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Abstract

We modified the fully homomorphic encryption (FHE) scheme produced by Zvika
Brakerski with the hardness assumption learning with rounding (LWR) and ring learn-
ing with rounded (RLWR) instead of the hardness assumption learning with error (LWE)
and ring learning with rounding (RLWE). And we use the similar methods on the hard-
ness assumption middle product learning with rounding (MPLWR), i.e. making it into
FHE. In present, Rosca proves the hardness assumption middle product learning with er-

ror (MPLWE). We also use ”similar” Brakerski ideas to make it into FHE.

Keywords: Learning with rounding FHE, Ring learning with rounding FHE, Middle

product learning with error FHE, Middle product learning with rounding FHE
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FHE

MPC

(R)LWE

(R)LWR

MPLWE

MPLWR

Denotation

2 I i #v % (Fully Homomorphic Encryption)
5 > i & (Mutiparty Computation)

(k) 1354 ¢ § % ((Ring) Learning with Error)

(k) 2 #¥£7 » 8 ¥ ((Ring) Learning with rounding)

R AGEAL Y &Y (Middle Product Learning with Error)

PR f e 7 ~ ¢ Y (Middle Product Learning with Round-

ing)
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Chapter 1 Introduction

Fully Homomorphic Encryption (FHE) is a scheme which supports both addi-
tions and multiplications on ciphertexts. We can use these properties in cloud computing
and multiparty computation (MPC) [2]. In 2009, Craig Gentry, using lattice-based cryp-
tography, described the first homomorphic encryption scheme[4]. It starts from somewhat
homomorphic encryption scheme and using Gentry’s ideas to make it bootstrappable ,
1.e., capable of evaluating its own decryption circuit and then at least one more operation.
These schemes are so-called first-generation FHE, i.e., bootstraping the somowhat homo-
morphic encryption scheme.

In 2011, Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan publish ”Fully Ho-
momorphic Encryption without Bootstrapping[ | 1]”, representative of second-generation
FHE. The second-generation FHE all feature a much slower growth of the noise during the
homomorphic encryption. And they are efficient enough for many applications, even with-
out invoking bootstrapping. The security of most of these schemes (second-generation
FHE) based on the hardness of the LWE (RLWE)[ 1 0] problem, however, the variant LWR
(RLWR)[ 7] does not describe in second-generation. So, we plan to change the scheme on

the hardness assumption LWR (RLWR).
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1.1 Our result

The LWE version has the form b = A’s’ + 2e where b, A’ are known and s’ is
the secret key and e € {0, 1} is the error term. We have to random e to make it secret.
We think the error term can neglect and can decide by A, s with LWR based, which is
often the advantages of LWR. The LWR based encryption have the basic form b = [%ASJ .
We think the key point to turn encryption into fully homomorphic encryption is double
the error term (error term is [%ASJ — %As ). It will finally be modular in the decryption
process.

In chapter 3, we also described the MPLWE and MPLWR, which publishes in 2017
and 2019. We use our idea to make MPLWR into FHE and use “’similar” Brakerski ideas
to make MPLWE into FHE. It means that we introduce a new inner product compatible to

MPLWE and MPLWR and use Brakerski ideas to make them into FHE.

1.2 Modular Switching

We use the methods described in [ 1 1] and change they compatible to our new in-
ner product (-, -)© since the product used in MPLWE and MPLWR are not standard matrix
product, they introduced the “middle product” instead. Our work in modular switching
step is to make sure the method described in [11] still work this means that we can also
use same methods to make them into FHE. To make our proof clear, the definition of inner
product we define will become complex, but we just want to prove the properties written
in[l1].

2 doi:10.6342/NTU202002146
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1.3 FHE Scheme

Since the work in key switching, it looks the same for our LWR (RLWR),
MPLWE, MPLWR scheme. Actually, LWR (RLWR) scheme is the same as [11], since
it is an equivalent modification from original LWE edition while MPLWE and MPLWR
scheme should look different, i.e. we should read section 3.4 to know what should do in

MPLWE and MPLWR .

