs further verification;

OBS = Observations;

B1 = OBS at some hours were higher than that of nearby stations;

B2 = Observed trace; nearby stations, rainfalls;

B3 = Did not observe OBS due to malfunctions;

B4 = Did not observe OBS due to delays;

B5 = Observed rainfalls; nearby stations, trace;

B6 = Observed rainfalls; nearby stations did not due to malfunctions;

B7 = Observed rainfalls; nearby stations did not due to delays;

B8 = Delayed return of accumulated rainfall records;

B9 = Rainfall trend was different from that of nearby stations



Figure 9. The Bar Chart of Nine Categories of Anomalies of Each Storm Type

The anomaly that occurs at the Donghe Station on March 27, 2020, belongs to category B1. For B2 to B9, we selected one anomaly detected for each category, and it is present as follows:

#### Category B2

From July 16 to July 20, 2005, Typhoon Haitang struck Taiwan. Xingaokou Station observed very little rainfall on July 18, 2005 (trace), while other three nearby stations did observe relatively high rainfall.



*Figure 10.* Rainfalls Observed by Xingaokou Station and Nearby Stations on Jul 18, 2005

Xingaokou Station is detected to have anomalies. The neighboring stations are Paiyun,

Yushan, and Wangxiangshan, from near to far.



Figure 11. Anomaly Detected on Jul 18, 2005, in Cluster 2 of Typhoon

The red cross represents where Xingaokou Station is located, while there exist anomalies in the rainfalls that Xingaokou Station observed. The blue circles are other rain gauge stations, observing no anomalies, in Cluster 2.

Siyuan Station did not observe any rainfall on June 2, 2017, because of malfunctions;

whereas other nearby five stations in the same cluster observed rainfalls.



Figure 12. Rainfalls Observed by Siyuan Station and Nearby Stations on Jun 2, 2017

Siyuan Station is detected to have anomalies. The neighboring stations are Nanchan,

Cih-En, Dayuling, Taipingshan, and Luoshao, from near to far.



Figure 13. Anomaly Detected on Jun 2, 2017, in Cluster 1 of Meiyu

The red cross represents where Siyuan Station is located, while there exist anomalies in the rainfalls that Siyuan Station observed. The blue circles are other rain gauge stations, observing no anomalies, in Cluster 1.

Daping Station did not observe any rainfall on November 27, 1998, because the rain

gauge delayed in returning the observations in time, while other nearby two stations did.



Figure 14. Rainfalls Observed by Daping Station and Nearby Stations on Nov 27, 1998

Daping Station is detected to have anomalies. The neighboring stations are Jinshan and

Sanhe, from near to far.



Figure 15. Anomaly Detected on Nov 27, 1998, in Cluster 8 of Frontal Rain

The red cross represents where Daping Station is located, while there exist anomalies in the rainfalls that Daping Station observed. The blue circles are other rain gauge stations, observing no anomalies, in Cluster 8.

Only Station Tonemen did observe rainfall on June 17, 1998, while other stations in the



Figure 16. Rainfalls Observed by Tongmen Station and Nearby Stations on Jun 17, 1998

Tongmen Station is detected to have anomalies. The neighboring stations are Liyutan,

Donghwa, Shoufeng, Longjian, Guanghua Ji-An, and Hualien, from near to far.



Figure 17. Anomaly Detected on Jun 17, 1998, in Cluster 3 of Meiyu

The red cross represents where Tongmen Station is located, while there exist anomalies in the rainfalls that Tongmen Station observed. The blue circles are other rain gauge stations, observing no anomalies, in Cluster 3.

Station Taipingshan did observe rainfall on November 7, 2017, while other nearby

stations merely didn't.



*Figure 18.* Rainfalls Observed by Taipingshan Station and Nearby Stations on Nov 7, 2017.

Station Taipingshan is detected to have anomalies. The neighboring stations are

Nanshan and Siyuan, from near to far.



Figure 19. Anomaly Detected on Nov 7, 2017, in Cluster 7 of Frontal Rain

The red cross represents where Taipingshan Station is located, while there exist anomalies in the rainfalls that Taipingshan Station observed. The blue circles are other rain gauge stations, observing no anomalies, in Cluster 7.

Station Taitung did observe any rainfall on August 27, 2001, while the other nearby

stations didn't because they delayed in returning their observations.



Figure 20. Rainfalls Observed by Taitung Station and Nearby Stations on Aug 27, 2001

Taitung Station is detected to have anomalies. The neighboring stations are Jiben, Luye, Hongyeshan, Taimali, Donghe, and Hongshih, from near to far.



Figure 21. Anomaly Detected on Aug 27, 2001, in Cluster 2 of Convective Storms

The red cross represents where Taitung Station is located, while there exist anomalies in the rainfalls that Taitung Station observed. The blue circles are other rain gauge stations, observing no anomalies, in Cluster 2.

Shigang Station delayed returning its observations for several hours on June 25, 1998.

Until 7 pm, it returned 56 mm rainfall and 8 pm it returned 91 mm rainfall.



Figure 22. Rainfalls Observed by Shigang Station and Nearby Stations on Jun 25, 1998

Shigang Station is detected to have anomalies. The neighboring stations are Zhuolan,

Dongshi, Xinbogong, Xinkai, Dakeng, and Zhongkeng, from near to far.



Figure 23. Anomaly Detected on Jun 25, 1998, in Cluster 8 of Meiyu

The red cross represents where Shigang Station is located, while there exist anomalies in the rainfalls that Shigang Station observed. The blue circles are other rain gauge stations, observing no anomalies, in Cluster 8.

From Figure 24, the rainfall pattern of Guoxing Station was considerably different from other nearby stations on Jul 10, 1999. Seven nearby stations observed rainfalls from 7 a.m. to 12 p.m., whereas Guoxing Station did not until 6 p.m.



Figure 24. Rainfalls Observed by Guoxing Station and Nearby Stations on Jul 10, 1999

Guoxing Station is detected to have anomalies. The neighboring stations are Changfeng, Shuangdong, Qingliu, Puli, Lingxiao, Sun Moon Lake, and Amei, from near to far.



Figure 25. Anomaly Detected on Jul 10, 1999, in Cluster 7 of Convective Storms

The red cross represents where Guoxing Station is located, while there exist anomalies in the rainfalls that Guoxing Station observed. The blue circles are other rain gauge stations, observing no anomalies, in Cluster 7.

#### 4-3-3. The Automated Anomaly Detection System

In this section, we introduce our automated anomaly detection application system. We established the system using Shiny, a package developed by R Studio for users to create interactive web pages with R language. The URL of our online system is https://roam041.shinyapps.io/outlier\_detection\_v1/.

Two tabs are present in the navigation: Clustering and PCA. The Clustering tab provides users with the clustering results of each storm type of 297 rain gauge stations. On the left-hand side, users need to select the specific storm type (frontal rain, Meiyu, convective storms, or typhoons) and the cluster from the two dropdown select options. Once the options are selected, the image box displays the clustering result of the chosen storm type, and the map box displays an interactive map with detailed information of rain gauge stations of a determined cluster.

The PCA tab presents the results using the PCA method. In the Options box, users select the preferred storm type, cluster, and the day (of all available days). Then, the Map box on the right-hand side reveals the anomaly detection result of the chosen day. The red pins with an exclamation mark indicates locations of anomalies, whereas the blue pins with a check sign indicate locations where no anomalies exist. The Precipitation box shows the rainfall of the chosen date (24 h). Users can even draw the interactive rainfall time series plot if they select stations in the Chosen Stations input box. Finally, the tab presents the PCA results from both spatial and temporal variation aspects: the variable correlation plot, the individuals' plot (in the new transformed coordinate system), and the loadings of all variables.

# Conclusion

We established an automated anomaly detection system for hourly precipitation data. Anomalies can occur at a station because of two main abnormal situations. First, the station fails to return the rainfall observations in time because of malfunctions or delays, which results in an exceptionally high rainfall since because of data accumulation for several hours. We developed the cutoff point method to detect this type of anomalies.

Second, the rainfall observed by the station is extraordinarily higher or lower than that of the neighboring stations. We adopted the K-means cluster analysis to group the 297 stations based on geographical locations and rainfall characteristics as per the four primary storm types in Taiwan. Then, we used PCA to compute *d*, the Euclidean distance of the projected data point from the origin for each observation. When hours were taken as variables for PCA, *d* represented the temporal variation of the rainfall at each station in a specified cluster. By contrast, *d* represented for the spatial variation of the rainfall patterns in different hours when each variable contained the hourly rainfalls at a station within a day. When the value of *d* exceeded the threshold set, our system automatically indicates possible anomalies. The anomalies identified with the PCA method have nine categories. Some of them may not be anomalies, which still require additional verification. Nevertheless, our system can effectively and efficiently screen

out the potential anomalies to achieve the QC of hourly rainfall data.
# References

- Bock, H. (1985). On some significance tests in cluster analysis. *Journal of Classification*, 2(1), 77-108. doi: 10.1007/bf01908065
- Bock, H. (2008). Origins and extensions of the k-means algorithm in cluster analysis. *Electronic Journal for History of Probability and Statistics*, 4(2), 18.
- Boyle, J. S., and G. T. J. Chen, (1987). Synoptic aspects of the wintertime East Asian monsoon. *Monsoon Meteorology*, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 125–160.
- Branisavljević, N., Prodanović, D., Arsić, M., Simić, Z., & Borota, J. (2009). Hydro-Meteorological Data Quality Assurance and Improvement. *Journal of The Serbian Society for Computational Mechanics*, 3(1), 228-249.
- Chen, C., & Chen, Y. (2003). The Rainfall Characteristics of Taiwan. *Monthly Weather Review*, *131*(7), 1323-1341. doi: 10.1175/1520-0493(2003)131<1323: trcot>2.0.co;2
- Chen, C., & Huang, J. (1999). A Numerical Study of Precipitation Characteristics over Taiwan Island during the Winter Season. *Meteorology and Atmospheric Physics*, 70(3-4), 167-183. doi: 10.1007/s007030050032
- Cox, D. (1957). Note on Grouping. Journal of the American Statistical Association, 52(280), 543-547. doi: 10.1080/01621459.1957.10501411
- Fisher, W. (1958). On Grouping for Maximum Homogeneity. *Journal of the American Statistical Association*, *53*(284), 789-798. doi: 10.1080/01621459.1958.10501479
- Hartigan, J. (1975). Clustering algorithms. New York: John Wiley & Sons.
- Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. *Journal of Educational Psychology*, 24(6&7), 417-441 & 498-520. doi: 10.1037/h0071325
- Hudson, H., Mcmillan, D., & Pearson, C. (1999). Quality assurance in hydrological measurement. *Hydrological Sciences Journal*, 44(5), 825-834. doi: 10.1080/02626669909492276
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2015). An Introduction to Statistical Learning (6th ed., p. 426). New York: Springer Science + Business.

