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ABSTRACT

Image-based localization is used to estimate the camera poses within a specific scene
coordinate, which is a fundamental technology towards augmented reality, autonomous
driving, or mobile robotics. As the advancement of deep learning, end-to-end approaches
based on convolutional neural networks have been well developed. However, these
methods suffer from the overhead of reconstructing models while been applied to unseen
scene. Therefore, image retrieval-based localization approaches have been proposed with
generalization capability. In this paper, we follow the concept of image retrieval-based
methods and adopt traditional geometry calculation while performing relative pose
estimation. We also use the depth information predicted from deep learning methods to
enhance the localization performance. The experimental result in indoor dataset shows
the state-of-the-art accuracy. Furthermore, by distilling and sharing the encoder of global
and local feature, we make our system possible for real-time application. Our method
shows great potential to leverage traditional geometric knowledge and deep learning

methods.

Keywords: Image-based localization, Camera pose estimation, Deep learning,

Augmented Reality.
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Chapter 1 Introduction

Camera localization, or image-based localization is a basic problem in robotics and
computer vision. It refers to the process of solving the precise 6 Degree-of-Freedom (DoF)
camera pose of a query image according to known reference like pre-built 3D point cloud
model coordinate. This key technology is widely used in computer vision applications,
including autonomous driving in GPS-denied environment, virtual reality, and device
with augmented reality features like mobile phones and head mounted display (HMD)
like HoloLens. More broadly, visual localization is also an important component of
computer vision tasks like Structure-from-Motion (SfM) and the mapping part of

Simultaneously Localization and Mapping (SLAM).

There are three generally kinds of the imaged-based localization approaches,
namely structure-based camera localization, absolute pose regression camera localization,
and image retrieval-based camera localization. The structure-based camera localization
refers to the approaches which estimates the 6 DoF pose with the correspondence between
local feature from query image and pre-built SfM point cloud model. The correspondence
between 2D and 3D usually is established under the reliable and repeatable feature
descriptor. However, these structure-based methods rely on a point cloud with superior

quality and suffer from time consuming feature extractor procedure like SIFT [1].

In recent years, as the huge impact of many computer vision task benefit from the
extraordinary dense feature extraction ability of convolutional neural network (CNN),
many researches tried to employ deep learning architecture in predicting camera pose.
Absolute camera pose regression proposes an end-to-end deep learning method, like
PoseNet [2] using the ground truth camera pose of training image as supervised signal.

1
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Rather than traditional mathematical geometry procedure, these approaches tried to
simulate the optimization process through the composition of convolution layers. In spite
of the high-speed due to their end-to-end structure, it mostly requires lots of effort and

time to fine-tune while changing the scene.

To conquer the limitation of generalization, image retrieval-based camera
localization methods like NNet [3] leverage the success of image classification, semantic
segmentation, and image retrieval. Instead of direct predict camera pose, these methods
attempt to regress the relative pose between query image and most similar images selected
by image retrieval. Although image retrieval-based camera localization methods hold
better generalization performance, the procedure of relative poses estimation by

regression is still hard to extend to another scene.

In this work, we propose an image retrieval-based camera localization pipeline with
pairwise relative pose estimation using both traditional geometry methods and deep
learning methods shown in Fig. 3-1. The usage of essential matrices prevents the
disadvantage of the needing of scene-dependence hyperparameters and improves the
ability of generalization. With the improvement of depth estimation using deep learning,
our framework also contains the 2D-3D scenario using the depth map inferenced from
database RGB images and their ground truth camera pose. Inspired by HF-Net [4], we try
to speed up the whole localization process by distilling both encoders of local and image
representation feature and sharing one encoder. With the flexibility of our method, we
compare the deep learning method to traditional method in each component of
localization pipeline and thus recommend the best combination from these methods with

respect to robustness and efficiency.

doi:10.6342/NTU202003304



Our contributions are as follows. First, we establish a flexible image retrieval-based
camera pose localization pipeline without a 3D point cloud model. Each component can
be easily replaced with other suitable method. The second contribution is that our
framework holds a capability to generalize in every unseen scene by adopting traditional
geometry process in relative pose estimation step. Last but not least, our localization result
using only 2D information competes with the state-of-the-art image-based localization
methods, while our results under 2D-3D case outperform the above approaches. Yet, our

results using estimated depth mildly inferior to structure-based localization methods.

Fig. 1-1 Visualization of our localization procedure. The green one denotes the ground
truth pose of query image, the blue ones denote the candidate image pose obtained by

image retrieval, and the red one is the result pose estimated by our approach.
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Chapter 2 Related Work

In this section we review the previous works that relate to components of our
method, namely: 6-DoF Visual Localization, Local Features and Feature Matching, and

Depth Estimation.

