
doi:10.6342/NTU202002126

國立臺灣大學電機資訊學院電子工程學研究所

碩士論文

Graduate Institute of Electronics Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

使用巨集塊映射方法於數位電路之逆向工程

Digital Circuit Reverse Engineering

Using Macro block mapping Methods

張景翔

Ching-Hsiang Chang

指導教授：郭斯彥 博士

Advisor: Sy-Yen Kuo, Ph.D.

中華民國 109年 7 月

July 2020

doi:10.6342/NTU202002126

 i

誌謝

 能完成這篇論文，我要特別感謝我的指導教授郭斯彥老師，他提供我相當完善

的研究環境。也感謝袁世一教授，他給予我許多研究態度以及報告口條的指導。在

我的研究過程中，幫助我最多的莫過於亞睿資訊股份有限公司同事給我的支持及

資源。藉由他們的幫助，我大大縮短了實驗實作的工作時數。最後要感謝實驗室的

每一位成員對我的支持與鼓勵，謝謝大家。

doi:10.6342/NTU202002126

 ii

摘要

 數位電路的反向工程一直以來都是用於重建電路功能性相當有力的工具。而

重建電路功能性可以有以下幾種應用：其一是可以幫助我們找出惡意電路（亦稱硬

體木馬），其二是針對某些規格書已經佚失的舊有設計，我們可以利用反向工程的

工具以便釐清其功能。據我們所知，反向工程大概是這些問題唯一的解決方案。在

本研究中我們提出一個可以讓使用者從平坦化的閘級網路連線表擷取出功能模組

的硬體反向工程演算法，而且不需要人工介入。提出方法使用了切割枚舉方法以及

布林匹配技術以辨識我們感興趣的功能塊。更明確的說，我們推廣了現有的切割枚

舉方法，讓它變成一個子電路枚舉方法，然後確認該子電路是否正好是預先定義好

的巨集庫的一員。實驗結果顯示我們的方法無法擴展至含有數千個邏輯單元的電

路，肇因於過大的計算複雜度。

關鍵字：數位電路、反向工程、自動化設計、子電路枚舉、形式驗證、硬體安全

doi:10.6342/NTU202002126

 iii

Abstract

 Digital circuit reverse engineering has been a powerful tool for circuit functionality

reconstruction, which can have several applications. On the one hand, understanding the

circuit’s functionality helps us to find out malicious circuitry (a.k.a. hardware Torjan)

inside the device under test (DUT). On the other hand, for some legacy designs whose

specification is lost, we can use reverse engineering tool to clarify its functionality. To the

best of our knowledge, reverse engineering (RE) is arguably the only solution to these

problems. In this work we propose a hardware reverse engineering algorithm which

enables a user to extract functional modules from a flattened gate-level netlist with no

manual intervention. The proposed method utilizes a cut enumeration method together

with Boolean matching technique to recognize functional blocks in which we are

interested. More specifically, we extend the existing cut enumeration method to a

subcircuit enumeration method, and then check whether the subcircuit happen to be a

functional macro block of the predefined macro library. The experimental result shows

that our method cannot scale up to circuits containing thousands of logic cells because

the computational complexity is just quite high.

Keywords: digital circuits, reverse engineering, design automation, subcircuit

enumeration, formal verification, hardware security

doi:10.6342/NTU202002126

Contents

List of Figures vi

List of Tables vii

Chapter 1 Introduction 1

Chapter 2 Related works 3

Chapter 3 Preliminaries 5

3.1 Cofactor . 5

3.2 Boolean network . 5

3.3 And-invert graph (AIG) . 6

3.4 Tool ABC . 6

3.5 Boolean matching . 6

3.6 Cut enumeration . 8

3.6.1 Cut . 8

3.6.2 Cut set . 8

3.6.3 Enumerative procedure . 9

3.7 Subcircuit validation . 9

3.7.1 Swallowed output . 10

3.7.2 Unexpected output . 10

iv

doi:10.6342/NTU202002126

3.7.3 Valid subcircuit . 11

Chapter 4 AIG hash function 12

4.1 Simple AIG hash function . 12

4.2 Complex AIG hash function . 14

Chapter 5 Proposed method 16

5.1 Macro library . 16

5.2 Macro mapping algorithm . 17

5.3 Improvement . 20

Chapter 6 Experimental results 23

Chapter 7 Conclusion and future works 25

Bibliography 26

v

doi:10.6342/NTU202002126

List of Figures

3.1 Gate-level schematic for illustrating concept of cut set 8

3.2 A 2-input XOR gate implementation. 10

3.3 A 2-input XOR gate implementation with extra output(red line). . . . 11

5.1 Transforming a netlist to a DAG . 18

5.2 Illustration for collecting candidate PO nodes 21

vi

doi:10.6342/NTU202002126

List of Tables

6.1 Experiment result of the proposed reverse engineering algorithm. . . . 23

vii

doi:10.6342/NTU202002126

Chapter 1

Introduction

As technology advances, the complexity of modern integrated circuit keeps on

growing continuously and drastically. In order to cut down on the design effort, IC de-

