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Abstract

Cephalopods play an important role in ecology and fishery. The variation in the diet
of large squid population promote high interaction of individuals between different
trophic levels in the marine ecosystem. As a consequence of global climate change,
previous research has indicated that alteration of environment impacts the availability of
the prey. Due to marine pollution, the squids are under the risk of artifact ingestion.
However, no clear understanding about the effect of climate change and marine pollution
on squid diet selection. This study examined 300 stomachs from Illex argentinus. The
sample were collected through commercial catches across the Southwest Atlantic from
February to April of 2018 and 2019. In the result, the percentage of frequency of
occurrence (FO%) of squid diet in 2018 comprised of 14.90% fish, 2.40% cephalopod
and 97.60% crustacean taken from 208 stomachs. Meanwhile, a relatively higher FO%
for squid diet in 2019 was observed comprising of 18.87% fish, 20.75% cephalopod and
96.23% crustacean examined from 53 stomachs. Also, the Fourier-Transform Infrared
Spectroscopy (FTIR) showed that artifacts examined were composed of plastic and non-
plastic materials. Subsequently, FO% of artifact ingestion was higher in 2019 (28.33%)
than in 2018 (17.92%), thus mean number of artifact ingestion from two years were less
than 0.5. The results indicate that the main diet of //lex argentinus is crustacean. Also,
climate change has no direct impact to the squid diet. The results of artifact detection
showed that the Southwest Atlantic is less polluted. Thus, it is suggested to continue a
monitoring study of squids in this area, particularly on food safety and diet to well manage
the biodiversity and squid biology.

Keywords: Cephalopod, Squid, /llex argentinus, Diet, Climate change, Artifact pollution
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Chapter 1  Introduction

1.1  The impact of climate and environmental changes

Serious ecological alterations have appeared in global marine environment at fast
rate (Poloczanska et al., 2013). Long-term climate change and short-term changes in the
environment affect the resource availability of marine organisms. Diet shift of the marine
organisms is the result of the changes in food availability. Long-term changes in primary
production have influenced in the marine food web due to bottom-up controls
(Frederiksen et al., 2006; Hays et al., 2005). Climate change at long time scales cause
alterations in marine habitat distribution and predator-prey interaction (Green & Coté,
2014; Hazen et al., 2013). Distribution of krill in the Southwest Atlantic has changed due
to the loss of sea ice under long-term climate change (Atkinson et al., 2019). Population
of krill predators such as penguins declined because of food shortage (Klein et al., 2018).
Short-term changes in environmental conditions alter prey availability and preference of
predators (Scharf et al., 2000; White, 2008). Top predators such as seabirds often rely on
limit species of prey (Cury et al., 2000). If prey availability changes due to environment
alteration, it may have consequences on the foraging behavior or animal diet composition.
Therefore, determining the relationship between diet dynamics of marine organisms and
global climate can help to better understand the impacts of environmental changes to

marine animals.

1.2 Ecological characteristics of squids

Squids are insatiable predators feeding opportunistically on variable diets (Rodhouse
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& Nigmatullin, 1996). They are important prey of top predators (Clarke, 1986; Klages,
1996, Smale, 1996). These characteristics make them become the key role between
different trophic levels in the marine ecosystem (Piatkowski et al., 2001). Furthermore,
resulting from overexploitation of fish stocks and changing marine environment, their
population may increase by replacing trophic niche of fishes (Caddy & Rodhouse, 1998;
Doubleday et al., 2016; Hoving et al., 2013). These changes in marine biodiversity due to
overexploitation favors the squids to having more essential roles in the marine food web.
Because of the short lifespan of squids, they are susceptible to environmental change
(Rodhouse & Nigmatullin, 1996). Previous studies have indicated that climate change
may increase the distribution of squids and influence the relationship of species in other
ecosystems (Golikov et al., 2013; Zeidberg & Robison, 2007). However, there is limit
knowledge on the diet of squids in the area with environmental alteration (Collins &

Rodhouse, 2006).

1.3  Diets of Illlex argentinus

Cephalopods contribute significantly to the ecology and fishery due to their large
population (Doubleday et al., 2016). They are important resources in the global fishery
which account for approximately 4% of the total catch and 5% of total value. Among
cephalopods, Illex argentinus are major resources in global cephalopod fishery as well as
account for nearly 10% in total catch of cephalopods (FAO, 2019). lllex argentinus have
short life span of about one year and they die after spawning (Rodhouse & Hatfield, 1990).
To achieve high growth rates for fast-growing, Illex argentinus require great abundance

of food (Haimovici et al., 1998). Therefore, they undergo horizontal and vertical
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migrations in the daytime and early night for prey availability (Ivanovic & Brunetti, 1994;
Santos & Haimovici, 1997).