2.1 6-DoF Visual Localization

2.1.1 Structure-based Localization

Structure-based localization methods perform direct 2D-3D matching between 2D
pixel position of query image and 3D points in a 3D structure-from-motion model. The
2D-3D correspondences are used to estimate the camera pose of the query image by

applying an n-point- pose solver such as [5, 6] within a RANSAC loop [7] .

Rather than obtaining the 2D-3D correspondences from descriptor matching, some
previous works tried to predict the 3D position of each pixel by 3D scene coordinate
regression using convolutional neural networks [8-11] or random forest [12, 13]. 3D
coordinate regression methods currently achieve a higher pose accuracy at small scale,

but have not yet been shown to scale to larger scene.

Furthermore, HF-Net [4] provides a camera localization pipeline using efficient
deep learning global and local feature. Besides the ability to handle large scale scenes,

HF-Net [4] shows an outstanding robustness in particularly challenging conditions.
2.1.2 Image Retrieval Localization

Image retrieval methods can only provide an approximate pose of the most similar

doi:10.6342/NTU202003304



image form database to the query image. However, the retrieval result is not precise
enough due to the discretization of database. The image retrieval localization often
contains the relative pose estimation phase to predict the query image pose from one or

multiple similar database images.

For traditional image retrieval part, VLAD [14] proposed a representation vector
of aggregated local feature based on BoF (Bag-of-Features) and fisher vector concepts.
After calculating each database local features, BoF would perform feature center
clustering like k-means clustering [15]. The distribution of local features in image is the
representation vector. Meanwhile, fisher vector utilizes the means and covariance of

GMM (Gaussian Mixture Model) to represent each image.

In recent years, many researches tried to enhance the description ability by deep
learning technique. The NetVLAD [16] is presented to learn both the descriptor and

feature center by CNN and the carefully-designed networks.

Back to localization issue, as mentioned above, image retrieval can only provide
approximate poses. More precise poses can be obtained by pairwise relative pose
estimation. NNnet [3] learned the relative pose between RGB image pairs and proposed
a images localization pipeline contained image retrieval and robust pose estimation.
Moreover, RelocNet [17] proposed a network is jointly trained for the tasks of image

retrieval (based on a novel frustum overlap distance) and relative camera pose regression.

Yet, [18] stated that, while being among the best-performing end-to-end
localization approaches, current direct relative pose regression techniques do not

consistently outperform an image retrieval baseline.
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2.1.3 Absolute Camera Pose Regression

Absolute camera pose regression aims to regress the camera pose and orientation

through the trained deep neural network models.

PoseNet [2] tried to learn complete camera localization pipeline through a single
CNN model. As the first work trying to leverage the power of feature extraction in CNN,
PoseNet [2] has been extended in many ways. PoseLSTM [19] proposed a novel
architecture combined CNN and LSTM [20] for camera pose estimation. MapNet [21]
presented a DNN with a new parameterization for camera rotation, the logarithm of unit

quaternion

VLocNet [22] proposed the architecture consisting of a global pose regression sub-
network and a Siamese-type relative pose estimation sub-network, taking two consecutive
monocular images as input and jointly regresses the 6-DoF global pose. Furthermore,
VLocNet++ [23] is a novel framework for jointly learning semantics, visual localization

and odometry from consecutive monocular images.

2.2 Local Features

As mentioned above, structure-based localization employed hand-crafted feature
detectors and descriptors. The FAST [24] corner detector was the first architecture to
perform high-speed interest point detection. The ORB [25] proposed a very fast binary
descriptor based on BRIEF [26] and was adopted in ORB-SLAM [27] as an efficient
and robust component toward real-world and real-time scenario. The Scale-Invariant
Feature Transform, or SIFT [1], is still the most well-known traditional feature detector
and descriptor when it comes to camera localization or structure-from-motion issues in

6
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computer vision.

Learned local features are recently been developed to replace the hand-crafted
features. Dense pixel-wise features are spontaneously generated by CNN and are
intuitively utilized for feature matching and camera localization [10, 28]. However, the
dense matching between dense features are time consuming. Sparse learned features
architecture regresses sparse interest points and their descriptors from single encoder,
such as LIFT [29] and SuperPoint [30]. These end-to-end procedures are fast to predict

and have also been shown to outperform the traditional methods.

