
doi:10.6342/NTU202002146

國立臺灣大學理學院數學研究所

碩士論文

Institute of Mathematical

College of Science

National Taiwan University

Master Thesis

LWR, MPLWE和MPLWR上的全同態加密

Fully Homomorphic Encryption on LWR, MPLWE and
MPLWR

洪逸霖

Yi-Lin Hung

指導教授: 陳君明博士

Advisor: Jiun-Ming Chen Ph.D.

中華民國 109年 7月

July, 2020

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU2020021462

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Acknowledgements

經過 2年的時光，終於完成了這篇論文，我要感謝指導教授陳君明老師

帶給我的啟發，以及幫我處理一些困難的部分，此外我也很感謝我的同學以及曾

經教過我的老師給我一個環境能夠寫出這篇論文，非常的感謝大家。

3

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU2020021464

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

摘要

我們改良了 Zvika Brakerski研發的全同態加密系統，改成使用難題假設

LWR以及 RLWR而不是原先使用的 LWE以及 RLWE難題假設。並且我們用類似

的方法使得可以在 MPLWR難題假設上使用同態加密。在過去，Rosca證明了難

題假設MPLWE的安全性，我們同樣使用相似於的方法做成全同態加密。

關鍵字： LWR同態加密、環 LWR同態加密、中間積 LWE同態加密、中間積

LWR同態加密

5

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU2020021466

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Abstract

Wemodified the fully homomorphic encryption (FHE) scheme produced by Zvika

Brakerski with the hardness assumption learning with rounding (LWR) and ring learn-

ing with rounded (RLWR) instead of the hardness assumption learning with error (LWE)

and ring learning with rounding (RLWE). And we use the similar methods on the hard-

ness assumption middle product learning with rounding (MPLWR), i.e. making it into

FHE. In present, Rosca proves the hardness assumption middle product learning with er-

ror (MPLWE). We also use ”similar” Brakerski ideas to make it into FHE.

Keywords: Learning with rounding FHE, Ring learning with rounding FHE, Middle

product learning with error FHE, Middle product learning with rounding FHE

7

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU2020021468

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Contents

Page

Acknowledgements 3

摘要 5

Abstract 7

Contents 9

Denotation 11

Chapter 1 Introduction 1

1.1 Our result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Modular Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 FHE Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Compare to LWE (RLWE) . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Preliminaries 5

Chapter 3 Our Construction 9

3.1 Basic LWR (RLWR) encryption scheme . . . . . . . . . . . . . . . . 9

3.2 Basic MPLWE encryption scheme . . . . . . . . . . . . . . . . . . . 10

3.3 Basic MPLWR encryption scheme . . . . . . . . . . . . . . . . . . . 10

3.4 Key Switching for MPLWE and MPLWR based . . . . . . . . . . . . 11

3.5 Key Switching for LWR(RLWR) based . . . . . . . . . . . . . . . . 13

9

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

3.6 FHE scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 4 Correctness 17

4.1 Correctness of LWR (RLWR) scheme . . . . . . . . . . . . . . . . . 17

4.2 Correctness of MPLWE(MPLWR) scheme . . . . . . . . . . . . . . 18

Chapter 5 Optimization 21

5.1 Bootstrapping and Batching . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Public Key Compression for LWR . . . . . . . . . . . . . . . . . . . 21

Chapter 6 Zero knowledge proof 23

Chapter 7 Application 25

Chapter 8 Summary 27

Chapter 9 Future Work 29

References 31

10

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Denotation

FHE 全同態加密 (Fully Homomorphic Encryption)

MPC 多方運算 (Mutiparty Computation)

(R)LWE (環)從誤差中學習 ((Ring) Learning with Error)

(R)LWR (環)從四捨五入學習 ((Ring) Learning with rounding)

MPLWE 中間積從誤差中學習 (Middle Product Learning with Error)

MPLWR 中間積從四捨五入中學習 (Middle Product Learning with Round-

ing)

11

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU20200214612

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Chapter 1 Introduction

Fully Homomorphic Encryption (FHE) is a scheme which supports both addi-

tions and multiplications on ciphertexts. We can use these properties in cloud computing

and multiparty computation (MPC) [2]. In 2009, Craig Gentry, using lattice-based cryp-

tography, described the first homomorphic encryption scheme[4]. It starts from somewhat

homomorphic encryption scheme and using Gentry’s ideas to make it bootstrappable ,

i.e., capable of evaluating its own decryption circuit and then at least one more operation.

