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中文摘要	 	

	 	 	 	基於影像的定位是希望透過影像資訊推測相機自我位置的問題，同時，對於自

駕車、擴增實境、智慧機器人來說是一個關鍵且基礎的技術。近年來，隨著算力的

提升和深度學習的發展，許多研究嘗試利用卷積網路強大的特徵描述能力來幫助

相機自我定位。然而，當使用場域改變時，這些方法都必須花很多力氣和時間重新

訓練其模型，同時顯示其泛化能力相當受到限制。基於圖像搜索概念的定位架構提

升了在不同場景的泛化能力，但在預測相機相對位置時而會受限於場景。我們基於

圖像檢索的概念提出了一個相機定位的架構，在計算相機相對位置時討論了更多

傳統的空間幾何。同時，我們也嘗試用深度學習的方法預測影像深度資訊並加強了

我們方法的定位精準度。實驗結果顯示我們的方法和現在最先進的方法有並駕齊

驅的定位能力，此外，利用模型壓縮讓我們的定位流程能達到幾乎即時運行。因此，

我們認為融合傳統相機方法和深度學習是一個相當有潛力的發展方向。	

	

關鍵字：	基於影像的定位、相機定位、深度學習、擴增實境	
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ABSTRACT 

	

 Image-based localization is used to estimate the camera poses within a specific scene 

coordinate, which is a fundamental technology towards augmented reality, autonomous 

driving, or mobile robotics. As the advancement of deep learning, end-to-end approaches 

based on convolutional neural networks have been well developed. However, these 

methods suffer from the overhead of reconstructing models while been applied to unseen 

scene. Therefore, image retrieval-based localization approaches have been proposed with 

generalization capability. In this paper, we follow the concept of image retrieval-based 

methods and adopt traditional geometry calculation while performing relative pose 

estimation. We also use the depth information predicted from deep learning methods to 

enhance the localization performance. The experimental result in indoor dataset shows 

the state-of-the-art accuracy. Furthermore, by distilling and sharing the encoder of global 

and local feature, we make our system possible for real-time application. Our method 

shows great potential to leverage traditional geometric knowledge and deep learning 

methods.  

 

Keywords: Image-based localization, Camera pose estimation, Deep learning, 

Augmented Reality. 
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Chapter 1 Introduction 

	 	 	 	 	 Camera localization, or image-based localization is a basic problem in robotics and 

computer vision. It refers to the process of solving the precise 6 Degree-of-Freedom (DoF) 

camera pose of a query image according to known reference like pre-built 3D point cloud 

model coordinate. This key technology is widely used in computer vision applications, 

including autonomous driving in GPS-denied environment, virtual reality, and device 

with augmented reality features like mobile phones and head mounted display (HMD) 

like HoloLens. More broadly, visual localization is also an important component of 

computer vision tasks like Structure-from-Motion (SfM) and the mapping part of 

Simultaneously Localization and Mapping (SLAM).  

     There are three generally kinds of the imaged-based localization approaches, 

namely structure-based camera localization, absolute pose regression camera localization, 

and image retrieval-based camera localization. The structure-based camera localization 

refers to the approaches which estimates the 6 DoF pose with the correspondence between 

local feature from query image and pre-built SfM point cloud model. The correspondence 

between 2D and 3D usually is established under the reliable and repeatable feature 

descriptor. However, these structure-based methods rely on a point cloud with superior 

quality and suffer from time consuming feature extractor procedure like SIFT [1]. 

     In recent years, as the huge impact of many computer vision task benefit from the 

extraordinary dense feature extraction ability of convolutional neural network (CNN), 

many researches tried to employ deep learning architecture in predicting camera pose. 

Absolute camera pose regression proposes an end-to-end deep learning method, like 

PoseNet [2] using the ground truth camera pose of training image as supervised signal. 
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Rather than traditional mathematical geometry procedure, these approaches tried to 

simulate the optimization process through the composition of convolution layers. In spite 

of the high-speed due to their end-to-end structure, it mostly requires lots of effort and 

time to fine-tune while changing the scene. 

     To conquer the limitation of generalization, image retrieval-based camera 

localization methods like NNet [3] leverage the success of image classification, semantic 

segmentation, and image retrieval. Instead of direct predict camera pose, these methods 

attempt to regress the relative pose between query image and most similar images selected 

by image retrieval. Although image retrieval-based camera localization methods hold 

better generalization performance, the procedure of relative poses estimation by 

regression is still hard to extend to another scene. 

     In this work, we propose an image retrieval-based camera localization pipeline with 

pairwise relative pose estimation using both traditional geometry methods and deep 

learning methods shown in Fig.	 3-1. The usage of essential matrices prevents the 

disadvantage of the needing of scene-dependence hyperparameters and improves the 

ability of generalization. With the improvement of depth estimation using deep learning, 

our framework also contains the 2D-3D scenario using the depth map inferenced from 

database RGB images and their ground truth camera pose. Inspired by HF-Net [4], we try 

to speed up the whole localization process by distilling both encoders of local and image 

representation feature and sharing one encoder. With the flexibility of our method, we 

compare the deep learning method to traditional method in each component of 

localization pipeline and thus recommend the best combination from these methods with 

respect to robustness and efficiency. 
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     Our contributions are as follows. First, we establish a flexible image retrieval-based 

camera pose localization pipeline without a 3D point cloud model. Each component can 

be easily replaced with other suitable method. The second contribution is that our 

framework holds a capability to generalize in every unseen scene by adopting traditional 

geometry process in relative pose estimation step. Last but not least, our localization result 

using only 2D information competes with the state-of-the-art image-based localization 

methods, while our results under 2D-3D case outperform the above approaches. Yet, our 

results using estimated depth mildly inferior to structure-based localization methods. 

 

Fig. 1-1  Visualization of our localization procedure. The green one denotes the ground 

truth pose of query image, the blue ones denote the candidate image pose obtained by 

image retrieval, and the red one is the result pose estimated by our approach. 
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Chapter 2 Related Work 

     In this section we review the previous works that relate to components of our 

method, namely: 6-DoF Visual Localization, Local Features and Feature Matching, and 

Depth Estimation. 