2.3 Depth Estimation

In classic computer vision, the depth of image is usually computed from a given set
of images, such as image pair from stereo camera. In deep learning based computer vision,
researchers put more effort on predicting the depth map from monocular image and treat
this kind of problem as an image to depth regression issue. Learning depth from single
image consist of two forms. The supervised approach tries to regress the result depth map
as the given ground truth depth map, while the self-supervised focuses on predicting the

depth map under the traditional geometry constraints.

End-to-end supervised learning [31, 32] have been explored to show their good
performance than traditional methods. Fully supervised approaches require precise
ground truth depth map while training the model. However, this is a challenge to acquire

in varied real-world setting.

In the absence of ground truth, one of the alternative approaches is self-supervised

depth estimation. These approaches use either stereo images or monocular sequence with
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image reconstruction information as supervisory signals. Zhou et al. [33] proposed a
jointly self-supervised learning framework, SfMlearner, which predicts depth map and 6-
DoF pose simultaneously from monocular frame sequence. However, the strong geometry
constraint used in SfMlearner is that the scene must be in a static environment. Therefore,
Zou et al. [34] further added an optical flow estimation to distinguish rigid and non-rigid
components.

When it comes to depth reconstruction, the monocular-based approach uses images
sequence from single camera as source data would suffer from scale inconsistency
problem. Bian et al. [35] proposed a geometry consistency loss between nearby frame to

fix the scale of inferenced depth maps.
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Chapter 3 Method

3.1 Pipeline

The scalable pipeline takes a RGB query images as input and results a 6 degrees of
freedom camera pose within database scene. Our approach roughly follows the
architecture of image retrieval localization pipeline. Rather than direct regressing the
relative pose between image pairs like [3, 17], we introduce the classic relative pose
estimation method based on essential matrix. For the dataset with depth information, we
can direct inference the absolute camera poses through P-n-P algorithm.

Our pipeline consists of three modules: (1) Image Retrieval (2) Feature Extraction

and Feature Matching (3) Relative Pose Estimation.

Notably, we can easily use either traditional or learning-based methods in each part
of our pipeline. In Chapter 4, we compare the robustness and efficiency of different kind

of approaches.

2D-2D case

Essential
Matrix
+
Pose Filtering
with RANSAC

2D-3D case

PnP
Algorithm

Candidate Images

Feature Extraction Relative Pose

Image Retrieval )
and Matching Estimation

Fig. 3-1 Our localization pipeline.
9
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3.2 Image Retrieval

In order to find the most similar database image to query image, it is important to
convert both the database and query images into suitable representation vector. We
perform image retrieval by DenseVLAD descriptor [36] and NetVLAD descriptor [16],
which has been shown to work under challenging conditions [37]. Compared to other
learned pipelines for image retrieval [38, 39], NetVLAD [16] and DenseVLAD [36] show

better generalization to unseen scenes, which fit well to our pipeline.

As shown in Fig. 3-2, the pipeline contains online and offline parts. In the offline
part, we first calculate all the representation vectors of database images and store them as
vector database. In the online querying part, after extracting global image descriptor, we

compare the query descriptor d, to the pre-computed descriptors dgq by nearest

neighbor search. In practical, we express the similarity of two vector by cosine similarity

and use K-D tree as indexing structure.

CNN
- -

. NNsearch . IS
online Images

offline
e a CNN
encoder

Fig. 3-2 Image retrieval pipeline example using NetVLAD

NetVLAD
layer

NetVLAD
layer

Vector
Database

10
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3.3 Feature Extraction and Matching

Local feature extraction

To estimate the relative pose of retrieved pairs, we need to find the correspondence
between images. InLoc [10] performed dense matching of CNN encoded feature map
while estimating the relative pose. NNet [3] tried to directly regress the relative pose
through Siamese neural network with two representation branches connected to a

common regression part.

However, matching dense features is intractable with limited computing power, and
both of these approaches are struggling with generalizing to other scenes. In [40] shows
that directly using data-driven approaches for pose estimation yields less accurate results.
Therefore, we aim on sparse feature detectors which can easily be sampled from dense

features and fast to predict.

In this work, we compare three sparse feature extractors, SIFT [1], ORB [25], and
SuperPoint [30]. SIFT is still the most well-known traditional feature detector and
descriptor and serves as the best traditional hand-crafted feature benchmark. Although
SIFT has really great performance of accuracy, most real-time application like SLAM
won’t adopt SIFT due to the time consuming processing time. Take efficiency into
consideration, we decide to choose ORB as one of the feature extractor candidate. As for
learning-based method, SuperPoint learns from self-supervision and performs sparse
interest point detection.