1.4 Compare to LWE (RLWE)

We can use the hardness assumption LWR (RLWR), MPLWE and MPLWR which
usually think to be harder than LWE hardness assumption. In [&], it proves that the
worst cases of LWR (RLWR) is harder than LWE (RLWE) average cases. And in [9],
it proves that MPLWE is harder than polynomial LWE problems, also in [10], it proves
that MPLWR is harder than polynomial LWR problems. And for LWR and MPLWR based

encryption, we expand the dimension of public key size to trade-off the error generation.

3 doi:10.6342/NTU202002146


http://dx.doi.org/10.6342/NTU202002146

doi:10.6342/NTU202002146


http://dx.doi.org/10.6342/NTU202002146

Chapter 2 Preliminaries

Definition 1. (LWE)

For security parameter A, let n = n()\) be an integer dimension, let ¢ = g(\) > 2
be an integer, and let x = x(\) be a distribution over Z. The LWE,, ,, problem is to
distinguish the following two distributions: In the first distribution, one samples (a;, b;)
uniformly from ZZH . In the second distribution, one first draws s <— Z; uniformly
and then samples (a;, b;) € ZZ“ by sampling a; < Z; uniformly, e; < x, and setting

b; = (a,a-s; +e) . The LWE,, ., assumption is that the LWE,, , , problem is infeasible.

Definition 2. (LWR)

For security parameter A, let n = n(\) be an integer dimension, let ¢ = g(\) > 2 be
an integer and p = p(\) < ¢, and let x = x(\) be a distribution over Z. The LWR,, , ,,
problem is to distinguish the following two distributions: In the first distribution, one
samples (a;, b;) uniformly from ZZLH . In the second distribution, one first draws s < Zy
uniformly and then samples (a;, b;) € ZZH by sampling a; <— Zj; uniformly and setting

b; = [%-a-s;] . The LWR, 4, assumption is that the LWR,, ; , problem is infeasible.
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Definition 3. Letd,, dy, d, k be integers such that d,+d,—1 = d+2k. The middle-product

®4: REYx] x Ri¥[x] — R<[x] is the map:

zk

(a,b)»—>a@db={

(a-b) mod xk+dJ

We use the same notation ©4 for every d,, d;, such that d, 4+ d, — 1 — d 1s non-negative

and even.

Definition 4. (modular rounding function)

Let p and q be integers both larger than 1. A modular rounding function |-], : Z, —
Zpas |x], = [L -] mod p. The rounding function extends component-wise to vectors
over Z, and coefficient-wise to polynomials in Z,[x]. Note that we use the same notation
as Banerjee et al. [1] for the purpose of coherence. It is also possible to use the floor
rounding function b-c, where each element is rounded down to the next smaller integer,

as for instance done by Chen et al. [&].

Definition 5. (MP distribution)
Let n,d > 0,q > 2, and x a distribution over R<*[z]. For s € Z;"+t%"![z], we
define the distribution MPg 5 4., (s) over Z;"[x] x R[] as the one obtained by: sampling

a « U(Z3"[x]), e + x and returning (a,b = a ©Og s +e€).

Definition 6. (MP-LWE)

Letn,d > 0,q > 2, and a distribution y over R<¢[z]. The (decision) MP-LWE,, 4, ,
consists in distinguishing between arbitrarily many samples from MP,,, 4, (s) and the
same number of samples from U(Z:"[x] x R5?[x]), with non-negligible probability over

the choices of s < U(Z;" 4! [z]).

Definition 7. (MP-CLWR assumption)
Let d,n, p,q and t be positive integers fulfilling 0 < d < n and ¢ > p > 2. Choose

6 doi:10.6342/NTU202002146
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s uniformly at random over (Z:"**'[x])*. Denote by x, the distribution of (a, [a ©4
s]p), where a < U(Z;"[z]), and denote by U the distribution of (a, |b], ), where a <
U(Zg"[x]) and b = U(Zg(x]). Fori € {1,2} define the input for S; as (var;, con), where
vary denotes the distribution \* , and var, the distribution U* , and con is an arbitrary
distribution over {0, 1}* which is independent from var, and vars. For a fixed challenger
C let Pc 4 be the probability for an adversary A to win Exp;(C,.A, S;), while Q¢ 4 be

that for A to win Exps(C, A, S»).