2.1 6-DoF Visual Localization 

2.1.1 Structure-based Localization 

     Structure-based localization methods perform direct 2D-3D matching between 2D 

pixel position of query image and 3D points in a 3D structure-from-motion model. The 

2D-3D correspondences are used to estimate the camera pose of the query image by 

applying an n-point- pose solver such as [5, 6] within a RANSAC loop [7] . 

     Rather than obtaining the 2D-3D correspondences from descriptor matching, some 

previous works tried to predict the 3D position of each pixel by 3D scene coordinate 

regression using convolutional neural networks [8-11] or random forest [12, 13]. 3D 

coordinate regression methods currently achieve a higher pose accuracy at small scale, 

but have not yet been shown to scale to larger scene.  

     Furthermore, HF-Net [4] provides a camera localization pipeline using efficient 

deep learning global and local feature. Besides the ability to handle large scale scenes, 

HF-Net [4] shows an outstanding robustness in particularly challenging conditions. 

2.1.2 Image Retrieval Localization 

     Image retrieval methods can only provide an approximate pose of the most similar 
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image form database to the query image. However, the retrieval result is not precise 

enough due to the discretization of database. The image retrieval localization often 

contains the relative pose estimation phase to predict the query image pose from one or 

multiple similar database images. 

     For traditional image retrieval part, VLAD [14] proposed a representation vector 

of aggregated local feature based on BoF (Bag-of-Features) and fisher vector concepts. 

After calculating each database local features, BoF would perform feature center 

clustering like k-means clustering [15]. The distribution of local features in image is the 

representation vector. Meanwhile, fisher vector utilizes the means and covariance of 

GMM (Gaussian Mixture Model) to represent each image.  

     In recent years, many researches tried to enhance the description ability by deep 

learning technique. The NetVLAD [16] is presented to learn both the descriptor and 

feature center by CNN and the carefully-designed networks. 

      Back to localization issue, as mentioned above, image retrieval can only provide 

approximate poses. More precise poses can be obtained by pairwise relative pose 

estimation. NNnet [3] learned the relative pose between RGB image pairs and proposed 

a images localization pipeline contained image retrieval and robust pose estimation. 

Moreover, RelocNet [17] proposed a network is jointly trained for the tasks of image 

retrieval (based on a novel frustum overlap distance) and relative camera pose regression.  

     Yet, [18] stated that, while being among the best-performing end-to-end 

localization approaches, current direct relative pose regression techniques do not 

consistently outperform an image retrieval baseline. 
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2.1.3 Absolute Camera Pose Regression 

     Absolute camera pose regression aims to regress the camera pose and orientation 

through the trained deep neural network models.  

      PoseNet [2] tried to learn complete camera localization pipeline through a single 

CNN model. As the first work trying to leverage the power of feature extraction in CNN, 

PoseNet [2] has been extended in many ways. PoseLSTM [19] proposed a novel 

architecture combined CNN and LSTM [20] for camera pose estimation. MapNet [21] 

presented a DNN with a new parameterization for camera rotation, the logarithm of unit 

quaternion  

     VLocNet [22] proposed the architecture consisting of a global pose regression sub-

network and a Siamese-type relative pose estimation sub-network, taking two consecutive 

monocular images as input and jointly regresses the 6-DoF global pose. Furthermore, 

VLocNet++ [23] is a novel framework  for jointly learning semantics, visual localization 

and odometry from consecutive monocular images.  

2.2 Local Features 

     As mentioned above, structure-based localization employed hand-crafted feature 

detectors and descriptors. The FAST [24] corner detector was the first architecture to 

perform high-speed interest point detection. The ORB [25] proposed a very fast binary 

descriptor based on BRIEF [26] and was adopted in ORB-SLAM [27] as an efficient  

and robust component toward real-world and real-time scenario. The Scale-Invariant 

Feature Transform, or SIFT [1], is still the most well-known traditional feature detector 

and descriptor when it comes to camera localization or structure-from-motion issues in 
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computer vision. 

     Learned local features are recently been developed to replace the hand-crafted 

features. Dense pixel-wise features are spontaneously generated by CNN and are 

intuitively utilized for feature matching and camera localization [10, 28]. However, the 

dense matching between dense features are time consuming. Sparse learned features 

architecture regresses sparse interest points and their descriptors from single encoder, 

such as LIFT [29] and SuperPoint [30]. These end-to-end procedures are fast to predict 

and have also been shown to outperform the traditional methods. 

2.3 Depth Estimation 

     In classic computer vision, the depth of image is usually computed from a given set 

of images, such as image pair from stereo camera. In deep learning based computer vision, 

researchers put more effort on predicting the depth map from monocular image and treat 

this kind of problem as an image to depth regression issue. Learning depth from single 

image consist of two forms. The supervised approach tries to regress the result depth map 

as the given ground truth depth map, while the self-supervised focuses on predicting the 

depth map under the traditional geometry constraints. 

     End-to-end supervised learning [31, 32] have been explored to show their good 

performance than traditional methods. Fully supervised approaches require precise 

ground truth depth map while training the model. However, this is a challenge to acquire 

in varied real-world setting. 

 In the absence of ground truth, one of the alternative approaches is self-supervised 

depth estimation. These approaches use either stereo images or monocular sequence with 
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image reconstruction information as supervisory signals. Zhou et al. [33] proposed a 

jointly self-supervised learning framework, SfMlearner, which predicts depth map and 6-

DoF pose simultaneously from monocular frame sequence. However, the strong geometry 

constraint used in SfMlearner is that the scene must be in a static environment. Therefore, 

Zou et al. [34] further added an optical flow estimation to distinguish rigid and non-rigid 

components. 

 When it comes to depth reconstruction, the monocular-based approach uses images 

sequence from single camera as source data would suffer from scale inconsistency 

problem. Bian et al. [35] proposed a geometry consistency loss between nearby frame to 

fix the scale of inferenced depth maps.  
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Chapter 3 Method 

3.1 Pipeline 

     The scalable pipeline takes a RGB query images as input and results a 6 degrees of 

freedom camera pose within database scene. Our approach roughly follows the 

architecture of image retrieval localization pipeline. Rather than direct regressing the 

relative pose between image pairs like [3, 17], we introduce the classic relative pose 

estimation method based on essential matrix. For the dataset with depth information, we 

can direct inference the absolute camera poses through P-n-P algorithm. 