According to previous studies, /llex argentinus have dissimilar diet composition in
different latitude interval, they consume more crustaceans in the southern distribution
(Ivanovic & Brunetti, 1994). Moreover, diet analysis in various years represent [llex
argentinus have fluctuating diets (Ivanovic & Brunetti, 1994; Mount et al., 2001; Rosas-
Luis et al., 2014). Antarctic, a close region of squid distribution, has been observed as a
significant area impacted by climate change in the 21st century (Jansen et al., 2007). The
changes in the sea surface temperature (SST) and chlorophyll a concentration (Chl-a) in
sea area caused a reduction in krill population which later on replaced by other
crustaceans (Murphy et al., 2007; Atkinson et al., 2012). Squids have different diets due
to their size in each life stage and food abundance in their habitats. Therefore, squid may
have diet shift when the population of crustacean also changed (Rodhouse & Nigmatullin,

1996; Rodhouse, 2013).

1.4  Recent concerns of marine artifact pollution

Marine artifact pollution and ingestion by marine organisms are of major concern
recently in studying marine environment and ecology. Plastic productions are growing
consistently due to great demand (PlasticsEurope, 2018). Some artifacts are made of
plastics that break down to microplastics. This mostly accumulate in marine ecosystems
causing an environmental pollution (Van Sebille et al., 2015). Ingestion of microplastic
causes diverse effect on marine organisms (Avio et al., 2015; Cole et al., 2015). Some
artifacts are manufactured from natural materials such as cotton, silk and wool; however,

the processing of these artifacts contained carcinogenic chemicals which lead to a
12
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potential health risk (Acuner & Dilek, 2004; Khan & Malik, 2013). Squids consume great
amount of food throughout their ontogeny. The inclusion of artifacts, especially plastics,
in the squid’s food can become a serious problem owing to the bioaccumulation in the
food web as well as the food safety issues. Nevertheless, there are lack of studies about
the risk of artifact ingestion in squids. Only few studies about diet analysis and food safety
of commercial cephalopods include artifact ingestion (Rosas-Luis, 2016; Abidli et al.,
2019). In the distribution of ///ex argentinus, only some studies are about artifact ingestion
in top predators. 14.5% of the opah fish distributed near the Falkland Islands contained
artifacts in their stomachs and 20% of the gentoo penguin distributed in the Antartic

region contain artifacts in their scats (Jackson et al., 2000; Bessa et al., 2019).

1.5 Objectives

Due to lack of information about diet shift by environmental alteration and artifact
ingestion of the squids, in this study we analyzed the diet of /l/lex argentinus. We compare
squid’s diet in 2018 and 2019 with previous studies. Moreover, we examined the
relationship between the environment and biological information of Illex argentinus,
including body size, stomach fullness and diet. Finally, we examined the level of artifact
ingestion by /llex argentinus and compare it with the results of diet analysis to find out if

there are any relations.
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Chapter 2 Materials and Methods

2.1  Study area and stomach sampling

lllex argentinus were collected from commercial catches of Taiwanese jigging
vessels across the northern open sea of Argentina from February to April 2018 and 2019
(Fig. 1). The squids were collected once every two weeks whenever the jigging location
was changed. The numbers of each collection followed the size of frozen iron boxes on
the vessels. In general, two boxes were filled up with squids. During dissection, dorsal
mantle length (ML), body weight, sex and maturity stage (Lipinski & Underhill, 1995)
were recorded for all the samples. Individual stomachs were extracted and frozen at -
20°C. In this study, we selected only female squids in each location due to low catch in

male squids.

2.2 Stomach content analysis

Stomachs were weighed after defrosting and excising the caecum. Caecum of squid
contained nutrient fluid digesting from solid particles in the stomach (Bidder, 1950).
Caecum was excised before examining due to the difficulty in content examination of the
mucous lining in the stomach. Hence, the stomach was first examined for diet analysis.
Then, the rest of stomach contents were dissolved for artifact detection after the

preservation of the identified prey items

2.2.1 Diet analysis

A visual stomach fullness index (SFI) was estimated: 0 = empty; 1 = scarce; 2 = few;

3 = half full; 4 = full; 5 = full to distended (Breiby, 1985). Stomachs were opened and
14
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contents were rinsed over 200 and 330 pum mesh sieves. The identification and
quantification of prey contents in the stomach were done using a binocular dissecting
microscope. Prey items were identified to the lowest possible taxon. Fish remains, such
as sagittal otoliths were identified based on Lombarte et al. (2006). Cephalopod remains,
such as beaks were identified based on identification keys of Clarke (1986) and
photographs in Xavier & Cherel (2009). Crustacean remains, such as exoskeletons were
identified following the descriptions on Boschi et al. (1992) and Chapman (2007).
Quantification of prey items was executed by calculating overall and individual frequency
of occurrence (FO) in a sample and number (N) (Mouat et al., 2001; Markaida & Sosa-
Nishizaki, 2003; Markaida et al., 2008).