signers tend to use macro blocks to build their designs. This design methodology pro-

vides a higher level abstraction of integrated circuits and macro blocks can be reused

in separate projects or be replaced with another faster, smaller or lower-power macro

if newer IC process has been released. In this case, the integrity of macro blocks must

be unquestioned, otherwise the integrated circuit is exposed to the risk of malicious

attack, a.k.a. hardware trojan [1, 2]. Hardware Trojan horse is a component hid-

den inside a designed hardware which appears to perform a certain action but in fact

performs a hidden task.

Another scenario would target at circuit understanding. For some legacy designs

whose specification is lost, since their functionality is unclear, engineers cannot hastily

reuse them or make modifications to it. What’s even worse, if the design were a build-

ing component of another project, we will have difficulity analyzing the high-level

description of that project. Hence, if an EDA tool can parse a flattened gate level

netlist and thus helps user clarify its functionality, that would be very useful.

For the two scenarios stated above, engineers can benefit from the result of reverse

1

doi:10.6342/NTU202002126

engineering in that the kernel concept of which is to reconstruct a high level description

of the given netlist. In context of hardware reverse engineering, it typically comprises

two phases: from transistor level to gate level and from gate level to word level. The

former is achieved by image processing and recognize the connections between tran-

sistors. The latter start from synthesized gate level circuit, some formal, sweeping or

ATPG methods are applied to the netlist to clarify its functionality. Reverse engineer-

ing of digital hardware has been a tough task in EDA industry [3] beacuse the RT-level

module boundary may be destroyed due to boolean optimization or technology map-

ping during logic synthesis process.

Given this situation, this thesis presents a macro block recognition algorithm con-

sists of a subcircuit enumerative procedure and Boolean matching solver. Roughly

speaking, the proposed method enumerates single output subcircuits of the netlist and

forms a complex macro by combining them. Employing this method a user is capable

of reducing the complexity of his or her design and thus it should become easier to

understand.

The rest of this thesis is organized as follows. Related works are introduced in

Chapter 2. Chapter 3 presents background knowlwdge including terminologies and

framework we used in this work. Chapter 4 elaborates on two AIG hash functions

which can effectively avoid unpromising problem solvings. Chapter 5 describes what

does the macro library contain and how are the macros stored. Afterwards, the core

algorithm of this work is revealed. We show the performance of our approach using

the experiment results in Chapter 6. Lastly chapter 7 concludes this thesis and depict

our future research direction.

2

doi:10.6342/NTU202002126

Chapter 2

Related works

There has been a comprehensive reverse engineering reasearch developed in the

last century [4]. Hansen et al. investigated the well-known ISCAS’85 benchmark

circuits. They revealed functional blocks reside in these circuits. It was found that

ISCAS’85 benchmarks share common basic combinational blocks and some of them

has replicated structures inside. In addition, they shared their experience and gave

several useful reverse engineering techniques as well. Nonetheless, the strategies they

presented are mostly manual. In particular, the authors stated that reverse engineering

is inevitably a trial-and-error process. Even so, to reverse engineer designs contain

millions of gates, a fully automated approach is still needed.

P. Subramanyan et al. presents an automated and scalable method in [5, 6]. Their

method consists of two parts, identifying combinational modules and identifying se-

quential modules. In the former case, first extract word-level information from the

netlist [7] and then examine the combinational part delimited by the words. This is

done by solving quantified Boolean formulas (QBFs). In the latter case, it was further

divided into several fields, namely counter, shift register, RAM arrays and multibit

registers. For each field the authors developed a customized strategy to recognize the

functional block, mostly are based on structural analyses.

3

doi:10.6342/NTU202002126

Although the authors of [6] presented a fairly thorough algorithm flow to reverse

engineer netlist schematic, it still has a few limitations. One of them is that it cannot

identify control logic. That is one of the reasons the coverage is limited. To tackle

this problem, a few research papers has been published [8, 9]. The two papers are

complementary in that one focuses on reconstructing a high-level description of the

finite state machine while the other focuses on recognizing logic cells that belong to

the control logic.

Some other researchers use a macro block mapping scheme to achieve reverse en-

gineering [10]. It focused on algorithmic circuits so it’s less powerful. By building

the XOR trees, the researchers claimed that their method is able to identify any com-

binations of arbitrary adders and multipliers. The notion is based on the fact that

multiplication is essentially additions of operands shifted left by different number of

bits. XOR gates implements summation of half adders and one can analyze the data

flow of carry out signals to datermine the bit significance.