     Our pipeline consists of three modules: (1) Image Retrieval (2) Feature Extraction 

and Feature Matching (3) Relative Pose Estimation. 

     Notably, we can easily use either traditional or learning-based methods in each part 

of our pipeline. In Chapter 4, we compare the robustness and efficiency of different kind 

of approaches. 

	

Fig. 3-1  Our localization pipeline. 
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3.2 Image Retrieval 

     In order to find the most similar database image to query image, it is important to 

convert both the database and query images into suitable representation vector. We 

perform image retrieval by DenseVLAD descriptor [36] and NetVLAD descriptor [16], 

which has been shown to work under challenging conditions [37]. Compared to other 

learned pipelines for image retrieval [38, 39], NetVLAD [16] and DenseVLAD [36] show 

better generalization to unseen scenes, which fit well to our pipeline. 

     As shown in Fig. 3-2, the pipeline contains online and offline parts. In the offline 

part, we first calculate all the representation vectors of database images and store them as 

vector database. In the online querying part, after extracting global image descriptor, we 

compare the query descriptor d"  to the pre-computed descriptors d#  by nearest 

neighbor search. In practical, we express the similarity of two vector by cosine similarity 

and use K-D tree as indexing structure. 

 

Fig. 3-2  Image retrieval pipeline example using NetVLAD 
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3.3 Feature Extraction and Matching 

Local feature extraction 

     To estimate the relative pose of retrieved pairs, we need to find the correspondence 

between images. InLoc [10] performed dense matching of CNN encoded feature map 

while estimating the relative pose. NNet [3] tried to directly regress the relative pose 

through Siamese neural network with two representation branches connected to a 

common regression part.  

     However, matching dense features is intractable with limited computing power, and 

both of these approaches are struggling with generalizing to other scenes. In [40] shows 

that directly using data-driven approaches for pose estimation yields less accurate results. 

Therefore, we aim on sparse feature detectors which can easily be sampled from dense 

features and fast to predict. 

     In this work, we compare three sparse feature extractors, SIFT [1] , ORB [25] , and 

SuperPoint [30]. SIFT is still the most well-known traditional feature detector and 

descriptor and serves as the best traditional hand-crafted feature benchmark. Although 

SIFT has really great performance of accuracy, most real-time application like SLAM 

won’t adopt SIFT due to the time consuming processing time. Take efficiency into 

consideration, we decide to choose ORB as one of the feature extractor candidate. As for 

learning-based method, SuperPoint learns from self-supervision and performs sparse 

interest point detection. 

Feature Matching 

     Finding good correspondence between features extracted from image pair also has 

a significant impact on the quality of relative pose estimation. In this part we intuitively 
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use brute force searching to find the most similar local feature. The similarity of two 

features is described as inner product. To make the procedure more robust and ensure the 

quality of correspondence, we adopt the ratio test proposed by [1] using threshold 0.8. 

Meanwhile, we speed up the matching process using PyTorch if there is GPU available. 

3.4 Relative Pose Estimation 

	 	 	   As shown in Fig. 3-1, our framework contains two cases, 2D-2D and 2D-3D case, 

and the difference comes from using depth information or not. In this section, we 

introduce these cases step by step. 

3.4.1 2D-2D case 

     With correspondence computed from Section 3.3., we can estimate the essential 

matrix by five-point [41] method in RANSAC [7] loop. Essential matrix can be 

decomposed into four relative poses, as shown in Fig. 3-3., R, t , R, −t , R(, t , (R(, −t). 

Next, we can verify the correct combination by examining the depth is positive or not 

based on matched feature points. 

	

Fig. 3-3  Four cases of R/t 

     Since we cannot determine the correct scale of t, the absolute poses cannot directly 

obtain the final camera pose by the combination of single relative pose and pose of 



doi:10.6342/NTU202003304

 13 

candidate image. Hence, we reformulate the problem to pose hypothesis filtering with 

RANSAC loop. This process is illustrated in Fig. 3-4. 

 

	

Fig. 3-4  Pose filtering with RANSAC. 

     The relative pose estimated from 2D-2D matched features can be expressed as a 

line.	R,-	and t,- denote the rotation and translation matrix of training image. R-.	and 

t-. denote the rotation and translation matrix of relative pose estimated from pipeline, 

and 𝜶  denote the unknown scale. We express the estimated pose of query image 

multiplied by relative pose as shown in Equation (3-1). 

 𝑅12 𝜶𝑡12
0 1

𝑅61 𝑡61
0 1 = 𝑅12𝑅61 𝑅12𝑡61 + 𝜶𝑡12

0 1  (3-1) 

	 	 	 	  The absolute camera pose 𝑐 can be described as Equation (3-2) with its camera 

projection matrix 𝑅  and 𝑡 . Therefore, with the parameters in Equation (3-1), the 

estimation line is written as Equation (3-3).	

	 𝑐 = −𝑅:𝑡 (3-2) 



doi:10.6342/NTU202003304

 14 

 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛	𝑙𝑖𝑛𝑒 = 	−𝑅61: 𝑅12: 𝑅12𝑡61 − 𝜶𝑅61: 𝑅12: 𝑡12 (3-3) 

     In RANSAC loop, we random select two pairs from Top-K retrieved pairs. The 

hypothesis pose is the closest point to the two selected estimation line. We can easily 

obtain the point from the midpoint of the common perpendicular line. PD and PE are the 

point in the estimation line, while 	vD and vE are the vector of the lines respectively. 

 𝑃D + 𝑡𝑣D + 𝑢 𝑣D×𝑣E = 𝑃E + 𝑠𝑣E (3-4) 

 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠	𝑝𝑜𝑠𝑒 = NOP6QOPNRPSQR
E

 (3-5) 

     The orientation of hypothesis is obtained by the spherical linear interpolation 

(SLERP) of two quaternions. 	qU	and qV  are the quaternions of estimated pose from 

hypothesis pair and ⊗ denotes SLERP operation. 

 𝑞 = 𝑞Y ⊗ 𝑞V (3-6) 

     To evaluate a hypothesis, we find the distance between hypothesis pose and each 

estimation line. If the distance is under the threshold, that estimation line would be 

considered as one of the inlier line set. P. and v. is the point and vector of estimation 

line and PZ is a point in 3D coordinate from hypothesis pose. 