Definition 8. Let [, r,, 7, be the integers. The middle inner product (a, b)%“r ) - R <d[z]x
RI<%z] — R"<?[z] is the function such that a, b do standard inner product for first /

entries of a,b , and the remainders do middle product for r, each rows of remainder a

products 7, each rows of remainder b.

Ta1 | = T'p1

(The first [ entries compute stardard inner product and plus 7,1 ©g 72 + - - - + 7ok © Tps

where [ =k x h)

(OF

Notice that we use the notation (a, b)* to denote (a, b) (', .\ 4y 1

7 doi:10.6342/NTU202002146
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Chapter 3 Our Construction

We describe each basic encryption scheme on section 3.1 to section 3.3 and de-
scribed the key switching for each scheme in section 3.4 and section 3.5. In section 3.6

we lay out our FHE scheme for each encryption scheme.

3.1 Basic LWR (RLWR) encryption scheme

In this section, our encryption scheme do not need to generate the error terms

and we use the hardness LWR (RLWR) instead. Basic encryption scheme:

E.Setup: Choose d = d(\, u,b), n = n(A\,u,b), x = x(A\, u,0) N = [(2n +

3)log ¢| same as the [11] scheme. And let R = Z[z]/(z? + 1)

* E.SecretKeyGen: s' < x". sk =s = (1,5'[1], s'[2],..., s'[n]). s € R}*!

E.PublicKeyGen: Generate matrix A’ € RY*" and setb = 2> x [JA's'| — (2 —

1)A’s' € R,. Set A = [b | — A’], notice that (A, s) = 2*([1A's'| — 1A’s")

« E.Encryption: To encryption a message m € R,. Setm = (m,0,...,0) € Ry,

random r € RY and output the cipertext ¢ = m + ATr

* E.Decryption: Output m = (c,s), mod 2

9 doi:10.6342/NTU202002146
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3.2 Basic MPLWE encryption scheme

In this section, we adjust the encryption scheme describe in [9] and compatible
to our homomorphic encryption scheme. Let x = |D,,| denote the distribution over
7<%k [z] where each coefficient is sampled from D,,., and then rounded to nearest integer.

And lett > 2.

* EKeyGen: Random s’ < U(Zg"t***![z]). For every i < ¢, random a] <
U(Z5"[x]), e; < x and compute b; = aj Ogyr ' + 2¢; € Z5"*[x]. The se-
cret key sk=s = (1,s') € Zg"+t?**~1[z] and the public key pk = (a, b;)i<;. Set

A=[b]|- A

« E.Encryption: To encryption a message m € {0, 1}<%[z]. Setm = (m,0,...,0) €

Z<4*[x], random r; < U ({0, 1}*1[x]) and output the ciphertext ¢ = m + ATOyr

* E.Decryption: Output m = (¢, s)>* mod 2

3.3 Basic MPLWR encryption scheme

In this section, we lay out our encryption scheme of MPLWR with the hardness
assumption describe in [10]. Let x = | Dy, | denote the distribution over Z<*"*[x] where

each coefficient is sampled from D,,., and then rounded to nearest integer. And lett > 3.

* EKeyGen: Random s’ < U(Zg"+t%**'[z]). For every i < t, random a] <
U(Z3"[x]), €; < x and compute b; = 4[a; Ogyp, ' ]2-a] Oarr s € ZIH[z]. The
secret key sk = s = (1,5') € Z:""**~1[z] and the public key pk = (a], b;)i<:.
SetA = [b | — A/

10 doi:10.6342/NTU202002146
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+ E.Encryption: To encryption a message m € {0, 1}<¢[z]. Setm = (m,0,...,0) €