4

doi:10.6342/NTU202002126

Chapter 3

Preliminaries

In this chapter, we would like to review some necessary background knowlwdge.

The concepts introduced in this chapter are essential building blocks of this work.

3.1 Cofactor

The cofactor of a Boolean function f(x1, . . . , xn) is defined by assigning constant

value to a input variable, i.e., f(x1, . . . , xi = 0, . . . , xn) and f(x1, . . . , xi = 1, . . . , xn).

The former one is called negative cofactor and the latter positive cofactor with respect

to xi. Cofactoring is primarily used to examine a Boolean function under the condition

that some Boolean variables are fixed values.

3.2 Boolean network

A Boolean network is a directed acyclic graph (DAG) G(V,A) where vertices cor-

respond to logic functions and arcs specify the interconnection relation between func-

tions. For an arc (fu, fv) ∈ A, it indicates that fv takes fu as its input, i.e. fv(..., fu, ...).

The vertices which have no incoming arc are called primary inputs (PIs). The vertices

which have no outcoming arc are called primary outputs (POs).

5

doi:10.6342/NTU202002126

3.3 And-invert graph (AIG)

An AIG is a specific type of Boolean network where each vertex corresponds to

logical conjunction and each arc can carry an information of whether its tail’s func-

tion output is negated or not. In this thesis, we use the words Boolean function and

AIG interchangeablely. Compared to BDDs, AIGs are way more memory efficient

as BDDs consume exponential memory space. Therefore, AIG enables an engineer to

tackle the increasingly complex designs. Nonetheless, AIGs are not canonical. That is,

a Boolean function may have multiple different AIG representations and it requires an

algorithm to tell the equivalency. To mitigate this drawback, a concept called function-

ally reduced AIG (FRAIG) which makes it semi-canonical has been proposed [11].

3.4 Tool ABC

ABC is a system for synthesis and formal verification of logic circuits developed by

UC Berkeley [12]. It provides a highly optimized framework for academic researchers

and companies to develop their own work. ABC adopts AIG as the primary network

representation and provides comprehensive helper APIs. Most of the synthesis and

technology mapping commands utilize AIG to accomplish the task, as well as Boolean

matching command we adopt.

3.5 Boolean matching

Given two functions f(A) and g(B), Boolean matching tries to determine whether

they are functionally equivalent under permutation(P) or negation(N) of inputs and

outputs. Boolean matching problem can be broken down into two steps: (1) determin-

ing permutation and polarity of IO ports and (2) checking equivalence. In this sense,

equivalence checking is a particular case of Boolean matching and we can control the

6

doi:10.6342/NTU202002126

problem complexity by relaxing or tightening constraint at step 1. Sorted by restriction

level, the equivalence between f(A) and g(B) can have several forms:

• NPNP equivalent

negation and permutation of inputs and outputs

• NPN equivalent

negation and permutation of inputs and negation of outputs

• NP equivalent

negation and permutation of inputs

• PP equivalent

permutation of inputs and outputs

• P equivalent

permutation of inputs

For example, suppose f = a1a3 + a2a4 and g = b2b4 + b1b3, a reliable Boolean

matcher should give a result like (a1 → b2), (a2 → b1), (a3 → b4), (a4 → b3) and f is

P- equivalent to g. For another example, suppose f = a1a3 + a2 and g = b3(b
′
2 + b1),

a reliable Boolean matcher should give a result like (f → g′), (a1 → b′1), (a2 →

b′3), (a3 → b2) and f is NPN- equivalent to g.

Specifically, PP-equivalence can be used to recognize sub-circuit in the netlist.

Given a collection of library cells in the netlist, a PP-equivalence Boolean matcher

enables us to validate the existance of a macro block. Hadi Katebi et al. contributed

two Boolean matching commands to ABC, namely bm and bm2 [13, 14]. Both two

commands check the PP-equivalence between two AIGs and we use them to integrate

our research.

7

doi:10.6342/NTU202002126

3.6 Cut enumeration

3.6.1 Cut

A cut C of a circuit node n is defined as a set of circuit nodes such that every path

from a PI node to n contains at least one element in C. In other words, a consistent

assignment of truth values to each node in C completely determines the value of n. In

a network of size m, the number of cuts of size k is O(mk) [15, 16].

Definition 3.6.1. k-feasible

A cut is said to be k-feasible if |C| doesn’t exceed k.