 𝑒𝑟𝑟𝑜𝑟	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = N]N^×Q]
Q]

 (3-7) 

     After hypothesis pose passes the inlier test, the final hypothesis should be refined 

by all the inlier line. The problem is transformed into finding the closest point to multiple 

estimation lines. We first formulate single line: 
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 _`_a
ba

= c`ca
da

= e`ea
fa

= 𝑡Y, 				
1 0 0 −𝑎Y
0 1 0 −𝑏Y
0 0 1 −𝑐Y

𝑋
𝑌
𝑍
𝑡Y

=
𝑥Y
𝑦Y
𝑧Y

 (3-8) 

Then we can obtain the equation of multiple lines assuming that the hypothesis pose lies 

on the intersection of lines perfectly. 

 𝐴𝑥 = 𝑏 (3-9)	

	

1 0 0 −𝑎D 0 … 0
0 1 0 −𝑏D 0 … 0
0 0 1 −𝑐D 0 … 0
1 0 0 0 −𝑎E … 0
0 1 0 0 −𝑏E … 0
0 0 1 0 −𝑐E … 0
… … … … … … 0
1 0 0 0 0 … −𝑎o
0 1 0 0 0 … −𝑏o
0 0 1 0 0 … −𝑐o

𝑋
𝑌
𝑍
𝑡D
𝑡E
…
𝑡o

=

𝑥D
𝑦D
𝑧D
…
𝑥o
𝑦o
𝑧o

	 (3-10) 

     For the general solution, we ignore the least-squares technique as it is not able to 

provide solutions once A is rank-deficient. By using SVD, we derive the general solutions 

of the nearest approach for all cases of multiple lines in 3D space. 

	 𝑥 = 𝐴P ∗ 𝑏 (3-11)	

     In our approaches, we will examine the number of inlier of 𝑥 to ensure the quality 

of final hypothesis.  
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Fig. 3-5  Illustration of closet point to four non-intersecting lines in 3D space 

	 	 	 	 	 As	for	orientation	part	of	multiple	inliers,	we	intuitively	calculate	the	average	

of	all	quaternion	vector	by	SLERP.	 	

3.4.2 2D-3D case 

     The 2D pixel can be inverse projected into 3D coordinate with known camera 

intrinsic, camera pose within specific scene, and depth information. After finding 

correspondence described in Section 3.3, we can solve the localization problem using PnP 

algorithm since the matched pixels in candidate image are interpreted as 3D points in 

scene as shown in Fig. 3-6. In RANSAC loop, we adopt P3P to generate the pose 

hypothesis and set the minimum number inlier threshold as 12. Next, we optimize the 

pose hypothesis by minimizing the projection error of all inliers points. In this part we 

simply use the opencv library solvePnPRansac and solvePNP. 



doi:10.6342/NTU202003304

 17 

 

Fig. 3-6  Illustration of 2D-3D case 

3.5 Depth Estimation 

     Review our proposed framework, we would need a dense depth map of candidate 

RGB images when performing 2D-3D pose estimation. Even though some datasets have 

collected depth information already like 7-Scenes dataset, in this work we want to 

calculate all the information from solely RGB information.  

3.5.1 Depth Estimation Framework 

     Inspired by self-supervised learning framework of Zhou et al. [33], we modify the 

origin framework to reconstruct 3D scene depth from continuous image sequence. Since 

we have the ground truth of each training image pose, the framework would be able to 

take precise 6-DoF information as one of the supervisory signal to reconstruction. In other 

words, our procedure doesn’t need to predict the pose of each training image and we aim 

on training the network predicting the depth information.  
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     The depth estimation framework consists of a neural network, DepthNet, taking 

RGB frames as input and predicting depth map as output shown in Fig. 3-7. Let D, 

denote predicted depth of target view, and T,→�	denote the relative pose calculated from 

ground truth pose T� and T,. With known camera intrinsic K, we can project p,, the 

homogeneous coordinate of a pixel from target view, onto source view p� by 

 𝑝S~𝐾𝑇6→S𝐷6 𝑝6 𝐾`D𝑝6 (3-12)	

     At this point, the 3D projection error can be computed by the difference between 

the source view projected from target view and the original source view. After sufficient 

training epochs, the tuned DepthNet is able to inference more steady and optimized depth 

result.  

 

Fig. 3-7  Depth estimation training and inference procedure 

3.5.2 Loss Term 

     In this section, we will present each component of our loss, including appearance 

matching loss and geometric loss. Our overall objective function can be formulated as 

follows: 
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	 ℒ = 𝛼ℒb� + 𝛽ℒ�  (3-13)	

where ℒ�� stands for proposed appearance matching loss and ℒ� stands for geometric 

loss. 

Appearance Matching Loss 

      The key supervisory signal for our depth estimation is calculated from view 

synthesis. During the training, we project the source view image IU��  to target view image 

IU�,  by inverse warping with estimated D�  and ground truth relative pose T�→, . The 

appearance matching loss is described by the appearance difference between target view 

image IU�,  and synthesized image I��, . Follow the work [42], we use the combination of 

two terms, L1 distance and single scale SSIM [43], describing the photometric difference 

as ℒ��, : 

 ℒb�6 = D
�

𝛼
D`���  �a¡

¢ ,�£¤¢

E
+ 1 − 𝛼 𝐼YV6 − 𝐼¦§6 DY,V ∈�  (3-14) 

Here, V denotes the points that successfully project from the source view to the target 

view, while successful projection means that the result pixel coordinate falls in the target 

image. V  means the number of the successful points. We use the simplified SSIM with 

a 3×3 block filter and set α	to 0.5 as a fixed weight. 

Geometric Loss 

     To enforce the geometry consistency on predicted result, we aim on minimize the 

difference between the depth values of correspondence pixel from different view. With 

the relative pose T,→� computed from ground truth pose, we can project the predicted 

depth of target view D, to source view as D,→�. We use the loss function proposed in 
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[35] and simply define the geometric loss as: 

	 ℒ� 𝑡, 𝑠 = D
�

¬¢→ � `¬® �
¬¢→ � P¬® ��∈�  (3-15) 

where D�(  is the interpolated depth map from the estimated map D� . The difference 

obtained from each input frame is normalized by the sum of two depth map.  