Z=%[z], random r; <— U ({0, 1}*[z]) and output the ciphertext ¢ = m + AT Or

* E.Decryption: Output m = (¢, s)>¢ mod 2

3.4 Key Switching for MPLWE and MPLWR based

FHE is a scheme which supports both additions and multiplications on cipher-
texts. It is obviously that the addition property is barely not support, so we focus on how
to satisfy multiplication property. Kroncker product is a heuristic way in our scheme.
That is, to compute m; X my, we compute (¢; ® ¢z, s ® s). However, if the levels of the
multiplication are too depth, the noise will become huge. In [11], its solution is the switch
key method, which refreshes the ciphertexts to fix long. The scheme is evidently compat-
ible to our LWE (RLWE) scheme. And our work is to prove that it can be compatible to

MPLWE and MPLWR scheme. We use the notation denote in [11].

* BitDecomp (x € Z[r], q) decomposes X into its bit representation for each entries.

Namely, write x = Zg.lﬁ%qj 27 - u;, where all of the u; € {0,1}"[z], and output
(o, .., Ujiogq)) € Z4*¥V " [z]

* Powerof2 (x € Z!"[z], q) Output (x,2-x,...,2M"e4 . x) € ZE XM g

[OF}

Lemma 1. We have ( BitDecomp(c, q), Powerof2(s, Q)) flogq| tntari i

y=(¢,5)? mod ¢

for vectors ¢ € ZI*', s € Z+24k1

Proof. By lemma, we know that we can add first and then compute the middle product,
hence if we see the BitDecomp(¢, ¢) and Powerof2(s, ¢) as extending ¢, s into bit compu-

11 doi:10.6342/NTU202002146
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tations then it is correct. Hence

[logg

]

(¢,s)9 = <Z 97 . uj7s>@d
j=0
[logq]

= Z <2j : ujvs>®d

§=0
[loggq|
=D (u;,27-5)%

J=0

= (BitDecomp(¢, q), Powerof2(s, q)}%“ﬂog otttk 1)

By the proof of our main lemma we can now introduce how to refresh the ciphertexts

into fixed long.

SwitchKeyGen(s; € Z}![z], so € Z?[x]):

1. Run A < E.PublicKeyGen(sy, N) for N=n; - [logq].

2. Set B < A + Powerof2(s) (add it to A’s first column). Output 75, .5, = B

SwitchKey(Ts, ;s,, ¢1): Output c; = BitDecomp(c;) ®4B € Z2[x]

Lemma 2. Let s1,85,q9,n1,n2,A,B = 74, 5, be as in SwitchKeyGen(sy,ss), and let
AQgsy = 2€; € Zj?[z](For MPLWR we have AGgs; = 2(2[a] Og s{]> — a] ©q 87)). Let

¢1 € Zj*[z] and ey < SwitchKey (7, s,, €1). Then,

(€2,82)9¢ = 2(BitDecomp(e;), ez)ﬁ?ogqj,m_d,nz_d) + (€1, 81)

12 doi:10.6342/NTU202002146
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Proof.

(€q,82) = BitDecomp(c¢;)©4BOg4s;
= BitDecomp(¢;)©q4(2e, + Powerof2(s;))

= 2(BitDecomp(ey), &),

fogalm —dm_a) + (BitDecomp(e,), Powerof2(s, )y

([logq],n;—d,n;—d)

= 2(BitDecomp(ey), &),

d @d
[log q],n;—d,ny—d) + <c17 S])

3.5 Key Switching for LWR(RLWR) based

In this section we will provide the LWR(RLWR) based key switching. Since it
is an equivalent modification from LWE(RLWE) based, we will find it similar to it. We

will use the notation denoted in [11].

* BitDecomp(x € Ry, q) decomposes x into its bit representation for each entries.

Namely, write x = Z;ﬁ%‘” 27-u;, where all of the w; € R%, and output (ug, .. ., Ufjgq|) €

RQOg q|xn

* Powerof2(x € R}, q) Output (x,2-x,. .., oltoga) . x) ¢ R(gloquXm

Lemma 3. For vectors ¢, s of equal length, we have (BitDecomp(c, q), Powersof2(s, q))
=(¢,s) mod q.

