
doi:10.6342/NTU202203944

國立臺灣大學電機資訊學院電信工程學研究所

碩士論文

Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

利用自走車輔助學習以改善行動網路室內定位效能

Improving Indoor Localization for Cellular Networks

with Robot-Assisted Learning

洪健豪

Chien-Hao Hung

 指導教授：謝宏昀 博士

Advisor: Hung-Yun Hsieh, Ph.D.

中華民國 111 年 9 月

September 2022

doi:10.6342/NTU202203944

致謝

時間蠻快就過了，我花了五年才完成我的碩士學位，其中經歷了對

未來的迷茫，家裡的變故，但也碰到許多的人及事務的幫忙，精神

上或物資上的幫忙，其中最感謝的是我的父母在我求學期間的支

持，感謝他們在我求學期間的付出及幫助，在我想休學不讀時，持

續給我支持，也感謝 謝宏昀老師，在我家裡變故時還想著有什麼方

法能夠最大程度的幫助我，感謝老師的著想。感謝我修課時的好夥

伴，恩妤、聖皓在修課當個凱瑞的隊友，幫忙應付機器學習相關的

課程，感謝維方、泓弦及梓維學長在修課上意見幫助，看著學長們

畢業也給了我一些信心相信自己也能完成自己的學位，感謝俊翔在

做計劃時的凱瑞，後面我家裡發生變故就扛起計畫的責任並且準時

完成學位，真的很厲害。感謝政旻、世紀、承翰、易錡在完成論文

上的各種幫助，政旻幫忙邀請共同的口委，世紀跟易錡兩個擔任搞

笑擔當，讓我對口試沒那麼害怕，承翰則是給我很大的推動，邊工

作邊寫論文還寫得很快，讓我對自己的進度也不敢怠慢。最後感謝

我自己，每次想放棄時都沒有真的放棄。

 2022/09/23 洪健豪

doi:10.6342/NTU202203944

摘要
對室內定位的需求急劇增加，許多應用都需要高精度的室內定位技

術，如智能工廠、智能配送、智能旅遊等。和基於測距的室內定位

技術相比，基於學習的室內定位技術更能適應環境限制，基於學習

的室內定位定位技術對設備的要較低。然而，基於學習的室內定位

通常需要耗費人力和耗費時間來建立指紋數據集。此外，隨著時

間、季節和溫度的變化，需要對模型進行實時調整。在這兩種情況

下，都需要重建指紋數據集來訓練模型，這增加建立系統的成本。

我們應用該機器人構建了一個可以邊走邊採集 LTE 無線電特徵的系

統，並利用 SLAM 演算法計算出的軌跡數據來輔助無線電特徵的標

註。我們提出了 MICNN+RNN 串接模型，串接模型的性能可以達到

0.879 m，實現了亞米級室內定位。對於 MICNN 模型，我們提出應

用基於參數的遷移學習方法將從源域系統學到的知識遷移到目標

域，該方法可以將 MICNN 的模型性能提高 6.7%平均距離誤差

(MDE)。分析不同縮放器對模型性能的影響，我們發現 MinMax 縮放

器有助於目標模型性能和微調模型性能。

doi:10.6342/NTU202203944

ABSTRACT

The demand for indoor positioning has increased dramatically. Many appli-

cations require high-precision indoor localization technology, such as smart fac-

tories, smart deliveries, smart tours, etc. Compared with ranged-based indoor

localization technologies, learning-based indoor localization technologies are more

adaptable to environmental constraints, and learning-based indoor positioning

technologies have lower requirements for instruments. However, learning-based

indoor localization is often labor-intensive and time-consuming to build a finger-

print dataset. Also, with the change in time, season and temperature, the model

needs to be adjusted in real-time. In both cases, the fingerprint dataset needs to

be rebuilt to train the model, which increases the cost of building the system. We

applied the robot to build a system that can collect LTE radio features while walk-

ing, and use the trajectory data calculated by the SLAM algorithm to assist in

radio feature annotation. We propose the MICNN+RNN cascaded model, and the

performance of the cascaded model can reach 0.879 m, which achieves sub-meter

indoor localization. For the MICNN model, we propose to apply the parameter-

based transfer learning method to transfer the knowledge learned from the source

domain system to the target domain, and this method can improve the model

performance of MICNN by 6.7% for mean distance error (MDE). Analyzing the

effect of different scalers on model performance, we found that the MinMax scaler

is helpful for the target model performance and fine-tuned model performance.

ii

doi:10.6342/NTU202203944

TABLE OF CONTENTS

ABSTRACT . ii

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 RELATED WORK . 4

2.1 System Introduction . 4

2.1.1 Problem Formulation . 4

2.2 Robot Setup . 6

2.2.1 Robot Operating System (ROS) 6

2.2.2 Simultaneous Localization and Mapping 7

2.2.3 Turtlebot3 . 7

2.3 LTE Setup . 7

2.3.1 Software Defined Radio . 7

2.3.2 OpenAirInterface . 7

2.4 Related Work about Machine Learning 8

2.4.1 Recurrent neural network 8

2.4.2 Generative Adversarial Network 10

2.4.3 Transfer Learning . 13

2.5 Related Work . 13

2.5.1 Indoor Localization . 13

CHAPTER 3 LEARNING-BASED INDOOR LOCALIZATION 16

3.1 Feature . 16

3.1.1 LTE Subcarrier Amplitude 16

3.1.2 LTE Phase Difference . 17

3.1.3 Feature Analysis . 19

3.1.4 Feature Normalization . 19

3.2 Model for Snapshot Features . 21

3.2.1 Support Vector Machine 22

iii

doi:10.6342/NTU202203944

TABLE OF CONTENTS iv

3.2.2 K Nearest Neighbors Algorithm 22

3.2.3 Fully Connected Neural Network 23

3.2.4 One-Dimensional Convolutional Neural Network 24

3.2.5 Proposed Model . 26

3.3 Time Domain Data Fusing method 26

3.3.1 Fusion Network . 27

3.3.2 Recurrent Neural Networks 29

3.3.3 Stack RNN . 31

3.3.4 DL-RNN . 31

3.4 Evaluation Results . 32

3.4.1 Evaluation Criteria . 32

3.4.2 Cross Validation Method 33

3.4.3 Platform . 33

3.4.4 Experimental environment one 35

3.4.5 Feature Extraction Model Comparison 36

3.4.6 Loss Function Comparison 36

3.4.7 Label Smoothing Method 39

3.4.8 Considering the Phase Difference as Model Input 40

3.4.9 Cascaded Model Comparison 41

3.4.10 Cascaded Models Comparison for Different Input Features . 43

3.5 Summary . 44

CHAPTER 4 LOCALIZATION DEPLOYMENT OFMODEL PER-
FORMANCE IMPROVEMENT 45

4.1 Data Augmentation . 45

4.1.1 Problem and Viewpoints 45

4.1.2 Generative Adversarial Network 46

4.1.3 Variational Auto-encoder 46

4.2 Transfer Learning Methods . 47

4.2.1 Model Fine-tuning . 47

4.2.2 Model Generalization . 51

4.3 Data Scaler . 53

doi:10.6342/NTU202203944

TABLE OF CONTENTS v

4.4 Summary . 54

CHAPTER 5 PERFORMANCE EVALUATION 56

5.1 Datasets . 56

5.1.1 Domain 1 Dataset . 56

5.1.2 Domain 2 Dataset . 56

5.1.3 Domain 3 Dataset . 60

5.2 Evaluation of Data augmentation 62

5.2.1 Considering Data Augmentation with GAN 62

5.2.2 Considering Data Augmentation with VAE 63

5.3 Evaluation of Transfer Learning 64

5.3.1 Domain 1 and Domain 2 Case 66

5.3.2 Domain 1 and Domain 3 case 74

5.4 Evaluation of Data Scaler . 77

5.4.1 Consider the Different Scaler 77

5.4.2 Consider Scaling Range . 78

5.5 Summary and Cross Validation . 81

CHAPTER 6 CONCLUSION AND FUTURE WORK 85

REFERENCES . 86

doi:10.6342/NTU202203944

LIST OF TABLES

1 Environmental adaptation . 14

2 Layer of SLN model . 24

3 CNN model architectures . 25

4 Layers of Multi-Input CNN model 26

5 Layer of fusion network . 28

6 Layer of SIMO and MIMO RNN . 30

7 Layer of stack RNN . 31

8 Layer of DL-RNN . 32

9 Default parameter . 35

10 The number of data in each dataset 36

11 Comparison of different extraction models 36

12 Comparison of the models with MSE and cross entropy 39

13 Comparison of different label methods 40

14 Comparing the average MDE of model with or without phase dif-
ference . 41

15 Comparing the Average MDE of Cascaded Models 42

16 Comparing the average RMSE of cascaded models 43

17 Comparison of Different Input Features for the Cascaded models . . 44

18 Layers of VAE model . 48

19 The data quantity of domain 2 dataset 58

20 The data quantity of domain 3 dataset 60

21 Comparison of different model with different conditions 75

22 Comparison of the model with different scaler 78

23 Comparing the value ranges of the scaled data 78

24 Comparison the MDE of different fine-tuned model 81

25 Comparison the RMSE of different fine-tuned model 81

vi

doi:10.6342/NTU202203944

LIST OF FIGURES

1 Scenario . 4

2 Hidden Markov model . 5

3 Naive recurrent neural network . 8

4 Long short-term memory cell . 9

5 Gated Recurrent Unit . 10

6 Training process of GAN . 11

7 LTE CRS whitin a subframe . 17

8 Using mutual information to calculate the importance for features . 20

9 The domain 3 phase distribution and the phase difference distribution 20

10 Loss function comparison for features scaling 21

11 Support vector machine . 22

12 Architecture of fully connected neural network 23

13 The 1st to 50th real part of LTE CSI in three collection positions . . 25

14 1D Convolutional neural networ . 26

15 Architecture of the multi-input convolutional neural network 27

16 Fusion network . 28

17 Architecture of MISO LSTM model 29

18 Architecture of MIMO LSTM model 30

19 Architecture of stack RNN . 31

20 DL-RNN . 32

21 8-fold cross validation . 34

22 (a) is a base station and (b) is a roamer 34

23 Experimental scenario . 35

24 The trajectories of data collection 37

25 CDF of model . 38

26 CDF of different model with MSE and cross entropy 39

27 Comparison the average MDE of model with or without label smooth-
ing . 40

vii

doi:10.6342/NTU202203944

LIST OF FIGURES viii

28 Comparison the average MDE of model with or without phase dif-
ference . 41

29 Comparing the average MDE of the different cascaded models . . . 42

30 Comparing the average RMSE of the different cascaded models . . . 43

31 Comparison of performance for different RNN input features 44

32 Data selection approach for training generative model 47

33 Architecture of Variational auto-encoder 48

34 Illustration of model fine-tuning . 49

35 Illustration of layer transfer . 50

36 Illustration of Child-tuning . 52

37 Comparing the MDE with or without phase difference scaler 53

38 The BL114 localization system deployment 57

39 The trajectories of domain 2 data 59

40 Floor plan of BL5F corridor . 60

41 The trajectories of domain 3 data 61

42 Comparison the MDE with fake data, 1 trajectory dataset 62

43 Simulated data analysis . 63

44 Comparison the MDE with different amount of fake data, 7 trajec-
tory datasets . 63

45 Simulated data analysis . 64

46 Comparing the MDE with fake data generated by VAE 64

47 Analysis of simulated data generated by VAE 65

48 Loss curves of the testing data under different conditions 66

49 Comparing the MDE of the models under the different conditions . 67

50 Comparing the MDE of the CNN model with regularization 68

51 Comparing the MDE of the SLN model with regularization. 69

52 Comparing the MDE of the model with different layers transfer . . 69

53 Comparing target CNN and fine-tuned CNN 70

54 Model output and label distribution confusion matrix 71

55 Comparing with or without different Random Sampling methods . . 72

56 Data visualization for domain 1 and domain 2 72

57 Confusion matrix of domain 1 model prediction 73

doi:10.6342/NTU202203944

LIST OF FIGURES ix

58 Comparing the model performance of adding phase difference 74

59 Comparing the performance with target model and fine-tuned model 75

60 Comparing the average MDE for continual learning 76

61 Comparing the average MDE for Child-tuning 77

62 The distributions with different scaler 79

63 Comparing the MDE with different scaling range of MinMax scaler 80

64 Comparing the average performance for fine-tuned methods 82

65 Cross validate in domain 1 data . 83

66 Comparing the distributions of domain 1 and domain 3 84

67 Comparing the MDE of the CNN train on dm1 modified feature . . 84

doi:10.6342/NTU202203944

CHAPTER 1

INTRODUCTION

With the development of robotics, more and more robotics applications are be-

ing developed, such as smart factories, disaster relief, robot delivery, smart ware-

houses, etc. These applications are built on a high-accuracy localization system,

and these applications need to track the exact location of the robots. According

to industry 4.0 requirements, accurate arrival at the exact location to avoid wast-

ing time is an important part of smart factory operation. Therefore, sub-meter

indoor localization has become the standard for a localization system. Localiza-

tion can be divided into outdoor positioning and indoor positioning. For outdoor

localization, GNSS and GPS systems are a good solution to meet the demand for

high-accuracy localization. Indoor localization does not have a standard approach

or system; GNSS and GPS signals are unavailable for the indoor environment,

and the indoor environment is more complex and prone to signal interference.

Therefore, sub-meter indoor localization is still full of challenges.

There are many papers discussing radio-based indoor localization technologies,

including Wi-Fi, Ultra Wideband (UWB), Zigbee, Bluetooth, mobile network, etc.

Although these devices can achieve indoor positioning, not all of them provide high

accuracy. Wi-Fi, Zigbee, and Bluetooth use an open bandwidth band, and signal

interference in this bandwidth is usually the greatest. In addition, the coverage

area must also be taken into consideration, as the transmission distance of UWB is

small (< 30 meters), which makes the UWB localization system expensive. Zigbee

and Bluetooth use small bandwidth and transmission power, and more interference

in the frequency band is not suitable for localization. In summary, we consider

the mobile network as our radio localization platform. With the development of

5G, the mobile network has a great improvement, such as multiple antennas, large

bandwidth, beamforming technology, etc. The mobile network has great potential

to provide a high precise localization accuracy.

According to different algorithms, the localization system can be divided into

ranging-based and learning-based approaches. The Ranging-based localization

approach includes angle of arrival (AoA), time difference of arrival (TDoA), and

time of arrival (ToA), all of which require several base stations to work together,

and the system are easily affected by the environment. In additional, the ranging-

based system can not be applied in a non-line-of-sight (NLoS) environment. With

1

doi:10.6342/NTU202203944

2

the rapid development of artificial intelligence, the learning-based localization ap-

proach has become a new solution. The learning-based localization system does

not require several base stations for localization. In addition, the learning-based

localization system is resistant to noise interference. However, there are some

challenges for the learning-based localization system.

For a learning-based localization system, localization deployment is an impor-

tant part, which includes building fingerprint datasets, model training, etc. The

fingerprint collection method can be broadly divided into a fixed-point collection

or walking collection. Fixed-point fingerprint collection can facilitate fingerprint

labeling. However, the fixed-point collection method makes the fingerprints col-

lected at the same location highly correlated, which makes the model overfitting

easily. Therefore, the walking collection method becomes our choice, but this

method makes labeling fingerprints difficult. Therefore, we combine the SLAM

algorithm to assist in fingerprint labeling. There is another problem for finger-

print collection. Fingerprint collection is a labor-intensive and time-consuming

task. The localization system can generate 20 fingerprints every second, and it

takes about 10 minutes to collect a trajectory dataset. The collection task includes

the setting of turtlebot3 and the setting of the computer. After walking around,

we had to spend 20 minutes charging the turtlebot3. In our experiment, it took

about 4 hours to collect 8 trajectory datasets. Collecting fingerprints is a very

time-consuming task.

To save the cost of collecting fingerprint datasets, we propose a transfer learning

approach that uses an existing localization system to improve the performance of

the target domain system. The contributions of this thesis are as follows:

1.) We have built a system that combines robots with LTE base stations.

This system is able to collect LTE radio features while moving. The coordinates

obtained by SLAM algorithm are used to assist in labeling the fingerprints.

2.) We apply the transfer learning method to improve the localization perfor-

mance of the target domain.

3.) For the localization system, we use LTE subcarrier amplitudes and sub-

carrier phase differences as input features and propose to use the MICNN-RNN

model to optimize the localization system.

4.) Analyze the effect of feature distributions on the fine-tuning model and

target model.

The rest of this thesis is as follows: Chapter 2 introduces the localization

system, related works, robot setup, LTE setup, and machine learning related work.

Chapter 3 explores the accuracy of different localization models and introduces

our experimental approach and proposed our localization system. The main focus

doi:10.6342/NTU202203944

3

of this thesis is how to get better indoor localization performance with a little site

survey, which will be described in Chapter 4. We try to apply data augmentation

and transfer learning to achieve this goal in Chapter 4. We also analyze the effect

of feature distribution on the performance of the model in Chapter 4. In Chapter

5, we evaluate the approach which will described in Chapter 4 with the different

amount of domain trajectory datasets. Finally, we summarize our works in this

thesis and suggest some possible approaches in 6.

doi:10.6342/NTU202203944

CHAPTER 2

RELATED WORK

2.1 System Introduction

Figure 1 shows a typical indoor scenario. Generally, the environment can be

divided into several cells to form the cell set Sc = ci|i = 1, 2, .., l, where l is the

number of cells.cj center position is defined as pj = (xj, yj). In addition, we want

to locate the object position on the map at time t as pt = (xt, yt) and define the

instantaneous motion data of the object at time t as ut.

In the case of indoor tracking, the motion data of the object is usually able to

improve the accuracy significantly. In our scenario, the object is equipped with a

soft defined radio capable of receiving the LTE signal and extracting the channel

information state from the reference signal of LTE as the feature. We consider the

cell-specific reference signals (CRS) as the reference signals to extract the vectors

νt, which are described in detail in Section 3.1.1.

base station

1 m

1 m

door

Figure 1: Scenario

2.1.1 Problem Formulation

Figure 2 shows a hidden Markov model (HMM), where xt represents the hidden

state of the tracker, zt represents the observed state at time t, and ut is the

control signal at time t. In this thesis, xt represents the object position Pt, and zt

represents the observed CSI vector H(Pt) when the hidden state is xt, and ut is our

4

doi:10.6342/NTU202203944

2.1. SYSTEM INTRODUCTION 5

measured motion data vt. From the observation of Figure 2, we are available to

derive the formula to simulate the real tracking problem, the formula is as follows,

xt = g(xt−1, ut) + nt, (2.1)

zt = h(xt) +mt, (2.2)

where g() represents the process function, and h() represents the measurement

function, and nt and mt represent the process noise and measurement noise re-

spectively.