3.6 Model Distillation 

     In the relative pose estimation pipeline, we need to perform feature extraction twice 

for the purpose of image retrieval and local feature matching. Consider the state-of-the-

art image retrieval approach, we can find that the representation vector is usually 

composed of local features. Therefore, it is a natural idea to predict both representation 

vector and the local feature map of images from shared weighted encoder.  

     In the work [44] , NetVLAD is distilled into MobileNetVLAD based on MobileNet 

backbone in order to enhance the efficiency. In [4], HF-Net furtherly distills both encoder 

from NetVLAD and SuperPoint with MobileNet. In this work, we basically follow the 

concept of HF-Net. We also use teacher student learning architecture to train a shared 

light weight model. 

	

Fig. 3-8  Multi-task distillation framework 
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Chapter 4 Experiments 

4.1 Dataset 

Indoor Dataset 

     The 7-Scenes dataset, provide by Microsoft, is recorded in indoor environment with 

tracked RGB-D camera. The dataset consists of seven different indoor scenes and all 

frames are collected with handheld Kinect RGB-D camera at 640*480 resolution. The 

ground truth pose of each frame and the dense 3D model are computed by 

KinectFusion[45]. The 7-Scenes dataset covers an area of 12 square meters and the seven 

scenes are namely, chess, fire, heads, office, pumpkin, red kitchen, stairs. The sequences 

are split into training and testing part, which contains 26000 images for training and 

17000 images for testing. 

 

Fig. 4-1  Sample image from the 7-Scenes dataset 

4.2 Localization Result 

     The localization result parts focus on the accuracy of pose estimation. We show the 

experimental results according the procedure of our framework, image retrieval, 

localization result with relative pose estimation under 2D-2D case and 2D-3D using depth 

information. Note that the following result tables present the median localization error of 

position [m] and orientation [deg].	
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4.2.1 Image Retrieval 

     The localization result of these image retrieval methods comes from the accuracy 

of the pose of most similar image retrieved from database. To compare the accuracy of 

image retrieval methods, we evaluate the pose of the most similar image. As shown in 

Table 4-1, we can tell that NetVLAD [16] and DenseVLAD [36] hold nearly the same 

performance. However, due to high computation cost of DenseVLAD, we adopt 

NetVLAD as our image retrieval method in the following experiment. 

 NetVLAD DenseVLAD 

Chess 0.25 m, 12.7◦ 0.21 m, 12.5◦ 

Fire 0.35 m, 14.7◦ 0.33 m, 13.8◦  

Heads 0.17 m, 16.6◦ 0.28 m, 11.2◦ 

Office 0.38 m, 12.1◦ 0.31 m, 11.3◦ 

Pumpkin 0.30 m, 12.8◦ 0.31 m, 11.3◦ 

Kitchen 0.28 m, 12.5◦ 0.30 m, 12.3◦ 

Stairs 0.25 m, 15.6◦ 0.25 m, 15.8◦ 

Avg. 0.28 m, 13.8◦ 0.29 m, 11.2◦ 

Table 4-1 Result on 7 Scenes dataset of comparing different image retrieval methods 

4.2.2 2D-2D case 

Comparison of different feature extraction methods 

     We first make an evaluation of our localization framework with several chosen 

feature extractors under 2D-2D case. NV denotes that we apply NetVLAD [16] as our 

image representation vector extractor. For local feature methods, SIFT [1] is still 

considered as one of the most robust feature detector and descriptor. However, the cost of 
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computation time should also be taken into account due to the efficiency issue of 

localization applications. Therefore, we treat ORB [25] as a more fast and practical local 

feature extractor. Meanwhile, SP denotes SuperPoint [30] which represents one the deep 

learning method predicting sparse keypoints and their descriptors. Distill means the 

feature extractor architecture we introduce in 3.6 using the same encoder in both global 

and local feature descriptor phase. 

 Ours(NV+SIFT) Ours(NV+ORB) Ours(NV+SP) Our(Distill) 

Chess 0.14 m, 8.20◦ 0.21 m, 10.4◦ 0.14 m, 7.56◦ 0.14 m, 7.47◦ 

Fire 0.20 m, 4.68◦  0.33 m, 12.0◦ 0.20 m, 5.73◦ 0.21 m, 5.52◦ 

Heads 0.14 m, 13.7◦ 0.15 m, 13.9◦ 0.11 m, 10.7◦ 0.11 m, 12.7◦ 

Office 0.22 m, 8.45◦ 0.29 m, 9.26◦ 0.19 m, 7.06◦ 0.19 m, 6.78◦ 

Pumpkin 0.28 m, 9.31◦ 0.34 m, 9.59◦ 0.26 m, 8.80◦ 0.26 m, 8.61◦ 

Kitchen 0.23 m, 8.59◦ 0.31 m, 9.27◦ 0.20 m, 7.00◦ 0.21 m, 6.81◦ 

Stairs 0.30 m, 14.1◦ 0.31 m, 13.5◦ 0.29 m, 12.5◦ 0.29 m, 13.65◦ 

Avg. 0.21 m, 9.58◦ 0.28 m, 11.1◦ 0.20 m, 7.49◦ 0.21 m, 8.79◦ 

Table 4-2 Result on 7 Scenes dataset of comparing different feature methods 

     The result is shown in Table 4-2. It is clear to observe that the combination of 

NV+SP holds the best performance of localization accuracy. NV+SIFT and Distilled 

methods are just a bit worse than NV+SP and show almost the same performance. In spite 

of the fast property of ORB as traditional feature detector and descriptor, the localization 

accuracy is worse than the above combination. 

Comparison with state-of-the-art 

     Table 4-3 compares our approaches against current state-of-the-art methods. We 

chose PoseLSTM [19] as one of the most accurate absolute pose regression methods and 

RelocNet [17] as one of the state-of-the-art approach of image retrieval-based methods. 
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In our framework, the combinations of NV+SIFT and NV+SP are both included in Table 

4-3. The result shows that our methods are able to compete with the above methods under 

2D-2D case. 

