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指導教授:許文翰 博士、馬克沁 博士

Advisors: Tony Wen–Hann Sheu, Ph.D., and
Maxim Solovchuk, Ph.D.

中華民國109年8月
August, 2020



doi:10.6342/NTU202003676i



doi:10.6342/NTU202003676ii



doi:10.6342/NTU202003676

Acknowledgements

I would like to express my sincere gratitude to my advisors, Prof. Tony Sheu and Prof.

Maxim Solovchuk, for their continuous support and guidance, patience, motivation, knowl-

edge and time invested in my research and academic development. I thank them for al-

ways encouraging me to conduct individual research, yet always being available with

useful advice and guidelines. I have learned a lot from them.

I would like to thank professors Hong–Yueh Lo, Chien–Chen Chang, An–Bang Wang,

Yi–Ju Chou, I–Liang Chern and Shiu–Wu Chau for accepting to read and review my thesis

and for being a part my dissertation defense committee. I thank them sincerely for their

valuable comments and suggestions.

My research has been made possible thanks to the financial support from National

Health Research Institutes (NHRI Taiwan) and Ministry of Science and Technology (MOST

Taiwan).

I owe my deepest gratitude to my former master thesis advisor, Prof. Boris Muha, who

was the first one to introduce and guide me to the world of mathematical fluid dynamics.

Thanks to Neo Shih–Chao Kao who helped me a lot during my stay in Taiwan, espe-

cially in my first year.

I wish to thank Ms. Wei–Hsuan Huang for her precious help with the administrative

work during my study at NTU. I would have been lost without her.

iii



doi:10.6342/NTU202003676

Thanks to Bela and Melanie for helping me get Visa prior to coming to Taiwan.

Finally, I owe my deepest gratitude to my parents, my brothers and my grandparents

for their unconditional support and help they selflessly provided me during my whole life.

All of my success I equally consider theirs as well.

iv



doi:10.6342/NTU202003676

摘要

本論文目的主要為發展一數值方法用以模擬在時變域上的多物理場系統。考慮此

類問題的動機大部分來自於以時變域的偏微分方程式觀點所描述的生醫及生物流

體力學問題。為此，我們將採用有限元素法來求解此類問題。此外，我們只考慮

在演化過程中其場域拓樸不變的問題，此限制允許我們採用以對齊網格來顯式描

述場域介面的任意拉格朗日-歐拉架構。因此，整個數值方法屬於顯式界面追蹤類

別方法中的移動網格架構。論文的第一部分主要在守恆形式的ALE架構下推導出

一個新穎的有限元數值方法，提供一個系統的方法用以消除由於移動網格下而產

生的人工沉降及源項。即便此類人工數值沉降及源項已被眾所皆知，此問題仍是

一個開放性且具挑戰性的主題。質量及離散空間律的守恆則為另外兩個需要被解

決的問題，而所本論文的方法正是在結合此兩個特徵所發展出的。論文的第二部

分將採用所提出的數值方法來解決真實的流體問題，將會著重在自由液面流跟流

固耦合問題這兩類主題上，所選取的驗證問題中將會驗證所開發的方法具有良好

靈活性及可信賴性。

關鍵字: 有限元方法 任意拉格朗日歐拉方法 移動網格 人工沉降源 自由液

面流 流固耦合
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Abstract

The purpose of this thesis is to develop a numerical method for simulations of multi-

physical systems on evolving domains. Motivation for the problems considered in this

work comes largely from the field of bio–medicine and bio–fluid mechanics. These

multiphysical systems are described in terms of systems of partial differential equa-

tions (PDEs) posed on time dependent domains. Finite element method (FEM) is em-

ployed for numerical approximation of such problems. Furthermore, only a special class

of ”domain–evolving” problems is considered – problems in which domain’s topology

does not change during its evolution. This restriction allows to work within the so–called

arbitrary Lagrangian–Eulerian (ALE) framework in which the interface of domain is de-

scribed explicitly by the aligned mesh. Thus, the complete numerical method employed

falls under a moving mesh category within an explicit, so called interface tracking, ap-

proach.

The first part of the thesis deals with derivation of a novelty approach in finite element

method within ALE framework focused on conservative formulations. This approach

offers a systematic way to eliminate artificial sinks and sources arising from the moving

mesh. Although the numerical origins of these artificial sinks and sources are well known,

this problematics still remains to be an active and challenging topic. The mass conser-

vation problem and the discrete space conservation law (SCL) are the two major issues
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resolved; actually, the novelty approach is integrated upon these two characteristics.

In the second part of the thesis, the newly proposed approach is applied to (academic)

problems arising from the real world situations. The attention is on two particular class

of problems: free–surface flows and fluid–structure interaction (FSI) problems. The flex-

ibility and credibility of the methodology derived in the first part are demonstrated on

selected examples.

Keywords: finite element method, arbitrary Lagrangian–Eulerian, moving mesh, arti-

ficial sink/source, free–surface flow, fluid–structure interaction
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Introduction

Time–dependent domains appear in many multiphysics models governing various phe-

nomena arising from the physics and engineering, commonly related to fluid flow prob-

lems. Deformation of the free interface in free surface flows and deformations of the

structure in fluid–structure interaction (FSI) problems correspond to the deformation of

the fluid domain.

Fluid dynamics is most naturally described in terms of fluid velocity field in Eulerian

coordinates. In this work, a special class of ”domain–evolving” problems is considered –

problems in which domain’s topology does not change during its evolution. This class of

problems, for example, excludes the breaking waves and splashing problems. Restriction

to such class of problems allows to work within the so–called arbitrary Lagrangian–

Eulerian (ALE) framework in which the interface of domain is described explicitly by

the aligned mesh in the numerical method. Hence, the numerical method employed falls

under a moving mesh category within explicit, so called interface tracking, approach.

Finite element method (FEM) for simulating moving mesh problems is employed in

this work (see, e.g., [1, 3, 2]). Within ALE framework, FEM is employed for the spatial

discretization of the specific phenomena governing equations (see, e.g., [4, 5, 6]). For the

time discretization, typically finite difference method is employed. Fundamentals of ALE

framework are recalled in Chapter 1. General idea consists of an interplay between the
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fixed referential domain and the current physical domain occupied by the medium. The

interplay between these two domains is realized through the so called ALE map which

maps the referential domain into the physical one:

Ât : Ω̂→ Rd , Ω̂ 7→ Ω. (0.1)

In the same manner, the discrete referential triangulation T̂ h(Ω̂h) is mapped into the phys-

ical triangulation T (Ωh) through the discrete ALE map Âh,t.

An important technical problem arises in the context of incompressible fluid flows.

Due to the incompressiblity constraint, it is clear that triangulations at two different times,

T tnh and T tn+1

h , must have the same volume. Assume that T tn+1

h is obtained from T tnh by

the ALE map

A[n+1,n]
h = x+un+1

h,n , for x ∈ T nh,

where un+1
h,n denotes the displacement field. The displacement field has to be somehow

constructed from the fluid velocity field, which is divergence free only on Ωn
h. This proved

to be a hard and non–trivial task, and is one of the main drawbacks of the ALE approach

for describing the moving mesh methods. This issue is addressed in detail in Chapter 2

where a method for the construction of a volume preserving ALE map is derived. The

newly proposed method consists of solving a constrained optimization problem for the

mesh displacement field. An artificially derived constraint is constructed from the fluid

velocity and the discrete time step, and it ensures the volume preservation.

In the context of ALE framework, the mesh velocity ŵh is defined as

ŵh =
∂

∂t
x(x̂, t), x ∈ Ωh. (0.2)

Let f : QT → R be an Eulerian field, and f̂ = f ◦ Ât its ALE counterpart, where QT =

{(x, t) | x ∈ Ω(t), t ∈ (0, T )}. The time derivative of an Eulerian field f in the ALE

framework, i.e. time derivative of f written from the viewpoint of reference configuration,
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is given by the relation

∂

∂t

∣∣∣∣
x̂

f(x, t) =
∂

∂t
f(x, t) +w(x, t) · ∇f(x, t). (0.3)

Consider for a moment a generic conservation law for the scalar quantity u:

∂

∂t
u− divB(u) = f in QT , (0.4)

where B is a first order, linear or non–linear, differential operator. In ALE framework,

employing the ALE time derivative defined above, equation (0.4) is rewritten in the form

∂

∂t

∣∣∣∣
x̂

u−w ·∇u− divB(u) = f in QT . (0.5)

Finite element method is based on the weak formulation of the considered partial differ-

ential equation (PDE). Weak formulation of problem (0.5) reads

∫
Ω

(
ψ
∂

∂t

∣∣∣∣
x̂

u− ψw ·∇u+ ψ ·B(u)− ψf
)

dx+

∫
∂Ω

ψB(u) · n dS = 0, (0.6)

where ψ is a smooth test function, such that ∂
∂t

∣∣
x̂
ψ = 0. Then, the transient term in

equation (0.6) can be rewritten in the conservative form:

∫
Ω

(
ψ
∂

∂t

∣∣∣∣
x̂

u− ψw ·∇u
)

dx =
d

dt

∫
Ω

ψu dx−
∫
Ω

ψ div(uw) dx . (0.7)

In the context of ALE framework, weak formulations in which the time derivative is for-

mally extracted in front of the integral sign are referred to as ”conservative formulations”.

Such formulations enjoy better conservation properties in the discretized form than their

non–conservative counterpart, where the temporal derivative is kept under the integral

sign. However, it is also very well known that if temporal discretization is not handled

carefully, artificial sinks and/or sources may appear in the discrete scheme. The reason

behind this quite problematic and unwanted property lies in the most simple form of the
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Reynolds transport theorem which gives the relation between the volume change and the

domain velocity w:

d

dt

∫
K

dx =

∫
∂K

divw dx , for any control volume K ⊂ Ω. (0.8)

However, on the discrete level, between two time steps tn and tn+1, above identity holds

only approximately in general:

∫
Kn+1

dx−
∫
Kn

dx ≈ ∆t

∫
K

divw dx, (0.9)

where ∆t = tn+1 − tn, and the right–hand–side in the above equations is evaluated at

some point t ∈ [tn+1, tn]. Hence, the change in volume of K is not preserved in the mesh

velocity w for an arbitrary discretization scheme. This issue is investigated in detail in

Chapter 3 where a systematic way for constructing SCL preserving time–discretization

schemes is developed for PDEs on time–dependent domains within the ALE FEM frame-

work. Most of the original work on this topic has been done in the context of the finite

difference method ([7, 8, 9, 10, 11, 12]) and finite volume method ([13, 14, 15, 16, 17,

18]), and, lately, extended to the finite element method ([15, 16, 5, 6, 19, 20]). The mate-

rial presented in Chapter 3 has already been published by the author in [21], coauthored

by T. W. H. Sheu and M. Solovchuk.

Conservation laws considered in this work are typically of a parabolic type. When

the character of the system of equations to be solved is of elliptic or parabolic type, yet

close to the hyperbolic type, a numerical scheme may produce nonphysical oscillations

in the numerical solution if computational mesh is not sufficiently dense ([1]). Typical

examples are convection–diffusion (CD) equations with dominating convection term. In

these situations, continuous problem is well posed and it has a unique solution based on

the Lax–Milgram lemma, yet numerical problem obtained by standard FEM is not stable.

Loss of stability is a consequence of too small coercivity constant of the bilinear form in

the weak formulation (see e.g. [3]). Greater insights on these issues as well as some pop-

ular techniques on handling them can be found in [3] for the case of problems posed in the
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time–independent (stationary) domains. Essentially, the so called stabilization methods

are introduced with the aim of stabilizing the numerical scheme for the parabolic PDEs

with dominating convection. Stabilized schemes take the form

C(uh, ψh) + S%(uh, ψh) = 0

where C(uh, ψh) is the weak formulation of the considered PDE and S%(uh, ψh) is the

stabilization term. Desirable property of the stabilization term is that it vanishes when

the exact solution is plugged in. In that case, stabilization scheme is called strongly con-

sistent. In Chapter 4, three popular stabilization methods commonly found in the litera-

ture, which are strongly consistent methods in stationary domain scenario, are extended

to ALE framework: Streamline Upwind/Petrov Galerkin (SUPG) method (introduced in

[22] and extended in [23] for conservative formulations in ALE framework), Galerkin

Least Squares (GLS) method (introduced in [24]) and Douglas–Wang/Galerkin (DWG)

method (introduced in [25, 26, 27] and occasionally referred to as unusual stabilized finite

element method). It has to be noted that extension of stabilization methods for the conser-

vative formulations in ALE framework is no trivial work when one wants to preserve the

strong consistency of the method. Yet, it is shown in Chapter 4 that the strong consistency

can indeed be achieved in the spirit of approach introduced in Chapter 3.

In chapters 3 and 4 a novel SCL–preserving approach for moving mesh problems

is introduced. This approach is then applied in Part 2 for simulating some (academic)

multiphysics problems.

In Chapter 5, reconstruction of curvature of discrete surface is investigated. Fluid

flow problems in which curvature plays an important role typically include multiphase

and multifluid flows. Immiscible multifluid flow problems are typical source of inspira-

tion for the moving domain problems. In such problems, surface tension on fluid–fluid

interface generates surface force which is a function of the interface curvature which de-

pends on the geometry of the interface. Two essentially different techniques have been

used to describe the interface in the literature: implicit and explicit. In the implicit ap-

proach, a fixed computational mesh is used and an additional scalar field is introduced to
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describe the interface. This approach is often referred to as ”interface capturing” and its

main advantage is that it can easily handle topological changes. It is often combined with

mesh adaptation techniques in order to ensure credible interface capturing. Level–set ([28,

29]) and volume–of–fluid ([30, 31]) methods, for example, fall within this approach. In

the explicit approach, often referred to as ”interface tracking”, the interface is described

explicitly with an aligned mesh i.e. ”mesh fits the interface”. In this environment, when

the interface moves, the mesh has to be moved accordingly with it. Lagrange and ALE ap-

proaches fall into this category. The most common approximation of geometry in FEM is

with linear interpolation functions. This means that interface is approximated with piece-

wise linear edges in 2D and triangles or quadrangles in 3D. In this case, a popular choice

for curvature calculation that can be found in the literature is the higher order interpolation

of the interface. It allows the use of the curvature formula that involves second derivatives

of the boundary parametrization. A spline interpolation of the interface is reconstructed

from the linear computational mesh and it is then used solely for the curvature calculation.

This was, for example, studied in [32] where they used cubic splines and in [33] where

non–uniform rational B–splines (NURBS) were used. In [34] the authors used a simple

finite difference version of Frenet–Serret formula to calculate curvature and surface ten-

sion force in two–phase flow and in [35] the authors computed the curvature for interfacial

tension by least squares parabola fitting method. A somewhat different but particularly

attractive approach for curvature calculation within interface tracking FEM employs the

Laplace–Beltrami operator. It is used in both standard FEM with linear meshes and with

isoparametric FEM (both of these approaches are studied in [32]). Laplace–Beltrami

operator falls into machinery from the discrete differential geometry where it plays an

important role in discrete surface modeling (see e.g. [36]). In the context of FEM in fluid

dynamics, the Laplace–Beltrami operator technique was already employed for problems

with free surfaces. Weak form can be derived from the mathematical expression for the

curvature which involves the Laplace–Beltrami operator. Thus, the curvature can be very

easily and naturally incorporated into the FEM formulation using this technique. In [32],

they noticed the appearance of spurious oscillations in velocity field due to the introduced
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numerical error in the evaluation of surface tension force. Two different approaches for

curvature calculation on interface fitted meshes were studied – cubic interpolation of the

interface and Laplace–Beltrami operator technique. It has been reported that the cubic

interpolation technique performed much better in general. In Chapter 5, the issue why

Laplace–Beltrami operator performs poorly on boundary fitted meshes in general cases is

examined and resolved. It turns out that when finite element space is not chosen carefully,

the Laplace–Beltrami operators ”viewpoint” of the discrete surface (curve) is ”distorted”.

This results in locally nonphysical oscillations of the curvature which, in turn, introduce

the local spurious surface forces.

This concludes Part 1 of this work.

In Part 2, methodology derived in Part 1 is applied to solve complex multiphysics prob-

lems. In particular, Part 2 consists of three chapters in which dynamic contact line prob-

lem, chemotaxis phenomenon and fluid–structure interaction problem are simulated with

ALE FEM methods derived in Part 1. Each problem carries specific problematics which

is addressed.

In Chapter 6, a sliding droplet problem is considered. A small liquid droplet is placed

on an inclined plane where surface tension, gravity and friction forces compete. When

gravity force is stronger the friction forces, droplet starts to move downwards along the

plane. The most common approach for describing a viscous fluid flow in contact with

some solid surface is to prescribe the so called no-slip boundary condition on the fluid–

solid interface. This condition ensures that the fluid velocity is equal to the solid velocity

and, in general, describes the physics of such flows credibly. However, it is well known

that the contact line (solid–liqudid–gas interface) is able to move in real world examples.

If one employs no–slip boundary condition, physics of the flow in the numerical simula-

tions is ruined, at least near the contact line. Hence, boundary condition with roots from

the molecular dynamics approach has been derived for the continuum modeling approach

in [37, 38]. The so called generalized Navier boundary condition (GNBC) credibly de-

scribes the fluid behavior near the contact line, and the no–slip boundary condition can be
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derived from the GNBC limiting case. Volume preserving method derived in Chapter 2

and proper curvature evaluation described in Chapter 5 are of particular importance for

this problem.

In Chapter 7 bacterial chemotaxis phenomenon is considered. Suspension of an oxy-

tactic bacteria (e.g. the species Bacillus subtilis) placed in a container with its upper

surface open to the atmosphere results in the formation of complex bioconvection pat-

terns. The bacteria consume the oxygen diluted in the water, thereby causing the decrease

of oxygen concentration everywhere except on the free surface. Through the free sur-

face, which is in direct contact with air, oxygen diffuses into the water. Slightly denser

than water, the oxytactic bacteria are able to swim towards the higher concentration of

oxygen (i.e. upwards) and they concentrate in a thin layer below the free surface. This

causes the change of the suspension density and Rayleigh–Taylor type instabilities to oc-

cur. The chemotaxis phenomenon has been successfully modeled in the literature within

continuum mechanics approach under the assumption that domain is fixed in time. In this

chapter, this model is extended to credibly model the phenomenon when free surface is

allowed to move, as is the case in the realistic situation. The chemotaxis phenomenon

exhibits the similar behavior as the free thermal convection, which is a well studied prob-

lem due its significance in engineering and industry. Hence, the governing system of

equations is constrained with fewer assumptions and approximations. For example, the

dependence of the surface tension of water on the temperature has been estimated. There-

fore, one is able to consider the thermal gradients on the free surface accompanied with

the (tangential) Marangoni flows. Similar behavior is expected for the bacterial chemo-

taxis, however, the physics of the surface tension depending on bacteria concentration is

still under the research and hence is neglected. SCL preserving method derived in Chap-

ter 3 is of particular importance for the chemotaxis phenomenon since the bacteria has to

be preserved at all times. Majority of material presented in Chapter 7 has been published

recently by the author in [39, 40], coauthored by T. W. H. Sheu and M. Solovchuk.

In Chapter 8, methods derived in Part 1 are illustrated on fluid–structure interaction

(FSI) problems arising from the field of bio–medicine. FSI plays a major role in mathe-
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matical modeling and numerical simulations of the blood flow (in large arteries). Failure

to take into account the changes in dynamics of the blood vessels due to change in blood

pressure may result in a bad estimation of the wall shear stress. This is particularly im-

portant in modeling of aneurysms which are prone to rupture when aneurysm wall is

weakened by the effects of shear stress. A monolithic approach for solving the FSI FEM

formulation is employed which, when the finite element spaces are appropriately chosen,

ensures the implicit (strong) coupling of the boundary conditions on the fluid–structure

interface. Monolithic approaches, generally, enjoy very good stability properties. In this

regard, they are more desirable than the partitioned approaches which require unstable

explicit coupling. FSI is a large field in computational fluid dynamics, and details on

derivations, numerical approaches and particular models outreach the scope of this work.

The idea of this chapter is only to demonstrate the ability of adapting the methodology

developed in Part 1 for this class of problems.

Finally, in the concluding Chapter 8, the content of the thesis is summarized and

conclusions are drawn.
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CHAPTER 1

Parabolic equations in time–dependent domains

This chapter is devoted to describe the ALE approach for a generic conservation law of

the form
∂

∂t
u+ divB(u) = f in Ω(t), t ∈ (0, T ). (1.1)

In equation (1.1), u = u(x, t) is an unknown scalar field representing some physical

quantity, for example concentration of some substance or heat. Ω(t) ⊂ Rd is the physical

domain at time instant t ∈ (0, T ) in which the equation (1.1) is posed. Notice that the

domain Ω is itself possibly a function of time, Ω = Ω(t). Term B(u) is a vector field with

d–components which are linear or non–linear functions of u. The most simple example

is B(u) = −∇u in which case the equation (1.1) is the classic heat equation and can be

written in the form
∂

∂t
u−∆u = f. (1.2)

Another classical example is B(u) = −∇u + uv, where v is a vector field typically

representing the fluid velocity. In this case, equation (1.1) is the convection diffusion

equation governing the transport of the concentration of some quantity in the fluid. It can
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be written in the form
∂

∂t
u−∆u+ v ·∇u+ u div v = f. (1.3)

The incompressible Navier–Stokes equations can be viewed as a system of non–linearly

coupled convection–diffusion equations subjected to the incompressibility constraint. De-

note by v : Ω → Rd and p : Ω → R the velocity and pressure field. Then, in their vector

form, the Navier–Stokes equations governing the flow of incompressible Newtonian fluid

can be written as

∂

∂t
v+(v ·∇)v−∆v+∇p = f in Ω(t), t ∈ (0, T ),

div v = 0 in Ω(t), t ∈ (0, T ).

(1.4)

In this chapter a general ALE approach for equations governing the conservation laws

on time–dependent domains is revisited. Most of the content in this chapter is already well

known and can be found in the literature. The main idea is to introduce the problematics

one faces when employing finite element method on moving meshes and establish the no-

tation to be used throughout this work. A detailed description of the ALE framework can

be found in [41] and references therein. The model equations on which the methodology

is described are taken in their dimensionless (and normalized) forms for simplicity since

generalizations to more specific cases are straightforward.

1.1 The Arbitrary Lagrangian–Eulerian framework

The general idea of the ALE framework consists of an interplay between the fixed refer-

ential domain and the current physical domain occupied by the medium. ALE framework

is most often employed for fluid flow problems with free boundaries, such as free surface

flows. Referential domain most often coincides with the initial domain, but does not

necessarily have to. The interplay between these two domains is realized through the so

called ALE map which maps the referential domain into the physical one. In order to per-

form the necessary calculus, a minimal smoothness of the ALE map has to be demanded

– e.g. a kind of inverse of the ALE map has to exist in order to ensure the correspondence

4
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between the referential domain and the current one (in sense that one can be obtained

from the other).

1.1.1 Fundamentals of ALE framework

Let Ω̂ ⊂ Rd, d = 2, 3, be a fixed referential domain and let Ω ≡ Ω(t) ⊂ Rd a physical

domain occupied by the fluid. It is assumed that boundaries of the domain are sufficiently

smooth – this usually refers to the Lipschitz continuous boundary – and that the domain

evolution can be followed through a one–parameter family of mappings (Ât)t∈[0,T ], T <

∞,

Ât : Ω̂→ Rd , t ∈ [0, T ],

x̂ 7→ x , x̂ ∈ Ω̂ , x ∈ Ω(t).

(1.5)

For the sake of compact notation, it is denoted

QT = {(x, t) | x ∈ Ω(t), t ∈ (0, T )}, and

Q̂T = {(x̂, t) | x̂ ∈ Ω̂(t), t ∈ (0, T )}.
(1.6)

ALE map is often defined as a single vector field on Q̂T , Â : Q̂T → Rd, rather than a

one–parameter family of mappings introduced a moment ago. However, slightly abusing

the notation, these two terminologies are usually identified for convenience,

(Ât)t∈[0,T ] ≡ (Â(·, t))t∈[0,T ].

Ât maps the referential into the physical domain (see Figure 1.1), Ω̂ 7→ Ω ≡ Ω(t) =

Ât(Ω̂). In this context, x̂ ∈ Ω̂ is referred to as the ALE coordinate while x = Ât(x̂) ∈

Ω(t) is referred to as an Eulerian (or spatial) coordinate. It is often of interest to write

the ALE map Ât in terms of displacement û = û(x̂, t):

Â(x̂, t) = x̂+ û(x̂, t). (1.7)

5
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Ω̂ Ω(t)

Ât

Â-1
t

x̂
x

û

Figure 1.1: Transformation between two configurations.

More precisely, û(x̂, t) is the displacement of x̂ at time t,

û(x̂, t) = x− x̂ , x = Ât(x̂) , x̂ ∈ Ω̂ , t ∈ [0, T ]. (1.8)

Figure 1.1 illustrates the two configurations, reference and physical, and the maps be-

tween them.

Let f : QT → R and ĝ : Q̂T → R be two scalar fields defined on the physical and the

referential configurations, respectively. Their ALE and Eulerian counterparts are defined

respectively by

f̂ : Q̂T → R , f̂ = f ◦ Ât,

g : QT → R , g = ĝ ◦ Â-1
t .

(1.9)

Therefore, the ”hat” operator is just an abbreviation for a composition with the ALE

map. Dropping the ”hat” operator on the functions defined on Q̂T is then understood

as the composition with the inverse of ALE map. Note that the ”hat” operator notation

only makes sense in the context of physical/referential configurations interplay realized

through the family of ALE maps. To make a clear difference between functions on phys-

ical and referential domains, the ”hat” operator is used to identify functions which ”live”

on the referential domain, while it is dropped for the functions on the physical domain.

The same convention will be employed for (differential) operators: if the operator oper-

ates with respect to the referential configuration, this is emphasized by using the ”hat”

symbol, and if it operates with respect to the current configuration, the ”hat” symbol is

6
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dropped; e.g.

∇̂ =
∂

∂ x̂
and ∇ =

∂

∂ x
.

Gradient and Jacobian of the ALE map play important roles in the interplay between

configurations. The are given by

F̂ t = ∇̂ Ât , Ĵ t = det(∇̂ Ât). (1.10)

In a strictly mathematical sense, the ALE map is just a family of coordinate transforma-

tions. Therefore, the information on volume element between the physical and reference

domains is kept in the Jacobian. Specially, from this observation it is easily deduced that

Ĵ (t) > 0 must hold for all t ∈ [0, T ] for a physically reasonable transformation. Due

to the regularity of Ât, it can be shown that Ât(∂ Ω̂) = ∂Ω, i.e. Ât maps ”boundary

to boundary”. As was the case with the ALE map, the notation throughout this work is

slightly abused for Jacobian and gradient of the ALE map. The following is identified

Ĵ (x̂, t) ≡ Ĵ t(x̂) and F̂(x̂, t) ≡ F̂ t(x̂).

Consider again, for a moment, a field ĝ : Q̂T → R defined on reference configuration

and its physical configuration counterpart g : QT → R , g = ĝ ◦ Â-1
t . It is not obvious

whether regularity of ĝ in some norm on Ω̂ implies regularity of g on Ω. A result on

sufficient condition on ALE map which ”preserves regularity” of configurations is given

in the following proposition.

PROPOSITION 1.1.1 (ALE map regularity condition) Let Ω̂ be a bounded domain

with Lipschitz continuous boundary and let Ât be a C0–diffeomorphism1 and assume

that ∀t ∈ (0, T )

(i) Ωt = Ât(Ω̂) is bounded and ∂Ω is Lipschitz continuous,

(ii) Ât ∈W1,∞(Ω̂;Rd) and Â-1
t ∈W1,∞(Ω;Rd).

1Differentiable map Ât : Ω̂→ Ω is called a diffeomorphism if it has a differentiable inverse Â-1
t . Ât is

a Ck–diffeomorphism if Ât and Â-1
t are k times continuously differentiable.

7



doi:10.6342/NTU202003676

Then, g ∈ H1(Ω) if and only if ĝ ∈ H1(Ω̂). Furthermore, ∀ ĝ ∈ H1(Ω̂) ‖g‖H1(Ω) is

equivalent to ‖ ĝ ‖H1(Ω̂).

1.1.2 The ALE temporal derivative

In the ALE framework, the temporal derivative of an Eulerian field can be considered

from different viewpoints. Let f : QT → R be an Eulerian field, and f̂ = f ◦ Ât its ALE

counterpart. The time derivative of an Eulerian field f in the ALE framework, i.e. time

derivative of f written from the viewpoint of reference configuration, is defined as

∂

∂t

∣∣∣∣
x̂

f : QT → R ,
∂

∂t

∣∣∣∣
x̂

f(x, t) =
∂

∂t
f̂ (x̂, t), x̂ = Â-1

t (x). (1.11)

The time derivative of an Eulerian field in the spatial (physical) framework is just the

temporal partial derivative in classical sense,

∂

∂t

∣∣∣∣
x

f(x, t) =
∂

∂t
f(x, t). (1.12)

From the practical point of view, discretization of the ALE temporal derivative makes

more sense than discretization of the Eulerian temporal derivative on moving mesh. Val-

ues of a discrete field f are in correspondance with grid nodes which vary in time but have

”fixed numbering” – therefore, it is possible that a point in control volume at time t is not

inside the control volume at time t + ∆t. In that case, the discrete temporal derivative

from Eulerian viewpoint doesn’t even make sense.

At this point, one is able to define the domain velocity as

w(x, t) =
∂

∂t

∣∣∣∣
x̂

x , x = Â(x̂, t), (1.13)

i.e.

w(x, t) = ŵ(x̂, t) =
∂

∂t
Â(x̂, t) , x = Â(x̂, t). (1.14)

Note that
∂ û

∂t
= ŵ (1.15)

8
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also holds. Applying the chain rule, it is straightforward to obtain

∂

∂t

∣∣∣∣
x̂

f(x, t) =
∂

∂t

∣∣∣∣
x

f(x, t) +

(
∂

∂t

∣∣∣∣
x̂

x

)
· ∇f(x, t)

=
∂

∂t
f(x, t) +w(x, t) · ∇f(x, t).

(1.16)

Sufficient regularity in time for the ALE map is given in the following result.

PROPOSITION 1.1.2 (Time regularity of ALE map) Assume that

Â(·, t) ∈ H1(0, T ; W1,∞(Ω̂)) and ĝ(·, t) ∈ H1(0, T ; H1(Ω̂)).

Then

g = ĝ ◦ Â-1
t ∈ H1(0, T ; H1(Ωt)) and

∂

∂t

∣∣∣∣
x̂

g ∈ L2(0, T ; H1(Ωt)).

1.1.3 Euler expansion formula

The central role in this thesis plays the so called Euler expansion formula. It states

∂

∂t
Ĵ t = Ĵ t d̂ivw. (1.17)

The above equation gives an intuitive interpretation of the time derivative of the Jacobian.

If Ω0 is taken as reference configuration, i.e. Ω̂ = Ω0, then Ĵ 0 = 1 (since Â0(x̂) = x̂). In

other words, the equation (1.17) is an evolution law for the Jacobian if the domain velocity

is known. The Euler expansion formula is most often written in the Eulerian framework,

∂

∂t

∣∣∣∣
x̂

J t = J t divw . (1.18)

It allows to derive the following classical and fundamental result.

THEOREM 1.1.3 (Reynolds transport theorem) Let Ω(t) be a material domain, i.e.

Ω(t) = {x | x = Ât(x̂), x̂ ∈ Ω̂}, where Ω̂ is a reference domain. Furthermore, let f be

9
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a continuously differentiable scalar field. Then

d

dt

∫
Ω(t)

f dx =

∫
Ω(t)

(
∂

∂t

∣∣∣∣
x̂

f + f divw

)
dx =

∫
Ω(t)

(
∂

∂t
f + div(f w)

)
dx . (1.19)

Reynolds transport theorem plays an essential role for the moving domain problems, and,

in particular, in the ALE framework for handling such problems. Indeed, two central

problems in this thesis, mass conservation problem and space conservation law, are both

its consequences. For example, SCL can be derived directly from the Reynolds transport

theorem. Let K ⊂ Rd be an arbitrary control volume. Then, starting from the identity

(1.19) and taking f ≡ 1, the following identity must hold:

d

dt
vol(K) =

d

dt

∫
K

dx =

∫
K

divw dx =

∫
∂K

w ·n dS, (1.20)

where vol(·) denotes the d–measure of K (surface area if d = 2, i.e. Ω ⊂ R2, and

volume if d = 3, i.e. Ω ⊂ R3). This is a trivial consequence of the Reynolds transport

theorem on the continuous level which gives the relationship between the volume change

and the velocity of material domain. However, discrete version of the identity (1.20) is

not necessarily exactly satisfied. In that case a numerical sink or source is introduced into

the numerical scheme. This topic is dealt with in detail in Chapter 3.

1.1.4 Test function spaces in ALE framework

Finite element method is based on weak formulation of the considered partial differential

equation. Hence, the particular space of test functions involved plays an essential role. A

standard approach on stationary domains is to take test functions independent of time. On

a moving domain, however, a function cannot be time–independent in the classical sense

since its domain isn’t. In what follows, feasible construction of test/basis function spaces

in ALE framework is briefly described.