Feature Matching
Finding good correspondence between features extracted from image pair also has

a significant impact on the quality of relative pose estimation. In this part we intuitively

11
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use brute force searching to find the most similar local feature. The similarity of two
features is described as inner product. To make the procedure more robust and ensure the
quality of correspondence, we adopt the ratio test proposed by [1] using threshold 0.8.

Meanwhile, we speed up the matching process using PyTorch if there is GPU available.

3.4 Relative Pose Estimation

As shown in Fig. 3-1, our framework contains two cases, 2D-2D and 2D-3D case,
and the difference comes from using depth information or not. In this section, we

introduce these cases step by step.

3.4.1 2D-2D case

With correspondence computed from Section 3.3., we can estimate the essential
matrix by five-point [41] method in RANSAC [7] loop. Essential matrix can be
decomposed into four relative poses, as shown in Fig. 3-3., (R, t), (R, —t), (R',t), (R’, —t).
Next, we can verify the correct combination by examining the depth is positive or not

based on matched feature points.

73[\3, —

]

A

(@) (b)

‘VL

% B /
(© [C)]

Fig. 3-3  Four cases of R/t

=
>

Since we cannot determine the correct scale of t, the absolute poses cannot directly

obtain the final camera pose by the combination of single relative pose and pose of
12
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candidate image. Hence, we reformulate the problem to pose hypothesis filtering with

RANSAC loop. This process is illustrated in Fig. 3-4.

Pose
Hypothesis

Selected Pair
Inlier (est2)

Selected Pair
(estl1)

Inlier

Fig. 3-4 Pose filtering with RANSAC.

The relative pose estimated from 2D-2D matched features can be expressed as a
line. Ry and t;. denote the rotation and translation matrix of training image. R, and
tre denote the rotation and translation matrix of relative pose estimated from pipeline,
and a denote the unknown scale. We express the estimated pose of query image

multiplied by relative pose as shown in Equation (3-1).

Rre aty, Rtr Ler — RreRtT Rrettr+atre -1
[O 1 [O 1 [ 0 1 S

The absolute camera pose ¢ can be described as Equation (3-2) with its camera
projection matrix R and t. Therefore, with the parameters in Equation (3-1), the

estimation line is written as Equation (3-3).

c=—RTt (3-2)

13
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estimation line = —RI R, R, t,, — aRL.RY t,, (3-3)

In RANSAC loop, we random select two pairs from Top-K retrieved pairs. The
hypothesis pose is the closest point to the two selected estimation line. We can easily

obtain the point from the midpoint of the common perpendicular line. P; and P, are the

point in the estimation line, while v; and Vv, are the vector of the lines respectively.

P, + tv; + u(v;xv,) = P, + sv, (3-4)

(Py+tvi+Py+5V3)

hypothesis pose = .

(3-5)

The orientation of hypothesis is obtained by the spherical linear interpolation

(SLERP) of two quaternions. q; and q; are the quaternions of estimated pose from

hypothesis pair and @ denotes SLERP operation.

9=9 Qq; (3-6)

To evaluate a hypothesis, we find the distance between hypothesis pose and each
estimation line. If the distance is under the threshold, that estimation line would be
considered as one of the inlier line set. P, and Vv, is the point and vector of estimation

line and P, is a point in 3D coordinate from hypothesis pose.

|PePrxvg|

error distance = ]
Ve

(3-7)

After hypothesis pose passes the inlier test, the final hypothesis should be refined
by all the inlier line. The problem is transformed into finding the closest point to multiple

estimation lines. We first formulate single line:

14
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Xi
= [Yi] (3-8)
Z

Then we can obtain the equation of multiple lines assuming that the hypothesis pose lies

on the intersection of lines perfectly.

Ax =b (3-9)
1 0 0 —a, O 0
01 0 —b, O 0
0 0 1 —¢ O 0 ’; X1
1 00 0 -a 0 |5 n
01 0 0 —b 0|l | N (3-10)
0 01 0 -—q 0 tl x
0 || "
100 0 0 |l 1
0 1.0 0 0 o
001 0 0 —c,

For the general solution, we ignore the least-squares technique as it is not able to
provide solutions once A is rank-deficient. By using SVD, we derive the general solutions

of the nearest approach for all cases of multiple lines in 3D space.

£=A*%b (3-11)

In our approaches, we will examine the number of inlier of X to ensure the quality

of final hypothesis.

15
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e midpoint

Fig. 3-5 Illustration of closet point to four non-intersecting lines in 3D space
As for orientation part of multiple inliers, we intuitively calculate the average

of all quaternion vector by SLERP.