𝑥𝑡−1...... 𝑥𝑡 𝑥𝑡+1

𝑢𝑡−1 𝑢𝑡 𝑢𝑡+1

𝑧𝑡−1 𝑧𝑡 𝑧𝑡+1

Figure 2: Hidden Markov model

Following the Equation (2.2), considering the case of the time point t, we

expect to find a transition function ĥ() that leads to the following equation,

P̂t =

∫
ĥ(zt) ∗ p(zt)dzt, (2.3)

where p(zt) represents the probability density function, and the expected value

of that equation is the estimated position. It is also desired that the derived P̂t

achieves the following objective function,

min
ĥ()

1

M

M∑
t=1

||Pt − P̂t|| (2.4)

s.t. Eq.2.3

Pt, P̂t ∈ A, ∀t ,

where A denotes the feasible tracking area.

doi:10.6342/NTU202203944

2.2. ROBOT SETUP 6

The above discussed how to use the observed state at a single time point to

estimate the position. The following discusses the help of obtaining the continuous-

time series observation states and the motion data for tracking. The objective of

tracking is able to obtain a belief probability distribution when we use the existing

observation states and measurement data, as follows,

f(xt|z1:t, u1:t),

where u1:t and z1:t represent motion data sequence and observed state sequence,

respectively. In general, the traditional method use particle filter and Kalman

filter to estimate the hidden state, in the case of the great progress of artificial

intelligence, we try to find a function ĝ() as follows,

x̂t = ĝ({ĥ(zi), i = 1, 2, 3,t}), (2.5)

where {ĥ(zi), i = 1, 2, 3,t} represents the sequence z1:t individuals after the

transformation function ĥ(). By using this transformation function ĝ(), several

data can be combined to form the belief probability distribution, and the expected

value of that, P ′
t , can be more accurate than P̂t estimated by a single observation,

and the following objective function,

min
ĝ()

1

M

M∑
t=1

||Pt − P̂ ′
t || (2.6)

s.t. Eq.(2.5),

Pt, P
′
t ∈ A,∀t.

According to the objective Equation (2.4) and Equation (2.6), it is difficult

to find ĥ() and ĝ() by using traditional mathematical models. Due to the de-

velopment of artificial intelligence, it is possible to use neural network models to

describe ĥ() and ĝ().

To sum up, we divide the tracking problem into two problems, one is to estimate

the position from the features at a single time point, and the other is to use time-

series data to improve the tracking accuracy. In the next chapter, we introduce

various models for the tracking problem and propose models based on the features.

2.2 Robot Setup

2.2.1 Robot Operating System (ROS)

With the development of robot technology and scale, the programming soft-

ware for robots is a difficult task. Different robots often have different hardware

requirements, which makes it difficult to reuse software. Traditionally, manag-

ing a robot requires managing drivers, protocols, abstraction management, and

doi:10.6342/NTU202203944

2.3. LTE SETUP 7

more. The Robot Operating System was developed to make robot development

and management easier. The ROS [1] is not an operating system, but a software

platform that can communicate between the operating system and the code. ROS

also provides some tools and libraries for data transmission. We use the SLAM

library which is provided by ROS to obtain maps, moving track, and LTE CSI.

2.2.2 Simultaneous Localization and Mapping

Simultaneous Localisation and Mapping (SLAM) use data from sensors to

calculate its position and trajectory in an unknown environment. SLAM algo-

rithms can continuously construct and update spatial information in two or three

dimensions. Turtlebot3 offers two SLAM algorithms, GMapping [2] and Cartog-

rapher [3]. We mainly use Cartographer in our application. Cartographer is a

graph-based SLAM algorithm that can support 2D or 3D maps and supports

multiple sensors. Cartographer is a subgraph-based construction method, so it

is effective to reduce environmental disturbances. We use Cartographer to calcu-

late the relative movement coordinates of objects which are manually corrected to

become our data labels.

2.2.3 Turtlebot3

Turtlebot3 [4] is a small, affordable, programmable, ROS-based mobile robot

for education, research. The goal of Turtlebot3 is to significantly reduce the size

and price of the platform without compromising its functionality and quality while

providing scalability. Turtlebot3 is capable of running SLAM in its entirety and

the SLAM algorithm helps us to collect data for indoor tracking applications.

2.3 LTE Setup

2.3.1 Software Defined Radio

Traditional radio systems can transmit and receive signals through compo-

nents such as amplifiers, detectors, modulators, demodulators, filters, and mixers.

Software Definition Radio [5], as the name implies, uses software settings to trans-

mit and receive data. Compared to commercial base stations, SDRs allow us to

dynamically configure different protocols or transmission settings.

2.3.2 OpenAirInterface

Openairinterface (OAI) is a fully open-source experimental platform created by

EURECOM to enable the innovation and development of mobile communication

networks. The functionalities of the transceiver include base station, access point,

mobile terminal, and core network. These functionalities are mainly performed

doi:10.6342/NTU202203944

2.4. RELATED WORK ABOUT MACHINE LEARNING 8

by the computer through software. OAI provides a complete implementation of

all elements of LTE, including user equipment (UE), eNodeB (eNB), and core

network. The software implementation of OAI is fully compliant with 3GPP LTE

protocol standards. OAI can build emulated physical layer links and use them on

the same computer, and OAI can also build actual radio channels via SDR.

2.4 Related Work about Machine Learning

2.4.1 Recurrent neural network

In many applications such as voice, text, video, etc., use sequential features as

input of the ML model. Compared to DNN and CNN which use a single text or

image as input features, recurrent neural network(RNN) uses sequential features

to obtain better performance.

For vanilla RNN, given a sequence [x1, x2,, xn] as model input, a sequence

output [y1, y2,, yn] can be derived iteratively from the function, as in the fol-

lowing equation,

ht = σ(Whxt + Uhht + bh), (2.7)

yt = σ(Uyht + by), (2.8)

where Wh, Uh, bh, Uy are the weights and bias learned from the dataset, ht denotes

the hidden state at time point t, σ is activate function. From Figure 3, we can see

that the output is not only related to the input at the current time point, but the

inputs of the previous time also affect the output of the current time point.

Figure 3: Naive recurrent neural network

doi:10.6342/NTU202203944

2.4. RELATED WORK ABOUT MACHINE LEARNING 9

2.4.1.1 Long Short-Term Memory

Since there is a gradient vanishing problem about vanilla RNN, it is difficult

to save the information in the inputs at earlier time points, and the hidden state

of vanilla RNN usually stores the data close to the adjacent output time points.

Compared with vanilla RNN, Long short-term memory (LSTM) solves the problem

that RNNs cannot learn long-term memory. The LSTM Cell is as follows Figure

4, one LSTM cell contains two states, three gates.

forget gate

cell state

input gate output gate

Figure 4: Long short-term memory cell

The function at each step is defined as follows:

ft = σ(Wfxt + Ufht−1 + bf),

it = σ(Wixt + Uiht−1 + bi),

ot = σ(Woxt + Uoht−1 + bo),

gt = tanh(Wgxt + Ught−1 + bg),

ct = ft ⊙ ci−1 + it ⊙ gt,

ht = ot ⊙ tanh(ct),

where σ and tanh represent the sigmoid function and hyperbolic tangent function,

W ,U and b are trained matrix and bias, ht and ct denote the hidden state and cell

state. Compared with vanilla RNN, LSTM has an additional long-term memory

ct to solve the problem of gradient vanishing.

2.4.1.2 Gated Recurrent Unit

Although LSTM solves the vanilla RNN, the slow execution speed is also the

drawback of LSTM. The concept of Gated Recurrent Unit (GRU) was proposed

doi:10.6342/NTU202203944

2.4. RELATED WORK ABOUT MACHINE LEARNING 10

in [6], where the forget gate and input gate were combined into the update gate,

and the cell state and hidden state were combined. Therefore, the weight number

of GRU is less than LSTM to reduce execution speed. The accuracy of GRU is

better than LSTM when trained with specific datasets.

reset gate update gate

Figure 5: Gated Recurrent Unit

The calculation process is as follows:

rt = σ(Wrxt + Urht−1 + br),

zt = σ(Wzxt + Uzht−1 + bz),

h̃t = tanh(Wxt + rtUht + bh),

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t.

Both GRU and LSTM use the concept of gates, while LSTM uses forget gate and

input gate to control the deletion of memory and update of input, GRU only uses

update gate to do so. The LSTM output data is generated by the tanh function

and the output gate, and the GRU uses the update gate to control the output.

2.4.2 Generative Adversarial Network

Generative adversarial networks (GAN) were proposed by Goodfellow et al. in

2014.GAN achieves unsupervised learning through a set of model adversaries.GAN

is mainly composed of two models, discriminator, and generator. The learning goal

of the discriminator is to detect whether the data is real or not, while the learning

goal of the generator is to generate data that can fool the discriminator. During

the adversarial process, the two models improve their capabilities together.

Figure 6 shows the training process of generator and discriminator. From

Figure 6(a), we can see that the training process of the discriminator is based on

doi:10.6342/NTU202203944

2.4. RELATED WORK ABOUT MACHINE LEARNING 11

D

G
𝑧

Real data 𝑥
Real

FakeDiscriminator

Generator

D(𝑥)

D(𝐺 𝑧)𝐺 𝑧

(a) Training discriminator process of GAN

DG Real

DiscriminatorGenerator

𝐺(𝑧)𝑧 𝐷(𝐺 𝑧)

(b) Training generator process of GAN

Figure 6: Training process of GAN

doi:10.6342/NTU202203944

2.4. RELATED WORK ABOUT MACHINE LEARNING 12

two kinds of data, fake data and real data. Therefore, the loss function for training

the discriminator can be written as the following equation,

max
D

Ex∼q(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))], (2.9)

where Ex∼q(x)[logD(x)] represents the binary cross entropy of the real data and

Ez∼p(z)[log(1−D(G(z)))] represents the binary cross entropy of the fake data. Gra-

dient descent algorithm to find the minimum value in deep learning applications,

so the function is displayed as follows,

min
D

−Ex∼q(x)[logD(x)]− Ez∼p(z)[log(1−D(G(z)))]. (2.10)

Observe that the loss function of generator from Figure 6(b) is represented as

follows,

max
G

Ez∼p(z)[log(D(G(z)))]. (2.11)

To optimize the function using gradient descent algorithm, the loss function is

written as the following equation,

min
G

−Ez∼p(z)[log(D(G(z)))]. (2.12)

Algorithm 1 Minibatch stochastic gradient descent training of GAN

Require: 1.) The number of steps to apply to the discriminator, k, is a hyper-
parameter. k = 1 is the least expensive option. Output 1) θD is the
parameters of discriminator D ; 2) θG is the parpameters of generator G

1: for t iterations do
2: for k steps do
3: Sample minibatch of m noise sample {z1, z2,, zm} from noise prior

pg(z).
4: Sample minibatch of m example {x1, x2,, xm} from data generating

distribution pdata(x).
5: Update the discriminator by descending its stochastic gradient:

▽θd

−1

m

m∑
i

[logD(xi) + log(1−D(G(zi)))].

6: end for
7: Sample minibatch of m noise sample {z1, z2,, zm} from noise prior pg(z).

8: Update the generator by descending its stochastic gradient:

▽θg

1

m

m∑
i

[log(1−D(G(zi)))].

9: end for

doi:10.6342/NTU202203944

2.5. RELATED WORK 13

2.4.3 Transfer Learning

Transfer learning is used extensively in many research. In the image recognition

field, the convolutional layers in a pre-trained CNN model are often transferred

to a new model as parameters initialization. In natural language research, where

various semantics are highly correlated, the model responsible for semantic dis-

crimination is often transferred to the new model as parameters initialization. The

transfer learning approach enables applications with a small amount of data to

achieve good recognition results, such as few-shot learning [7], and the convolu-

tional layers in a model usually require a large number of models to be trained to

achieve better results, and the use of pre-trained convolutional layers can overcome

the problem of insufficient training data.

According to the learning solution, it is proposed in [8] that transfer learning

can be divided into four approaches, feature-based transfer learning, parameter-

based transfer learning, instance-based transfer learning, and relational-based

transfer learning. This is called instance-based transfer learning, and trAdaboost

[9] is a well-known method to weight the training source data that is similar to the

target domain data. Domain adaptation [10] is a common approach in feature-

based transfer learning, and the source domain data and target domain data are

projected into an approximate feature space to help predict the data in the target

domain. Sharing parameters [11], [12] in the model and transferring parameters

from the source domain model to the target model for fine-tuning [13] is a common

parameter-based transfer learning.

2.5 Related Work

2.5.1 Indoor Localization

There are many different studies in the indoor localization field. There are two

types of positioning methods, the ranging-based method, and the learning-based

method. In this thesis, we mainly focus is on the learning-based indoor localization

method.

2.5.1.1 Localization System

Table 1 shows the related works on the indoor localization system. The features

used for indoor localization are applied according to different wireless technologies.

The received signal strength indicator (RSSI) is a common used feature, which

is common in Bluetooth, Wi-Fi, and Zigbee, as mentioned in [14], [15]. RSSI is

quantified data, and the localization system using RSSI as features usually requires

more base stations to send signals to obtain a better localization accuracy. Channel

doi:10.6342/NTU202203944

2.5. RELATED WORK 14

System Architecture Technique Feature Accuracy

SLN + FN [16] DNN LTE CSI amplitued 0.47 m

SDR-Fi [17] 1DCNN Wi-Fi CSI amplitude 0.99 m

MT Hoang [14] LSTM Wi-FI RSSI 4m

X. Peng [18] WKNN Wi-Fi CSI amplitude 2.18 m

PhaseFi [20] RBF Wi-Fi CSI phase 1.08 m

G. Pecoraro [21] WKNN Wi-Fi CSI+RSRP 0.14 m

Y. Zhang [19] LSTM Wi-Fi CSI amplitude + CSI calibration phase 1.03 m

DL-RNN [15] LSTM Wi-Fi RSSI 3.0556 m

Proposed method 1DCNN + LSTM LTE CSI amplitude + CSI phase difference 0.879 m

Table 1: Environmental adaptation

state information is the channel response, which reflects the energy changes and

phase changes between reception and transmission. The real part of CSI is used

as a feature mentioned in [16], [17], [18], [16]. The phase part of CSI is mixed

with some noise, but it still provides some information that requires additional

processing, as mentioned in [19]. In LTE systems, the real part of CSI represents

the amplitudes of the subcarriers and the imaginary part of CSI represents the

phases of the subcarriers. We use the amplitude and phase difference of the

subcarriers as inputs to our positioning model. In addition, the model can obtain

the better localization accuracy, so there are some similar approaches mentioned

in [16], [14], [19], [15]. We use trajectory datasets as training data and test data,

and the data is continuous in time, so we use LSTM to fuse the data in the time

domain.

2.5.1.2 Environmental Adaptation

Environmental adaptation is a topic of indoor localization. Environmental

adaptation can be divided into two main situations, adaptation in the same

field [22] and system adaptation in a different field [23]. The localization system

in a site is not always applied to the same site. Temperature, humidity, and envi-

ronmental changes can affect the features received. Therefore, the learning-based

indoor localization system needs to be adjusted at intervals. The main purpose

of adapting to the environment in different fields is to reduce the cost of system

deployment. Fingerprint collection for indoor localization is a labor-intensive and

time-consuming task. Some papers propose to use trajectory data for labeling

data [24], [25]. The use of a transfer learning approach is a novel approach to

deploy a localization system with a complete site survey to a new field.

In [23], the authors propose a transfer learning method based on clustering

algorithms (e.g., K Nearest Neighbor algorithm) that can effectively transfer a

localization system with the complete site survey to the target domain with a

small amount of training data. However, the method proposed in [23] is still

doi:10.6342/NTU202203944

2.5. RELATED WORK 15

somewhat limiting for the deep learning model. We explore how to transfer the

model based on the deep learning model into a target domain localization model.

doi:10.6342/NTU202203944

CHAPTER 3

LEARNING-BASED INDOOR

LOCALIZATION

3.1 Feature

3.1.1 LTE Subcarrier Amplitude

In this thesis, we consider the use of a frequency division duplexing (FDD)

system. The base station is equipped with a Mac Pro which connected to a

software-defined terminal and implements OpenAirInterface (OAI), while the UE

is a turtlebot3 with an Up board and USRP B210. Also it implements OAI.

The UE obtains the LTE subcarrier channel response from the CRS which is

transmitted by the base station. It is referred to as the LTE CSI.

For tracking methods that require fingerprints on offline phase, the UE is

usually used to collect fingerprints at the center of each cell, which has the disad-

vantage of requiring a large cost to build the fingerprint dataset. Another mode of

fingerprint collection is also widely discussed it is about algorithms or instruments

to obtain a higher accuracy of the object’s path trajectory and receiving reference

signals while the object is moving. In this thesis, we use the SLAM algorithm of

ROS to obtain accurate map information and transform it as the ground truth

of the training data, and label the data as the cell where it is located. Figure

7 shows a resource block in a typical LTE subframe, the interval space between

each adjacent subcarrier is 15 kHz, a time slot contains seven OFDM symbols, a

symbol can span 12 consecutive subcarriers, where each base station will be fixed

time to send cell-specific reference signal(CRS), this signal is used to measure CSI.

Given collection location Pt and time slot t, we can obtain CSI from the nth

transmit antenna at the ith subcarrier, is given by

hn
i (Pt) = |hn

i (Pt)|ej∡h
n
i (Pt),

where |hn
i (Pt)| and ∡hn

i (Pt) represent amplitude and phase, respectively. The

phase part is more likely to be disturbed by the angle of incidence, diffuse radiation,

etc. In this thesis, the component vectors of the CSI real numbers are used as

16

doi:10.6342/NTU202203944

3.1. FEATURE 17

Figure 7: LTE CRS whitin a subframe

follows,

H(Pt) =


|h1

crs1
(Pt)| |h1

crs2
(Pt)| ... |h1

Nc
(Pt)|

|h2
crs1

(Pt)| |h2
crs2

(Pt)| ... |h2
Nc
(Pt)|

...
...

|hNt
crs1

(Pt)| |hNt
crs2

(Pt)| ... |hNt
Nc
(Pt)|

 ,

where Nt and Nc denote total number of transmit antennas and CRSs, CRSk

represent the kth CRS, Pt denotes the location where the fingerprint are collected.

The H(Pt) vector depends on the number of transmission and reception ports

and the number of resource blocks according to the transmission bandwidth. In

addition, we also do not consider the imaginary part as a feature, because the

phase is more susceptible to noise interference and random jitters. In the case of a

10 MHz transmission bandwidth, 50 resource blocks are used, given one antenna

port, N = 200(25RBs × 2CRS × 2positions × 2receiveport) CRSs are used to

estimate the complex channel gain.