Let V(Ω̂) be a space of admissible test functions defined on a reference domain which

10
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consists of regular enough functions ψ̂ : Ω̂→ R,

V = {ψ̂ : Ω̂→ R | ψ̂ admissible}. (1.21)

Admissible here stands for well defined in the sense of preserving the boundary condi-

tions – e.g., ψ̂ ∈ V(Ω̂) has to vanish on Dirichlet part of the boundary so V(Ω̂) depends

on the problem itself. By the ”regular enough” it is meant that ψ̂ ∈ V and its partial

derivatives appearing in the weak formulation are integrable. Usually, for second order

PDEs, V(Ω̂) is a subset of H1(Ω̂). A corresponding set V(Ω) of admissible test functions

on the physical configuration is then constructed fromV(Ω̂) employing the ALE map in

the process:

V (Ω) = {ψ : Ω→ R | ψ = ψ̂ ◦ Â-1
t , ψ̂ ∈ V (Ω̂)}. (1.22)

Taking into the account the correspondence between V(Ω̂) and V(Ω), the following rela-

tion is obtained:

0 =
∂ ψ̂

∂t
=

∂

∂t

∣∣∣∣
x̂

ψ =
∂ψ

∂t
+w ·∇ψ, ∀ψ ∈ V(Ω), (1.23)

where ∂
∂t

∣∣
x̂

denotes time derivative with respect to the reference configuration. Hence,

functions from V(Ω) are time–independent in the sense of the ALE temporal derivative.

Let f = f(x, t) be an arbitrary time–differentiable Eulerian field. Employing the

chain rule, it follows
∂

∂t

∣∣∣∣
x̂

(ψf) = ψ
∂

∂t

∣∣∣∣
x̂

, ∀ψ ∈ V(Ωt). (1.24)

Recalling the Reynolds transport theorem, the following identities are obtained for any

ψ ∈ V and f any Eulerian field:

d

dt

∫
Ωt

ψ dx =

∫
Ωt

ψ divw dx, (1.25)

and
d

dt

∫
Ωt

ψf =

∫
Ωt

ψ

(
∂

∂t

∣∣∣∣
x̂

f + f divw

)
dx . (1.26)
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1.1.5 Strong forms of conservation laws

Let us consider the first order time dependent PDE posed on the time dependent domain,

∂

∂t
u+ L(u) = f in QT , (1.27)

where u : QT → R is the unknown and f is a known function. L indicates a second order

differential operator, linear or non–linear, operating with respect to the space variable x,

i.e. with respect to the physical configuration. Equation (1.27) has to be subjected to

the appropriate initial and boundary conditions. Assume, furthermore, that the term L(u)

consists of both first and second order derivatives. For example, in the case of a linear

scalar convection–diffusion equation it may take form

L(u) = v ·∇u+ u div v−∆u, (1.28)

where v is a known vector field (typically representing fluid velocity). Note that the term

L(u) given in equation (1.28) can be rewritten in the following form:

L(u) = − divB(u), B(u) = −uv+∇u. (1.29)

Forms (1.28) and (1.29) of the term L(u) are equivalent on the continuous level (provided

that u and v are smooth enough) but they result in different discretizations. Clearly, one

form can be obtained from the other by straightforward algebraic manipulations.

DEFINITION. If the term L(u) in equation (1.27) is written in the divergence form, i.e.

L(u) = − divB(u) for some vector field B(u), we say that equation (1.27) is in (strong)

conservative form. Otherwise, equation (1.27) is in (strong) non–conservative form.

Expressing the temporal derivative in the ALE framework, equation (1.27) can be re–

written in the form:
∂

∂t

∣∣∣∣
x̂

u−w ·∇u+ L(u) = f in QT . (1.30)

12



doi:10.6342/NTU202003676

Multiplying the equation (1.30) by J t > 0, the transient term can be rewritten employing

the Euler expansion formula (1.18) in the process:

J ∂

∂t

∣∣∣∣
x̂

u =
∂

∂t

∣∣∣∣
x̂

(J u)− J u divw .

Consequently, the equation (1.30) can be written in form

∂

∂t

∣∣∣∣
x̂

(J u)− J div(uw) + J L(u) = J f in QT . (1.31)

DEFINITION. We say that the transient term ∂
∂t
u is in ALE–conservative form if it is

expressed as
∂

∂t
u =

1

J
∂

∂t

∣∣∣∣
x̂

(J u)− div(uw).

Otherwise, the transient term ∂
∂t
u is in ALE–non–conservative form if it is expressed as

∂

∂t
u =

∂

∂t

∣∣∣∣
x̂

u−w ·∇u.

To conclude, the following definition is given:

DEFINITION. Equation (1.27) is in the (strong) ALE–conservative form if both the

transient term and the elliptic operator are written in the conservative form. In that case,

equation (1.27) can be written as

1

J
∂

∂t

∣∣∣∣
x̂

(J u)− div[uw+B(u)] = f in QT . (1.32)

Otherwise, we say that equation (1.27) is in the (strong) ALE–non–conservative form.

The choice of (ALE) conservative or non–conservative forms of the PDE is also in a

tight relation with the choice of the Neumann boundary conditions. The problematics of

natural boundary conditions on the artificial boundaries for the Navier–Stokes equations

is still heavily studied topic. Indeed, the optimal choice of natural boundary conditions

when there are multiple outflows is still an open problem to this date. The choice of

conservative form over non–conservative, or vice versa, often consequently imposes some

13
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hidden boundary conditions on artificial Neumann boundaries. Thus, transition from one

form to the other is often not as straightforward as it seems. More on this topic will be

elaborated in later chapters. A good review on this topic can be found in [43, 42].

1.1.6 Weak formulations of conservation laws

Finite element method is based on the weak (or variational) formulation of the PDE. Let

us once again consider the generic conservation law (1.27) – the first order time dependent

PDE posed on the time dependent domain QT . Equation (1.27) has to be subjected to the

appropriate initial and boundary conditions. Consider for a moment equation (1.30).

Let ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, for all t ∈ (0, T ), where ΓD denotes the Dirichlet

boundary and ΓN denotes the Neumann boundary. Furthermore, denote by H1
ΓD

(Ω) a

subset of Sobolev space H1(Ω) which consists of functions with zero trace on the Dirichlet

boundary, i.e.

H1
ΓD

= {ψ ∈ H1(Ω) | TΓD
ψ = 0},

where TΓD
denotes the trace operator.

The (general) weak formulation of PDE (1.30) reads (after eventual homogenization):

for given f ∈ L2(0, T ; L2(Ω)) and g ∈ L2(0, T ; L2(ΓN)),

find u ∈ L2(0, T ; H1
ΓD

(Ω)) such that ∀ψ ∈ H1
ΓD

(Ω),
∂

∂t

∣∣∣∣
x̂

ψ = 0,∫
Ω

(
ψ
∂

∂t

∣∣∣∣
x̂

u− ψw ·∇u+ ψL(u)− ψf
)

dx = 0,

u = 0 on ΓD, t ∈ (0, T ),

u(0) = u0 in Ω0.

(1.33)

Formulation (1.33) is obtained by multiplying equation (1.30) with test function ψ ∈ H1
ΓD

and integrating over Ω. Based on the form of the elliptic operator L, integration by parts

is to be performed on the ψL(u) term imposing the Neumann boundary conditions in the

14
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process, e.g. for the case L(u) = divB(u)

B(u) · n = g on ΓN , t ∈ (0, T ).

Exploiting the fact that ∂
∂t

∣∣
x̂
ψ = 0, an alternative formulation can be obtained. Indeed,

writing

ψ
∂

∂t

∣∣∣∣
x̂

u =
∂

∂t

∣∣∣∣
x̂

(ψu)

and then formally ”extracting” the temporal derivative ∂
∂t

∣∣
x̂

in front of the integral sign

employing in the process Reynolds transport theorem, it is straightforward to obtain

d

dt

∫
Ω

ψu dx−
∫
Ω

(ψ div(uw) + ψL(u) + ψf) dx = 0. (1.34)

DEFINITION. We call that formulation (1.34) conservative weak formulation of the

equation (1.27), independently of the form of the elliptic operator L. Formulation (1.33)

is referred to as non–conservative weak formulation.

In context of the above definition, conservative–non–conservative refers to the weak for-

mulations of equation (1.27) in ALE form. If the temporal derivative is extracted in front

of the integral sign, conservative weak formulation is obtained. If the temporal deriva-

tive is kept under the integral sign, the non–conservative weak formulation is obtained.

Although equivalent on the continuous level, temporal discretization is significantly dif-

ferent for the conservative and non–conservative weak formulations on time–dependent

domains. Temporal discretization of conservative weak formulations typically includes

functions defined on different domains at different times. This is elaborated in more de-

tail in Section 1.2.2 and in later chapters. Note that for the case where the domain Ω is

time independent, extracting the temporal derivative in front of the integral sign does not

change the weak formulation. In that case w = 0 and the term ψu divw appearing in

formulation (1.34) vanishes.

Remark 1 Formulation (1.34) is ”conservative” in sense that the variation of u over

a control volume K comes only from the boundary terms in absence of source terms.

15
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Indeed, take an arbitrary control volume K ⊂ Ω and f = 0. Assume, furthermore, that

elliptic operator L is the conservative form, L = divB. Performing variational analysis

over K and taking test function ψ such that ψ |K = 1, the equivalent of the formulation

(1.34) is obtained:

d

dt

∫
Ω

u dx−
∫
∂K

uw ·n dS−
∫
∂K

B(u) · n dS = 0.

Contribution of the ALE term is reduced to a boundary term which compensates for the

additional flux of u through the boundary due to its movement.

The advantage of conservative weak formulations for conservation equation is that the

ALE term is itself in the conservative form. Of course, on continuous level, both conser-

vative and non–conservative formulations are equivalent. However, on the discrete level

conservative form has better conservation properties as shown later in Section 1.2.2.

Remark 2 Conservative weak formulation (1.34) can alternatively be obtained directly

from the ALE–conservative (strong) equation (1.32). Derivation is straightforward and

thus omitted.

Remark 3 Throughout this work, the conservative/non–conservative terminology is often

slightly abused. However, it will always be clear in which sense it is used. In cases where

ambiguity is allowed, it will be explicitly written down in which sense certain expression

is conservative/non–conservative.

1.1.7 The transformation of configurations

Partial differential equations are naturally posed on physical domains, yet it is often more

convenient (if not necessary) for the analysis to be performed on the reference configu-

ration. It is necessary, therefore, to be able to transform the differential operators from

physical to the reference framework. To begin with, note that, by the chain rule,

∂

∂xi
=
∂ x̂ j
∂xi

∂

∂ x̂ j
, (1.35)
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holds, where the Einstein summation convention2 has been employed for the sake of com-

pact presentation. Now, by direct application of the above chain rule, it is easy to derive

∇ψ = ∇ ψ̂ = F̂
−T
t ∇̂ ψ̂ (1.36)

for an Eulerian scalar field ψ. Similarly, although by doing a little bit more manipulation,

the corresponding identity for the divergence of a vector field ϕ̂ can be derived as

divϕ = div ϕ̂ =
1

Ĵ t

d̂iv(Ĵ t F̂
−1

t ϕ̂). (1.37)

The same can be done for any differential operator of an arbitrary order. A technical

problem in the above expressions arises due to the appearance of F̂
−1

t which is a function

of x i.e. it is defined on the physical configuration. Consequently, the right hand sides

in equations (1.36) and (1.37) involve functions defined on both reference and physical

configurations. Hence, it becomes inconvenient to deal with these kinds of expressions in

practice. To express F̂ -1
t in the reference framework, some facts from linear algebra are

recalled.

Assume regular matrices A = (aij) and B = (bij) such that B = A
−1 are given.

Then, one is able to express B in terms of minors of A:

bij =
1

detA
(−1)i+jMji (1.38)

where Mij is the minor of A (determinant of the matrix A′(i, j) is obtained from A by

deleting i–th row and j–th column)

Mij = detA′(i, j).

The number (−1)i+jMij is called (i, j)–cofactor of A, and the matrix formed from these

2In Einstein summation convention there is an implied summation over the terms with the repeated
index.
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entries the cofactor matrix of A,

CofA = ((−1)i+j detA′(i, j)).

In the spirit of above discussion, F̂ -1
t can now be transformed into its counterpart

defined on the reference configuration. For the sake of illustration, this is shown in two

dimensions, while the three dimensional case is similar. If x = x̂+ ût(x̂) = Ât(x̂), then

x̂ = Â-1
t (x) and, due to the invertibility of Ât,

F̂
−1

t =

∂x x̂ ∂y x̂

∂x ŷ ∂y ŷ

 =
1

Ĵ t

 ∂ŷy −∂ŷx

−∂x̂y ∂x̂x

 =
1

Ĵ t

F̂ t (1.39)

where

F̂ t :=

 ∂ŷy −∂ŷx

−∂x̂y ∂x̂x

 . (1.40)

Finally, right hand sides in equations (1.36) and (1.37) can be rewritten in terms of func-

tions and operators defined on the reference configuration:

∇̂ψ =
1

Ĵ t

F̂
T

t ∇̂ ψ̂,

d̂ivψ =
1

Ĵ t

d̂iv(F̂ t ψ̂).

(1.41)

Furthermore, exploiting the fact that ALE transformation can be understood as a family of

coordinate transformations, one is able to find the relationships between various measure

changes between configurations. More precisely, let f be an arbitrary Eulerian field on Ω,

n an outer normal to ∂Ω and n̂ an outer normal to ∂ Ω̂. Then, one can get

∫
Ω

f dx =

∫
Ω̂

f̂ d̂x =

∫
Ω̂

f̂ Ĵ t dx̂ i.e. d̂x = Ĵ t dx̂, (1.42)
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and

∫
∂Ω

f dS =

∫
∂ Ω̂

f̂ d̂S =

∫
∂ Ω̂

f̂ Ĵ t | F̂ -T
t n̂ | dŜ i.e. d̂S = Ĵ t | F̂ -T

t n̂ | dŜ . (1.43)

Using the equation (1.39) and exploiting the fact that Ĵ t > 0, the following identity is

derived:

d̂S = | F̂
T
t n̂ | dŜ . (1.44)

Similarly, the relationship between n : ∂Ω→ Rd and n̂ : ∂ Ω̂→ Rd is shown to be

n̂
∣∣
∂Ω

=
1

| F̂ -T
t n̂ |

F̂ -T
t n̂ =

1

| F̂
T
t n̂ |

F̂
T
t n̂ , n̂ = n̂

∣∣
∂ Ω̂
. (1.45)

Let, furthermore, ĉ ⊂ Ω̂ be an arbitrary smooth curve lying in Ω̂ and c = Ât(̂c) ⊂ Ω its

image in Ω. Denote by t̂ a unit tangential vector along ĉ and by t a unit tangential vector

along c. Then the following relation holds:

∫
c

f ds =

∫
ĉ

f̂ d̂s =

∫
ĉ

f̂

√
(F̂

T

t F̂ t t̂) · t dŝ i.e. d̂s =

√
(F̂

T

t F̂ t t̂) · t dŝ . (1.46)

1.1.8 Pullback of weak formulation to reference configuration

In Chapter 3 a novel SCL non–violating formulation is proposed. It turns out to be par-

ticularly convenient if the PDE of interest is pulled back to the reference configuration.

Indeed, from the perspective of reference configuration, the evolution of physical config-

uration is polynomial in time. Consequently, equation (1.20) can be integrated in time

exactly making the SCL a trivial property even on the discrete level. The details on this

approach are given in Chapter 3 but the ground for the novel method is prepared in this

section. The procedure of pullback onto the reference configuration is illustrated on the

scalar conservation law introduced in Section 1.1.6. Starting from the weak formulation
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(1.34) posed on Ω and perform the change of variables onto the domain Ω̂ to obtain

d

dt

∫
Ω̂

ψ̂ û Ĵ dx̂−
∫
Ω̂

(
ψ̂ ̂div(uw) + ∇̂ψ · B̂(u) + ψ̂ f̂

)
Ĵ dx̂+

∫
Γ̂N

ψ̂ ĝ d̂S = 0. (1.47)

Clearly, the same thing can be done for the non–conservative weak formulation (1.33) but

in this work the focus is on the conservative weak formulations. Exploiting the identities

derived in Section 1.1.7, one can rewrite the weak formulation (1.47) in a way that all of

the involved fields and operators are functions of reference configuration:

d

dt

∫
Ω̂

ψ̂ û Ĵ dx̂−
∫
Ω̂

{
ψ̂ d̂iv

(
û[F̂ tw]

)
+ [F̂

T
t ∇̂ ψ̂] · B̂(u) + ψ̂ f̂ Ĵ t

}
dx̂

+

∫
Γ̂N

ψ̂ ĝ | F̂
T
t n̂ | dŜ = 0.

(1.48)

In general, the term B(u) involves first derivatives of u and can be rewritten as

B̂(u) =
1

Ĵ t

B̂(û),

where B̂ operates w.r.t. x̂. For example, often B(u) = ∇u in which case the equation of

interest is the heat equation. Hence, the term involving B(u) in weak formulation (1.48)

can be rewritten as

[F̂
T
t ∇̂ ψ̂] · B̂(u) =

1

Ĵ t

[F̂
T
t ∇̂ ψ̂] · B̂(û).

1.2 ALE finite element formulation

Discretization of parabolic equations consists of discretization of the space operator L

and discretization of the temporal derivative. Discretization of the space operator L is

performed by some methods for the discretization of elliptic equations. In this thesis, fi-

nite element method is employed. On the other hand, for the discretization of the temporal

derivative, finite difference method is usually employed. This approach of discretization

in two steps allows to vary space and time discretization independently.
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(a) Domain Ω ⊂ R2 with C1–smooth boundary. (b) Discrete domain Ωh ⊂ R2 with polygonal
boundary and corresponding triangulation T h.

Figure 1.2: Example of a C1–smooth domain Ω ⊂ R2 (a) and its discretized counterpart
Ωh (b). In figure (b) a triangulation T h of Ωh is shown. Ωh is polygonal approximation of
Ω.

From the theoretical viewpoint, the order in which the discretization is performed is

imortant. If one firstly discretizes the space operator, a system of ordinary differential

equations (ODE) is obtained. This system represents the semi–discretization of the start-

ing equation and it is important in for the error estimates. If one firstly discretizes the

temporal derivative, a sequence of elliptic equations is obtained. Theoretical importance

in this approach is for the study of non–linear parabolic equations which in this case are

brought down to a better known non–linear elliptic equations.

The transition from a weak formulation to finite element formulation consists of two

(relatively) independent steps: geometry discretization and function space discretization.

During the geometry discretization step, (smooth) domain Ω is replaced by its discrete

counterpart Ωh, as illustrated in Figure 1.2. It consists of approximating the boundary ∂Ω

by a polygonal (or, possibly, picewise polynomial) curve in two dimensions or surface

in three dimensions, ∂Ωh. Note that for the case where ∂Ω is already polygonal no geo-

metrical error is introduced, i.e. ∂Ωh = ∂Ω. Once a discrete domain Ωh is introduced, a

triangulation T h over Ωh is defined. Triangulation T h of Ωh is obtained by partitioning

Ωh into finite number of (possibly curved) simplices3. Furthermore, a reference simplex

3A simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions.
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K̃ and a finite family of homeomorphic maps (M̃
K

k )K∈T h
are introduced such that

∀K ∈ T h , M̃
K

k ∈ Pk(K̃ ), k ≥ 1, M̃
K

k (K̃ ) = K, (1.49)

where Pk(K̃ ) denotes the space of polynomials of order k over K̃ . Note that in equation

(1.49) k ≥ 1 was allowed which in general does not guarantee that K = M̃
K

k (K̃ ) is

a simplex with a straight edges (surfaces in three dimensions). Indeed, occasionally, it

is of interest to have curved edges which allow better approximation of the geometry –

in that case Ωh has a piecewise Pk boundary rather than a polygonal (P1) boundary as

described above. Reference element K̃ is introduced for computational reasons – all of

the computation in the machine are performed on the reference element rather than on the

physical element K = M̃
K

k (K̃ ).

In the second step of the transition from the weak to finite element formulation, an

underlying function space V is replaced by its finite dimensional subspace Vh ⊂ V after

a possible geometry approximation Ω 7→ Ωh. For example, in Section 1.1.6 the underlying

function space was V = H1
ΓD

(Ω) ⊂ H1(Ω). In FEM, Vh is chosen to be a polynomial

based space. Lagrangian finite element space Vh of order n ≥ 0 over the triangulation

T h of order k ≥ 1 is defined as:

Vk,n
h (T h) = {ψ : Ωh → R | ψ ∈ C0(Ωh), ψ

∣∣
K
◦ M̃

K

k ∈ Pk(K̃ ), ∀K ∈ T h}. (1.50)

k ≥ 1 and in general k ≤ n (except if n = 0). In practice it is either k = 1 (affine map)

independently of n, or k = n when isoparametric concept is employed. It is possible

to show Vk,n
h (T h) ⊂ H1(Ωh) and Vk,n

h (T h) ⊂ W1,∞(Ωh). The most commonly used

approach is when M̃
K

k is affine map, i.e. k = 1. In this case it is easy to show that space

Vk,n
h = Vn

h can be written as

Vn
h(T h) = {ψ : Ωh → R | ψ ∈ C0(Ωh), ψ

∣∣
K
∈ Pn(K), ∀K ∈ T h}. (1.51)

Basis functions of Vh are constructed in such a way that they have small support; basis
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(0, 0) (1, 0)

(0, 1)

K̃

K̂

Ω̂

K

Ω

M̃
K̂

1 Ât
∣∣
K̂

M̃
K

1 = Ât
∣∣
K̂
◦ M̃

K̂

1

Figure 1.3: A reference simplex K̃ , its image K̂ = M̃
K̂

1 ⊂ Ω̂h in ALE reference domain,
and its image in physical domain Ω, K = Ât(K̂ ).

function ψ ∈ Vh is nontrivial only on a few neighboring elements and zero on the rest

of the triangulation. The resulting matrix obtained from the finite element formulation of

the particular problem will consequently be sparse.

1.2.1 Finite element discretization of the ALE map

ALE map maps the fixed reference configuration Ω̂ to the current physical configuration

Ω, Ω = Ât(Ω). It shares many features with the reference–to–physical element map M̃
K

k

and it essentially does the same job. Define the following space:

Ak
h(T̂ h) = {ϕ̂ : Ω̂→ Rd | ϕ̂ ∈ C0(Ω̂;Rd), ϕ̂

∣∣
K̂
◦M̃

K̂

k ∈ [Pk(K̃ )]d, ∀ K̂ ∈ T̂ h}. (1.52)

Ak
h(T̂ h) is a vector space equivalent of the space Vk,k

h (T̂ h) defined in (1.50). Taking

Ât ∈ Ak
h(T̂ h), it is straightforward to obtain

Âh
∣∣
K̂
◦ M̃

K̂

k ∈ Pk(K̃ ), (1.53)

thus making the isoparametric space Ak
h(T̂ h) an appropriate choice for construction of the

discrete ALE map. The ALE map plays an intermediate role between the base–reference

element K̃ and the time–dependent physical element K as illustrated in Figure 1.3 for the

case k = 1, i.e. for the case of affine transformations between configurations.
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1.2.2 Finite element formulation

Semi–discrete finite element formulation of weak formulation (1.34) reads:

find uh ∈ Vh such that ∀ψh ∈Wh

d

dt

∫
Ωh

ψhuh dx−
∫
Ωh

(ψh div(uhwh) +∇ψh ·B(uh) + ψhfh) dx = 0,
(1.54)

where Vh, Wh ⊂ H1(Ωh) are ambient finite element spaces, possibly the same. Since

uh ∈ Vh, one can write

uh =
n∑
i=1

ui(t)ϕ
i
h, (1.55)

where {ϕ1
h, ϕ

2
h, . . . , ϕ

n
h} denotes the basis for the finite element space Vh. Employing the

identity (1.55) into the FEM formulation (1.54) and taking ψh = ϕih for i = 1, . . . , n, a

semi–discrete system of equations is obtained,

A(t)U = F (t).

A denotes n×n matrix, U is a vector of unknown values defining uh, U = [u1, . . . , un]T ,

and F is the forcing term.
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1.2.3 Remark on notation

Notation can become quite messy and confusing for the fully discretized ALE weak for-

mulations. Indeed, the notation has to capture both the discretizetion in space with FEM

and the discretization in time with (usually) some variation of finite difference method.

Furthermore, the evolution of the domain has to be discretized as well, consequently

making differential operators operating with respect to certain configuration. Finally, any

discretized expression takes place on domain at a certain time instant. For example, it has

already been stated that any expression with the hat operator takes place on the reference

configuration.

The domain discretization

Discretization in space of domain Ω is indicated with index h, i.e. Ωh. Ωh = Ωh(t)

is continuous function of time t. Time interval [0, T ] is partitioned in finite number of

segments, 0 = t0 < t1 < · · · < tN = T ,

[0, T ] =
N⋃
n=1

[tn, tn−1].

At certain time, say at t = tn ∈ [0, T ], domain and its discrete counterpart are denoted by

Ω(tn) = Ωn and Ωh(tn) = Ωn
h.

Ω
n+1/2
h = Ωh(tn+1/2) denotes the discrete domain at time tn+1/2 = 1

2
(tn + tn+1). Trian-

gulation of Ωn
h is denoted by T nh and triangulation of Ω̂h is denoted by T̂ h.

The discrete functions notation

In general, if there is an index h attached to any scalar, vector or tensor field, it denotes

that it is taken from some finite element space. All finite element spaces are indicated

25



doi:10.6342/NTU202003676

with index h. For example,

u ∈ H1(Ω) and unh ∈ Vh(T nh), T nh = T h(Ωn
h),

where Vh(T nh) ⊂ H1(Ωn
h) is an ambient finite element space. Superscript n denotes that

discrete function unh is evaluated at time tn. It is clear that unh is defined on Ωn
h from the

context. In case the test or basis functions are dealt with, usually denoted with small Greek

letters, superscript is omitted. Reason for this is that test functions are time independent

(in sense of ALE time derivative, see also Section 1.1.4) and they can only appear in the

context of specific configurations. For example, in expression

∫
Ωn+1

h

ψhu
n+1
h dx−

∫
Ωn

h

ψhu
n
h dx , ψh ∈ Vh ,

it is clear that ψh ∈ Vh(T n+1
h ) in the first integral and ψh ∈ Vh(T nh) in the second

integral. Thus, unless there is a possible ambiguity, the indication of triangulation finite

element space is built over is dropped and it is always clear from the context whether

Vh = Vh(T nh) or Vh = Vh(T n+1
h ).

Discrete counterparts of functions defined on QT carry a superscript to indicate at

which time they are evaluated, i.e.

unh = uh(tn), and unh is defined on Ωn
h.

It is often the case that a field unh defined on Ωn
h is needed in context of Ωn+1

h (during the

discretization step) or Ω̂h. In this case, unh has to be composed with the ALE map at the

appropriate time instance.

The discrete ALE map and related fields

Discrete ALE map, its Jacobian and gradient (and any other ALE related field), are in-

dexed by two indices: h denoting that field is taken from finite element space, and n
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denoting that field is evaluated at time tn ∈ [0, T ]. For example,

Âh,n ∈ Ah(T̂ h) evaluated at t = tn,

Ĵ h,n defined on Ω̂h and evaluated at t = tn,

F̂h,n defined on Ω̂h and evaluated at t = tn,

F̂ h,n defined on Ω̂h and evaluated at t = tn.

Return now to the function unh which is for discretization purposes needed on Ωn+1
h . Then

unh ◦ Âh,n ◦ Â-1
h,n+1 defined on Ωn+1

h ,

so it is introduced

A[n+1 ,n]
h = Âh,n ◦ Â-1

h,n+1

and

unh,n+1 = unh ◦ A
[n+1 ,n]
h .

In previous equations, it is also allowed (unh)[n+1,n] for consistency. For any field time

indicator in subscript denotes the domain field is defined on, i.e. composition with appro-

priate ALE maps. If there is no time indicator in subscript, it means it is equal to time

indicator in superscript. The ”hat” operator over rules any compositions one might have

in mind and simply means field is defined on reference domain. For example

un+1
h = un+1

h,n+1 is defined on Ωn+1
h and evaluated at t = tn+1,

ûn+1
h is defined on Ω̂h and evaluated at t = tn+1.

Although this notation might seem unnecessary complex and confusing at first, it equips

us with an elegant and, more importantly, an unambiguous way of providing all of the
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necessary information on certain field using only few indices.

Semi–discrete fields

As mentioned above, subscript h denotes the space discretization. In case there is no sub-

script h for certain expression, it means discretization in space hasn’t been performed. In

case there is only subscript h and no subscript or superscript indicating time discretization,

it means discretization is only performed in space and not performed in time variable. For

example

uh = uh(t) ≡ field u is discretized in space but continuous in time

Ωn+1 ≡ the domain is evaluated at time t = tn+1 and not discretized in space

1.2.4 Example

In the following concrete example, conservative/non–conservative terminology is illus-

trated and the strength of the conservative formulations is emphasized.

Consider the following diffusion (or heat) equation:

∂tu−∆u = 0 in QT

∇u · n = 0 on ∂Ω, t ∈ (0, T )

u(0) = u0 in Ω0.

(1.56)

Assume that the domain motion is a priori prescribed, i.e. the domain velocity is known

and let it be defined by

w = sin 2πt

 y cos πx

1
2
y2π sin πx

 , in QT . (1.57)
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Note that divw = 0 in QT . Furthermore, let Ω̂ = Ω0 where

Ω0 = {x ∈ R2 | |x | ≤ 1},

i.e. Ω0 is a unit circle, and u0 = 1 in Ω0. Then it is straightforward to prove that variation

of u over Ω is zero at all times, i.e.

∫
Ω(t)

u(t) dx =

∫
Ω0

u0 dx , ∀t ∈ (0, T ). (1.58)

Indeed, integrating the equation (1.56)1 over Ω, performing the integration by parts on the

diffusion term, and extracting the time derivative in front of the integral sign, it is obtained

0 =

∫
Ω

(
∂tu−∆u

)
dx =

d

dt

∫
Ω

u dx−
∫
Ω

(
div(uw) + div∇u

)
dx

=
d

dt

∫
Ω

u dx−
∫
∂Ω

(uw+∇u) · n dS =
d

dt

∫
Ω

u dx,

where the no–flux Neumann boundary condition have been employed.

In its ALE–non–conservative form the equation (1.56) reads:

∂

∂t

∣∣∣∣
x̂

u−w ·∇u−∆u = 0 in QT

∇u · n = 0 on ∂Ω, t ∈ (0, T )

u(0) = u0 in Ω0.

(1.59)

From equation (1.59) the following non–conservative, weak formulation is obtained:

find u : QT → R such that ∀ψ ∈ H1(Ω)∫
Ω

(
ψ
∂

∂t

∣∣∣∣
x̂

u− ψw ·∇u+∇ψ · ∇u
)

dx = 0,
(1.60)

where the Neumann boundary condition ∇u · n = 0 on ∂Ω, t ∈ (0, T ), was employed

during the process of integration by parts. Extracting the temporal partial derivative in
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(1.60) in front of the integral sign, conservative weak formulation is obtained:

find u : QT → R such that ∀ψ ∈ H1(Ω)

d

dt

∫
Ω

ψu dx−
∫
Ω

(ψ div(uw)−∇ψ · ∇u) dx+

∫
∂Ω

ψuw ·n dS = 0,
(1.61)

where Neumann boundary condition is modified in order to fit the conservative weak

formulation,

[uw+∇u] · n = 0 on ∂Ω, t ∈ (0, T ).

See also Remark 1 and discussion at the end of Section 1.1.5. Term ψ div(uw) in weak

formulation (1.61) can be rewritten in two different ways in order to make FEM imple-

mentation feasible:

−
∫
Ω

ψ div(uw) dx = −
∫
∂Ω

ψuw dS +

∫
Ω

∇ψ · uw dx , or

−
∫
Ω

ψ div(uw) dx = −
∫
Ω

(ψu divw+ψ∇u ·w) dx .

(1.62)

Employing the first expansion, boundary integral in (1.61) will vanish.

To make a transition from weak formulations (1.60) and (1.61) to FEM formula-

tions, geometry has to be discretized and function spaces replaced with their finite–

dimensional polynomial subspaces. First, the domain Ω (circle) is replaced by its polyg-

onal counterpart, Ω 7→ Ωh. Then a triangulation on Ωh is established, Ωh 7→ T h. Fi-

nally, a function space Vh(T h) ⊂ H1(Ωh) is chosen. For this example, the simulations

are performed for the choices Vh(T h) = P1(T h) and Vh(T h) = P2(T h). The most

simple time–discretization scheme is chosen for the discretization of temporal deriva-

tives, namely, implicit Euler method which is first order accurate and unconditionally

stable (at least for fixed mesh problems). The interval [0, T ] is uniformly partitioned,

0 = t0 < t1 < · · · < tN = T , with ∆t = tn+1 − tn.

Then, the following FEM formulations are obtained.