 PoseLSTM [19] RelocNet [17] Ours(NV+SIFT) Ours(NV+SP) 

Chess 0.24 m, 5.77◦ 0.12 m, 4.12◦ 0.14 m, 8.20◦ 0.14 m, 7.56◦ 

Fire 0.34 m, 11.9◦ 0.26 m, 10.4◦  0.20 m, 4.68◦  0.20 m, 5.73◦ 

Heads 0.32 m, 13.7◦ 0.14 m, 10.5◦ 0.14 m, 13.7◦ 0.11 m, 10.7◦ 

Office 0.30 m, 8.08◦ 0.18 m, 5.32◦ 0.22 m, 8.45◦ 0.19 m, 7.06◦ 

Pumpkin 0.33 m, 7.00◦ 0.26 m, 4.25◦ 0.28 m, 9.31◦ 0.26 m, 8.80◦ 

Kitchen 0.37 m, 8.83◦ 0.23 m, 5.19◦ 0.23 m, 8.59◦ 0.20 m, 7.00◦ 

Stairs 0.40 m, 13.7◦ 0.28 m, 7.55◦ 0.30 m, 14.1◦ 0.29 m, 12.5◦ 

Avg. 0.31 m, 9.85◦ 0.21 m, 7.35◦ 0.21 m, 9.58◦ 0.20 m, 7.49◦ 

Table 4-3 Result on 7 Scenes dataset of comparing state-of-the-art methods 

4.2.3 2D-3D case 

Comparison of different feature extraction methods with depth information 

     As mentioned in Section 3.4.2, we introduce 2D-3D pose estimation using the 

depth information predicted from database RGB images and ground truth camera poses. 

As shown in Table 4-4, our framework under 2D-3D case obviously outperforms the 

localization result under 2D-2D case. Our predicted depth maps are optimized with the 

photometric and geometric constraint from multiple source view information. To be more 

specific, we perform a local structure from motion optimization process. To our best 

knowledge, that is the key reason of the huge progress in localization accuracy. 
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 Ours(NV+SP) Ours 
(NV+SIFT+D) 

Ours 
(Distill+D) 

Ours 
(NV+SP+D) 

Chess 0.14 m, 7.56◦ 0.04 m, 1.68◦ 0.04 m, 1.65◦ 0.04 m, 1.75◦ 

Fire 0.20 m, 5.73◦ 0.05 m, 1.71◦ 0.05 m, 1.88◦ 0.06 m, 2.03◦ 

Heads 0.11 m, 10.7◦ 0.03 m, 1.87◦ 0.03 m, 1.63◦ 0.03 m, 1.93◦ 

Office 0.19 m, 7.06◦ 0.06 m, 1.58◦ 0.06 m, 1.48◦ 0.05 m, 1.58◦ 

Pumpkin 0.26 m, 8.80◦ 0.07 m, 1.95◦ 0.07 m, 1.80◦ 0.06 m, 1.91◦ 

Kitchen 0.20 m, 7.00◦ 0.06 m, 1.87◦ 0.07 m, 1.84◦ 0.06 m, 1.92◦ 

Stairs 0.29 m, 12.5◦ 0.17 m, 4.19◦ 0.14 m, 3.49◦ 0.09 m, 2.52◦ 

Avg. 0.20 m, 8.49◦ 0.07 m, 2.12◦ 0.07 m, 1.96◦ 0.05 m, 1.94◦ 

Table 4-4 Result on 7 Scenes dataset with depth information 

Comparison with state-of-the-art methods using 3D information 

     For the sake of fairness, we compare our localization result under 2D-3D case with 

the state-of-the-art methods using 3D information, depth from depth camera or 3D point 

cloud model from SfM. 

 Active Search [5] DSAC++ [9] Ours 
(Distill+D) 

Ours 
(NV+SP+D) 

Chess 0.04 m, 2.0◦ 0.02 m, 0.5◦ 0.04 m, 1.65◦ 0.04 m, 1.75◦ 

Fire 0.03 m, 1.5◦ 0.02 m, 0.9◦  0.05 m, 1.88◦ 0.06 m, 2.03◦ 

Heads 0.02 m, 1.5◦ 0.01 m, 0.8◦ 0.03 m, 1.63◦ 0.03 m, 1.93◦ 

Office 0.09 m, 3.6◦ 0.03 m, 0.7◦ 0.06 m, 1.48◦ 0.05 m, 1.58◦ 

Pumpkin 0.08 m, 3.1◦ 0.04 m, 1.1◦ 0.07 m, 1.80◦ 0.06 m, 1.91◦ 

Kitchen 0.07 m, 3.4◦ 0.04 m, 1.1◦ 0.07 m, 1.84◦ 0.06 m, 1.92◦ 

Stairs 0.03 m, 2.2◦ 0.09 m, 2.6◦ 0.14 m, 3.49◦ 0.09 m, 2.52◦ 

Avg. 0.05 m, 2.4◦ 0.03 m, 1.1◦ 0.07 m, 1.96◦ 0.05 m, 1.94◦ 

Table 4-5 Result on 7 Scenes dataset of comparing methods using 3D information 
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4.3 Computational Cost 

	 	 	 	 As our localization solution was developed keeping the efficiency issue in mind, we 

analyze the runtime of each component in pipeline. There were measured on a PC 

equipped with an Intel CPU i7-8700k, 32GB RAM, and NVIDIA GeForce GTX 1080 Ti 

GPU. The result is shown in Table 4-6.  

Method Global 
Feature 

IR 
(NNsearch) 

Local 
Feature 

Relative 
Pose 

Estimation 
Total 

NV+SIFT 92 7 273 121 493 

NV+ORB 92 7 20 120 239 

NV+SP 92 7 26 122 248 

Distill 15 7 6 115 143 

NV+SP+Depth 92 7 26 29 164 

Distill+Depth 15 7 6 30 59 

Table 4-6 Computation cost [ms] for each step 

	 	 	 	 	 The uncertainty of the translation scale decomposed form single essential matrix 

results in the need of multiple query and candidate image pairs to figure out the absolute 

6 DoF camera pose. As demonstrated in Table 4-6, our framework using depth 

information like NV+SP+Depth and Distill+Depth prevents the overhead of inferencing 

camera pose described in Section 3.4.1. At the same time, the timing of extracting the 

local and global features is another bottleneck of our framework. It is obvious that the 

design of distilled feature extractor mentioned in Section 3.6 reduces the computation 

cost. In conclusion, the use of multi-task distillation and depth information mitigate the 

bottleneck with 5 times faster. 
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4.4  Depth Estimation 

     In this section we provide the visualization of predicted depth map. Table 4-7 shows 

the estimated depth information with and without ground truth depth. 