Ideally, the observed value H(Pt) mainly depends on the location [16], and

some other factors have a relatively small influence, such as the orientation of the

object facing [26], environment changes, etc.

3.1.2 LTE Phase Difference

In most of the positioning systems use CSI as model input feature. The real

part of CSI is used as the model input. The real part of CSI represents the energy

of the received subcarriers, but the real part of CSI is susceptible to environment,

doi:10.6342/NTU202203944

3.1. FEATURE 18

temperature, humidity, antenna gain, etc. When the real part of CSI is used as

a feature vector, the elements in the vector are more correlated with each other.

Although using the real part of CSI as model input can achieve good performance,

it is still limited. Therefore, we started to find ways to extract more features from

CSI as model inputs.

First, we can write the channel response as the following equation,

H(f) =
n∑

i=1

|hi(f)|ej∡hi(f), (3.1)

where hi(f) represents the channel response of the ith subcarrier. We obtain

CSIr = [|h1(f)|, |h2(f)|,, |hn(f)|] and CSIi = [∡h1(f),∡h2(f),,∡hn(f)]

vectors according to Equation (3.1).We have already discussed the real part vector

CSIr in Section 3.1.1, so we focus on the imaginary part vector CSIi here. We

write the phase part more carefully. It can be written as the following equation,

which is given by [27], [28], [29],

∡hi(f) = ∠hi(f) + (λs + λp)mi + λc + β + Z, (3.2)

where ∠hi(f) represents the true phase value of the ith subcarrier, and λs, λp, λc

are the phase shift due to sampling frequency offset, the symbol offset, and carrier

frequency offset, mi is the subcarrier index of subcarrier i, β is the initial phase

offset due to phase-locked loop, Z is the AWGN with variance σ2. The phase

errors can be written in the following form,

λp = 2π
∆t

N
, λs = 2π(

T ′ − T

T
)
Ts

Tµ

n, λc = 2π∆fTsn, (3.3)

where ∆t is the symbol boundary delay, N is the FFT size, T ′ and T are the sam-

pling periods at the receiver and the transmitter, Tµ is the data symbol length, Ts

is the symbol length with the guard interval, ∆f is the carrier frequency difference

between the transmitter and receiver, n is the time offset.

We obtain the phase difference of the adjacent subcarriers which can be written

as the following equation,

∆∡hj−i(f) = ∆∠hj−i(f) + (λs + λp)∆mj−i + Z, (3.4)

where ∆mj−i is the index difference of the adjacent subcarriers in cell-specific

signals. We know from Figure 7 that ∆m is a fixed value. We can also write the

true phase difference ∆∠hj−i(f) as the following equation,

∆∠hj−i(f) = 2π(fj − fi)τ, (3.5)

where τ is a propagation delay, fj and fi are two adjacent subcarriers. In our

system, we use CRS as the reference signal, so the adjacent subcarriers interval

doi:10.6342/NTU202203944

3.1. FEATURE 19

is a fixed value 75kHz if transimission mode is one. However,in our system, even

if the two furthest points are only within 10 meters of each other, the phase

difference will not vary too much. We decided to use the phase difference vector

as an input to the model. Finally, we can obtain a additional vector CSIdp =

[∆∡h1(f),∆∡h2(f),,∆∡hN−1(f)] as model input feature.

3.1.3 Feature Analysis

In this thesis, LTE 200 subcarrier amplitudes are used as model inputs. The

199 phase difference values are obtained by subtracting the 200 subcarrier phase

values adjacent to each other. We use the Mutual information method [30], [31] to

calculate the importance of features for labels. We classify the features extracted

from LTE CSI raw data into six categories. The first 100 elements of the CSI raw

data are those that have undergone antenna gain. Therefore, we divide LTE CSI

subcarrier amplitudes into two categories, the first 100 subcarrier amplitudes, and

the last 100 subcarrier amplitudes. We also take phases from the LTE CSI raw

data for comparison and divide them into the phases of the first 100 subcarriers

and the phases of the last 100 subcarriers. There are a lot of uncertainties in the

phase data, which are described in detail in Section 3.1.2. We extract the phase

difference from the phases for comparison. The importance of these six on the

positioning accuracy is shown in Figure 8.

From Figure 8, the best features for predicting the position are the real part of

the first 100 subcarriers, which have undergone antenna gain and can show more

subtle channel variations. The last 100 subcarriers have no antenna gain, but

the real part of the last 100 subcarriers still give some slight improvement in our

experiments. Observe from the Figure 8 that the phase of the subcarriers should

also provide some useful information, but the phase of the subcarriers is actually

more uncertain. Figure 9 shows a phase difference and the phase distribution.

The phase difference is less uncertain than the phase, so we expect the phase

difference to provide more information and reduce confusion for the model. From

Figures 8, it is observed that the phase difference can provide information about

the distance between the observation point and the base station,and the random

offsets are subtracted from phase.

3.1.4 Feature Normalization

In this section, we discuss the input data we use, the feature scaling is also an

important part of training the model. Using the data without scaling will cause the

contour of the loss function to be elliptical. The gradient direction is perpendicular

to the contour line, which may cause the gradient to fall in a direction other than

doi:10.6342/NTU202203944

3.1. FEATURE 20

CSI_1 CSI_2 phase_1 phase_2 dif_phase_1 dif_phase_2
0.00

0.05

0.10

0.15

0.20

0.25
Fe

at
ur

e
im

po
rta

nc
e

(a) Feature selection for label

CSI_1 CSI_2 phase_1 phase_2 dif_phase_1 dif_phase_2
0.00

0.05

0.10

0.15

0.20

Fe
at

ur
e

im
po

rta
nc

e

(b) Feature selection for position x-axis

CSI_1 CSI_2 phase_1 phase_2 dif_phase_1 dif_phase_2
0.00

0.05

0.10

0.15

0.20

0.25

Fe
at

ur
e

im
po

rta
nc

e

(c) Feature selection for position y-axis

Figure 8: Using mutual information to calculate the importance for features

0°

45°

90°

135°

180°

225°

270°

315°

5
10

15
20

25
30

35

Figure 9: The domain 3 phase distribution and the phase difference distribution

doi:10.6342/NTU202203944

3.2. MODEL FOR SNAPSHOT FEATURES 21

the local minimum, as shown in Figure 10. Training the model without feature

scaling will cause the model to take more time to converge or even fail to converge.

The common feature scaling is normalization and standardization respectively.

Gradient descent without scaling Gradient descent with scaling data

Figure 10: Loss function comparison for features scaling

normalization is given by the following equation,

Xnorm =
X −XMax

XMin −XMax

, (3.6)

normalization scales the data equally between 0 and 1. The formula for standard-

ization is as follows,

Xstd =
X − µX

σX

, (3.7)

standardization scales the data into distribution with a mean and standard devi-

ation of 1. In our experiments, the results with normalization or standardization

are comparable, but they are far better than the results without data scaling.

3.2 Model for Snapshot Features

In Section 2.1.1, we describe the tracking problem into two objective functions.

The first one is to find an ideal function, which can predict the most accurate result

based on snapshot features. Such a concept allows us to consider this problem as

an indoor localization problem. The localization application based on the learning

method often uses snapshot features to predict the corresponding coordinates. The

second objective function is to predict the coordinates of tracking objects using

sequence data. In this chapter, we will introduce some methods of indoor tracking

that are proposed for fingerprints.

doi:10.6342/NTU202203944

3.2. MODEL FOR SNAPSHOT FEATURES 22

3.2.1 Support Vector Machine

The support vector machine (SVM) is the statistical learning-based supervised

algorithm that separates two or more different clusters by finding a hyperplane.

The goal of the SVM algorithm is to find a separating line that is as far apart as

possible on the boundary so that the model is more resistant to noise. In general,

the actual classification problem is more complex than two-dimensional, and it

is not easy to find a linear answer. The kernel function can map the data to a

higher-dimensional space and then do the partitioning.

Support vector 𝑥1

𝑥2

Maximum margin hyperplane

Figure 11: Support vector machine

3.2.2 K Nearest Neighbors Algorithm

The K-nearest neighbors algorithm (KNN) is an early learning method which

is commonly used in learning-based localization applications (e.g., [21]). KNN

algorithm contains two components. One is to find the k-nearest neighbors. As

a result, the distance between the test feature and the reference features must be

calculated. And the other is to determine the label of the test fingerprint by the

votes of the k-nearest neighbors.

The fingerprint distance is defined as follows,

FD(TF,RFi) =
1

n

n∑
k=1

|vk − vik|,

where TF and RF i are defined as TF = [v1, v2,, vn] and RF i = [vi1, v
2
1,, v

i
n].

KNN algorithm can find out the nearest K reference points according to the finger-

print distance between test fingerprint and all reference fingerprints.In the case of

KNN algorithm, the label of test fingerprint is decided by the vote of the nearest

doi:10.6342/NTU202203944

3.2. MODEL FOR SNAPSHOT FEATURES 23

K RPs. In the case of weighted KNN, the weights are averaged according to the

fingerprint distances between TF and RF, and the formula is as follows,

(xp, yp) =

∑k
i=1

1
FD(TP,RPi)

(xi, yi)∑k
i=1

1
FD(TP,RPi)

,

where (xi, yi) are the coordinates of the ith nearest RP.

3.2.3 Fully Connected Neural Network

┊
┊ ┊

┊

. . .

. . .

hidden 1 hidden n

Dense 256,
act = relu

output,
act = softmax

Figure 12: Architecture of fully connected neural network

Figure 12 is a multi-layer perceptron architecture, proposed in [16], using the

snapshot LTE CSI vector H(Pt) as the model input. The output of the SLN model

is a weight vector ω = [w1, w2, w3, ..., wNcell
], where wi ∈ [0, 1), i = 1, 2, ..., Ncell,

satisfied the following condition,
∑Ncell

i=1 wi = 1. In the SLN model, the rectified

linear unit (Relu) is used as the activation function of the hidden layer and the

softmax is used as the activation function of the model output layer.

The general solution for localization is directly picking up the reference point

coordinates corresponding to the largest weight of model output as predicted re-

sults. To improve the accuracy of the neural network model, the combination of

weights and reference point coordinates is used as a predicted result of the neural

network model by the following equation,

p̂ =

Ncell∑
i=1

wi ∗ pi, (3.8)

where pi is the coordinate of the i
th reference point. The SLN structure is shown in

Table 2. We modify the architecture in the experiment in an attempt to improve

doi:10.6342/NTU202203944

3.2. MODEL FOR SNAPSHOT FEATURES 24

layers SLN

Input Layer 1× 200

Layer 1 Dense 256 + Dropout 0.3, Activate function Relu

Layer 2 Dense 256 + Dropout 0.3, Activate function Relu

Layer 3 Dense 256 + Dropout 0.3, Activate function Relu

Layer 4 Dense 256 + Dropout 0.3, Activate function Relu

Output Layer 1×NRPs, Activate function Softmax

Loss function Cross Entropy

Table 2: Layer of SLN model

the accuracy of the FCNN model. Details of the experiment are given in section

3.4.4.

3.2.4 One-Dimensional Convolutional Neural Network

Before proposing our model for snapshot data, we would like to discuss the

LTE CSI vector. Each element of the LTE CSI vector corresponds to the channel

response of a subcarrier, so the vector is expressed as follows,

h(Pt) = [a1e
−j2πf1∆t, a2e

−j2πf2∆t, ..., aNce
−j2πfNc∆t], (3.9)

where fi represents the frequency of the ith subcarrier and ai represents the am-

plitude of the ith subcarrier which is received at the receiving end, and the vector

conforms to the following inequality, f1 < f2 < ... < fNc . Then the free-space

path loss formula is known as follows:

L(dB) = 20log10(
4πdf

c
), (3.10)

where c represents the speed of light, d represents the propagation distance, and

f represents the carrier frequency, from the formula we know that the frequency

level and propagation distance will affect the power consumption. Ideal, for radio

propagation, the low frequency level transmit with less loss power loss than hight

frequency level, so it’s know that a1 ≥ a2 ≥ ... ≥ aNc holds. In the actual

case, there are usually some effects such as non-line of sight, interference, etc.,

and there are some patterns in the vector that are learned, such as the yellow

line in Figure 13. The yellow line shows that the interference also affects the

smoothness of the curve. In addition, the distance between UE and BS also affects

the difference of amplitude between two neighboring subcarriers, mainly because

the higher frequency subcarrier propagates over a long distance, resulting in more

amplitude degradation, as in the case of the blue and red lines in Figure 13. Based

doi:10.6342/NTU202203944

3.2. MODEL FOR SNAPSHOT FEATURES 25

layers 1DCNN

Input Layer 1× 200× 1

Layer 1 Conv1D(128, 6, 3, ’relu’) + MaxPool1D(3, 1) + Flatten

Layer 2 Dense 512 + Dropout 0.3, Activate function ReLU

Layer 3 Dense 512 + Dropout 0.3, Activate function ReLU

Layer 4 Dense 512 + Dropout 0.3, Activate function ReLU

Layer 5 Dense 512 + Dropout 0.3, Activate function ReLU

Output Layer 1×NRPs, Activate function Softmax

Loss function Cross Entropy

Table 3: CNN model architectures

on these analyses, we propose the one-dimensional Convolutional Neural Network

(1DCNN) model for the LTE CSI vector.

0 10 20 30 40 50
Subcarrier(f)

40

45

50

55

60

65

Am
pl

itu
de

(d
B)

position 1
position 2
position 3

Figure 13: The 1st to 50th real part of LTE CSI in three collection positions

Figure 14 shows a typical 1D CNN model, which is divided into two parts, one

for feature extraction and the other one for classification or simulation functions.

The feature extraction model consists of a convolutional layer, a pooling layer, and

a flatten layer. The main function of the convolutional layer is to extract useful

features by using a filter, and the convolutional layer can reduce noise and achieve

a sharpening effect. The flatten layer is used for data shape transformation. In

the rest of the model, the fully connected network (FCN) is used. In the 1DCNN

feature extraction model, we mainly consider the classification problem, so the

output uses softmax as the activation function, and the whole model uses cross

entropy as the loss function. The rest of the FCN uses ReLU as the activation

function. We call a 1-dimensional CNN model with one convolutional layer as

1D1LCNN and a 1-dimensional CNN with two convolutional layers as 1D2LCNN.

We will experiment whether 1DCNN increasing the number of convolutional layers

can increase the accuracy of the model.

doi:10.6342/NTU202203944

3.3. TIME DOMAIN DATA FUSING METHOD 26

1D
CNN

…
…

Maxpooling
1D CNN

Maxpooling
+Flatten

Fully connected
Neural Network

softmax

kernel

Flatten
layer

Convolutional
layers

Features maps

Input layer

…
…

Figure 14: 1D Convolutional neural networ

layers MICNN

Input Layer 1× 200× 1 1× 199× 1

layer Conv1D(128, 6, 3, ’relu’) Conv1D(64, 6, 3, ’relu’)

layer MaxPool1D(3, 1) MaxPool1D(3, 1)

layer Flatten Flatten

layer Dense 512 + Dropout 0.3, Activate function ReLU Dense 256 + Dropout 0.3, Activate function ReLU

concatenate layer

Layer Dense 512 + Dropout 0.3, Activate function ReLU

Layer Dense 512 + Dropout 0.3, Activate function ReLU

Layer Dense 512 + Dropout 0.3, Activate function ReLU

Output Layer 1×NRPs, Activate function Softmax

Loss function Cross Entropy

Table 4: Layers of Multi-Input CNN model

3.2.5 Proposed Model

To conclude the previous discussion in section 3.1.2, we use two types of vectors,

one is the vector which is composed of the real part of CSI, here called the real

vector, and the other is the phase difference vector of CSI, here called the phase

difference vector. The real number vectors are 1 × 200 dimension vectors, and

the phase difference vectors are 1 × 199 vectors. We designed a model to obtain

the better performance with these two kinds of vector than the model with real

vectors. The architecture of the model is shown in Figure 15, and Table 4 shows

the parameters of the MICNN.

3.3 Time Domain Data Fusing method

While in the previous section, we explored models for extracting features from

data. In this section, we explore methods that can combine sequence features

which is extracted by the model to do indoor tracking.

doi:10.6342/NTU202203944

3.3. TIME DOMAIN DATA FUSING METHOD 27

convolutional neural network
+ max pooling layer

convolutional neural network
+ max pooling layer

Fully connected neural
network

Flatten layer
+ Dense

Flatten layer
+ Dense

Real part vector
of CSI

Phase difference
vector of CSI

෠𝐿

Figure 15: Architecture of the multi-input convolutional neural network

3.3.1 Fusion Network

Fusion network (FN) is mainly proposed in [16], which is mainly considered

for indoor localization applications, as shown in Figure 16. Although this network

is proposed for indoor localization applications, we believe that when the data

meet some specific conditions, the features with position change in adjacent time

points can help to predict the current position Pt. The prediction obtained from

the output of the extraction model is written as the following equation,

P̂t = ĥ(vt), (3.11)

where vt represent the LTE CSI vector at time point t, the extraction model is

considered as a function ĥ() whose output is the coordinates. And we know from

Equation (2.1) that we can write the relationship between Pt and Pt−1 as the

following equation,

Pt = Pt−1 +∆Pt, (3.12)

where ∆Pt is a variable value that depends on the movement,this equation allows

us to find the relationship between Pt−k and Pt. Under special conditions, ∆Pt

is considered negligible. First, the object does not have any movement. Second,

when the sampling is frequent, the sampling interval is very short, the object

movement does not change much. Third, the object itself does not move fast.

doi:10.6342/NTU202203944

3.3. TIME DOMAIN DATA FUSING METHOD 28

...

...

...

...

Input

Layer1 Layer2 Output

Figure 16: Fusion network

layers FN

Input Layer length× 2

Layer 1 Dense 100, Activate function ReLU

Layer 2 Dense 64, Activate function ReLU

Layer 3 Dense 48, Activate function ReLU

Layer 4 Dense 12, Activate function ReLU

Output Layer 1× 2, Activate function Linear

Loss function Mean square error

Table 5: Layer of fusion network

doi:10.6342/NTU202203944

3.3. TIME DOMAIN DATA FUSING METHOD 29

3.3.2 Recurrent Neural Networks

We use two types of RNN models respectively. The first one is shown in Figure

17, which is a MISO model that combines the RNN outputs to predict the position,

the LSTM cell uses TanH function as the activation function, the FCN uses ReLU

as the activation function, and the loss function is the mean square error. This

model is called SIMO RNN.

Feature 1 Feature NFeature N-1

Bid-LSTM Bid-LSTM Bid-LSTM

……

……

Concatenate layer

Fully connected network

Figure 17: Architecture of MISO LSTM model

The second model is shown in Figure 18. It is a MIMO model in which the

output of the LSTM cell will be calculated by FCN to find the position coordinates.