These schemes are so-called first-generation FHE, i.e., bootstraping the somowhat homo-

morphic encryption scheme.

In 2011, Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan publish ”Fully Ho-

momorphic Encryption without Bootstrapping[11]”, representative of second-generation

FHE. The second-generation FHE all feature a much slower growth of the noise during the

homomorphic encryption. And they are efficient enough formany applications, evenwith-

out invoking bootstrapping. The security of most of these schemes (second-generation

FHE) based on the hardness of the LWE (RLWE)[10] problem, however, the variant LWR

(RLWR)[7] does not describe in second-generation. So, we plan to change the scheme on

the hardness assumption LWR (RLWR).

1

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

1.1 Our result

The LWE version has the form b = A′s′ + 2e where b,A′ are known and s′ is

the secret key and e ∈ {0, 1} is the error term. We have to random e to make it secret.

We think the error term can neglect and can decide by A, s with LWR based, which is

often the advantages of LWR. The LWR based encryption have the basic form b = d1
2
Asc.

We think the key point to turn encryption into fully homomorphic encryption is double

the error term (error term is d1
2
Asc − 1

2
As ). It will finally be modular in the decryption

process.

In chapter 3, we also described the MPLWE and MPLWR, which publishes in 2017

and 2019. We use our idea to make MPLWR into FHE and use ”similar” Brakerski ideas

to make MPLWE into FHE. It means that we introduce a new inner product compatible to

MPLWE and MPLWR and use Brakerski ideas to make them into FHE.

1.2 Modular Switching

We use the methods described in [11] and change they compatible to our new in-

ner product 〈·, ·〉⊙ since the product used in MPLWE andMPLWR are not standard matrix

product, they introduced the ”middle product” instead. Our work in modular switching

step is to make sure the method described in [11] still work this means that we can also

use same methods to make them into FHE. To make our proof clear, the definition of inner

product we define will become complex, but we just want to prove the properties written

in [11].

2

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

1.3 FHE Scheme

Since the work in key switching, it looks the same for our LWR (RLWR),

MPLWE, MPLWR scheme. Actually, LWR (RLWR) scheme is the same as [11], since

it is an equivalent modification from original LWE edition while MPLWE and MPLWR

scheme should look different, i.e. we should read section 3.4 to know what should do in

MPLWE and MPLWR .

1.4 Compare to LWE (RLWE)

Wecan use the hardness assumption LWR (RLWR),MPLWEandMPLWRwhich

usually think to be harder than LWE hardness assumption. In [8], it proves that the

worst cases of LWR (RLWR) is harder than LWE (RLWE) average cases. And in [9],

it proves that MPLWE is harder than polynomial LWE problems, also in [10], it proves

thatMPLWR is harder than polynomial LWR problems. And for LWR andMPLWRbased

encryption, we expand the dimension of public key size to trade-off the error generation.

3

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU2020021464

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Chapter 2 Preliminaries

Definition 1. (LWE)

For security parameter λ, let n = n(λ) be an integer dimension, let q = q(λ) ≥ 2

be an integer, and let χ = χ(λ) be a distribution over Z. The LWEn,q,χ problem is to

distinguish the following two distributions: In the first distribution, one samples (ai, bi)

uniformly from Zn+1
q . In the second distribution, one first draws s ← Zn

q uniformly

and then samples (ai, bi) ∈ Zn+1
q by sampling ai ← Zn

q uniformly, ei ← χ, and setting

bi = 〈a, a · si + e〉 . The LWEn,q,χ assumption is that the LWEn,q,χ problem is infeasible.

Definition 2. (LWR)

For security parameter λ, let n = n(λ) be an integer dimension, let q = q(λ) ≥ 2 be

an integer and p = p(λ) < q, and let χ = χ(λ) be a distribution over Z. The LWRn,q,χ

problem is to distinguish the following two distributions: In the first distribution, one

samples (ai, bi) uniformly from Zn+1
q . In the second distribution, one first draws s← Zn

q

uniformly and then samples (ai, bi) ∈ Zn+1
q by sampling ai ← Zn

q uniformly and setting

bi = dpq · a · sic . The LWRn,q,χ assumption is that the LWRn,q,χ problem is infeasible.

5

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Definition 3. Let da, db, d, k be integers such that da+db−1 = d+2k.Themiddle-product

�d: R<d
a [x]×R<d

b [x]→ R<d[x] is the map:

(a, b) 7→ a�d b =
⌊
(a·b) mod xk+d

xk

⌋

We use the same notation�d for every da, db such that da+db−1−d is non-negative

and even.