3.6.2 Cut set

For a node in the netlist, it is very likely to have multiple cuts. All these cuts form

a cut set. Take circuit in Figure 3.1 as an example, the cut set for each node would be:

A,B,C,D : ∅

n1 :
{
{A,B}

}
n2 :

{
{C,D}

}
n3 :

{
{n2}, {C,D}

}
Q :

{
{n1, n3}, {n1, n2}, {n1, C,D}, {A,B, n3}, {A,B, n2}, {A,B,C,D}

}

A
B

C
D n2

Q

n1

n3

Figure 3.1: Gate-level schematic for illustrating concept of cut set

8

doi:10.6342/NTU202002126

3.6.3 Enumerative procedure

Obviously the logic gates enclosed by n and C can be regarded as a single output

subcircuit. Based on this concept, a multi-ouptut subcircuit can be derived by combin-

ing subcircuits enclosed by (n1, C1), . . . , (nl, Cl). As a result, we can enumerate pos-

sible subcircuits by utilizing an enumerative procedure which computes all k-feasible

cuts.

For convenience let’s define the operation A ./ B as follows:

A ./ B = {u ∪ v | u ∈ A, v ∈ B}

Let ∆1, ...,∆m be cut sets for each input Ix of a library cell, the cut set at output pin

can be computed as follows:(
∆1 ∪

{
{I1}

})
./
(

∆2 ∪
{
{I2}

})
./ · · · ./

(
∆m ∪

{
{Im}

})
Given the expression above, the cut set Φ for node n can be defined as:

Φ(n) =

∅, n ∈ PI(

Φ(I1) ∪
{
{I1}

})
./ · · · ./

(
Φ(Im) ∪

{
{Im}

})
, otherwise

One can observe that a node’s cut set depends on its drivers’ cut sets. Typically there

are two approaches for implementing above equation, namely recursion and dynamic

programming. In this work we adopt latter approach which traverses the netlist and

computes cut sets one by one from PI to PO in topological order. During the traversal,

the newly computed key-value pair (n,Φ(n)) is put into a hash table for further lookup.

Lastly, it’s worth mentioning that we set a length limit to cuts in Φ(n) simply because

the complexity is incredibly high.

3.7 Subcircuit validation

In previous section, we claim that library cells enclosed by (n1, C1), . . . , (nl, Cl)

constitute a subcircuit Cir. In this case, one may suppose that Cir has l outputs, and

9

doi:10.6342/NTU202002126

regard it as a functional block if it happens to be PP equivalent to a macro in macro li-

brary. However there is a pitfall. In fact, the number of outputs of Cir can be less

than(being swallowed), equal to or greater than(extra output emerges) l. Next we

demonstrate the cause of this inconsistency and describe the way to avoid it.

3.7.1 Swallowed output

Refer to Figure 3.2, there are two node-cut set pairs, (n1, C) and (n2, C), while

obviously the circuit has only one output. A careless individual may say that there is a

half adder with carry out lies at n2 and summation lies at n1. To prevent output from

being swallowed, each output should at least feed to one cell which doesn’t belong to

the subcircuit.

n1

n2

C

Figure 3.2: A 2-input XOR gate implementation.

3.7.2 Unexpected output

Refer to Figure 3.3, there is only one node-cut set pair (n1, C), and the logic func-

tion of n1 with respect to C is exclusive-or. A careless individual may say that there

is an XOR gate in between n1 and C while obviously the subcircuit has two outputs.

To prevent unexpected output, each cell in subcircuit shall totally feed to other cells in

same subcircuit. In other words, the subcircuit should be fanout-free with respect to its

roots {n1, ..., nl}.

10

doi:10.6342/NTU202002126

n1

C

Figure 3.3: A 2-input XOR gate implementation with extra output(red line).

3.7.3 Valid subcircuit

Definition 3.7.1. A subcircuit is said to be valid if it satisfies following two conditions:

1. For each po node, it drives at least one cell which isn’t part of the subcircuit.

2. For each internal node, it drives only macro cells which are part of the subcircuit.

In this work, all recognized macro blocks are guaranteed to be valid.

11

doi:10.6342/NTU202002126

Chapter 4

AIG hash function

Since Boolean matching is quite a computation intensive task, one should avoid in-

voking Boolean matcher frequently. In other words, the number of times of unmatched

calls should be reduced. To this end, hash functions are pretty suitable for the situa-

tion. In this work we implemented two hash functions, a simple one and a complex

one, which compute hash values for AIGs. A valid hash function should give identi-

cal hash value for identical input. Here we employ PP equivalence to design our hash

function. That is, for two PP equivalent AIGs, they should have identical hash values.

Here we introduce a notion of AIG parameter. An AIG parameter is an integral value

which can be used to characterize an AIG. Generally AIG parameters are derived by

injecting test patterns to PI nodes and retrieve response at PO nodes. The hash func-

tions proposed in the following sections make use of AIG parameters to build their

return values, i.e., hash values.

4.1 Simple AIG hash function

The simple AIG hash function returns an integer as hash value. The idea is that

a hash value can be derived by combining several plain hash values. Here are six

parameters we adopt:

12

doi:10.6342/NTU202002126

1. Number of 1s at output when all inputs are 0

2. Number of 1s at output when all inputs are 1

3. Number of 1s at output when only one input is 0

4. Number of 1s at output when only one input is 1

5. Number of 1s at output when two inputs are 0

6. Number of 1s at output when two inputs are 1

Note that all parameters are themselves mini-hash function. We assert that the resulting

hash function which is a composite of above parameters must be valid as well.