13 doi:10.6342/NTU202002146
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Proof.

= (¢, s)(BitDecomp(c, q), Powerof2(s, q))

And hence we have

SwitchKeyGen(s; € Rgl, S9 € R;”):

1. Run A <+ E.PublicKeyGen(sy, N) for N =n; - [logq].

2. Set B <+ A + Powerof2(s) (add it to A’s first column). Output 75, .5, = B

SwitchKey(7s, s, ¢1): Output ¢, = BitDecomp(c;)T - B € Rg2

Lemma 4. Let sq,5;,q, 11,19, A, B = 75, _, be as in SwitchKeyGen(sy, s2), and let A -

sy = 22([JA’s'] — 3A's') € RY. Let ¢; € R and ¢; < SwitchKey(7y s,, ¢1). Then,
: 1 !/ 1 1.7
(€g,89) = 2(B1tDecomp(cl),2((§A s'| — EA s')) + (¢1,8;) mod q

Proof.

(¢, 82) = BitDecomp(c;)" - B - s,

1 1
= BitDecomp(c;)" - (22([§A’S’J — EA/S/) + Powerof2(s;))
1 1
= 2(BitDecomp(c¢; ), Z(fEA’s’j — 5A's’)> + (BitDecomp(¢, ), Powerof2(s; ))
1 1
= 2<BitDecomp(c1,2([§A’s’j — 5A’s’)> + (c1,81)

14 doi:10.6342/NTU202002146
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3.6 FHE scheme

The previous lemma provide us compatible to [ 1] scheme. In this section, we
will present our scheme modify from [11].(Notation: L.(x) = (¢,x)®7 is a ciphertext-

dependent linear equation over the coefficients of x, and a linear equation Ll (x ® x) is

a linear equation over the coefficient over the coefficients of x ® x )

* FHE.KenGen. For j = L — 0 do

1. Generation s; and A; for each encryption scheme.
2. Set s = s; @ s; kronecker tensor in here.
3. Set s} = BitDecomp(s], q;)
4. Run 7y, =SwitchKeyGen(s’, s;_1) (Omit this step in the beginning i.e.
j=1L)
* FHE.Enc. Basic encryption scheme to encrypt messages.

» FHE.Dec. Suppose the cipertext is under key s;. Decrypt the message under key s;

in E.Decryption

* FHE.Add. Take two cipertexts encrypt under key s; (if not, do FHE.Refresh to
make it encrypts under same key s;). Set ¢3 = ¢; +¢2 mod ¢g;. (In[11], it expands
the cipertexts size to make it indistinguishable to FHE.Mult) Hence we interpret ¢3

/
under s’ and output

¢, = FHE Refresh(es, 75 1, Gj G-1)

15 doi:10.6342/NTU202002146
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+ FHE.Mult. Take two cipertexts encrypt under key s; (if not, do FHE.Refresh to
make it encrypts under same key s;). The new cipertexts is the kronecker tensor of
two cipertexts, with key s’ = s; ® s;, and store it into a line, i.e. €3 = Lo (x @ x)

C1,C2

and output
¢, = FHE.Refresh(c;, s s qi—1)

* FHE.Refresh. Takes a cipertext encrypted under s’ the auxiliary information Toll =851
to facilitate key switching, and the current and next modulo ¢; and ¢;_;. Do the fol-

lowing:

1. Expand: Set ¢; = Powerof2(c, g;).

2. Switch Moduli: Set ¢, = Scale(ey, g;, ¢;-1, 2), a ciphertext under the key s

for modulus g;_.

3. Switch Keys: Output ¢3 = SwitchKey(ngﬁsjfl, C2,¢j—1), a ciphertext under

the key s;_; for modulus ¢;_;.

Since we have expressed our notation compatible to [11] it may look similar to its
scheme. But, it actually does different things in MPLWE and MPLWR schemes. And for
the LWR(RLWR) scheme, it can seem to be an equivalent modification to LWE(RLWE)
scheme. Hence, we can use initial LWE(RLWE) scheme to make them into FHE. Since it

looks almost the same, so we do not emphasis it particular.