Number of stomachs with certain prey type

Overall frequency of occurrence (FO%) = Total observation of all prey types

Number of stomachs with certain prey type

Individual frequency of occurrence (FO%) = Total number of stomachs with pre
u w y

Number of certain prey type

Overall ber (N%) =
verall number (N Total number of all prey types

Number of certain prey type

ndividual mean number (N) Total number of stomachs with prey

The amount of fish prey was counted by the maximum number of otoliths or lens.
Cephalopod prey was enumerated by the maximum number of statoliths, lens or beaks.
Although tentacle fragments appeared in some stomachs, we removed them from the
numbers of cephalopod prey since squid cannibalizes tentacles of the others when
gathering on the board. Due to manducation of squid on their preys, number of crustacean
was hard to assess. As a result, a conventional estimation was used to record crustacean

prey as presence (n = 1), or absence (n = 0) (Portner et al., 2019). Overall and individual

15
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FO and N were compared with each year and ML.

2.2.2 Artifact detection

The remaining stomach contents were dissolved by 10% KOH in 60°C incubation
for 48 h (Jamieson et al., 2019; Lusher et al., 2017). KOH was added as three times greater
volume of the stomach contents (Foekema et al., 2013) to digest the biological particles
in the contents with artifacts remaining (Dehaut et al., 2016; Kiihn et al., 2017). Water
bath was used to incubate the dissolving contents. Contents were shaken for 30 seconds
to promote digestion every day. Dissolved contents were filtered through Whatman Grade
541 filter paper and moved to petri dish for examination under a binocular dissecting
microscope (Jamieson et al., 2019). Used filter papers were inspected visually for the
artifacts and kept in tin foil for further analysis. If artifacts were found, they were
photographed and scaled by software “ImageJ” (v.1.52a; https://imagej.nih.gov/ij/).

To prevent contamination, laboratory coats and nitrile gloves were worn when
processing experiment. Every equipment and container were rinsed with acetone or 70%
ethanol before use. During each experimental procedure mentioned above, two clean petri
dishes with distilled water were placed on left and right side of the processing area to
collect possible contamination (Baalkhuyur et al., 2018). After finishing each procedure,
petri dishes were examined and the amounts of contamination were recorded.

The characterization of artifacts found in filter papers were analyzed by Fourier-
transform infrared spectrometer (FTIR; INVENIO R, Bruker, Ettlingen, Germany) at TLS
14A1 of National Synchrotron Radiation Research Center in Taiwan. An IR microscope
(Hyperion 3000, Bruker, Ettlingen, Germany) is integrated with the spectrometer for

FTIR imaging and a single element Mercury-Cadmium-Telluride (MCT) cooled by liquid
16
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nitrogen is also equipped. Spectral range of the apparatus is 4000-650 cm™! at resolution
of 4 cm™ in 64 scans. The spectral results of the artifacts were compared with spectra
library of the software “OPUS” (v.8.1) and confirmed by the inspection of peaks matching.
Identified artifacts were then calculated with the total numbers of stomach for individual
N and FO and compared with each year and ML. Moreover, individuals with artifact

ingestion compared with their SFI and diet composition.

2.3 Environmental data

Sea surface temperature (SST) and Chlorophyll a concentration (Chl-a) were
included to measure environmental conditions in the main distribution area (34°S — 55°S
and 50°W — 70°N) of lllex argentinus (Ivanovic & Brunetti, 1994). Due to the duration
for more than one to two days of food remained in the stomachs (Bidder, 1966), daily
data were collected and calculated the mean value of 0 day, -1 day, -2 days, -3 days, -5
days and -7 days of sampling. The variation of environmental data in sampling period of
two years would later compare with diet and artifact consumption. SST data at 0.25 x
0.25 spatial resolution was obtained from the National Oceanic and Atmospheric
Administration (NOAA) (https://www.ncei.noaa.gov/). Chl-a data at 4 km x 4 km spatial
resolution was obtained from the Copernicus Marine Environment Monitoring Service

(CMEMS) (http://marine.copernicus.eu/).

2.4  Statistical analysis

A nonparametric Kruskal-Wallis test with Dunn's multiple comparisons post hoc test

was used to determine the differences in ML between months and years. Linear

17
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regressions were used to analyze the relationship between the diet/artifact consumption
and mantle length in different months in each year. The Pearson correlation coefficient
was used to evaluate relationship between different duration of mean environmental data

and ML in two years. All analyses were performed in R V4.0.1 (R Core Team, 2020).