Definition 4. (modular rounding function)

Let p and q be integers both larger than 1. A modular rounding function b·ep : Zq →

Zp as bxep = bpq · xe mod p. The rounding function extends component-wise to vectors

over Zq and coefficient-wise to polynomials in Zq[x]. Note that we use the same notation

as Banerjee et al. [1] for the purpose of coherence. It is also possible to use the floor

rounding function b·c, where each element is rounded down to the next smaller integer,

as for instance done by Chen et al. [8].

Definition 5. (MP distribution)

Let n, d > 0, q ≥ 2, and χ a distribution over R<d[x]. For s ∈ Z<n+d−1
q [x], we

define the distribution MPq,n,d,χ(s) over Z<n
q [x]×R<d

q [x] as the one obtained by: sampling

a← U(Z<n
q [x]), e← χ and returning (a, b = a�d s+ e).

Definition 6. (MP-LWE)

Let n, d > 0, q ≥ 2, and a distribution χ over R<d[x]. The (decision) MP-LWEn,d,q,χ

consists in distinguishing between arbitrarily many samples from MPq,n,d,χ(s) and the

same number of samples from U(Z<n
q [x]×R<d

q [x]), with non-negligible probability over

the choices of s← U(Z<n+d−1
q [x]).

Definition 7. (MP-CLWR assumption)

Let d, n, p, q and t be positive integers fulfilling 0 < d ≤ n and q ≥ p ≥ 2. Choose

6

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

s uniformly at random over (Z<n+d−1
q [x])×. Denote by χs the distribution of (a, ba �d

sep), where a ← U(Z<n
q [x]), and denote by U the distribution of (a, bbep ), where a ←

U(Z<n
q [x]) and b← U(Z<d

q [x]). For i ∈ {1, 2} define the input forSi as (vari, con), where

var1 denotes the distribution χt
s , and var2 the distribution U t , and con is an arbitrary

distribution over {0, 1}∗ which is independent from var1 and var2. For a fixed challenger

C let PC,A be the probability for an adversary A to win Exp1(C,A,S1), while QC,A be

that for A to win Exp2(C,A,S2).

Definition 8. Let l, ra, rb be the integers. Themiddle inner product 〈a, b〉⊙d

(l,ra,rb)
: Rl+<d

a [x]×

Rl+<d
b [x] → Rl+<d[x] is the function such that a, b do standard inner product for first l

entries of a, b , and the remainders do middle product for ra each rows of remainder a

products rb each rows of remainder b.

l

ra1 · · ·

l

rb1 · · ·

(The first l entries compute stardard inner product and plus ra1 �d rb2 + · · · + rak � rbk,

where l = k × h )

Notice that we use the notation 〈a, b〉⊙d to denote 〈a, b〉⊙d

(d,t,<n+d+k−1)

7

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU2020021468

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Chapter 3 Our Construction

We describe each basic encryption scheme on section 3.1 to section 3.3 and de-

scribed the key switching for each scheme in section 3.4 and section 3.5. In section 3.6

we lay out our FHE scheme for each encryption scheme.

3.1 Basic LWR (RLWR) encryption scheme

In this section, our encryption scheme do not need to generate the error terms

and we use the hardness LWR (RLWR) instead. Basic encryption scheme:

• E.Setup: Choose d = d(λ, µ, b), n = n(λ, µ, b), χ = χ(λ, µ, b) N = d(2n +

3) log qc same as the [11] scheme. And let R = Z[x]/(xd + 1)

• E.SecretKeyGen: s′ ← χn. sk = s = (1, s′[1], s′[2], . . . , s′[n]). s ∈ Rn+1
q

• E.PublicKeyGen: Generate matrix A′ ∈ RN×n
q and set b = 22 × d1

2
A′s′c − (2 −

1)A′s′ ∈ Rq. Set A = [ b | − A′], notice that 〈A, s〉 = 22(d1
2
A′s′c − 1

2
A′s′)

• E.Encryption: To encryption a message m ∈ R2. Set m = (m, 0, . . . , 0) ∈ Rn+1
2 ,

random r ∈ RN
2 and output the cipertext c = m+ AT r

• E.Decryption: Outputm = 〈c, s〉q mod 2

9

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

3.2 Basic MPLWE encryption scheme

In this section, we adjust the encryption scheme describe in [9] and compatible

to our homomorphic encryption scheme. Let χ = bDαqe denote the distribution over

Z<d+k[x]where each coefficient is sampled fromDα·q and then rounded to nearest integer.