3.4.2 2D-3D case

The 2D pixel can be inverse projected into 3D coordinate with known camera
intrinsic, camera pose within specific scene, and depth information. After finding
correspondence described in Section 3.3, we can solve the localization problem using PnP
algorithm since the matched pixels in candidate image are interpreted as 3D points in
scene as shown in Fig. 3-6. In RANSAC loop, we adopt P3P to generate the pose
hypothesis and set the minimum number inlier threshold as 12. Next, we optimize the
pose hypothesis by minimizing the projection error of all inliers points. In this part we

simply use the opencv library solvePnPRansac and solvePNP.

16
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Depth of candidate image

Depth value of correspondence

Depth estimation

Query image

Fig. 3-6 Illustration of 2D-3D case

3.5 Depth Estimation

Review our proposed framework, we would need a dense depth map of candidate
RGB images when performing 2D-3D pose estimation. Even though some datasets have
collected depth information already like 7-Scenes dataset, in this work we want to

calculate all the information from solely RGB information.
3.5.1 Depth Estimation Framework

Inspired by self-supervised learning framework of Zhou et al. [33], we modify the
origin framework to reconstruct 3D scene depth from continuous image sequence. Since
we have the ground truth of each training image pose, the framework would be able to
take precise 6-DoF information as one of the supervisory signal to reconstruction. In other
words, our procedure doesn’t need to predict the pose of each training image and we aim

on training the network predicting the depth information.

17
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The depth estimation framework consists of a neural network, DepthNet, taking
RGB frames as input and predicting depth map as output shown in Fig. 3-7. Let D
denote predicted depth of target view, and T;_, denote the relative pose calculated from
ground truth pose Ts and T,. With known camera intrinsic K, we can project p, the

homogeneous coordinate of a pixel from target view, onto source view pg by

pSNKTtas’D\t(pt)K_lpt (3'12)

At this point, the 3D projection error can be computed by the difference between
the source view projected from target view and the original source view. After sufficient
training epochs, the tuned DepthNet is able to inference more steady and optimized depth
result.

Inference after
sufficient training

Compute

Ground Truth Pose

Fig. 3-7 Depth estimation training and inference procedure

3.5.2 Loss Term

In this section, we will present each component of our loss, including appearance
matching loss and geometric loss. Our overall objective function can be formulated as

follows:
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L= aly, +BLg (3-13)

where L,, stands for proposed appearance matching loss and L stands for geometric

loss.

Appearance Matching Loss

The key supervisory signal for our depth estimation is calculated from view

synthesis. During the training, we project the source view image Iisj to target view image
Iit]- by inverse warping with estimated Dg and ground truth relative pose Tg_;. The
appearance matching loss is described by the appearance difference between target view
image Iit]- and synthesized image I:'EJ Follow the work [42], we use the combination of

two terms, L1 distance and single scale SSIM [43], describing the photometric difference

as Li:

1-SSIM (If]ff;)

Ly = Zper @ ra-al-Fl) e

Here, V denotes the points that successfully project from the source view to the target
view, while successful projection means that the result pixel coordinate falls in the target
image. |V| means the number of the successful points. We use the simplified SSIM with
a 3%x3 block filter and set ato 0.5 as a fixed weight.

Geometric Loss

To enforce the geometry consistency on predicted result, we aim on minimize the
difference between the depth values of correspondence pixel from different view. With
the relative pose T,,s computed from ground truth pose, we can project the predicted

depth of target view D; to source view as D . We use the loss function proposed in
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[35] and simply define the geometric loss as:

D —>S( _Ds{(
Lo(t,s) = = B pey (L) (3-15)

v D¢s(p)+D¢(p)

where Dy is the interpolated depth map from the estimated map Dg. The difference

obtained from each input frame is normalized by the sum of two depth map.

3.6 Model Distillation

In the relative pose estimation pipeline, we need to perform feature extraction twice
for the purpose of image retrieval and local feature matching. Consider the state-of-the-
art image retrieval approach, we can find that the representation vector is usually
composed of local features. Therefore, it is a natural idea to predict both representation

vector and the local feature map of images from shared weighted encoder.