18

doi:10.6342/NTU202002611



Chapter 3 Results

3.1 Sample description

We selected 30 individuals per sampling station in 2018 and 240 individuals in total,
whereas there were 60 individuals in total in 2019 (Table 1). A total of 300 squids were
prepared for further analysis. Squids’ ML range were 181.2 mm to 333.8 mm. The
minimum ML was 181.2 mm in 2018, while the maximum ML was 333.8 mm in 2019.
Mean ML in 2019 was about 30 mm higher than that in 2018. Standard deviation (SD) of
ML in 2018 was 34.94, a much higher than 22.02 in 2019. This indicated that ML in 2018
was more dispersed. The SD range in 2018 was 10-18 while 4-21 in 2019. The location
with less individual samples in 2019 tended to have lower SD. ML between two years
had significant difference (p < 0.01). The ML in 2019 was larger than the ML in 2018
(Fig. 2). Comparing the ML in different months from the two years (Fig. 3), the ML in
March from two years was significantly different (p < 0.01). Take note that the ML in
March 2019 was larger than the ML in march 2018. Meanwhile, ML in April from two
years had no difference (p = 0.33). ML from February to April in 2018 and from March
to April in 2019 had significant difference. ML in 2018 and 2019 increased along with
months. A positive correlation between latitude of sampling location and ML of //lex
argentinus in 2018 and 2019 indicate that ML represented the growth and the trend of
migration (Fig. 4). Due to the difference between months and years as well as the positive

relationship with latitude, ML was used as comparing benchmark for further analysis.
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3.2 Diet analysis

3.2.1 Stomach fullness

The SFI in 2018 had higher percentage (SFI = 3, 4 and 5), which showed most
individual stomachs were more than half full (Fig. 5). The SFI 0 in 2019 was less than
other level. This indicated that most individuals had food remained in their stomachs.
Empty stomachs (SFI=0) were removed and would not be used in diet analysis, including
n=321in 2018 and n=7 in 2019.

3.2.2 Diet composition

The identified fragments composed of 147 fish, 28 cephalopod and 9353 crustacean
observed in 208 stomachs in 2018. Meanwhile, 88 fish, 37 cephalopod and 2602
crustacean fragments observed from 53 stomachs in 2019. The diet composition of ///ex
argentinus involved fishes, cephalopods and crustaceans in two years (Table 2).
Crustaceans were main diet of squid in this study. The diets in 2018 were diverse than
diets in 2019. Squids consumed 5 different fish species in 2018 but only 2 species in 2019.
Unique species of fish in 2018 were the genus Rhynchohyalus, Notophycis marginata and
Micromesistius australis, while the genus Dolichopteryx and Gymnoscopelus nicholsi
observed in both years. Distinct cephalopod species consumed by squid in 2018 was
Loligo gahi. Illex argentinus and Histioteuthis atlantica were found in stomachs of squid
of two years and showed that squid in this study had cannibalism. Diet species of
crustaceans remained identical in both years, including the order Amphipoda, Decapoda
and Euphausiacea.

In comparison with the overall FO% and N% of three main diets in 2018 and 2019,

fishes had similar overall FO% in stomachs in two years (12.42% and 11.88%) but overall

20
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N% was higher similar by 9% in 2019 (Table 2). These denoted that overall occurrence
of fishes in stomachs were similar, yet overall squid consumed larger numbers of fishes
in 2019 (Fig. 6). Overall FO% and N% of cephalopods in 2019 were higher than overall
percentage of cephalopods in 2018 by more than 10%. Overall FO% of crustacean
consumption in 2019 was 10.59% less than percentage in 2018, while overall N% in 2019
was 22.12% less than percentage in 2018. Comparing individual FO% in two years,
percentage of fishes in 2019 was larger than percentage in 2018 (Fig. 7). Nevertheless,
cephalopods had apparently higher individual FO% in 2019. The mean number of
individual of each diet in 2019 was greater than that in 2018 (Table 2). The value in the
diet of fishes and cephalopods in 2019 was approximately 0.5 larger than value in 2018

as well as individual mean N of crustaceans was 0.07 higher in 2019.

3.2.3 The relationship between diet and individual size

The comparison between SFI and ML in two years revealed that each SFI was
distributed in all ML intervals, but SFI was different concentrating in each interval (Fig.
8). In 2018, individuals in 150-200 mm and 200-250 mm had higher percentage in SFI 3-
5.In 2019, individuals in 200-250 mm had higher percentage in SFI 1-3.

The relationship between ML and individual FO% was shown (Fig. 9). The squid
with larger ML tended to have higher cephalopod consumption. Individual FO% of fishes
and cephalopods in two years increased as ML became larger. In 2018, cephalopod mostly
appeared in the stomachs of individual in 300-350 mm. Crustaceans had lower individual
FO% from 250-300 mm to 300-350 mm. In 2019, squid in 300-350 mm did not consume
fishes. Individual FO% of crustacean was similar in each ML interval. Evidently, there