- Jolliffe, I. (2002). *Principal Component Analysis. 2nd ed* (2nd ed.). New York, NY: Springer-Verlag.
- Kassambara, A. (2020). factoextra package | R Documentation. Retrieved 29 May 2020, from https://www.rdocumentation.org/packages/factoextra
- Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal* of Science, 2(11), 559-572. doi: 10.1080/14786440109462720
- Pollard, D. (1982). A Central Limit Theorem for K-Means Clustering. *The Annals of Probability*, 10(4), 919-926. doi: 10.1214/aop/1176993713
- Rousseeuw, P., & Hubert, M. (2018). Anomaly detection by robust statistics. *Wires Data Mining and Knowledge Discovery*, 8(2). doi: 10.1002/widm.1236
- Toe, M., Kanzaki, M., Lien, T., & Cheng, K. (2017). Spatial and temporal rainfall patterns in Central Dry Zone, Myanmar - A hydrological cross-scale analysis. *Terrestrial, Atmospheric and Oceanic Sciences*, 28(3), 425-436. doi: 10.3319/tao.2016.02.15.01(Hy)
- Wang, S.-T., and H. Cheng, (1982). Natural seasons as shown by the variation of the circulation in Asia (in Chinese). *Atmos. Sci.*, 9, 125–146.
- You, J., Hubbard, K., Nadarajah, S., & Kunkel, K. (2007). Performance of Quality Assurance Procedures on Daily Precipitation. *Journal of Atmospheric and Oceanic Technology*, 24(5), 821-834. doi: 10.1175/jtech2002.1

# Appendix



# A. Table of 297 Stations

| Item | ID     | Station       | 站名  | Altitude | Longitude | Latitude | C. | F. | М. | T. |
|------|--------|---------------|-----|----------|-----------|----------|----|----|----|----|
| 1    | 466900 | Tamsui        | 淡水  | 19       | 121.449   | 25.1649  | 8  | 3  | 6  | 4  |
| 2    | 466910 | Anbu          | 鞍部  | 825.8    | 121.530   | 25.1826  | 8  | 3  | 6  | 4  |
| 3    | 466920 | Taipei        | 臺北  | 6.3      | 121.515   | 25.0377  | 8  | 3  | 6  | 4  |
| 4    | 466930 | Zhuzihu       | 竹子湖 | 607.1    | 121.545   | 25.1621  | 8  | 3  | 6  | 4  |
| 5    | 466940 | Keelung       | 基隆  | 26.7     | 121.741   | 25.1333  | 8  | 8  | 6  | 4  |
| 6    | 466990 | Hualien       | 花蓮  | 16       | 121.613   | 23.9751  | 2  | 4  | 3  | 1  |
| 7    | 467060 | Su-Ao         | 蘇澳  | 24.9     | 121.857   | 24.5967  | 4  | 3  | 6  | 5  |
| 8    | 467080 | Yilan         | 宜蘭  | 7.2      | 121.757   | 24.7640  | 4  | 3  | 6  | 5  |
| 9    | 467410 | Tainan        | 臺南  | 40.8     | 120.205   | 22.9932  | 6  | 5  | 4  | 6  |
| 10   | 467420 | Yongkang      | 永康  | 8.1      | 120.237   | 23.0384  | 6  | 5  | 4  | 7  |
| 11   | 467440 | Kaohsiung     | 高雄  | 2.3      | 120.316   | 22.5660  | 6  | 5  | 4  | 7  |
| 12   | 467480 | Chiayi        | 嘉義  | 26.9     | 120.433   | 23.4959  | 1  | 1  | 2  | 6  |
| 13   | 467490 | Taichung      | 臺中  | 84       | 120.684   | 24.1457  | 3  | 6  | 2  | 6  |
| 14   | 467530 | Alishan       | 阿里山 | 2413.4   | 120.813   | 23.5082  | 7  | 2  | 5  | 8  |
| 15   | 467540 | Dawu          | 大武  | 8.1      | 120.904   | 22.3557  | 6  | 5  | 4  | 7  |
| 16   | 467550 | Yushan        | 玉山  | 3844.8   | 120.960   | 23.4876  | 10 | 2  | 5  | 2  |
| 17   | 467571 | Hsinchu       | 新竹  | 26.9     | 121.014   | 24.8279  | 8  | 6  | 6  | 4  |
| 18   | 467590 | Hengchun      | 恆春  | 22.1     | 120.746   | 22.0039  | 6  | 5  | 4  | 7  |
| 19   | 467610 | Chenggong     | 成功  | 33.5     | 121.373   | 23.0975  | 2  | 4  | 3  | 1  |
| 20   | 467650 | Sun Moon Lake | 日月潭 | 1017.5   | 120.908   | 23.8813  | 7  | 6  | 8  | 3  |
| 21   | 467660 | Taitung       | 臺東  | 9        | 121.155   | 22.7522  | 2  | 4  | 3  | 1  |
| 22   | 467770 | Wuqi          | 梧棲  | 31.7     | 120.523   | 24.2560  | 1  | 1  | 2  | 6  |
| 23   | C0A520 | Shanjia       | 山佳  | 48       | 121.402   | 24.9749  | 8  | 3  | 6  | 4  |
| 24   | C0A530 | Pinglin       | 坪林  | 300      | 121.709   | 24.9382  | 8  | 3  | 6  | 5  |
| 25   | C0A540 | Sihdu         | 四堵  | 401      | 121.746   | 24.8928  | 4  | 3  | 6  | 5  |
| 26   | C0A550 | Taiping       | 泰平  | 422      | 121.824   | 24.9712  | 4  | 3  | 6  | 5  |
| 27   | C0A570 | Tonghou       | 桶後  | 360      | 121.598   | 24.8482  | 4  | 3  | 6  | 5  |
| 28   | C0A640 | Shihding      | 石碇  | 241      | 121.663   | 24.9939  | 8  | 3  | 6  | 5  |
| 29   | C0A650 | Huoshaoliao   | 火燒寮 | 287      | 121.743   | 25.0027  | 8  | 3  | 6  | 5  |
| 30   | C0A660 | Rueifang      | 瑞芳  | 97       | 121.801   | 25.1132  | 8  | 8  | 6  | 4  |



| Item | ID     | Station       | 站名  | Altitude | Longitude | Latitude | C. | F. | M. | T. |
|------|--------|---------------|-----|----------|-----------|----------|----|----|----|----|
| 31   | C0A860 | Daping        | 大坪  | 362      | 121.633   | 25.1659  | 8  | 8  | 6  | 4  |
| 32   | C0A870 | Wujhihshan    | 五指山 | 685      | 121.609   | 25.1322  | 8  | 3  | 6  | 4  |
| 33   | C0A880 | Fulong        | 福隆  | 6        | 121.942   | 25.0178  | 4  | 3  | 6  | 5  |
| 34   | C0A890 | Shuangsi      | 雙溪  | 40       | 121.864   | 25.036   | 8  | 3  | 6  | 5  |
| 35   | C0A920 | Fugueijiao    | 富貴角 | 196      | 121.565   | 25.2638  | 8  | 8  | 6  | 4  |
| 36   | C0A931 | Sanhe         | 三和  | 216      | 121.595   | 25.2332  | 8  | 8  | 6  | 4  |
| 37   | C0A940 | Jinshan       | 金山  | 49       | 121.644   | 25.2236  | 8  | 8  | 6  | 4  |
| 38   | C0A970 | Sandiaojiao   | 三貂角 | 96       | 122.002   | 25.0076  | 4  | 3  | 6  | 5  |
| 39   | C0A980 | Shezih        | 社子  | 11       | 121.47    | 25.1095  | 8  | 3  | 6  | 4  |
| 40   | C0A9A0 | Dazhi         | 大直  | 24       | 121.543   | 25.078   | 8  | 3  | 6  | 4  |
| 41   | C0A9C0 | Tianmu        | 天母  | 35       | 121.537   | 25.1175  | 8  | 3  | 6  | 4  |
| 42   | C0A9E0 | Shihlin       | 士林  | 26       | 121.503   | 25.0903  | 8  | 3  | 6  | 4  |
| 43   | C0A9F0 | Neihu         | 內湖  | 35       | 121.576   | 25.0794  | 8  | 3  | 6  | 4  |
| 44   | C0AC80 | Wenshan       | 文山  | 40       | 121.576   | 25.0024  | 8  | 3  | 6  | 4  |
| 45   | C0ACA0 | Xinzhuang     | 新莊  | 25       | 121.447   | 25.0515  | 8  | 3  | 6  | 4  |
| 46   | C0AG90 | Zhonghe       | 中和  | 25       | 121.49    | 24.9926  | 8  | 3  | 6  | 4  |
| 47   | C0AH10 | Yonghe        | 永和  | 30       | 121.508   | 25.0113  | 8  | 3  | 6  | 4  |
| 48   | C0AH40 | Pingdeng      | 平等  | 426      | 121.577   | 25.1291  | 8  | 3  | 6  | 4  |
| 49   | C0AH50 | Linkou        | 林口  | 275      | 121.381   | 25.0722  | 8  | 3  | 6  | 4  |
| 50   | C0AI10 | Cyuchih       | 屈尺  | 76       | 121.545   | 24.9218  | 8  | 3  | 6  | 5  |
| 51   | C0AI40 | Shipai        | 石牌  | 35       | 121.513   | 25.1156  | 8  | 3  | 6  | 4  |
| 52   | C0C460 | Fuxing        | 復興  | 482      | 121.352   | 24.8202  | 8  | 3  | 6  | 4  |
| 53   | C0C480 | Taoyuan       | 桃園  | 105      | 121.323   | 24.9924  | 8  | 3  | 6  | 4  |
| 54   | C0C490 | Bade          | 八德  | 157      | 121.283   | 24.9287  | 8  | 3  | 6  | 4  |
| 55   | C0C540 | Dayuan        | 大園  | 46       | 121.226   | 25.0478  | 8  | 3  | 6  | 4  |
| 56   | C0C660 | Yangmei       | 楊梅  | 176      | 121.143   | 24.9124  | 8  | 6  | 6  | 4  |
| 57   | C0C700 | Zhongli (NCU) | 中壢  | 151      | 121.256   | 24.9777  | 8  | 3  | 6  | 4  |
| 58   | C0D360 | Meihua        | 梅花  | 523      | 121.209   | 24.6783  | 3  | 6  | 6  | 4  |
| 59   | C0D390 | Guanxi        | 關西  | 146      | 121.174   | 24.7982  | 3  | 6  | 6  | 4  |
| 60   | C0D430 | Emei          | 峨眉  | 87       | 121.017   | 24.6905  | 3  | 6  | 6  | 4  |