And let t ≥ 2.

• E.KeyGen: Random s′ ← U(Z<n+d+k−1
q [x]). For every i ≤ t, random a′i ←

U(Z<n
q [x]), ei ← χ and compute bi = a′i �d+k s′ + 2ei ∈ Z<d+k

q [x]. The se-

cret key sk=s = (1, s′) ∈ Z<n+2d+k−1
q [x] and the public key pk = (a′i, bi)i≤t. Set

A = [ b | − A′]

• E.Encryption: To encryption a messagem ∈ {0, 1}<d[x]. Set m = (m, 0, . . . , 0) ∈

Z<d+t[x], random ri ← U({0, 1}k+1[x]) and output the ciphertext c = m+AT�dr

• E.Decryption: Outputm = 〈c, s〉⊙d
q mod 2

3.3 Basic MPLWR encryption scheme

In this section, we lay out our encryption scheme of MPLWR with the hardness

assumption describe in [10]. Let χ = bDαqe denote the distribution over Z<d+k[x] where

each coefficient is sampled fromDα·q and then rounded to nearest integer. And let t ≥ 3.

• E.KeyGen: Random s′ ← U(Z<n+d+k−1
q [x]). For every i ≤ t, random a′i ←

U(Z<n
q [x]), ei ← χ and compute bi = 4da′i �d+k s

′c2-a′i �d+k s
′ ∈ Zd+k

q [x]. The

secret key sk = s = (1, s′) ∈ Z<n+2d+k−1
q [x] and the public key pk = (a′i, bi)i≤t.

Set A = [ b | − A′]

10

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

• E.Encryption: To encryption a messagem ∈ {0, 1}<d[x]. Set m = (m, 0, . . . , 0) ∈

Z<d+t[x], random ri ← U({0, 1}k+1[x]) and output the ciphertext c = m+AT�dr

• E.Decryption: Outputm = 〈c, s〉⊙d
q mod 2

3.4 Key Switching for MPLWE and MPLWR based

FHE is a scheme which supports both additions and multiplications on cipher-

texts. It is obviously that the addition property is barely not support, so we focus on how

to satisfy multiplication property. Kroncker product is a heuristic way in our scheme.

That is, to compute m1 ×m2, we compute 〈c1 ⊗ c2, s⊗ s〉. However, if the levels of the

multiplication are too depth, the noise will become huge. In [11], its solution is the switch

key method, which refreshes the ciphertexts to fix long. The scheme is evidently compat-

ible to our LWE (RLWE) scheme. And our work is to prove that it can be compatible to

MPLWE and MPLWR scheme. We use the notation denote in [11].

• BitDecomp (x ∈ Zn
q [x], q) decomposes x into its bit representation for each entries.

Namely, write x =
∑⌈log q⌋

j=0 2j · uj , where all of the uj ∈ {0, 1}n[x], and output

(u0, . . . , u⌈log q⌋) ∈ Z⌈log q⌋×n2 [x]

• Powerof2 (x ∈ Zm
q [x], q) Output (x, 2 · x, . . . , 2⌈log q⌋ · x) ∈ Z⌈log q⌋×mq [x]

Lemma 1. We have 〈 BitDecomp(c, q),Powerof2(s, q)〉⊙d
(⌈log q⌋,t,n+d+k−1)=〈c, s〉⊙d mod q

for vectors c ∈ Zd+t
q , s ∈ Zn+2d+k−1

q

Proof. By lemma, we know that we can add first and then compute the middle product,

hence if we see the BitDecomp(c, q) and Powerof2(s, q) as extending c, s into bit compu-

11

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

tations then it is correct. Hence

〈c, s〉⊙d = 〈
⌈log q⌋∑
j=0

2j · uj, s〉⊙d

=

⌈log q⌋∑
j=0

〈2j · uj, s〉⊙d

=

⌈log q⌋∑
j=0

〈uj, 2j · s〉⊙d

= 〈BitDecomp(c, q),Powerof2(s, q)〉⊙d
(d⌈log q⌋,t,n+d+k−1)

By the proof of our main lemma we can now introduce how to refresh the ciphertexts

into fixed long.