Table 4-7 Depth estimation result 

 RGB Supervised Unsupervised 

chess 

   

fire 

   

heads 

   

office 

   

pumpkin 

   

redkitchen 

   

stairs 
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4.5 Generalization 

     Recent deep learning based methods for camera localization are restricted to scene-

dependent training and evaluation. In this section we would like to compare the 

generalization capability with different approaches. However, many results shown in 

previous researches are hard to reproduce since the lack of the model weights. As shown 

in Table 4-8, we can only present the performance described in their method. The names 

in bold under the method name show the training data source [3, 46, 47]. Our method 

shows better performance against NNet and RelocNet while PoseLSTM cannot 

generalize to unseen scenes. It is worth to mention that we adopt the pre-trained weight 

of NetVLAD and SuperPoint when performing localization, which means our framework 

does not need further training without distillation. 

 NNet 
University 

RelocNet 
ScanNet PoseLSTM Ours (Distill) 

Landmark 

Chess 0.31 m, 15.0◦ 0.21 m, 10.9◦ - 0.14 m, 7.47◦ 

Fire 0.40 m, 19.0◦ 0.32 m, 11.8◦  - 0.21 m, 5.52◦ 

Heads 0.24 m, 22.1◦ 0.15 m, 13.4◦ - 0.11 m, 12.7◦ 

Office 0.38 m, 14.1◦ 0.31 m, 10.3◦ - 0.19 m, 6.78◦ 

Pumpkin 0.44 m, 18.2◦ 0.40 m, 10.9◦ - 0.26 m, 8.61◦ 

Kitchen 0.41 m, 16.5◦ 0.33 m, 10.3◦ - 0.21 m, 6.81◦ 

Stairs 0.35 m, 23.5◦ 0.33 m, 11.4◦ - 0.29 m, 13.65◦ 

Avg. 0.36 m, 18.3◦ 0.29 m, 11.2◦ - 0.21 m, 8.79◦ 

Table 4-8 Generalization performance 
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Chapter 5 Conclusion 

     In this paper, we propose an image retrieval-based localization approach. Our 

flexible framework does not need a 3D point cloud model as structure-based methods, 

and it can be applied to unseen scenes without much effort. According to the experiment, 

our method can compete with state-of-the-art approaches under 2D-2D and 2D-3D case 

by leveraging the advance of deep learning and the traditional computer vision geometry. 

With distillation, we improve the efficiency without declining much performance. In 

conclusion, our method shows great potential to leverage traditional geometric 

knowledge and deep learning methods. 



doi:10.6342/NTU202003304

 30 

Chapter 6 Future Work 

	     Even though we have put some effort to improve the performance of feature 

matching through deep learning-based method, the result is still unsatisfactory. We 

believe that it is possible to eliminate the overhead of RANSAC and enhance the 

robustness with more careful designed data-driven algorithms. In addition, the 

correspondence between 2D pixel and 3D depth still comes from 2D-2D feature matching. 

From our perspective, the feature extracted with 3D space information may has the 

potential to enhance the image-based localization.	



doi:10.6342/NTU202003304

 31 

REFERENCES 

	

[1] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," 

International journal of computer vision, vol. 60, no. 2, pp. 91-110, 2004. 

[2]  A. Kendall, M. Grimes, and R. Cipolla, "Posenet: A convolutional network for 

real-time 6-dof camera relocalization," in Proceedings of the IEEE international 

conference on computer vision, 2015, pp. 2938-2946.  

[3]  Z. Laskar, I. Melekhov, S. Kalia, and J. Kannala, "Camera relocalization by 

computing pairwise relative poses using convolutional neural network," in 

Proceedings of the IEEE International Conference on Computer Vision 

Workshops, 2017, pp. 929-938.  

[4]  P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, "From coarse to fine: 

Robust hierarchical localization at large scale," in Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, 2019, pp. 12716-12725.  

[5] T. Sattler, B. Leibe, and L. Kobbelt, "Efficient & effective prioritized matching 

for large-scale image-based localization," IEEE transactions on pattern analysis 

and machine intelligence, vol. 39, no. 9, pp. 1744-1756, 2016. 

[6]  T. Sattler et al., "Are large-scale 3D models really necessary for accurate visual 

localization?," in Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, 2017, pp. 1637-1646.  

[7] M. A. Fischler and R. C. Bolles, "Random sample consensus: a paradigm for 

model fitting with applications to image analysis and automated cartography," 

Communications of the ACM, vol. 24, no. 6, pp. 381-395, 1981. 

[8]  E. Brachmann et al., "Dsac-differentiable ransac for camera localization," in 



doi:10.6342/NTU202003304

 32 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 

2017, pp. 6684-6692.  

[9]  E. Brachmann and C. Rother, "Learning less is more-6d camera localization via 

3d surface regression," in Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, 2018, pp. 4654-4662.  

[10]  H. Taira et al., "InLoc: Indoor visual localization with dense matching and view 

synthesis," in Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, 2018, pp. 7199-7209.  

[11]  L. Liu, H. Li, and Y. Dai, "Efficient global 2d-3d matching for camera 

localization in a large-scale 3d map," in Proceedings of the IEEE International 

Conference on Computer Vision, 2017, pp. 2372-2381.  

[12]  J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon, "Scene 

coordinate regression forests for camera relocalization in RGB-D images," in 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 

2013, pp. 2930-2937.  

[13]  D. Massiceti, A. Krull, E. Brachmann, C. Rother, and P. H. Torr, "Random forests 

versus Neural Networks—What's best for camera localization?," in 2017 IEEE 

International Conference on Robotics and Automation (ICRA), 2017: IEEE, pp. 

5118-5125.  

[14]  H. Jégou, M. Douze, C. Schmid, and P. Pérez, "Aggregating local descriptors 

into a compact image representation," in 2010 IEEE computer society conference 

on computer vision and pattern recognition, 2010: IEEE, pp. 3304-3311.  

[15] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. 

Y. Wu, "An efficient k-means clustering algorithm: Analysis and 

implementation," IEEE transactions on pattern analysis and machine intelligence, 



doi:10.6342/NTU202003304

 33 

vol. 24, no. 7, pp. 881-892, 2002. 