# 

# A. Table of 297 Stations (Cont'd)

|      |        |                    |     |          |           |          |    | <u>(h)</u> | to the | r Ø |
|------|--------|--------------------|-----|----------|-----------|----------|----|------------|--------|-----|
| Item | ID     | Station            | 站名  | Altitude | Longitude | Latitude | C. | F.         | M.     | T.  |
| 91   | C0H9C0 | Hehuan<br>Mountain | 合歡山 | 3402     | 121.273   | 24.1434  | 9  | ·驿         | 5      | 2   |
| 92   | C0I010 | Lushan             | 廬山  | 1562     | 121.182   | 24.0333  | 7  | 7          | 5      | 3   |
| 93   | C0I080 | Xinyi              | 信義  | 536      | 120.851   | 23.6897  | 7  | 2          | 8      | 3   |
| 94   | C0I090 | Fonghuang          | 鳳凰  | 910      | 120.787   | 23.7281  | 7  | 2          | 8      | 3   |
| 95   | C0I110 | Zhushan            | 竹山  | 161      | 120.688   | 23.7612  | 5  | 1          | 2      | 6   |
| 96   | C0I370 | Yuchi              | 魚池  | 671      | 120.941   | 23.8957  | 7  | 6          | 8      | 3   |
| 97   | C0I380 | Jiji               | 集集  | 258      | 120.802   | 23.8282  | 5  | 1          | 8      | 6   |
| 98   | C0I390 | Ren'Ai             | 仁愛  | 1184     | 121.132   | 24.0221  | 7  | 6          | 8      | 3   |
| 99   | C0I420 | Guoxing            | 國姓  | 305      | 120.855   | 24.0378  | 7  | 6          | 8      | 3   |
| 100  | C0K240 | Caoling            | 草嶺  | 1132     | 120.694   | 23.5956  | 7  | 2          | 8      | 8   |
| 101  | C0K250 | Lunbei             | 崙背  | 12       | 120.319   | 23.7556  | 1  | 1          | 2      | 6   |
| 102  | C0K280 | Sihu               | 四湖  | 23       | 120.227   | 23.6304  | 1  | 1          | 2      | 6   |
| 103  | C0K291 | Yiwu               | 宜梧  | 8        | 120.169   | 23.5363  | 1  | 1          | 2      | 6   |
| 104  | C0K330 | Huwei              | 虎尾  | 38       | 120.442   | 23.7192  | 1  | 1          | 2      | 6   |
| 105  | C0K390 | Tuku               | 土庫  | 31       | 120.396   | 23.6790  | 1  | 1          | 2      | 6   |
| 106  | C0K400 | Douliu             | 斗六  | 65       | 120.541   | 23.7206  | 1  | 1          | 2      | 6   |
| 107  | C0K410 | Beigang            | 北港  | 20       | 120.293   | 23.5740  | 1  | 1          | 2      | 6   |
| 108  | C0K420 | Xiluo              | 西螺  | 42       | 120.467   | 23.8004  | 1  | 1          | 2      | 6   |
| 109  | C0K430 | Baozhong           | 褒忠  | 30       | 120.304   | 23.6909  | 1  | 1          | 2      | 6   |
| 110  | C0K460 | Dounan             | 斗南  | 60       | 120.478   | 23.6787  | 1  | 1          | 2      | 6   |
| 111  | C0K490 | Gukeng             | 古坑  | 91       | 120.560   | 23.6543  | 5  | 1          | 2      | 6   |
| 112  | C0M410 | Matoushan          | 馬頭山 | 245      | 120.582   | 23.3244  | 5  | 1          | 7      | 7   |
| 113  | C0M520 | Donghouliao        | 東後寮 | 15       | 120.248   | 23.3699  | 1  | 1          | 2      | 6   |
| 114  | C0M530 | Fenqihu            | 奮起湖 | 1385     | 120.699   | 23.4939  | 7  | 2          | 7      | 8   |
| 115  | C0M640 | Zhongpu            | 中埔  | 155      | 120.523   | 23.4254  | 5  | 1          | 2      | 6   |
| 116  | C0M650 | Puzi               | 朴子  | 20       | 120.239   | 23.4346  | 1  | 1          | 2      | 6   |
| 117  | C0M660 | Xikou              | 溪口  | 40       | 120.404   | 23.6041  | 1  | 1          | 2      | 6   |
| 118  | C0M680 | Taibao             | 太保  | 37       | 120.332   | 23.4551  | 1  | 1          | 2      | 6   |
| 119  | C0M690 | Shuishang          | 水上  | 33       | 120.389   | 23.4197  | 1  | 1          | 2      | 6   |
| 120  | C0M700 | Zhuqi              | 竹崎  | 150      | 120.556   | 23.5262  | 5  | 1          | 2      | 6   |



| Item | ID                | Station        | 站名   | Altitude | Longitude | Latitude | C.  | F. | М. | Т. |
|------|-------------------|----------------|------|----------|-----------|----------|-----|----|----|----|
| 121  | C0M710            | Dongshi        | 東石   | 15       | 120.154   | 23.4589  | A . | 1  | 2  | 6  |
| 100  | C0M770            | Meishan Chiayi | 直義梅山 | 164      | 120 556   | 22 5851  | 5   | 1  | 2  | 6  |
| 122  | C01 <b>v1</b> 770 | County         | 而我似山 | 104      | 120.330   | 23.3834  | 5   | 1  | 2  | 0  |
| 123  | C0M830            | Shanmei        | 山美   | 540      | 120.668   | 23.3838  | 5   | 2  | 8  | 8  |
| 124  | C0O810            | Cengwen        | 曾文   | 161      | 120.497   | 23.2197  | 5   | 1  | 4  | 7  |
| 125  | C0O830            | Beiliao        | 北寮   | 127      | 120.495   | 23.0796  | 5   | 5  | 4  | 7  |
| 126  | C0O840            | Wangyegong     | 王爺宮  | 134      | 120.401   | 23.2221  | 6   | 1  | 4  | 7  |
| 127  | C0O860            | Danei          | 大內   | 38       | 120.361   | 23.1189  | 6   | 1  | 4  | 7  |
| 128  | C0O900            | Shanhua        | 善化   | 9        | 120.297   | 23.1129  | 6   | 1  | 4  | 6  |
| 129  | C0O930            | Yujing         | 玉井   | 69       | 120.461   | 23.1260  | 6   | 1  | 4  | 7  |
| 130  | C0O950            | Annan          | 安南   | 4        | 120.145   | 23.0767  | 6   | 1  | 4  | 6  |
| 131  | C0O960            | Qiding         | 崎頂   | 112      | 120.369   | 22.9595  | 6   | 5  | 4  | 7  |
| 132  | C0O970            | Hutoupi        | 虎頭埤  | 71       | 120.348   | 23.0214  | 6   | 5  | 4  | 7  |
| 133  | C0O980            | Xinshi         | 新市   | 18       | 120.298   | 23.0616  | 6   | 5  | 4  | 7  |
| 134  | C0O990            | Mamiao         | 媽廟   | 18       | 120.294   | 22.9918  | 6   | 5  | 4  | 7  |
| 135  | C0R130            | Ali            | 阿禮   | 1040     | 120.744   | 22.7429  | 5   | 5  | 7  | 8  |
| 136  | C0R140            | Majia          | 瑪家   | 740      | 120.687   | 22.6829  | 5   | 5  | 7  | 8  |
| 137  | C0R150            | Sandimen       | 三地門  | 105      | 120.640   | 22.7099  | 5   | 5  | 7  | 7  |
| 138  | C0R160            | Yanpuxinwei    | 鹽埔新圍 | 45       | 120.531   | 22.7396  | 5   | 5  | 4  | 7  |
| 139  | C0R170            | Pingdong       | 屏東   | 26       | 120.494   | 22.6603  | 5   | 5  | 4  | 7  |
| 140  | C0R190            | Chishan        | 赤山   | 32       | 120.614   | 22.5923  | 5   | 5  | 7  | 7  |
| 141  | C0R220            | Chaojhou       | 潮州   | 23       | 120.540   | 22.5344  | 6   | 5  | 4  | 7  |
| 142  | C0R240            | Laiyi          | 來義   | 87       | 120.625   | 22.5273  | 5   | 5  | 7  | 7  |
| 143  | C0R260            | Chunri         | 春日   | 76       | 120.628   | 22.3704  | 6   | 5  | 4  | 7  |
| 144  | C0R280            | Binlang        | 檳榔   | 242      | 120.837   | 22.0761  | 6   | 5  | 4  | 7  |
| 145  | C0R320            | Checheng       | 車城   | 7        | 120.716   | 22.0740  | 6   | 5  | 4  | 7  |
| 146  | C0R341            | Mudan          | 牡丹   | 230      | 120.793   | 22.1300  | 6   | 5  | 4  | 7  |
| 147  | C0R350            | Maobitou       | 貓鼻頭  | 35       | 120.736   | 21.9218  | 6   | 5  | 4  | 7  |
| 148  | C0R420            | Mudanchihshan  | 牡丹池山 | 504      | 120.841   | 22.1678  | 6   | 5  | 4  | 7  |
| 149  | C0R570            | Linluo         | 麟洛   | 37       | 120.527   | 22.6508  | 5   | 5  | 7  | 7  |
| 150  | C0R580            | Nanzhou        | 南州   | 10       | 120.503   | 22.4859  | 6   | 5  | 4  | 7  |