SwitchKeyGen(s1 ∈ Zn1
q [x], s2 ∈ Zn2

q [x]):

1. Run A← E.PublicKeyGen(s2, N ) for N = n1 · dlog qc.

2. Set B← A+ Powerof2(s1) (add it to A’s first column). Output τs1→s2 = B

SwitchKey(τs1→s2 , c1): Output c2 = BitDecomp(c1)T�dB ∈ Zn2
q [x]

Lemma 2. Let s1, s2, q, n1, n2,A,B = τs1→s2 be as in SwitchKeyGen(s1, s2), and let

A�ds2 = 2e2 ∈ Zn2
q [x](For MPLWR we have A�ds2 = 2(2da′i �d s′ic2 − a′i �d s′i)). Let

c1 ∈ Zn1
q [x] and c2 ← SwitchKey(τs1→s2 , c1). Then,

〈c2, s2〉⊙d = 2〈BitDecomp(c1), e2〉⊙d
(⌈log q⌋,n1−d,n2−d) + 〈c1, s1〉

⊙d

12

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Proof.

〈c2, s2〉 = BitDecomp(c1)�dB�ds1

= BitDecomp(c1)�d(2e2 + Powerof2(s1))

= 2〈BitDecomp(c1), e2〉⊙d
(⌈log q⌋,n1−d,n2−d) + 〈BitDecomp(c1),Powerof2(s1)〉

⊙d
(⌈log q⌋,n1−d,n2−d)

= 2〈BitDecomp(c1), e2〉⊙d
(⌈log q⌋,n1−d,n2−d) + 〈c1, s1〉

⊙d

3.5 Key Switching for LWR(RLWR) based

In this section we will provide the LWR(RLWR) based key switching. Since it

is an equivalent modification from LWE(RLWE) based, we will find it similar to it. We

will use the notation denoted in [11].

• BitDecomp(x ∈ Rn
q , q) decomposes x into its bit representation for each entries.

Namely, write x =
∑⌈log q⌋

j=0 2j·uj , where all of theuj ∈ Rn
2 , and output (u0, . . . , u⌈log q⌋) ∈

R
⌈log q⌋×n
2

• Powerof2(x ∈ Rm
q , q) Output (x, 2 · x, . . . , 2⌈log q⌋ · x) ∈ R

⌈log q⌋×m
q

Lemma 3. For vectors c, s of equal length, we have 〈BitDecomp(c, q),Powersof2(s, q)〉

= 〈c, s〉 mod q.

13

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Proof.

〈c, s〉 =

⟨⌈log q⌉∑
j=0

2j · uj, s

⟩

=

⌈log q⌉∑
j=0

〈2j · uj, s〉

=

⌈log q⌉∑
j=0

〈uj, 2j · s〉

= 〈c, s〉〈BitDecomp(c, q),Powerof2(s, q)〉

And hence we have

SwitchKeyGen(s1 ∈ Rn1
q , s2 ∈ Rn2

q ):

1. Run A← E.PublicKeyGen(s2, N ) for N = n1 · dlog qc.

2. Set B← A+ Powerof2(s1) (add it to A’s first column). Output τs1→s2 = B

SwitchKey(τs1→s2 , c1): Output c2 = BitDecomp(c1)T · B ∈ Rn2
q

Lemma 4. Let s1, s2, q, n1, n2,A,B = τs1→s2 be as in SwitchKeyGen(s1, s2), and let A ·

s2 = 22(d1
2
A′s′c − 1

2
A′s′) ∈ RN

q . Let c1 ∈ Rn1
q and c2 ← SwitchKey(τs1←s2 , c1). Then,

〈c2, s2〉 = 2〈BitDecomp(c1), 2(d
1
2
A′s′c − 1

2
A′s′)〉+ 〈c1, s1〉 mod q

Proof.

〈c2, s2〉 = BitDecomp(c1)T · B · s2

= BitDecomp(c1)T · (22(d
1
2
A′s′c − 1

2
A′s′) + Powerof2(s1))

= 2〈BitDecomp(c1), 2(d
1
2
A′s′c − 1

2
A′s′)〉+ 〈BitDecomp(c1),Powerof2(s1)〉

= 2〈BitDecomp(c1, 2(d
1
2
A′s′c − 1

2
A′s′)〉+ 〈c1, s1〉

14

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

3.6 FHE scheme

The previous lemma provide us compatible to [11] scheme. In this section, we

will present our scheme modify from [11].(Notation: Lc(x) = 〈c, x〉⊙q is a ciphertext-

dependent linear equation over the coefficients of x, and a linear equation Llong
c1,c2(x⊗ x) is

a linear equation over the coefficient over the coefficients of x⊗ x )

• FHE.KenGen. For j = L→ 0 do

1. Generation sj and Aj for each encryption scheme.

2. Set s′j = sj ⊗ sj kronecker tensor in here.

3. Set s′′j = BitDecomp(s′j, qj)

4. Run τs′′j→sj =SwitchKeyGen(s′′j , sj−1) (Omit this step in the beginning i.e.

j = L)

• FHE.Enc. Basic encryption scheme to encrypt messages.