Algorithm 1 illustrates how we compound these parameters into a 32-bit wide hash

value. Returned hash value is just a concatenation of Sum1, Sum2 and Sum3. The de-

sign principle behind Algorithm 1 is that the input AIG has small size and consequently

the concatenation does not exceed 32-bit. It goes without saying that the distinguishing

power decreases as the size of AIG enlarges.

Algorithm 1 AIG simple hash function
Input: An AIG network N
Output: Simple hash value (an integral value)

1: Parameters← Compute the parameters of N
2: Sum1← 1st-of-Parameters + 2nd-of-Parameters
3: Sum2← 3rd-of-Parameters + 4th-of-Parameters
4: Sum3← 5th-of-Parameters + 6th-of-Parameters
5: Len1← bit-width of Sum1
6: Len2← bit-width of Sum2
7: Rotate Sum2 left by Len1
8: Rotate Sum3 left by Len1 + Len2
9: HashValue← Sum1 ⊕ Sum2 ⊕ Sum3

10: return HashValue

13

doi:10.6342/NTU202002126

4.2 Complex AIG hash function

For an AIG with m outputs, we decompose it into m single output sub-AIGs and

derive an array of input and output signatures for each sub-AIG. Afterwards, these m

arrays will be merged into one large array and sorted in ascending order to obtain a

consistent result. The sorted array is then the complex hash value.

Similar to simple hash function, complex hash function also exploits AIG parame-

ters. These parameters are used as constituents of PI signature. In this section we only

need four parameters because the performance is just good enough.

1. Output value when all inputs are 0

2. Output value when all inputs are 1

3. Number of 1s at output when only one input is 0

4. Number of 1s at output when only one input is 1

Note that in context of complex hash function, the input AIG is decomposed so the

computation process can be customized to single output AIG.

Algorithm 2 presents the procedure to compute complex hash value. The algorithm

starts by decomposing input AIG into multiple single output sub- AIGs. Afterwards,

it computes an integer array SignatureArray for each sub-AIG (line 3 to 17). As men-

tioned at the beginning of this section, the complex hash is essentially a collection of

signatures of primary IOs. Signature of primary output is just simple hash value of

the sub-AIG (line 5) while signature of primary input has two portions (line 7 to 15),

positive (cofactor) and negative (cofactor). Each portion is obtained by XORing all

parameters together (line 11 to 12). For two PP equivalent AIGs, they would have

same set of numbers in HashValue but with different sequence. As a result, HashValue

should be sorted and thus tranformed into a “canonical” representation for convenience

of comparing equivalence (line 18).

14

doi:10.6342/NTU202002126

Algorithm 2 AIG complex hash function
Input: An AIG network N
Output: Complex hash value (an integer array)

1: HashValue← ∅
2: SubAIGs← Decompose N into sub-AIGs
3: for each sub AIG N ′ ∈ SubAIGs do
4: SignatureArray← ∅
5: POsignature← Simple hash value of N ′

6: Push POsignature to SignatureArray
7: for each PI node ∈ N ′ do
8: (N ′

PosCofactor, N
′
NegCofactor)← Compute cofactor of N ′

9: ParametersPos ← Compute parameters of N ′
PosCofactor

10: ParametersNeg ← Compute parameters of N ′
NegCofactor

11: PIsignaturePos ← Exclusive-OR(ParametersPos)
12: PIsignatureNeg ← Exclusive-OR(ParametersNeg)
13: PIsignature← Join PIsignaturePos and PIsignatureNeg together
14: Push PIsignature to SignatureArray
15: end for
16: Merge SignatureArray into HashValue
17: end for
18: Sort HashValue in ascending order
19: return HashValue

15

doi:10.6342/NTU202002126

Chapter 5

Proposed method

In this chapter we are going to elaborate the core concept of this work. First let’s

start with the macro library. We are going to describe what’s inside and how is it rep-

resented in data structure. Second we describe our macro mapping algorithm in detail

with pseudocode. Generally speaking, the mapping algorithm essentially enumerates

subcircuits with respect to each node in the circuit, and check if there exist a macro

who has one output at that node. If multiple macros are found, we then pick the biggest

one, i.e. the one with the most gate count.