• FEM formulation of non–conservative weak formulation (1.60) reads: for given
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unh ∈ Vh(T nh) find un+1
h ∈ Vh(T n+1

h ) such that ∀ψh ∈ Vh(T n+1
h )

∫
Ωn+1

h

(ψhun+1
h − ψh(unh ◦ A

n,n+1
h )

∆t

− ψhwn+1
h ·∇un+1

h +∇ψh · ∇un+1
h

)
dx = 0 (1.63)

• FEM formulation of non–conservative weak formulation (1.60) employing the method

of characteristics for temporal derivative, reads: for given unh ∈ Vh(T nh) find

un+1
h ∈ Vh(T n+1

h ) such that ∀ψh ∈ Vh(T n+1
h )

∫
Ωn+1

h

(ψhun+1
h − ψhunh ◦Xn

n+1

∆t
+∇ψh · ∇un+1

h

)
dx = 0


d
dt
Xn+1(t) = −wn

h ◦A
n,n+1
h (Xn+1(t)),

Xn+1(tn+1) = xn+1 , xn+1 ∈ Ωn+1
h

(1.64)

• FEM formulation of conservative weak formulation (1.61) employing (1.62)1 for

the ALE term expansion reads: for given unh ∈ Vh(T nh) find un+1
h ∈ Vh(T n+1

h )

such that ∀ψh ∈ Vh

1

∆t

∫
Ωn+1

h

ψhu
n+1
h dx− 1

∆t

∫
Ωn

h

ψhu
n
h dx

−
∫

Ω
n+1/2
h

(
∇ψh · (un+1

h wn+1
h )

)
dx+

∫
Ωn+1

h

∇ψh · ∇un+1
h dx = 0 (1.65)

• FEM formulation of conservative weak formulation (1.61) employing (1.62)2 for

the ALE term expansion reads: for given unh ∈ Vh(T nh) find un+1
h ∈ Vh(T n+1

h )

31



doi:10.6342/NTU202003676

such that ∀ψh ∈ Vh

1

∆t

∫
Ωn+1

h

ψhu
n+1
h dx− 1

∆t

∫
Ωn

h

ψhu
n
h dx+

∫
∂Ω

n+1/2
h

ψhu
n+1
h wn+1

h ·n dS

−
∫

Ω
n+1/2
h

(
ψhu

n+1
h divwn+1

h +ψhw
n+1
h ·∇un+1

h

)
dx

+

∫
Ωn+1

h

∇ψh · ∇un+1
h dx = 0 (1.66)

The essential difference between (implicit Euler scheme) discretized conservative and

non–conservative weak formulations is the domain over which integration is performed.

In FEM formulations (1.63) and (1.64) integration is performed only over Ωn+1
h despite the

fact that unh appears in the formulations, which is a function defined on Ωn
h. On the other

hand, in FEM formulations (1.65) and (1.66), three different domains appear, namely

Ωn
h, Ω

n+1/2
h and Ωn+1

h . Setting aside for the moment the integral over Ω
n+1/2
h , it can

be noted that the functions are integrated over the domains they are defined on. The

integration of terms involving the mesh velocitywh is performed over Ω
n+1/2
h in order not

to violate the space conservation law. This issue is dealt with in detail in Chapter 3 and

it is characteristic for the conservative weak formulations. Thus, at first glance, it seems

that all four discretizations should produce a physically reasonable solution. Specially,

the conservation property (1.58) is expected to hold on the discrete level, at least up to

some extent.

Figure 1.4 shows the gain/loss of volume arising from the mesh movement. It can be

seen that volume is preserved up to the order of 10−3. Since velocity is divergence free,

clearly part of the error is coming from the artificial source term due to incorrect mesh

movement. However, the volume error is relatively small and one should still expect

similar solutions for the both FEM formulations. In Figure 1.5 variation of u is shown

during the simulation. As proved above, analytical variation is zero at all times. However,

Figure 1.5 clearly illustrates the superiority of conservative formulations in this regard.

While conservative formulations produce solution uh with the variation up to order of
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Figure 1.4: The domain volume gain and loss during the simulation due to mesh move-
ment.

(a) Variation of uh employing the conservative
FEM formulation (1.65).

(b) Variation of uh employing the conservative
FEM formulation (1.66).

(c) Variation of uh employing the conservative
FEM formulation (1.63).

(d) Variation of uh employing the conservative
FEM formulation (1.64).

Figure 1.5: Variation of u over time for various FEM formulations. Finite element space
is chosen as V = P1. f(t) =

∫
Ω
u dx denotes the variation of u over Ω at time t.

10−14, non–conservative formulations produce solution uh with the variation up to the

order of only 10−3.

1.3 Artificial sinks/sources on moving meshes

The main purpose of this work is to derive methodology for conservative ALE FEM

formulations which eliminate, as much as possible, artificial sinks and sources arising

from the mesh movement. There are two common issues specific for the moving mesh

problems: conservation of volume (or mass) and space conservation law.
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The issue of mass (volume) conservation arises when one has to physically move the

computational mesh with the velocity that is divergence free. This means that the fluid

involved is incompressible and, consequently, the material domain is not allowed to lose

or gain any volume during the mesh deformation. On the continuous level, the domain

itself is integrated in time employing the Reynolds transport theorem in the process and

determining the domain velocity from the fluid velocity. On the discrete level, this time in-

tegral has to be approximated introducing integration error in the process. Consequently,

the total mass may be lost or gained between two time steps. This issue is investigated in

Chapter 2.

The space conservation law (SCL) arises due to changes in area (or volume in three

dimensions) of a mesh element during the mesh deformation. It is an intrinsic character-

istic of the conservative ALE FEM formulations. Discrete SCL, essentially, is the result

of the temporal approximation of the Reynolds transport theorem. It is shown that numer-

ical scheme which is unable to integrate the following identity exactly in time, namely the

identity
d

dt

∫
K

dx

∫
∂K

w ·n dS , K ⊂ Ω,

introduces (local) numerical sinks or sources which pollute the solution. SCL is also

suspected to be related to stability issues common for moving mesh schemes. These

issues are investigated in detail in Chapter 3.

Moving mesh problems often arise from the free surface multiphase flows. In these

kinds of flows, surface tension plays an important role provided that the characteristic

scale is small enough. Surface tension is a function of the two–phase interfaces’ curva-

ture. Therefore, it becomes important to have a convenient yet robust method for eval-

uating curvature from the discrete interface. This is indeed a significant problem since

curvature is a function of the second derivatives of the interface parametrization, but in-

terface itself is piecewise polynomial in finite element method. Convenient approach for

curvature evaluation of the discrete surface employs the Laplace–Beltrami operator which

allows to decrease the smoothness requirement of the interface in FEM formulation. It

has been shown thought that in certain situation it performs badly and introduces spuri-
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ous oscillations in the mean curvature vector. Consequently, the capillary forces arising

from the interface curvature are polluted with artificial oscillations which, in term, act as

artificially added (numerical) source terms in the scheme of interest. This issue is not

directly arising from the mesh motion but rather from the interelement continuity of the

mesh boundary. However, curvature evaluation is most often required in context of capil-

lary flows and related problems which fall into the category of the moving mesh methods.

This issue is investigated in detail in Chapter 5.
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CHAPTER 2

Volume preserving moving mesh method

2.1 Motivation

Let Ω ⊂ Rd be a Lipchitz domain occupied by incompressible fluid, and Σ ⊂ Ω free sur-

face which evolves in time. For simplicity, assume that the fluid flow under investigation

does not change the topology of Σ, i.e. Ω consists of the same material points at all times.

An example of such flow is given in Example 2.1.1 – a free surface flow without breaking

waves. Therefore, Ω = Ω(t) is time dependent and, due to the fluid incompressibility, the

volume of Ω is preserved at all times. In other words, the following equation holds

d

dt
|Ω| = d

dt

∫
Ω

dx = 0, t ∈ (0, T ), (2.1)

where (0, T ) is the time interval of interest. Denote by A[σ,τ ] a map which describes the

deformation Ω(τ) 7→ Ω(σ), for σ, τ ∈ (0, T ),

A[σ,τ ](x) = x+uστ (x), x ∈ Ω(τ), (2.2)
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where uστ denotes the displacement field from Ω(τ) to Ω(σ). It was shown in Chapter 1

that domain velocity w is a material derivative of the displacement field,

∂

∂t

∣∣∣∣
x̂

u = w . (2.3)

Hence, if the domain velocity w is known, the displacement field on [τ, σ] ⊂ (0, T ) can

be obtained by integrating the domain velocity in time, i.e.

uστ =

σ∫
τ

w dt . (2.4)

Necessary condition for the domain deformation map A to preserve volume (on continu-

ous level) states

w ·n = v ·n on ∂Ω, (2.5)

where v is divergence free (i.e. the considered fluid is incompressible). Within ALE

framework, in practice, w has to be determined from v on the boundary ∂Ω while it can

be arbitrarily extended into the domain interior. Necessary condition for the ALE map to

preserve volume (on continuous level) states

w ·n = v ·n on ∂Ω, (2.6)

where v is divergence free (i.e. the considered fluid is incompressible). Indeed, in that

case
d

dt
|Ω| =

∫
∂Ω

w ·n dS =

∫
∂Ω

v ·n dS =

∫
Ω

div v dx = 0. (2.7)

The necessary condition (2.6) is ensured by imposing

w =
v ·n
k ·n

k on ∂Ω, (2.8)

where k 6= 0 is appropriately chosen. In general, the choice of k depends on a particular

problem that is being considered.
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After the time discretization, [τ, σ] = [tn, tn+1] and A has to be defined picewise on

[tn, tn+1], where 0 = t0 < t1 < · · · < tN = T is the (uniform) partition of [0, T ]. More

precisely, one looks at the following situation:

A[n+1,n] : Ωn → Rd , Ωn 7→ Ωn+1,

A[n+1,n] = x+un+1
n (x), x ∈ Ωn.

(2.9)

In practice, the domain (or mesh) velocity is firstly determined on [tn, tn+1] from the iden-

tity (2.8) and extended into the domain interior. Then, from identity (2.4) the displacement

field is evaluated. Commonly, taking the domain velocity piecewise constant in time,

wn+1,n = w
∣∣∣
[tn,tn+1]

= const.(t), on [tn, tn+1], (2.10)

identity (2.4) results in

un+1
n = ∆twn+1,n in Ωn, and

A[n+1,n] = x+∆twn+1,n(x), x ∈ Ωn.

(2.11)

However, even though wn+1,n is constructed from vn+1,n and

div(vnn) = 0 in Ωn,

this alone is not enough for |Ωn+1
h | = |Ωn

h|. Indeed, consider a following simple example.

Example 2.1.1 Let Ωn = [0, 1] × [0, 1 − x] be a domain occupied by an incompressible

fluid (see Figure 2.1) and let the fluid velocity be given in Ωn at time t = tn by

vnn =

 x

−y

 , so div vnn = 0 in Ωn.

Assume that Ω has impenetrable vertical walls and bottom. Note that the fluid velocity

defined above is consistent with this setup, i.e. vnn ·n = 0 on the rigid boundaries. Take
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(0, 0) (1, 0)

(0, 1)

Σn

ΓnW

ΓnB

Ωn

(a)

(0, 0) (1 + ∆t, 0)

(0, 1−∆t)

Σn+1

Γn+1
W

Γn+1
B

Ωn+1

(b)

Figure 2.1: Domain Ω has a fixed rigid bottom and walls at all times. Free surface Σ is
moving in time.

the vector k from identity (2.8) as k = [x, y] (defined only on the free surface Σn), so

wn+1,n
n =

 0

−y

 on ΓnW ,

wn+1,n
n =

x
0

 on ΓnH , and

wn+1,n
n =

x− y
x+ y

x
y

 on Σn.

It is straightforward to see wn+1,n
n ·n = vn+1,n

n ·n on ∂Ωn and that the definition of

wn+1,n
n is consistent (i.e. wn+1,n

n is continuous and respects the boundary conditions).

Then

∫
∂Ωn

wn+1,n
n dS =

∫
Σn

wn+1,n
n dS =

∫
Σn

x− y
x+ y

x
y

 · n dS

=

1∫
0

(2t− 1) dt = 0,

where Σn was parametrized as γ(t) = (t, 1− t), t ∈ [0, 1].

Construct now the domain deformation map A[n+1,n] using the relation (2.11) with
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∆t > 0. Then, the boundary ∂Ωn+1 is obtained as (see Figure 2.1)

x 7→ x+∆tw =

x+ ∆tx−y
x+y

x

y + ∆tx−y
x+y

y

 , for x ∈ Ωn+1.

Free surface Σn can be written as a function of x, fn(x) = 1 − x. Using this and the

mapping y 7→ y + ∆tx−y
x+y

y, Σn+1 can be written in the functional form as well, namely,

Σn+1 ! fn+1(x) = 1− x+ ∆t(−2x2 + 3x− 1).

Then, the volume of Ωn+1 can be expressed as the area under the graph of fn+1:

|Ωn+1| =
1+∆t∫
0

fn+1(x) dx =
1

2
+ h(∆t),

with h(∆t) 6= 0. Hence |Ωn+1| 6= |Ωn|.

Previous simple example illustrates why necessary condition (2.6) for the volume preser-

vation in the continuous framework is not sufficient in the discretized framework.

2.2 Construction of volume preserving deformation

In this section, a method for the evaluation of volume preserving discrete mesh velocity

wn+1,n
n is derived.

Let vh,n ∈ L2(Ωn
h) be a fluid velocity given and assume Ωn+1

h has to be found such

that

|Ωn+1
h | = |Ωn

h|,

with ∆t = tn+1 − tn. Equivalently, one wishes to find a volume preserving map

A[n+1,n]
h : Ωn

h → Rd , Ωn
h 7→ Ωn+1

h .

Without loss of generality, assume Σn
h = ∂Ωn

h, i.e. the whole boundary is a free surface.
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The deformation of Σn
h has to be determined from the fluid velocity vh,n. Let the discrete

ALE map be defined by

A[n+1,n] = x+∆t qn+1,n
h (x), x ∈ ∂Ωn

h,

∆A[n+1,n] = 0, x ∈ Ωn
h,

where qn+1,n
h is constant in time. Hence, the discrete ALE map can be viewed as a har-

monic extension of the boundary displacement. Alternative interior extensions are also

possible, but since the method of interior extension does not play a role in volume pre-

serving, no special attention is given to the alternatives. The discrete displacement field

is given by

un+1
h,n = ∆t qn+1,n

h,n , qn+1,n
h constant on [tn, tn+1].

Furthermore, define

ϑn+1,n
h,n =

v
(α,β)
h,n ·n

kn+1,n
h,n ·n

kn+1,n
h,n on Σn

h (2.12)

where α = (ιn+1, ιn, . . . , ιn−l) and β = (κn+1, κn, . . . , κn−l) are multiindices, α, β ∈

Rl+2, and

v
(α,β)
h,n =

n−l∑
k=n+1

κk v
ιk
h,n =

n−l∑
k=n+1

κk (vιkh ◦A
n,ιk
h ) . (2.13)

v
(α,β)
h,n denotes the averaging of a fluid velocity in time in order to achieve a higher ac-

curacy. For example approximation of vh,n based on implicit Euler and Crank–Nicolson

schemes reads:

(α, β) = (1, 1), v(α,β)
h,n = vn+1

h,n , and

(α, β) = ((1, 1), (1/2, 1/2)), v(α,β)
h,n =

1

2
(vn+1

h,n +vnh,n).

Recalling Example 2.1.1, ϑn+1,n
h,n was chosen as a normal component of vnh,n in the di-

rection kn+1,n
h,n and then it was simply taken qn+1,n

h = ϑn+1,n
h,n . This resulted in artificial

gain/loss in volume as soon as ∆t > 0. Now, naturally, one wishes to obtain qn+1,n
h ”as

close as possible” to ϑn+1,n
h,n in some sense, and such that the resulting ALE map preserves

volume. The idea behind this will be explained in a moment but first let us formalize the
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above discussion in terms of the following constrained optimization problem:

find qn+1,n
h ∈ H1(Σn

h;Rd) such that∫
Σn

h

1

2
| qn+1,n

h −ϑn+1,n
h |2 dS→ min , subjected to constraint

|Ωn+1
h | − |Ωn

h| = 0, where A[n+1,n]
h : Ωn

h 7→ Ωn+1
h , with

A[n+1,n]
h = x+∆t qn+1,n

h,n on Σn
h.

(2.14)

Remark 4 In the following, it is implicitly assumed that qn+1,n
h,n is harmonically extended

to the domain interior once the boundary value is known.

Symbolically, Ωn+1
h = Ωn

h + ∆t qn+1,n
h,n (Ωn

h), so the displacement un+1,n
h,n = ∆t qn+1,n

h,n

is a function of the time step ∆t = tn+1 − tn. This dependency manifests itself in the

constraint in optimization problem (2.14), i.e. constraint |Ωn+1
h |−|Ωn

h| = 0 is a function of

the time step ∆t. Minimization in constrained optimization problem (2.14) is performed

over Σn
h = ∂Ωn

h, while the constraint |Ωn+1
h | − |Ωn

h| = 0 is derived from the identity (2.1):

0 = |Ωn+1
h | − |Ωn

h| =
tn+1∫
tn

d

dt
|Ωh| dt =

tn+1∫
tn

 d

dt

∫
Ωh

dx

 dt . (2.15)

Displacement uh,n is defined only at tn, un,nh,n = 0, and at tn+1, un+1,n
h,n . Natural extension

to the displacement continuous in time defined on the whole interval [tn, tn+1] reads:

un,th,n = (t− tn) qh for t ∈ [tn, tn+1], (2.16)

where abbreviation qh,n = qn+1,n
h,n = const.(t) is used since it is clear from the context on

which time interval qh is evaluated – on [tn, tn+1]. Finally, in context of equation (2.16),

the mesh velocity is indeed the material time derivative of the mesh displacement,

∂

∂t

∣∣∣∣
x̂

uh,n = qh,n , in Ωn
h. (2.17)

This allows to express the constraint in minimization problem (2.14) as an (isoparametric)
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integral constraint, namely

d

dt
|Ωh| =

∫
Σh

qh ·n dS on [tn, tn+1], (2.18)

where Reynolds transport theorem was employed in the process. Integrating identity

(2.18) from tn to tn+1 yields

0 = |Ωn+1
h | − |Ωn

h| =
tn+1∫
tn

 ∫
Σh

qh ·n dS

 dt . (2.19)

Employing the pullback to the known configuration at time tn, namelyA[n,t]
h = Âh,n ◦ Â-1

h,t

(see Chapter 1, Section 1.1.7), space and time integrals can be interchanged:

tn+1∫
tn

 ∫
Σh

qh ·n dS

 dt =

tn+1∫
tn

 ∫
Σn

h

qh,n ·
[(
F T

h,t

)[n,t]
n
]

dS

 dt

=

∫
Σn

h

 tn+1∫
tn

qh,n ·
[(
F T

h,t

)[n,t]
nn

]
dt

 dS

=

∫
Σn

h

 tn+1∫
tn

[
(F h,t)

[n,t] qh,n

]
· nn dt

 dS .

Employing identity (1.40) together with definition (2.16), for the two–dimensional case,

with qh = [q, r]T , it follows

(F h,t)
[n,t] =

 ∂
∂yn

y(t) − ∂
∂yn

x(t)

− ∂
∂xn

y(t) ∂
∂xn

x(t)

 =

1 + (t− tn) ∂
∂yn

rh −(t− tn) ∂
∂yn

qh

−(t− tn) ∂
∂xn

rh 1 + (t− tn) ∂
∂xn

qh

 ,
and

t∫
tn

(F h,t)
[n,t] dt =

(t− tn) + 1
2
(t− tn)2 ∂

∂yn
rh −1

2
(t− tn)2 ∂

∂yn
qh

−1
2
(t− tn)2 ∂

∂xn
rh (t− tn) + 1

2
(t− tn)2 ∂

∂xn
qh

 .
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Hence, underlying the fact that qh,n
∣∣∣
[tn,tn+1]

= const., it is derived

tn+1∫
tn

(F h,t)
[n,t] qh,n dt =

 tn+1∫
tn

(F h,t)
[n,t] dt

 qn+1,n
h,n

=

(t− tn) + 1
2
(t− tn)2 ∂

∂yn
rh −1

2
(t− tn)2 ∂

∂yn
qh

−1
2
(t− tn)2 ∂

∂xn
rh (t− tn) + 1

2
(t− tn)2 ∂

∂xn
qh

 qn+1,n
h,n .

Denote by Gn+1
n (·) and F n+1

n (·) the following scalar functions:

Gn+1
n (qn+1,n

h,n ; ∆t) =

 tn+1∫
tn

(F h,t)
[n,t] qn+1,n

h,n dt

 · nn , x ∈ Σn
h,

F n+1
n (qn+1,n

h,n ) =
1

2
| qn+1,n

h,n −ϑn+1,n
h,n |2

(2.20)

Then, the constrained minimization problem (2.14) with the isoparametric constraint

(2.19) can be rewritten in the following form:

find qn+1,n
h ∈ H1(Σn

h;Rd) such that∫
Σn

h

F n+1
n (qn+1,n

h,n ) dS→ min , subjected to constraint

∫
Σn

h

Gn+1
n (qn+1,n

h,n ,∆t) dS = 0.

(2.21)

Employing the theory of Calculus of Variation, constrained minimization problem (2.21)

can be reformulized as the following unconstrained min–max problem:

find (qn+1,n
h,n , λ) ∈ H1(Σn

h;Rd)× R such that

Jn+1
n (qn+1,n

h,n , λ) = min
ph∈H1(Σn

h ;Rd)
max
µ∈R

J(ph, µ), where

Jn+1
n (ph, µ) =

∫
Σn

h

(F n+1
n (ph) + µGn+1

n (ph; ∆t)) dS,

(2.22)

where λ ∈ R is Lagrange multiplier enforcing the constraint (2.19). Since the whole

problem has been reposed on the configuration at time tn, in what follows, the notation is
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abused with the aim of simplifying it. Keeping in mind the time interval [tn, tn+1] ⊂ [0, T ]

and that the working configuration is at time tn, task (2.22) is rewritten as:

Problem 1 Constrained minimization problem

find qh ∈ H1(Σh;Rd) such that∫
Σh

F (qh) dS→ min , subjected to constraint

∫
Σh

G(qh; ∆t) dS = 0

(2.23)

can be reformulated as an unconstrained min–max problem in terms of the Lagrange

multiplier λ:

find (qh, λ) ∈ H1(Σh;Rd)× R such that

J(qh, λ) = min
ph∈H1(Σn

h ;Rd)
max
µ∈R

J(ph, µ),
(2.24)

where

J(ph, µ) =

∫
Σh

(
F (ph) + µG(ph; ∆t)

)
dS , for (ph, µ) ∈ H1(Σh;Rd)× R .

Scalar fieldsF andG in Problem 1 are defined by F (ph) =
1

2
| qh−ϑh |2 andG(ph; ∆t) =

K(ph; ∆t) · n, where, for the two dimensional case ph = [px, py]
T ,

K(ph; ∆t) =


(
∆t+ 1

2
(∆t)2∂ypy

)
px − 1

2
(∆t)2py∂ypx

(
∆t+ 1

2
(∆t)2∂xpx

)
py − 1

2
(∆t)2px∂xpy

 . (2.25)

To find the candidate which satisfies min–max problem (2.24), first variation of J has to
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be found. For an arbitrary scalar field f = f(ph, µ) let us denote its first variations by

δphf(qh, λ) =
d

d ε

∣∣∣∣
ε=0

f(qh +εph, λ),

δµf(qh, λ) =
d

d ε

∣∣∣∣
ε=0

f(qh, λ+ εµ), and

δph,µf(qh, λ) = δphf(qh, λ) + δµf(qh, λ).

Then, it is straightforward to evaluate

δph,µJ(qh, λ) = δphJ(qh, λ) + δµf(qh, λ)

=

∫
Σh

(
δphF (qh) + λ δphG(qh; ∆t) + µ G(qh; ∆t)

)
dS

where

δphF (qh) = (qh−ϑh) · ph , and

δphG(qh; ∆t) = B(qh,ph; ∆t) · n ,

with

B(qh,ph; ∆t) =


∆t px + 1

2
(∆t)2

(
px∂yqy + qx∂ypy − py∂yqx − qy∂ypx

)

∆t py + 1
2
(∆t)2

(
py∂xqx + qy∂xpx − px∂xqy − qx∂xpy

)
 .

Candidate for a minimizer of task (2.23) is a zero of the variation of functional (2.24), i.e.

point (qh, λ) such that

δph,µJ(qh, λ) = 0. (2.26)

In order to guarantee for (qh, λ) to actually be a minimizer, it would be enough to show

that J is convex in its variable. Scalar field F (qh) is non–negative and convex. How-

ever, scalar field G(ph; ∆t) is ”strongly” non–linear and does not have to be convex (or

coercive) for an arbitrary ph ∈ H1(Σh;Rd). Hence, for ∆t > 0, J is not convex and

existence/uniqueness theory is still an active area of research in the field of Calculus of

Variations. It is important to notice two points regarding the existence/uniqueness of
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(qh, λ): firstly, that

lim
∆t→0

(
|Ωn+1

h | − |Ωn
h|
)

= 0,

i.e. the constraint in task (2.21) vanishes on limit when ∆t → 0. In that case qh = ϑh

is the unique solution of the minimization problem (2.21). And secondly, although one

would clearly like to have a unique solution (if it exists), in the context of this problem

uniqueness is not of primary importance. Any qh such that the resulting deformation Ah

preserves volume would suffice. Such qh is related to ϑh in sense of least squares under

the constraint G. More thoughts on uniqueness matter is given in concluding section of

this chapter.

2.3 FEM formulation with Lagrange multiplier

Non–linear FEM formulation of variational formulation (2.24) reads:

find (qh, λ) ∈ Vh×R such that δph,µJ(qh, λ) = 0, ∀(ph, µ) ∈ Vh×R, (2.27)

where Vh ⊂ H1(Σh,Rd) is an ambient finite element space – for the purposes of this

chapter Vh = P1. The consequence of Vh = P1 is that the constructed deformation

map Ah preserves the straight edges (faces) of the mesh elements. FEM formulation

(2.27) is non–linear in qh in term G(qh; ∆t) = K(qh; ∆t) · n. Hence, linearization has

to be performed in order to construct a linear system and iterative algorithm employed

to solve it. Newtons’ linearization is performed on the term K(qh; ∆t): K(qh; ∆t) ≈

Ku(qh; q
k
h; ∆t) −Kf (qkh; ∆t), where qkh denotes the current guess for qh (previous step

iteration) and

Ku(qh; q
k
h; ∆t) =

∆tqx + 1
2
(∆t)2

(
qkx∂yqy + qx∂yq

k
y − qky∂yqx − qy∂yqkx

)
∆tqy + 1

2
(∆t)2

(
qky∂xqx + qy∂xq

k
x − qkx∂xqy − qx∂xqky

)
 ,
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and

Kf (qkh; ∆t) =

 1
2
(∆t)2

(
qkx∂yq

k
y − qky∂yqkx

)
1
2
(∆t)2

(
qky∂xq

k
x − qkx∂xqky

)
 .

Naturally, initial guess in practice should be taken as q0
h = ϑh. Note also that, after

linearization, Ku(ph; q
k
h; ∆t) = B(qkh,ph; ∆t).

Let us introduce the following notation: for ϕh and ψh arbitrary finite element func-

tions and (φih)
n
i=1 finite element basis function for Vh,

m(ϕh,ψh) =

∫
Σh

ϕh ·ψh dS , mij = m(φjh,φ
i
h),

b(ϕh,ψh) =

∫
Σh

B(ϕh,ψh; ∆t) · n dS , bi = b(qkh,φ
i
h),

k(ϕh,ψh) =

∫
Σh

Ku(ϕh;ψh; ∆t) dS , kj = k(φjh, q
k
h),

fϑh(ψ) = m(ϑh,ψh), fϑh
i (ϕih), and

fk(ψ) =

∫
Σh

Kf (ψ; ∆t) dS , fkµ = fk(qkh).

(2.28)

Specially, note that bT = k, b = (bi)i and k = (kj)j . Then, employing the Newtons’

linearization in FEM formulation (2.27), linear FEM formulation is obtained:

find (qh, λ) ∈ Vh×R such that ∀ph ∈ Vh

m(qh,ph) + λb(qkh;ph) = fϑh(ph), and

k(qh, q
k
h) = fk(qkh).

(2.29)
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The discrete system obtained from the FEM formulation (2.29) takes the following form:



mij bi

kj 0





q

λ


=



fϑ
i

fkµ


, (2.30)

where Mij = (mij) ∈ Rn×n is a mass matrix, Kj = (kj) ∈ R1×n, Bi = (bi) ∈ Rn×1, and

0 ∈ R. Denote the block matrix defining linear system (2.30) by A,

A =

M B

K 0

 .
PROPOSITION 2.3.1 Matrix A defining linear system (2.30) is regular.

Proof. It is equivalent to show that detA 6= 0.

M is a mass matrix, hence regular and positive definite with positive definite inverse.

Therefore, by theorem from linear algebra, it holds

detA = detM det(0−KM−1 B)

= − detM det(KM−1 B).

KM−1 B ∈ R so det(KM−1 B) = KM−1 B. K 6= 0 and B 6= 0 by construction. More-

over, by the construction (after linearizetion), K = BT , so, using the positive definitivity

of M−1, it follows

BT M−1 B > 0.

Therefore, det(KM−1 B) 6= 0 and, consequently, detA 6= 0. Hence, A is regular. �

The algorithm employed for finding qh of non–linear FEM formulation (2.27) is of itera-
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tive nature. It reads:

set convergence criterium (e.g. k ≤ N),

q0
h = ϑh , k = 1,

while
∫
Σh

G(qkh; ∆t) > tol, and k ≤ N

solve system (2.30) for (qh, λ),

qk+1
h = qkh,

k = k + 1,

if convergence criterium is not met, reduce ∆t

and re–enter the while loop,

(2.31)

where tolerance and convergence criteria are a priori chosen. Convergence appears for

∆t small enough since, on the limit when ∆t→ 0, system (2.30) reduces to M q = fϑ.

Desirable property one would wish to have for FEM formulation (2.29) is for it to

preserve the rigid deformations. Indeed, if ϑh is such that Ah(x) = x+∆tϑh is a rigid

deformation (translation or rotation), then volume is preserved by default. Hence, one

would hope for, in this case, qh = ϑh.

PROPOSITION 2.3.2 Assume ϑh is such that Ah(x) = x+∆tϑh is a rigid deforma-

tion. Then

qh is solution of (2.29) if and only if qh = ϑh .

Proof.

⇐ This direction is trivial. Taking qh = ϑh solves the constrained minimization prob-

lem (2.23). Indeed,

∫
Σh

F (ϑh) dS = 0 is obvious, and

∫
Σh

G(ϑh) dS = 0 since x 7→ x+∆tϑh is a rigid deformation.
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⇒ Assume now that qh is a solution of the minimization problem (2.23). We want to

prove qh = ϑh. But this follows directly from the fixed–point iterative nature of the

approach: taking q0
h = ϑh for the initial guess, from the first part of the proof it

follows that q0
h solves the minimization problem (2.23). Hence, qh = q0

h gives the

solution in one iteration.

�

Remark 5 The above methodology has been derived for the case where the whole bound-

ary is a free surface, Σ = ∂Ω. For the case where ∂Ω = Σ ∪ Γ where Γ 6= ∅ denotes an

impenetrable boundary (e.g. a rigid wall), the procedure is the same and minimization if

performed only over Σ. Indeed, in that case

∫
∂Ω

w ·n dS =

∫
Σ∪Γ

w ·n dS =

∫
Σ

w ·n dS,

since w ·n = 0 on Γ.

2.4 Numerical validation

Let us consider again the setup from Example 1.2.4 given in Chapter 1. Let Ω ⊂ R2 be

a unit circle, Ω = {|x | ≤ 1}, Σ = ∂Ω = {|x | = 1} is a free surface, and assume that

fluid velocity is prescribed on the time interval (0, 1):

v = sin 2πt

 y cos πx

1
2
y2π sin πx

 , in QT . (2.32)

It is straightforward to see that div v = 0, i.e. one deals with an incompressible fluid flow.

The domain velocity at each time is given by

∆w = 0 in Ω

w = (v ·n)n on Σ,

(2.33)
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i.e. the k direction from the identity (2.8) is simply chosen as a normal direction. This is

a common choice in practice. More precisely, domain velocity is prescribed (determined

by fluid velocity) on the boundary and is extended to the interior of Ω employing the

harmonic extension technique.

For the numerical simulation, the tolerance in algorithm (2.31) has been taken as tol =

10−10. The prescribed maximal number of allowed iteration was set up as a convergence

criterium; if the while loop in (2.31) did not produce satisfying solution, the time step is

halved.

2.4.1 Volume gain/loss

Let us firstly investigate what is happening on the single time interval [tn, tn+1]. For

convenience, let n = 0, i.e. time interval of choice is [t0, t1] and let ∆t = 0.25. Hence,

the deformation Ω0
h 7→ Ω0.25

h is investigated. Let the target function ϑh be chosen as

simply

ϑh = v0.25
h,0

in the spirit of implicit Euler method. ϑh is illustrated in Figure 2.2 (a). The corrected

velocity q1
h after the first iteration is shown in Figure 2.2 (b) and the difference q1

h−ϑh in

Figure 2.2 (c). Figure 2.2 (d) shows the domains obtained by A[1,0]
h (ϑh) (in grey) and by

A[1,0]
h (q1

h) (in blue). The volume difference between Ω0
h and A[1,0]

h (ϑh)[Ω
0
h] is 0.366186,

with vol(Ω0
h) = π. The volume difference between Ω0

h and A[1,0]
h (q1

h)[Ω
0
h] is 0.001601.

Hence, it can be noticed that even one iteration can produce significant improvement in

terms of artificial gain/loss of volume. Figure 2.3 illustrates the quality of the deformation

map constructed from the velocity qkh. After approximately ten iterations, the volume is

preserved within the error of order ≈ 10−14 which can be considered as numerical zero.

2.4.2 Accumulated volume oscillation during the simulation

Let us now investigate the accumulated gain/loss of volume during the simulations on

[0, T ]. More precisely, [0, T ] is partitioned into N∆t subintervals, 0 = t0 < t1 < · · · <
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(a) Target velocity field ϑh. (b) Corrected velocity field q1h after the first itera-
tion.

(c) The difference between target and corrected ve-
locity fields, q1h−ϑh.

(d) Ω1
h obtained by A[1,0]

h (ϑh) and
A[1,0]

h (qh) are shown in grey and blue re-
spectively.

Figure 2.2: Target velocity fieldϑh (a), corrected velocity field q1
h (b), and their difference

(c). Domains obtained by A[1,0]
h constructed from ϑh and qh are shown in figure (d).