• FHE.Dec. Suppose the cipertext is under key sj . Decrypt the message under key sj

in E.Decryption

• FHE.Add. Take two cipertexts encrypt under key sj (if not, do FHE.Refresh to

make it encrypts under same key sj). Set c3 = c1+ c2 mod qj . (In [11], it expands

the cipertexts size to make it indistinguishable to FHE.Mult) Hence we interpret c3

under s′j and output

c4 = FHE.Refresh(c3, τs′′j →sj−1 , qj, qj−1)

15

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

• FHE.Mult. Take two cipertexts encrypt under key sj (if not, do FHE.Refresh to

make it encrypts under same key sj). The new cipertexts is the kronecker tensor of

two cipertexts, with key s′j = sj ⊗ sj , and store it into a line, i.e. c3 = Llong
c1,c2

(x⊗ x)

and output

c4 = FHE.Refresh(c3, τs′′j →sj−1 , qj, qj−1)

• FHE.Refresh. Takes a cipertext encrypted under s′j , the auxiliary information τs′′j→sj−1

to facilitate key switching, and the current and next modulo qj and qj−1. Do the fol-

lowing:

1. Expand: Set c1 = Powerof2(c, qj).

2. Switch Moduli: Set c2 = Scale(c1, qj, qj−1, 2), a ciphertext under the key s′′j

for modulus qj−1.

3. Switch Keys: Output c3 = SwitchKey(τs′′j→sj−1
, c2, qj−1), a ciphertext under

the key sj−1 for modulus qj−1.

Since we have expressed our notation compatible to [11] it may look similar to its

scheme. But, it actually does different things in MPLWE and MPLWR schemes. And for

the LWR(RLWR) scheme, it can seem to be an equivalent modification to LWE(RLWE)

scheme. Hence, we can use initial LWE(RLWE) scheme to make them into FHE. Since it

looks almost the same, so we do not emphasis it particular.

16

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Chapter 4 Correctness

4.1 Correctness of LWR (RLWR) scheme

Lemma 5 (Correctness). Let c,A, r be described in the Encryption scheme of LWR

(RLWR), then we can decrypt the messagem ∈ {0, 1} using the secret key s

Proof.

m = 〈c, s〉q mod 2 = 〈m+ AT r, s〉 = 〈m, s〉+ 〈AT r, s〉

= m+ 2× 2× (d1
2
A′sc − 1

2
A′s)r mod 2

= m

Lemma 6 (homomorphic properties). Let c1, c2 be two different messages encrypt by s

and A, r be described in Encryption scheme of LWR (RLWR), then we can decrypt the

messagem1 +m2 andm1 ×m2 using the secrete key s

Proof.

m1 +m2 = 〈c1 + c2, s〉q mod 2 = 〈c1, s〉q + 〈c2, s〉q mod 2

= m1 +m2

17

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

m1 ×m2 = 〈c1 ⊗ c2, s⊗ s〉 = 〈(m1 + AT r1)⊗ (m2 + AT r2), s⊗ s〉

= 〈m1 ⊗m2, s⊗ s〉+ 〈AT r1 ⊗m2, s⊗ s〉

+ 〈m1 ⊗ AT r2, s⊗ s〉+ 〈AT r1 ⊗ AT r2, s⊗ s〉

= m1 ×m2

4.2 Correctness of MPLWE(MPLWR) scheme

Lemma 7 (Correctness). Assume that α < 1/(16
√
λtk) and q ≥ 16t(k + 1). With prob-

ability≥ 1−d ·2−Ω(λ) over the randomness of (sk, pk)←KeyGen, for all plaintext µ and

with probability 1 over the randomness of Encrypt, we haveDecrypt(sk, Encrypt(pk, µ)) =

µ

Proof. In [9] Lemma 4.1.