| Item | ID     | Station      | 站名  | Altitude | Longitude | Latitude | C. | F.  | М. | T. |
|------|--------|--------------|-----|----------|-----------|----------|----|-----|----|----|
| 151  | C0R590 | Ligang       | 里港  | 72       | 120.495   | 22.7792  | 6  | • 5 | 4  | 7  |
| 152  | C0S660 | Siama        | 下馬  | 794      | 121.070   | 23.1504  | 2  | 4   | 3  | 1  |
| 153  | C0S680 | Hongyeshan   | 紅葉山 | 1659     | 121.039   | 22.9198  | 2  | 4   | 3  | 1  |
| 154  | C0S690 | Taimali      | 太麻里 | 522      | 120.985   | 22.6090  | 2  | 5   | 3  | 7  |
| 155  | C0S700 | Jhihben      | 知本  | 507      | 121.006   | 22.6849  | 2  | 5   | 3  | 7  |
| 156  | C0S710 | Luye         | 鹿野  | 382      | 121.123   | 22.9177  | 2  | 4   | 3  | 1  |
| 157  | C0S740 | Chihshang    | 池上  | 289      | 121.210   | 23.1196  | 2  | 4   | 3  | 1  |
| 158  | C0S750 | Siangyang    | 向陽  | 2280     | 120.986   | 23.2484  | 10 | 2   | 5  | 8  |
| 159  | C0S760 | Hongshih     | 紅石  | 1621     | 121.126   | 23.0691  | 2  | 4   | 3  | 1  |
| 160  | C0S770 | Dasishan     | 大溪山 | 375      | 120.943   | 22.4785  | 6  | 5   | 4  | 7  |
| 161  | C0S810 | Donghe       | 東河  | 65       | 121.304   | 22.9727  | 2  | 4   | 3  | 1  |
| 162  | C0S830 | Changbin     | 長濱  | 288      | 121.412   | 23.2868  | 2  | 4   | 3  | 1  |
| 163  | C0T790 | Dayuling     | 大禹嶺 | 2830     | 121.316   | 24.1861  | 9  | 7   | 1  | 2  |
| 164  | C0T820 | Tiansiang    | 天祥  | 550      | 121.496   | 24.1796  | 9  | 4   | 3  | 1  |
| 165  | C0T870 | Liyutan      | 鯉魚潭 | 135      | 121.509   | 23.9356  | 2  | 4   | 3  | 1  |
| 166  | C0T900 | Xilin        | 西林  | 160      | 121.442   | 23.8119  | 2  | 4   | 3  | 1  |
| 167  | C0T960 | Guangfu      | 光復  | 120      | 121.425   | 23.6607  | 2  | 4   | 3  | 1  |
| 168  | C0T9M0 | Jingpu       | 靜浦  | 92       | 121.495   | 23.4552  | 2  | 4   | 3  | 1  |
| 169  | C0U520 | Shuanglianpi | 雙連埤 | 517      | 121.641   | 24.7530  | 4  | 3   | 6  | 5  |
| 170  | C0U600 | Chiaoshi     | 礁溪  | 10       | 121.766   | 24.8175  | 4  | 3   | 6  | 5  |
| 171  | C0U650 | Yulan        | 玉蘭  | 442      | 121.587   | 24.6753  | 4  | 3   | 6  | 5  |
| 172  | C0U710 | Taipingshan  | 太平山 | 1942     | 121.526   | 24.5055  | 9  | 7   | 1  | 3  |
| 173  | C0U720 | Nanshan      | 南山  | 1260     | 121.382   | 24.4374  | 9  | 7   | 1  | 3  |
| 174  | C0U860 | Toucheng     | 頭城  | 5        | 121.831   | 24.8532  | 4  | 3   | 6  | 5  |
| 175  | C0U870 | Dajiaosi     | 大礁溪 | 474      | 121.675   | 24.7910  | 4  | 3   | 6  | 5  |
| 176  | C0U890 | Sansing      | 三星  | 116      | 121.653   | 24.6681  | 4  | 3   | 6  | 5  |
| 177  | C0U900 | Neicheng     | 內城  | 63       | 121.688   | 24.7181  | 4  | 3   | 6  | 5  |
| 178  | C0U910 | Dongshan     | 冬山  | 17       | 121.794   | 24.6337  | 4  | 3   | 6  | 5  |
| 179  | C0U940 | Luodong      | 羅東  | 25       | 121.749   | 24.6818  | 4  | 3   | 6  | 5  |
| 180  | C0V210 | Fuxing       | 復興  | 734      | 120.806   | 23.2224  | 10 | 2   | 7  | 8  |







| Item | ID     | Station       | 站名   | Altitude | Longitude | Latitude | C.       | F. | М. | T. |
|------|--------|---------------|------|----------|-----------|----------|----------|----|----|----|
| 241  | C1I070 | Heshe         | 和社   | 825      | 120.889   | 23.5911  | <i>.</i> | 2  | 8  | 3  |
| 242  | C1I101 | Xitou         | 溪頭   | 1810     | 120.808   | 23.6618  | 7        | 2  | 8  | 3  |
| 243  | C1I121 | Da-An         | 大鞍   | 1515     | 120.760   | 23.6784  | 7        | 2  | 8  | 3  |
| 244  | C1I131 | Tongtou       | 桶頭   | 311      | 120.654   | 23.6419  | 5        | 1  | 8  | 6  |
| 245  | C1I140 | Kanaituowan   | 卡奈托灣 | 1700     | 121.088   | 23.7544  | 7        | 2  | 8  | 3  |
| 246  | C1I150 | Qingyun       | 青雲   | 393      | 120.949   | 23.7934  | 7        | 6  | 8  | 3  |
| 247  | C1I400 | Lingxiao      | 凌霄   | 1399     | 121.005   | 24.0188  | 7        | 6  | 8  | 3  |
| 248  | C1I430 | Cuihua        | 翠華   | 2415     | 121.224   | 24.192   | 9        | 7  | 5  | 2  |
| 249  | C1I440 | Xingaokou     | 新高口  | 2540     | 120.879   | 23.4787  | 10       | 2  | 5  | 2  |
| 250  | C1I450 | Wangxiangshan | 望鄉山  | 3025     | 120.944   | 23.5942  | 10       | 2  | 5  | 2  |
| 251  | C1I500 | Dajianshan    | 大尖山  | 2017     | 120.995   | 23.8586  | 7        | 6  | 8  | 3  |
| 252  | C1I510 | Xianjinlindao | 線浸林道 | 1208     | 120.833   | 23.7615  | 7        | 2  | 8  | 3  |
| 253  | C1M390 | Longmei       | 龍美   | 1090     | 120.654   | 23.4067  | 5        | 2  | 7  | 8  |
| 254  | C1M400 | Caiguaping    | 菜瓜坪  | 369      | 120.576   | 23.2519  | 5        | 1  | 7  | 7  |
| 255  | C1M480 | Dulishan      | 獨立山  | 798      | 120.608   | 23.5370  | 5        | 1  | 8  | 8  |
| 256  | C1N001 | Shalun        | 沙崙   | 24       | 120.309   | 22.9355  | 6        | 5  | 4  | 7  |
| 257  | C1O850 | Huanhu        | 環湖   | 44       | 120.419   | 23.1486  | 6        | 1  | 4  | 7  |
| 258  | C1O870 | Dadongshan    | 大棟山  | 1249     | 120.522   | 23.3116  | 5        | 1  | 7  | 3  |
| 259  | C1O880 | Guanshan      | 關山   | 223      | 120.594   | 23.1734  | 5        | 1  | 7  | 7  |
| 260  | C1O921 | Nanxi         | 楠西   | 115      | 120.484   | 23.1835  | 5        | 1  | 4  | 7  |
| 261  | C1R110 | Gusia         | 口社   | 110      | 120.645   | 22.7701  | 5        | 5  | 7  | 7  |
| 262  | C1R120 | Shangdewun    | 上德文  | 820      | 120.704   | 22.7633  | 5        | 5  | 7  | 8  |
| 263  | C1R250 | Lili          | 力里   | 92       | 120.629   | 22.4281  | 6        | 5  | 4  | 7  |
| 264  | C1R290 | Shihmenshan   | 石門山  | 260      | 120.757   | 22.1126  | 6        | 5  | 4  | 7  |
| 265  | C1S670 | Motian        | 摩天   | 1580     | 121.027   | 23.1995  | 2        | 2  | 3  | 1  |
| 266  | C1S880 | Shouka        | 壽卡   | 474      | 120.859   | 22.2389  | 6        | 5  | 4  | 7  |
| 267  | C1T800 | Luoshao       | 洛韶   | 1260     | 121.454   | 24.2046  | 9        | 4  | 1  | 3  |
| 268  | C1T810 | Cih-En        | 慈恩   | 2049     | 121.388   | 24.1920  | 9        | 7  | 1  | 2  |
| 269  | C1T830 | Buluowan      | 布洛灣  | 675      | 121.571   | 24.1718  | 2        | 4  | 3  | 1  |
| 270  | C1T920 | Zhongxing     | 中興   | 68       | 121.499   | 23.7695  | 2        | 4  | 3  | 1  |