was higher individual FO% of cephalopod in 200-300 mm in 2019.
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In 2018, fishes and cephalopods were similarly concentrated in individual FO% 0,
indicating most squids did not consume these species (Fig. 10). Individual FO% of
crustaceans concentrated in 100 at the left side of ML, indicating most smaller individuals
only consume crustaceans. There was similar distribution at individual FO% 50 in the
diets of fish and crustacean, therefore the represented diets of fish and crustacean were
included in some individuals. Large squid consumed more cephalopod since the FO%
value above 0 in cephalopods located at the right side of ML. Individual FO% of fishes
and cephalopods increased along with individual ML. In contrast, the individual FO% of
crustaceans decreased while ML increased (Fig. 10). In 2019, other than the similar
concentration of individual FO% 0 in fishes and cephalopods as well as 100 in crustaceans,
the distribution was more scattered than the one in 2018 (Fig. 11). There was more
distribution at the individual FO% 30 in three main diets, which indicated more
individuals were consumed as diets including fish, cephalopod and crustacean. In addition,
individual FO% 50 observed more in the diets of cephalopod and crustacean.
Regression lines of cephalopod and crustacean were nearly horizontal and showed no
trend between FO and ML. The regression line of fish had slightly upward trend, which
indicated individual FO slightly rose as ML increased. The relationship between
cephalopod and crustacean showed no trend between FO and ML (Fig. 11). While, fish

weak positive relationship with ML.

3.3 Artifact detection

3.3.1 Artifact classification

A total of 76 artifacts were found in stomachs of 300 individuals from 2018 and 2019
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samples. Three types of artifact were observed in this study, including 69 fibers, 3 films
and 4 fragments. Various colors in artifacts were detected, which contained blue in 61
artifacts, red in 9 artifacts, green in 2 artifacts and Black (Grey) in 4 artifacts. The most

abundant artifacts among all was blue fiber.

3.3.2 Stomach fullness and diet of artifact consuming individuals

Most individuals within the two years of study had only consumed crustaceans while
some individuals had no food remained in their stomachs (Table 3). The proportional
distribution of SFI among artifact-consuming individuals was distinctive in two years. In
2018, individuals with SFI 4 and 5 had higher artifact ingestion. Comparing with the
percentage in 2018, individuals in 2019 had greater artifact ingestion at SFI 1 and 2.
Artifact-consuming individuals in 2018 had similar SFI with overall individuals in 2018
(Fig. 12). In 2019, the percentage of SFI 0 in artifact-consuming individuals was two
times as large as percentage in overall individuals, while percentage of SFI1 4 in 2019 was

nearly 3 times less.

3.3.3 Artifact composition

A total of 6 artifacts were identified as plastics including nylon 66 and polyethylene
terephthalate (PET) (Table 4). Most artifacts were unidentified, only 13.33% in overall
FO% in 2018 was plastic. Squid had greater artifact ingestion in 2019 as individual FO%
and individual mean N of artifacts were higher than that in 2018. Nevertheless, individual
mean N in two years was less than 0.5 which indicated there were small amount of artifact
ingestion in squid in this study. In addition, mean contamination on petri dishes was

approximately 0.1 which were non-artifacts and were not be used in this study. Thus, the
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airborne contamination was not a serious problem.

3.3.4 The relationship between artifact ingestion and individual size

Larger squid in two years had greater individual FO%, though the percentage was
different in some ML intervals between the two years (Fig. 13). In 2018, the Individuals
with 150-200 mm and 200-250 mm ML had similar FO%. Also, the individual FO%
increased as ML increased from 200-250 mm, 250-300 mm to 300-350 mm. In 2019,
individual FO% were similar in 200-250 mm and 250-300 mm, though the percentage
grew with apparently increasing ML from 250-300 mm to 300-350 mm. FO% of artifacts
in two years were concentrated in 0 and represented most individuals had no artifact
ingestion (Fig. 14). In addition, the individual FO% and larger ML showed a positive
relationship. More evident trend in 2019 was shown due to the steeper slope of regression

line.
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Chapter 4 Discussion

4.1 Diet analysis

Crystalline lens is necessary for identifying the diet in squid. However, cephalopod
and fish have similar appearance of lens. In this study, we differentiated the lens in the
stomachs by soft stabbing with tweezers. If the lens could easily separate into two parts,
it would be the lens of cephalopod (West et al., 1995). Fish lens is usually spherical and
cannot be separated. Previous studies about diet of cephalopod rarely used lens to identify
cephalopod. Therefore, adding lens as the key for identifying cephalopod would make the
diet of cephalopod more clearly. The statoliths of cephalopod were seldom found in the
stomach directly, while they were often found in a translucent tissue. It seems like that
the statoliths are more susceptible by gastric acid than otoliths of fish and correspond with
the negative effect of ocean acidification in the development of statolith (Kaplan et al.,
2013). Conventional estimation would lead to smaller amount of crustacean counting.
Nevertheless, putting all fragments of crustacean into counting would have greater error
as the fragments of three main diets in two years were 235 pieces of fish, 65 pieces of fish
and 11955 pieces of crustaceans.