5.1 Macro library

The macro library is a verilog source file which contains some common combi-

national circuits and is created by the user. Our macro library currently contains the

following types of circuits:

• Multiple input logic gates, including AND/NAND/OR/NOR/XOR/XNOR

• Multiplexer and demultiplexer

• Adder and subtractor

16

doi:10.6342/NTU202002126

• Encoder and decoder

• Comparator

For a macro with m outputs, we perform symbolic simulation to get m symbolic traces

and build an AIG for each symbolic trace. Note that we build m AIGs for every PO

instead of one AIG for whole macro. As mentioned in section 3.6, the enumerative

procedure of cuts is quite time consuming so we set a limit to number of inputs of

macros. In practical the information of macro library is stored into a hash table with

key-value pair (simple hash value, [list of tuples]) where each tuple comprises a sub-

circuit belonging to a macro and the subcircuit’s complex hash calue.

5.2 Macro mapping algorithm

Algorithm 3 describes our procedure for macro block mapping. The algorithm

starts by building a DAG (directed acyclic graph) from input netlist D (line 1). We

convert circuit wires into vertices and library cells into edges. There is a one-to-one

correspondence between netlist wires and graph vertices. An edge from vertex vx to

vertex vy exists if there exists a cell who has vx as its input and vy as its output. With

a graph representation, it is more convenient to apply existing graph algorithms on it

and perform modification. The transforming process is illustrated in figure 5.1.

This graph is considered as an alias of the netlist. That is, all modification on it

will reflect on the netlist. In the following context we shall use netlist wire and graph

vertex interchangeablely. Afterwards, it performs topological sort on the graph (line 2)

so as to traverse the netlist in topological order (line 3 to 18). As a high level overview,

we want to traverse the netlist from in topological order and try to determine whether

there exists a macro who has one of output at current position. Initially no macros are

recognized (line 4). We then compute the cut set of current node (line 5). For each

cut set, infer macros with algorithm 4 (line 7) and record the result (line 8). If no

17

doi:10.6342/NTU202002126

(a) Netlist schematic (b) DAG representation

Figure 5.1: Transforming a netlist to a DAG

macros found, we then save the cut set computed previously for future use (line 11).

Otherwise the macro with the most number of cells is selected (line 13) and the DAG

is rewritten by deleting macro’s internal wires and creating edges from macro’s input

pins to output pins (line 14). In addition, TopoOrder is updated as well (line 15). Since

rewriting process changes the structure of G, the cut set of macro’s output pins should

be recomputed (line 16).

Algorithm 3 Macro mapping algorithm
Input: A fully flattened combinational netlist D and a library of macro blocks L
Output: A macro-mapped netlist D′

1: G← Build DAG G from the netlist D
2: TopoOrder← Topological sort on G
3: for each vertex v ∈ TopoOrder do
4: MappedMacros← ∅
5: CutSet← Compute cut set with respect to v
6: for each cut c ∈ CutSet do
7: Candidates← Infer macros starting from c
8: MappedMacros← MappedMacros ∪ Candidates
9: end for

10: if MappedMacros is empty then
11: Cut set of v ← CutSet
12: else
13: macro← Biggest among MappedMacros
14: Rewrite G by viewing macro as a basic block
15: Delete vertices in TopoOrder which reside in macro
16: Compute cut sets of macro’s primary outputs
17: end if
18: end for

18

doi:10.6342/NTU202002126

Algorithm 3 can be repeated several times to recognize bigger macros and increase

coverage.

Algorithm 4 shows a macro inference algorithm invoked by algorithm 3 at line 7.

Given a circuit node, one of its cut and a macro library, algorithm 3 tries to discover

macros who have a sub-circuit enclosed by the cut. First we build AIG of the given cut

for subsequent operation (line 2). This can be easily done by converting each cell in the

cut to AIG node one-by- one. Then we use hash function to accelerate the process of

finding possible equivalent macro block sub-circuits (line 3 to 4). The main loop (line

5 to 23) iteratively check sub-circuit N ′ in ListOfAIG. At each iteration, the first step is

to prove equivalence of N and N ′ with a formal tool (line 6), i.e. Boolean matcher. An

iteration will be discarded once the prove fails (line 7). If N ′ belongs to a multi-output

macro block, the algorithm tries to search for other outputs (line 10 to 19). Since they

must be located at topologically subsequent nodes, we adopt an enumerative approach.

If all outputs can be found and the selected sub-circuit is valid (line 17), push it to set

InferredMacros and finish a iteration of main loop. One the other hand, if N ′ is itself a

macro block, just collect it without doing anything special (line 21).