In the work [44] , NetVLAD is distilled into MobileNetVLAD based on MobileNet
backbone in order to enhance the efficiency. In [4], HF-Net furtherly distills both encoder
from NetVLAD and SuperPoint with MobileNet. In this work, we basically follow the
concept of HF-Net. We also use teacher student learning architecture to train a shared

light weight model.

local feature

Llocal
images —— | encoder
— | _imagevector |—— L;;,pq ~—
teacher models

Fig. 3-8 Multi-task distillation framework
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Chapter 4 Experiments

4.1 Dataset

Indoor Dataset

The 7-Scenes dataset, provide by Microsoft, is recorded in indoor environment with
tracked RGB-D camera. The dataset consists of seven different indoor scenes and all
frames are collected with handheld Kinect RGB-D camera at 640*480 resolution. The
ground truth pose of each frame and the dense 3D model are computed by
KinectFusion[45]. The 7-Scenes dataset covers an area of 12 square meters and the seven
scenes are namely, chess, fire, heads, office, pumpkin, red kitchen, stairs. The sequences
are split into training and testing part, which contains 26000 images for training and

17000 images for testing.

B

chess fire

pumpkin redkitchen office stairs

Fig. 4-1 Sample image from the 7-Scenes dataset

4.2 Localization Result

The localization result parts focus on the accuracy of pose estimation. We show the
experimental results according the procedure of our framework, image retrieval,
localization result with relative pose estimation under 2D-2D case and 2D-3D using depth
information. Note that the following result tables present the median localization error of

position [m] and orientation [deg].
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4.2.1 Image Retrieval

The localization result of these image retrieval methods comes from the accuracy

of the pose of most similar image retrieved from database. To compare the accuracy of

image retrieval methods, we evaluate the pose of the most similar image. As shown in

Table 4-1, we can tell that NetVLAD [16] and DenseVLAD [36] hold nearly the same

performance. However, due to high computation cost of DenseVLAD, we adopt

NetVLAD as our image retrieval method in the following experiment.

NetVLAD DenseVLAD

Chess 0.25m, 12.7¢ 0.21 m, 12.5¢
Fire 0.35m, 14.7¢ 0.33 m, 13.8
Heads 0.17 m, 16.6° 0.28 m, 11.2¢
Office 0.38 m, 12.1° 0.31'm, 11.3¢
Pumpkin 0.30 m, 12.8° 0.3l m, 11.3
Kitchen 0.28 m, 12.5¢ 0.30 m, 12.3¢
Stairs 0.25 m, 15.6¢ 0.25m, 15.8°
Avg. 0.28 m, 13.8° 0.29 m, 11.20

Table 4-1 Result on 7 Scenes dataset of comparing different image retrieval methods

4.2.2 2D-2D case

Comparison of different feature extraction methods

We first make an evaluation of our localization framework with several chosen

feature extractors under 2D-2D case. NV denotes that we apply NetVLAD [16] as our

image representation vector extractor. For local feature methods, SIFT [1] is still

considered as one of the most robust feature detector and descriptor. However, the cost of
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computation time should also be taken into account due to the efficiency issue of
localization applications. Therefore, we treat ORB [25] as a more fast and practical local
feature extractor. Meanwhile, SP denotes SuperPoint [30] which represents one the deep
learning method predicting sparse keypoints and their descriptors. Distill means the
feature extractor architecture we introduce in 3.6 using the same encoder in both global

and local feature descriptor phase.

Ours(NV+SIFT) | Ours(NV+ORB) | Ours(NV+SP) |  Our(Distill)

Chess 0.14 m, 8.20° 0.21 m, 10.4- 0.14 m, 7.56¢ 0.14 m, 7.47°
Fire 0.20 m, 4.68¢ 0.33 m, 12.0° 0.20 m, 5.73° 0.21 m, 5.52¢
Heads 0.14 m, 13.7- 0.15m, 13.9° 0.11 m, 10.7¢ 0.11m, 12.7°
Office 0.22 m, 8.45° 0.29 m, 9.26¢° 0.19 m, 7.06° 0.19 m, 6.78°
Pumpkin 0.28 m, 9.31¢ 0.34 m, 9.59- 0.26 m, 8.80¢° 0.26 m, 8.61°
Kitchen 0.23 m, 8.59° 0.31m, 9.27° 0.20 m, 7.00° 0.21 m, 6.81¢
Stairs 0.30m, 14.1° 0.31m, 13.5° 0.29 m, 12.5¢ 0.29 m, 13.65¢
Avg. 0.21 m, 9.58¢ 0.28 m, 11.1° 0.20 m, 7.49¢ 0.21 m, 8.79¢°

Table 4-2 Result on 7 Scenes dataset of comparing different feature methods

The result is shown in Table 4-2. It is clear to observe that the combination of
NV+SP holds the best performance of localization accuracy. NV+SIFT and Distilled
methods are just a bit worse than NV+SP and show almost the same performance. In spite
of the fast property of ORB as traditional feature detector and descriptor, the localization
accuracy is worse than the above combination.
Comparison with state-of-the-art