| Item | ID       | Station      | 站名   | Altitude | Longitude | Latitude | C. | F. | М. | T. |
|------|----------|--------------|------|----------|-----------|----------|----|----|----|----|
| 271  | C1T940   | Daguan       | 大觀   | 539      | 121.373   | 23.7142  | 2  | 4  | 3  | 1  |
| 272  | C1T950   | Tai-An       | 太安   | 1050     | 121.370   | 23.6667  | 2  | 4  | 3  | 1  |
| 273  | C1T970   | Danong       | 大農   | 183      | 121.413   | 23.6152  | 2  | 4  | 3  | 1  |
| 274  | C1T980   | Longjian     | 龍澗   | 1306     | 121.411   | 24.0233  | 2  | 4  | 3  | 1  |
| 275  | C1T990   | Gaoliao      | 高寮   | 128      | 121.357   | 23.3942  | 2  | 4  | 3  | 1  |
| 276  | C1U501   | Nioudou      | 牛鬥   | 280      | 121.574   | 24.6378  | 4  | 3  | 6  | 5  |
| 277  | C1U670   | Hansi        | 寒溪   | 105      | 121.717   | 24.634   | 4  | 3  | 6  | 5  |
| 278  | C1U690   | Sinliao      | 新寮   | 101      | 121.751   | 24.6256  | 4  | 3  | 6  | 5  |
| 279  | C1U880   | Beiguan      | 北關   | 8        | 121.872   | 24.9065  | 4  | 3  | 6  | 5  |
| 280  | C1U920   | Siyuan       | 思源   | 2085     | 121.347   | 24.3931  | 9  | 7  | 1  | 3  |
| 281  | C1V160   | Dakanuwa     | 達卡努瓦 | 1040     | 120.705   | 23.2798  | 5  | 2  | 7  | 8  |
| 282  | C1V170   | Paiyun       | 排雲   | 3690     | 120.954   | 23.4636  | 10 | 2  | 5  | 2  |
| 283  | C1V190   | Nantianchi   | 南天池  | 2700     | 120.912   | 23.274   | 10 | 2  | 5  | 8  |
| 284  | C1V200   | Meishan      | 梅山   | 870      | 120.824   | 23.2684  | 10 | 2  | 7  | 8  |
| 285  | C1V220   | Xiaoguanshan | 小關山  | 1781     | 120.814   | 23.1542  | 10 | 2  | 7  | 8  |
| 286  | C1V231   | Gaozhong     | 高中   | 731      | 120.717   | 23.1349  | 5  | 2  | 7  | 8  |
| 287  | C1V300   | Yuyoushan    | 御油山  | 1637     | 120.715   | 23.002   | 5  | 2  | 7  | 8  |
| 288  | C1V340   | Dajin        | 大津   | 190      | 120.646   | 22.8883  | 5  | 5  | 7  | 7  |
| 289  | C1V390   | Jianshan     | 尖山   | 60       | 120.368   | 22.8132  | 6  | 5  | 4  | 7  |
| 290  | C1V570   | Jiadong      | 吉東   | 82       | 120.545   | 22.8542  | 5  | 5  | 4  | 7  |
| 201  | C1V580   | V            | 溪南(特 | 1656     | 120 700   | 22 0.95  | 10 | r  | 7  | 8  |
| 291  | C1 V 380 | Xinan        | 生中心) | 1656     | 120.789   | 23.085   | 10 | 2  | /  | 0  |
| 292  | C1V590   | Xinfa        | 新發   | 741      | 120.646   | 23.057   | 5  | 2  | 7  | 8  |
| 293  | C1X040   | Dongyuan     | 東原   | 232      | 120.464   | 23.2916  | 5  | 1  | 4  | 7  |
| 294  | C1Z030   | Hongye       | 紅葉   | 218      | 121.339   | 23.4931  | 2  | 4  | 3  | 1  |
| 295  | C1Z040   | Lishan       | 立山   | 434      | 121.327   | 23.4434  | 2  | 4  | 3  | 1  |
| 296  | C1Z120   | Shoufeng     | 壽豐   | 62       | 121.508   | 23.8709  | 2  | 4  | 3  | 1  |
| 297  | C1Z130   | Tongmen      | 銅門   | 187      | 121.493   | 23.9657  | 2  | 4  | 3  | 1  |

# B. Table of Warning Typhoons from 1998 to 2019

| Item | Alert Start Date | Alert End Date | Typhoon   | Typhoon (in Chinese) |
|------|------------------|----------------|-----------|----------------------|
| 1    | 07/08/1998       | 07/10/1998     | NICHOLE   | 妮蔻兒                  |
| 2    | 08/03/1998       | 08/05/1998     | OTTO      | 奥托                   |
| 3    | 09/27/1998       | 09/29/1998     | YANNI     | 楊妮                   |
| 4    | 10/14/1998       | 10/16/1998     | ZEB       | 瑞伯                   |
| 5    | 10/25/1998       | 10/27/1998     | BABS      | 芭比絲                  |
| 6    | 06/05/1999       | 06/06/1999     | MAGGIE    | 瑪姬                   |
| 7    | 08/05/1999       | 08/08/1999     | RACHEL    | 瑞琪兒                  |
| 8    | 08/21/1999       | 08/21/1999     | SAM       | 山姆                   |
| 9    | 10/06/1999       | 10/10/1999     | DAN       | 丹恩                   |
| 10   | 07/05/2000       | 07/09/2000     | KAI-TAK   | 啟德                   |
| 11   | 08/21/2000       | 08/23/2000     | BILIS     | 碧利斯                  |
| 12   | 08/27/2000       | 08/30/2000     | PRAPIROON | 巴比侖                  |
| 13   | 09/08/2000       | 09/10/2000     | BOPHA     | 寶發                   |
| 14   | 10/23/2000       | 10/28/2000     | YAGI      | 雅吉                   |
| 15   | 10/30/2000       | 11/01/2000     | XANGSANE  | 象神                   |
| 16   | 05/12/2001       | 05/14/2001     | CIMARON   | 西馬隆                  |
| 17   | 06/22/2001       | 06/23/2001     | CHEBI     | 奇比                   |
| 18   | 07/04/2001       | 07/05/2001     | UTOR      | 尤特                   |
| 19   | 07/10/2001       | 07/11/2001     | TRAMI     | 潭美                   |
| 20   | 07/23/2001       | 07/24/2001     | YUTU      | 玉兔                   |
| 21   | 07/28/2001       | 07/31/2001     | TORAJI    | 桃芝                   |
| 22   | 09/06/2001       | 09/20/2001     | NARI      | 納莉                   |
| 23   | 09/22/2001       | 09/28/2001     | LEKIMA    | 利奇馬                  |
| 24   | 10/14/2001       | 10/17/2001     | HAIYAN    | 海燕                   |
| 25   | 07/02/2002       | 07/04/2002     | RAMMASUN  | 雷馬遜                  |
| 26   | 07/08/2002       | 07/13/2002     | NAKRI     | 納克莉                  |
| 27   | 09/04/2002       | 09/08/2002     | SINLAKU   | 辛樂克                  |
| 28   | 04/21/2003       | 04/24/2003     | KUJIRA    | 柯吉拉                  |
| 29   | 06/01/2003       | 06/03/2003     | NANGKA    | 南卡                   |
| 30   | 06/16/2003       | 06/18/2003     | SOUDELOR  | 蘇迪勒                  |

藩臺

# B. Table of Warning Typhoons from 1998 to 2019 (Cont'd)

| Item | Alert Start Date | Alert End Date | Typhoon  | Typhoon (in Chinese) |
|------|------------------|----------------|----------|----------------------|
| 31   | 08/02/2003       | 08/04/2003     | MORAKOT  | 莫拉克                  |
| 32   | 08/19/2003       | 08/20/2003     | VAMCO    | 梵高                   |
| 33   | 08/31/2003       | 09/01/2003     | DUJUAN   | 杜鵑                   |
| 34   | 11/02/2003       | 11/03/2003     | MELOR    | 米勒                   |
| 35   | 06/08/2004       | 06/09/2004     | CONSON   | 康森                   |
| 36   | 06/30/2004       | 07/02/2004     | MINDULLE | 敏督利                  |
| 37   | 07/09/2004       | 07/15/2004     | KOMPASU  | 康伯斯                  |
| 38   | 08/11/2004       | 08/12/2004     | RANANIM  | 蘭寧                   |
| 39   | 08/23/2004       | 08/25/2004     | AERE     | 艾利                   |
| 40   | 09/11/2004       | 09/12/2004     | HAIMA    | 海馬                   |
| 41   | 10/24/2004       | 10/25/2004     | NOCK-TEN | 納坦                   |
| 42   | 12/03/2004       | 12/04/2004     | NANMADOL | 南瑪都                  |
| 43   | 07/16/2005       | 07/20/2005     | HAITANG  | 海棠                   |
| 44   | 08/02/2005       | 08/05/2005     | MATSA    | 馬莎                   |
| 45   | 08/12/2005       | 08/13/2005     | SANVU    | 珊瑚                   |
| 46   | 08/30/2005       | 09/01/2005     | TALIM    | 泰利                   |
| 47   | 09/09/2005       | 09/11/2005     | KHANUN   | 卡努                   |
| 48   | 09/21/2005       | 09/23/2005     | DAMREY   | 丹瑞                   |
| 49   | 09/30/2005       | 10/03/2005     | LONGWANG | 龍王                   |
| 50   | 05/16/2006       | 05/18/2006     | CHANCHU  | 珍珠                   |
| 51   | 07/11/2006       | 07/14/2006     | BILIS    | 碧利斯                  |
| 52   | 07/23/2006       | 07/25/2006     | KAEMI    | 凱米                   |
| 53   | 08/06/2006       | 08/09/2006     | BOPHA    | 寶發                   |
| 54   | 08/08/2006       | 08/11/2006     | SAOMAI   | 桑美                   |
| 55   | 09/13/2006       | 09/16/2006     | SHANSHAN | 珊珊                   |
| 56   | 08/07/2007       | 08/08/2007     | PABUK    | 帕布                   |
| 57   | 08/08/2007       | 08/09/2007     | WUTIP    | 梧提                   |
| 58   | 08/16/2007       | 08/19/2007     | SEPAT    | 聖帕                   |
| 59   | 09/17/2007       | 09/19/2007     | WIPHA    | 韋帕                   |
| 60   | 10/04/2007       | 10/08/2007     | KROSA    | 柯羅莎                  |