Lemma 8 (homomorphic properties). Let c1, c2 be two different messages encrypt by s

and A, r be described in Encryption scheme of MPLWE (MPLWR), then we can decrypt

the messagem1 +m2 andm1 ×m2 using the secrete key s

Proof.

m1 +m2 = 〈c1 + c2, s〉⊙d
q = 〈c1, s〉⊙d

q + 〈c2, s〉⊙d
q

= m1 +m2

18

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

m1 ×m2 = 〈c1 ⊗ c2, s⊗ s〉⊙d
q = 〈(m1 + AT r1)

⊙d
q ⊗ (m2 + AT r2), s⊗ s〉⊙d

q

= 〈m1 ⊗m2, s⊗ s〉⊙d
q + 〈AT r1 ⊗m2, s⊗ s〉⊙d

q

+ 〈m1 ⊗ AT r2, s⊗ s〉⊙d
q + 〈AT r1 ⊗ AT r2, s⊗ s〉⊙d

q

= m1 ×m2

19

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU20200214620

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Chapter 5 Optimization

5.1 Bootstrapping and Batching

A somewhat homomorphic encryption scheme is a scheme which contains ad-

dition and multiple properties at the same time (Roughly speaking). In [4], Gentry has

proved that there exist an efficient transformation that given a description of a bootstrap-

pable scheme ε and a parameter d = d(λ) outputs a description of another encryption

scheme such that ε(d) is compact (which means the size of the ciphertext is bound) and

ε(d) is homomorphic for all circuits of depth up to d.

Our scheme is obviously a somewhat homomorphic scheme, i.e. we still can make our

scheme into bootstrappable. The advantage to make our scheme into bootstrapple is that

in [5] it has described a way to batch the bootstrapping scheme and have high efficient in

specific problems.

5.2 Public Key Compression for LWR

In [6], introduce a way to compress the public key size with a pseudo-random

number generator f . However, it is not compatible to polynomial ring based encryption,

hence we only introduce the public key compression for LWR.

21

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

• KeyGen(1λ) Generate a random prime integer p of size η bits. And randomly gener-

ate ai’s, compute bi = 4d1
2
aisc− ais. Initialize a pseudo-random number generator

f with a random seed se. Use f(se) to generate a set of integers χi ∈ [0, 2γ) for

1 ≤ i ≤ τ . For all 1 ≤ i ≤ τ compute:

δi = 〈χi〉p + ξ · p− ri

where ri ← Z ∩ (−2ρ, 2ρ) and ξi ← Z ∩ [0, 2λ+η/p]. For all 1 ≤ i ≤ τ compute:

bi = χi − δi

Let pk = (a0, . . . , aτ , se, δ0, . . . , δτ ) and sk = p

We should store all of ai and about a one dimension terms bi’s, i.e. we store about

τ · η + γ + η bits public key instead of 2τη public key, which is about halves the initial

public key, but notice that we should calculate the public key each time we need to use.

22

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Chapter 6 Zero knowledge proof

In [3], it introduces a way to do Zero knowledge proof via fully homomorphic

encryption. It is still compatible to our scheme. The generic protocol, between a prover P

and a verifier V, is as follows.

P1. Choose an encryption c′ = b′ + r′ of zero and send c′ to the verifier.

V1. Select e← {0, 1} and send e to the prover.

P2. If e = 0, set d = b′, or if e=1, set d = b+ b′. Transmit d.

V2. Verify that d is a lattice point, and check that the noise ec+ c′ − d is well-formed and

sufficiently small.

This is also our advantage to choose lattice based encryption. It is easily to compatible

our scheme to other lattice based protocol.

23

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU20200214624

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Chapter 7 Application

There are many situations we will likely to use fully homomorphic encryption.

For example, machine learning may need a huge amounts of computing. However, it may

be a hard time for a start-up company to buy high-performance computers. The solutions

to this situation are to rend computing power via cloud computing. However, how to save

data security ? Hence, we can save our security via fully homomorphic encryption. Since

we have addition properties and multiplication properties. We can do all kinds of comput-

ing in encrypted state.

Although we may spend more computing resource to keep the data security, it is still

pay-off if the total spending time is fewer than using personal computer. Hence fully ho-

momorphic encryption may be a good choice to keep data safe and save more times than

usual.

Otherwise, fully homomorphic encryption may also be a good choice to do multi-

party computation. Since we have addition properties and multiplication properties we

can easily construct a scheme.

If you want to do secure multi-party computation, you can express the computation

as a boolean circuit C, and you can easily transform any circuit so that it uses only AND

gates and NOT gates. Then, it turns out that you can compute C on encrypted data, if

the data was encrypted using a fully homomorphic encryption scheme, using the follow-

25

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

ing relationship: when working with 0,1, AND can be done by multiplication (x AND y

=xy), and NOT can be done with addition (NOT(x) =1−x). Since the fully homomorphic

encryption lets you do addition, subtraction, and multiplication on encrypted values, it

also lets you do NOT and AND on encrypted values, which is all you need to do secure

multi-party computation.