Table 4-3 compares our approaches against current state-of-the-art methods. We
chose PoseLSTM [19] as one of the most accurate absolute pose regression methods and

RelocNet [17] as one of the state-of-the-art approach of image retrieval-based methods.
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In our framework, the combinations of NV+SIFT and NV+SP are both included in Table

4-3. The result shows that our methods are able to compete with the above methods under

2D-2D case.
PoseLSTM [19] RelocNet [17] Ours(NV+SIFT) | Ours(NV+SP)
Chess 0.24 m, 5.77° 0.12m, 4.12- 0.14 m, 8.20° 0.14 m, 7.56°
Fire 0.34m, 11.9° 0.26 m, 10.4- 0.20 m, 4.68° 0.20 m, 5.73°
Heads 0.32m, 13.7° 0.14 m, 10.5- 0.14m, 13.7- 0.11 m, 10.7°
Office 0.30 m, 8.08° 0.18 m, 5.32¢ 0.22 m, 8.45¢ 0.19 m, 7.06¢
Pumpkin 0.33 m, 7.00¢ 0.26 m, 4.25¢ 0.28 m, 9.31° 0.26 m, 8.80°
Kitchen 0.37 m, 8.83° 0.23m, 5.19° 0.23 m, 8.59° 0.20 m, 7.00°
Stairs 0.40 m, 13.7¢ 0.28 m, 7.55¢ 0.30 m, 14.1° 0.29 m, 12.5°
Avg. 0.31 m, 9.85° 0.21 m, 7.35° 0.21 m, 9.58° 0.20 m, 7.49°

Table 4-3 Result on 7 Scenes dataset of comparing state-of-the-art methods

4.2.3 2D-3D case

Comparison of different feature extraction methods with depth information

As mentioned in Section 3.4.2, we introduce 2D-3D pose estimation using the
depth information predicted from database RGB images and ground truth camera poses.
As shown in Table 4-4, our framework under 2D-3D case obviously outperforms the
localization result under 2D-2D case. Our predicted depth maps are optimized with the
photometric and geometric constraint from multiple source view information. To be more
specific, we perform a local structure from motion optimization process. To our best

knowledge, that is the key reason of the huge progress in localization accuracy.
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Ours(NV+SP) (NV+OSI;;ST+D) (DisotlilﬁiD) (Nv(igr;m)

Chess 0.14 m, 7.56¢ 0.04 m, 1.68° 0.04 m, 1.65¢ 0.04 m, 1.75¢
Fire 0.20 m, 5.73¢ 0.05m, 1.71- 0.05m, 1.88¢ 0.06 m, 2.03°
Heads 0.11 m, 10.7- 0.03m, 1.87¢ 0.03 m, 1.63° 0.03 m, 1.93-
Office 0.19 m, 7.06° 0.06 m, 1.58¢ 0.06 m, 1.48° 0.05m, 1.58-
Pumpkin 0.26 m, 8.80¢ 0.07 m, 1.95- 0.07 m, 1.80° 0.06 m, 1.91-
Kitchen 0.20 m, 7.00° 0.06 m, 1.87° 0.07 m, 1.84¢ 0.06 m, 1.92-
Stairs 0.29m, 12.5¢ 0.17 m, 4.19¢° 0.14 m, 3.49- 0.09 m, 2.52¢
Avg. 0.20 m, 8.49¢ 0.07 m, 2.12¢ 0.07 m, 1.96° 0.05 m, 1.94¢

Comparison with state-of-the-art methods using 3D information

For the sake of fairness, we compare our localization result under 2D-3D case with

the state-of-the-art methods using 3D information, depth from depth camera or 3D point

Table 4-4 Result on 7 Scenes dataset with depth information

cloud model from SfM.
Active Search [5] | DSAC++ [9] (Digt‘i‘ﬁiD) (Nv(i‘ér; D)
Chess 0.04 m, 2.0° 0.02m, 0.5 0.04 m, 1.65¢ 0.04 m, 1.75¢°
Fire 0.03 m, 1.5¢ 0.02m, 0.9- 0.05 m, 1.88° 0.06 m, 2.03°
Heads 0.02 m, 1.5¢ 0.01 m, 0.8° 0.03m, 1.63° 0.03 m, 1.93¢
Office 0.09 m, 3.6° 0.03 m, 0.7- 0.06 m, 1.48° 0.05m, 1.58¢
Pumpkin 0.08 m, 3.1° 0.04m, 1.1- 0.07 m, 1.80° 0.06 m, 1.91-
Kitchen 0.07 m, 3.4° 0.04m, 1.1- 0.07 m, 1.84- 0.06 m, 1.92¢
Stairs 0.03 m, 2.2¢ 0.09 m, 2.6° 0.14 m, 3.49° 0.09 m, 2.52¢
Avg. 0.05 m, 2.4° 0.03 m, 1.1° 0.07 m, 1.96¢° 0.05 m, 1.94-