Figure 2.3: Convergence of the artificial velocity field (qkh)k towards the velocity which
results in volume preserving deformation A[0,1]

h . Ordinate is shown in log–scale.
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(a) Artificial volume gain/loss for the case A[n+1,n]
h = A[n+1,n]

h (ϑh)

(b) Artificial volume gain/loss for the case A[n+1,n]
h = A[n+1,n]

h (qh)

Figure 2.4: Artificial volume gain/loss for various constructions of deformation maps
A[n+1,n]
h and different choices of time step ∆t.

tN∆t−1
, where ∆t is a priori chosen. Then, two simulations are ran: in first one, the

deformation Ωn
h 7→ Ωn+1

h is constructed from the velocity field ϑh, A[n+1,n]
h (ϑh). In

the second one, the deformation Ωn
h 7→ Ωn+1

h is constructed from the velocity field qh,

A[n+1,n]
h (qh), with the tolerance 10−10 was used for evaluation of qh. Results are shown

in Figure 2.4 for various partitions of [0, T ], i.e. various choices of ∆t. It can be noticed

that smaller time steps result in smaller accumulated error for the naively used approach

(A[n+1,n]
h (ϑh)), but, regardless, the accumulated error steadily increases. This is indeed

the case in practice in general and often one is forced to use a very small time step in

order to prevent drastic volume changes. Method derived in this chapter results in volume

conservation up to the order of 10−10 (tolerance).
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2.5 Discussion

In this chapter, a method for construction of volume preserving deformation map Ah

has been derived. The idea relies on constrained optimization approach where, starting

from identities trivially satisfied on the continuous level, an artificial constraint is derived

from their discrete counterparts. The method is consistent in sense that, on the limit when

∆t→ 0, the artificially derived constraint vanishes. Moreover, the method preserves rigid

deformations: if the target function in optimization problem defines a rigid motion, which

is known to preserve the volume by default, then the solution provided by the artificially

derived constrained minimization problem is that same rigid deformation. The artificially

derived constraint is strongly non–linear which prevents from proving the uniqueness of

solution. Intuitively, there is actually no reason to even suspect that solution should be

indeed unique, but uniqueness is not of primary importance in this manner (see discussion

at the end of Section 2.2).
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CHAPTER 3

Space Conservation Law

This chapter is devoted to development of SCL–preserving finite element method. SCL

stands for Space Conservation Law – a term coined by Trulio and Trigger in [7], the

first paper in the literature (to the best of the authors knowledge) that deals with the SCL

problematics. SCL was later re–discovered and formalized by Thomas and Lombard in

[8] under the name Geometric Conservation Law (GCL). Both terminologies are used

equally frequent in the literature, but in this work ”space conservation law” term is used.

The heart of SCL issues essentially resolves within the Reynolds transport theorem,

or rather, its discretized version. In its integral form, SCL reads ([8])

d

dt

∫
K

dx =

∫
K

divw dx =

∫
∂K

w ·n dS, (3.1)

where K ⊂ Ω ⊂ Rd denotes an arbitrary control volume, w is the domain velocity

and n is the unit outer normal to the boundary ∂K. This form is also often referred to

as the finite volume form. The SCL is naturally inwroughted into the conservative weak

formulations of conservation laws (see Section 1.1.6). If the SCL (3.1) is violated after the

discretization, numerical (artificial) sinks and/or sources are introduced into the numerical
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scheme. Consequently, the credibility of the discrete solution is questionable. Moreover,

it is suspected that satisfaction of the discrete SCL is in tight relation with stability of the

numerical scheme – a very well known issue for moving mesh problems.

Most of the original work on this topic has been done in context of the finite difference

method ([7, 8, 9, 10, 11, 12]) and finite volume method ([13, 14, 15, 16, 17, 18, 44]), and,

lately, extended to the finite element method ([15, 16, 5, 6, 19, 20]). Majority of these

works (if not all) rely on, essentially, the same idea for handling discrete SCL – namely,

employing quadrature formulas for time integration which evaluate time integrals exactly.

For example, Formaggia and Nobile in [5, 6] proposed multi–point time quadrature of the

ordinary differential equation (ODE)

d y

dt
= f(t, y(t)) (3.2)

To solve ODE of form (3.2), they replace the usual implicit Euler method

yn+1 − yn = ∆tf(tn+1, y
n+1)

by

yn+1 − yn = ∆t
m∑
l=0

wlf(tln,n+1, y
n+1),

where tln,n+1 ∈ [tn, tn+1], ∀l, and wl are appropriately chosen weights and m ∈ N. Em-

ploying this approach on the law (3.1), it was showed that, for the case of piecewise

constant in time mesh velocity wh,

∫
Kn+1

h

dx−
∫
Kn

h

dx = ∆t

∫
K

n+1/2
h

divw
n+1/2
h dx = ∆t

∫
∂K

n+1/2
h

w
n+1/2
h ·n dS, (3.3)

where ∆t = tn+1 − tn, i.e. the equality holds exactly and not only approximately for the

discretized SCL. This is exactly the approach which has been taken for the conservative

FEM formulation in Section 1.2.4. It is important to note that expression (3.3) involves

integration over three different domains. In FEM, three different triangulations result in
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construction of three different finite element spaces. Employing higher order discretiza-

tion schemes for temporal derivative usually results in more previous steps solutions in-

volved in the discretization scheme. In terms of FEM on moving meshes this mean more

necessary (midpoint) triangulations and more finite element spaces constructed. For large

finite element problems this approach may be an expensive one from computational stan-

dards. If all quantities are evaluated in the physical configuration, it requires constant

updating of triangulations and finite element spaces. Also, it is possible that multiple

”updates” have to be kept in the machine memory simultaneously due to the algorithmic

requirements.

In this chapter a systematic way for constructing SCL preserving time–discretization

schemes is developed for PDEs on time–dependent domains within ALE FEM frame-

work. The developed methodology is based on ”pullback” of weak formulation onto the

reference configuration. As a consequence, discretized time evolution of physical con-

figuration is polynomial in time from the perspective of reference configuration. Hence,

independently on chosen time–dsicretization scheme, the integration in time can be per-

formed exactly, thus making the discrete SCL a trivial property.

The majority of material presented in this chapter has already been published in [21].

3.1 Space conservation law

For the employment of FEM, the domain is triangularized into a discrete mesh (triangula-

tion) and the numerical solution is an array of number values attached to the mesh nodes.

Apart from numerically solving the equations of interest, two additional equations come

into play when dealing with moving domains. These two additional equations pose a bal-

ance between the relevant geometric parameters – the surface conservation law (SCLs)

and the volume conservation law (SCLv) are, respectively, given by

∫
∂K

k ·n dS = 0 and
d

dt
|K| =

∫
∂K

w ·n dS,
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where k is an arbitrary but constant vector field (direction). As noted and discussed in

[13], a numerical scheme which does not satisfy them shall produce additional numerical

errors in the discrete solution. The violation of the SCLs leads to misrepresentation of

the convective fluxes while violation of SCLv introduces artificial sources or sinks in

otherwise conserved medium. Together, the volume and surface conservation laws define

the space conservation law. Note that (SCL)s is a trivial property even on the discrete level

as soon as the mesh is successfully moved, i.e. al the triangles in an updated triangulation

are regular. Hence, usually by SCL only (SCL)v is alluded.

Let K ⊂ Ω be an arbitrary control volume – on a discrete level one is looking at a cell

(triangle or tetrahedra) of the triangulation T h of Ω – and denote the domain velocity by

w. Then, the time variation of the control/cell volume in terms of its boundary properties

(orientations, velocities and areas) is given by

d
dt

∫
K

dx =

∫
∂K

w ·n dS =

∫
K

divw dx, (3.4)

which is the integral statement of SCL. On the continuous level, relation (3.4) is trivially

satisfied as long as the ALE map is regular enough. On the discrete level, however, this

doesn’t have to be the case and consequently artificial sources/sinks appear and (possibly)

significantly influence the solution. Indeed, consider the following simple example:

Example 3.1.1 Let Kh ⊂ R2 be a triangle in some triangulation T h and consider its

evolution between configurations at time t = tn and t = tn+1. Assume Kn+1
h is obtained

from Kn
h by the ALE map

An+1 ,n
h = x+∆twn+1

h,n , Kn
h 7→ Kn+1

h ,

where wh is piecewise constant in time,

wh(t) = wn+1
h on [tn, tn+1].

For illustration see Figure 3.1. Furthermore, assume wh ∈ [P1,P1](Kh), i.e. mesh

60



doi:10.6342/NTU202003676

An = (0, 0)Bn = (1, 0)

Cn = (0, 1)

Kn
h

An+1 = (0, 0) Bn+1 = (1.1, 0)

Cn+1 = (0, 1.1)

Kn+1
h

An+1 ,n
h

Figure 3.1: Sketch of the ALE transformation Kn
h 7→ Kn+1

h with ∆t = 0.1.

velocity is linear in space over the triangleKh. Hence,A[n+1 ,n]
h ∈ [P1,P1](Kh) preserves

the straight edges during the evolution. Let wn+1
h,n = [x, y]T in Kn

h . The mesh velocity is

uniquely determined by its values in triangle vertices on [tn, tn+1], i.e.

wn+1
h,n (An) = wn+1

h,n+1(An+1) = [0, 0]T ,

wn+1
h,n (Bn) = wn+1

h,n+1(Bn+1) = [1, 0]T ,

wn+1
h,n (Cn) = wn+1

h,n+1(Cn+1) = [0, 1]T ,

and it is easy to see thatwn+1
h,n+1 = [x/1.1, y/1.1] onKn+1

h andwn+1/2
h,n+1/2 = [x/1.05, y/1.05]

onKn+1/2
h . For definiteness, ∆t = 0.1 has been chosen. Integrating in time equation (3.4)

from tn to tn+1, it is obtained

∫
Kn+1

h

dx−
∫
Kn

h

dx =

tn+1∫
tn

∫
Kh

divwh dx dt . (3.5)

Left hand side represents the difference of the volume between Kn+1
h and Kn

h , and in this

particular example

|Kn+1
h | − |Kn

h | = 0.105.

Right hand side of equation (3.5) has to be discretized by quadrature formula. For illus-
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tration, let us consider three variations of Euler scheme:

∆V1 = ∆t

∫
Kn

h

divwn+1
h,n dx , i.e. backward Euler scheme,

∆V2 = ∆t

∫
Kn+1

h

divwn+1
h,n+1 dx , i.e. forward Euler scheme,

∆V3 = ∆t

∫
K

n+1/2
h

divwn+1
h,n+1/2 dx , i.e. midpoint formula,

which produce ∆V1 = 0.1, ∆V2 = 0.11 and ∆V3 = 0.105, respectively. Hence, only for

the case of midpoint formula, the equality in equation (3.5) is exact, while for the other

two cases the equality is only in an approximate sense.

3.1.1 SCL in finite element method

Recall the Euler expansion formula, namely

∂

∂t
Ĵ t = Ĵ t d̂ivw in Q̂T , (3.6)

which can be interpreted as an evolution law for the Jacobian if the domain velocity is

known. It is worthy to remember that Jacobian holds the information on volume changes

during the coordinate transformation. Weak (conservative) formulation of the equation

(3.6) then reads:
d
dt

∫
K̂

ψ̂ Ĵ t dx̂ =

∫
K̂

ψ̂ Ĵ t d̂ivw dx̂, (3.7)

for K̂ ⊂ Ω̂ and ψ̂ ∈ V(Ω̂), for V(Ω̂) ⊂ H1(Ω̂) appropriately chosen (in this case one

can take V(Ω̂) = H1(Ω̂)). Transforming the weak formulation (3.7) onto the physical

configuration (employing K = Ât(K̂ ) in the process), it is obtained

d
dt

∫
K

ψ dx =

∫
K

ψ divw dx, (3.8)

62



doi:10.6342/NTU202003676

where ψ = ψ̂ ◦ Â-1
t ∈ V(Ω). Equation (3.8) is often referred to as finite element form of

SCL.

As mentioned in the introduction, the methodology derived in this work resides on

the reference configuration perspective. Therefore, the SCL pulled back on the reference

configuration is being worked with, i.e. with the identity (3.7) obtained directly from the

Euler expansion formula. Applying the theory from Section 1.1.7, an equivalent yet more

convenient form
d

dt

∫
K̂

ψ̂ Ĵ t dx̂ =

∫
K̂

ψ̂ d̂iv(F̂ t ŵ) dx̂ . (3.9)

This is exactly the weak formulation of the differential form of SCL derived by Thomas

and Lombard in [8]. They start from the Euler expansion formula in an integral form and

use the metric coefficients to derive the differential equation similar to

∂

∂t
Ĵ t− d̂iv(F̂ t ŵ) = 0 in Ω̂ , t ∈ (0, T ). (3.10)

Equation (3.10) is referred to as differential form of SCL.

Recall now the conservative and non–conservative weak formulations of a generic

conservation law for the scalar field u : QT → R given in Section 1.1.6. The non–

conservative weak formulation reads:

∫
Ω

(
ψ
∂

∂t

∣∣∣∣
x̂

u− ψw ·∇u+ ψL(u)− ψf
)

dx = 0,

where f ∈ L2(0, T ; L2(Ω)) and L(u) is a second order elliptic operator on which inte-

gration by parts is performed in practice. In the non–conservative weak formulation, time

derivative is kept under the integral sign. Consequently, term involving divw, which con-

tributes for the local volume change, is absent. Therefore, the discrete SCL is a non–trivial

property only for the conservative FEM formulations. The conservative weak formula-
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tions for the generic conservation law given in Section 1.1.6 read:

d

dt

∫
Ω

ψu dx−
∫
Ω

(ψ div(uw) + ψL(u) + ψf) dx = 0,

d

dt

∫
Ω

ψu dx−
∫
Ω

(ψu divw+ψw ·∇u+ ψL(u) + ψf) dx = 0.

(3.11)

The difference in formulations (3.11)1 and (3.11)2 is whether the term div(uw) is ex-

panded or not. In both formulations divw appears in some form so discrete SCL issues

exist.

3.2 Mesh velocity calculation and vanishing discrete SCL

In this section ALE FEM formulation with vanishing discrete SCL is derived. The de-

veloped methodology equips us with a variation of FEM formulation in which discrete

SCL is satisfied by default, independently on the chosen time–discretization scheme for

the temporal derivative. This FEM formulation is built upon the differential statement of

SCL, that is the identity (3.10) is in its core. The picture one should keep in mind when

dealing with discretized moving domain problems is presented in Figure 3.2.

In the next two subsections, two possibilities for the mesh velocity calculation are

given – the first being the classical one used in most approaches, while the second slightly

more advanced and physically more intuitive. The essence of the novel FEM formulation

with vanishing discrete SCL is presented.

3.2.1 Mesh velocity piecewise constant in time

Let us consider the uniform finite partition of the time interval [0, T ], 0 = t0 < t1 < · · · <

tN = T and denote ∆t = tn−tn−1, n = 1, . . . , N . The time step ∆t is taken constant only

for the simplicity of notation. This does not affect the following methodology derivation.

The most widely used method for the grid velocity calculation states:

DEFINITION. Assume that the positions of the mesh node indexed by i at times tn and

tn+1, i.e. xni ∈ T h(Ωn
h) and xn+1

i ∈ T h(Ωn+1
h ), are known. Then, the piecewise constant
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Ωn−1
h

Ωn
h Ωn+1

h

Ω̂h

Âh,n−1 Âh,n Âh,n+1

wh = wh(t)
∣∣∣
[tn−1,tn]

wh = wh(t)
∣∣∣
[tn,tn+1]

An-1 ,n
h An+1 ,n

h

(a)

Ω̂h

Ωn
h Ωn+1

h

Âh,n

Âh,n+1

(b)

Figure 3.2: Evolution of discrete configurations on a time interval [tn−1, tn+1].

in time mesh velocity on the time interval [tn, tn+1] is defined by

ŵh(x̂i, t) =
ûn+1
h (x̂i)− ûnh(x̂i)

∆t
, t ∈ [tn, tn+1], (3.12)

where ûh(t) denotes the displacement at time t, i.e. xni = x̂i + û
n
h(x̂i) and xn+1

i =

x̂i + û
n+1
h (x̂i).

One can immediately notice ŵh(x̂i, t) = const. on [tn, tn+1], ∀i. Thus, variable t is

usually omitted. In this case, displacement can be continuously interpolated on the whole

interval [tn, tn+1]:

ûh(·, t)
∣∣∣
[tn,tn+1]

= ûnh +

t∫
tn

ŵh dt , t ∈ [tn, tn+1], (3.13)

i.e.

ûh(·, t)
∣∣∣
[tn,tn+1]

= ûnh +t ŵh

∣∣∣
[tn,tn+1]

dt , t ∈ [0,∆t]. (3.14)
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Furthermore, the discrete ALE map is then defined and continuous on [0, T ],

Âh(x̂, t) = x̂+ ûh(x̂, t), t ∈ [0, T ]. (3.15)

Now, let us consider the differential form of SCL identity (3.10),

∂

∂t
Ĵ h,t− d̂iv(F̂ h,t ŵh) = 0 in Ω̂×(0, T ),

and let us take a more detailed look on what is happening during the temporal discretiza-

tion. Discretized counterpart of ∂
∂t
Ĵ t in the most simple finite difference form reads

∂

∂t
Ĵ h,t ≈

Ĵ h,n+1−Ĵ h,n

∆t
.

In case implicit Euler formula is employed for discretization of (3.10), for example, using

the fact that F̂ h,t and ŵh are defined piecewise, it follows

Ĵ h,n+1−Ĵ h,n =

tn+1∫
tn

∂

∂t
Ĵ h,t dt =

tn+1∫
tn

d̂iv(F̂ h,t ŵh) dt

≈ ∆t d̂iv(F̂ h,n+1 ŵ
n+1
h ).

(3.16)

Taking into account that both F̂ h,t and ŵh are piecewise polynomials in t variable (by

construction), so is the F̂ h,t ŵh. Therefore, the step in approximating the time integral

in (3.16) is actually unnecessary since one can formally interchange the integral with the

divergence d̂iv operator, and the integral of polynomial can be evaluated exactly. Hence,

Ĵ h,n+1−Ĵ h,n = d̂iv

 tn+1∫
tn

F̂ h,t ŵh dt

 . (3.17)

Consequently, the discrete SCL vanishes. The analogue procedure can be applied to the
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finite element form of SCL, the identity (3.9):

d

dt

∫
K̂

ψ̂h Ĵ h,t dx̂ =

∫
K̂

ψ̂h d̂iv(F̂ h,t ŵh) dx̂ .

Integrating this identity from tn to tn+1 and noticing that one can formally change the

order of integration, since the reference control volume K̂ is time independent, and the

test function ψ̂h is time independent, it is obtained

∫
K̂

ψ̂h(Ĵ h,n+1−Ĵ h,n) dx̂ =

∫
K̂

ψ̂h d̂iv

 tn+1∫
tn

F̂ h,t ŵh dt

 dx̂ . (3.18)

Again, since polynomials can be integrated exactly, the discrete SCL vanishes and is

trivially satisfied in this type of formulation. Time integration and the divergence oper-

ator have been interchanged in the above analysis for clarity. However, since the whole

SCL–governing law is ”pulled back” to the reference (time–independent) configuration,

integration and differentiation can be performed in any order. This holds, of course, as-

suming that interchanging the operators is justified, which for finite element formulation

always is (finite element space is finite dimensional).

3.2.2 Mesh velocity continuous in time

In this section, an alternative mesh velocity construction method is investigated. For

motivation, consider the setup given in the following example.

Example 3.2.1 Let us consider the situation illustrated in Figure 3.3: mesh node x

moved with velocity wh 6= 0, and such that wn
h 6= 0, from its position at time tn−1,

xn−1, to a position at time tn, xn. Assume that the current position of the node x is

evaluated at the present time tn+1, xn+1 and assume it coincides with the position at time

tn, i.e. xn+1 = xn. Employing the method for mesh velocity calculation introduced in
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xn−1

xn = xn+1

wh,t

∣∣∣
[tn−1,tn]

wh,t

∣∣∣
[tn,tn+1]

Figure 3.3: Sketch of evolution of the mesh node denoted by x = x(x̂, t) on interval
[tn−1, tn+1].

Section 3.2.1, it is found

wn
h(x) 6= 0, and

wh(x) = 0, on [tn, tn+1].

Hence,wh is discontinuous in time at tn. However, a physically more intuitive explanation

is that the time step ∆t is too large for the numerics to ”capture” the entire trajectory

of node x (if node stops instantly then its ”trajectory momentum” is violated). Since the

node traveled to position xn with velocity s.t. wn
h(xn) 6= 0, it is natural to require that

the following limit exist:

lim
t→t−n

wh(t) = lim
t→t+n

wh(t) = lim
t→tn

wh(t). (3.19)

The condition (3.19) ensures that wh is continuous in time at point tn. Intuitively, the

trajectory of the node x is ”a closed loop” on [tn, tn+1], starting and ending at xn =

xn+1. See Figure 3.3 for illustration.

Motivated by Example 3.2.1, an alternative approach to calculate the mesh velocity is

proposed, such that the resulting velocity is continuous in time.

DEFINITION. Let the mesh velocity wh be known on the time interval [tn−1, tn], and

assume Ωn+1
h (or, rather, T h(Ωn+1

h )) has been determined. Define the mesh velocity on

interval [tn, tn+1] by

wh(t) = (t− tn)ωh +wn
h , t ∈ [tn, tn+1], (3.20)
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where ωh ∈ Rd is a constant in time vector field given by the relation

tn+1∫
tn

ŵh(t) dt = ûn+1
h − ûnh . (3.21)

It is straightforward to see that the definition of mesh velocity (3.20) guarantees the con-

tinuity in time. Indeed,

wn
h = lim

t→t−n
wh(t) = lim

t→tn
wh(t) = lim

t→t+n
wh(t) = wn

h .

The relation (3.21) assures that the mesh velocity is well defined and uniquely determines

the piecewise constant in time field ωh. By straightforward calculation, relation (3.21)

produces

ω̂h

∣∣∣
[tn,tn+1]

=
2

(∆t)2

[
ûn+1
h − ûnh−∆t ŵn

h

]
. (3.22)

Finally, using the relation

ûh(t) = ûnh +

t∫
tn

ŵh(t) dt , t ∈ [tn, tn+1]

the displacement can be continuously interpolated on whole [tn, tn+1] (see Figure 3.2 (b)

for illustration)

ûh(t) = ûnh +(t− tn) ŵn
h +

(t− tn)2

2
ω̂h , t ∈ [tn, tn+1]. (3.23)

Analogously as in Section 3.2.1, it is deduced that F̂ h(t) ŵh(t) is piecewise polynomial

in time, i.e.

F̂ h(t) ŵh(t)
∣∣∣
[tn,tn+1]

= p(t), for p polynomial in variable t.

Hence, the argument for vanishing discrete SCL in equation (3.18) stays the same.
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Remark 6 From now on, for a more compact notation, it is occasionally denoted

In+1
n (·) =

tn+1∫
tn

(·) dt .

3.3 Discretization schemes

In this section proper handling of some classic discretization schemes applying the method-

ology developed in Section 3.2 is illustrated. Schemes considered are implicit Euler

scheme, the Crank–Nicolson scheme, and the backward differentiation formulas, BDF2

and BDF3. For simplicity and definiteness, all of these schemes shall be illustrated on the

generic scalar conservation law (3.11)2. It is only assumed that the elliptic operator L can

be written in the following form

L(u) = − divB(u) + u,

i.e. the assumption that it can be decomposed in the ”diffusion” and ”reaction” term is

made. This assumption can be done without the loss of generality, yet it includes all

of the possible terms one might face in practice. Transition from this (relatively) gen-

eral example to specific equations, e.g. convection–diffusion–reaction or heat equation

is straightforward. Generalization to vector equations such as Navier–Stokes equations is

also straightforward since handling the terms with the mesh velocity stays the same and

only these terms play a role in context of SCL problematics.

The generic conservation law in semi–discrete conservative FEM formulation consid-
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ered in this section, pulled back to the reference configuration, reads:

d

dt

∫
Ω̂h

ψ̂h ûh Ĵ h dx̂−
∫
Ω̂h

ψ̂h ûh d̂iv
(

[F̂ h,twh]
)

dx

−
∫
Ω̂h

ψ̂h ŵh ·[F̂
T
h,t ∇̂ ûh] dx

+

∫
Ω̂h

{
1

Ĵh,t

[F̂
T
h,t ∇̂ ψ̂] · B̂(û) + ψ̂h ûh Ĵh,t− ψ̂ f̂ Ĵh,t

}
dx̂ = 0. (3.24)

See also equations (1.48) and (3.11) for clarification. Without loss of generality, homo-

geneous Neumann and Dircihlet boundary conditions are assumed. Hence the absence of

any boundary terms. As already discussed, the first two terms in equation (3.24) are the

source of the SCL problematics. The following compact notation regarding the approxi-

mation in time is introduced:

ah(ûh, ψ̂h)
n = ∆t

∫
Ω̂h

{
1

Ĵh,n

[F̂
T
h,n ∇̂ ψ̂h] · B̂(ûnh) + ψ̂h û

n
h Ĵh,n− ψ̂ f̂

n

h Ĵh,n

}
dx̂,

bh(ûh, ψ̂h; ŵh)
n = ∆t

∫
Ω̂h

ψ̂h ŵ
n
h ·[F̂

T
h,n ∇̂ ûnh] dx,

mh(ûh, ψ̂h)
n =

∫
Ω̂h

ψ̂h û
n
h Ĵh,n dx̂ .

(3.25)

Furthermore, denote

eh(ûh, ψ̂h;wh)
n+1
n =

∫
Ω̂h

ψ̂h In+1
n

(
ûh d̂iv[F̂ h,twh]

)
dx,

ekh(ûh, ψ̂h;wh)
n+1
n =

∫
Ω̂h

ψ̂h û
k
h d̂iv

(
In+1
n [F̂ h,twh]

)
dx .

(3.26)

Typically, in approximation schemes (3.26)2, k = n + 1 is used since the unknown ûh is

piecewise constant in time employing variations of finite difference schemes.
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Ωn−1 Ωn Ωn+1wh

∣∣∣
[tn−1,tn]

wh

∣∣∣
[tn,tn+1]

un

un+1

Figure 3.4: Sketch of the implicit Euler method on [tn−1, tn+1]. Evaluating un+1
h takes

place in configuration on time interval [tn, tn+1]. Test functions involved in SCL ”carry
the same weight” un+1

h on [tn, tn+1] (pure implicit method) so there is no violation of SCL.

It is not absolutely necessary to write the whole weak formulation with respect to the

reference configuration in order to satisfy the SCL in the above approach. Actually, it is

enough only to ”pull back” the integral terms explicitly involving the domain velocity w

(or, rather, divw) to the reference configuration. The rest of the weak formulation can

be kept on the physical configuration. Throughout this work, however, the whole formu-

lation is ”pulled back” to the reference configuration for two main reasons. The first one

is for the clarity of presentation of the method and to avoid the confusion with different

notations. The second one is to emphasize the involvement of the domain evolution even

in the terms in which the domain velocity is not explicitly written down. This is obtained

through the Jacobian of the ALE map and might have a greater influence on the scheme

than originally thought. Some thoughts on this manner are given at the end of this chapter.

3.3.1 Implicit Euler scheme

The implicit Euler scheme is obtained by integrating (3.24) from tn to tn+1 and approxi-

mating temporal integrals implicitly, i.e. the unknown under the integral sign is taken at

time tn+1. For illustration see Figure 3.4. Thus, the implicit Euler scheme results in the

following discretized FEM formulation:

mh(ûh, ψ̂h)
n+1 −mh(ûh, ψ̂h)

n + en+1
h (ûh, ψ̂h;wh)

n+1
n

− bh(ûh, ψ̂h;wh)
n+1 + ah(ûh, ψ̂h)

n+1 = 0.

(3.27)
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Ωn−1 Ωn Ωn+1wh

∣∣∣
[tn−1,tn]

wh

∣∣∣
[tn,tn+1]

un−1
h

unh
un+1
h

Figure 3.5: Sketch of the Crank–Nicolson method on [tn−1, tn+1]. Evaluating un+1
h takes

place in configuration on time interval [tn, tn+1]. Test functions involved in SCL ”carry
the same weight” 1

2
(unh + un+1

h ) on [tn, tn+1] so there is no violation of SCL.

3.3.2 Crank–Nicolson scheme

Crank–Nicolson scheme is obtained by integrating (3.24) from tn to tn+1 and approx-

imating temporal integrals by trapezoidal rule. For illustration see Figure 3.5. Thus,

application of the Crank–Nicolson scheme results in the following discretized FEM for-

mulation:

mh(ûh, ψ̂h)
n+1 −mh(ûh, ψ̂h)

n

+
1

2

(
enh(ûh, ψ̂h;wh)

n+1
n + en+1

h (ûh, ψ̂h;wh)
n+1
n

)
− 1

2

(
bh(ûh, ψ̂h;wh)

n + bh(ûh, ψ̂h;wh)
n+1
)

+
1

2

(
ah(ûh, ψ̂h)

n + ah(ûh, ψ̂h)
n+1
)

= 0.

(3.28)

3.3.3 Backward differentiation formula – BDF

For the backward differentiation formulas (BDFs), one faces a slightly different approach

in comparison to implicit Euler or Crank–Nicolson schemes. BDFs are based on differ-

entiation, rather then integration, as was the case for implicit Euler or Crank–Nicolson

schemes. Consequently, in the discretization step, configuration evolution between mul-

tiple time intervals gets involved. For illustration see Figure 3.6.
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Ωn−1 Ωn Ωn+1wh

∣∣∣
[tn−1,tn]

wh

∣∣∣
[tn,tn+1]

un−1
h

unh

un+1
h

Figure 3.6: Sketch of the BDF2 method on [tn−1, tn+1]. Evaluating un+1
h takes place in

configuration on time interval [tn−1, tn+1]. In order not to violate the SCL, the whole evo-
lution of configuration on interval [tn−1, tn+1] has to be taken into account. Test functions
involved in SCL ”carry different weights on different time intervals”, namely, for the case
of BDF2, 3

2
un+1
h on [tn, tn+1] and −1

2
un+1
h on [tn−1, tn].

BDF2 scheme

Let us consider first the BDF2 scheme and the ordinary differential equation in the form

of

y′(t) = f(t, y(t)). (3.29)

ODE (3.29) discretized by the BDF2 scheme reads

3

2
yn+1 − 2yn +

1

2
yn−1 = ∆tf(tn+1, y

n+1). (3.30)

Rearranging the left hand side in (3.30), an equivalent form is obtained:

3

2
yn+1 − 2yn +

1

2
yn−1 =

3

2
(yn+1 − yn)− 1

2
(yn − yn−1). (3.31)

In the context of the time–dependent functions defined on the time–dependent domains,

when talking about a function at time t, one should actually have in mind the pair of

function and its domain at time t. Applying the BDF2 scheme for the time discretization

to the equation (3.24) it is obtained

3

2
mh(ûh, ψ̂h)

n+1 − 2mh(ûh, ψ̂h)
n +

1

2
mh(ûh, ψ̂h)

n−1

− 3

2
en+1
h (ûh, ψ̂h;wh)

n+1
n +

1

2
en+1
h (ûh, ψ̂h;wh)

n
n−1

− bh(ûh, ψ̂h;wh)
n+1 + ah(ûh, ψ̂h)

n+1 = 0.

(3.32)
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BDF3 scheme

Approach for the BDF3 scheme is analogous. One starts from the BDF3 discretized form

of ODE (3.29),

11

6
yn+1 − 3yn +

3

2
yn−1 − 1

3
yn−2 = ∆tf(tn+1, y

n+1), (3.33)

rewriting it in form

11

6
yn+1 − 3yn +

3

2
yn−1 − 1

3
yn−2

=
11

6
(yn+1 − yn)− 7

6
(yn − yn−1) +

1

3
(yn−1 − yn−2).

(3.34)

Finally, modified BDF3 SCL–preserving formulation of (3.24) reads:

11

6
mh(ûh, ψ̂h)

n+1 − 3mh(ûh, ψ̂h)
n +

3

2
mh(ûh, ψ̂h)

n−1 − 1

3
mh(ûh, ψ̂h)

n−2

− 11

6
en+1
h (ûh, ψ̂h;wh)

n+1
n +

7

6
en+1
h (ûh, ψ̂h;wh)

n
n−1 −

1

3
en+1
h (ûh, ψ̂h;wh)

n−1
n−2

− bh(ûh, ψ̂h;wh)
n+1 + ah(ûh, ψ̂h)

n+1 = 0. (3.35)

Thus, following the ideas developed in the above examples, one is able to prove the fol-

lowing proposition which can then be applied to various discretization schemes. Consider

the semi–discrete FEM formulation of SCL:

d

dt

∫
K̂

ψ̂h Ĵ h,t dx̂ =

∫
K̂

ψ̂h d̂iv(F̂ h,t ŵh) dx̂,

75



doi:10.6342/NTU202003676

and denote

mh(ψ̂h) =

∫
K̂

ψ̂h Ĵ h,t dx̂ , mh(ψ̂h)
n =

∫
K̂

ψ̂h Ĵh,n dx̂ ,

eh(ψ̂h;wh)
n+1
n =

∫
K̂

ψ̂h d̂iv
(
In+1
n [F̂ h,twh]

)
dx .