In this study, the overall FO% of fish in two years in this study were 10% higher
than the percentage in the previous study in 1992 (Ivanovic & Brunetti, 1994). In contrast,
the overall FO% of cephalopod in 1992 was 10% greater than the value in 2018 and the
percentage of crustacean was 10% higher than the value in 2019. The difference between
three main diets would indicate there was more predation of fish by the squid in this area
in recent years, though the predation of cephalopod and crustacean was fluctuated. The

relationship of ML and diets in 1992 was only apparent in the diet of crustacean. The
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overall FO% of amphipod became higher as the ML increased but the percentage of
euphausiid decreased. However, the percentage of amphipod decreased along with ML
increased in two years. The relationship between overall FO% and ML in 1992 was
similar to the trend in 2019, while it was contrary to the trend in 2018. The euphausiid
seemed to have fluctuating population in these years, hence amphipod would be less
important in the diet of larger squid. Individual FO% of fish and crustacean had lower
value in the previous study in 1998 (Mouat et al., 2001), while the percentage of
cephalopod was approximately 9 times larger than the value in 2018 in this study. Lower
value of fish and crustacean in 1998 might result from lack of food as percentage of
cannibalism reached up to 12.24% in 1998. The SFI distribution in the previous study in
2012 was similar to the distribution in 2018, which represented most stomachs of both
years were full (Rosas-Luis et al., 2014). The individual FO% in the study in 2012 had 3
to 4 times larger value in fish and about 7 times less value in crustaceans. The possible
reason of difference in FO% would be the more southern sampling location in 2012 which
might lead to different diet composition of squid.

Due to lower catch in each location, the sampling size in 2019 was 3 times less than
the size in 2018. Aside from the sampling size in two years, environmental data could
provide possible explanation about variation between diet composition of the two years.
Abundance of cephalopod population was influenced by the SST in their habitat and
higher SST led to greater abundance of cephalopod population (Waluda & Pierce, 1998;
Doubleday et al., 2016). There was lower SST in 2019 from the end of February to the
middle of March (Fig. 15), which resulted in smaller population of squid. Less
competition in smaller population lets squid in 2019 become larger and can consume

species in greater size such as fish and cephalopod. Lower chl-a in sampling period of
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2019 (Fig. 16) may cause lower primary productivity, which leads to reducing population
of planktonic crustacean (Legendre & Rassoulzadegan, 1995). Planktonic crustacean
such as amphipod is the necessary diet of Illex argentinus. From lower diet species
composition and dispersed SFI, there may have less food abundance in sampling area of
2019. This may also be explained by the related day of environmental data. In 2018, three
days before sampling were the most related to ML in 2018 which may indicate squids in
2018 consume more foods as well as the foods remained in their stomach for 2 - 3 days.
However, the most related day in 2019 was the day of sampling which indicated that the
squids in 2019 only consumed less foods on that day, therefore no remains was observed
in their stomachs (Table 5 & 6). Lack of food resource resulted in cannibalism in //lex
argentinus in 2019. This is for the purpose of maintaining the stability of their population

(Ibanez & Keyl, 2010).

4.2  Artifact detection

Squids in two years of this study ingested less artifacts than the opah fish in similar
area (Jackson et al., 2000). Comparing with artifact ingestion of penguin in southern
region, there were similar numbers of artifact ingestion in the squid in 2018 and penguin
in 2009 (Bessa et al., 2019). Artifact ingestion in squid in 2019 were greater than numbers
in penguin in the Antarctic area. Since the opah fish and penguin have larger size and
more variable diet than squid, we can infer squid ingest less amounts of artifacts in the
sampling area.

The first basis for determining artifacts was their unusual colors in stomachs of the
squid and their tough texture after the dissolution using KOH. The absorbance spectrum

by FTIR confirm the artifact is plastic or non-plastic. When the apparent peak appears in
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2800-3000 cm of the absorbance spectrum, it would firstly classify as plastic with C-H
bond and go through database and literature comparison to check up its type of plastic.
The possible reason why there are many unidentified artifacts in this study is most
artifacts are not plastic and may be some processed materials in nature such as cotton or
rayon. These artifacts from natural material often appear the peak which represents
pentose in the spectrum, though most artifacts would combine with some chemical
associated procedures which make them unidentifiable. Moreover, filter paper and
biofilm on the artifacts may disturb the signal of spectrum.

Larger squid in this study had higher percentage of artifact ingestion, while
individuals with artifact intake mostly consumed only crustaceans. The possible reason
may be main diet of the squids in this area is crustaceans and there are also some artifacts
ingested by crustaceans in nearby area (Jones-Williams et al., 2020). Artifact ingestion in
2019 was more than that in 2018, which may result to larger size of squid or the changes
of environment. The effect from environment can be proven by the SFIin 2019. The SFI
of individuals with artifact ingestion in 2019 has lower percentage of SFI 4 and higher
value of SFI 0 when comparing with SFI of all individuals in 2019. As stated above, we
suggest that the artifact ingestion in 2019 has less relationships with the squid diet. This

1s associated with the artifacts in the environment or remaining artifacts during migration.