19

doi:10.6342/NTU202002126

Algorithm 4 Macro inference algorithm
Input: A circuit node n, a cut c and a library of macro blocks L
Output: A set of macro blocks

1: InferredMacros← ∅
2: N ← Build AIG from c
3: HashVal← Compute hash values of N
4: ListOfAIG← Use HashVal to lookup subcircuits in L
5: for each AIG N ′ ∈ ListOfAIG do
6: if N and N ′ is not PP-equivalent then
7: continue
8: end if
9: if N ′ is part of a multi-output macro M then

10: CandidateSet← Topologically subsequent nodes of n
11: Compute cut sets for each node in CandidateSet
12: for each subcircuit Ckt of M do
13: for each node ∈ CandidateSet do
14: Check whether the node matches Ckt
15: end for
16: end for
17: if all Ckts are matched and resulting subcircuit is valid then
18: InferredMacros← InferredMacros ∪M
19: end if
20: else if subcircuit formed by c is valid then . N ′ is itself a macro
21: InferredMacros← InferredMacros ∪ N ′

22: end if
23: end for
24: return InferredMacros

5.3 Improvement

In this work we apply some heuristics and techniques to accelerate the proposed

method. They can be described in these aspects:

1. Data structure of cut set

Although is a set in view of mathematics, it don’t have to support operations

such as union, intersection, and difference. The only thing to take into account

in practice is the operation depicted in section 3.6. To this end, cuts with same

length can be grouped together and stored in a linked list for constant time inser-

20

doi:10.6342/NTU202002126

tion. A cut set is implemented with an array where each element is a pointer to

a list of cuts with same length. This strategy can reduce the cut look-up time if

the desired length of cut is given.

2. Graph traversal in algorithm 3

In a netlist there might be chains of buffers or inverters. These chains can be

merged into the macro without changing its functionality so we shall skip them

when traversing the circuit nodes.

3. CandidateSet in algorithm 4

When initializing CandidateSet, if inputs of N ′ covers inputs of M , we shall just

include nodes which are solely driven by inputs of N ′ (directly or indirectly).

This process can be done using a breadth first search baesd strategy. The idea

is simple: a wire is included if and only if its driving nets are included previ-

ously or source nodes. Take figure 5.2 as an example. Let the blue wires be

source nodes of the algorithm. Both G4’s output and G5’s output are included

because their driving nets are source nodes. In addition, G6’s output is included

as well because its driving net, G4’s output has been included. However, G7’s

output will not be included because one of its PI, G3’s output, wasn’t included

previously.

G1

G2

G3

G4

G5

G6

G7

Figure 5.2: Illustration for collecting candidate PO nodes

21

doi:10.6342/NTU202002126

4. Cut sets of candidate nodes in algorithm 4

When computing cut sets for candidate nodes, the computed results can be pre-

served for further use. We can directly use the cut set computed here once there

is a need. If the state of the graph had changed, i.e. graph rewritten, these cut

sets shall be discarded.

22

doi:10.6342/NTU202002126

Chapter 6

Experimental results

The proposed algorithm was implemented in C and exploited the AIG data struc-

ture and Boolean mathing command in Berkeley ABC logic synthesis framework [12].

Experiments were performed on an Intel® Core™ i5-7400 CPU clocked at 3.50GHz

with 8 GB of RAM and the circuits are synthesized using the 180 nm library named

GSCLib which is provided by IWLS2005 benchmark. We evaluated the proposed

method on the ISCAS benchmark circuits. Table 6.1 provides the experiment result of

this work. There are total seven columns, from left to right: benchmark circuit name,

number of inputs of the circuit, number of outputs of the circuit, number of gates in

the circuit, number of macros recognized by our algorithm, the proportion of gates

mapped by our approach, and lastly running time.

Benchmarks Inputs Outputs Cells Mapped macros Coverage Runtime(sec)

c880 60 26 225 22 23.1% 13
c2670 233 140 327 16 13.5% 16.4
c3540 50 22 559 15 6.4% 481
s1238 14 14 508 1 0.6% 123.7
s1423 19 5 657 105 59.8% 10.9
s5378 37 49 1132 - - >1200

† here we only enumerate 6-feasible cuts

Table 6.1: Experiment result of the proposed reverse engineering algorithm.

23

doi:10.6342/NTU202002126

The experiment result shows that the algorithm tends to recognize numerous small

macros and distributed evenly in the netlist. To be a handy EDA tool, it should have

produced result of large macros with small quantity. For benchmark c1238, there’s

only one recognized macro but takes quite a while. The reason is that the macro map-

ping algorithm relies on constantly recognizing macros to shrink the circuit size and

thereby reduce the computational complexity. As section 3.6 shows, the number of

cuts grows exponentially as cut size increases. We observed that a node’s cut set can

have 500+ cuts when there’s only few macros are recognized. The running time would

explode with so many cuts because Boolean matching is a computation intensive task.

Even though we impose time limit on the Boolean matcher, the running time is still

enormous due to too many calls to the Boolean matcher.