PROPOSITION 3.3.1 Let the following discretization in time be performed on the tran-

sient term in the FEM formulation of SCL:

d

dt
mh(ψ̂h) ≈ Dα

t ,l mh(ψ̂h) =
n−l∑

k=n+1

α(k)mh(ψ̂h)
k, (3.36)

for some l ≤ n and α(k) ∈ Q, ∀k. Assume that Dα
t ,l mh(ψ̂h) can be rewritten in form

Dα
t ,l mh(ψ̂h) =

n−l+1∑
k=n+1

β(k)
[
mh(ψ̂h)

k −mh(ψ̂h)
k−1
]
, (3.37)

where beta is defined recursively by

β(n+ 1) = α(n+ 1),

β(k) = α(k) + β(k + 1), for k = n, . . . , n− l + 1.

Then, term

tn+1∫
tn−l

∫
K̂

ψ̂h d̂iv
(

[F̂ h,twh]
)

dx

 dt in the FEM formulation of SCL can be

discretized in such a way that discrete SCL is trivially satisfied.

Proof. Proposition is proved by mathematical induction. The base step

mh(ψ̂)n+1 −mh(ψ̂)n = eh(ψ̂h;wh)
n+1
n
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is satisfied by the construction. The inductive step is straightforward:

Dα
t ,l mh(ψ̂h) =

n−l∑
k=n+1

α(k)mh(ψ̂h)
k

=
n−l+1∑
k=n+1

β(k)
[
mh(ψ̂h)

k −mh(ψ̂h)
k−1
]

=
n−l+1∑
k=n+1

β(k)
[
eh(ψ̂h;wh)

k
k−1

]
.

�

3.4 Numerical validation

In this section a numerical validation of the SCL–preserving method derived in this sec-

tion is performed. For the first and second order schemes results are compared with the

benchmark problems set–up in [6, 19]. First the stability for different schemes is tested,

and then the accuracy is assessed. For the benchmark problems in original papers [6, 19]

piecewise linear finite elements are employed and the same selection is chosen in here.

In all of the following examples, domain Ω is a square at all times – hence Ωh = Ω,

∀t ∈ [0, T ], i.e. there is no geometric error due to the domain discretization.

3.4.1 Stability

The following problem is considered:

∂tu− 0.01∆u = 0 in QT

u = 0 on ∂Ω, t ∈ (0, T )

u(0) = 1600x(1− x)y(1− y) in Ω0

(3.38)

with Ω0 = [0, 1]2. The prescribed ALE map is given below

Ât(x̂) = (2− cos 20πt) x̂ in Ω̂ = Ω0. (3.39)
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The time interval of interest is [0, 0.4] which corresponds to four periods of oscillations

of the domain.

In [6, 19] they used the Gronwall lemma to show that the L2–energy of the solution u,

‖u(t)‖L2(Ω(t)) =

∫
Ω(t)

|u(t)|2 dx


1/2

,

decreases with t. Therefore, for a stable discretization, the same decreasing trend should

be expected for the discrete solution.

The same arrangement for the mesh density and time step lengths is used as in the

original papers [6, 19]. Mesh velocity is calculated according to the schemes described in

Section 3.2. The results for the stability are shown in Figures 3.7 and 3.8 for the implicit

Euler scheme (mIE, m denoting modified), Crank–Nicolson (mCN), BDF2 (mBDF2) and

BDF3 (mBDF3) schemes.

The firstly proposed scheme with piecewise constant in time mesh velocity coin-

cides with the method for the velocity calculation in [19] and the numerical results are

in exquisite arrangement with theirs. It can be noticed that, if the time step is chosen

sufficiently small, all schemes produce solutions with the decreasing L2(Ω)–norms. For

the cases with (relatively) large time steps, only the implicit Euler scheme preserves the

decreasing behavior of the norm of solution.

Employing the second approach for the mesh velocity calculation, results follow the

same pattern. However, the difference is noticeable for higher order methods. In this case

the displacement field is quadratic in time, and tests regarding stability issues were pro-

posed and performed in [6]. Their results seem (almost) identical to the ones obtained for

the piecewise linear displacement, while ours show a noticeable difference. Figures 3.7

and 3.8 should be compared. One can notice that for the small time steps this second ap-

proach results a smaller rate of drop of the solution energy (apart from the Euler scheme).

The reason for that is still not fully clear, but it seems that less numerical diffusion is

generated in comparison with the first approach.

The second order schemes give rise to some wiggles for large time steps, while for
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smaller time steps the solution behaves as theoretically predicted. In [19] the oscillations

for Crank–Nicolson scheme are predicted on theoretical background. Thus, once again it

is confirmed that application of a scheme not violating the SCL alone is not sufficient to

retain stability, as noticed by various authors already.

BDF3 seems more unstable for large time steps than the other considered schemes.

For the cases with small time steps, the scheme stabilizes and the results are in agreement

with the expected behavior. From Figure 3.8 it can be seen that BDF3 scheme results in

the smallest slope for energy decrease when time step is small enough to avoid instabili-

ties. Thus, it is suspected that it produces the least numerical diffusion compared to other

schemes and provides the best accuracy and convergence order.

The reason for the instabilities in higher order schemes most probably lies in the re-

lation between the time step and the grid velocity. This relation is still not very clear and

further investigation needs to be done.

3.4.2 Convergence

For convergence analysis, again, the benchmark problem posed in [6] is considered:

∂tu− 0.1∆u = f in QT

u = 0 on ∂Ωt, t ∈ (0, T )

u(0) = 16x(1− x)y(1− y) in Ω0

(3.40)

with Ω(0) = [0, 1]2 and the prescribed ALE map

Ât(x̂) = (2− cos 10πt) x̂ in Ω̂ = Ω0. (3.41)

The forcing term f has been chosen such that the exact solution is given by

û(x̂, t) = 16

(
1 +

1

2
sin(5πt)

)
x̂ (1− x̂ ) ŷ(1− ŷ). (3.42)

Problem is discretized in space employing P2 elements.

79



doi:10.6342/NTU202003676

(a) (b)

(c) (d)

Figure 3.7: The L2(Ω(t)) norms of the discrete solutions for different time steps and
different methods: implicit Euler method (a) (mIE-dc, m denoting modified), Crank–
Nicolson method (b) (mCN–dc), BDF2 (mBDF2–dc) (c) and BDF3 (c) (mBDF3–dc)
methods. Grid velocity is piecewise constant in time calculated by the first proposed
approach (3.12) (discontinuous in time reconstruction).
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(a) (b)

(c) (d)

Figure 3.8: The L2(Ω(t)) norms of discrete solutions for different time steps and dif-
ferent methods: implicit Euler method (mIE-c, m denoting modified), Crank–Nicolson
method (mCN–c), BDF2 (mBDF2–c) and BDF3(mBDF3–c) methods. Grid velocity is
continuous in time calculated by the second proposed approach (3.20) (continuous in
time reconstruction).
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A sequence of decreasing time steps 0.05, 0.01, 0.005, 0.001 has been taken and

computed the L2(Ωh)–norm of the error at time t = 0.3 over the physical domain Ωh(0.3)

and plotted the error against the discrete time step in a log–log scale.

It can be observed that (see Figure 3.9), apart from the BDF3, all different schemes

preserve the expected order of convergence for both selections of computations of the

grid velocity. Euler’s scheme remains linearly convergent, while Crank–Nicolson and

BDF2 schemes remain quadratically convergent. BDF3’s rate of convergence is, however,

between second and third order, but seems closer to second order.

3.4.3 Accuracy

To show that the expected accuracy is retained on moving meshes, the heat equation on

fixed domain is considered:

∂tu− α∆u = f in QT , (3.43)

where α = 0.1, T = 2, Ω = Ω0 = [0, 1]2, ∀t ∈ (0, T ), i.e. the domain is fixed in

time. In order to simulate the moving domain problem, the ALE map which deforms the

mesh (with Ω̂ = Ω0) is prescribed, but such that the domain boundary is kept unchanged.

This approach allows to compare the results obtained on the fixed mesh (for which the

accuracy of the schemes is known) with those obtained on moving meshes. The source

term f and the initial condition u(0) in the above equation are chosen such that

u(x, t) = sin t cos(2(x− 1

2
)2 + 2(y − 1

2
)2)

is the exact solution. Clearly, due to the mesh movement, the spatial discretization

changes and possibly influences the accuracy of numerical solution. On dense meshes,

difference in accuracy due to spatial discretization should be minimally affected. As

shown in the previous Section 3.4.1, stability might play a part as well. If the produced

errors for fixed and moving mesh cases exhibit the same pattern (with possibly small

difference due to different meshes), then the accuracy is the same for both methods.

The mesh is moved according to the ALE maps given bellow (interpolated onto P1
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.9: Rates of convergence for different time–stepping methods in log–log scale:
implicit Euler method (mIE-c, mIE-dc), Crank–Nicolson method (mCN–c, mCN–dc),
BDF2 (mBDF2–c, mBDF2–dc) and BDF3(mBDF3–c, mBDF3–dc) methods. m denotes
modified, c continuous and dc discontinuous in time grid velocity reconstruction. x–axis
represents the time step ∆t in discretization scheme (∆t = 0.001, 0.005, 0.01, 0.05), y–
axis represents the ‖un+1

h − uh(tn+1)‖L2(Ω(tn+1)) with n+ 1 such that tn+1 = 0.3. Dashed
black lines denote the slopes.
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space):

Â
A

(x̂, t) =

x̂ +1
2

sin(πt) sin(π x̂ (1− x̂ )(x̂ −1
2
))

ŷ +1
2

sin(πt) sin(π ŷ(1− ŷ)(ŷ −1
2
))


and

Â
B

(x̂, t) =

x̂ + sin(πt) x̂ (1− x̂ ) ŷ(1− ŷ)

ŷ + sin(πt) x̂ (1− x̂ ) ŷ(1− ŷ)

 .
The above maps are constructed with the objective to change the area of triangles in order

to emphasize the problematics rising from the violation of the SCL constraint.

Results obtained with SCL–violating schemes are also plotted in order to compare and

emphasize the necessity of SCL–preservation. From the Figure 3.10 one can observe that

the classical SCL–violating schemes may produce an error that does not follow the pattern

of the one obtained in the fixed grid. The difference is especially noticeable for the BDF2

method, although this is expected from the theoretical discussion in 5.3. The proposed

SCL–non–vioalting schemes produce errors that follow the patterns of the ones obtained

in the fixed grid in very good agreement. For the small time steps agreement is excellent,

while for the larger time steps solutions might suffer from the artificial numerical diffusion

already discussed in Section 3.4.1.

3.5 Discussion

A modified approach of handling PDEs on time–dependent domains with finite element

method has been introduced within Arbitrary Lagrangian Eulerian framework. The ap-

proach exploits the full potential of the polynomial in time form of the mesh velocity.

The time integration is performed exactly on the terms arising from the domain evolution.

Consequently, the SCL identity is trivially satisfied. While much more work remains

to be done on the question of stability, it seems that in case when discrete time step is

sufficiently small to keep the scheme stable, the accuracy of the schemes is maintained.

From the numerical results, a conclusion can be made that for the problems on moving

meshes not violating SCL alone is not enough for the stability of the schemes. Although

it yet remains to be confirmed, it looks like the terms that do not explicitly involve the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.10: The L2(Ωt)–norms of errors between the exact and numerical solutions for
different schemes and time step ∆t = 0.05. In the legend ”fixed” refers to solutions
obtained on fixed grids, while ”mov-wSCL” and ”mov-nSCL” for ones obtained on moving
grids with the proposed non–violating SCL (wSCL, w denoting with) schemes (”dc” and
”c” standing for the discontinuous and continuous in time reconstruction of grid velocity),
and the classical, SCL–violating (nSCL, n denoting no) schemes, respectively.
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grid velocity play a more significant role than expected. This is suspected by considering

the problem re–posed on the reference configuration. In that case the dependence of all

terms on the ALE map (and thus on the mesh motion) is more emphasized than in the

case when problem is posed on physical configuration. This dependence emerges in the

form of Jacobians and gradients of ALE map.

The main advantage of the newly derived approach is in its simplicity for the general-

ization to an arbitrary temporally high–order scheme without (explicitly) worrying about

the discrete SCL. Independently on the chosen scheme for the discretization of temporal

derivative, it is always possible to satisfy the SCL. Moreover, the satisfaction of SCL is

trivial by the construction of the alternative formulation, which is based on the differential

statement of SCL. Two alternative ways of mesh velocity calculation have been presented,

and their influences on the scheme stability have been investigated.
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CHAPTER 4

Stabilization methods for FEM on moving meshes

Stabilization techniques are important tools for finite element method employed in com-

putational fluid dynamics and related fields. When the character of the system of equa-

tions to be solved is of one type, typically of elliptic or parabolic type, yet close to the

hyperbolic type, application of numerical scheme may produce nonphysical oscillations

in the numerical solution if the computational mesh is not sufficiently dense ([1]). Typical

examples are convection–diffusion (CD) equations with dominating convection term. In

these situations, continuous problem is well posed and it has a unique solution based on

the Lax–Milgram lemma, yet numerical problem obtained by standard FEM is not sta-

ble. Loss of numerical stability is a consequence of too small coercivity constant of the

bilinear form in the weak formulation (see e.g. [3]). Ratio of convection and diffusion

terms is important for the behavior of the numerical solution of CD equation, hence it is

of interest to introduce a dimensionless quantity, the Péclet number, which represents this

ratio. In cases of small Péclet numbers, the convection–diffusion problem is a standard

parabolic (or elliptic) differential equation that can be solved by standard FEM. When

Péclet number becomes large enough, numerical method has to be modified in order to

preserve its stability and avoid nonphysical oscillations in the solution. Detailed insights
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on these issues as well as some popular techniques on handling them can be found in [3]

for the case of problems posed in the time–independent (stationary) domains. For the case

of problems posed in the time–dependent domains, aside from stability issues inherited

from the stationary domain case, an additional problematics arising from the domain evo-

lution is introduced. When dealing with such problems, most commonly in the context

of fluid dynamics, the arbitrary Lagrangian Eulerian (ALE) framework is often a prefered

environment in FEM when accurately tracking the moving boundary is required. A quick

review of the ALE framework is given in Section 1 while a detailed description can be

found in [41] and the references therein. In the process of rewriting the differential equa-

tion of interest in ALE framework, an additional term to the equation, which compensates

for the domain evolution, is introduced. This term, namely

div(uw) = u divw+w ·∇u, where u is the unknown,

involves the domain velocity and introduces an additional problematics in construction of

the numerical scheme. SCL problematics discussed in Section 3 arises from the term

involving divw while (possible) numerical instabilities due to convection–dominated

regime arise from the termw ·∇uwhich characterizes the PDE as (artificially) convection

type by default.

Numerical scheme developed in Chaper 3 (and in [21]) equips us with a systematic

way to satisfy the discrete SCL in conservative weak formulations. The aim of this chapter

is to extend it up to the stabilized FEM within the ALE framework keeping the discrete

SCL satisfied in the process. More precisely, in this section, three popular stabiliza-

tion methods commonly found in the literature, which are strongly consistent methods in

stationary domain scenario, are extended to ALE framework: Streamline Upwind/Petrov

Galerkin (SUPG) method (introduced in [22]), Galerkin Least Squares (GLS) method (in-

troduced in [24]) and Douglas–Wang/Galerkin (DWG) method (introduced in [25, 26, 27]

and occasionally referred to as unusual stabilized finite element method). Roughly, all of

these three methods are based on decomposing the differential operator that characterizes

the equation into its symmetric and skew symetric part – in the rest of the chapter we refer
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to this as S–SS (symmetric–skew symmetric) decomposition. The standard Galerkin FEM

formulation deals well with symmetric differential operators, while it produces unstable

discretizations of skew–symmetric operators. The equations of fluid dynamics typically

involve both of these operators – symmetric operators modeling the diffusion and skew

symmetric operators modeling the convection. Thus, one is in an unfavorable position in

choosing the discretization approach as already mentioned in the introductory paragraph.

In [23] they proposed an inconsistent variant of the SUPG method for problems posed

in time–dependent domains in conservative form. They studied implicit Euler and Crank–

Nicolson schemes and employed technique similar to the one derived in [5] in order to

satisfy the discrete SCL. Furthermore, they managed to stabilize these schemes using

SUPG–like stabilization of convection without violating the discrete SCL. The major

drawback seems to be the proposed scheme inconsistency – their inconsistent SUPG for-

mulation is obtained by neglecting the transient term in SUPG stabilization expression.

However, to the best of author’s knowledge, this seems to be the first work that studies

convection stabilization for conservative forms of equations in time–dependent domains.

In this chapter, employing the scheme derived in Chapter 3, strongly consistent SUPG,

GLS, DWG variants of stabilizations for the time–dependent domain case are derived.

4.1 S–SS decomposition of parabolic equations

For illustration, consider a linear convection–diffusion–reaction (CDR) equation posed in

time–dependent domain QT in dimensionless form:

∂tu+ v ·∇u− ε∆u+ σu = f in QT ,

u = 0 on ∂Ω(t), t ∈ (0, T ),

u(0) = 0 in Ω0,

(4.1)

where ε = 1/Pe (Pe being the Péclet number), σ ∈ L2(0, T ; L2(Ω)) the dimensionless

reaction function, f ∈ L2(0, T ; L2(Ω)) the forcing term and v ∈ L2(0, T ; L2(Ω;Rd))

prescribed (fluid) velocity. For example, equation (4.1) could model a transport of some
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quantity u in QT by fluid with velocity v. Written in ALE framework, equation (4.1)1

reads
∂

∂t

∣∣∣∣
x̂

u+ (v−w) · ∇u− ε∆u+ σu = f in QT . (4.2)

4.1.1 S-SS decomposition of differential operator on time–dependent

domain

A linear operator can be decomposed into its symmetric and skew symmetric parts with

respect to some scalar product. More precisely, if R is an operator of interest and R∗ is

its adjoint operator with respect to scalar product 〈·, ·〉

〈Rψ, χ〉 = 〈ψ,R∗ χ〉,

for ψ and χ arbitrary vectors in an underlying vector space, then the following identities

hold:

RS =
1

2
(R+R∗), RSS =

1

2
(R−R∗), R = RS +RSS .

In the above expressions, RS denotes the symmetric part of R and RSS the skew sym-

metric part ofR.

Let us define differential operators R on L2(0, T ; H1
0(Ω)) and L on H1

0(Ω) in context

of equation (4.2) by

Ru =
∂

∂t

∣∣∣
x̂
u+ Lu,

Lu = (v−w) · ∇u− ε∆u+ σu.

(4.3)

Hence, we can rewrite equation (4.1) in form

Ru = f in QT , R =
∂

∂t

∣∣∣∣
x̂

+L .

In order to perform S–SS decomposition of operator R with respect to scalar product on

L2(0, T ;L2(Ω)) in the context of conservative weak formulation, its adjoint operator R∗
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has to be firstly determined: for ψ ∈ L2(0, T ; H1
0(Ω)) ∩ C0

c([0, T ];H1
0 (Ω))

(Ru, ψ)L2(0,T ;L2(Ω)) =

∫
QT

(
∂

∂t

∣∣∣
x̂
uψ + (v−w) · ∇uψ − ε∆uψ + σuψ

)
dx dt

=

T∫
0

d

dt

∫
Ω

uψ dx dt −
∫
QT

(
u
∂

∂t

∣∣∣
x
ψ − uψ divw

)
dx dt

+

∫
QT

(−u(v−w) · ∇ψ − div(v−w)uψ + ε∇u · ∇ψ + σuψ) dx dt

=

∫
QT

(
−u ∂

∂t

∣∣∣
x
ψ − u(v−w) · ∇ψ − div(v)uψ − εu∆ψ + σuψ

)
dx dt

= (u,R∗ ψ)L2(0,T ;L2(Ω)).

(4.4)

Hence, it is found

RS u = −ε∆u+ σu− 1

2
u div v,

RSS u =
∂

∂t

∣∣∣
x̂
u+ (v−w) · ∇u+

1

2
u div v

(4.5)

and it is easily seen thatR = RS +RSS .

Remark 7 Note that in order to formally obtain the adjoint operator of differential oper-

atorR, we take a larger set of test functions compared to the one used in ALE framework

where test functions are time–independent (in sense of ALE time derivative).

Alternatively, since the test functions in ALE framework are time–independent (in the

sense of material derivative), S–SS decomposition of R in the sense of non–conservative

weak formulation with respect to L2(Ω) scalar product also makes sense. From this per-

spective, ∂
∂t

∣∣
x̂

is a symmetric operator since

ψ
∂

∂t

∣∣∣∣
x̂

u =
∂

∂t

∣∣∣∣
x̂

(uψ), ψ ∈ H1
0(Ω).
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Finding the adjoint operator of L with respect to L2(Ω) scalar product

(Lu, ψ)L2(Ω) =

∫
Ω ((v−w) · ∇uψ − ε∆uψ + σuψ) dx

=

∫
Ωt

(−u(v−w) · ∇ψ − u div(v−w)ψ − εu∆ψ + σuψ) dx

= (u,L∗ ψ)L2(Ω),

(4.6)

S-SS decomposition of L with respect to L2(Ω) scalar product is found:

LS u = −1

2
div(v−w)u− ε∆u+ σu,

LSS u = (v−w) · ∇u+
1

2
div(v−w)u.

(4.7)

Consequently, S-SS decomposition ofR in the sense of non–conservative weak formula-

tion with respect to L2(Ω) scalar product is

RS u =
∂

∂t

∣∣∣
x̂
u− 1

2
div(v−w)u− ε∆u+ σuψ =

∂

∂t

∣∣∣
x̂
u+ LS u,

RSS u = (v−w) · ∇u+
1

2
div(v−w)u = LSS u.

(4.8)

Both of the S-SS decompositions of operator R are equivalent up to the weak formu-

lation of interest. Clearly, one decomposition can be obtained from the other by chang-

ing the ambient test function spaces (time dependent or independent) and formulation’s

viewpoint (conservative or non–conservative). Since this work deals with conservative

standard Galerkin weak formulations, the S–SS decomposition of R in the sense of con-

servative formulation is studied in detail in this chapter.

4.2 Numerical diffusion based stabilizations

Stabilization methods based on numerical diffusion are obtained by adding some extra

mesh–dependent terms to the classical Galerkin weak formulation. Most commonly, this

means adding artificial diffusion only in streamline upwind direction. However, it was

already recognized that stabilization in streamline direction is not sufficient for certain
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problems, and, consequnetly, methods introducing stabilization orthogonal to the stream-

line direction have been proposed (see [45, 46]).

The focus of this chapter is on the methods of the following fashion:

C(uh, ψh) + S%(uh, ψh) = 0, (4.9)

where C(uh, ψh) denotes the classical FEM formulation of the underlying PDE for the

unknown u, and S%(uh, ψh) is some artificially added stabilization term. The following

property is desirable:

DEFINITION. We say that formulation (4.9) is strongly consistent if

C(u, ψh) + S%(u, ψh) = 0, ∀ψh ∈ Vh,

where u is the exact solution of the underlying PDE and Vh an ambient finite element

space for the FEM formulation (4.9).

Schemes that are not strongly consistent cannot, in general, maintain the optimal accuracy

order (see [3]).

In context of the problem (4.1), term C(uh, ψh) denotes the (conservative) weak for-

mulation of equation (4.2). The stabilization term S%(uh, ψh) is the summation over all

elements of the triangulation:

S%(uh, ψh) =
∑
K∈T h

τK

∫
K

(
Ruh − fh

)(
RSS ψh + %RS ψh

)
dx,

where T h is the triangulation of Ωh, % a real number to be appropriately chosen and

τK a constant–per–element parameter to be defined below. Employing the notation from

Chapter 3 (Section 3.3) on the equation (4.2) to obtain conservative weak formulation,
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namely

mh(uh, ψh) =

∫
Ωh

ψhuh dx,

ah(uh, ψh;wh) =

∫
Ωh

(
ψh vh ·∇uh + ε∇ψh · ∇uh + σψhuh − ψhfh

)
dx,

bh(uh, ψh;wh) =

∫
Ωh

ψhwh ·∇uh dx,

eh(uh, ψh;wh) =

∫
Ωh

ψhuh divwh dx,

semi–discrete FEM formulation of the equation (4.2) reads:

C(uh, ψh) =
d

dt
mh(uh, ψh)− bh(uh, ψh;wh)− eh(uh, ψh;wh)

+ ah(uh, ψh;wh)

= 0.

(4.10)

Denote by Vh ⊂ H1(Ωh) the ambient finite element space for uh and ψh, and by Xh =

Vh ∩H1
0(Ωh). % ∈ {−1, 0, 1} in term S% defines the method:

% =


−1 Douglas–Wang/Galerkin (DWG) method,

0 Streamline Upwind/Petrov Galerkin (SUPG) method,

1 Galerkin Least Squares (GLS) method.

In the expression of S%, τK is a constant–per–element function of the local Péclet number,

PeK . For the case of equation (4.2) it can be defined as

PeK =
hK‖vh−wh ‖L∞(K)

ε
and τK =


hK

‖vh−wh ‖L∞(K)
PeK > 1,

0 PeK ≤ 1,

where hK = diamK denotes the diameter of elementK ∈ Th. Alternative definitions can

be chosen for hK itself; for example, in [47], hK is the element diameter in the direction
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of the convection vector rather than the pure element diameter. The calculation of the

optimal stabilization parameter τK is still an area of active research and many different

possible selections have been proposed in the literature (for a nice review see [48, 49]).

Remark 8 Often, in the literature, for the case of the SUPG method one applies only the

convection part of the skew symmetric operator to the test function rather than the whole

operator (see decomposition (4.5) of R). This is because the convection term is usually

the most dominant skew symmetric part and it is the main reason for instabilities. Also,

it has a clear physical interpretation – adding artificial diffusion along the streamline

direction in order to stabilize the scheme.

As already mentioned, the priority is to develop a strongly consistent stabilization

schemes for conservative weak formulations such that the discrete SCL is not violated.

In Chapter 3 a methodology was derived within which discrete SCL is trivially satis-

fied independently on the discretization scheme for the temporal derivative. The main

”trick” was to ”pull back” the conservative (semi–discrete) weak formulation C(uh, ψh)

onto the reference domain Ω̂h and exactly integrate the terms involving the mesh velocity

(or, rather, divwh). For the equation (4.2) the pullback to the reference configuration

is obtained by straightforward manipulations described in Chapter 3. The pullback to

reference configuration of semi–discrete FEM formulation C(uh, ψh) reads:

Ĉ(ûh, ψ̂h) = mh(ûh, ψ̂h)− bh(ûh, ψ̂h; ŵh)− eh(ûh, ψ̂h; ŵh)

+ ah(ûh, ψ̂h; ŵh)

= 0,

(4.11)
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where

m̂h(ûh, ψ̂h) =

∫
Ω̂h

ψ̂h ûh Ĵh,t dx,

âh(ûh, ψ̂h; ŵh) =

∫
Ωh

(
ψ̂h v̂h ·[F̂

T
h,t ∇̂ ûh] + ε

1

Ĵh,t

[F̂
T
h,n ∇̂ ψ̂h] · [F̂

T
h,t ∇̂ ûh]

+ σ ψ̂h ûh Ĵh,t− ψ̂h f̂ h Ĵh,t

)
dx,

b̂h(ûh, ψ̂h; ŵh) =

∫
Ωh

ψ̂h ŵh ·[F̂
T
h,t ∇̂ ûh] dx,

êh(ûh, ψ̂h; ŵh) =

∫
Ωh

ψ̂h ûh d̂iv[F̂ h,twh] dx .

In similar fashion, S%(uh, ψh) has to be pulled back onto the Ω̂h.

Ŝ
%
(ûh, ψ̂h) = ̂S%(uh, ψh) =

 ∑
K∈T h

τK

∫
K

(
Ruh − fh

)(
RSS ψh + %RS ψh

)
dx

∧

=
∑
K̂∈T̂ h

τ̂K

∫
K̂

Ĵ
(
R̂uh − fh

)(
R̂SS ψh + %R̂S ψh

)
dx

The pullbacks of operator R (in strong conservative form) and its symmetric and skew

symmetric parts given by (4.5) read

R̂ û = R̂u

=
1

Ĵ t

∂

∂t

∣∣∣∣
x̂

(û Ĵ t)−
1

Ĵ t

û d̂iv(F̂ ŵ) +
1

Ĵ t

(v̂− ŵ) · F̂
T
∇̂ û

− ε 1

Ĵ
2

t

F̂
T
F̂ : ∇̂(∇̂ û) + σ û,

(4.12)

and

R̂SS û = R̂SS u =
∂

∂t

∣∣∣∣
x̂

û +
1

Ĵ t

(v̂− ŵ) · F̂ t

T
∇̂ û +

1

Ĵ
1

2
û d̂iv(F̂ t v̂),

R̂S û = R̂S u = −ε 1

Ĵ
2 F̂ t

T
F̂ t : ∇̂(∇̂ û) + σ û − 1

Ĵ
1

2
û d̂iv(F̂ t v̂).

(4.13)
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Hence, Ŝ
%

can be rewritten as

Ŝ
%
(ûh, ψ̂h) =

∑
K̂∈T̂ h

τ̂K

∫
K̂

Ĵ t

(
R̂ ûh−fh

)(
R̂SS ψ̂h +% R̂S ψ̂h

)
dx̂ (4.14)

Finally, stabilized semi–discrete ALE FEM formulation of problem (4.1) reads:

find uh ∈ Xh such that ∀ψh ∈ Xh

Ĉ(ûh, ψ̂h) + Ŝ
%
(ûh, ψ̂h) = 0,

(4.15)

and we are able to prove

PROPOSITION 4.2.1 Stabilized semi–discrete ALE FEM formulation (4.15) of problem

(4.1) is strongly consistent.

Proof. Let u be an exact solution of (4.15) in QT and û its reference configuration

counterpart in Q̂T . Since û is an exact solution in Q̂T ,

Ĉ(û, ψ̂h) = 0, ∀ψ ∈ Xh .

Furthermore, by assumption R̂ û − f̂ = 0. Hence,

Ŝ
%
(û, ψ̂h) = 0, ∀ψ ∈ Xh .

Strong consistency follows. �

It is straightforward to extend Proposition 4.2.1 to the general case:

PROPOSITION 4.2.2 Let Ω(t) ⊂ Rd be a Lipschitz domain for all t ∈ [0, T ], L an

elliptic operator on V ⊂ L2(0, T ; H1(Ω)) andR = ∂
∂t

∣∣
x̂

+L with its S–SS decomposition

RS +RSS . Let C(uh, ψh) be a semi–discrete conservative ALE FEM formulation of the

97



doi:10.6342/NTU202003676

PDE

Ru = f in QT

u = 0 on ∂Ω, t ∈ (0, T ),

(4.16)

where ψh ∈ Xh with Xh = Vh ∩H1
0(Ωh) for t ∈ [0, T ] is an ambient finite element space,

and S%(uh, ψh) the %–stabilization, % ∈ {−1, 0− 1}, such that

Ŝ
%
(ûh, ψ̂h) =

∑
K̂∈T̂ h

τ̂K

∫
K̂

Ĵ t

(
R̂ ûh− f̂ h

)(
R̂SS ψ̂h +% R̂S ψ̂h

)
dx̂ , ψh ∈ Xh .

Then, formulation Ĉ(ûh, ψ̂h) + Ŝ
%
(ûh, ψ̂h) is strongly consistent.

Remark 9 Construction of strongly consistent stabilization schemes is not an easy task

for the conservative weak formulation (on time dependent domains). Indeed, to the best

of authors knowledge, at the time of writing this work, no strongly consistent stabilization

scheme exists for a conservative weak formulation on physical domain. The problematics

behind attempts of such constructions has been discussed in [23].

4.2.1 Selection of the stabilization parameter on time–dependent do-

main

In general, τK is a function of convective velocity (vh−wh) and element parameter hK

(usually, element diameter). An optimal choice of this parameter is yet to be determined

even for the stationary domain case, while for the time–dependent domain case addi-

tional difficulties are encountered. A detailed stability analysis is necessary in order to

get deeper insights on the selection of this parameter, but we mention some of the pos-

sibilities below. The problem arises because hK changes during the mesh evolution on

[tn, tn+1] which is the main difference comparing with the fixed domain case where hK

is constant in time. It makes sense to choose some averaged in time variation of hK , for

example

hK =
1

∆t

∫ tn+1

tn

hK dt ,
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or hK(t) for some t ∈ [tn, tn+1]. In all of the examples in this work, hK at time tn+1 (in

the spirit of the implicit schemes) is chosen, hK
∣∣
t=tn+1

.

The same question arises for the selection of L∞(K)–norm of the convection velocity

vh−wh. If it is constant in time, as is most often the case in FEM approach, then the

choice is clear. However, in Chapter 3 a continuous in time (linear polynomial in time)

reconstruction of the mesh velocity w was proposed. This continuous reconstruction

offered some advantages over the piecewise constant in time reconstruction. In this case,

question of the most appropriate time for the evaluation of L∞(K)–norm of vh−wh

certainly makes sense. In this work, L∞(tn, tn+1;L∞(K))–norm is chosen.