The second model has the same activate function settings as the first one, but the

difference is that the loss function uses the mean square error for each data output.

This model is called MIMO RNN. The detailed parameters of the two models are

shown in Table 6.

There are some differences between MIMO RNN and MISO RNN. MISO RNN

is using all the timing outputs to predict the output, so the positive timing input

and the inverse timing input helps predict the output of the last timing, while the

MIMO model using the bidirectional model is not very helpful because the hidden

state is zero, representing the inverse timing RNN has no predecessor state to help

predict.

doi:10.6342/NTU202203944

3.3. TIME DOMAIN DATA FUSING METHOD 30

Feature t Feature t+3Feature t+2Feature t+1

FCN FCNFCNFCN

LSTM LSTM LSTM LSTM…… ……

Figure 18: Architecture of MIMO LSTM model

layers MISO RNN

Input Layer Input shape = (batch size, length, feature size)

Layer 1 bidirectional-LSTM(100,layers = 1, dropout = 0.2)

Layer 2 Flatten layer

Layer 3 Dense 512 + Dropout 0.3, Activate function ReLU

Layer 4 Dense 512 + Dropout 0.3, Activate function ReLU

Layer 5 Dense 512 + Dropout 0.3, Activate function ReLU

Layer 6 Dense 512 + Dropout 0.3, Activate function ReLU

Output Layer output shape = (batch size, 2)

Loss function Mean square error

layers MIMO RNN

Input Layer Input shape = (batch size, length, feature size)

Layer 1 LSTM(256, layers = 1, dropout = 0.2)

Layer 2 Dense 512 + Dropout 0.3, Activate function Relu

Output Layer output shape = (batch size, length, 2)

Loss function Mean square error

Table 6: Layer of SIMO and MIMO RNN

doi:10.6342/NTU202203944

3.3. TIME DOMAIN DATA FUSING METHOD 31

Feature t Feature t+3Feature t+2Feature t+1

FCN FCNFCNFCN

LSTM LSTM LSTM LSTM…… ……

LSTM LSTM LSTM LSTM…… ……

መ𝑙𝑡
መ𝑙𝑡+1 መ𝑙𝑡+2 መ𝑙𝑡+3

Figure 19: Architecture of stack RNN

layers Stack RNN

Input Layer Input shape = (batch size, length, feature size)

Layer 1 LSTM(256, layers = 2, dropout = 0.2)

Layer 2 Concatenate layer

Layer 3 Dense 512 + Dropout 0.3, Activate function ReLU

Output Layer output shape = (batch size, 2)

Loss function Mean square error

Table 7: Layer of stack RNN

3.3.3 Stack RNN

The stack RNN is different from the original RNN in that the stack RNN refers

to an RNN with two or more RNN layers, and the RNN of the upper layer will

use the output as the input of the RNN of the lower layer. The architecture is

shown in Figure 19.

3.3.4 DL-RNN

The DL-RNN model is proposed in [15] and the structure of DL-RNN is similar

to that of stack RNN. The DL-RNN model is divided into Location matching RNN

and Location filtering RNN. Location matching RNN is used to learn rough map-

ping relationships between fingerprint and location, and location filtering RNN is

used to obtain a more accurate location. The loss function of DL-RNN is shown

doi:10.6342/NTU202203944

3.4. EVALUATION RESULTS 32

LSTM LSTM LSTM

LSTM LSTM LSTM

Loss function

Location matching RNN

Location filtering RNN

𝑣𝑡
𝑣𝑡−1 𝑣𝑡+1

ℎ𝑡−1

ℎ𝑡−1

ℎ𝑡+1

ℎ𝑡+1ℎ𝑡

ሚ𝑙𝑡−1 ሚ𝑙𝑡 ሚ𝑙𝑡+1

ℎ𝑡−1
′

መ𝑙𝑡−1

ℎ𝑡
′ ℎ𝑡+1

′

መ𝑙𝑡 መ𝑙𝑡+1

Figure 20: DL-RNN

layers DL-RNN

Input Layer Input shape = (batch size, length, feature size)

part of RNN LSTM(256, layers = 1, dropout = 0.2)

part of FCNN Dense 256 + Dropout 0.3, Activate function ReLU

Output Layer output shape = (batch size, 2)

Loss function Weight combination of MSE

Table 8: Layer of DL-RNN

as follows,

λ1

S∑
t=1

||l̂t − lt||+ λ2

S∑
t=1

||l̃t − lt||,

where ||.|| represents the Euclidean distance, the loss function has two parts, and

the weights of these two parts in the loss function are λ1 + λ2 = 1.

3.4 Evaluation Results

3.4.1 Evaluation Criteria

Common criterions for evaluating localization accuracy are: Mean distance

error (MDE) (3.13), Mean Square Error (MSE) (3.14), Root Mean Square Error

(RMSE) (3.15), and Median Localization Error (MLE) (the 50th of the CDF).

doi:10.6342/NTU202203944

3.4. EVALUATION RESULTS 33

MDE =
1

Ns

Ns∑
k=1

||Pk,truth − Pk,pred||, (3.13)

MSE =
1

Ns

Ns∑
k=1

||Pk,truth − Pk,pred||2, (3.14)

RMSE =

√√√√ 1

Ns

Ns∑
k=1

||Pk,truth − Pk,pred||2, (3.15)

where Ns represents the total number of positions predicted from all features.

We also use the cumulative distribution function (CDF) to evaluate the model.

Sometimes, the CDFs are too similar, it is difficult to evaluate the models. The

25th, 50th, 75th, 100th percentile values can be a good description of the CDF. As

a result, we also use different percentile of the CDF to evaluate the performance.

3.4.2 Cross Validation Method

Machine learning models are likely to have different biases depending on the

training set, and using a specific training set to evaluate the performance of the

model is not objective enough. We use a similar k-fold cross-validation method to

validate our models, where we view the data collected by turtlebot3 on a single tra-

jectory as a trajectory dataset since the data collected in the different trajectories

have less correlation. As shown in Figure 21, we use 8 datasets in Experiment 1 to

evaluate the performance. Depending on the different trajectory datasets used as

training sets, we can obtain validation metrics Ei (like MDE, RMSE). We evaluate

the model by averaging the metrics of experiments with the same number of the

trajectory dataset. This approach can also be used to evaluate the improvement

of model performance when the amount of trajectory dataset increases.

3.4.3 Platform

We use a Mac pro as the LTE base station server and USRP B210 as the signal

transceiver platform. We run OpenAirInterface (OAI) BS on the base station, as

shown in Figure 22(a). About LTE transmission configuration, we set 25 resource

blocks and a single antenna port. We used turtlebot3 waffle pi(abbreviated as

turtlebot3) as a roamer as shown in Figure 22(b). However, the performance of

the original single-board computer, Raspberry Pi, was not enough to run OAI

UE, so we use another single-board computer with better performance, up board.

In addition, the turtlebot3 is equipped with various high precision sensor mod-

ules, including a 3-axis magnetometer, 3-axis accelerometer, 3-axis gyroscope, and

smart motors, which can make the SLAM algorithm more accurate. Our motion

doi:10.6342/NTU202203944

3.4. EVALUATION RESULTS 34

training set

…
...testing set

Testing accuracy

Figure 21: 8-fold cross validation

(a) LTE Base station (b) Turtlobot3

Figure 22: (a) is a base station and (b) is a roamer

doi:10.6342/NTU202203944

3.4. EVALUATION RESULTS 35

default parameter

Resource blocks 25

Number of antenna port 1

Velocity (static) 0.0 m/s

Velocity (Dynamic) <0.1 m/s

Table 9: Default parameter

data is collected by the smart motor, and the speed is controlled within 0.1m/s

when collecting data. To run OAI UE, turtlebot3 is also equipped with a USRP

B210 to extract CSI features. To sum up, the parameters are set as in Table 9.

3.4.4 Experimental environment one

1 m 1 m

cluster points

Base station

coordinate axis

Tracking objectDoor

x

y

0

1

2

3

4

5

6

789

1011

Figure 23: Experimental scenario

The experiment was conducted in BL521, and we placed the BS on the top

of the cabinet. We use Wi-Fi router to receive LTE CSI transmitted from the

turtlebot3. We marked some cluster points on the actual map, we collected the

motion data and LTE CSI vector when walking, assigning data to nearby cluster

points is helpful for model training. Figure 24 shows the trajectories for data

collection, where the coordinates are used as ground truth which is estimated by

the ROS SLAM algorithm and corrected by ourselves. The SLAM algorithm used

for longer walking distance will lead to greater estimation error, so our robot did

not walk more than 20 meters in the path for data collection, this limit can keep

the ground truth error within 5cm. Each path is an independent experiment, the

robot collects data while walking, regarded as a dataset, each dataset contains

3500 6000 pieces of snapshot data, each piece of data contains a ground truth

doi:10.6342/NTU202203944

3.4. EVALUATION RESULTS 36

data quantity

Trajectory 1 4993

Trajectory 2 4082

Trajectory 3 5698

Trajectory 4 4406

Trajectory 5 5701

Trajectory 6 5050

Trajectory 7 4701

Trajectory 8 3648

Table 10: The number of data in each dataset

Model MDE (1 path) MDE (2 paths) MDE (4 paths) MDE (7 paths)

SVM 1.745 1.711 1.645 1.590

KNN 1.504 1.475 1.447 1.426

WKNN 1.486 1.459 1.430 1.406

SLN 1.410 1.389 1.367 1.352

1D2LCNN 1.407 1.357 1.286 1.231

1D1LCNN 1.403 1.333 1.253 1.191

Table 11: Comparison of different extraction models

coordinate, motor speeds, LTE CSI vector.

3.4.5 Feature Extraction Model Comparison

We compared various models for snapshot data, mainly using two kinds of

criteria, and our results are shown in Figure 25 and Table 11. In terms of results,

the performances of the neural networks are about the same when the number

of training sets is small. But neural network method is better than traditional

approaches such as SVM, WKNN, and KNN by at least five percent. When the

number of training sets was increased to seven, the performance of 1D1LCNN

improved by 15%, and the performance of 1D1LCNN is 12% better than the

performance of SLN when the number of trajectory data sets increased to seven.

3.4.6 Loss Function Comparison

We try to use mean square error as the loss function to obtain the better

performance. The results are shown in Figures 26 and Table 12. We use SLN

and 1D1LCNN models to experiment. We observe that the results of the SLN

model and 1D1LCNN model are very different. The classification SLN model can

learn more features compared to the regression SLN model. When the amount of

training datasets are small, the performance of the regression 1D1LCNN model is

doi:10.6342/NTU202203944

3.4. EVALUATION RESULTS 37

1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(a) trajectory 1

1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(b) trajectory 2

1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(c) trajectory 3

1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0
cluster points

(d) trajectory 4

1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(e) trajectory 5

1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(f) trajectory 6

1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(g) trajectory 7

1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(h) trajectory 8

Figure 24: The trajectories of data collection

doi:10.6342/NTU202203944

3.4. EVALUATION RESULTS 38

0 1 2 3 4
Distance error(m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1D1LCNN
1D2LCNN
SLN
WKNN
KNN
SVM

(a) 1 trajectory data set

0 1 2 3 4
Distance error(m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1D1LCNN
1D2LCNN
SLN
WKNN
KNN
SVM

(b) 2 trajectory data sets

0 1 2 3 4
Distance error(m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1D1LCNN
1D2LCNN
SLN
WKNN
KNN
SVM

(c) 4 trajectory data sets

0 1 2 3 4
Distance error(m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1D1LCNN
1D2LCNN
SLN
WKNN
KNN
SVM

(d) Different models performance trained on
7 trajectory data sets

Figure 25: CDF of model

doi:10.6342/NTU202203944

3.4. EVALUATION RESULTS 39

Model MDE (1 path) MDE (2 paths) MDE (4 paths) MDE (7 paths)

SLN 1.405 1.383 1.372 1.354

SLN (MSE) 1.398 1.391 1.393 1.399

1D1LCNN 1.403 1.333 1.253 1.191

1D1LCNN (MSE) 1.402 1.309 1.253 1.224

Table 12: Comparison of the models with MSE and cross entropy

better than the performance of the classification 1D1LCNN model; when the num-

ber of training datasets is increased to seven, the performance of the classification

1D1LCNN model can obtain better performance.

0 1 2 3 4 5
Distance error(m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SLN
SLN_MSE
1D1LCNN
1D1LCNN_MSE

(a) 1 trajectory data set

0 1 2 3 4
Distance error(m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SLN
SLN_MSE
1D1LCNN
1D1LCNN_MSE

(b) 2 trajectory data sets

0 1 2 3 4
Distance error(m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SLN
SLN_MSE
1D1LCNN
1D1LCNN_MSE

(c) 4 trajectory data sets

0 1 2 3 4
Distance error(m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SLN
SLN_MSE
1D1LCNN
1D1LCNN_MSE

(d) 7 trajectory data sets

Figure 26: CDF of different model with MSE and cross entropy

3.4.7 Label Smoothing Method

To avoid overfitting of the ML model, we try to do label smoothing. We use

the SLN model to test whether the label smoothing method is feasible. The label

of the original training set uses one-hot encoding to label the data. We defined

doi:10.6342/NTU202203944

3.4. EVALUATION RESULTS 40

Model MDE (1 path) MDE (2 paths) MDE (4 paths) MDE (7 paths)

1D1LCNN 1.403 1.333 1.253 1.191

1D1LCNN(smoothing) 1.378 1.311 1.240 1.211

Table 13: Comparison of different label methods

12 reference points in the field, and the definition method is to categorize the

points as the nearest reference point, this method is called one-hot encoding. We

defined the weights e
−dj
λ∑12

i=1 e
−di
λ

based on the distance between the test points and the

jth reference points, this method is our label smoothing. Our results are shown

in Figure 27 and Table 13. Our results show that with less training data, the

model performance with label smoothing is slightly improved. As the training

data increases, the model performance with label smoothing is slightly worse.

1 2 4 7
number of path selection

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n
di

st
an

ce
 e

rro
r(m

)

1D1LCNN
1D1LCNN with label smoothing

Figure 27: Comparison the average MDE of model with or without label smooth-
ing

3.4.8 Considering the Phase Difference as Model Input

In this subsection, we compare the model perfomrance for using phase differ-

ence. We compare the performance of MICNN, 1D1LCNN, and SLN, and Figure

28 and Table 14 show the results. Regardless of the data amount of training data,

the MI-CNN model performs slightly better than other models. The performance

of the MI-CNN model is 12.8% better than the performance of the SLN model.

From the analysis of the importance of the labels in Section 3.1.2, the phase dif-

ference can provide information on the distance between the data collection site

doi:10.6342/NTU202203944

3.4. EVALUATION RESULTS 41

Model MDE (1 path) MDE (2 paths) MDE (4 paths) MDE (7 paths)

MICNN 1.395 1.288 1.222 1.182

1D1LCNN 1.403 1.333 1.253 1.191

SLN 1.410 1.389 1.368 1.352

Table 14: Comparing the average MDE of model with or without phase difference

and the base station. Therefore, the phase difference for BL521 can provide less

information. The phase difference can provide more information for a narrow area.

1 2 4 7
number of path selection

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n
di

st
an

ce
 e

rro
r(m

)

MICNN (with phase difference)
CNN (without phase difference)
SLN (without phase difference)

Figure 28: Comparison the average MDE of model with or without phase differ-
ence

3.4.9 Cascaded Model Comparison

We have tried several different combinations of cascaded models. We first

compare the MDE performance of different Cascaded models, and the results are

shown in Figure 29 and Table 15. These data fusion models have been described

in detail in Section 3.3. The SLN + FN model is the cascaded model proposed in

the paper [21]. We combine SLN+RNN models to form a cascaded model, and the

performance of SLN+RNN is no better than the performance of SLN+FN models.

This result may be due to the low accuracy of SLN and poor generalization of RNN.

For MDE, all the CNN-RNN-related cascaded models have similar performance.

For MDE, MICNN+RNN has the best performance compared to other cascaded

models when the training data contains 2,4,7 trajectory datasets.

The comparison of the average MDE is not yet able to fully evaluate the per-

formance of the cascaded models. As a result, We use root mean square (RMSE)

to evaluate the performance of different cascaded models. The results are shown

doi:10.6342/NTU202203944

3.4. EVALUATION RESULTS 42

1 2 4 7
number of path selection

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
M

ea
n

di
st

an
ce

 e
rro

r(m
)

SLN-FN
SLN-RNN
CNN-RNN
CNN-stackRNN
CNN-DL-RNN
CNN-MISO-RNN
MICNN-RNN
MICNN-MISO-RNN

Figure 29: Comparing the average MDE of the different cascaded models

Model MDE (1 path) MDE (2 paths) MDE (4 paths) MDE (7 paths)

SLN-FN 1.262 1.255 1.211 1.176

SLN-RNN 1.339 1.273 1.231 1.146

CNN-RNN 1.28 1.139 0.987 0.894

CNN-stackRNN 1.267 1.123 0.971 0.881

CNN-DL-RNN 1.285 1.122 0.976 0.89

CNN-MISO-RNN 1.222 1.111 0.973 0.877

MICNN-RNN 1.268 1.079 0.967 0.879

MICNN-MISO-RNN 1.254 1.087 0.97 0.879

Table 15: Comparing the Average MDE of Cascaded Models

doi:10.6342/NTU202203944

3.4. EVALUATION RESULTS 43

Model RMSE (1 path) RMSE (2 paths) RMSE (4 paths) RMSE (7 paths)

SLN-FN 1.391 1.393 1.346 1.303

SLN-RNN 1.51 1.45 1.409 1.288

CNN-RNN 1.516 1.365 1.205 1.1

CNN-stackRNN 1.52 1.366 1.204 1.103

CNN-DL-RNN 1.547 1.363 1.206 1.108

CNN-MISO-RNN 1.425 1.325 1.189 1.094

MICNN-RNN 1.453 1.275 1.175 1.077

MICNN-MISO-RNN 1.425 1.281 1.185 1.093

Table 16: Comparing the average RMSE of cascaded models

in Figure 30 and Table 16. For RMSE, the MICNN+RNN performs slightly better

than other cascaded models.