臺

# B. Table of Warning Typhoons from 1998 to 2019 (Cont'd)

| Item | Alert Start Date | Alert End Date | Typhoon   | Typhoon (in Chinese) |
|------|------------------|----------------|-----------|----------------------|
| 61   | 11/26/2007       | 11/27/2007     | MITAG     | 米塔                   |
| 62   | 07/16/2008       | 07/18/2008     | KALMAEGI  | 卡玫基                  |
| 63   | 07/26/2008       | 07/29/2008     | FUNG-WONG | 鳳凰                   |
| 64   | 08/20/2008       | 08/21/2008     | NURI      | 如麗                   |
| 65   | 09/09/2008       | 09/17/2008     | SINLAKU   | 辛樂克                  |
| 66   | 09/22/2008       | 09/23/2008     | HAGUPIT   | 哈格比                  |
| 67   | 09/26/2008       | 09/29/2008     | JANGMI    | 蔷蜜                   |
| 68   | 06/19/2009       | 06/22/2009     | LINFA     | 蓮花                   |
| 69   | 07/16/2009       | 07/18/2009     | MOLAVE    | 莫拉菲                  |
| 70   | 08/05/2009       | 08/10/2009     | MORAKOT   | 莫拉克                  |
| 71   | 10/03/2009       | 10/06/2009     | PARMA     | 芭瑪                   |
| 72   | 08/30/2010       | 08/31/2010     | NAMTHEUN  | 南修                   |
| 73   | 08/31/2010       | 09/02/2010     | LIONROCK  | 萊羅克                  |
| 74   | 09/09/2010       | 09/10/2010     | MERANTI   | 莫蘭蒂                  |
| 75   | 09/17/2010       | 09/20/2010     | FANAPI    | 凡那比                  |
| 76   | 10/21/2010       | 10/23/2010     | MEGI      | 梅姬                   |
| 77   | 05/09/2011       | 05/10/2011     | AERE      | 艾利                   |
| 78   | 05/27/2011       | 05/28/2011     | SONGDA    | 桑達                   |
| 79   | 06/23/2011       | 06/25/2011     | MEARI     | 米雷                   |
| 80   | 08/04/2011       | 08/06/2011     | MUIFA     | 梅花                   |
| 81   | 08/27/2011       | 08/31/2011     | NANMADOL  | 南瑪都                  |
| 82   | 06/19/2012       | 06/21/2012     | TALIM     | 泰利                   |
| 83   | 06/28/2012       | 06/29/2012     | DOKSURI   | 杜蘇芮                  |
| 84   | 07/31/2012       | 08/03/2012     | SAOLA     | 蘇拉                   |
| 85   | 08/06/2012       | 08/07/2012     | HAIKUI    | 海葵                   |
| 86   | 08/14/2012       | 08/15/2012     | KAI-TAK   | 啟德                   |
| 87   | 08/21/2012       | 08/25/2012     | TEMBIN1   | 天秤                   |
| 88   | 08/26/2012       | 08/28/2012     | TEMBIN2   | 天秤                   |
| 89   | 09/27/2012       | 09/28/2012     | JELAWAT   | 拉華                   |
| 90   | 07/11/2013       | 07/13/2013     | SOULIK    | 蘇力                   |

臺

|    |                         |             |           | A A A A A A A A A A A A A A A A A A A |
|----|-------------------------|-------------|-----------|---------------------------------------|
| B. | Table of Warning Typhoo | ons from 19 | 98 to 201 | 9 (Cont'd)                            |

| Item | Alert Start Date | Alert End Date | Typhoon   | Typhoon (in Chinese) |
|------|------------------|----------------|-----------|----------------------|
| 91   | 07/17/2013       | 07/18/2013     | CIMARON   | 西馬隆                  |
| 92   | 08/20/2013       | 08/22/2013     | TRAMI     | 潭美                   |
| 93   | 08/27/2013       | 08/29/2013     | KONG-REY  | 康芮                   |
| 94   | 09/19/2013       | 09/22/2013     | USAGI     | 天兔                   |
| 95   | 10/04/2013       | 10/07/2013     | FITOW     | 菲特                   |
| 96   | 06/14/2014       | 06/15/2014     | HAGIBIS   | 哈吉貝                  |
| 97   | 07/21/2014       | 07/23/2014     | MATMO     | 麥德姆                  |
| 98   | 09/19/2014       | 09/22/2014     | FUNG-WONG | 鳳凰                   |
| 99   | 05/10/2015       | 05/11/2015     | NOUL      | 紅霞                   |
| 100  | 07/09/2015       | 07/11/2015     | CHAN-HOM  | 昌鴻                   |
| 101  | 07/06/2015       | 07/09/2015     | LINFA     | 蓮花                   |
| 102  | 08/06/2015       | 08/09/2015     | SOUDELOR  | 蘇迪勒                  |
| 103  | 08/20/2015       | 08/23/2015     | GONI      | 天鵝                   |
| 104  | 09/27/2015       | 09/29/2015     | DUJUAN    | 杜鵑                   |
| 105  | 07/06/2016       | 07/09/2016     | NEPARTAK  | 尼伯特                  |
| 106  | 09/12/2016       | 09/15/2016     | MERANTI   | 莫蘭蒂                  |
| 107  | 09/15/2016       | 09/18/2016     | MALAKAS   | 馬勒卡                  |
| 108  | 09/25/2016       | 09/28/2016     | MEGI      | 梅姬                   |
| 109  | 10/05/2016       | 10/06/2016     | AERE      | 艾利                   |
| 110  | 07/28/2017       | 07/30/2017     | NESAT     | 尼莎                   |
| 111  | 07/29/2017       | 07/31/2017     | HAITANG   | 海棠                   |
| 112  | 08/20/2017       | 08/22/2017     | HATO      | 天鴿                   |
| 113  | 09/06/2017       | 09/07/2017     | GUCHOL    | 谷超                   |
| 114  | 09/12/2017       | 09/14/2017     | TALIM     | 泰利                   |
| 115  | 07/09/2018       | 07/11/2018     | MARIA     | 瑪莉亞                  |
| 116  | 09/14/2018       | 09/15/2018     | MANGKHUT  | 山竹                   |
| 117  | 07/16/2019       | 07/18/2019     | DANAS     | 丹娜絲                  |
| 118  | 08/07/2019       | 08/10/2019     | LEKIMA    | 利奇馬                  |
| 119  | 08/23/2019       | 08/25/2019     | BAILU     | 白鹿                   |
| 120  | 09/29/2019       | 10/01/2019     | MITAG     | 米塔                   |

| Item Station ID Station |        | Time       | HR               |       |
|-------------------------|--------|------------|------------------|-------|
| <br>1                   | C0A550 | Taiping    | 2001/03/08 04:00 | 49    |
| 2                       | C0A550 | Taiping    | 2000/06/14 02:00 | 87.5  |
| 3                       | C0A570 | Tonghou    | 2016/09/08 17:00 | 62    |
| 4                       | C0A640 | Shihding   | 1998/09/06 14:00 | 61.5  |
| 5                       | C0A860 | Daping     | 2000/02/15 14:00 | 73.5  |
| 6                       | C0A880 | Fulong     | 2001/06/07 13:00 | 46    |
| 7                       | C0A890 | Shuangsi   | 2016/01/25 14:00 | 74.5  |
| 8                       | C0A890 | Shuangsi   | 2001/06/07 14:00 | 85.5  |
| 9                       | C0A920 | Fugueijiao | 2001/03/29 12:00 | 120   |
| 10                      | C0A920 | Fugueijiao | 2015/03/23 16:00 | 61    |
| 11                      | C0A931 | Sanhe      | 1998/12/24 03:00 | 88.5  |
| 12                      | C0A931 | Sanhe      | 1999/03/23 17:00 | 116   |
| 13                      | C0A931 | Sanhe      | 2008/11/09 05:00 | 936   |
| 14                      | C0A940 | Jinshan    | 1999/03/23 16:00 | 54    |
| 15                      | C0A940 | Jinshan    | 2008/12/24 19:00 | 735.5 |
| 16                      | C0A940 | Jinshan    | 1998/10/27 12:00 | 54.5  |
| 17                      | C0A9A0 | Dazhi      | 2007/08/07 15:00 | 83    |
| 18                      | C0A9A0 | Dazhi      | 2007/08/31 13:00 | 88    |
| 19                      | C0A9F0 | Neihu      | 2007/08/31 13:00 | 95    |
| 20                      | C0A9F0 | Neihu      | 2008/07/07 13:00 | 145   |
| 21                      | C0AH10 | Yonghe     | 1999/06/17 18:00 | 65    |
| 22                      | C0AH10 | Yonghe     | 1999/06/21 11:00 | 66    |
| 23                      | C0AH40 | Pingdeng   | 1999/06/17 18:00 | 81    |
| 24                      | C0AI10 | Cyuchih    | 1998/05/18 16:00 | 67    |
| 25                      | C0AI10 | Cyuchih    | 2000/06/19 13:00 | 147   |
| 26                      | C0AI10 | Cyuchih    | 2000/07/10 14:00 | 119.5 |
| 27                      | C0AI40 | Shipai     | 2008/10/21 14:00 | 283   |
| 28                      | C0C490 | Bade       | 1998/04/14 06:00 | 58.5  |
| 29                      | C0C490 | Bade       | 1999/03/23 17:00 | 62.5  |
| 30                      | C0C490 | Bade       | 1999/12/20 02:00 | 63    |

## C. Identified Hourly Rainfall Anomalies Caused by Malfunction

Note.