4.3 Temporal discretization of stabilized conservative for-

mulation

It was shown in Chapter 3, Proposition 3.3.1, that, based on the temporal discretization of

the term mh(ûh, ψ̂h),
d

dt
mh(ûh, ψ̂h) ≈ Dα

t ,l mh(ûh, ψ̂h),

a discretization of the term eh(uh, ψh;wh) can be performed in such a way that the discrete

SCL is trivially satisfied. Hence, temporal discretization of term Ĉ(ûh, ψ̂) in formulation

(4.15) is performed using the methodology developed in Chapter 3. Clearly, we wish to

have the discrete SCL satisfied in the second term of the formulation (4.15), namely, in

term Ŝ(ûh, ψ̂). In case the discrete SCL is violated in this term, numerical sinks/sources

can appear and, potentially, lower the accuracy of the strongly consistent scheme. The

term responsible for the SCL problematics appears only in R̂ ûh in (4.14), i.e. term in

expression (4.14) which cannot be discretized straightforwardly reads:

− τ̂K

∫
K̂

ûh d̂iv(F̂ h,t ŵh)
(
R̂SS ψ̂h +% R̂S ψ̂h

)
dx̂ , ψ̂h ∈ Xh , K̂ ∈ T h . (4.17)
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In order for the discrete SCL to be satisfied, discretization in time of (4.17) depends on

discretization in time of

τ̂K

∫
K̂

∂

∂t

(
ûh Ĵh,t

)(
R̂SS ψ̂h +% R̂S ψ̂h

)
dx̂ , ψ̂h ∈ Xh , K̂ ∈ T h . (4.18)

Note that the time derivative operator acts only on term ûh Ĵh,t in (4.18) which means that

temporal discretization has to be performed as follows: in the spirit of Proposition 3.3.1,

∂

∂t

(
ûh Ĵh,t

)(
R̂SS ψ̂h +% R̂S ψ̂h

)
≈ Dα

t ,l

[
ûh Ĵh,t

] [
R̂SS ψ̂h +% R̂S ψ̂h

]∣∣∣
t=tk

,

(4.19)

where the term R̂SS ψ̂h +% R̂S ψ̂h is evaluated at point t = tk. Typically, assuming that

ûh is already evaluated at times lesser or equal to tn and is a stable solution, one should

generally take tk = tn+1 in expression (4.19). Consequently, Proposition 3.3.1 provides

the time integration of (4.17) with R̂SS ψ̂h +% R̂S ψ̂h again evaluated at the same point

t = tk as in discretization (4.19).

For illustration, let us take a look at the two examples illustrating the discretization

in practice on concrete schemes. Implicit Euler scheme (integration based scheme) and

BDF2 scheme (differentiation based scheme) are considered. The discretization of clas-

sical FEM formulation C(ûh, ψ̂) is performed as described in Chapter 3, Section 3.3, and

the discretization itself is denoted as CIE(ûh, ψ̂h)
n+1 and CBDF2(ûh, ψ̂h)

n+1 for implicit

Euler and BDF2 schemes, respectively. Superscript n + 1 denotes that the unknown is

at time layer tn+1. Correspondingly, the discretization in time of the stabilization term is

denoted by S%IE(û, ψ̂)n+1 and S%BDF2(û, ψ̂)n+1.

Example 4.3.1 (Implicit Euler scheme) Employing the IE scheme, temporal discretiza-

tion is performed as

∂

∂t

(
ûh Ĵh,t

)
≈ 1

∆t

(
ûn+1
h Ĵh,n+1− ûnh Ĵh,n

)
,

while the L̂ ûh is evaluated at the current point in time, tn+1. Hence, the following dis-
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cretization of R̂ ûh is obtained:

Dn+1
IE

[
Ĵh,t R̂ ûh

]
= ûn+1

h Ĵh,n+1− ûnh Ĵh,n−In+1
n

[
ûn+1
h d̂iv(F̂ h,t ŵh)

]
− (v̂n+1

h − ŵn+1
h ) ·

[
F̂

T
h,n+1 ∇̂ ûn+1

h

]
+ σ Ĵh,n+1 û

n+1
h

− ε 1

Ĵh,n+1

[
F̂

T
h,n+1 F̂ h,n+1

]
:
[
∇̂(∇̂ ûn+1

h )
]
.

Then,

S%IE(û, ψ̂)n+1 =
∑
K̂∈T̂ h

τ̂K

∫
K̂

(
Dn+1

IE

[
Ĵh,t R̂ ûh

] )( [
R̂SS +% R̂S

] ∣∣∣
t=tn+1

ψ̂h

)
dx̂

and the full implicit Euler discretization of the conservative ALE FEM formulation for the

PDE (4.2) reads:

CIE(ûh, ψ̂h)
n+1 + S%IE(û, ψ̂)n+1 = 0.

Example 4.3.2 (BDF2 scheme) Employing the BDF2 scheme, temporal discretization is

performed as

∂

∂t

(
ûh Ĵh,t

)
≈ 1

∆t

(3

2
ûn+1
h Ĵh,n+1−2 ûnh Ĵh,n +

1

2
ûn−1
h Ĵh,n-1

)
,

while the L̂ ûh is evaluated at the current point in time, tn+1. Hence, the following dis-

cretization of R̂ ûh is obtained:

Dn+1
BDF2

[
Ĵh,t R̂ ûh

]
=

3

2
ûn+1
h Ĵh,n+1−2 ûnh Ĵh,n +

1

2
ûn−1
h Ĵh,n-1

− 3

2
In+1
n

[
ûn+1
h d̂iv(F̂ h,t ŵh)

]
+

1

2
Inn−1

[
ûn+1
h d̂iv(F̂ h,t ŵh)

]
− (v̂n+1

h − ŵn+1
h ) ·

[
F̂

T
h,n+1 ∇̂ ûn+1

h

]
+ σ Ĵh,n+1 û

n+1
h

− ε 1

Ĵh,n+1

[
F̂

T
h,n+1 F̂ h,n+1

]
:
[
∇̂(∇̂ ûn+1

h )
]
.

Then,

S%BDF2(û, ψ̂)n+1 =
∑
K̂∈T̂ h

τ̂K

∫
K̂

(
Dn+1

BDF2

[
Ĵh,t R̂ ûh

] )( [
R̂SS +% R̂S

] ∣∣∣
t=tn+1

ψ̂h

)
dx̂
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and the full BDF2 discretization of the conservative ALE FEM formulation for the PDE

(4.2) reads:

CBDF2(ûh, ψ̂h)
n+1 + S%BDF2(û, ψ̂)n+1 = 0.

4.4 Numerical validation for scalar conservation laws

In this section numerical validation of the proposed stabilization is performed. To investi-

gate the stability issues, the benchmark problems proposed in [6, 19, 23] are considered.

4.4.1 Heat equation on an oscillating domain

The following simple heat equation posed on time–dependent domain proposed in [6] is

considered:

∂tu− ε∆u = 0 in QT

u = 0 on ∂Ωt, t ∈ (0, T )

u(0) = 1600x(1− x)y(1− y) in Ω0

(4.20)

with ε = 10−2, Ω(0) = [0, 1]2 and the prescribed ALE map given by

Â(x̂, t) = (2− cos 20πt) x̂ in Ω̂ = Ω0. (4.21)

The time interval of interest is [0, 0.4] which corresponds to four periods of oscillations of

the domain. The initial mesh is uniformly distributed and triangular with 16 edges across

each side of the unit square (initial domain). The mesh velocity between times tn and

tn+1 is constant in time, calculated as

ŵh

∣∣∣
[tn,tn+1]

=
1

∆t

(
Âh,n+1−Âh,n

)
. (4.22)

Employing the Gronwall lemma, it was shown in [6, 19] that the norm ‖u(t)‖L2(Ωt)

decreases with t. Therefore, the same decreasing trend should be expected for the dis-

crete solution if the discretization is stable. However, as already investigated in [6, 19]
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and in this work in Chapter 3, only implicit Euler scheme provides a stable discretization

independently on the time–step. For higher order methods, stability depends on the time

step which is linked with the mesh velocity wh. This issue is partially inherited from the

stationary domain case. For example, it is known that backward differentiation formula

(BDF) of higher order is only conditionally stable. Similarly, Crank–Nicolson method

can introduce spurious oscillations if the ratio of time step and square of the space dis-

cretization step is large.

Differential operator characterizing the equation (4.20) transformed into the ALE

framework is given by

Ru =
∂

∂t

∣∣∣
x̂
u−w ·∇u− ε∆u, u ∈ L2(0, T ; H1

0(Ω)), (4.23)

with the corresponding S-SS decomposition

RS u = −ε∆u,

RSS u =
∂

∂t

∣∣∣
x̂
u−w ·∇u.

(4.24)

In case where the first order elements, P1, are employed, all three stabilization tech-

niques (SUPG, GLS, DWG) coincide since

RS ψh = 0, ψh ∈ P1(K), K ∈ T h(Ωh).

Note that the convection arises only from the domain movement. In the original problem

proposed in [6] diffusion coefficient ε is taken to be 10−2 (which corresponds to Pe =

102). However, stabilization schemes derived in this chapter have been tested for Pe =

103, 104, 105, 106 in order to confirm the stabilization properties in the cases with strongly

dominant convection. All these cases result in a stable solution (for small enough time

step) after employing the derived stabilization techniques.

Implicit Euler method As mentioned, implicit Euler method is stable in sense that L2–

energy of the solution uh is decreasing over time as predicted by the theoretical analysis.
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(a) Energy of the solution for the P1 choice of finite
element space.

(b) Energy of the solution for the P2 choice of finite
element space.

Figure 4.1: Energy of the solution for problem (4.20) obtained by the implicit Euler
method during the time interval [0, 0.4] with two different choices of finite element space:
P1 on the left and P2 on the right. In legend, numerical value next to the ”stabilized
Galerkin” represents the choice of % in S%IE.

In Figure 4.1 the decreasing trend of L2–energy can be seen. In case of linear finite

element space P1, L2–energy produced by stabilized method decreases faster than the one

produced by the standard Galerkin method. This is expected since numerical stabilization

consists of adding artificial diffusion and thus increasing the overall diffusion. In case of

the quadratic finite elements, the situation is the same, but the difference is less obvious,

i.e. there seems to be less artificial diffusion added. For the choice of P1 elements,

all of the mentioned stabilization methods coincide, SUPG, GLS and DWG. Effect of

stabilization is obvious as seen in figure 4.2 where for standard Galerkin FEM spurious

oscillations can be seen very clearly. For the choice of P2 elements, standard Galerkin

scheme is much more stable than that in case of P1 elements, but still there are areas with

small spurious oscillations as can be seen in Figure 4.3. All the stabilization techniques

smoothen the solution.

Crank–Nicolson method It was already shown in Chapter 3 that Crank–Nicolson method

is stable in the sense of decreasing L2–energy of the solution only for a sufficiently small

time step. In Figure 4.4 it is shown that for the time step ∆t = 0.01 L2–energy is oscillat-

ing (for the case of P1 finite element space) while it is decreasing if a smaller time step is

employed. It can be seen that the L2–energy of the solution is decreasing at a faster rate

in the case of stabilized method. Again, this is expected due to the added numerical diffu-
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(a) Solution obtained by standard Galerkin FEM
employing P1 finite element space.

(b) Solution obtained by stabilized FEM employing
P1 finite element space.

Figure 4.2: Implicit Euler method. Solution of problem (4.20) at time t = 0.1 in case of
P1 finite element space. Standard Galerkin FEM (left) produces spurious oscillations in
the solution, while stabilized FEM produces smooth solution.

(a) Solution obtained by standard Galerkin FEM
employing P2 finite element space.

(b) Solution obtained by stabilized FEM (% = 0)
employing P2 finite element space.

Figure 4.3: Implicit Euler method. Solution of problem (4.20) at time t = 0.1 in case
of P2 finite element space. Choice of P2 finite element space produces a more stable
solution in comparison with choice of P1 finite element space (expected). Still, some
spurious oscillations can be observed which vanish in all cases of stabilized FEM.
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(a) Energy of the solution for the P1 choice of finite
element space and ∆t = 10−2.

(b) Energy of the solution for the P1 choice of finite
element space and ∆t = 10−3.

Figure 4.4: L2–energy of the solution of problem (4.20) obtained by the Crank–Nicolson
method during the time interval [0, 0.4] for P1 finite element spaces and two different
choices of the time step (∆t = 0.01 on the left, and ∆t = 0.001 on the right). Energy of
the solution is non–oscillating only for a sufficiently small time step. In legend, numerical
value next to the ”stabilized Galerkin” represents the choice of % in S%IE.

sion. Figure 4.5 shows that in the case of standard Galerkin FEM spurious oscillations in

the solution appear, although they are much smaller than that in the case of implicit Euler

method. Stabilized method smoothens the solution as expected. The case of P2 elements

produces similar conclusions. Although standard Galerkin FEM produces much smaller

non–physical oscillations than those in the case of P1 elements, they still can be observed.

SUPG and GLS stabilization techniques stabilize the solution and remove oscillations.

A faster rate of energy decrease can be noted (see Figure 4.6). For larger time steps, an

oscillating trend in energy of the solution can still be observed even with the stabilized

techniques. This is expected since oscillations in energy of the solution are primarily

linked with the domain movement rather than with the dominated convection.

Interestingly, DWG stabilization technique (in case of P2 elements) is unstable for

small time step. For ∆t = 0.01 it produces expected smooth numerical solution, while in

smaller time steps case the solution eventually blows up. We have noticed that the smaller

the time step the sooner the blowup appears (although, before it appears, energy of the

solution has predicted decreasing trend). Reasons for that are still unknown and are yet to

be investigated. A different choice of stabilization parameter τK might be needed.
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(a) Solution obtained by standard Galerkin FEM
employing P1 finite element space.

(b) Solution obtained by stabilized FEM employing
P1 finite element space.

Figure 4.5: Crank–Nicolson method. Solution of problem (4.20) at time t = 0.15 in case
of P1 finite element space. Standard Galerkin FEM (left) produces spurious oscillations
in the solution, while stabilized FEM produces smoother solution.

(a) Solution obtained by stabilized FEM (% = 1)
employing P2 finite element space.

(b) Energy of the solution for the P2 choice of finite
element space and ∆t = 10−3.

Figure 4.6: Crank–Nicolson method. Solution of problem (4.20) at time t = 0.15 in
case of P2 finite element space. Choice of P2 finite element space produces more stable
solution in comparison with choice of P1 finite element space (expected). Still, some
spurious oscillations can be observed which vanish in case of stabilization with SUPG
and GLS technique.
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4.4.2 Convergence of stabilized methods on moving meshes

The main advantage of the strongly consistent stabilization methods in stationary domains

is that they maintain the accuracy (which is not the case when employing an inconsistent

scheme). However, on moving meshes, the analysis that has to be performed in order

to confirm this property becomes very demanding and it is not always possible to carry

it out. Therefore, we propose an artificial moving mesh problem for which we are able

to carry out numerical tests on both fixed and (artificially) moving meshes, and compare

them. Consider the following convection–diffusion problem

∂

∂t
u+ v ·∇u− ε∆u = f in Ω, t ∈ (0, T ),

u = uD on ∂Ω, t ∈ (0, T ),

u(0) = u0 in Ω,

(4.25)

where Ω = [0, 1] × [0, 1]. The convective velocity is simply taken as a constant field

(1, 1)T , diffusion parameter ε = 5 × 10−3, while forcing term f , Dirichlet boundary

condition uD and initial condition u0 are derived from a prescribed exact solution of the

equation (4.25)1:

u(x, t) = sin πt

(
x− 1− exp(xPe)

1− exp(Pe)
+ y − 1− exp(y Pe)

1− exp(Pe)

)
.

Next, an artificial ALE map is constructed such that it keeps the boundary of Ω fixed

(and thus the domain is stationary), but moves the mesh in the interior and mimics the

moving–mesh problem:

Â(x̂, t) = x̂+
1

2
x̂(1− x̂) sin 4πt in Ω̂×[0, T ],

where Ω̂ = Ω0. Thus, numerical tests are performed on a sequence of fixed meshes (T̂
k

h)k

and on their moving counterparts (T h,k)k, T h,k = Âh(T̂ h,k, t). Here, k denotes the mesh

density parameter: boundary of Ω̂h,k is split into the 4k uniform intervals and then uniform

triangulation T kh is obtained by employing the Delaunay automatic meshing algorithm
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(see [50]). Tests are performed for stationary and (artificial) moving mesh version of

the problem (4.25) on a sequence of meshes obtained for values k = 10, 20, 30, 40 as

described above. Moving the mesh on fixed domain results in denser or coarser mesh

in some regions of the domain. Consequently, the accuracy can be better (denser mesh

in areas where solution gradient is more steeper) or worse (coarser mesh in areas where

solution gradient is less steeper) than the one obtained on the uniform stationary mesh.

However, by refining the mesh (increasing the mesh parameter k) the convergence has

to be observed if the stabilization term does not influence the accuracy. In figure 4.7 we

show the L2–error at each point in time during the simulation on stationary and moving

meshes,

‖u(t)− uh(t)‖L2(Ωh) =

 ∫
Ωh

|u(t)− uh(t)|2 dx

1/2

, t ∈ [0, T ].

The most important result can be observed in figure 4.8 where convergence is compared

for fixed and moving mesh cases. We plot the total L2–error,

‖u− uh‖L2(0,T ;L2(Ωh)) =

 T∫
0

‖u(t)− uh(t)‖2
L2(Ωh) dt

1/2

,

from which it can be seen that the derived strongly consistent stabilization method does

not ruin the convergence rate in the sense of L2(0, T ;L2(Ωh)) norm. Convergence rate

follows the same pattern on moving mesh as it does for the same stabilized method on

the fixed mesh. The results are presented for the GLS stabilization method with P2 finite

element space employed. The Crank–Nicolson scheme is used for temporal discretization,

with time step ∆t = 10−3. Similar results are obtained for the SUPG methods with P1 and

P2 finite element spaces employed, and analogous results are observed in case of implicit

Euler scheme for GLS and SUPG stabilization techniques. Rate of convergence is not

ruined in the moving mesh case (compared to the fixed mesh case) in all of the examples.
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(a) Evolution of error in L2(Ω) norm on stationary
mesh.

(b) Evolution of error in L2(Ωt) norm on moving
mesh.

Figure 4.7: Evolution of error in L2(Ωt) norm computed with time step ∆t = 10−3

and Crank–Nicolson method for the temporal discretization (problem (4.25)). P2 finite
element space is employed with GLS stabilization technique.

Figure 4.8: Convergence rate for
GLS stabilization technique on
moving mesh in the sense of
L2(0, T ;L2(Ωt)) norm. Crank–
Nicolson method is employed for
temporal discretization with time
step ∆t = 10−3 (problem (4.25)).
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4.5 Stabilization of the Navier–Stokes equations

This section is devoted to derivation of the strongly consistent stabilization methods

for the Navier–Stokes equations. Approach is analogous as for the scalar convection–

diffusion–reaction equation performed in the first part of this chapter. A flow at high

Reynolds number past oscillating cylinder is chosen as a validation problem.

4.5.1 S-SS decomposition of Navier–Stokes differential operator

Navier–Stokes equations in ALE (convective) form can be written as:

∂

∂t

∣∣∣
x̂
v+([v−w] · ∇)v−ε∆v+∇p = f in QT ,

div v = 0 in QT ,

v = vD on ΓD(t), t ∈ (0, T ),

[−p I+ε∇v]n = gN on ΓN(t), t ∈ (0, T ),

(4.26)

where ΓD, ΓN ⊂ Ω are Dirichlet and Neumann part of the boundary (Ω = ΓD ∪ ΓN ).

Parameter ε is the inverse of the Reynolds number, ε = 1/Re.

First, Newton’s technique is used to linearize the momentum equation (4.26)1. In its

linerized form, equation (4.26)1 reads as follows:

∂

∂t

∣∣∣
x̂
v−(w ·∇)v+(β ·∇)v+(v ·∇)β−ε∆v+∇p = f +(β ·∇)β (4.27)

in QT . In practice, β is the most updated iteration of numerical solution for the velocity

field v. Thus, the corresponding (linear) differential operator defining linearized problem

(4.26) is given by

R[v, p] =

 ∂
∂t

∣∣
x̂
v−(w ·∇)v+(β ·∇)v+(v ·∇)β−ε∆v+∇p

div v

 . (4.28)
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The problem to be numerically solved can now be written in the following form

R[v, p] =

f +(β ·∇)β

0

 .
In order to find the S–SS decomposition of operator R, given by the relation (4.28), the

adjoint operator R∗ with respect to scalar product on L2(0, T ; L2(Ω)) has to be firstly

found, 〈
R[v, p],

ϕ
q

〉
L2(0,T ;L2(Ω))

=

〈v
p

 ,R∗[ϕ, q]〉
L2(0,T ;L2(Ω))

.

For the case where equation (4.26) is supplemented with homogeneous Dirichlet bound-

ary conditions (∂Ω = ΓD), i.e. when v,ϕ ∈ H1
0(Ω), it is straightforward to derive

R∗[v, p] =

− ∂
∂t

∣∣
x̂
v+(w ·∇)v−(β ·∇)v−(div β)v+[∇β]T v−ε∆v−∇p

− div v

 .
Thus, we obtain the S–SS decomposition ofR as:

RS[v, p] =

1
2
(v ·∇)β−ε∆v−1

2
(divβ)v+1

2
[∇β]T v

0

 ,
RSS[v, p] =

 ∂
∂t

∣∣
x̂
v−(w ·∇)v+(β ·∇)v+1

2
(v ·∇)β+∇p+ 1

2
(divβ)v−1

2
[∇β]T v

div v

 .
(4.29)

At this point, derivation of stabilized schemes (SUPG, GLS, DWG) is straightforward by

following the approach described in detail in earlier sections. Procedure for their deriva-

tion is essentially the same as in Section 4.2.1 for convection–diffusion equation (except,

in this case we deal with a system of equations). Hence, we skip the details. As mentioned

earlier, the optimal choice of stabilization parameter τK is an important question and still

an active area of research. For the Navier–Stokes equations, the stabilization parameter
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for this case is chosen as ([48])

τK =

((
4ε

h2

)2

+

(
2‖β ‖L∞

h

)2
)−1/2

. (4.30)

4.5.2 Ladyženskaya–Babuška–Brezzi (inf–sup) condition

It is well known that when solving the Navier–Stokes equations with FEM, finite element

spaces for velocity and pressure fields cannot be chosen arbitrary. They have to satisfy

the so–called Ladyženskaya–Babuška–Brezzi (LBB) condition, also referred to as inf–sup

condition (see e.g. [3]).

Furthermore, taking a closer look to RSS operator and applying it to test functions

[ϕ, q]T , it is observed that∇q term will appear. Then, in the modified stabilized formula-

tion, or more precisely in stabilization term S%, term

τK

∫
K

∇p · ∇q dx

will appear (courtesy of the skew–symmetric part). This term is actually stabilizing with

respect to the inf–sup condition allowing the use of finite element spaces which do not

satisfy the LBB condition. Hence, stabilization methods of the type considered in this

chapter allow to circumvent the LBB condition. This property is straightforwardly inher-

ited from the fixed domain case. More details on this consequence for the fixed domain

case can be found in [3] and references therein.

4.5.3 Flow past an oscillating cylinder

To numerically validate derived stabilization scheme for the Navier–Stokes equations, a

flow past oscillating and rotating elliptic cylinder is considered. The rotation is added

to the standard oscillating cylinder problem in order to emphasize the change in triangle

area (the main source of SCL problematics) during the mesh motion (see Figure 4.9).

Linearized problem (4.26) is being solved where outflow part of the boundary Γout is the
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artificial boundary. On Γout the Neumann no–stress condition is prescribed,

[ε∇v−p I]n = 0 on Γout.

Inflow part of the boundary (left wall) Γin, rigid horizontal walls Γw and boundary of the

cylinder Σ are Dirichlet boundaries where velocity is prescribed,

v = vD on ΓD(t), t ∈ (0, T ).

Parabolic velocity profile is prescribed on Γin whose magnitude increases from 0 to 1,

v = (1− 4y2)
1

2
(1− χ{t<1/2} cos 2πt+ χ{t≥1/2}) on Γin,

where χ denotes the characteristic function. The no–slip boundary condition is prescribed

on the rigid walls and oscillating cylinder,

v = 0 on Γw

v =

2
5

sin(π
4
t) sin(πt) + 6

5
y sin(2πt)sgn{sin(πt) sin(π

4
t)}sgn{1− χ{t>4}}

0

 on Σ, t ∈ (0, T ).

The tests have been ran for various Reynolds numbers up to 105 and all three stabilized

methods produced smooth solutions without non–physical oscillations. Final simulation

time was taken as T = 8 while the time step in all tests is ∆t = 0.01. The convergence

criterion for the Newton method (difference between previous and current iteration) was

set as

‖(vn,k+1
h , pn,k+1

h )− (vn,kh , pn,kh )‖L∞ ≤ 10−8,

where k denotes the iteration. Maximal number of iteration was set to 30; if solution at

current time step did not converge in 30 iterations, it is declared that method did not con-

verge. Note that the stabilization parameter τK defined in (4.30) is an increasing function

of 1/ε, so the amount of artificial diffusion increases as ε decreases. Although it works
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in favor of stabilization even on (relatively) very coarse meshes, this might influence the

accuracy of the solution since the amount of artificial diffusion added is significant. Test

have been performed for various finite element spaces (both satisfying and violating the

LBB condition) and for implicit Euler and Crank–Nicolson temporal discretizations. In

all the cases the method converged. Some of the finite element spaces tested for include

• [Pb
1]2 × P1: piecewise linear polynomials enriched with the bubble function for

velocity and piecewise linear polynomials for pressure, a space known to satisfy

the LBB condition;

• [P2]2×P1: piecewise quadratic polynomials for velocity and piecewise linear poly-

nomials for pressure, a space known to satisfy the LBB condition;

• [P1]2 × P1: piecewise linear polynomials for velocity and piecewise linear polyno-

mials for pressure; this space does not satisfy the LBB condition but the resulting

scheme is inf–sup stable due to stabilization consequence discussed in 4.5.2;

• [P2]2 × P2: piecewise quadratic polynomials for velocity and piecewise quadratic

polynomials for pressure; this space does not satisfy the LBB condition but the

resulting scheme is inf–sup stable due to stabilization consequence discussed in

4.5.2.

Furthermore, a test without any stabilization was performed on a very fine mesh

(h = 0.004) to investigate the influence of stabilization. It has been noticed that when

increasing the mesh density, solution obtained by stabilized methods indeed converge

towards the solution obtained on the very dense mesh (h = 0.004). In Figure 4.10, neces-

sary number of iterations at each time instant is shown for the space [Pb
1]2×P1 and on two

different meshes. For these meshes, method without stabilization does not converge. In

Figure 4.11, the pressure field obtained by standard Galerkin and stabilized GLS method

is shown at the last time instant standard Galerkin FEM converges. Finite element space

employed was [Pb
1]2 × P1 and for the temporal discretization implicit Euler method was

used. Sharp oscillations can be observed for standard Galerkin method. The same holds
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(a) (b)

Figure 4.9: Computational mesh for the flow past oscillating cylinder problem. Cylinder
oscillates along {y = 0} line and rotates around its center. Initial shape and position of the
cylinder are given by parametric description: (x(t), y(t)) = (1

2
+ 0.08 cos(t), 0.1 sin(t)),

t ∈ [0, 2π).

(a) Number of Newton’s iteration on mesh with
characteristic size h = 0.05.

(b) Number of Newton’s iteration on mesh with
characteristic size h = 0.03.

Figure 4.10: Number of Newton’s iterations on two different meshes where finite element
space is chosen as [Pb

1]2 for velocity and P1 for pressure. ”Standard” denotes the method
without stabilization but on the very fine mesh (h = 0.004).

for the velocity field; we show in Figure 4.12 the x–component of the velocity fields pro-

duced by standard Galerkin and GLS stabilized schemes. All of the stabilized method

produce smooth solution and converge at each time step. Finally, the L2 energy of the

velocity produced by stabilized methods on coarse meshes was compared with the energy

produced by standard Galerkin method on dense mesh (the ”referential solution”). It has

been noticed that the energies produced by various stabilized methods converge towards

the energy of the referential solution. This is illustrated in Figure 4.13. The results seem

satisfactory.
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(a) Pressure field obtained by standard Galerkin
method on mesh with characteristic size h = 0.03.

(b) Pressure field obtained by GLS method on mesh
with characteristic size h = 0.03.

Figure 4.11: Pressure field in area near the cylinder obtained by standard Galerkin and
GLS method on the same mesh with characteristic size h = 0.03 at time t = 0.15. Newton
method does not converge for standard Galerkin method for later times.

(a) x–component of the velocity field obtained by
standard Galerkin method on mesh with character-
istic size h = 0.03.

(b) x–component of the velocity field obtained by
GLS method on mesh with characteristic size h =
0.03.

Figure 4.12: x–component of the velocity field in area near the cylinder obtained by
standard Galerkin and GLS method on the same mesh with characteristic size h = 0.03 at
time t = 0.15. Newton method does not converge for standard Galerkin method for later
times.

(a) Energies of velocity field produced by stabilized
methods on mesh with characteristic size h = 0.05.

(b) Energies of velocity field produced by stabilized
methods on mesh with characteristic size h = 0.05.

Figure 4.13: Energies of velocity field produced by stabilized methods on two different
meshes. ”Standard” denotes the method without stabilization but on very fine mesh (h =
0.004), i.e. our reference solution.
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4.6 Beyond convection stabilization

It was argued in [45, 46] that the inability to produce non–oscillatory approximations of

boundary layer is a main shortcoming of the SUPG method. The SUPG method only adds

diffusion in the streamline direction. However, sharp gradients of the solution in direction

other than streamline upwind may cause the undershoots and overshoots even after the

convection stabilization is performed.

4.6.1 Convection–diffusion equation on domain with a moving cylin-

der

The following problem was proposed in [23] with an aim to exemplify a fluid–structure

interaction problem. Let

Ω = {[−3, 9]× [−3, 3]}\Λ

Λ0 = {x2 + y2 < 1} (cylinder of radius 1)

where cylinder Λ oscillates as prescribed by the ALE map (Λ̂ = Λ0)

Âh,t(x̂) =

 x̂

ŷ +1
2

sin 2πt
5

 on ∂Λ0 , t ∈ [0, 10].

Furthermore, Γin = {−3} × [−3, 3], ΓD = ∂Λ and ΓN = ∂Ω\{Γin ∪ ΓD}. Convection

dominated transient scalar equation with ε = 10−8 and v = (1, 0)T is considered:

∂

∂t
u− ε∆u+ v ·∇u = 0 in Ω, t ∈ (0, 10),

u(0) = 0 in Ω0,

u = 0 on Γin(t), t ∈ (0, 10),

u = 1 on ΓD(t), t ∈ (0, 10),

∇u · n = 0 on ΓN(t), t ∈ (0, 10).

(4.31)
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In [23] this problem has been solved on a mesh consisting of 9416 triangular cells and

employing P2 finite element space. For temporal discretization implicit Euler and Crank–

Nicolson schemes have been implemented with the discrete time step of ∆t = 0.01.

Furthermore, ALE map has been extended from the boundary using the linear elastic–

solid technique. In [23], they employ their newly proposed inconsistent SUPG scheme

for the conservative formulations on time–dependent domains and perform a study with

various choices of τK parameter. In their study, the proposed inconsistent SUPG stabiliza-

tion mostly suppressed the spurious oscillations in the numerical solution. However, there

were still small undershoots and overshoots – solution exceeds the theoretically predicted

range [0, 1]. The areas with undershoots and overshoots are mostly concentrated near ΓD

– numerical solution in their paper looks similar to the one in figure 4.14 (a). For more

insights and details, one is refered to [23].

In [45], modification of the SUPG method which introduces a (non–linear) discontinuity–

capturing term has been proposed. This term is similar to the streamline–upwind term, but

acts along the direction of the solution gradient rather than along the streamline direction.

In the context of the method derived in this chapter, the technique consists of modifying

the stabilization part in the weak formulation:

τK(RSS ψh + %RS ψh) 7→ τK(RSS ψh + %RS ψh) + τuK βh ·∇ψh,

βh =
(vh−wh) · ∇uh

|∇uh|2
∇uh.

Clearly, due to the definition of βh = βh(uh), the discontinuity capturing term is non–

linear and depends on the solution u. There are different possible choices for τuK and one

is refered to [46] for more details. In this section, τuK = τK is taken, and βh is linearized

by taking βh = βh(u
n
h), i.e. βh is a function of a solution u at the previous time step

(explicit approximation). Even employing this simple approach, the numerical solution is

stabilized. In Figure 4.14, a numerical solution obtained by consistent SUPG method de-

rived in previous sections (a) and modified SUPG with discontinuity capturing term (b) is

shown employing the implicit Euler method for temporal discretization. The P1 finite el-

ement space is employed on the uniform mesh consisting of 3858 triangles (much coarser
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(a) Solution obtained by stabilized FEM employing
P1 finite element space.

(b) Solution obtained by modified discontinuity–
capturing stabilized FEM employing P1 finite ele-
ment space.

Figure 4.14: Numerical solution of equation (4.31) obtained by stabilized FEM (left)
and modified discontinuity–capturing stabilized FEM (right) employing P1 finite element
space and implicit Euler method. Small undershoots are still present when β is linearized
using the previous step solution unh as described in subsection 4.6.1. If one considers an
iterative algorithm and uses the current iteration un+1,k

h for linearization of β, undershoots
vanish.

than the one used in [23]) with discrete time step ∆t = 0.01. As it can be seen, even

consistent SUPG method is unable to remove all undershoots and overshoots. However,

adding the discontinuity capturing term resolves the problem. It is also clear that adding

this additional term does not violate the scheme consistency or the property of satisfying

the discrete SCL. Therefore, an extension from classical stabilization to discontinuity–

capturing stabilization methods is straightforward and natural.

4.7 Discussion

A general stabilized scheme based on adding numerical diffusion has been derived for

problems on moving domains written in conservative formulation. The proposed scheme

is strongly consistent and, based on the various choices for the scheme parameter, moving

domain versions of SUPG, GLS or DWG methods are derived. Methodology is an exten-

sion of the method derived in Chapter 3 for convection–dominated problems. The numer-

ical results show good stabilization properties. The convergence rate is maintained even

after employing the stabilization techniques as is normally expected for the strongly con-
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sistent stabilizations. Modifying these methods by adding a discontinuity capturing term

in order to further improve them is also demonstrated in the last numerical test. Within

the current framework, modification can be done straightforward and natural without vi-

olating the strong consistency or the satisfaction of the discrete SCL property.