16 doi:10.6342/NTU202002146
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Chapter 4 Correctness

4.1 Correctness of LWR (RLWR) scheme

Lemma 5 (Correctness). Let ¢, A, r be described in the Encryption scheme of LWR

(RLWR), then we can decrypt the message m € {0, 1} using the secret key s

Proof.
m = (¢,s), mod 2= (m+ A’r,s) = (m,s) + (ATr,s)

1 1
=m+2x2X ([§A’sj - QA’s)r mod 2

=m

Lemma 6 (homomorphic properties). Let ¢, co be two different messages encrypt by s
and A, r be described in Encryption scheme of LWR (RLWR), then we can decrypt the

message my + mo and m; X ms using the secrete key s

Proof.

my +mg = (¢ + €2,8), mod 2 = (¢1,s), + (ca,8), mod 2

:m1+m2

17 doi:10.6342/NTU202002146
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mi1 X My = <C1 ®CQ,S®S> = ((m1 +ATT’1) & (mg +ATT2),S®S>
= (m; ®my,s®s) + (ATr; @my, s ®s)
+(my @ ATry, s @) + (ATr; @ ATry, s @s)

=mi1 X My

4.2 Correctness of MPLWE(MPLWR) scheme

Lemma 7 (Correctness). Assume that o < 1/(16v/\tk) and ¢ > 16¢(k + 1). With prob-
ability > 1 —d-2 ™ over the randomness of (sk, pk) <— KeyGen, for all plaintext 1 and

with probability 1 over the randomness of Encrypt, we have Decrypt(sk, Encrypt(pk, p)) =

I

Proof. In[9] Lemma 4.1.

Lemma 8 (homomorphic properties). Let ¢y, co be two different messages encrypt by s
and A, r be described in Encryption scheme of MPLWE (MPLWR), then we can decrypt

the message m; + moy and m, X my using the secrete key s

Proof.

OF

my + meo = <Cl + CQ,S>q®’1 = <C1,S>;Dd + <CQ7S>q

:m1+m2
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mi X my = (c1 & Ca, S (029 S>(§)d = <(m1 + ATTI)S)d & (m2 + ATT?)? S & S)gd
= (m; @ my, s @) + (ATr; @ my, s @ 5)0
+ (my @ ATry, s @ 5)00 + (AT @ ATry, s @ 8) 0

=mi1 X My
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Chapter 5 Optimization

5.1 Bootstrapping and Batching

A somewhat homomorphic encryption scheme is a scheme which contains ad-
dition and multiple properties at the same time (Roughly speaking). In [4], Gentry has
proved that there exist an efficient transformation that given a description of a bootstrap-
pable scheme ¢ and a parameter d = d(\) outputs a description of another encryption
scheme such that £(9) is compact (which means the size of the ciphertext is bound) and
(9 is homomorphic for all circuits of depth up to d.

Our scheme is obviously a somewhat homomorphic scheme, i.e. we still can make our
scheme into bootstrappable. The advantage to make our scheme into bootstrapple is that
in [5] it has described a way to batch the bootstrapping scheme and have high efficient in

specific problems.

5.2 Public Key Compression for LWR

In [6], introduce a way to compress the public key size with a pseudo-random
number generator f. However, it is not compatible to polynomial ring based encryption,
hence we only introduce the public key compression for LWR.
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+ KeyGen(1*) Generate a random prime integer p of size 7 bits. And randomly gener-
ate a;’s, compute b; = 4 (%aisj — a;s. Initialize a pseudo-random number generator
f with a random seed se. Use f(se) to generate a set of integers y; € [0,27) for

1 <i< 7. Forall1 <i <7 compute:

6 = (Xi)p t&§-p—1i

where r; < Z N (=27,2°) and &; <+ Z N [0,2*""/p]. Forall 1 < i < 7 compute:

bi=Xxi— 0

Let pk = (ag, .. .,a,,se,dy,...,0,) and sk = p

We should store all of a; and about a one dimension terms b;’s, i.e. we store about
T - n + v + n bits public key instead of 271 public key, which is about halves the initial

public key, but notice that we should calculate the public key each time we need to use.
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Chapter 6 Zero knowledge proof

In [3], it introduces a way to do Zero knowledge proof via fully homomorphic
encryption. It is still compatible to our scheme. The generic protocol, between a prover P

and a verifier V, is as follows.