HR = Hourly Rainfall (mm);

The instrument failed to return the observation in time; the value had accumulated for several hours.

臺

|      |            |                 |                  |       | A 10 |
|------|------------|-----------------|------------------|-------|------|
| Item | Station ID | Station         | Time             | HR    | 1 EU |
| 31   | C0C490     | Bade            | 1998/07/14 15:00 | 388.5 | 款    |
| 32   | C0C490     | Bade            | 1999/08/05 18:00 | 75    | 177  |
| 33   | C0C700     | Zhongli (NCU)   | 1998/04/13 16:00 | 54.5  |      |
| 34   | C0D430     | Emei            | 2001/06/25 16:00 | 77    |      |
| 35   | C0D430     | Emei            | 2007/05/07 11:00 | 60    |      |
| 36   | C0D430     | Emei            | 1998/10/07 09:00 | 136.5 |      |
| 37   | C0E430     | Nanzhuang       | 2007/05/07 12:00 | 101.5 |      |
| 38   | C0E520     | Dahu            | 1999/10/06 16:00 | 60.5  |      |
| 39   | C0E790     | Zhuolan         | 1999/08/23 15:00 | 75.5  |      |
| 40   | C0E850     | Dahe            | 2007/05/07 11:00 | 82    |      |
| 41   | C0F970     | Dakeng          | 1999/07/31 20:00 | 90.5  |      |
| 42   | C0G650     | Yuanlin         | 1998/04/15 23:00 | 67    |      |
| 43   | C0G660     | Xihu            | 1998/04/16 11:00 | 82    |      |
| 44   | C0G720     | Xizhou          | 2013/08/29 16:00 | 105   |      |
| 45   | C0H960     | Caotun          | 2003/06/08 08:00 | 84.5  |      |
| 46   | C0H990     | Kunyang         | 2002/07/09 17:00 | 59.5  |      |
| 47   | C0H9C0     | Hehuan Mountain | 1998/02/20 12:00 | 137   |      |
| 48   | C0H9C0     | Hehuan Mountain | 1998/02/23 13:00 | 69    |      |
| 49   | C0I110     | Zhushan         | 1998/02/22 03:00 | 165   |      |
| 50   | C0I110     | Zhushan         | 2000/11/09 11:00 | 90.5  |      |
| 51   | C0I380     | Jiji            | 2002/07/09 17:00 | 153.5 |      |
| 52   | C0K240     | Caoling         | 1998/02/22 06:00 | 128.5 |      |
| 53   | C0K240     | Caoling         | 2000/11/09 14:00 | 152   |      |
| 54   | C0K280     | Sihu            | 1998/06/04 04:00 | 119.5 |      |
| 55   | C0K291     | Yiwu            | 1998/06/04 05:00 | 81.5  |      |
| 56   | C0K330     | Huwei           | 1998/06/03 23:00 | 75    |      |
| 57   | C0K330     | Huwei           | 2013/08/29 16:00 | 145   |      |
| 58   | C0K390     | Tuku            | 1998/06/04 05:00 | 79    |      |
| 59   | C0K400     | Douliu          | 2013/08/29 16:00 | 76    |      |
| 60   | C0K410     | Beigang         | 1998/06/04 05:00 | 63.5  |      |

C. Identified Hourly Rainfall Anomalies Caused by Malfunction (Cont'd)

HR = Hourly Rainfall (mm);

| Item | Station ID | Station     | Time             | HR    |
|------|------------|-------------|------------------|-------|
| 61   | C0K430     | Baozhong    | 1998/06/04 04:00 | 475   |
| 62   | C0K430     | Baozhong    | 2001/07/31 10:00 | 160   |
| 63   | C0M410     | Matoushan   | 2005/05/13 13:00 | 91    |
| 64   | C0M520     | Donghouliao | 2001/07/31 08:00 | 74    |
| 65   | C0M640     | Zhongpu     | 2001/09/19 10:00 | 741.5 |
| 66   | C0M650     | Puzi        | 1998/06/04 05:00 | 92.5  |
| 67   | C0M700     | Zhuqi       | 1998/08/07 17:00 | 79.5  |
| 68   | C0M710     | Dongshi     | 1998/06/04 04:00 | 101.5 |
| 69   | C0O810     | Cengwen     | 1998/02/21 12:00 | 127.5 |
| 70   | C0O960     | Qiding      | 2007/05/20 06:00 | 64    |
| 71   | C0O970     | Hutoupi     | 2004/10/21 13:00 | 201   |
| 72   | C0R130     | Ali         | 2000/04/18 16:00 | 167.5 |
| 73   | C0R130     | Ali         | 2001/05/21 11:00 | 544   |
| 74   | C0R130     | Ali         | 2001/05/30 11:00 | 158   |
| 75   | C0R130     | Ali         | 2001/05/31 11:00 | 146.5 |
| 76   | C0R130     | Ali         | 2001/06/14 10:00 | 86    |
| 77   | C0R140     | Majia       | 2001/05/21 11:00 | 828   |
| 78   | C0R140     | Majia       | 2001/05/31 10:00 | 434   |
| 79   | C0R190     | Chishan     | 2003/09/23 08:00 | 98    |
| 80   | C0R220     | Chaojhou    | 2016/07/08 10:00 | 78    |
| 81   | C0R240     | Laiyi       | 2016/07/08 10:00 | 114   |
| 82   | C0R260     | Chunri      | 1999/07/05 11:00 | 171.5 |
| 83   | C0R260     | Chunri      | 2016/07/08 10:00 | 107.5 |
| 84   | C0R280     | Binlang     | 2012/08/28 15:00 | 666   |
| 85   | C0R341     | Mudan       | 2011/09/03 13:00 | 320.5 |
| 86   | C0R341     | Mudan       | 2012/07/22 16:00 | 83    |
| 87   | C0R341     | Mudan       | 2012/08/25 04:00 | 460.5 |
| 88   | C0R341     | Mudan       | 2012/08/28 06:00 | 163.5 |
| 89   | C0R580     | Nanzhou     | 2000/11/01 11:00 | 79    |
| 90   | C0R580     | Nanzhou     | 2016/07/08 10:00 | 11(   |

| $\sim$ | TI /*/*    | <br>D ' C II   |                 | <b>A</b> 11 | 3 6 10 44     |             |
|--------|------------|----------------|-----------------|-------------|---------------|-------------|
| •      | Idontition | 7 Vaintall /   | nomoliog        | L'ANGAG h   | v N/Loltunotu | on (Cont/d) |
| •      |            | <br>і каштап е | АПОШИННЯ        | у жихен ну  | • •••         |             |
|        | , тасшиние | <br>           | <b>MITCHING</b> |             | , _,          | on tout at  |

HR = Hourly Rainfall (mm);

| tem | Station ID | Station    | Time             | HR    |
|-----|------------|------------|------------------|-------|
| 91  | C0S660     | Siama      | 2016/07/09 14:00 | 369   |
| 92  | C0S680     | Hongyeshan | 1999/08/30 07:00 | 84    |
| 93  | C0S680     | Hongyeshan | 2012/09/26 14:00 | 158.5 |
| 94  | C0S680     | Hongyeshan | 2016/07/09 14:00 | 157   |
| 95  | C0S690     | Taimali    | 2012/09/25 17:00 | 45.5  |
| 96  | C0S710     | Luye       | 2016/07/09 15:00 | 226.5 |
| 97  | C0S760     | Hongshih   | 2000/06/14 10:00 | 51.5  |
| 98  | C0S760     | Hongshih   | 1999/09/04 19:00 | 216.5 |
| 99  | C0S760     | Hongshih   | 1999/09/14 10:00 | 49.5  |
| 100 | C0S760     | Hongshih   | 1999/10/09 11:00 | 237   |
| 101 | C0S760     | Hongshih   | 2016/07/09 14:00 | 176   |
| 102 | C0S810     | Donghe     | 2005/08/13 08:00 | 71    |
| 103 | C0S830     | Changbin   | 2001/07/25 04:00 | 56.5  |
| 104 | C0T960     | Guangfu    | 1999/10/13 10:00 | 131.5 |
| 105 | C0U720     | Nanshan    | 2002/05/17 12:00 | 43    |
| 106 | C0U860     | Toucheng   | 2015/08/17 11:00 | 182   |
| 107 | C0U890     | Sansing    | 1999/09/03 09:00 | 76.5  |
| 108 | C0U890     | Sansing    | 1999/09/04 21:00 | 126.5 |
| 109 | C0U900     | Neicheng   | 2000/11/13 16:00 | 166.5 |
| 110 | C0V250     | Jiasian    | 2005/05/13 14:00 | 82    |
| 111 | C0V310     | Meinong    | 2000/04/18 16:00 | 118   |
| 112 | C0V310     | Meinong    | 2001/05/21 10:00 | 312.5 |
| 113 | C0V310     | Meinong    | 2001/05/30 11:00 | 131   |
| 114 | C0V310     | Meinong    | 2001/05/31 10:00 | 113   |
| 115 | C0V310     | Meinong    | 2001/06/14 10:00 | 86    |
| 116 | C0V350     | Xipu       | 2001/05/21 10:00 | 342   |
| 117 | C0V350     | Xipu       | 2001/05/30 11:00 | 166   |
| 118 | C0V350     | Xipu       | 2001/05/31 09:00 | 101   |
| 119 | C0V370     | Gutingkeng | 1999/08/12 12:00 | 70.5  |
| 120 | C0V400     | Agongdian  | 1999/08/12 12:00 | 67    |

| C          | Identified | Hourly | Rainfall A  | nomalies | Caused by | 7 Malfunction | (Cont'd) |
|------------|------------|--------|-------------|----------|-----------|---------------|----------|
| <b>U</b> . | Identified | πομειν | Kaiiiiaii P | Anomanes | Causeu Dy |               | Cont u)  |