1 2 4 7
number of path selection

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
ea

n
di

st
an

ce
 e

rro
r(m

)

SLN-FN
SLN-RNN
CNN-RNN
CNN-stackRNN
CNN-DL-RNN
CNN-MISO-RNN
MICNN-RNN
MICNN-MISO-RNN

Figure 30: Comparing the average RMSE of the different cascaded models

3.4.10 Cascaded Models Comparison for Different Input Features

The results are shown in Figure 31 and Table 17. We used the predicted

position as input for RNN or FN in the previous subsection, and we used the

second layer output of CNN mentioned in Section 3.2.4 as input for RNN with the

input shape (Batch size, length size, 512). We use MIMO RNN to compare the

performance based on two input features. From the results, the performances of

using two different features as RNN inputs do not differ much. This result may be

because there is not much information left in the output from the middle layer of

the CNN model, which contains many 0 elements. In our experiments, using the

middle output of the 1D1LCNN model as RNN input does not necessarily lead

to better performance, more often using the predicted location as RNN input can

doi:10.6342/NTU202203944

3.5. SUMMARY 44

Model MDE (1 path) MDE (2 paths) MDE (4 paths) MDE (7 paths)

CNN-RNN(2) 1.28 1.12 0.975 0.884

CNN-RNN(512) 1.301 1.145 0.995 0.866

Table 17: Comparison of Different Input Features for the Cascaded models

lead to better model performance.

1 2 4 7
number of path selection

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
di

st
an

ce
 e

rro
r(m

)

CNN-RNN(2)
CNN-RNN(512)

Figure 31: Comparison of performance for different RNN input features

3.5 Summary

According to the results of our experiments, we judge the merits of the model

mainly on the condition that the training set contains 2, 4, and 7 traces. The

MICNN+RNN is the combination that perform better than other combinations

in our experiments. The MICNN+RNN obtain good performance in the training

dataset including 2, 4, and 7 trajectory datasets. The performance of MICNN+RNN

is better than most of the 1D1LCNN with RNN-related models when training

datasets including 2, 4, and 7 trajectory datasets.

doi:10.6342/NTU202203944

CHAPTER 4

LOCALIZATION DEPLOYMENT OF MODEL

PERFORMANCE IMPROVEMENT

Two research fields can achieve better model performance with less training

data. One is data augmentation. The other is transfer learning, where learned

knowledge of the source model is transferred to the target model. With the devel-

opment of the generative model, there have been many studies on using generative

models to improve the performance of judgment models in other applications. In

this chapter, our goal is to improve the performance of the feature extraction

model. The time domain data fused model is prone to overfit, and the input fea-

tures of the data fused model are simple. The system accuracy still depends on

the prediction of coordinates by the feature extraction model.

4.1 Data Augmentation

We first applied generative models to improve the performance of the feature

extraction model, and several papers [32], [33], [34] have been published to show

the feasibility of generative models. Therefore, we try to apply GAN and VAE in

our system.

4.1.1 Problem and Viewpoints

Data augmentation is a technique that uses limited data to generate more

equivalent data to expand the training data set. Data augmentation is an effective

means to overcome the shortage of training data and is currently used in deep

learning for image recognition, speech, etc. However, the difference between the

generated data and the real data inevitably brings the problem of noise.

In traditional artificial intelligence applications, data augmentation is com-

monly applied to image recognition applications. Image data can be expanded

with training data by flipping left and right, offsetting, etc. In recent years, the

development of generative models such as variational auto-encoder [35] (VAE),

generative adversarial network [36] (GAN), generative stochastic networks [37]

(GSN), Boltzmann machine [38], and other techniques have been proposed, and

data augmentation is easily applied to other fields. This section, we will focus on

GAN and VAE for feature generation.

45

doi:10.6342/NTU202203944

4.1. DATA AUGMENTATION 46

4.1.2 Generative Adversarial Network

The algorithm of basic Generative adversarial network (GAN) [36] is described

in Section 2.4.2, but the data generated by basic GAN are random. Basic GAN

cannot generate data with specific features. For this reason, using GAN to enhance

the data is a technique. Some papers use the data generated by the generative

model for semi-supervised learning of the model, pseudo labeling of fake data,

the penalty for loss function of the identified model using fake data, etc. Data

augmentation is performed using GANs that can generate specific conditions, such

as CGAN [39], infoGAN [40], and ACGAN [41]. However, these GANs do not help

the performance of localization model. The accuracy of our localization models is

usually not higher than 50%, so the discriminator cannot fully learn the features

that are useful for localization.

We have tried various approaches to train the generative model, and it is helpful

to obtain the generative model that can generate the data with specific labels. This

approach is proposed in [42] and [32], and Figure 32 shows the method. By dividing

the data by different labels as training data sets and training the generative model

by the data with the specific label, this method can obtain the simulation data

with the label. We also try to train a generative model for all domain data without

classification, and this method cannot distinguish what labels the generated data

belong. Besides, the generative model is prone to mode collapse. In our thesis,

we also tried to use 1DCNN model as the generative model, but the result is not

satisfactory, so we adopt the similar DNN model proposed in [42] to generate fake

data.

4.1.3 Variational Auto-encoder

Variational auto-encoder (VAE) is a generative model proposed in [35], and

Figure 33 is the architecture of VAE. VAE can be divided into two models, the

encoder model and the decoder model. The Encoder model of VAE maps the

inputs to the mean and standard deviation of Gaussian distribution. The noise of

the Gaussian distribution combined with the additional input can form a latent

variable as the input to the decoder. This method will make the image generated

by VAE slightly different from the original image, which may be a change in the

feature, angle, or hue.

The loss function of VAE includes KL divergence and reconstruction loss, which

are expressed as follows:

L(θ, xi) ≃
1

2

J∑
j=1

(
exp(σ

(i)
j)− (1 + σ

(i)
j) + (µ

(i)
j)2

)
+ ||x(i)

rec − xi||2, (4.1)

doi:10.6342/NTU202203944

4.2. TRANSFER LEARNING METHODS 47

2 1

4 3

6 5

…
…

…
…

Training
generative
model 1

Generative
model 1

Generative
model 2

Generative
model 3

Generative
model 4

Generative
model 5

Generative
model 6

Training
generative
model 2

Training
generative
model 3

Training
generative
model 4

Training
generative
model 5

Training
generative
model 6

Fake data for RP1

Fake data for RP2

Fake data for RP3

Fake data for RP4

Fake data for RP5

Fake data for RP6

Figure 32: Data selection approach for training generative model

where ||x(i)
rec − xi||2 is the reconstruction loss, and the rest of loss function L(θ, xi)

is the KL divergence. In this thesis, we also divide the data into multiple training

sets according to labels to train the VAE model to avoid generating data with

random labels.

4.2 Transfer Learning Methods

In our experiments, using data augmentation is not effective in improving the

performance of feature extraction models, so we try to apply parameter-based

transfer learning to improve the model performance.

4.2.1 Model Fine-tuning

The concept of model fine-tuning is shown in Figure 34. Model fine-tuning is

a common transfer learning method for labeled target domain data. The source

domain overlaps with the target domain in terms of distribution. The source

domain data is sufficient and complete, while the target domain is the target task

and target domain data is not sufficient. The model fine-tuning method uses the

model trained from sufficient data to train the target model.

In many applications, the labeled data is valuable and limited. For image

applications, using a pre-trained CNN model as the initial model to go down for

model fine-tuning can solve the problem that a small amount of data is difficult

to train a good model and filter. In the first case, when the pre-trained model

already has a strong recognition capability, the target and source domains have

doi:10.6342/NTU202203944

4.2. TRANSFER LEARNING METHODS 48

Mean

variance

Normal
distribution

exp

NN
Encoder

NN
Decoder

෥𝑚

෤𝜎

𝑧 = exp ෤𝜎 × ǁ𝑒 + ෥𝑚

𝑧

ǁ𝑒

Figure 33: Architecture of Variational auto-encoder

Model Encoder

Input layer BatchSize× 399

Layer 1 Dense 512 + activate function ReLU

Layer 2 Dense 256 + activate function ReLU

Layer 3 Dense 128 + activate function ReLU

Output layer
Mean laten :

Dense 16 + activate function Linear

Variance laten :

Dense 16 + activate function Linear

Model Decoder

Input layer BatchSize× 16

Layer 1 Dense 128 + activate function ReLU

Layer 2 Dense 256 + activate function ReLU

Layer 3 Dense 512 + activate function ReLU

Output layer Dense 399 + activate function Sigmoid

Table 18: Layers of VAE model

doi:10.6342/NTU202203944

4.2. TRANSFER LEARNING METHODS 49

Source model

Source data
(sufficient data)

Target model

Target data
(little data)

Some parameters copy

Figure 34: Illustration of model fine-tuning

slightly different distributions. This situation requires decision-level fine-tuning

of the model. In the second case, the target domain is not directly related to

the source domain, but the source model already has a good feature extraction

capability and the target domain data has similar features to the source domain

data. We consider the localization deployment in both cases mentioned above.

4.2.1.1 Layer Transfer

Among the transfer learning methods, layer transfer is a common method. The

overview of the layer transfer is shown in Figure 35. Usually, if the target domain

data is sufficient, we can transfer the parameters of the some layers to the target

model for fine-tuning. If the target domain data is small, we can transfer the

parameters of some layers to the target model and train the parameters of the rest

layers that are not transferred from source model [43]. A model usually consists

of two parts, the first few layers near the input layer extract the features that are

useful for recognition, and the last few layers near the output layer is to classify

or regress the features. In speech recognition applications, the waveforms of each

person’s voice may differ significantly, but the semantic meaning may be similar.

When a speech recognition model is used as the source model, the parameters of

the last few layers of the source model is transferred to the new model. In image

recognition applications, different kinds of pictures may have similar features. In

image recognition applications, the convolutional layers in the source model are

transferred to the new model. In this thesis, we consider the LTE CSI vector as a

doi:10.6342/NTU202203944

4.2. TRANSFER LEARNING METHODS 50

radio snapshot. The patterns contained in the radio snapshot are only related to

the environmental conditions, and no individualized patterns are present.

Output layer

Input layer

Source domain data

Output layer

Input layer

Target domain
data

Training

Figure 35: Illustration of layer transfer

In this thesis, we mainly try two methods of weight transfer, one is to transfer

only the part of the feature extraction layers, and the other is to transfer all the

layers except the decision layer to the new model. We define the input layer to the

concatenate layer of MICNN as the feature extraction layers. In our experiments,

we do not fix the parameters to train the model, and the transferred layers need

to be fine-tuned.

4.2.1.2 Conservative Training

In machine learning applications, if there is not enough data to train a model,

overfitting can easily occur when training the model. Adding some training con-

straints can avoid overfitting while training a model. Regularization is a method

to avoid overfitting by applying regularization when training a model. The use

of regularization in fine-tuning the model can also make the parameters of the

fine-tuned model not differ too much from those of the source domain model. The

details of adding regularization restrictions to the training model are as follows,

min
f(·)

1

N

N∑
n=1

L(yn, ŷn) + λ1

M∑
i=1

|wi|+ λ2

M∑
i=1

(wi)
2 (4.2)

s.t. ŷn = f(vn),

where 1
N

∑N
n=1 L(yn, ŷn) is the loss function, λ1

∑M
i=1 |wi| and λ2

∑M
i=1(wi)

2 are L1

and L2 regularization penalty, λ1 and λ2 are the L1 and L2 regularization factor,

doi:10.6342/NTU202203944

4.2. TRANSFER LEARNING METHODS 51

wi are the model parameters of f(·). L1 regularization causes the less important

weights in the model to shrink to 0. L2 regularization causes all the weights in

the model to shrink to 0 but not to 0 as much as possible.

4.2.2 Model Generalization

The model after fine-tuning often leads to catastrophic forgetting. Catas-

trophic forgetting means that the model forgets much of the knowledge learned

from the source domain, making the model perform worse in the source do-

main after fine-tuning. On the other hand, retaining the important knowledge

of the source domain allows the model to have better generalizability. This

method is called Lifelong learning (LLL) [44], continual Learning, and Incremen-

tal learning. LLL methods can be divided into three categories, Replay-based

methods, Regularization-based methods, and parameter isolation methods. The

regularization-based approach is a relatively mature method, and we will focus on

basic LLL method and Elastic Weight Consolidation (EWC) [45] in this section.

The regularization-based method can be written the loss function as the fol-

lowing equation,

Lt = Lt(θ) + η
∑
i

bi(θi − θ∗s,i)
2, (4.3)

where Lt(θ) is the loss of the target task, L(θ) represents the loss function of the

problem,
∑

i bi(θi−θ∗s,i)
2 is the regularization term, θi represents the i

th parameter

of the current model, bi represents the value of the i
th parameter of the model after

training on the source task, bi represents the parameter guard of the ith parameter,

η denotes the importance factor of source task. When the parameter guard bi is

larger, the parameter θi is harder to update. The basic LLL method assumes that

all parameter guards are 1, and the distance sum between θ and θs is very small.

Elastic weight consolidation EWC is used to calculate the parameter guards

based on the fisher information matrix (FIM), but the FIM is very difficult to

find. As a result, the Laplace approximation is used to obtain an approximate

solution [46]. The parameter guard equation is as follows:

F =
[
▽log (p (ys|xs, θs))▽ log (p (ys|xs, θs))

T
]
, (4.4)

where bi is the ith diagonal element in the F matrix, θs is the model parameters

trained on source task, p (ys|xs, θs) is the posterior probability given the model

parameters θs, source task data xs and source task label ys.

However, the output class of our target domain model is different from the

output class of the source domain model in our system. Therefore, the parameter

guards of the output layer of the source domain model cannot be applied to the

doi:10.6342/NTU202203944

4.2. TRANSFER LEARNING METHODS 52

target domain model, so there is no regularization restriction on the output layer

of the target domain model.

Child tuning In addition to continual learning method, we also tried another

fine-tuning method, which is called child-tuning [47]. When the training set is

small, but the pre-trained model is large, fine-tuning may lead to worse model

generalizability, and unstable model performance. Child-tuning is a method to

solve the problem of unstable model fine-tuning when the training set is too small.

The paper [47] proposes two child-tuning methods, Child-tuning F and Child-

tuning D, respectively. The difference between these two methods is that child-

tuning randomly set gradient masks from Bernoulli distribution, while child-tuning

D applied FIM to fin the gradient mask for fine-tuning. Figure 36 is the illustration

of child-tuning. Some parameters are restricted by gradient masks that cannot be

updated. Child-tuning F generates random gradient masks when the parameter

will be updated.

𝑤0

𝑤0 ∆𝑤0

∆𝑤0

𝑤1

𝑤1

Gradient
mask

Normal fine-tuning

Child-tuning

Figure 36: Illustration of Child-tuning

The parameter update can be written as the following equation,

∆θ0 = −η
∂L

∂θ0
⊙M, (4.5)

where M is a gradient mask matrix whose values are 0 or 1 draw from Bernoulli

distribution or FIM.

doi:10.6342/NTU202203944

4.3. DATA SCALER 53

4.3 Data Scaler

In our experiments, we use two features with different ranges of values for

the subcarrier amplitude feature and the subcarrier phase difference feature. The

value range of the subcarrier amplitude feature is [0, 9999], while the value range

of the phase difference feature range is [−2π, 2π]. Initially, we did not use data

scaling for the phase difference feature because of the small value range of the phase

difference feature, and the result is shown in Figure 37. We found that without

scaling the phase difference data, the fine-tuning model easily leads to negative

transfer [48]. If the scaler fits the target domain data distribution, the fine-tuned

model also leads to negative transfer. In [32], the author also did not scale the

data when training or fine-tuning the model, resulting in the negative transfer

effect. We initially did some experiments where we used the MinMax scaler fitting

on source domain data to scale the subcarrier amplitude without scaling the phase

difference, resulting in the orange and red lines in Figure 2. When we scale the

phase difference features and subcarrier amplitude features, the results became

blue and green, and the fine-tuned model performed better than the target model.

The purple line shows that we scale both features according to the target domain

data distribution, and the result is that the fine-tuned model has a slight negative

transfer effect.

1 2 4 7
Number of the dataset

1.525

1.550

1.575

1.600

1.625

1.650

1.675

1.700

M
ea

n
di

st
an

ce
 e

rro
r

target MICNN, DP scaler
target MICNN, no DP scaler
fine-tuned MICNN, DP scaler
fine-tuned MICNN, no DP scaler
fine-tuned MICNN, target scaler

Figure 37: Comparing the MDE with or without phase difference scaler

In [49], the author use several ML algorithms with various data scalers to

compare the model performance, and some ML algorithms will perform better

with the suitable data scaler. Our experience is that using data scalers for features

makes the models less likely to have a negative transfer effect, so we investigate

the effect of different data scalers on fine-tuned model performance. In this thesis,

we mainly compare the model performance of MinMax scaler (MM), Standard

doi:10.6342/NTU202203944

4.4. SUMMARY 54

scaler (SS), Normalizer (NR), MaxAbs scaler (MA), Robust scaler (RS) for target

model and fine-tuned model. We found that the standard scaler, MaxAbs scaler,

and MinMax scaler have similar performance on the target model, and the target

models perform better. We find that the range of values has more influence on

the model training stability and fine-tuning model performance. Therefore, it is

confirmed that it is most helpful to use MinMax scaler for model fine-tuning.

4.4 Summary

We have tried two approaches, one is to apply data augmentation to improve

system performance, and the other is to use the transfer learning method to im-

prove system performance. In data augmentation researches [42], [50], the papers

used RSSI or CSI subcarrier amplitude figures as the model input feature. We

apply data augmentation methods, and the CNN model performance is improved.

However, the simulated phase difference of subcarriers generated by GAN or VAE

cannot improve the model performance.

We discussed that the effects of different scalers and scaling ranges on the fine-

tuning model are discussed in detail. The conclusion is that the best fine-tuning

result can be obtained by using the MinMax scaler with the default setting.

The authors propose a fine-tuning method based on the Lifelong learning ap-

proach to fine-tune the model in [32]. However, we found that there is not much

correlation between the label space of different domains, and forcing to prevent the

weight update will decrease the fine-tuned model performance on the target do-

main. Therefore, we propose the simple fine-tuning method for model fine-tuning,

which is described in Algorithm 2. The fine-tuning steps are as follows:

1.) The target domain data must be scaled by the MinMax scaler fitted on the

source domain data. The scaling range is [0, 1].

2.) Transfer the weights of all source model to the target model of the model

except the final decision layer.

3.) The loss function plus the L2 regularization term when fine-tuning the

model, and we set the regularization factor to 0.0001.

doi:10.6342/NTU202203944

4.4. SUMMARY 55

Algorithm 2 Proposed model fine-tuning algorithm for indoor localization

Require: Ts denotes data scaler fitted on source domain data, Ms denotes the
model trained on source domain data, Mt denotes the new target model,
(Xt,Yt) denotes target training set.

Ensure: fine-tuned model Ms 7→t

1: Xt = scaler.transform(Xt)
2: Ms 7→t = Transfer(Ms,Mt) % transfer all layers of Ms to Mt except final

decision layer
3: Ms7→t.train(Xt,Yt)
4: return Ms 7→t

doi:10.6342/NTU202203944

CHAPTER 5

PERFORMANCE EVALUATION

5.1 Datasets

We mainly collected and established our datasets in Rooms 521 and Rooms

114 of the National Taiwan University Barry Lam Hall. The two rooms are called

BL521 and BL114 respectively. The data we collected in Room 521, called the

domain 1 dataset, contains the data of eight paths. The data set collected in

Room 114, called the domain 2 dataset, contains the data of four paths. We

obtain the relative coordinates from the SLAM algorithm. To convert the relative

coordinates to our actual field coordinates, we just rotate the relative coordinates

and add the bias (initial field coordinates).