Furthermore, there is still much room left for the scheme improvement – primarily

in the selection of the stabilization mesh–dependent parameter τK which is still an active

area of research even for the fixed domain cases.
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CHAPTER 5

Curvature evaluation of mesh–fitted interface in FEM

In this chapter, a connection between the choice of finite element space and the onset of

artificial sinks/sources is studied. The focus is on the artificial sinks/sources arising from

the numerical pollution of the curvature–based forces. For example, the capillary forces

in multi–phase flows depend on the interface curvature and are polluted by bad curvature

approximation. It is shown that bad curvature approximation can be a direct consequence

of finite element space employed.

Firstly, let us illustrate how, even for a (relatively) simple example, an inappropriate

choice of the finite element space can introduce artificial numerical forces into the discrete

scheme and pollute the solution.

When an incompressible flow problem is simulated by finite element method (FEM),

spurious non–physical velocities can be observed in certain situations. Let us consider a

typical example, the one–phase Stokes flow under the external body force studied in [51]:

−∆v+∇p = f , div v = 0 in Ω,

v = 0 on ∂Ω,

(5.1)

where v is the fluid velocity, p is the fluid pressure, and Ω represents the bounded domain
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occupied by the fluid. The weak form of the problem (5.1) reads:

find v ∈ H1
0(Ω;Rn) , p ∈ L2

0(Ω) such that ∀(ϕ, q) ∈ H1
0(Ω;Rn)× L2(Ω)∫

Ω

(∇v : ∇ϕ−p divϕ) dx =

∫
Ω

f ·ϕ dx,∫
Ω

q div v dx = 0.

(5.2)

When f is the gradient of a potential, i.e. f = ∇Φ for some non–trivial Φ ∈ H1(Ω),

solution of the problem (5.2) is a velocity equal to zero. To see this, one should take

ϕ = v and employ the constraint
∫

Ω
q div v dx = 0 for q ∈ L2(Ω) to obtain

∫
Ω

|∇v |2 dx =

∫
Ω

∇Φ · v dx = −
∫

Ω

Φ div v dx = 0,

which implies v = 0 since v ∈ H1
0(Ω;Rn). When the transition from the weak formu-

lation to the finite element framework is made, test function spaces are to be replaced by

their respective discrete counterparts:

Vh ⊂ H1(Ωh;Rn) , Xh = Vh ∩H1
0(Ωh;Rn),

Qh ⊂ L2(Ωh) , Mh = Qh ∩L2
0(Ωh),

(5.3)

where Ωh is the discrete counterpart of Ω. Finite element formulation of the problem (5.1)

then states

find vh ∈ Xh , ph ∈ Mh such that ∀(ϕh, qh) ∈ Xh×Qh∫
Ωh

(∇vh : ∇ϕh−ph divϕh) dx =

∫
Ωh

f ·ϕh dx,∫
Ωh

qh div vh dx = 0.

(5.4)

Taking ϕh = vh in (5.4) one can then obtain

∫
Ωh

|∇vh |2 dx = −
∫

Ωh

Φ div vh dx 6= 0 in general case when Φ /∈ Qh .

Thus, vh 6= 0 and some spurious velocities are introduced. This problematics was inves-
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tigated and explained in detail in [51] and references therein. They proposed a method for

handling this issue for the case of a general force f (not necessarily of the form f = ∇Φ).

The essential idea consists of ”breaking f into its gradient and curl part”, i.e. decompo-

sition of f as ∇Φ + curl g for some Φ and g. Then the gradient part is projected onto

the pressure space Qh. In this way, the pollution of the velocity field arising from the

”gradient part” of the force f is eliminated.

Immiscible two–phase flow problems are typical sources of inspiration for the moving

domain problems. In two–phase flows involving (incompressible) immiscible fluids, an

additional external surface force arises from the capillary force at the interface. This force

is a function of the mean curvature which depends on the geometry of the interface. Two

essentially different techniques have been used to describe the interface in the literature:

implicit and explicit. In the implicit approach, a fixed computational mesh is used and

an additional scalar field is introduced to describe the interface. This approach is often

referred to as ”interface capturing” and its main advantage is that it can easily handle

topological changes. It is often combined with mesh adaptation techniques in order to

ensure credible interface capturing. Level–set ([28, 29]) and volume–of–fluid ([30, 31])

methods, for example, fall within this approach. In the explicit approach, often referred

to as ”interface tracking”, the interface is described explicitly with an aligned mesh i.e.

”mesh fits the interface”. In this environment, when the interface moves, the mesh has to

be moved accordingly with it. Lagrangian and Arbitrary Lagrangian Eulerian approaches

fall into this category (see [41] and references within).

The explicit approach for interface description within FEM is the one studied in this

work. Hence, approximation of the interface geometry plays an essential role in computa-

tion of interface curvature. The most common approximation of geometry in FEM is with

linear interpolation functions. This means that interface is approximated with piecewise

linear edges in 2D and triangles or quadrangles in 3D. In this case, a popular choice for

curvature calculation that can be found in the literature is the higher order interpolation of

the interface. It allows the use of the curvature formula that involves second derivatives

of the boundary parametrization. A spline interpolation of the interface is reconstructed
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from the linear computational mesh and it is then used solely for curvature calculation.

This was, for example, studied in [32] where they used cubic splines and in [33] where

non–uniform rational B–splines (NURBS) were used. In [34] the authors used a simple

finite difference version of Frenet–Serret formula to calculate curvature and surface ten-

sion force in two–phase flow and in [35] the authors computed the curvature for interfacial

tension by least squares parabola fitting method.

Alternatively, geometry itself can be discretized using higher order basis functions

(e.g. quadratic), NURBS and similar. For example, in [32], they also study isoparametric

finite element method with quadratic elements. For the interface curvature calculation,

the interpolated cubic spline is constructed again from the discretized interface. In this

case, for each curved edge, its midpoint, which also lies on the interface, is additionally

taken into account. On the other hand, in context of Isogeometric analysis (IGA) ([52,

53]), curvature can be calculated directly from the geometry of the interface due to the

higher inter–element continuity. IGA integrates methods from analysis and Computer

Aided Design (CAD) into a single unified process. It is based on NURBS which allow

the exact representation of the CAD geometry. Clearly, employing this approach, the

curvature calculation can be performed directly.

A somewhat different but particularly attractive approach for curvature calculation

within interface tracking FEM employs the Laplace–Beltrami operator. It is used in both

standard FEM with linear meshes and with isoparametric FEM (both of these approaches

are studied in [32]). Laplace–Beltrami operator falls into machinery from the discrete dif-

ferential geometry where it plays an important role in discrete surface modeling (see e.g.

[36]). In context of FEM in fluid dynamics, the Laplace–Beltrami operator technique was

already employed for problems with free surfaces. Weak form can be derived from the

mathematical expression for the curvature which involves the Laplace–Beltrami operator.

Thus, the curvature can be very easily and naturally incorporated into the FEM formula-

tion using this technique. In [54, 55, 56] (and references therein) they dealt with problems

involving free surface where it is necessary to consider surface tension effects and moving

contact line on solid–liquid–gas interface. They employed Generalized Navier boundary
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conditions in ALE FEM model, and Laplace–Beltrami operator emerges as a natural way

for construction of the FEM formulation. However, there are reports which indicate that it

may not perform well within the finite element method. In [32], they noticed the appear-

ance of spurious oscillations in velocity field due to numerical error in the evaluation of

surface tension force. They focused on the effects of various triangulations, different fi-

nite element spaces and different techniques for handling curvature on spurious velocities

near the interface in 2D. Two different approaches for curvature calculation on interface

fitted meshes were studied – cubic interpolation of the interface and Laplace–Beltrami

operator technique. They reported that the cubic interpolation technique performed much

better in general. Spurious velocities near the moving boundary greatly influence the

numerical method in moving boundary problems such as free surface flow, multi–phase

flow etc. For example, in ALE approach the moving boundary velocity depends on the

normal component of the fluid velocity. When spurious velocities are present, this type of

oscillations can result in misrepresentation of the free boundary or bad quality mesh and

thereby the numerical procedure may even break down.

As mentioned earlier, the Laplace–Beltrami operator technique for curvature evalua-

tion is particularly natural and convenient for the ALE FEM. Hence, in this chapter, the

issue why Laplace–Beltrami operator performs poorly on boundary fitted meshes in gen-

eral cases is examined and resolved. It turns out that when finite element space is not

chosen carefully, it ”distorts” the Laplace–Beltrami operator’s ”viewpoint” of the discrete

surface (curve). This results in locally nonphysical oscillations of the curvature which, in

turn, introduce the local spurious surface forces. Detailed numerical studies are performed

to illustrate this point.

5.1 Curvature in weak form: employment of the Laplace–

Beltrami operator

In this section, the connection between curvature and the Laplace–Beltrami operator is

recalled. Employment of the Laplace–Beltrami operator equips us with a practical and
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a natural way to handle curvature (which is a smooth function) on discrete surfaces (or

curves in 2D). For more detailed presentation on discrete surfaces, one can consult [36]

and references therein.

Denote by Σ ⊂ Rn a closed curve if n = 2 or a closed surface if n = 3 and assume that

it has no self–intersections. Furthermore, assume that it is ”regular (or smooth) enough”

so that the calculus below can be performed. By n(x) the unit normal to Σ at point

x ∈ Σ is denoted and by TxΣ the tangential plane on Σ at x ∈ Σ. Furthermore, by xΣ

the inclusion from Σ to Rn is denoted,

xΣ : Σ→ Rn , Σ 3 x 7→ x ∈ Rn .

Define the projection operator onto TxΣ, PΣ, by

PΣ(x) = I−n(x)⊗ n(x) , x ∈ Σ,

where ⊗ denotes the standard tensor product and I is the identity matrix. The surface (or

tangential) gradient is then defined by∇Σ = PΣ∇, and divΣ = ∇Σ· is the surface diver-

gence. The so called Laplace–Beltrami operator can then be defined as ∆Σ = divΣ∇Σ.

The mean curvature vector h is defined as

h : Σ→ Rn , h = −∆Σ xΣ,

and the (signed) mean curvature H as

H(x) =
1

2
(κ1(x) + κ2(x)) , x ∈ Σ,

where κ1 and κ2 are the principal curvatures of Σ at x. The relationship between H and

h is given by

h = 2H n . (5.5)

This form allows us to express curvature in a weak form, natural for finite element calcu-
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lations. Multiplying equation (5.5) by ϕ ∈ H1(Σ;Rd), integrating over Σ and performing

integration by parts (surface divergence theorem) lead to

∫
Σ

2H n ·ϕ dS =

∫
Σ

h ·ϕ dS = −
∫

Σ

∆Σ xΣ ·ϕ dS

=

∫
Σ

∇Σ xΣ : ∇Σϕ dS .

(5.6)

Equation (5.6) is essential for this chapter.

5.2 Introduction of spurious velocities due to curvature

approximation

5.2.1 Model problem setup

For the sake of illustration, consider the following stationary Stokes system proposed in

[32]:

− divσ = 0 in Ω,

div v = 0 in Ω,

[σ]n = σ2H n on Σ,

v = 0 on Γ.

(5.7)

The domain is Ω = [−2, 2] × [−2, 2] with Ω = Ω1 ∪ Ω2 where Ω1 = {x2 + y2 ≤ 1},

Ω2 = Ω\Ω1, Σ = ∂Ω1 and Γ = ∂Ω (see Figure 5.1 (a)). Thus, the exact mean curvature

of the interface Σ is known, H = 1/2. σ = −p I+µD(v) is the Newtonian stress

tensor with D(v) = ∇v+∇vT being the deviatoric part, µ = µ1χΩ1 + µ2χΩ2 is the

fluid viscosity, σ is the surface tension and H denotes the mean curvature. χj denotes the

characteristic function of Ωj , j = 1, 2, i.e.

χj(x) =


1 : x ∈ Ωj

0 : x /∈ Ωj

, j = 1, 2,
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Ω2

Ω1

Σ
Γ

space

(a) Sketch of the domain Ω. (b) Sketch of the discretized do-
main Ωr1

h and its triangulation T r1
h .

(c) Sketch of the discretized do-
main Ωr2

h and its triangulation
T r2

h .

Figure 5.1: Sketches of the domain Ω and its discrete counterparts, Ωr1
h and Ωr2

h . Triangu-
lation T r1h of Ωr1

h is coarser than triangulation T r2h of Ωr2
h near the interface.

and [·] denotes the jump across the interface Σ.

The system (5.7) describes the flow of two incompressible immiscible fluids with

viscosities µ1 and µ2 in a rectangular container (cube in 3D) without the presence of any

body forces. For simplicity let the viscosities of both fluids be the same, µ1 = µ2 = 1 (this

is also the case considered in [32]), while the surface tension σ = 100 is taken in order

to emphasize the force on the interface (in [32] σ = 1). No–slip boundary conditions are

prescribed on the rigid walls Γ and the pressure jump is prescribed across the fluid–fluid

interface Σ. Then the analytic solution of the system (5.7) is known to be v = 0 and

p|Ωi
= const., i = 1, 2, p|Ω1 − p|Ω2 = −2Hσ.

The weak formulation of the problem (5.7) states:

find v ∈ H1
0(Ω;Rn) , p ∈ L2

0(Ω) such that ∀(ϕ, q) ∈ H1
0(Ω;Rn)× L2(Ω)∫

Ω

(
µ

1

2
D(v) : D(ϕ)− p divϕ

)
dx =

∫
Σ

σ2H n ·ϕ dS

= −
∫

Σ

σ∇Σ xΣ : ∇Σϕ dS,∫
Ω

q div v dx = 0.

(5.8)

Restriction of function space for the pressure onto L2
0(Ω) enforces the uniqueness of the
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pressure field. For problem (5.7) it is then explicitly given by

p = 2Hσ(
π

16
− 1)χ1 + 2Hσ

π

16
χ2.

Remark 10 In flow problems where interface Σ is in contact with a rigid wall, i.e. when

Σ is not closed but has a boundary ∂Σ, in formulation (5.6) an additional term involving

integral over ∂Σ arises. This allows to efficiently model the moving contact line problem.

Since it does not change the approach for dealing with the curvature, no special attention

is payed to this kind of problems in this chapter. However, an example of moving contact

line problem is given in Chapter 6.

5.2.2 Finite element formulation

In order to make a transition from the weak formulation to the finite element framework,

test function spaces are to be replaced by their respective discrete counterparts over the

discrete domain Ωh (the same notation as in the introduction is used):

Vh ⊂ H1(Ωh;Rd) , Xh = Vh ∩H1
0(Ωh;Rd),

Qh ⊂ L2(Ωh) , Mh = Qh ∩L2
0(Ωh), i = 1, 2.

(5.9)

Above, Ωh denotes the discretized counterpart of the domain Ω with piece–wise linear

boundaries Σh and Γh. In Figure 5.1 two discretizations of Ω are shown, Ωr1
h and Ωr2

h ,

former one having the coarser while latter one having the finer triangulations, T r1h and

T r2h .

It is known that Vh and Qh cannot be chosen arbitrarily but have to satisfy a certain

condition, the so called Ladyženskaya–Babuška–Brezzi (LBB) condition (see e.g. [3]).

Furthermore, it is known that pressure is discontinuous across the interface Σh which

imposes yet another restriction on the selection of space Qh.

Two different finite element formulations of (5.8) are considered, depending on the

choice of the space Qh:

A Qh consists of functions discontinuous across the interface Σh (e.g. discontinuous
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linear elements Pdc
1 )

find vh ∈ Xh , ph ∈ Mh such that ∀(ϕh, qh) ∈ Xh×Qh∫
Ωh

(
µ

1

2
D(vh) : D(ϕh)− ph divϕh

)
dx = −

∫
Σh

σ∇Σh
xΣ : ∇Σh

ϕh dS,∫
Ωh

qh div vh dx = 0.

(5.10)

B Qh consists of functions continuous across the interface Σh (e.g. Lagrangian linear

elements P1)

Since it is known that pressure has to be discontinuous across the interface Σh, it is

clear that there will be an error introduced near the interface solely because of the

inability to capture the pressure discontinuity. In order to bypass this problem, two

functions for the pressure are introduced, p1
h and p2

h, in Ωh,1 and Ωh,2, respectively.

Since both functions have to be defined on the whole Ωh, pih is arbitrarily extended

to the neighboring domain Ωh,j , j 6= i, using the penalization technique. More

precisely, the following finite element formulation is derived:

find vh ∈ Xh , p1
h, p

2
h ∈ Qh , p1

hχ1 + p2
hχ2 ∈ Mh

such that ∀(ϕh, q1
h, q

2
h) ∈ Xh×Qh×Qh∫

Ωh

µ
1

2
D(vh) : D(ϕh) dx−

∫
Ωh,1

p1
h divϕh dx−

∫
Ωh,2

p2
h divϕh dx

= −
∫

Σh

σ∇Σh
xΣ : ∇Σh

ϕh dS,∫
Ωh,1

(
q1
h div vh +εp2

hq
2
h

)
dx+

∫
Ωh,2

(
q2
h div vh +εp1

hq
1
h

)
dx = 0,

(5.11)

where ε > 0 is a penalization parameter (ε << 1). In all of the simulations whose

results are provided in this chapter, penalization parameter in formulation (5.11)

was chosen as ε = 10−8. The choice of the penalization parameter for artificial

pressure extension is also discussed in Remark 14.

Before going into a detailed analysis, take a look at some numerical results in 2D. All
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Figure 5.2: Mesh on which computations result-
ing in Figures 5.3, 5.4 and 5.5 were performed.
Mesh parameters are: h = 0.943 (the largest tri-
angle diameter) and heΣh

= 0.416 (the longest
edge on the interface Σh). Formal definitions of
mesh parameters are given in equations (5.20) and
(5.21).

(a) Numerical solution for the pressure field. Exact
solution is constant pressure per regions Ω1 and Ω2,
with the pressure difference being 100.

(b) Numerical solution for the velocity field. Exact
solution is v = 0.

Figure 5.3: Numerical solution (vh, ph) ∈ Xh×Mh in case of Crouzeix–Raviart finite
elements space. Solution is obtained using the FEM formulation (5.10).

of the calculations in this chapter were performed with FreeFEM++ software ([50]) while

visualization is done in Paraview ([57]). Numerical results presented below are computed

on the mesh given in Figure 5.2, which is built using piecewise linear basis functions.

1. Consider Crouzeix–Raviart finite element space for the pair (vh, ph), i.e. velocity

space is quadratic per element enriched with a cubic bubble and continuous across

the elements, Vh = [Pb
2,Pb

2], and pressure space is linear per element and discon-

tinuous across the elements, Qh = Pdc
1 . This choice of spaces Vh×Qh is known

to satisfy the LBB condition and in our terminology the corresponding finite ele-

ment formulation falls into the category A. The results of the numerical simulation

are shown in Figure 5.3. One can observe the spurious oscillations in pressure and

velocity fields near the interface Σh.
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(a) Numerical solution for the pressure field. Exact
solution is constant pressure per regions Ω1 and Ω2,
with the pressure difference being 100.

(b) Numerical solution for the velocity field. Exact
solution is v = 0.

Figure 5.4: Numerical solution (vh, ph) ∈ Xh×Mh in case of the Taylor–Hood finite
elements space. Solution is obtained using the FEM formulation (5.11).

2. Next, the Taylor–Hood finite element space is considered i.e. velocity space is

quadratic per element and continuous across the element, Vh = [P2,P2], while

pressure space is linear per element and continuous across the element, Qh = P1.

This choice of spaces Vh×Qh is known to satisfy the LBB condition, but note that

pressure will be continuous across the interface Σh. Unability to approximate the

discontinuous pressure across the interface with the continuous functions introduces

non–physical oscillations into the numerical solution (as already noted in [32]).

Therefore, in order to eliminate the obvious problematics arising from the choice of

the finite element space, the finite element formulation is taken from the category B.

The results of the numerical simulation are shown in Figure 5.4. One can observe

the spurious oscillations in pressure and velocity fields near the interface Σh.

3. Finally, the Mini elements are considered, i.e. velocity space is taken linear enriched

with a cubic bubble function per element and is continuous across the elements,

Vh = [Pb
1,Pb

1]. Pressure space is linear per element and continuous across the

element, Qh = P1. This choice of spaces Vh×Qh satisfies the LBB condition, but

pressure will be continuous across the interface Σh. Hence, for the same reasons as

in case 2, the finite element formulation is taken from the category B. The results

of the numerical simulation are shown in Figure 5.5. One can observe that spurious

oscillations in pressure and velocity fields near the interface Σh are minimal (of
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(a) Numerical solution for the pressure field. Exact
solution is constant pressure per regions Ω1 and Ω2,
with the pressure difference being 100.

(b) Numerical solution for the velocity field. Exact
solution is v = 0.

Figure 5.5: Numerical solution (vh, ph) ∈ Xh×Mh in case of the Mini finite elements
space. Solution is obtained using the FEM formulation (5.11).

order 10−7) unlike those in the previous two cases. This is connected with the

choice of the finite element space involved in the curvature calculation and the

geometry approximation. The mesh is built using piecewise linear functions and

curvature is calculated using the test functions from Vh which are piecewise linear

on Σh. Indeed, it is crucial that functions used to build the mesh are of order higher

or equal than the functions used to calculate the curvature vector (in this case the

functions from space Vh). This is elaborated in the next section.

When solving any of the three cases above using the exact curvature H = 1/2, spuri-

ous velocities are of order≤ 10−9, i.e. numerically can be treated as zero. More precisely,

if in the finite element formulations (5.10), (5.11) the forcing term involving discrete cur-

vature is replaced by ∫
Σh

σ2H n ·ϕh dS,

the pollution in numerical solution (vh, ph) vanishes. This observation strongly indicates

that the essence of the problem is in the way of treating the discrete curvature. This was

noticed in [32] where the error bound was given as

|vh |H1 ≤ C

(
inf

qh∈Qh

‖p− qh‖L2 + sup
ϕh∈Vh

|fh − 〈2H,ϕh ·n〉Σh
|

|ϕh |H1

)
, (5.12)
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〈u, v〉Σh
=

∫
Σh

uv dS

where fh is the numerical realization of handling the curvature term. In our case,

fh = 〈∇Σh
xΣ,∇Σh

ϕh〉Σh
=

∫
Σh

∇Σh
xΣ : ∇Σh

ϕh dS .

Furthermore, the pressure term in error bound (5.12) is included since in general p /∈ Qh

(e.g. if on uses continuous finite element space for pressure over Ωh). However, this

problem is resolved by introducing an alternative FEM formulation (5.11) so the focus is

entirely on the curvature approximation approach.

5.3 Detour framework for Laplace–Beltrami operator in

finite elements

The behavior of curvature obtained by the Laplace–Beltrami operator technique within

FEM is investigate in this section. To get some intuition on how it works in FEM, the

most simple non–trivial curve in terms of curvature is studied – the unit circle Σ which is

the boundary of Ω1 = {x2 + y2 ≤ 1}. The discrete counterparts are denoted as Ωh,1 and

Σh. Three different meshes shall be consider, illustrated in Figure 5.6. The mesh shown

in Figure 5.6 (a) is denoted by T h,1, and the meshes in Figure 5.6 (b) and (c) by T s2h,1 and

T s3h,1. Mesh T s2h,1 is obtained by dividing each edge on the boundary Σh ⊂ T h,1 into two

subintervals. Note that T s2h,1 is the direct refinement of the mesh T h,1, i.e. it does not

approximate the circle better than T h,1. Analogously, T s3h,1 is obtained by dividing each

edge of Σh into three sub–intervals. The reason why this is done will be clarified in a

moment.

5.3.1 Finite element formulation for discrete curvature calculation

In this subsection, the FEM formulation based on the weak formulation (5.6) for evaluat-

ing the numerical mean curvature Hh and the mean curvature vector hh of Σh is derived.
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(a) The ”base” mesh T h,1; trian-
gulation of Ωh,1.

(b) Mesh T s2
h,1 obtained from

T h,1 by dividing each edge of Σh

into two.

(c) Mesh T s3
h,1 obtained from

T h,1 by dividing each edge of Σh

into three.

Figure 5.6: Three different triangulations of the same discrete domain Ωh. All three
triangulations approximate the circle with the same precision, i.e. by the same polygon.

Take Wh ⊂ H1(Ωh,1;Rd) and Kh ⊂ L2(Ωh,1) to obtain the FEM formulation of (5.6):

find hh ∈Wh such that ∀ϕh ∈Wh∫
Ωh,1

hh ·ϕh dx+
1

ε

∫
Σh

hh ·ϕh dS =
1

ε

∫
Σh

∇Σh
xΣ : ∇Σh

ϕh dS,

find Hh ∈ Kh such that ∀ψh ∈ Kh∫
Ωh,1

Hhψh dx+
1

ε

∫
Σh

2Hhψh dS =
1

ε

∫
Σh

hh ·nψh dS .

(5.13)

Remark 11 One should notice the difference in function spaces in weak formulation (5.6)

and FEM formulation (5.13). In former, function spaces are defined only on Σ (indeed,

the function spaces involved are H1(Σ;Rd) for h and L2(Σ) for H), while in latter spaces

are over the whole Ωh,1 instead of just the surface Σh ⊂ Ωh,1. This is just due to technical

reasons since FreeFEM++ (version 4.2.1) does not implement 1D finite element spaces,

so functions defined on Σh are trivially extended into the interior of Ωh,1.

The choice of penalization parameter ε is problem dependent in penalization ap-

proaches. It can significantly influence the solution when chosen inappropriately. How-

ever, (relatively) simple constraint is penalized here and our numerical tests showed that

ε can be chosen from quite a large interval without significantly influencing the numerical

solution. No significant change in solution for ε ∈ [10−10, 10−5] has been noticed. For all

numerical results provided in this chapter ε = 10−8 was chosen.

Remark 12 Surface finite elements are available in FreeFEM++ since the release of
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version 4.2.1. Therefore, a direct transition from the weak formulation (5.6) into the finite

element formulation is possible in 3D without the need of extra effort. It can be written as

follows:

find hh ∈Wh ⊂ H1(Σh;R3) such that ∀ϕh ∈Wh∫
Σh

hh ·ϕh dS =

∫
Σh

∇Σh
xΣ : ∇Σh

ϕh dS,

find Hh ∈ Kh ⊂ H1(Σh) such that ∀ψh ∈ Kh∫
Σh

2Hhψh dS =

∫
Σh

hh ·nψh dS .

(5.14)

For example, results shown in Figure 5.12 were obtained using the formulation (5.14).

The exact (signed) mean curvature of the circle of radius one is constant H = 1/2

while the mean curvature vector h is of constant magnitude one and coincides with the

normal, i.e. h = [x, y]T = n. In Section 5.2 it was deduced that spurious velocities are

caused primarily by the artificial numerical forces coming from the approximation of the

curvature. Before going into details, take a look at Figure 5.7. Mean curvature and mean

curvature vector are obtained employing FEM formulation (5.13) for the quadratic finite

element spaces Wh = [P2,P2] and Kh = P2. One can notice that numerical curvature Hh

differs a lot from the known exact curvature H = 1/2, and even changes the sign. The

same holds true for the mean curvature vector hh (clearly, since Hh is calculated from

hh).

Remark 13 From now on, due to the symmetry in solution, only a part of circle Σh is

plotted instead of the whole Σh for the sake of the better view. The attention is focused on

the part of the circle in the first quadrant in Cartesian coordinate system.

5.3.2 Effect of finite element spaces on numerical curvature

The discrete Laplace–Beltrami operator operates on polygonal meshes i.e. on piece–wise

linear surfaces (or piece–wise linear curves in 2D case). Let us focus the attention on 2D

case where Σh is a piece–wise linear curve. For distinctness, assume that the mesh T h,1
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(a) The numerical mean curvature Hh ∈ Kh = P2.
The exact mean curvature for the circle of radius
one is H = 1/2.

(b) The numerical mean curvature vector hh ∈
Wh = P2×P2. The exact mean curvature vector
for the circle of radius one is h = (x, y)T

Figure 5.7: Mean curvature and mean curvature vector of the unit circle obtained by finite
element method using FEM formulation (5.13) for Wh = P2×P2 and Kh = P2.

(over Ωh,1) is triangular as shown in Figure 5.6. Consider for a moment what happens

when different finite element spaces are constructed over T h,1. Denote by Eh the set of

all edges of the triangulation T h,1.

• If linear elements P1 are employed, every vertex of T h,1 becomes a degree of free-

dom (DOF). Specially, every edge e ⊂ Σh is determined by two neighboring ver-

tices that coincide with the DOFs of P1 space (see Figure 5.8 (a)). In Figure 5.9

numerical approximation of curvature and curvature vector obtained by employing

the formulation (5.13) with linear elements are shown.

• If quadratic elements P2 are employed, every vertex of T h,1 and every midpoint of

an edge e ∈ Eh become a DOF. Specially, every edge e ⊂ Σh is determined by two

neighboring vertices that coincide with the DOFs of P2 space. In the midpoint of

the edge e there is an additional DOF which splits edge e into two equal edges, e1

and e2, e = e1 ∪ e2. Therefore, the DOFs of P2 space split the Σh into piece–wise

linear curves, and each edge into two segments that lie on the same line (see Fig-

ure 5.8 (b)). In Figures 5.10 (a) and (b) numerical approximation of the curvature

and curvature vector obtained by employing the formulation (5.13) with quadratic

elements are shown. Furthermore, in Figures 5.12 (a) and (b) numerical approxima-
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(a) DOFs of P1 finite ele-
ment space on part of Σh

consisting of three edges.

(b) DOFs of P2 finite ele-
ment space on part of Σh

consisting of three edges.
Due to DOFs on midpoint
of each segment, Laplace–
Beltrami operator ”sees”
this part of Σh as the union
of 6 edges.

(c) DOFs of P3 finite el-
ement space on part of
Σh consisting of three
edges. Due to two addi-
tional DOFs in each edge
interior, Laplace–Beltrami
operator ”sees” this part of
Σh as the union of 9 edges.

Figure 5.8: Sketch of DOFs for P1, P2 and P3 finite element spaces on one part of Σh that
consists of three edges. Dotted line illustrates how Laplace–Beltrami operator smoothens
the discrete curve in various cases.

tions of the curvature and curvature vector obtained by employing the formulation

(5.14) with quadratic elements are shown.

• If cubic elements P3 are employed, every vertex of T h,1 and two equidistant points

on an edge e ∈ Eh become a DOF. Specially, every edge e ⊂ Σh is determined by

two neighboring vertices that coincide with the DOFs of P3 space. Furthermore,

two points in the interior of edge e make two additional DOFs which split edge

e into three equal edges, e1, e2 and e3, e = e1 ∪ e2 ∪ e3. Therefore, the DOFs

of P3 space split the Σh into piece–wise linear curves, and each edge into three

segments that lie on the same line (see Figure 5.8 (c)). In Figures 5.11 (a) and (b)

numerical approximations of curvature and curvature vector obtained by employing

the formulation (5.13) with cubic elements are shown.

To sum–up, from the Laplace–Beltrami operator’s point of view, DOFs on Σh split the

curve (surface in 3D) piece–wise – into edges in 2D and into linear surfaces in 3D. In

case when P2 elements are employed, representation of Σh for the curvature calculation

is actually Σs2
h . For the case of P3 elements, Σh is represented as Σs3

h from Laplace–

Beltrami operator perspective. See Figure 5.8 for the visual illustration. Laplace–Beltrami

operator attempts to reconstruct the curvature of a smooth curve (surface) Σ from its

discrete counterpart Σh. In case of FEM, the discrete data taken as ”an input” for Laplace–

Beltrami operator are the DOFs on Σh.

From the above discussion, one may suspect that in order to get the correct interpre-
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tation of the boundary from the discrete data, the DOFs of the employed finite element

space can only be on the vertices of Σh when Σh is piecewise linear. Indeed, the numerical

tests performed for various choices of finite element spaces confirmed this statement. The

curvature and curvature vector of Σh has been numerically evaluated using the FEM for-

mulation (5.13) for Wh×Kh = [P1,P1]×P1, Wh×Kh = [P2,P2]×P2 and Wh×Kh =

[P3,P3] × P3 finite element spaces. In order to confirm the correct interpretation, the

curvature and curvature vector on Σs2
h and Σs3

h employing the Wh×Kh = [P1,P1] × P1

finite element spaces were also evaluated. If the interpretation is correct, then the results

obtained on two meshes have to correspond as follows

Wh(T h)×Kh(T h) = [P2,P2]× P2 ←→ Wh(T s2h )×Kh(T s2h ) = [P1,P1]× P1,

Wh(T h)×Kh(T h) = [P3,P3]× P3 ←→ Wh(T s3h )×Kh(T s3h ) = [P1,P1]× P1 .

(5.15)

The ”correspondence” mentioned above is only meant approximate, i.e. numerical results

do not have to match exactly but only have to ”behave” similarly in corresponding regions.

This is illustrated in Figures 5.10 and 5.11.

In the end, let us take a look at Figure 5.12 which confirms our theory in 3D case.

The mean curvature and mean curvature vector of the Σh were calculated for the case of

Σ = {x2 + y2 + z2 = 1} using the formulation (5.14). Figures 5.12 and 5.10 should

be compared. The results obtained for this 3D case using formulations (5.14) and (5.13)

coincide.

5.3.3 Beyond linear meshes

Conclusions made previously for the case of finite element method on linear meshes can

be generalized for meshes built using higher order basis functions. It is necessary for the

function space used for the geometry construction to be of the order equal to or higher than

the order of the function space involved in curvature evaluation using FEM formulations

(5.13) and (5.14).