HR = Hourly Rainfall (mm);

| Item | Station ID | Station      | Time             | HR    |
|------|------------|--------------|------------------|-------|
| 121  | C0V440     | Fengshan     | 2016/07/08 10:00 | 96    |
| 122  | C0V450     | Fengsen      | 2016/07/08 10:00 | 122.5 |
| 123  | C0V730     | Daliao       | 2000/08/11 14:00 | 83    |
| 124  | C0V730     | Daliao       | 2016/07/08 10:00 | 123   |
| 125  | C0V740     | Qishan       | 2000/04/19 13:00 | 114   |
| 126  | C0V740     | Qishan       | 2001/05/21 11:00 | 292   |
| 127  | C0V740     | Qishan       | 2001/05/30 11:00 | 135.5 |
| 128  | C0V740     | Qishan       | 2001/05/31 10:00 | 88.5  |
| 129  | C0V740     | Qishan       | 2001/06/14 10:00 | 93.5  |
| 130  | C0V750     | Luzhu        | 1999/08/12 12:00 | 67    |
| 131  | C0V770     | Dashe        | 1999/07/05 12:00 | 79    |
| 132  | C0X050     | Donghe       | 2001/07/31 07:00 | 148.5 |
| 133  | C0X080     | Jiali        | 2016/09/03 11:00 | 93    |
| 134  | C0X080     | Jiali        | 2016/09/07 13:00 | 135   |
| 135  | C0X210     | Baihe        | 2001/07/31 08:00 | 167.5 |
| 136  | C0X230     | Yanshui      | 2001/07/31 07:00 | 93    |
| 137  | C0X250     | Xinying      | 1998/09/09 16:00 | 79.5  |
| 138  | C0X250     | Xinying      | 2001/07/31 08:00 | 116   |
| 139  | C0X290     | Beimen       | 1998/06/04 04:00 | 68.5  |
| 140  | C1A630     | Siapen       | 2000/01/31 14:00 | 59.5  |
| 141  | C1A630     | Siapen       | 2001/07/17 13:00 | 56    |
| 142  | C1A630     | Siapen       | 2001/07/21 11:00 | 130.5 |
| 143  | C1A630     | Siapen       | 2001/07/21 14:00 | 216   |
| 144  | C1A630     | Siapen       | 2001/08/19 17:00 | 195   |
| 145  | C1A630     | Siapen       | 2001/08/24 19:00 | 94    |
| 146  | C1AC50     | Guandu       | 2001/08/29 21:00 | 61    |
| 147  | C1C510     | Shueiwei     | 1999/03/23 17:00 | 50    |
| 148  | C1C510     | Shueiwei     | 2015/06/23 23:00 | 55    |
| 149  | C1D380     | Sinpu        | 1999/03/23 12:00 | 67    |
| 150  | C1D400     | Niaozueishan | 1998/09/30 08:00 | 113   |

| C. Identified Hourly | <b>Rainfall Anomalies Caused b</b> | y Malfunction | (Cont'd) |
|----------------------|------------------------------------|---------------|----------|
|                      |                                    |               |          |

HR = Hourly Rainfall (mm);

| tem | Station ID | Station       | Time             | HR    |
|-----|------------|---------------|------------------|-------|
| 51  | C1D400     | Niaozueishan  | 1999/08/05 18:00 | 67.5  |
| 152 | C1D420     | Taigenan      | 1999/06/15 16:00 | 79    |
| 153 | C1D420     | Taigenan      | 1998/09/30 11:00 | 133   |
| 154 | C1E451     | Xiangbi       | 1998/02/20 18:00 | 135   |
| 155 | C1E461     | Song-An       | 1998/02/20 13:00 | 163   |
| 156 | C1E480     | Fongmei       | 1998/02/25 18:00 | 268   |
| 157 | C1F871     | Shangguguan   | 1998/02/20 15:00 | 196.5 |
| 158 | C1F891     | Shaolai       | 1998/02/20 17:00 | 223.5 |
| 159 | C1F911     | Xinbogong     | 1998/07/08 16:00 | 90    |
| 160 | C1F941     | Xueling       | 1998/02/20 18:00 | 251.5 |
| 161 | C1F941     | Xueling       | 2006/06/02 21:00 | 76.5  |
| 162 | C1H000     | Cuifeng       | 2002/07/09 17:00 | 39.5  |
| 163 | C1H860     | Ruiyan        | 2002/07/09 17:00 | 59.5  |
| 164 | C1H920     | Changfeng     | 2005/08/08 13:00 | 186.5 |
| 165 | C1H941     | Shuangdong    | 1998/04/15 22:00 | 65    |
| 166 | C1H9B1     | Amei          | 1998/02/20 14:00 | 149.5 |
| 167 | C1H9B1     | Amei          | 2006/05/03 15:00 | 113.5 |
| 168 | C1H9B1     | Amei          | 2006/06/02 21:00 | 65.5  |
| 169 | C1I101     | Xitou         | 1998/04/15 21:00 | 47    |
| 170 | C1I121     | Da-An         | 1998/02/21 19:00 | 98.5  |
| 171 | C1I131     | Tongtou       | 1998/02/21 19:00 | 109.5 |
| 172 | C1I150     | Qingyun       | 1998/01/16 18:00 | 75    |
| 173 | C1I440     | Xingaokou     | 2006/06/10 15:00 | 55.5  |
| 174 | C1I440     | Xingaokou     | 2011/05/15 12:00 | 65    |
| 175 | C1I440     | Xingaokou     | 2011/05/18 12:00 | 160.5 |
| 176 | C1I450     | Wangxiangshan | 2002/07/09 17:00 | 65    |
| 177 | C1I510     | Xianjinlindao | 1998/01/16 18:00 | 68    |
| 178 | C1O880     | Guanshan      | 2005/05/13 13:00 | 110   |
| 179 | C1R110     | Gusia         | 2001/05/21 14:00 | 579.5 |
| 180 | C1R110     | Gusia         | 2001/05/23 09:00 | 97    |

|                    |           |         |                     |                    |                       |                   | 1007 X    |                               |             |
|--------------------|-----------|---------|---------------------|--------------------|-----------------------|-------------------|-----------|-------------------------------|-------------|
| $\mathbf{\Lambda}$ | T.I       | TT I    | <b>D.'.</b> C. II A | · · · · · 1• · · · | $\boldsymbol{\Omega}$ | 3.4.10            |           | 10.19                         | <b>л</b> \/ |
| •                  | nantitied | HAUPIV  | Raintall A          | nomalies           | L ANGON N             | W WIGHTI          | Inction   | $\mathbf{u}$ ont $\mathbf{c}$ |             |
| <b>\</b>           | IUCHLIICU | IIVUIIV | INALILIALI A        | nomancs            | vaustu n              | 7 Y 1 Y I A I I U | IIICUIVIE | I VIII I                      |             |

HR = Hourly Rainfall (mm);

| tem | Station ID | Station      | Time             | HR    |
|-----|------------|--------------|------------------|-------|
| 181 | C1R110     | Gusia        | 2001/05/29 09:00 | 87    |
| 182 | C1R110     | Gusia        | 2001/05/31 16:00 | 334   |
| 183 | C1R110     | Gusia        | 2001/06/14 09:00 | 82    |
| 184 | C1R110     | Gusia        | 1999/08/12 12:00 | 82    |
| 185 | C1R120     | Shangdewun   | 2001/05/21 11:00 | 711   |
| 186 | C1R120     | Shangdewun   | 2001/05/30 16:00 | 198   |
| 187 | C1R120     | Shangdewun   | 2001/05/31 10:00 | 126   |
| 188 | C1R120     | Shangdewun   | 2001/06/14 10:00 | 94    |
| 189 | C1R250     | Lili         | 1999/07/05 12:00 | 115.5 |
| 190 | C1R250     | Lili         | 2016/07/08 10:00 | 116.5 |
| 191 | C1S670     | Motian       | 2016/07/09 13:00 | 216.5 |
| 192 | C1S880     | Shouka       | 2005/07/20 15:00 | 148.5 |
| 193 | C1S880     | Shouka       | 2011/09/03 14:00 | 99.5  |
| 194 | C1T800     | Luoshao      | 2005/07/18 10:00 | 98    |
| 195 | C1T970     | Danong       | 2009/09/27 05:00 | 69    |
| 196 | C1U690     | Sinliao      | 2009/10/12 14:00 | 734.5 |
| 197 | C1V220     | Xiaoguanshan | 1999/11/24 15:00 | 99.5  |
| 198 | C1V220     | Xiaoguanshan | 2005/05/13 13:00 | 130   |
| 199 | C1V300     | Yuyoushan    | 1999/07/05 12:00 | 83.5  |
| 200 | C1V340     | Dajin        | 1998/10/07 15:00 | 77.5  |
| 201 | C1V580     | Xinan        | 2005/05/13 13:00 | 106   |
| 202 | C1V580     | Xinan        | 2006/06/08 17:00 | 76.5  |
| 203 | C1V590     | Xinfa        | 2003/10/13 21:00 | 137.5 |
| 204 | C1Z130     | Tongmen      | 2005/09/22 10:00 | 118.5 |
| 205 | C1Z130     | Tongmen      | 2005/09/23 09:00 | 364.5 |

|          |                  |                     |             | 1000 V        |              |
|----------|------------------|---------------------|-------------|---------------|--------------|
| $\sim$   | T 1 (100 1 TT 1  | <b>D I A II A</b>   | <b>A</b> 11 | 3 5 10        |              |
| <b>.</b> | Idontitiod House | a Damtall Anomalia  | a l'angad h | 7 Maltunation | ( 'ont'd)    |
| •        |                  |                     |             |               |              |
| <u> </u> |                  | / 1\amman / \mvmanv | o causcu d  |               | $\mathbf{v}$ |
|          |                  | ,                   |             |               |              |

HR = Hourly Rainfall (mm);