5.1.1 Domain 1 Dataset

We collected the domain 1 dataset in BL521. The floor plan of BL521 is shown

in Figure 23. We set 12 reference points and map the dataset coordinate labels

to the closest reference point. The data quantity of each trajectory dataset is

shown in Table 10. The domain 1 dataset contains eight trajectory datasets, and

each trajectory dataset includes 3500-5800 labeled data. The trajectories of data

collection are shown in Figures 24. We designed the path to pass through all

reference points (cluster points), and the method can help train and evaluate the

model.

5.1.2 Domain 2 Dataset

The plan view of BL114 is shown in Figure 38(a). There is a step between the

light yellow and light blue of BL114. The robot cannot climb up the step by itself,

and the back area of the classroom is covered in the positioning area. The base

station is set up on the lecture Table. The light yellow color is the positioning

area. We set 28 reference points in BL114 and gave each reference point a number

for easy analysis, as shown in Section 38(b). The trajectories of the domain two

datasets are shown in Figure 2. The data amount of domain two datasets are

shown in Table 19. The data amount of features in each trajectory dataset is

about 11,000-22,000.

56

doi:10.6342/NTU202203944

5.1. DATASETS 57

chair

Location area

Reference point

(a) Floor plan of BL114

0 4 8 12 16 20 24

1 5 9 13 17 21 25

2 6 10 14 18 22 26

3 7 11 15 19 23 27

Blackboard

1 m

(b) The reference points numbers

Figure 38: The BL114 localization system deployment

doi:10.6342/NTU202203944

5.1. DATASETS 58

data quantity

Trajectory 1 16952

Trajectory 2 19990

Trajectory 3 19539

Trajectory 4 21707

Trajectory 5 14490

Trajectory 6 17079

Trajectory 7 12197

Trajectory 8 15064

Trajectory 9 11161

Trajectory 10 11046

Table 19: The data quantity of domain 2 dataset

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(a) Trajectory 1

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(b) Trajectory 2

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(c) Trajectory 3

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(d) Trajectory 4

doi:10.6342/NTU202203944

5.1. DATASETS 59

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(e) Trajectory 5

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(f) Trajectory 6

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(g) Trajectory 7

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(h) Trajectory 8

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(i) Trajectory 9

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cluster points

(j) Trajectory 10

Figure 39: The trajectories of domain 2 data

doi:10.6342/NTU202203944

5.1. DATASETS 60

data quantity

Trajectory 1 6545

Trajectory 2 6655

Trajectory 3 6603

Trajectory 4 7332

Trajectory 5 6889

Trajectory 6 6787

Trajectory 7 6780

Trajectory 8 6369

Table 20: The data quantity of domain 3 dataset

5.1.3 Domain 3 Dataset

A 1.8m× 9m corridor area on the fifth floor of Barry Lam Hall was selected as

a positioning area. The floor plan of the collection area is Figure 40. We selected

20 points as reference points in this area, and the distance between the adjacent

reference points is 0.9 m. We collect a total of eight trajectory datasets, and

Figures 41 show the eight trajectories estimated by SLAM algorithm and manually

corrected. Each trajectory dataset contains between 6300-7400 fingerprints, and

the exact data amount of trajectory datasets are shown in Table 20.

0.9 m

0
.9

 m

OAI BS

Receive station

Reference points

Location area

Figure 40: Floor plan of BL5F corridor

doi:10.6342/NTU202203944

5.1. DATASETS 61

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

cluster points

(a) Trajectory 1

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

cluster points

(b) Trajectory 2

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

cluster points

(c) Trajectory 3

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

cluster points

(d) Trajectory 4

0.0 0.2 0.4 0.6 0.8

0

2

4

6

8

cluster points

(e) Trajectory 5

0.0 0.2 0.4 0.6 0.8

0

2

4

6

8

cluster points

(f) Trajectory 6

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

cluster points

(g) Trajectory 7

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

cluster points

(h) Trajectory 8

Figure 41: The trajectories of domain 3 data

doi:10.6342/NTU202203944

5.2. EVALUATION OF DATA AUGMENTATION 62

5.2 Evaluation of Data augmentation

We used the data collected in the corridor outside of BL521 (domain 3 dataset)

to experiment with the feasibility of generating the model.

5.2.1 Considering Data Augmentation with GAN

First, we use one and seven trajectory data as the training set to evaluate the

feasibility of GAN. Figure 42 shows the result for the training set containing one

trajectory data. There are 20 reference points in domain 3, and GAN generates

100 fake data for each reference point. We try to use different amounts of dummy

data (500, 1000, 1500, 2000) to merge with the training dataset for model training.

From the results in Figure 42, the fake data of amplitude is helpful to improve

the model performance, but the fake data of phase differences confuse the model

judgment. From the comparison of the two T-SNE visualizations in Figures 43,

we believe that GAN has mode collapse problem for generating phase difference

features.

0 500 1000 1500 2000
The data amount of fake data

1.652

1.654

1.656

1.658

1.660

1.662

1.664

1.666

M
ea

n
di

st
an

ce
 e

rro
r

1.6656

1.6599

1.6569

1.6615

1.6586

1.6615

1.6548

1.6575

1.6545

1.6525

target 1D1LCNN, 1 trajectory dataset
target MICNN, 1 trajectory dataset

Figure 42: Comparison the MDE with fake data, 1 trajectory dataset

We use seven trajectory datasets as the training set for GAN. Figure 44 shows

the effect of using different amounts of fake data on the model performance. We

found that using seven trajectory datasets to train the GAN does not contribute to

the model performance. Except for the blue line, which has a slight improvement,

the model performances with different conditions are relatively poor with fake

data. Our data analysis in Figure 45 contrasts that GAN tends to ignore a lot of

relatively small-scale distributions. From the two t-SNE analyses in Figure 45, the

fake data distribution is more concentrated and the fake data generated by GAN

doi:10.6342/NTU202203944

5.2. EVALUATION OF DATA AUGMENTATION 63

60 40 20 0 20 40 60 80

40

20

0

20

40

60 real data
fake data

(a) Feature visualization of subcarrier am-
plitude using t-SNE.

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

real data
fake data

(b) Feature visualization of subcarrier phase
difference using t-SNE.

Figure 43: Simulated data analysis

cannot be similar to all the real data. This situation is somewhat like a slight

mode collapse of the GAN. GAN has severe mode collapse problem for generating

subcarrier phase difference.

3000 6000 9000 12000
Mean distance error

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.60

Fa
ke

 d
at

a
am

ou
nt

1.5971

1.5873
1.5929 1.5914

1.6013

1.5221
1.5258

1.5342

1.5585
1.5517

target CNN, 7 trajectory datasets
target MICNN, 7 trajectory datasets

Figure 44: Comparison the MDE with different amount of fake data, 7 trajectory
datasets

5.2.2 Considering Data Augmentation with VAE

We use VAE to generate dummy data for subcarrier amplitude and subcarrier

phase difference to train the model. Figures 46 show the results. We found that

a large amount of training data is required to train the VAE that can generate

simulated features that contribute to the performance of the CNN model. From

the MICNN model result, it is observed that the fake data generated by VAE does

not improve the model performance. Combining with the data analysis in Figures

47, we think the secondary features in the phase difference may be very helpful for

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 64

100 75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

100 real data
fake data

(a) Feature visualization of subcarrier am-
plitude using t-SNE. Training set is (0, 1, 2,
3, 4, 5, 6).

75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75
real data
fake data

(b) Feature visualization of subcarrier phase
difference using t-SNE. Training set is (0, 1,
2, 3, 4, 5, 6).

Figure 45: Simulated data analysis

model performance, but the VAE model does not learn these secondary features

very well, and the phase difference of the real data is very similar, resulting in the

loss of secondary features.

1 2 4 7
Number of the dataset

1.52

1.54

1.56

1.58

1.60

1.62

1.64

1.66

1.68

M
ea

n
di

st
an

ce
 e

rro
r

Results for dm3, CNN, VAE fake data
target CNN
target CNN, fake data
target MICNN
target MICNN, fake data

Figure 46: Comparing the MDE with fake data generated by VAE

5.3 Evaluation of Transfer Learning

In our thesis, we consider learning-based indoor localization methods. We

adopt an alternative cross-validation approach in our experiments to evaluate our

experimental results, as described in Section 3.4.2. Our metric for validating the

experimental results is described in Section 3.4.1.

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 65

0 10 20 30 40
Subcarrier amplitude (dB)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

De
ns

ity

real subcarrier amplitude distribution
fake subcarrier amplitude distribution

(a) Comparing the subcarrier amplitude dis-
tribution of real data and simulated data
generated by VAE.

6 4 2 0 2 4 6
Phase Difference (radius)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

real phase difference distribution
fake phase difference distribution

(b) Comparing the phase difference distribu-
tion of real data and simulated data gener-
ated by VAE.

75 50 25 0 25 50 75

75

50

25

0

25

50

75

real data
fake data

(c) Feature visualization of subcarrier ampli-
tude using t-SNE.

60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

real data
fake data

(d) Feature visualization of subcarrier am-
plitude and phase difference using t-SNE.

Figure 47: Analysis of simulated data generated by VAE

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 66

5.3.1 Domain 1 and Domain 2 Case

In this experiment, we use the data of domain 1 as source domain dataset.

We select a few trajectories datasets from domain 2 data as training data and

the rest of the trajectories datasets as test data. For example, we have 10 data

sets in domain 2, we randomly select some combinations from the C10
n data sets

combinations for the experiment.

5.3.1.1 Fundamental Experiment

The loss curve for different conditions is shown in Figure 48. We use all two

combinations of domain 2 trajectories dataset as training dataset and complemen-

tary set of combinations as test dataset. We used the BL521 dataset as pre-training

data and the BL114 dataset as target data. We re-sample 200 samples per refer-

ence point from one trajectory dataset in BL114 as the re-sampling method. We

evaluate the performances of different models using the domain dataset. We use

SLN and CNN models mentioned in Chapter 3. We use the same model training

setup as in Chapter 3.

0 10 20 30 40 50 60
Epochs

1.70

1.71

1.72

1.73

1.74

1.75

1.76

1.77

M
ea

n
Di

st
an

ce
 E

rro
r(m

)

CNN1D1L, target model
CNN1D1L, fine-tuned model
CNN1D1L, target model, data resample
CNN1D1L, fine-tuned model, data resample
SLN, target model
SLN, fine-tuned model

Figure 48: Loss curves of the testing data under different conditions

In Figure 48, the coffee, orange, and red curves are the loss curves using the

BL521 dataset as pre-training data. Using the parameters of the pre-trained model

as the parameters of the initial model makes the model less prone to overfit. No

matter whether using the whole trajectory dataset or re-sampling dataset, the

model performance will not vary greatly. Comparing the CNN model with the

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 67

SLN model, the CNN model should be easier to learn the features and overfit the

training data than the SLN model. The performance comparison of the different

conditions is shown in Figures 49. The mean distance error of the pre-trained SLN

model is minimized. We observe that SLN slightly fits training data compared to

CNN model. It is not that the feature extraction ability of the CNN model is

worse. When the amount of data is small, a simple structured model can obtain

better performance.

We compared the results of fine-tuning or training under these conditions. The

results are shown in Figure 49. We used two trajectories datasets to train or fine-

tune the model, and the remaining eight trajectories datasets were used as test

data. We know from the results that the fine-tuned model is slightly better than

the newly trained model.

1 2 3 4 5 6
model number

1.705

1.710

1.715

1.720

1.7117

1.7067

1.7236
1.7218

1.7101

1.7017

CNN1D1L, target model
CNN1D1L, fine-tuned model
CNN1D1L, target model, data resample
CNN1D1L, fine-tuned model, data resample
SLN, target model
SLN, fine-tuned model

Figure 49: Comparing the MDE of the models under the different conditions

5.3.1.2 Considering Conservative Learning

In our previous experiments, we found that the accuracy of the model trained

on two trajectories datasets was not accurate, and we started to consider picking

any 20 training dataset combinations from the C10
5 training dataset combinations

training set combination of five for performance evaluation,and this allows each

training set to contain five trajectories datasets. The result is shown as below

Figure 50. We investigate the effectiveness of conservative learning. We compare

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 68

the performance of CNN with L1 and L2 regularizers. The CNN model with

10−6 L1 regularization factor is slightly better than the CNN model with 10−6 L2

regularization factor. Increasing the L1 regularization factor to 10−4 makes the

model performance worse. The model performance with L1 and L2 regularizers

are similar to the model performance with L1 regularizer. The model performance

with 10−4 L2 regularization factor is slightly better than the model performance

with 10−6 L2 regularization factor. We also evaluate the performance of the SLN

0 1e-6 1e-5 1e-4
L1 and L2 regularization rate

1.6700

1.6725

1.6750

1.6775

1.6800

1.6825

1.6850

M
ea

n
di

st
an

ce
 e

rro
r

1.6774

1.6750

1.6692

1.6856

1.6774

1.6743

1.6711

1.6835

1.6774 1.6772

1.6750

1.6690

L1 and L2 regularizer
L1 regularizer
L2 regularizer

Figure 50: Comparing the MDE of the CNN model with regularization

model with regularizers, and the result is Figure 51. It is observed from Figure

that SLN with L2 regularizer has almost no effect, and the most improvement is

in SLN with L1 and L2 regularizers. The improvement trend is similar to that of

CNN, but the performance of CNN with regularizers has slightly better results.

5.3.1.3 Considering Layer Transfer

Here we discuss the effectiveness of the layer transfer for our application. This

method has been discussed in Section 4.2.1.1, and the model framework has been

presented in Section 3. Figure 52 is the result. The blue line is the result of fixing

the parameters transferred from the source model without fine-tuning. The orange

line is the result of fine-tuning the whole model after transferring the parameters.

From the results, the feature extraction layers of the source model are relocated

to the new model to make the fine-tuned model fall into slightly better regional

minima. The decision layers of the source model are not helpful in determining

the class of the target domain.

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 69

0 1e-6 1e-5 1e-4
L1 and L2 regularization rate

1.688

1.689

1.690

1.691

1.692
M

ea
n

di
st

an
ce

 e
rro

r

1.6891

1.6883

1.6874

1.6926

1.6891 1.6889

1.6883

1.6919

1.6891
1.6888 1.6889

1.6887

L1 and L2 regularizer
L1 regularizer
L2 regularizer

Figure 51: Comparing the MDE of the SLN model with regularization.

0 3 4 5 6 7 8 9 10
Layer n at which network is chopped and retrained

1.68

1.69

1.70

1.71

M
ea

n
Di

st
an

ce
 e

rro
r

1D1LCNN, fixed layers
1D1LCNN, fine-tuned layers

Figure 52: Comparing the MDE of the model with different layers transfer

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 70

5.3.1.4 Discussing the Impact of the Data Amount of Target Domain Training
Data on the Model

From the previous results, we observe that the two trajectories datasets are

relatively difficult to obtain a good performance. We compare the models perfor-

mances with the increasing amount of data. We use 2,5,7,9 trajectories datasets

as training data and the rest of the datasets as test data. We observe in Figure 2

that the fine-tuned pre-trained model does obtain better results when the train-

ing data is small. As the data increases, training a new model achieves better

performance than the performance of the fine-tuning model. However, this result

compares poorly with the results we obtained in Chapter 3. The performance of

the models is only improved by about 6 cm when using two trajectories datasets

as training data compared to nine trajectories datasets as training data.

2 5 7 9
Number of datasets

1.66

1.67

1.68

1.69

1.70

1.71

M
ea

n
Di

st
an

ce
 E

rro
r(m

)

1.7031

1.6868

1.6817

1.6718

1.7117

1.6896

1.6762

1.6557

CNN1D1L, target model
CNN1D1L, fine-tuned model

Figure 53: Comparing target CNN and fine-tuned CNN

5.3.1.5 Model Output Analysis and Feature Analysis

Figure 54(a) shows an average confusion matrix for model output. We obtain

the confusion matrix for various combinations of training sets, and we average

multiple confusion matix to obtain the results in Figure 54(a). The numbers of

the positions are shown in Figure 38(b). The numbers 12-15 are the area in the

middle aisle of the classroom. Figure 54(b) is the average label distribution of the

trajectories datasets.

We observe from the results that the accuracy of the model is poor, but

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 71

there is still some regularity in the predicted results of the model. In addi-

tion, the labels 0,4,8,12,16,20,24 are more likely to be confused by the model.

The labels 3,7,11,15,19,23,27 are also easily confused or incorrectly identified as

21,22,23,25,26,27. Overall, the accuracy of the model is not good enough but in-

correctly identified as other labels are still some rules. We think about several

possibilities, 1.) We know from Figure 54(b) that the labels in the data are not

evenly distributed, and the uneven data may cause the model output to be eas-

ily misidentified. 2.) The fingerprints collected in different locations easily cause

confusion, and we should think about how to increase the feature recognition of

the data.

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627
y_prediction

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

y_
tru

th

0.05

0.10

0.15

0.20

0.25

(a) Average model output distribution

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27 0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(b) Average label distribution of domain 2
datasets

Figure 54: Model output and label distribution confusion matrix

5.3.1.6 Considering Transfer Learning with Data Balancing Algorithms for
Domain 2

We speculated in the previous analytical experiments that the poor perfor-

mance of the model may be due to imblanced data. Therefore, we used several

methods to balance the data labels, namely SMOTE [51], RandomOverSampling,

and RandomUnderSampling. RandomOverSampling and SMOTE add fake data

or repeated data to the training set. We compared the results with and without

the data balancing algorithm in Figure 2. We found that no matter which data

sampling strategy is used, the results are no better than those without using any

sampling strategy.

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 72

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Model number

1.6775

1.6800

1.6825

1.6850

1.6875

1.6900

1.6925

1.6950

M
ea

n
di

st
an

ce
 e

rro
r

1.6780

1.6913

1.6939

1.6962

fine-tuned CNN1D1L
fine-tuned CNN1D1L, SMOTE
fine-tuned CNN1D1L, Random Over Sampling
fine-tuned CNN1D1L, Random Under Sampling

Figure 55: Comparing with or without different Random Sampling methods

5.3.1.7 Using t-SNE Data Visualization for Domain 1 Data and Domain 2
Data

We use the t-SNE [52] to analyze our data. We concatenate all the data of the

domain for visualization and then pick out the four corners of the map from the

transformed data to plot. We visualize the domain 1 data and domain 2 data, and

the results are shown in Figure 56. The data of domain 2 with the same label are

less aggregated. From the two results, we observe that the difference between the

data of domain 1 is greater than that of domain 2. Therefore, it is expected that

the performance of domain 1 has better accuracy than the performance of domain

2.