26

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Chapter 8 Summary

We introduce a way to do FHE on LWR, MPLWE and MPLWR which have

higher security than basic LWE scheme. And it seems that the variants of LWE have the

similar properties. And we also introduce the public key compression, which is useful

when the transfer costs may be high in certain case.

The table below show the different between these protocol. The estimate time

showed in the table is calculated by the numbers of multiplication. We consider that we

calculate 1 GB messages AES-128 with 3.60GHz. And the multiplication in AES-128

contains 7568 multiplications over finite field. The finite field multiplication algorithm

we use is the Montgomery modular multiplication with each piece 32 bits. The estimated

performance times is about 484 times AES-128 computing times (about 14.48 (s) for 1GB

AES-128).

LWE LWR MPLWE MPLWR
Public key d(2n+ 3) log qc d(2n+ 3) log qc (n+ d+ k − 1)t (n+ d+ k − 1)t
Secret key (n+ 1) log q (n+ 1) log q (n+ d+ k − 1) log q (n+ d+ k − 1) log q
Ciphertext (n+ 1) log q (n+ 1) log q (n+ k) log q + d log q (n+ k) log q + d+ k

Estimate time 1.953 (h) 1.954 (h) 2.198 (h) 2.210 (h)
Hardness LWE≤LWR, LWE≤MPLWE≤MPLWR

27

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU20200214628

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

Chapter 9 Future Work

In 2018, the most simple fully homomorphic encryption scheme DGHV is said

to be broken via quantum computer in quantum polynomial times. For our scheme, we

still do not have a security proof to withstand quantum computer. We hope that we can

prove the quantum security to our scheme. Otherwise, it seems that we have to transmit

more information on computing, if there is some transmitting error the message will be to

break. We hope that we can solve this problem for example changing the scheme for code

based encryption.

29

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU20200214630

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

References

[1] C. P. Abhishek Banerjee and A. Rosen. Pseudorandom functions and lattices. 26,

2011.

[2] E. T. Adriana Lopez-Alt and V. Vaikuntanathan. On-the-fly multiparty computation

on the cloud via multikey fully homomorphic encryption. 70, 2013.

[3] G. T. D. K. G. Christopher Carr, Anamaria Costache andM. Strand. Zero-knowledge

proof of decryption for fhe ciphertexts. 16:16, 2018.

[4] C. Gentry. Fully homomorphic encryption using ideal lattices. 28:169–178, 2009.

[5] T. L. Jean-Sebastien Coron and M. Tibouchi. Batch fully homomorphic encryption

over the integers. 27, 2013.

[6] D. N. Jean-S´ebastien Coron andM. Tibouchi. Public key compression and modulus

switching for fully homomorphic encryption over the integers. 27, 2011.

[7] K. P. Joel Alwen, Stephan Krenn and D. Wichs. Learning with rounding, revisited.

Annual Cryptology Conference, 18:57–74, 2013.

[8] Z. Z. Long Chen and Z. Zhang. On the hardness of the computational ring-lwr prob-

lem and its applications. 33, 2018.

31

http://dx.doi.org/10.6342/NTU202002146


doi:10.6342/NTU202002146

[9] D. S. Miruna Rosca, Amin Sakzad and R. Steinfeld. Middle-product learning with

errors. 17, 2017.

[10] D. D. A. R.-L. W. W. Shi Bai, Katharina Boudgoust and Z. Zhang. Middle-product

learning with rounding problem and its applications. 32, 2019.

[11] C. G. Zvika Brakerski and V. Vaikuntanathan. Fully homomorphic encryption with-

out bootstrapping. 26, 2011.

32

http://dx.doi.org/10.6342/NTU202002146

	Acknowledgements
	摘要
	Abstract
	Contents
	Denotation
	Introduction
	Our result
	Modular Switching
	FHE Scheme
	Compare to LWE (RLWE)

	Preliminaries
	Our Construction
	Basic LWR (RLWR) encryption scheme
	Basic MPLWE encryption scheme
	Basic MPLWR encryption scheme
	Key Switching for MPLWE and MPLWR based
	Key Switching for LWR(RLWR) based
	FHE scheme

	Correctness
	Correctness of LWR (RLWR) scheme
	Correctness of MPLWE(MPLWR) scheme

	Optimization
	Bootstrapping and Batching
	Public Key Compression for LWR

	Zero knowledge proof
	Application
	Summary
	Future Work
	References