24

doi:10.6342/NTU202002126

Chapter 7

Conclusion and future works

Both industry and academia have been dealing with hardware reverse engineering

for several decades. In this thesis, we have presented reverse engineering techniques on

gate-level netlists. The proposed method is based on a macro block mapping scheme

and the objective was to maximize the size of macro blocks and minimize the amount

of macro blocks. The method involves subcircuit enumeration and Boolean matching

problem. Because they both have quite high time complexity, our experiment result

shows that the running time would explode as scale of netlist grows and there was

still a lot of room for improvement. One major problem of the macro library is the

generality. It’s hard to include all types of macros into the macro library, so we need

a more generic approach. Another possible solution would be artificial intelligence

(AI). In AI there is a set of problems called classification that classifies an object to

a category. The idea is to extract characteristics from the circuit construct and let the

AI algorithm learns them. Hoping we can find an AI model that is able to classify

hardware circuits according to their characteristics.

25

doi:10.6342/NTU202002126

Bibliography

[1] M. Fyrbiak, S. Wallat, P. Swierczynski, M. Hoffmann, S. Hoppach, M. Wilhelm,

T. Weidlich, R. Tessier, and C. Paar, “Hal — the missing piece of the puzzle for

hardware reverse engineering, trojan detection and insertion,” IEEE Transactions

on Dependable and Secure Computing, vol. 16, no. 3, pp. 498–510, 2019.

[2] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware trojans in third-

party digital ip cores,” in 2011 IEEE International Symposium on Hardware-

Oriented Security and Trust, pp. 67–70, 2011.

[3] M. Fyrbiak, S. Strauss, C. Kison, S. Wallat, M. Elson, N. Rummel, and C. Paar,

“Hardware reverse engineering: Overview and open challenges,” 2017 IEEE 2nd

International Verification and Security Workshop (IVSW), pp. 88–94, 2017.

[4] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85 benchmarks:

a case study in reverse engineering,” IEEE Design Test of Computers, vol. 16,

no. 3, pp. 72–80, 1999.

[5] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea, and S. Ma-

lik, “Reverse engineering digital circuits using functional analysis,” in Proceed-

ings of the Conference on Design, Automation and Test in Europe, DATE ’13,

(San Jose, CA, USA), pp. 1277–1280, EDA Consortium, 2013.

[6] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascon, W. Tan, A. Tiwari,

N. Shankar, S. A. Seshia, and S. Malik, “Reverse engineering digital circuits us-

26

doi:10.6342/NTU202002126

ing structural and functional analyses,” IEEE Transactions on Emerging Topics

in Computing, vol. 2, pp. 63–80, jan 2014.

[7] W. Li, A. Gascon, P. Subramanyan, W. Tan, A. Tiwari, S. Malik, N. Shankar,

and S. A. Seshia, “Wordrev: Finding word-level structures in a sea of bit-level

gates,” in 2013 IEEE International Symposium on Hardware-Oriented Security

and Trust (HOST), (Los Alamitos, CA, USA), pp. 67–74, IEEE Computer Soci-

ety, jun 2013.

[8] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for high-level func-

tionality reconstruction,” in 2016 21st Asia and South Pacific Design Automation

Conference (ASP-DAC), pp. 655–660, 2016.

[9] Y. Shi, C. W. Ting, B. Gwee, and Y. Ren, “A highly efficient method for extracting

fsms from flattened gate-level netlist,” in Proceedings of 2010 IEEE International

Symposium on Circuits and Systems, pp. 2610–2613, 2010.

[10] X. Wei, Y. Diao, T. Lam, and Y. Wu, “A universal macro block mapping scheme

for arithmetic circuits,” in 2015 Design, Automation Test in Europe Conference

Exhibition (DATE), pp. 1629–1634, 2015.

[11] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “Fraigs: A unifying

representation for logic synthesis and verification,” tech. rep., 2005.

[12] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength verifi-

cation tool,” in Proceedings of the 22Nd International Conference on Computer

Aided Verification, CAV’10, (Berlin, Heidelberg), pp. 24–40, Springer-Verlag,

2010.

[13] H. Katebi and I. L. Markov, “Large-scale boolean matching,” in 2010 Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE 2010), (Los Alami-

tos, CA, USA), pp. 771–776, IEEE Computer Society, mar 2010.

27

doi:10.6342/NTU202002126

[14] H. Katebi, K. A. Sakallah, and I. L. Markov, “Generalized boolean symmetries

through nested partition refinement,” in Proceedings of the International Confer-

ence on Computer-Aided Design, ICCAD ’13, (Piscataway, NJ, USA), pp. 763–

770, IEEE Press, 2013.

[15] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a general

and efficient fpga mapping solution,” in Proceedings of the 1999 ACM/SIGDA

Seventh International Symposium on Field Programmable Gate Arrays, FPGA

’99, (New York, NY, USA), pp. 29–35, ACM, 1999.

[16] S. Chatterjee, A. Mishchenko, and R. Brayton, “Factor cuts,” in 2006 IEEE/ACM

International Conference on Computer Aided Design, pp. 143–150, Nov 2006.

28