40 20 0 20 40 60

40

20

0

20

40

60 label 0
label 2
label 9
label 11

(a) Select the domain 1 LTE CSI vectors of
the specific area 0, 2, 9, 11 then T-SNE

40 30 20 10 0 10 20 30
30

20

10

0

10

20

30

40
label 4
label 7
label 20
label 27

(b) Select the domain 2 LTE CSI vectors of
the specific area 4, 7, 20, 27 then T-SNE

Figure 56: Data visualization for domain 1 and domain 2

We additionally make the confusion matrix of the target model of domain 1,

and we observed from Figure 57 that the localization performance in domain 1

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 73

is better than localization performance in domain 2, possibly due to the factors

in the environment of domain 2 that lead to poorer localization accuracy. When

we collected the data of domain 1, we placed the base station on the top of the

cabinet to increase the transmission distance and the possibility of direct signal

transmission.

0 1 2 3 4 5 6 7 8 9 10 11
y_prediction

0
1

2
3

4
5

6
7

8
9

10
11

y_
tru

th

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 57: Confusion matrix of domain 1 model prediction

5.3.1.8 Consider Adding Phase Differences to Features and Fine-tuning the
Model

We combine the old feature with the phase difference into a new model input.

Since the real part of the subcarriers constitutes a feature with low correlation

with the phase difference feature, we design a new model detailed in Section 3.2.5.

We compare the effect of having the phase difference as a feature on the perfor-

mance of the models. The model in Figure 58(a) uses several combinations of five

trajectory data to train the model. Figure 58(a) shows the average MDE for the 20

combinations. We observe that adding phase difference as a feature can improve

the model performance by about 3%. However, we observe from Figure 58(b) that

pre-training with source domain data has a negative transfer effect on the target

domain. The negative transfer [53] may be due to the large difference in the phase

difference distribution between the source domain and the target domain.

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 74

1.0 1.5 2.0 2.5 3.0 3.5 4.0
model number

1.64

1.65

1.66

1.67

1.68

1.69
M

ea
n

di
st

an
ce

 e
rro

r
1.6896

1.6868

1.6361
1.6414CNN1D1L, target model

CNN1D1L, fine-tuned model
MI-CNN, target model, dif phase
MI-CNN, fine-tuned model, dif phase

(a) Comparing with or without phase differ-
ence based on target model and fine-tuned
model. The models are trained on 5 trajec-
tory datasets.

2 5 7 9
Number of datasets

1.60

1.61

1.62

1.63

1.64

1.65

1.66

1.67

1.68

M
ea

n
Di

st
an

ce
 E

rro
r

1.6818

1.6416
1.6353

1.6096

1.6789

1.6363
1.6320

1.6038

fine-tuned MICNN
MICNN

(b) Comparing with different amount of tra-
jectory datasets based on target MICNN and
fine-tuned MICNN

Figure 58: Comparing the model performance of adding phase difference

5.3.1.9 Result Summary Based on Domain 2

We took BL114 as the target domain and BL521 as the source domain to ex-

periment. We found that there was less useful knowledge that could be transferred

between the two domain feature spaces, probably due to topography, area, and

environment. Therefore, we collected data in the corridor outside of BL521 as

target domain data would be discussed in detail in the next subsection.

5.3.2 Domain 1 and Domain 3 case

5.3.2.1 Consider Model Fine-tune Based on Domain 3 Dataset

We compare the average MDE of MI-CNN model with three fine-tuned meth-

ods. Fig. 59 and Table 21 show the results. The ”fine-tuned” model represents

the initial model by taking the weights of all layers of the source domain model

except the decision layer to the new model. The model regularization method

is described in Chapter 4, and we try to use the conservative training (L2 Reg.)

based on the previous results, and L2 factor is 0.0001. ”FEL transfer” means that

we transfer the feature extraction layer from the source domain model to the new

model as the initial model. ”different LR” means that we use two learning rate

to fine-tune model, and we set the learning rate of feature extraction layers to be

one tenth of the learning rate of other layers.

From the results of the MICNN model, it is observed that the fine-tuning

model performance is better than the performance of the target model. When

the training set contains one trajectory dataset, the training set has a larger

bias resulting in the performance of the fine-tuned model being similar to the

performance of the target model. When the training set contains seven trajectory

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 75

conditions Number of domain 3 trajectory dataset

Model MDE (1) MDE (2) MDE (4) MDE (7)

target MICNN 1.6615 1.6314 1.5788 1.5221

fine-tuned MICNN 1.6570 1.6059 1.5521 1.5093

fine-tuned MICNN, L2 Reg. 1.6582 1.6012 1.5519 1.5068

fine-tuned MICNN, FEL transfer 1.6515 1.6074 1.5607 1.5191

fine-tuned MICNN, Dif LR. 1.7151 1.6175 1.5692 1.5303

Table 21: Comparison of different model with different conditions

datasets, the performance of the fine-tuned model is not much better than the

performance of the target model.There are two possible reasons for this situation:

1) The source domain space is smaller than the target domain space, so little

knowledge of the source domain can be transferred to the target domain. 2) The

source domain dataset contains a smaller data amount of fingerprints than the

target training set, resulting in less information being transferred.

We compare the four fine-tuning methods, and the performance of the four

fine-tuning methods is similar. The best method in these methods are fine-tuned

MICNN and fine-tuned MICNN with conservative training (L2 Reg.), when train-

ing set contains two or 4 trajectory datasets. When there are seven trajectory

datasets in the training set, the model performance is more variable, which is

related to the fact that we have less test data.

1 2 4 7
Number of the dataset

1.50

1.55

1.60

1.65

1.70

M
ea

n
di

st
an

ce
 e

rro
r

MDE, model fine-tuning comparison
target MICNN
fine-tuned MICNN
fine-tuned MICNN, L2 norm
fine-tuned MICNN, FEL transfer
fine-tuned MICNN, different LR

Figure 59: Comparing the performance with target model and fine-tuned model

doi:10.6342/NTU202203944

5.3. EVALUATION OF TRANSFER LEARNING 76

5.3.2.2 Consider Model Generalization

We applied the Lifelong learning approach to fine-tune model. The details of

the approach are described in Section 4.2.2. Figure 60 shows the results of using

different Lifelong learning methods. ”LLL 0.01” means that the basic Lifelong

learning method with lambda = 0.01 is applied to fine-tune model. ”EWC 500”

means that EWC with lambda = 500 is applied to fine-tune model.

From the results, we can observe that EWC is more powerful in blocking

important weight updates. However, blocking the update of significant weights

does not help to improve the model performance on the target domain. We think

that this may be due to the low correlation of the label space between the two

domains. If the label spaces of two domains are similar, using the LLL approach

can increase the generalizability of the fine-tuned model. However, the label space

correlation between the two domains is very low, and using the LLL approach

prevents the model fine-tuning.

1 2 4 7
Number of the dataset

1.55

1.60

1.65

1.70

1.75

1.80

M
ea

n
di

st
an

ce
 e

rro
r

MDE, LifeLong learning
target MICNN
fine-tuned MICNN, EWC 10000
fine-tuned MICNN, EWC 500
fine-tuned MICNN, LLL 0.01

Figure 60: Comparing the average MDE for continual learning

Incremental learning can not improve the performance of the fine-tuned model

in the target domain, and we think about using child-tuning to improve the per-

formance of the model. The details of child-tuning are described in section 4.2.2.

We compare the average MDE of the fine-tuned model with Child-tuningF and

Child-tuningD for fine-tuning. The child-tuningD method is slightly better than

the child-tuningF method when the training set contains 2 or 4 trajectory datasets.

From the results in Figure 60 and Figure 61, it is observed that the correlation

between the label spaces of the two domains is very low in indoor localization appli-

cations, which is not suitable for the Lifelong learning approach. The Child-tuning

doi:10.6342/NTU202203944

5.4. EVALUATION OF DATA SCALER 77

1 2 4 7
Number of the dataset

1.52

1.54

1.56

1.58

1.60

1.62

1.64

1.66

M
ea

n
di

st
an

ce
 e

rro
r

average MDE, Child-tuning
target MICNN
fine-tuned MICNN, child tuning F
fine-tuned MICNN, child tuning D

Figure 61: Comparing the average MDE for Child-tuning

method is more suitable for environmental adaptation in the indoor localization

application.

5.4 Evaluation of Data Scaler

We use the MICNN model to evaluate the effect of the different scalers on the

model performance. We use domain 1 and domain 3 as source domain and target

domain in this section respectively.

5.4.1 Consider the Different Scaler

Comparing the performance of MICNN with different scalers, the result is

Table 22. We find that the target model with Standard scaler, MaxAbs scaler,

and MinMax scaler have similar model performance, but only MinMax scaler can

be used to fine-tune the method without leading to a negative transfer effect.

1.) Target model performance: SS > MA > MM > RS > NR

2.) Fine-tuned model performance: MM > SS > MA > RS > NR

3.) Non-negative transfer learning: MM,NR

The distributions are shown in Figure 62. We compare the distribution of

scaled target domain data.” Fine-tuned” means that we use the scaler fitted on

source domain data to scale the target domain data. ”target” means we use the

scaler fitted on target domain data to scale the target domain data. Table 23 is the

value range of scaled data. We call scaler fitted on source domain as source scaler

and scaler fitted on target domain data as target scaler. In our experiments, the

two scalers that do not lead to a negative transfer effect on the fine-tuned model

are MM and NR. We think that the occurrence of negative transfer is related to

doi:10.6342/NTU202203944

5.4. EVALUATION OF DATA SCALER 78

conditions Number of domain 3 trajectory dataset avg MDE

Model MDE(1) MDE(2) MDE(3) MDE(4) MDE(avg)

target, MM 1.6643 1.6339 1.5795 1.5221 1.6002

fine-tuned, MM 1.6556 1.6043 1.5579 1.5020 1.5780

target, SS 1.6573 1.6093 1.5755 1.5495 1.5987

fine-tuned, SS 1.6765 1.6373 1.5959 1.5480 1.6112

target, NR 2.1736 1.9654 1.8930 1.8370 1.9495

fine-tuned, NR 1.9498 1.9040 1.8467 1.8087 1.8815

target, MA 1.6615 1.6235 1.5730 1.5379 1.5992

fine-tuned, MA 1.6975 1.6342 1.5851 1.5739 1.6227

target, RS 1.6840 1.6519 1.6162 1.5810 1.6333

fine-tuned, RS 1.7128 1.6644 1.6087 1.5817 1.6419

Table 22: Comparison of the model with different scaler

source (Amp.) target (Amp.) source (Ph. Dif.) target (Ph. Dif.)

Condition Min Max Min Max Min Max Min Max

MM -0.004 1.511 0 1 -0.014 1.006 0 1

SS -2.037 6.279 -1.885 17.634 -5.885 5.938 -5.428 5.472

NR 0 0.247 0 0.247 -0.376 0.438 -0.376 0.438

MA 0 1.510 0 1 -1.010 1.007 -1 1

RS -1.339 4.051 -1.241 19.515 -91.481 98.830 -91.457 101.136

Table 23: Comparing the value ranges of the scaled data

the range of values after scaling. The phase difference range of the target data

scaled by MA is twice as large as the phase difference range of the target data

scaled by MM, which is similar to the effect of negative transfer effect caused by

the phase difference without scaling. In addition, the fine-tuning model of RS

performs better when the training set has four or seven trajectory data sets, but

that is the result of unstable model training.

5.4.2 Consider Scaling Range

In the previous experiments, the performance of the model using the MaxAbs

and MinMax scaler is relatively different, and the model does not have a negative

transfer effect using the MinMax scaler. However, the model using MaxAbs scaler

leads to a negative transfer effect, which we are more confused about. Therefore,

we use the MinMax scaler to compare the MDE with the different scaling ranges

of the MinMax scaler for fine-tuning the model.

We compare the model results for the phase difference scalers, and the scaling

doi:10.6342/NTU202203944

5.4. EVALUATION OF DATA SCALER 79

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

10
De

ns
ity

Amplitude distribution, MM

source, amp, MM
target, amp, MM

(a) Amplitude, MM

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

De
ns

ity

Phase difference distribution, MM

source, dp, MM
target, dp, MM

(b) Phase difference, MM

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

Amplitude distribution, SS

source, amp, SS
target, amp, SS

(c) Amplitude, SS

6 4 2 0 2 4 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Phase difference distribution, SS

source, dp, SS
target, dp, SS

(d) Phase difference, SS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

10

De
ns

ity

Amplitude distribution, MA

source, amp, MA
target, amp, MA

(e) Amplitude, MA

1.0 0.5 0.0 0.5 1.0
0

2

4

6

8

10

12

De
ns

ity

Phase difference distribution, MA

source, dp, MA
target, dp, MA

(f) Phase difference, MA

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

De
ns

ity

Amplitude distribution, RS

source, amp, RS
target, amp, RS

(g) Amplitude, RS

100 75 50 25 0 25 50 75 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity

Phase difference distribution, RS

source, dp, RS
target, dp, RS

(h) Phase difference, RS

Figure 62: The distributions with different scaler

doi:10.6342/NTU202203944

5.4. EVALUATION OF DATA SCALER 80

ranges are [0,1], [-0.5,0.5], [0,2], [-1,1], [0,12], and [-6,6] respectively. We find that

the fine-tuning model leads to a negative transfer effect when the scaling ranges of

the phase difference scaler are [-0.5,0.5],[-1,1], and [-6,6]. In conclusion, when the

elements in the scaled feature data are all greater than 0, the fine-tuned model

can obtain a good classification again. However, when some elements of the scaled

feature data are smaller than 0, some of the model weights must be re-optimized

to obtain a good classification due to the effect of ReLU.

1 2 4 7
Epoch

1.50

1.52

1.54

1.56

1.58

1.60

1.62

1.64

1.66

M
ea

n
di

st
an

ce
 e

rro
r

1.6615

1.6314

1.5788

1.5221

1.6582

1.6012

1.5519

1.5068

phase difference scaling range = (0, 1)
target (0, 1)
proposed (0, 1)

(a) MinMax, (0, 1)

1 2 4 7
Epoch

1.550

1.575

1.600

1.625

1.650

1.675

1.700

1.725

M
ea

n
di

st
an

ce
 e

rro
r

1.6744

1.6414

1.5988

1.5532

1.7264

1.6713

1.6161

1.5640

phase difference scaling range = (-0.5, 0.5)
target (-0.5, 0.5)
proposed (-0.5, 0.5)

(b) MinMax, (−0.5, 0.5)

1 2 4 7
Epoch

1.500

1.525

1.550

1.575

1.600

1.625

1.650

1.675

M
ea

n
di

st
an

ce
 e

rro
r

1.6715

1.6315

1.5766

1.5486

1.6596

1.6010

1.5487

1.5047

phase difference scaling range = (0, 2)
target (0, 2)
proposed (0, 2)

(c) MinMax, (0, 2)

1 2 4 7
Epoch

1.550

1.575

1.600

1.625

1.650

1.675

1.700

1.725

M
ea

n
di

st
an

ce
 e

rro
r

1.6834
1.6611

1.6189

1.5419

1.7398

1.7008

1.6390

1.5727

phase difference scaling range = (-1, 1)
target (-1, 1)
proposed (-1, 1)

(d) MinMax, (−1, 1)

1 2 4 7
Epoch

1.52

1.54

1.56

1.58

1.60

1.62

1.64

1.66

1.68

M
ea

n
di

st
an

ce
 e

rro
r

1.6743

1.6333

1.5841

1.5438

1.6741

1.6164

1.5647

1.5181

phase difference scaling range = (0, 12)
target (0, 12)
proposed (0, 12)

(e) MinMax, (0, 12)

1 2 4 7
Epoch

1.60

1.65

1.70

1.75

M
ea

n
di

st
an

ce
 e

rro
r

1.7198

1.6866

1.6475

1.5784

1.7872

1.7233

1.6522

1.5904

phase difference scaling range = (-6, 6)
target (-6, 6)
proposed (-6, 6)

(f) MinMax, (−6, 6)

Figure 63: Comparing the MDE with different scaling range of MinMax scaler

We have compared the results of phase difference scaling ranges [0, 1], [0, 2],

[0, 12], and these three results are similar. We did not discuss in detail the best

doi:10.6342/NTU202203944

5.5. SUMMARY AND CROSS VALIDATION 81

conditions Number of domain 3 trajectory dataset

Model MDE (1) MDE (2) MDE (4) MDE (7)

target MICNN 1.6615 1.6314 1.5788 1.5221

fine-tuned MICNN 1.6570 1.6059 1.5521 1.5093

fine-tuned MICNN, Cons. 1.6582 1.6012 1.5519 1.5068

fine-tuned MICNN, Child-tuning 1.6591 1.6015 1.5526 1.5217

Table 24: Comparison the MDE of different fine-tuned model

conditions Number of domain 3 trajectory dataset

Model MDE (1) MDE (2) MDE (4) MDE (7)

target MICNN 2.2217 2.1895 2.1166 1.9900

fine-tuned MICNN 2.2126 2.1508 2.0706 1.9510

fine-tuned MICNN, Cons. 2.2091 2.1522 2.0711 1.9483

fine-tuned MICNN, Child-tuning 2.2202 2.1420 2.0721 1.9652

Table 25: Comparison the RMSE of different fine-tuned model

scaling range of the two features, so we still use the default setting of MinMax as

our scaling range.

5.5 Summary and Cross Validation

Generative models do not generate simulated features that can improve the

model performance at all, so we focus on summarizing the impact of the fine-

tuning methods on the model performance.

We compared three fine-tuning methods, one is to directly transfer the source

model weights and fine-tune, the second is conservative training, and the third is

to use Child-tuning for fine-tuning. Figure 64, 24, 25 show the comparison results

of the three methods. Child-tuning is a fine-tuning method for large structures

and small amounts of data, and this algorithm was proposed for the big model.

Our model may not be too large in comparison, and the fine-tuned MICNN per-

formance with the child-tuning algorithm is slightly worse than the fine-tuned

model performance when the training dataset contains one and seven trajectory

datasets. We use conservative training for fine-tuning, and the performance of the

fine-tuned model with regularization is slightly better than the fine-tuned model

performance.

In Section 4.4, We describe our detailed fine-tuned method. We used the BL521

data set to validate our proposed method and the results are shown in Figure 65.