4.3 Conclusion

Diet analysis with artifact detection of cephalopods in multiple years is a novel topic.
This study indicates that main diet of /llex argentinus remained the same in these years,
which can infer the diet is not influenced by climate change. However, the diet may be

effected by short-term change of environment such as primary productivity. The results
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of artifact detection indicate that there is less artifact ingestion in //lex argentinus, which

suggest that the cephalopods in the southwest Atlantic is safe to eat.
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Figure 1. The sampling locations of Illex argentinus in the Southwest Atlantic in 2018

and 2019. The map projection is Mercator.
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Figure 2. The composition of mantle length of lllex argentinus in 2018 and 2019. n:

sample size for each year.
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Figure 3. The composition of mantle length of /llex argentinus in different months of

2018 and 2019. Letters indicate significant differences between mantel length of two

years (P < 0.05). n: sample size in months for each year.
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Figure 4. The correlation between latitude of sampling location and mantle length of ///ex

argentinus in (a) 2018 and (b) 2019. n: sample size for each year; r: correlation coefficient.
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Figure 5. The percentage of stomach fullness index (SFI) of /llex argentinus in 2018 and
2019. Colors indicate different levels of stomach fullness index. The levels of stomach

fullness index ranged from 0 (empty) to 5 (full to distended). n: sample size for each year.
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Figure 6. The overall percentage of frequency of occurrence (FO) and number (N) of the three main diets of //lex argentinus in 2018 and 2019.
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Colors represent different prey groups of diets.
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Figure 7. The individual percentage of frequency of occurrence (FO) of the three main

diets of /llex argentinus in 2018 and 2019. Colors represent different prey groups of diets.
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Figure 8. The percentage of 50 mm mantle length (ML) intervals of I/lex argentinus with different stomach fullness index in (a) 2018 and (b)
2019. Colors indicate different levels of stomach fullness index. The levels of stomach fullness index ranged from 0 (empty) to 5 (full to

distended). n: sample size in each length interval.
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Figure 9. The individual percentage of frequency of occurrence (FO) in three main diets in 50 mm mantle length intervals of Illex argentinus in

2018 and 2019. Colors indicate different prey groups of diets. n: sample size in each length interval.
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Figure 10. Hexbin plot of individual percentage of frequency of occurrence (FO) in relation to mantle length (logarithm base 10 (logl0)
transformation) in three main diets of /llex argentinus in 2018. Colors of hexagon represent different concentration of individual numbers. Linear

regression represents with a solid line.
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Figure 11. Hexbin plot of individual percentage of frequency of occurrence (FO) in relation to mantle length (logarithm base 10 (logl0)
transformation) in three main diets of /llex argentinus in 2019. Colors of hexagon represent different concentration of individual numbers. Linear

regression represents with a solid line.
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Figure 12. The percentage of stomach fullness index (SFI) of ///lex argentinus with artifact
ingestion in 2018 and 2019. Colors indicate different levels of stomach fullness index.
The levels of stomach fullness index ranged from 0 (empty) to 5 (full to distended). n:

sample size for each year.
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Figure 13. The individual percentage of frequency of occurrence (FO) of artifacts in 50
mm mantle length intervals of Illex argentinus in 2018 and 2019. Colors indicate different

years of lllex argentinus.
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Figure 14. Hexbin plot of individual percentage of frequency of occurrence (FO) of
artifacts in relation to mantle length (logarithm base 10 (logl0) transformation) of ///ex
argentinus in (a) 2018 and (b) 2019. Colors of hexagon represent different concentration

of individual numbers. Linear regression represents with a solid line.
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Figure 15. Monthly variations in sea surface temperature (SST) in the distribution range
of Illex argentinus in 2018 and 2019. Variations in 2018 are represented in blue line and

in 2019 by orange line.
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Figure 16. Monthly variations in Chlorophyll a concentration (Chl-a) in the distribution

range of //lex argentinus in 2018 and 2019. Variations in 2018 are represented in blue line

and in 2019 by orange line.
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Tables

Table 1. Sampling of /llex argentinus in different sampling locations in 2018 and 2019. N: number of individuals; ML: mantle length; SD:

standard deviation. Locations as shown in Figure 1.

2018 2019

Location Longitude Latitude Month Day N ML Mean + SD ML Range Location Longitude Latitude Month Day N ML Mean+ SD ML Range
1 46.12 60.77 2 1 30 208.91 + 17.74 181.2-258.4 9 49.87 59.60 2 18 2 282.75+8.98 276.4-289.1
2 46.38 60.87 2 10 30 208.50 +15.71 182.7-252.5 10 49.92 59.38 2 23 2 252.35+4.74 249 -255.7
3 46.68 60.90 2 16 30 212.66 +16.28 184 -250.8 11 49.45 60.13 3 9 26 260.68 + 14.33  231.7-287.4
4 49.79 59.88 2 26 30 261.62 +15.09 228.4-292.3 12 50.20 58.48 3 26 15 294.60 +20.73 263.7-333.8
5 49.99 59.78 3 8 30 253.18 +10.02 223.8-269.7 13 50.05 58.85 4 3 15 29140 +£10.02 277.7-315.5
6 49.10 60.60 3 13 30 260.19 + 15.83 214.8-292.5
7 50.34 61.42 4 8 30 285.90 +17.03 247.5-326.8
8 50.18 58.22 4 19 30 290.28 + 13.02 261.9 -307.6

Overall 240 247.65 +34.94 181.2 - 326.8 Overall 60 277.29 £22.02 231.7-333.8
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Table 2. The summary of preys of l/lex argentinus in 2018 and 2019. FO: Frequency of

occurrence of diets; N: number of individuals.