P;. Choose an encryption ¢’ = b’ + " of zero and send ¢’ to the verifier.

V1. Select e «— {0, 1} and send e to the prover.

Py Ife=0,setd =V, orife=1,setd = b+ . Transmit d.

V3. Verify that d is a lattice point, and check that the noise ec + ¢ — d is well-formed and

sufficiently small.

This is also our advantage to choose lattice based encryption. It is easily to compatible

our scheme to other lattice based protocol.
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Chapter 7 Application

There are many situations we will likely to use fully homomorphic encryption.
For example, machine learning may need a huge amounts of computing. However, it may
be a hard time for a start-up company to buy high-performance computers. The solutions
to this situation are to rend computing power via cloud computing. However, how to save
data security ? Hence, we can save our security via fully homomorphic encryption. Since
we have addition properties and multiplication properties. We can do all kinds of comput-
ing in encrypted state.

Although we may spend more computing resource to keep the data security, it is still
pay-off if the total spending time is fewer than using personal computer. Hence fully ho-
momorphic encryption may be a good choice to keep data safe and save more times than
usual.

Otherwise, fully homomorphic encryption may also be a good choice to do multi-
party computation. Since we have addition properties and multiplication properties we
can easily construct a scheme.

If you want to do secure multi-party computation, you can express the computation
as a boolean circuit C, and you can easily transform any circuit so that it uses only AND
gates and NOT gates. Then, it turns out that you can compute C on encrypted data, if

the data was encrypted using a fully homomorphic encryption scheme, using the follow-
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ing relationship: when working with 0,1, AND can be done by multiplication (x AND y
=xy), and NOT can be done with addition (NOT(x) =1—x). Since the fully homomorphic
encryption lets you do addition, subtraction, and multiplication on encrypted values, it
also lets you do NOT and AND on encrypted values, which is all you need to do secure

multi-party computation.
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Chapter 8 Summary

We introduce a way to do FHE on LWR, MPLWE and MPLWR which have

higher security than basic LWE scheme. And it seems that the variants of LWE have the

similar properties. And we also introduce the public key compression, which is useful

when the transfer costs may be high in certain case.

The table below show the different between these protocol. The estimate time

showed in the table is calculated by the numbers of multiplication. We consider that we

calculate 1 GB messages AES-128 with 3.60GHz. And the multiplication in AES-128

contains 7568 multiplications over finite field. The finite field multiplication algorithm

we use is the Montgomery modular multiplication with each piece 32 bits. The estimated

performance times is about 484 times AES-128 computing times (about 14.48 (s) for 1GB

AES-128).
LWE LWR MPLWE MPLWR
Publickey | [(2n+3)logg| | [(2n + 3)loggq] (n+d+k—1)t (n+d+k—1)t
Secret key (n+1)loggq (n+1)logg | (n+d+k—1)logqg | (n+d+k—1)logg
Ciphertext (n+1)loggq (n+1)logqg | (n+k)logg+dlogq | (n+k)logg+d+k
Estimate time | 1.953 (h) 1.954 (h) 2.198 (h) 2210 (h)
Hardness LWE<LWR, LWE<MPLWE<MPLWR
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Chapter 9 Future Work

In 2018, the most simple fully homomorphic encryption scheme DGHYV is said
to be broken via quantum computer in quantum polynomial times. For our scheme, we
still do not have a security proof to withstand quantum computer. We hope that we can
prove the quantum security to our scheme. Otherwise, it seems that we have to transmit
more information on computing, if there is some transmitting error the message will be to
break. We hope that we can solve this problem for example changing the scheme for code

based encryption.
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