Table 4-5 Result on 7 Scenes dataset of comparing methods using 3D information
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4.3 Computational Cost

As our localization solution was developed keeping the efficiency issue in mind, we
analyze the runtime of each component in pipeline. There were measured on a PC
equipped with an Intel CPU 17-8700k, 32GB RAM, and NVIDIA GeForce GTX 1080 Ti

GPU. The result is shown in Table 4-6.

Relative
Method Global IR Local Pose Total
Feature (NNsearch) Feature o
Estimation

NV+SIFT 92 7 273 121 493
NV+ORB 92 7 20 120 239
NV+SP 92 7 26 122 248
Distill 15 7 6 115 143
NV+SP+Depth 92 7 26 29 164
Distill+Depth 15 7 6 30 59

Table 4-6 Computation cost [ms] for each step

The uncertainty of the translation scale decomposed form single essential matrix
results in the need of multiple query and candidate image pairs to figure out the absolute
6 DoF camera pose. As demonstrated in Table 4-6, our framework using depth
information like NV+SP+Depth and Distill+Depth prevents the overhead of inferencing
camera pose described in Section 3.4.1. At the same time, the timing of extracting the
local and global features is another bottleneck of our framework. It is obvious that the
design of distilled feature extractor mentioned in Section 3.6 reduces the computation
cost. In conclusion, the use of multi-task distillation and depth information mitigate the

bottleneck with 5 times faster.
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4.4 Depth Estimation

In this section we provide the visualization of predicted depth map. Table 4-7 shows

the estimated depth information with and without ground truth depth.

RGB Supervised

chess

fire

heads

office

pumpkin

redkitchen

stairs

Table 4-7 Depth estimation result
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4.5 Generalization

Recent deep learning based methods for camera localization are restricted to scene-
dependent training and evaluation. In this section we would like to compare the
generalization capability with different approaches. However, many results shown in
previous researches are hard to reproduce since the lack of the model weights. As shown
in Table 4-8, we can only present the performance described in their method. The names
in bold under the method name show the training data source [3, 46, 47]. Our method
shows better performance against NNet and RelocNet while PoseLSTM cannot
generalize to unseen scenes. It is worth to mention that we adopt the pre-trained weight

of NetVLAD and SuperPoint when performing localization, which means our framework

does not need further training without distillation.

University | SeanNet | POLSTM | G TR

Chess 0.31 m, 15.0¢ 0.21 m, 10.9¢ - 0.14 m, 7.47-
Fire 0.40 m, 19.0¢ 0.32m, 11.8° - 0.21 m, 5.520
Heads 0.24 m, 22.1¢ 0.15m, 13.4¢ - 0.11 m, 12.7¢
Office 0.38 m, 14.1° 0.31 m, 10.3° - 0.19 m, 6.78°
Pumpkin 0.44 m, 18.2¢ 0.40 m, 10.9° - 0.26 m, 8.61°
Kitchen 0.41 m, 16.5° 0.33 m, 10.3° - 0.21 m, 6.81°
Stairs 0.35 m, 23.5° 0.33m, 11.40 - 0.29 m, 13.65¢°
Avg. 0.36 m, 18.3° 0.29 m, 11.20 - 0.21 m, 8.79°

Table 4-8 Generalization performance
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Chapter S Conclusion

In this paper, we propose an image retrieval-based localization approach. Our
flexible framework does not need a 3D point cloud model as structure-based methods,
and it can be applied to unseen scenes without much effort. According to the experiment,
our method can compete with state-of-the-art approaches under 2D-2D and 2D-3D case
by leveraging the advance of deep learning and the traditional computer vision geometry.
With distillation, we improve the efficiency without declining much performance. In
conclusion, our method shows great potential to leverage traditional geometric

knowledge and deep learning methods.
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Chapter 6 Future Work

Even though we have put some effort to improve the performance of feature
matching through deep learning-based method, the result is still unsatisfactory. We
believe that it is possible to eliminate the overhead of RANSAC and enhance the
robustness with more careful designed data-driven algorithms. In addition, the
correspondence between 2D pixel and 3D depth still comes from 2D-2D feature matching.
From our perspective, the feature extracted with 3D space information may has the

potential to enhance the image-based localization.
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