2018 2019
Overall Overall Individual Individual Overall Individual | Overall Overall Individual Individual Overall Individual
N N
FO  FO (%) FO FO (%) N (%) Mean N FO  FO (%) FO FO (%) N (%) MeanN

Pisces 41 12.42 31 14.90 107 26.80 0.51 12 11.88 10 18.87 56 35.90 1.06
Dolichopteryx sp. 2 0.61 2 0.96 3 0.80 0.01 2 1.98 2 3.77 3 1.92 0.06
Rhynchohyalus sp. 2 0.61 2 0.96 5 1.30 0.02
Gymnoscopelus

7 2.12 7 3.37 25 6.30 0.12 1 0.99 1 1.89 27 17.31 0.51
nicholsi
Notophycis

3 0.91 3 1.44 5 1.30 0.02
marginata
Micromesistius

4 1.21 4 1.92 18 4.50 0.09
australis
Unidentified 23 6.97 23 11.06 51 12.80 0.25 9 8.91 9 16.98 26 16.67 0.49
Cephalopoda 9 2.73 5 2.40 12 3.00 0.06 14 13.86 1 20.75 25 16.03 0.47
llex argentinus 1 0.30 1 0.48 1 0.30 0.00 2 1.98 2 3.77 3 1.92 0.06
Loligo gahi 2 0.61 2 0.96 2 0.50 0.01
Histioteuthis

1 0.30 1 0.48 1 0.30 0.00 1 0.99 1 1.89 2 1.28 0.04
atlantica
Unidentified 5 1.52 5 2.40 8 2.00 0.04 11 10.89 11 20.75 20 12.82 0.38
Crustacea 280 84.85 203 97.60 280 70.20 135 75 74.26 51 96.23 75 48.08 1.42
Amphipoda 198 60.00 198 95.19 198 49.60 0.95 47 46.53 47 88.68 47 30.13 0.89
Decapoda 38 11.52 38 18.27 38 9.50 0.18 15 14.85 15 28.30 15 9.62 0.28
Euphausiacea 44 13.33 44 21.15 44 11.00 0.21 13 12.87 13 24.53 13 8.33 0.25
Total 330 399 101 156
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Table 3. The diet of Illex argentinus with artifact ingestion in 2018 and 2019. Number

of individuals represents as N.

2018 2019
Diet N N
Empty stomach 5 3
Only fish 2 1
Only cephalopod 0 0
Only crustacean 28 10
Fish and Cephalopod 0 0
Fish and Crustacean 7 0
Cephalopod and Crustacean 1 1
Three main diets 0 2
Total 43 17
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Table 4. The summary of artifacts in /llex argentinus in 2018 and 2019. FO: frequency

of occurrence of diets; N: number of individuals.

2018

2019

Overall Overall Individual Individual

Overall Individual

Overall Overall Individual Individual

Overall Individual

FO FO(%) FO  FO (%) : N(%) MeanN | FO FO(%) FO  FO (%) : N (%) MeanN
Artifacts 45 100.00 43 1792 55  100.00  0.23 17 100.00 17 2833 21 100.00 0.35
unidentified artifact 39 86.67 39 1625 49 89.09  0.20 17 10000 17 2833 21 100.00  0.35
unidentified plastic 2 444 2 0.83 2 3.64 0.01 0 - 0 0 0 0 0
nylon 66 3 6.67 3 1.25 3 5.45 0.01 0 - 0 0 0 0 0
PET 1 222 1 0.42 1 182 0.004 0 - 0 0 0 0 0
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Table 5. The correlation between mantle length of I/lex argentinus and Sea surface

temperature (SST, °C).

2018 2019
Duration of SST P value r P value r
Dy <0.01 -0.40 <0.01 -0.57
D, <0.01 -0.44 <0.01 -0.49
D <0.01 -0.51 <0.01 -0.54
D <0.01 -0.48 <0.01 -0.56
D <0.01 -0.49 <0.01 -0.56
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Table 6. The correlation between mantle length of Illex argentinus and Chlorophyll a

concentration (Chl-a, mg/m?).

2018 2019
Duration of Chl-a P value r P value r
D, <0.01 -0.28 <0.01 0.36
D, <0.01 -0.42 0.32 0.13
D3 <0.01 -0.70 0.48 0.094
D <0.01 -0.66 0.31 -0.13
D <0.01 -0.68 0.33 -0.13
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