From the results of MICNN, the results of the fine-tuned model are slightly better

than the performance of the target model. For MDE, comparing the target model,

doi:10.6342/NTU202203944

5.5. SUMMARY AND CROSS VALIDATION 82

1 2 4 7
Number of the dataset

1.50

1.52

1.54

1.56

1.58

1.60

1.62

1.64

1.66

M
ea

n
di

st
an

ce
 e

rro
r

average MDE, domain 3, summary
target MICNN
fine-tuned MICNN
fine-tuned MICNN, Conservative training
fine-tuned MICNN, Child-tuning

(a) Comparing the average MDE of three fine-tuned methods

1 2 4 7
Number of the dataset

1.95

2.00

2.05

2.10

2.15

2.20

Ro
ot

 m
ea

n
sq

ua
re

average RMSE, domain 3, summary
target MICNN
fine-tuned MICNN
fine-tuned MICNN, Conservative training
fine-tuned MICNN, Child-tuning

(b) Comparing the average RMSE of three fine-tuned methods

Figure 64: Comparing the average performance for fine-tuned methods

doi:10.6342/NTU202203944

5.5. SUMMARY AND CROSS VALIDATION 83

the fine-tuned model performances are improved by 6.7%, 3.8%, 3%, and 3.6%,

respectively. For RMSE, the proposed model performance is slightly better than

the target model performance. For MLE, the fine-tuned model performances are

improved by 12.15%, 7.6%, 5.1%, and 5.3%, respectively.

From the CNN results in Figure 65, we found that our proposed method does

not seem to have a significant effect. Therefore, we analyze the feature distribu-

tions of two domains in Figure 66.

1 2 4 7
Number of trajectory dataset

1.15

1.20

1.25

1.30

1.35

1.40

M
ea

n
di

st
an

ce
 e

rro
r

1.3946

1.2881

1.2223

1.1815

1.3009

1.2386

1.1857

1.1393

1.4035

1.3329

1.2538

1.1920

1.4219

1.3311

1.2614

1.2343

Mean distance error, DM1
target MICNN
MICNN, Proposed method
CNN
CNN, Proposed method

(a) Comparing the MDE

1 2 4 7
Number of trajectory dataset

1.35

1.40

1.45

1.50

1.55

1.60

Ro
ot

 m
ea

n
sq

ua
re

1.5192

1.4321

1.3816

1.3465

1.4828

1.4263

1.3735

1.3274

1.6162

1.5434

1.4547

1.3844

1.6184

1.5155

1.4350

1.3954

Root mean square
target MICNN
MICNN, Proposed method
target CNN
CNN, Proposed method

(b) Comparing the RMSE

1 2 4 7
Number of trajectory dataset

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

50
th

 v
al

ue
 o

f C
DF

1.3654

1.2246

1.1317

1.0706

1.1995

1.1318

1.0745

1.0136

1.3161

1.2286

1.1433

1.0632

1.3420

1.2564

1.1701
1.1471

50th value of CDF, DM1
target MICNN
Proposed method
CNN
CNN, Proposed method

(c) 50th value of CDF

Figure 65: Cross validate in domain 1 data

The amplitude distribution of domain 1 is single-peaked, and the amplitude

distribution of domain 3 is bimodal in Figure 66(a).We found that when collecting

BL521 data, turtlebot3 installed two antennas to receive the reference signal.

When collecting data in the corridor, turtlebot3 installed one antenna, which

resulted in 100 collected CSIs without antenna gain. Therefore, we designed a

model using only the first hundred elements of the subcarrier amplitude as model

input feature, and the result is shown in Figure 67. The CNN fine-tuned on our

proposed fine-tuning algorithm is slightly better than the target model when the

training data is small.

The fine-tuning method is able to improve the fine-tuned MICNN model. We

believe there are several reasons why the MICNN model can be fine-tuned for

doi:10.6342/NTU202203944

5.5. SUMMARY AND CROSS VALIDATION 84

improvement:

1.) Phase difference is not easily affected by the absence of antenna gain, and

the knowledge of phase difference can be easily transfer to other domain model

for improvement.

2.) Although the feature distribution of the two domains is somewhat different,

these elements with antenna gain can still provide some useful patterns to the

target domain.

0 5 10 15 20 25 30 35 40
Amplitude (dB)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

De
ns

ity

Domain 1 amplitude distribution
Domain 3 amplitude distribution

(a) amplitude distributions

6 4 2 0 2 4 6
Phase difference

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

Domain 1 phase difference distribution
Domain 3 phase difference distribution

(b) phase difference distributions

Figure 66: Comparing the distributions of domain 1 and domain 3

1 2 4 7
Number of the dataset

1.36

1.38

1.40

1.42

1.44

M
ea

n
di

st
an

ce
 e

rro
r

target CNN (100)
fine-tuned CNN (100)

Figure 67: Comparing the MDE of the CNN train on dm1 modified feature

doi:10.6342/NTU202203944

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this Section 3, We propose a CNN model using LTE CSI subcarrier ampli-

tude and subcarrier phase difference as model input features, which outperforms

the DNNmodel using LTE CSI subcarrier amplitude as model input. The designed

MICNN-RNN model can achieve sub-meter indoor localization, and the MDE of

the CNN-RNN model can reach 89 cm (In Figure 15). The performance of the

CNN model we use is 12.6% better than the DNN model performance (In Figure

28) when training set is large. Comparing the CNN using subcarrier amplitude

as model input feature, Our proposed MICNN model using subcarrier amplitude

and subcarrier phase difference as model input features is improved by 3.3%.

In Section 4, we discuss how to use less target domain data to achieve better

model performance. We applied the data augmentation approach and transfer

learning approach. The data augmentation methods do not lead to better model

performance compared to the model performance trained on only target domain

data. Model fine-tuning is helpful to improve model performance. Compared with

the model performance of the target MICNN in domain 1, the MLE and MDE of

fine-tuned MICNN can improve by 12.2% and 6.7% respectively when the training

set contains one trajectory dataset.

Our system is mainly based on turtlebot3 as the user equipment. The human

trajectory is more complex than the turtlebot3 trajectory, and there are more

changes when people move. How to use the CNN+RNN model to get better

localization performance is a new challenge.

85

doi:10.6342/NTU202203944

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
A. Y. Ng, et al., “Ros: an open-source robot operating system,” in ICRA
workshop on open source software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[2] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE transactions on
Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[3] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d li-
dar slam,” in 2016 IEEE international conference on robotics and automation
(ICRA). IEEE, 2016, pp. 1271–1278.

[4] R. Amsters and P. Slaets, “Turtlebot 3 as a robotics education platform,” in
International Conference on Robotics in Education (RiE). Springer, 2019,
pp. 170–181.

[5] T. Ulversoy, “Software defined radio: Challenges and opportunities,” IEEE
Communications Surveys & Tutorials, vol. 12, no. 4, pp. 531–550, 2010.

[6] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[7] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM computing surveys (csur),
vol. 53, no. 3, pp. 1–34, 2020.

[8] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,
“A comprehensive survey on transfer learning,” Proceedings of the IEEE, vol.
109, no. 1, pp. 43–76, 2020.

[9] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer learning,” in
Proceedings of the 24th International Conference on Machine Learning, ser.
ICML ’07, 2007, p. 193–200.

[10] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural net-
works,” The journal of machine learning research, vol. 17, no. 1, pp. 2096–
2030, 2016.

[11] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp. 41–75,
1997.

[12] L. Duong, T. Cohn, S. Bird, and P. Cook, “Low resource dependency parsing:
Cross-lingual parameter sharing in a neural network parser,” in Proceedings of
the 53rd annual meeting of the Association for Computational Linguistics and

86

doi:10.6342/NTU202203944

REFERENCES 87

the 7th international joint conference on natural language processing (volume
2: short papers), 2015, pp. 845–850.

[13] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are fea-
tures in deep neural networks?” Advances in neural information processing
systems, vol. 27, 2014.

[14] M. T. Hoang, B. Yuen, X. Dong, T. Lu, R. Westendorp, and K. Reddy, “Re-
current neural networks for accurate rssi indoor localization,” IEEE Internet
of Things Journal, vol. 6, no. 6, pp. 10 639–10 651, 2019.

[15] S. Bai, M. Yan, Q. Wan, L. He, X. Wang, and J. Li, “Dl-rnn: An accurate
indoor localization method via double rnns,” IEEE Sensors Journal, vol. 20,
no. 1, pp. 286–295, 2019.

[16] H. Zhang, Z. Zhang, S. Zhang, S. Xu, and S. Cao, “Fingerprint-based local-
ization using commercial lte signals: A field-trial study,” in 2019 IEEE 90th
Vehicular Technology Conference (VTC2019-Fall). IEEE, 2019, pp. 1–5.

[17] E. Schmidt, D. Inupakutika, R. Mundlamuri, and D. Akopian, “Sdr-fi: Deep-
learning-based indoor positioning via software-defined radio,” IEEE Access,
vol. 7, pp. 145 784–145 797, 2019.

[18] X. Peng, R. Chen, K. Yu, F. Ye, and W. Xue, “An improved weighted k-
nearest neighbor algorithm for indoor localization,” Electronics, vol. 9, no. 12,
p. 2117, 2020.

[19] Y. Zhang, C. Qu, and Y. Wang, “An indoor positioning method based on csi
by using features optimization mechanism with lstm,” IEEE Sensors Journal,
vol. 20, no. 9, pp. 4868–4878, 2020.

[20] X. Wang, L. Gao, and S. Mao, “Csi phase fingerprinting for indoor localization
with a deep learning approach,” IEEE Internet of Things Journal, vol. 3,
no. 6, pp. 1113–1123, 2016.

[21] G. Pecoraro, S. Di Domenico, E. Cianca, and M. De Sanctis, “CSI-based
fingerprinting for indoor localization using LTE signals,” EURASIP Journal
on Advances in Signal Processing, vol. 2018, no. 1, p. 49, 2018.

[22] Y. Yin, X. Yang, P. Li, K. Zhang, P. Chen, and Q. Niu, “Localization with
transfer learning based on fine-grained subcarrier information for dynamic
indoor environments,” Sensors, vol. 21, no. 3, p. 1015, 2021.

[23] K. Liu, H. Zhang, J. K.-Y. Ng, Y. Xia, L. Feng, V. C. Lee, and S. H. Son, “To-
ward low-overhead fingerprint-based indoor localization via transfer learning:
Design, implementation, and evaluation,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 3, pp. 898–908, 2017.

[24] C. Wu, Z. Yang, Y. Liu, and W. Xi, “Will: Wireless indoor localization
without site survey,” IEEE Transactions on Parallel and Distributed systems,
vol. 24, no. 4, pp. 839–848, 2012.

doi:10.6342/NTU202203944

REFERENCES 88

[25] Q. Liang and M. Liu, “An automatic site survey approach for indoor local-
ization using a smartphone,” IEEE Transactions on Automation Science and
Engineering, vol. 17, no. 1, pp. 191–206, 2019.

[26] A. Belmonte-Hernández, G. Hernández-Peñaloza, D. M. Gutiérrez, and
F. Álvarez, “SWiBluX: Multi-Sensor Deep Learning Fingerprint for precise
real-time indoor tracking,” IEEE Sensors Journal, vol. 19, no. 9, pp. 3473–
3486, 2019.

[27] X. Wang, C. Yang, and S. Mao, “Phasebeat: Exploiting csi phase data for
vital sign monitoring with commodity wifi devices,” in 2017 IEEE 37th In-
ternational Conference on Distributed Computing Systems (ICDCS). IEEE,
2017, pp. 1230–1239.

[28] Y. Xie, Z. Li, and M. Li, “Precise power delay profiling with commodity wi-
fi,” IEEE Transactions on Mobile Computing, vol. 18, no. 6, pp. 1342–1355,
2018.

[29] M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, “Optimum receiver design
for wireless broad-band systems using ofdm. i,” IEEE Transactions on com-
munications, vol. 47, no. 11, pp. 1668–1677, 1999.

[30] “feature selection algorithm:mutual information classify,” https:
//scikit-learn.org/stable/modules/generated/sklearn.feature selection.
mutual info classif.html#sklearn.feature selection.mutual info classif.

[31] “feature selection algorithm:mutual information regression,” https://
scikit-learn.org/stable/modules/generated/sklearn.feature selection.mutual
info regression.html#sklearn.feature selection.mutual info regression.

[32] , “An indoor localization system for cellular networks based on transfer learn-
ing with reduced cost on site survey / jun-xiang liao,” 2021.

[33] W. Njima, M. Chafii, and R. M. Shubair, “Gan based data augmentation
for indoor localization using labeled and unlabeled data,” in 2021 Interna-
tional Balkan Conference on Communications and Networking (BalkanCom).
IEEE, 2021, pp. 36–39.

[34] W. Njima, A. Bazzi, and M. Chafii, “Dnn-based indoor localization under lim-
ited dataset using gans and semi-supervised learning,” IEEE Access, vol. 10,
pp. 69 896–69 909, 2022.

[35] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[36] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neu-
ral information processing systems, vol. 27, 2014.

[37] Y. Bengio, E. Laufer, G. Alain, and J. Yosinski, “Deep generative stochastic
networks trainable by backprop,” in International Conference on Machine
Learning. PMLR, 2014, pp. 226–234.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_selection.mutual_info_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html#sklearn.feature_selection.mutual_info_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html#sklearn.feature_selection.mutual_info_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html#sklearn.feature_selection.mutual_info_regression

doi:10.6342/NTU202203944

REFERENCES 89

[38] G. E. Hinton, “Boltzmann machine,” Scholarpedia, vol. 2, no. 5, p. 1668,
2007.

[39] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv
preprint arXiv:1411.1784, 2014.

[40] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,
“Infogan: Interpretable representation learning by information maximizing
generative adversarial nets,” Advances in neural information processing sys-
tems, vol. 29, 2016.

[41] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary
classifier gans,” in International conference on machine learning. PMLR,
2017, pp. 2642–2651.

[42] M. Nabati, H. Navidan, R. Shahbazian, S. A. Ghorashi, and D. Windridge,
“Using synthetic data to enhance the accuracy of fingerprint-based localiza-
tion: A deep learning approach,” IEEE Sensors Letters, vol. 4, no. 4, pp. 1–4,
2020.

[43] H. yi Lee. Ml lecture 19: Transfer learning. Online Available at:
https://youtu.be/qD6iD4TFsdQ

[44] R. Aljundi, “Continual learning in neural networks,” arXiv preprint
arXiv:1910.02718, 2019.

[45] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Over-
coming catastrophic forgetting in neural networks,” Proceedings of the na-
tional academy of sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[46] D. J. MacKay, “A practical bayesian framework for backpropagation net-
works,” Neural computation, vol. 4, no. 3, pp. 448–472, 1992.

[47] R. Xu, F. Luo, Z. Zhang, C. Tan, B. Chang, S. Huang, and F. Huang, “Raise
a child in large language model: Towards effective and generalizable fine-
tuning,” arXiv preprint arXiv:2109.05687, 2021.

[48] W. Zhang, L. Deng, L. Zhang, and D. Wu, “A survey on negative transfer,”
arXiv preprint arXiv:2009.00909, 2020.

[49] M. M. Ahsan, M. P. Mahmud, P. K. Saha, K. D. Gupta, and Z. Siddique,
“Effect of data scaling methods on machine learning algorithms and model
performance,” Technologies, vol. 9, no. 3, p. 52, 2021.

[50] Q. Li, H. Qu, Z. Liu, N. Zhou, W. Sun, S. Sigg, and J. Li, “Af-dcgan: Am-
plitude feature deep convolutional gan for fingerprint construction in indoor
localization systems,” IEEE Transactions on Emerging Topics in Computa-
tional Intelligence, vol. 5, no. 3, pp. 468–480, 2019.

[51] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intelligence
research, vol. 16, pp. 321–357, 2002.

https://youtu.be/qD6iD4TFsdQ

doi:10.6342/NTU202203944

REFERENCES 90

[52] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of
machine learning research, vol. 9, no. 11, 2008.

[53] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G. Dietterich, “To transfer
or not to transfer,” in In NIPS’05 Workshop, Inductive Transfer: 10 Years
Later, 2005.

	Abstract
	List of Tables
	List of Figures
	Chapter 1 — Introduction
	Chapter 2 — Related Work
	2.1 System Introduction
	2.1.1 Problem Formulation

	2.2 Robot Setup
	2.2.1 Robot Operating System (ROS)
	2.2.2 Simultaneous Localization and Mapping
	2.2.3 Turtlebot3

	2.3 LTE Setup
	2.3.1 Software Defined Radio
	2.3.2 OpenAirInterface

	2.4 Related Work about Machine Learning
	2.4.1 Recurrent neural network
	2.4.2 Generative Adversarial Network
	2.4.3 Transfer Learning

	2.5 Related Work
	2.5.1 Indoor Localization

	Chapter 3 — Learning-Based Indoor Localization
	3.1 Feature
	3.1.1 LTE Subcarrier Amplitude
	3.1.2 LTE Phase Difference
	3.1.3 Feature Analysis
	3.1.4 Feature Normalization

	3.2 Model for Snapshot Features
	3.2.1 Support Vector Machine
	3.2.2 K Nearest Neighbors Algorithm
	3.2.3 Fully Connected Neural Network
	3.2.4 One-Dimensional Convolutional Neural Network
	3.2.5 Proposed Model

	3.3 Time Domain Data Fusing method
	3.3.1 Fusion Network
	3.3.2 Recurrent Neural Networks
	3.3.3 Stack RNN
	3.3.4 DL-RNN

	3.4 Evaluation Results
	3.4.1 Evaluation Criteria
	3.4.2 Cross Validation Method
	3.4.3 Platform
	3.4.4 Experimental environment one
	3.4.5 Feature Extraction Model Comparison
	3.4.6 Loss Function Comparison
	3.4.7 Label Smoothing Method
	3.4.8 Considering the Phase Difference as Model Input
	3.4.9 Cascaded Model Comparison
	3.4.10 Cascaded Models Comparison for Different Input Features

	3.5 Summary

	Chapter 4 — Localization Deployment of Model Performance Improvement
	4.1 Data Augmentation
	4.1.1 Problem and Viewpoints
	4.1.2 Generative Adversarial Network
	4.1.3 Variational Auto-encoder

	4.2 Transfer Learning Methods
	4.2.1 Model Fine-tuning
	4.2.2 Model Generalization

	4.3 Data Scaler
	4.4 Summary

	Chapter 5 — Performance Evaluation
	5.1 Datasets
	5.1.1 Domain 1 Dataset
	5.1.2 Domain 2 Dataset
	5.1.3 Domain 3 Dataset

	5.2 Evaluation of Data augmentation
	5.2.1 Considering Data Augmentation with GAN
	5.2.2 Considering Data Augmentation with VAE

	5.3 Evaluation of Transfer Learning
	5.3.1 Domain 1 and Domain 2 Case
	5.3.2 Domain 1 and Domain 3 case

	5.4 Evaluation of Data Scaler
	5.4.1 Consider the Different Scaler
	5.4.2 Consider Scaling Range

	5.5 Summary and Cross Validation

	Chapter 6 — Conclusion and future work
	References