[16]  R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, "NetVLAD: CNN 

architecture for weakly supervised place recognition," in Proceedings of the IEEE 

conference on computer vision and pattern recognition, 2016, pp. 5297-5307.  

[17]  V. Balntas, S. Li, and V. Prisacariu, "Relocnet: Continuous metric learning 

relocalisation using neural nets," in Proceedings of the European Conference on 

Computer Vision (ECCV), 2018, pp. 751-767.  

[18]  T. Sattler, Q. Zhou, M. Pollefeys, and L. Leal-Taixe, "Understanding the 

limitations of cnn-based absolute camera pose regression," in Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3302-

3312.  

[19]  F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and D. Cremers, 

"Image-based localization using lstms for structured feature correlation," in 

Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 

627-637.  

[20] H. Sak, A. W. Senior, and F. Beaufays, "Long short-term memory recurrent neural 

network architectures for large scale acoustic modeling," 2014. 

[21]  J. F. Henriques and A. Vedaldi, "Mapnet: An allocentric spatial memory for 

mapping environments," in proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, 2018, pp. 8476-8484.  

[22]  A. Valada, N. Radwan, and W. Burgard, "Deep auxiliary learning for visual 

localization and odometry," in 2018 IEEE international conference on robotics 

and automation (ICRA), 2018: IEEE, pp. 6939-6946.  

[23] N. Radwan, A. Valada, and W. Burgard, "Vlocnet++: Deep multitask learning for 

semantic visual localization and odometry," IEEE Robotics and Automation 



doi:10.6342/NTU202003304

 34 

Letters, vol. 3, no. 4, pp. 4407-4414, 2018. 

[24]  E. Rosten and T. Drummond, "Machine learning for high-speed corner 

detection," in European conference on computer vision, 2006: Springer, pp. 430-

443.  

[25]  E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An efficient 

alternative to SIFT or SURF," in 2011 International conference on computer 

vision, 2011: Ieee, pp. 2564-2571.  

[26]  M. Calonder, V. Lepetit, C. Strecha, and P. Fua, "Brief: Binary robust 

independent elementary features," in European conference on computer vision, 

2010: Springer, pp. 778-792.  

[27] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, "ORB-SLAM: a versatile and 

accurate monocular SLAM system," IEEE transactions on robotics, vol. 31, no. 

5, pp. 1147-1163, 2015. 

[28]  I. Rocco, M. Cimpoi, R. Arandjelović, A. Torii, T. Pajdla, and J. Sivic, 

"Neighbourhood consensus networks," in Advances in Neural Information 

Processing Systems, 2018, pp. 1651-1662.  

[29]  K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, "Lift: Learned invariant feature 

transform," in European Conference on Computer Vision, 2016: Springer, pp. 467-

483.  

[30]  D. DeTone, T. Malisiewicz, and A. Rabinovich, "Superpoint: Self-supervised 

interest point detection and description," in Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition Workshops, 2018, pp. 224-236.  

[31]  D. Eigen, C. Puhrsch, and R. Fergus, "Depth map prediction from a single image 

using a multi-scale deep network," in Advances in neural information processing 

systems, 2014, pp. 2366-2374.  



doi:10.6342/NTU202003304

 35 

[32]  I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, "Deeper depth 

prediction with fully convolutional residual networks," in 2016 Fourth 

international conference on 3D vision (3DV), 2016: IEEE, pp. 239-248.  

[33]  T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, "Unsupervised learning of 

depth and ego-motion from video," in Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 2017, pp. 1851-1858.  

[34]  Y. Zou, Z. Luo, and J.-B. Huang, "Df-net: Unsupervised joint learning of depth 

and flow using cross-task consistency," in Proceedings of the European 

conference on computer vision (ECCV), 2018, pp. 36-53.  

[35]  J. Bian et al., "Unsupervised scale-consistent depth and ego-motion learning 

from monocular video," in Advances in neural information processing systems, 

2019, pp. 35-45.  

[36]  A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pajdla, "24/7 place 

recognition by view synthesis," in Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 2015, pp. 1808-1817.  

[37]  T. Sattler et al., "Benchmarking 6dof outdoor visual localization in changing 

conditions," in Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, 2018, pp. 8601-8610.  

[38]  F. Radenović, G. Tolias, and O. Chum, "CNN image retrieval learns from BoW: 

Unsupervised fine-tuning with hard examples," in European conference on 

computer vision, 2016: Springer, pp. 3-20.  

[39] F. Radenović, G. Tolias, and O. Chum, "Fine-tuning CNN image retrieval with no 

human annotation," IEEE transactions on pattern analysis and machine 

intelligence, vol. 41, no. 7, pp. 1655-1668, 2018. 

[40] Q. Zhou, T. Sattler, M. Pollefeys, and L. Leal-Taixe, "To Learn or Not to Learn: 



doi:10.6342/NTU202003304

 36 

Visual Localization from Essential Matrices," arXiv preprint arXiv:1908.01293, 

2019. 

[41] D. Nistér, "An efficient solution to the five-point relative pose problem," IEEE 

transactions on pattern analysis and machine intelligence, vol. 26, no. 6, pp. 756-

770, 2004. 

[42]  C. Godard, O. Mac Aodha, and G. J. Brostow, "Unsupervised monocular depth 

estimation with left-right consistency," in Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 2017, pp. 270-279.  

[43] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality 

assessment: from error visibility to structural similarity," IEEE transactions on 

image processing, vol. 13, no. 4, pp. 600-612, 2004. 

[44] P.-E. Sarlin, F. Debraine, M. Dymczyk, R. Siegwart, and C. Cadena, "Leveraging 

deep visual descriptors for hierarchical efficient localization," arXiv preprint 

arXiv:1809.01019, 2018. 

[45]  R. A. Newcombe et al., "KinectFusion: Real-time dense surface mapping and 

tracking," in 2011 10th IEEE International Symposium on Mixed and Augmented 

Reality, 2011: IEEE, pp. 127-136.  

[46]  A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, 

"Scannet: Richly-annotated 3d reconstructions of indoor scenes," in Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 

5828-5839.  

[47]  H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, "Large-scale image retrieval 

with attentive deep local features," in Proceedings of the IEEE international 

conference on computer vision, 2017, pp. 3456-3465.  

 


	THESIS0813_蔡侑霖
	20200814005612_00000001
	THESIS0813_蔡侑霖