Denote by Ak
h the function space used for the geometry construction, where k denotes

141



doi:10.6342/NTU202003676

(a) Mean curvature vector hh ∈Wh(T h,1). (b) Mean curvature Hh ∈ Kh(T h,1).

Figure 5.9: Mean curvature and mean curvature vector in case Wh(T h,1) = [P1,P1] and
Kh(T h,1) = P1. This figure should be compared with Figure 5.8 (a).

(a) Mean curvature vector hh ∈Wh(T h,1). (b) Mean curvature Hh ∈ Kh(T h,1).

(c) Mean curvature vector hh ∈Wh(T s2
h,1). (d) Mean curvature Hh ∈ Kh(T s2

h,1).

Figure 5.10: Mean curvature and mean curvature vector in case Wh(T h,1) = [P2,P2],
Kh(T h,1) = P2 and Wh(T s2h,1) = [P1,P1], Kh(T s2h,1) = P1. This figure should be com-
pared with Figure 5.8 (b).
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(a) Mean curvature vector hh ∈Wh(T h,1). (b) Mean curvature Hh ∈ Kh(T h,1).

(c) Mean curvature vector hh ∈Wh(T s3
h,1). (d) Mean curvature Hh ∈ Kh(T s3

h,1).

Figure 5.11: Mean curvature and mean curvature vector in case Wh(T h,1) = [P3,P3],
Kh(T h,1) = P3 and Wh(T s3h,1) = [P1,P1], Kh(T s3h,1) = P1. This figure should be com-
pared with Figure 5.8 (c).
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(a) Mean curvature vector for the case of hh ∈
Wh(T h,1,P2).

(b) Mean curvature for the case of Hh ∈
Kh(T h,1,P2).

(c) Mean curvature vector for the case of hh ∈
Wh(T h,1,P1).

(d) Mean curvature for the case of Hh ∈
Kh(T h,1,P1).

Figure 5.12: Mean curvature and mean curvature vector for the cases Wh(Σh,P2) =
[P2,P2,P2], Kh(Σh,P2) = P2 (subfigures (a) and (b)) and Wh(Σh,P1) = [P1,P1,P1],
Kh(Σh,P1) = P1 (subfigures (c) and (d)). Σh is the discrete counterpart of unit sphere
Σ = {x2 + y2 + z2 = 1}.
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the polynomial order. In previous subsection A1
h = [P1,P1] was used. Here, the cases of

A2
h = [P2,P2] and A3

h = [P3,P3] are investigated. Furthermore, the order of the functions

space for the curvature is indicated by the superscript, Wl
h = Pl × Pl. Figure 5.13 shows

the curvature vector for various combinations of function spaces (Ak
h,W

l
h), for k = 2, 3

and l = 1, 2, 3. It can be observed that non–physical oscillations appear only for the

case of (A2
h,W

3
h), i.e. when function space for the curvature is of higher order than the

function space for the geometry.

5.4 FEM formulation with the numerically corrected cur-

vature

In Section 5.3 the impact of the finite element spaces on the evaluation of the curvature

was shown. The non–physical oscillations in curvature vector explain the onset of spuri-

ous numerical forces on the interface Σh which polluted the surface force fh. As a result,

spurious velocities were introduced near the interface and realistic physics of the flow

was ruined as illustrated in Section 5.2. Based on the discussion from Section 5.3, two

different approaches can be employed in practice to avoid the numerical pollution in the

flow field induced by non–physical oscillations in curvature vector:

• use the isoparametric concept, i.e. employ the same function space for the curvature

and the geometry;

• decouple the curvature evaluation from the primary problem (Stokes flow problem

in our case).

By employing the isoparametric concept, formulations (5.10) and (5.11) can be used di-

rectly. Employing the standard FEM on linear meshes, the curvature evaluation has to be

performed independently of the primary problem and formulations (5.10) and (5.11) have

to be modified.
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(a) Mean curvature vector for the case of (A2
h,W

1
h). (b) Mean curvature vector for the case of (A2

h,W
2
h).

(c) Mean curvature vector for the case of (A2
h,W

3
h). (d) Mean curvature vector for the case of (A3

h,W
1
h)

(e) Mean curvature vector for the case of (A3
h,W

2
h) (f) Mean curvature vector for the case of (A3

h,W
3
h)

Figure 5.13: Mean curvature vector for all of the combinations of spaces (Ak
h =

[Pk,Pk],Wl
h = [Pl,Pl]), k = 2, 3, l = 1, 2, 3. For the cases where k ≥ l the mean

curvature vector is credibly evaluated and in all of these cases 0.9 ≤ |hh | ≤ 1.1. For the
case of k < l (k = 2, l = 3) spurious oscillations appear (c).
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5.4.1 Decoupling the curvature evaluation from the primary prob-

lem

In an attempt to get rid of the numerical pollution in the flow field induced by non–

physical oscillations in the curvature vector, an alternative framework for the problem

(5.8) is proposed. Instead of directly employing the Laplace–Beltrami operator in weak

formulation which results in FEM formulations (5.10) and (5.11), the evaluation of the

discrete curvature is decoupled from the main problem. Using linear spaces for Wh, the

DOFs lie only on the interface. Hence, the ”curving of the interface” is preserved on

the discrete level (there are no extra DOFs in interior of the edges). Then, the weak

formulation for problem (5.7) states:

find h ∈ H1(Σ;Rd) such that ∀φ ∈ H1(Σ;Rd)∫
Σ

h ·φ dS =

∫
Σ

∇Σ xΣ : ∇Σφ dS,

find v ∈ H1
0(Ω;Rd) , p ∈ L2

0(Ω) such that ∀(ϕ, q) ∈ H1
0(Ω;Rd)× L2(Ω)∫

Ω

(
1

2
µD(v) : D(ϕ)− p divϕ

)
dx =

∫
Σ

σ(h ·n)n ·ϕ dS,∫
Ω

q div v dx = 0.

(5.16)

Now, the weak formulation (5.16) can directly be transformed into the FEM formulation.

The finite element space for the curvature is chosen independently from the velocity space.

This also makes sense on the intuitive level since curvature is solely the surface (curve)

property and should not depend on a particular flow problem discretization.

New FEM formulation then consists of two steps. In the first step, a numerical curva-

ture is evaluated as described in Section 5.3. In the second step, the fluid system is then

solved with the forcing term in the following form:

fh =

∫
Σh

σ(hh ·n)n ·ϕh dS, ϕh ∈ Vh .
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1. Wh = [P1]n, n = 2, 3

find hh ∈Wh such that ∀ϕh ∈Wh∫
Ωh

hh ·ϕh dx+
1

ε

∫
Σh

hh ·ϕh dS =
1

ε

∫
Σh

∇Σh
xΣ : ∇Σh

ϕh dS .
(5.17)

2A. Qh consists of functions discontinuous across the interface Σh

find vh ∈ Xh , ph ∈ Mh such that ∀(ϕh, qh) ∈ Xh×Qh∫
Ωh

(
µ

1

2
D(vh) : D(ϕh)− ph divϕh

)
dx =

∫
Σh

σ(hh ·n)n ·ϕh dS,∫
Ωh

qh div vh dx = 0.

(5.18)

2B. Qh consists of functions continuous across the interface Σh

find vh ∈ Xh , p1
h, p

2
h ∈ Qh , p1

hχ1 + p2
hχ2 ∈ Mh , such that

∀(ϕh, q1
h, q

2
h) ∈ Xh×Qh×Qh∫

Ωh

µ
1

2
D(vh) : D(ϕh) dx−

∫
Ω1

h

p1
h divϕh dx−

∫
Ω2

h

p2
h divϕh dx

=

∫
Σh

σ(hh ·n)n ·ϕh dS,∫
Ω1

h

(
q1
h div vh +εp2

hq
2
h

)
dx+

∫
Ω2

h

(
q2
h div vh +εp1

hq
1
h

)
dx = 0.

(5.19)

Remark 14 The choice of penalization parameter ε in the formulation (5.19) has to be

significantly small in order for the numerical solution to be accurate. In all of the sim-

ulation results provided in this chapter penalization parameter ε in (5.19) was taken as

ε = 10−8. For larger orders (ε ≥ 10−7) spurious oscillations in numerical solution have

been observed. This is due to continuity of the pressure approximations p1
h and p2

h across

the interface so the artificial extension of pih into Ωh,j has a significant influence on pjh in

Ωh,j , i, j ∈ {1, 2}, i 6= j, if ε is not small enough.
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5.4.2 Numerical validation – FEM on polygnal meshes

Define the mesh parameter h = h(T h) as

h(T h) = max{diamT | T ∈ T h}, (5.20)

and heΣh
= heΣh

(Σh, T h) as

heΣh
= max{diam e | e ⊂ Σh}. (5.21)

So heΣh
gives the largest edge which contributes to the construction of Σh i.e. defines the

fineness of discretization of Σ.

Series of tests have been performed on uniform polygonal meshes with decreasing

mesh parameters 0.061 ≤ h ≤ 1.131 and 0.024 ≤ heΣh
≤ 0.618 for various finite element

spaces. This allowed us to investigate the influence of our novel curvature calculation

approach on the convergence rates for velocity and pressure. Finite element spaces satis-

fying the LBB condition considered for the standard FEM on linear meshes are:

• Taylor–Hood space Vh×Qh = [P2]2 × P1 with formulation 2B,

• Taylor–Hood space Vh×Qh = [P3]2 × P2 with formulation 2B,

• Crouzeix–Raviart space Vh×Qh = [Pb
2]2 × Pdc

1 with formulation 2A,

• Scott–Vogelius space Vh×Qh = [P2]2×Pdc
1 with formulation 2A (see also remark

15),

• Scott–Vogelius space Vh×Qh = [P3]2×Pdc
2 with formulation 2A (see also remark

15),

• Mini elements space Vh×Qh = [Pb
1]2 × P1 with formulation 2B.

Remark 15 For the case of Scott–Vogelius elements [Pk]d × Pdc
k−1 it is known that LBB

condition is satisfied only if some additional conditions are satisfied. The following cases
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where Scott–Vogelius elements are LBB stable have been reported in [58, 59] and refer-

ences therein:

• k ≥ d and a mesh is a barycentric refinement of a regular mesh,

• k ≥ 4, d = 2 and a mesh has no singular vertices,

• k ≥ 6 and d = 3.

The LBB stability is ensured by using the barycentric refinement of a regular mesh through-

out this chapter.

Remark 16 For the case of Mini elements no difference has been observed in numerical

solution using the two approaches based on Laplace–Beltrami operator technique. Cur-

vature calculation through Laplace–Beltrami operator embedded into the formulation (as

in formulation (5.11)) or decoupled curvature calculation with P1 elements (as in formu-

lation 2B) seem to yield the same results. This is in agreement with the discussion in

Section 5.2.

The selected results are presented in Tables 5.1, 5.2, 5.3, 5.4. A drastic drop in accuracy

can be observed for classical formulations with the embedded curvature evaluation rela-

tive to formulations with decoupled curvature evaluation. This illustrates the superiority

of our newly proposed approach. Furthermore, in figures 5.14, 5.15 and 5.16 convergence

rates in L2 and L∞–norms for the velocity and pressure fields are shown in log-log scale. It

can be observed that in case of the classical formulations (5.11) and (5.10) with embedded

curvature evaluation, the linear convergence is achieved at best. On the other hand, em-

ploying the modified formulations (5.17,5.18) and (5.17,5.19) with decoupled curvature

evaluation, at least the linear convergence is achieved. Only the first order convergence

(or around the first order) is achieved even for higher order finite element spaces. For

example, about the same convergence order is achieved by employing Taylor–Hood ele-

ments [P2]2×P1 and [P3]2×P2 (see Figure 5.14 (b) and (d)). Similarly, significantly better

accuracy cannot be gained by employing the higher order elements. Although it might

seem contradictory at first, this indeed should be expected for the model problem. A (rel-

atively) simple set of linear equations is being solved and the only error comes due to the
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finite
element
space

curvature
handling
technique

‖vh−Πh vexact ‖L2

heΣh
= 0.618 heΣh

= 0.313 heΣh
= 0.105 heΣh

= 0.06

TH
[P2]2 × P1

LB–embedded 2.56 0.94 0.178 0.079

LB–decoupled 9.53× 10−7 3.7× 10−7 7.01× 10−8 3.173× 10−8

TH
[P3]2 × P2

LB–embedded 2.663 0.975 0.189 0.083

LB–decoupled 2.654× 10−7 1.048× 10−7 2.035× 10−8 9.216× 10−9

CR
[Pb

2]2 × Pdc
1

LB–embedded 3.416 1.268 0.241 0.106

LB–decoupled 8.0× 10−8 2.45× 10−8 4.072× 10−9 2.378× 10−9

SV
[P2]2 × Pdc

1

LB–embedded 3.095 1.215 0.227 0.1

LB–decoupled 5.098× 10−8 1.95× 10−8 2.168× 10−9 1.167× 10−9

SV
[P3]2 × Pdc

2

LB–embedded 4.223 1.532 0.296 0.13

LB–decoupled 5.217× 10−8 1.976× 10−8 2.175× 10−9 1.168× 10−9

Table 5.1: Errors in L2–norm in velocity field with respect to the finite element space
employed, the technique for numerical evaluation of the curvature and the mesh param-
eter heΣh

. Πh denotes the projection to the corresponding finite element space. ”LB–
embedded” refers to formulations (5.10,5.11) where curvature computation is embedded
directly into the formulation.

approximate curvature evaluation, as already discussed in Section 5.2. But curvature is

evaluated using the polygonal approximation of the interface for all cases, independently

of finite element spaces employed for the velocity and pressure fields. Thus, at best the

linear convergence is expected for the discrete curvature. This bounds the global error

estimates which would normally be better when higher order finite element spaces are

employed. The results indeed yield the worst case scenario for the polygonal interface

geometry and one should not, in general, expect better results when curvature dependent

forces dominate.

5.4.3 Numerical validation – isoparametric concept

Employing the isoparametric concept resolves the oscillating curvature vector problem

as reported in Section 5.3.3. For the illustration, we have considered two different fi-

nite element spaces for the two–phase Stokes problem which, to some extent, mimic the
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finite
element
space

curvature
handling
technique

‖ph − Πhpexact‖L2

heΣh
= 0.618 heΣh

= 0.313 heΣh
= 0.105 heΣh

= 0.06

TH
[P2]2 × P1

LB–embedded 14.19 6.63 2.54 2.01

LB–decoupled 5.621 1.437 0.161 0.054

TH
[P3]2 × P2

LB–embedded 91.362 62.855 35.388 26.772

LB–decoupled 5.621 1.437 0.161 0.0535

CR
[Pb

2]2 × Pdc
1

LB–embedded 96.758 68.517 37.631 28.406

LB–decoupled 5.621 0.65 0.161 0.054

SV
[P2]2 × Pdc

1

LB–embedded 123.319 78.04 46.171 34.83

LB–decoupled 5.621 1.437 0.161 0.054

SV
[P3]2 × Pdc

2

LB–embedded 94.681 63.793 36.809 27.854

LB–decoupled 5.621 1.437 0.161 0.054

Table 5.2: Errors in L2–norm in pressure field with respect to the finite element space
employed, the technique for numerical evaluation of the curvature and the mesh param-
eter heΣh

. Πh denotes the projection to the corresponding finite element space. ”LB–
embedded” refers to formulations (5.10,5.11) where curvature computation is embedded
directly into the formulation.

152



doi:10.6342/NTU202003676

finite
element
space

curvature
handling
technique

‖vh−Πh vexact ‖L∞

heΣh
= 0.618 heΣh

= 0.313 heΣh
= 0.105 heΣh

= 0.06

TH
[P2]2 × P1

LB–embedded 4.26 2.056 0.682 0.397

LB–decoupled 9.5× 10−7 4.6× 10−7 1.74× 10−7 9.76× 10−8

TH
[P3]2 × P2

LB–embedded 4.657 2.393 0.837 0.516

LB–decoupled 3.683× 10−7 1.977× 10−7 7.437× 10−8 4.106× 10−8

CR
[Pb

2]2 × Pdc
1

LB–embedded 4.765 2.546 0.794 0.452

LB–decoupled 5.729× 10−8 2.722× 10−8 5.392× 10−9 2.458× 10−9

SV
[P2]2 × Pdc

1

LB–embedded 4.267 2.067 0.64 0.362

LB–decoupled 4.41× 10−8 3.285× 10−8 4.636× 10−9 1.433× 10−9

SV
[P3]2 × Pdc

2

LB–embedded 7.06 3.391 1.112 0.653

LB–decoupled 4.425× 10−8 3.17× 10−8 4.577× 10−9 1.41× 10−9

Table 5.3: Errors in L∞–norm in velocity field with respect to the finite element space
employed, the technique for numerical evaluation of the curvature and the mesh param-
eter heΣh

. Πh denotes the projection to the corresponding finite element space. ”LB–
embedded” refers to formulations (5.10,5.11) where curvature computation is embedded
directly into the formulation.
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finite
element
space

curvature
handling
technique

‖ph − Πhpexact‖L∞

heΣh
= 0.618 heΣh

= 0.313 heΣh
= 0.105 heΣh

= 0.06

TH
[P2]2 × P1

LB–embedded 21.245 21.57 19.241 21.59

LB–decoupled 2.55 0.65 0.073 0.024

TH
[P3]2 × P2

LB–embedded 241.718 210.913 212.595 212.91

LB–decoupled 2.55 0.65 0.073 0.024

CR
[Pb

2]2 × Pdc
1

LB–embedded 157.402 147.497 145.35 134.185

LB–decoupled 2.55 0.65 0.073 0.024

SV
[P2]2 × Pdc

1

LB–embedded 251.134 220.126 220.401 236.676

LB–decoupled 2.55 0.65 0.073 0.024

SV
[P3]2 × Pdc

2

LB–embedded 338.597 316.439 297.675 302.018

LB–decoupled 2.55 0.65 0.073 0.024

Table 5.4: Errors in L∞–norm in pressure field with respect to the finite element space
employed, the technique for numerical evaluation of the curvature and the mesh param-
eter heΣh

. Πh denotes the projection to the corresponding finite element space. ”LB–
embedded” refers to formulations (5.10,5.11) where curvature computation is embedded
directly into the formulation.
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(a) Case of Vh×Qh = [P2]2 × P1 and FEM for-
mulation (5.11) – embedded curvature evaluation.

(b) Case of Vh×Qh = [P2]2×P1 and FEM formu-
lation (5.17,5.19) – decoupled curvature evaluation.

(c) Case of Vh×Qh = [P3]2 × P2 and FEM for-
mulation (5.11) – embedded curvature evaluation.

(d) Case of Vh×Qh = [P3]2×P2 and FEM formu-
lation (5.17,5.19) – decoupled curvature evaluation.

Figure 5.14: L2 and L∞–error in velocity and pressure fields with respect to the mesh
parameter heΣh

(denoted hΣ,e in plot) in log–log scale. Taylor–Hood finite element spaces
are employed for the unknown and A1

h space for the geometry construction (linear mesh).
Πh(ve) denotes the projection of exact solution to the corresponding finite element space
(f = v, p).

(a) Case of Vh×Qh = [Pb
2 ]2 × Pdc

1 and FEM for-
mulation (5.10) – embedded curvature evaluation.

(b) Case of Vh×Qh = [Pb
2 ]2 × Pdc

1 and FEM for-
mulation (5.17,5.19) – decoupled curvature evalua-
tion.

Figure 5.15: L2 and L∞–error in velocity and pressure fields with respect to the mesh
parameter heΣh

(denoted hΣ,e in plot) in log–log scale. Crouzeix–Raviart finite element
spaces are employed for the unknown and A1

h space for the geometry construction (linear
mesh). Πh(fe) denotes the projection of exact solution to the corresponding finite element
space (f = v, p).
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(a) Case of Vh×Qh = [P2]2 × Pdc
1 and FEM for-

mulation (5.11) – embedded curvature evaluation.
(b) Case of Vh×Qh = [P2]2 × Pdc

1 and FEM for-
mulation (5.17,5.19) – decoupled curvature evalua-
tion.

(c) Case of Vh×Qh = [P3]2 × Pdc
2 and FEM for-

mulation (5.11) – embedded curvature evaluation.
(d) Case of Vh×Qh = [P3]2 × Pdc

2 and FEM for-
mulation (5.17,5.19) – decoupled curvature evalua-
tion.

Figure 5.16: L2 and L∞–error in velocity and pressure fields with respect to the mesh pa-
rameter heΣh

(denoted hΣ,e in plot) in log–log scale. Scott–Vogelius finite element spaces
are employed for the unknown and A1

h space for the geometry construction (linear mesh).
Πh(fe) denotes the projection of exact solution to the corresponding finite element space
(f = v, p).
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isoparametric concept:

• for the space Vh×Qh×A2
h = [P2]2 × P1×[P2]2 with formulation (5.11) we refer

to as iso–Taylor–Hood space, and

• for the space Vh×Qh×A2
h = [Pb

2]2 × Pdc
1 ×[P2]2 with formulation (5.10) we refer

to as iso–Crouzeix–Raviart space.

One should note that the function spaces for the velocity field (and, hence, for the mean

curvature) and the geometry construction are of the same order on Σh. To emphasize

this, slightly abusing the terminology, term ”iso” has been added. Note that in the case

of isoparametric elements, the classical formulation with the embedded curvature evalua-

tion has been used. The results are shown in Figure 5.17 for iso–Taylor–Hood [P2]2 × P1

and iso–Crouzeix–Raviart [Pb
2]2 × Pdc

1 elements. Convergence towards the third order

can be observed, although this might be due to very simple geometry (circle). Still, in

practice, a second order convergence seems to be reasonable expectation. A drop in ac-

curacy compared to the classical FEM on polygonal meshes can be observed. This is

most likely due to inability of exact integration for the case of isoparametric elements.

Indeed, increasing the precision of the quadrature formulas for the numerical integration,

it has been observed that the accuracy increases as well. The increased convergence order

is in agreement with the previous observation of only linear convergence on polygonal

meshes and classical FEM – using the iso–parametric elements allows a better geometry

approximation and thus curvature evaluation should be indeed more precise.

Remark 17 The (stationary) Navier–Stokes system suffers from the same ”discrete cur-

vature treatment” problematics studied in this chapter. Indeed, if one considers the

Navier–Stokes system

v ·∇v− divσ = 0 , div v = 0 in Ω,

σn = σ2H n on Σ and v = 0 on Γ,

(5.22)

instead of the linear Stokes system (5.7), the only difference is in the additional non–linear

term. Using the skew–symmetry of the non–linear term, zero divergence constraint and
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(a) Case of iso–Vh×Qh = iso–[Pb
2 ]2 × P1 and

FEM formulation (5.11) – embedded curvature
evaluation.

(b) Case of iso–Vh×Qh = iso–[P2]2 × P1 and
FEM formulation (5.17,5.19) – embedded curva-
ture evaluation.

Figure 5.17: L2 and L∞–error in velocity and pressure fields with respect to the mesh
parameter heΣh

(denoted hΣ,e in plot) in log–log scale. Isoparametric Crouzeix–Raviart
and isoparametric Taylor–Hood finite element spaces are employed for the unknown and
A2
h space for the geometry construction (linear mesh). Πh(fe) denotes the projection of

exact solution to the corresponding finite element space (f = v, p).

zero boundary condition, one can easily show that the weak solution of the continuous

problem is velocity equal to zero and pressure constant–per–region and discontinuous

across the interface. A direct employment of the Laplace–Beltrami operator into FEM

formulation again introduces the spurious velocities and pressure near the interface. Cap-

turing the pressure jump and decoupling the interface curvature evaluation from the flow

formulation resolves the oscillatory issue. This is expected since, as already discussed,

the issues arise only from the discontinuity of the pressure across the interface, the zero

divergence constraint and the discrete interface curvature evaluation.

5.5 Discussion

Influence of the curvature dependent surface forces on the formation of spurious veloci-

ties in finite element method for (incompressible) multi–phase flow has been studied in

the frameworks where mesh fits the interface. When Laplace–Beltrami operator tech-

nique is directly incorporated into the finite element formulation of the flow problem, the

choice of finite element spaces for velocity field has a major impact on the surface ge-

ometry representation. This has been explained in detail with multiple illustrations. An

arbitrary choices of finite element spaces for velocity result in onset of spurious oscilla-

tions in velocity field. In order to eliminate this issue, it has been shown that two different

158



doi:10.6342/NTU202003676

strategies can be taken in finite element modeling: either employing the isoparametric

concept or decoupling the curvature evaluation from the primary problem. A framework

with decoupled curvature evaluation is proposed and investigated in detail on polygonal

meshes. In this framework, the curvature evaluation is formally decoupled from the flow

problem and it is evaluated as the solely intrinsic property of the (discrete) surface. The

pollution in the velocity field is minimized and the error only comes from the evaluation

of the discrete curvature.
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Part II

Applications
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CHAPTER 6

Dynamic contact line problem – sliding droplet

The purpose of this chapter is to prepare ground for the numerical simulations of free

surface flows with FEM within ALE framework employing the methodology derived in

Part I. In next two chapters, more complicated multiphysics problems will be considered

but the ”free surface part” involved in the problem will, essentially, always be treated

as is described in this chapter. A (relatively) general setup is being considered which

includes the free surface and the dynamic contact line – a triple contact line where two

immiscible fluids and solid phase come into contact. The most common approach for

describing a viscous fluid flow in contact with some solid surface is to prescribe the so

called no-slip boundary condition on the fluid–solid interface. This condition ensures that

the fluid velocity is equal to the solid velocity and, in general, describes the physics of

such flows credibly. However, it is well known that the contact line is able to move in real

world examples. If one employs the no–slip boundary conditions, physics of the flow in

the numerical simulations is wrongly predicted, at least near the contact line. Hence, a

boundary condition with roots in the molecular dynamics approach has been derived for

the continuum modeling approach in [37, 38]. The so called generalized Navier boundary

conditions (GNBC) credibly describe the fluid behavior near the contact line, and the no–
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slip boundary condition can be derived from the GNBC limiting case.

6.1 Introduction

In free surface flows, the contact line (in 3D) or contact points (in 2D) emerge when the

interface between two immiscible fluids intersects with a solid surface. Typical example is

a water droplet placed on some hydrophobic surface. In that case, water and surrounding

air are the two immiscible fluids (immiscible under the certain conditions). Hydrophobic

surfaces are widely seen in nature and, in combination with small water droplets, they are

led to exhibit various phenomena such as color effects and self cleaning phenomena. Such

surfaces have become manufacturable in the industry in wide range of processes. Hence

the need for understanding the connection between physics and chemistry on the solid–

fluid interface. Related to this work, one such understanding concerns the dynamics of

water droplets on possibly inclined surfaces. The flow inside the sliding or rolling droplet

is important for the effect of self cleaning of the surface. An example of such situation

is sketched in Figure 6.1. It shows a droplet on the hydrophobic inclined surface, with

an inclination angle α. θ1 and θ2 denote the dynamic contact angles and they may differ.

For the case where inclination angle α = 0 and where surface exhibits uniform physical

properties, θ1 = θ2. Two types of contact angles are differentiated in this context: static

and dynamic contact angle. Static contact angle is an angle which forms between the free

surface and the solid fluid interface in absence of external forces. Generally it depends on

the physical properties of the fluid and the solid surface. Depending on the static contact

angle θs, fluid can be wetting in case of θs > π/2 (or, equivalently, the solid surface is

hydrophilic towards the fluid), and non–wetting in case of θs < π/2 (or, equivalently, the

solid surface is hydrophobic towards the fluid). Special cases of hydrophobic surfaces are

the so–called superhydrophobic surfaces where the static contact angle is very large, θs >

5π/6. This phenomenon is also referred to as ”lotus effect” and its significance is due to

the ability of the small droplet to fully rebound from an superhydrophobic surface, like

an elastic ball. The dynamic contact angle is the present angle formed between the free

surface and the solid fluid interface, in the presence of the external forces. When dynamic
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θ1

θ2

g

α

Ω

Σ

Γ

Figure 6.1: Liquid droplet on an inclined plane with the inclination angle α.

contact angle differs from the static contact angle, an additional force is introduced on the

contact line which ”pulls” the free surface towards the equilibrium state.

Applications in engineering include: increasing the corrosion resistance of surfaces

exposed to corrosive environments, modeling of anti-fog coating and anti–freeze sur-

faces, and anti–bacterial surfaces with medical applications, to name a few. Sliding or

rolling droplets on inclined surfaces have already been studied both experimentally and

numerically due to the phenomenon practical importance (see, e.g., [61, 62, 63, 60]).

In this chapter, numerical procedure introduced in Part I is employed on a simple

sliding droplet problem illustrated in Figure 6.1. Mathematical model from the continuum

mechanics approach is numerically realized with FEM within ALE approach. This is

indeed a perfect example for the employment of the ALE approach; for small droplets,

the topology of the interface is not expected to change, yet the shape of the interface plays

a major role in the overall dynamics. The numerical methods employed here are the ones

derived in Part I. Of particular importance for this problem are the methods derived in

Chapters 2 and 5 i.e. the volume preserving method and correct evaluation of the capillary

(curvature based) forces.
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6.2 Moving contact line problem

Mathematical model describing the dynamics of a small liquid droplet sliding along an

inclined wall involves the Navier–Stokes equations with the generalized Navier boundary

conditions (GNBC). Adjective ”small” in ”small liquid droplet” is relative, and, generally,

it means that the considered droplet is small enough so the capillary forces can compete

with the external force (gravity). For a particular liquid, capillary length is a length scaling

factor that relates gravity and surface tension, commonly given by the formula

λc =

√
σ

∆%g
.

In the above expression, σ denotes the surface tension, ∆% the mass density difference

between two fluids and g the gravity constant. For the case of water droplet surrounded

by air, ∆% = %water − %air ≈ %water and λc ∼ 3mm.

System of equations governing the dynamics of a small droplet placed on a possibly

inclined solid wall reads:

% (∂t v+v ·∇v)− divσ = %g g in QT ,

div v = 0 in QT ,

(6.1)

where

σ = −p I+µD(v),

D(v) = ∇v+∇vT ,

and k denotes the direction of gravity force. Assume that the plane is inclined with an

inclination angle α, as illustrated in Figure 6.1. For consistency, the coordinate system

is chosen such that the horizontal axis are aligned with the inclined plane. In two di-

mensions, this results in g = [sinα,− cosα]T . The above setup is chosen for technical

reasons, because it significantly simplifies the numerical realization – precisely, the imple-

mentation of the Dirichlet boundary conditions. System (6.1) is subjected to the following
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νΣ

θ
νΓ

νΣ

Ω

Σ

Γ

(a)

νΓ νΣ
nΓ

nΣ

(b)

Figure 6.2: Sketch of the vectors describing the geometry of droplet interface in 2D (a)
and 3D (b) cases.

boundary conditions:

σnΓ · τ = −βw(v−w) · τ −σ(νΣ ·νΓ− cos θs)νΓ · τ δγ on Γ , ∀ τ ,

v ·n = 0 on Γ,

σn = σ divΣnn−∇Σσ on Σ,

(6.2)

where Σ denotes the fluid–fluid interface and Γ the solid (inclined) surface. w denotes

the velocity of solid surface Γ (which is typically static). See Figure 6.2 for illustration.

Furthermore, θs denotes the static contact angle, and νΣ ·νΓ gives the relation for the

dynamic contact angle,

νΣ ·νΓ = cos θ.

δγ is a distribution which localizes the force arising from the difference of the static and

dynamic contact angles to the contact line.

To express GNBC, the following vectors and orientations have to be defined first (see

Figure 6.2). By nΣ and nΓ the unit normal vectors to the free surface and the rigid

walls are denoted, respectively. On the contact line γ, tangential vector to γ = Γ ∩ Σ is

defined by tγ = nΣ×nΓ. Two normal vectors to γ lying on tangential planes of Γ and Σ,

νΓ ∈ Tp Γ and νΣ ∈ Tp Σ, are defined by νΓ = nΓ× tγ and νΣ = tγ ×nΣ, respectively.

Note that (tγ,nΣ,νΣ) and (tγ,νΓ,nΓ) form positively oriented orthonormal basis. Note
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that GNBC indeed generalizes the classical no–slip boundary condition: rewriting (6.2)1

as
1

βw
σnΓ · τ = (v−w) · τ − 1

βw
σ(νΣ ·νΓ− cos θs)νΓ · τ δγ

and letting βw →∞, the no slip boundary condition is obtained.

6.3 Non–dimensionalization

For numerical implementation, system governing the sliding droplet problem is non–

dimnesionalized. For a droplet of fixed volume V , characteristic length is chosen as a

radius of the ball which volume V would form in absence of any external forces,

L = r =

(
3

4π
V

)1/3

.

For a given characteristic velocity, dimensionless quantities are defined as:

x =
x

L
, t =

t

L/U
, v =

v

U
, p =

p

%U2
, (6.3)

where overline denotes the dimensionless quantity. In the rest of the chapter only the di-

mensionless framework is considered so the overline is dropped for convenience. Move-

ment of the droplet on an inclined plane is governed by gravity and friction forces. In an

absence of friction forces, the convective term in the Navier–Stokes equations is of order

|%(v ·∇)v | ∼ %g sinα. (6.4)

From the relation (6.4), order of the characteristic velocity may be obtained in absence of

the friction force (i.e. with the perfect slip condition):

U =
√
gL
√

sinα. (6.5)
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This velocity is taken as the characteristic velocity throughout this chapter for the ”aca-

demic” examples presented below.

System of equations (6.1) subjected to the boundary conditions (6.2) can be expressed

in the dimensionless form in terms of three dimensionless numbers: Reynolds number

Re, Bond number Bo and the dimensionless friction coefficient β, given by

Re =
%UL

µ
, Bo =

%gL2

σ
, β =

%U

βw
. (6.6)

The resulting dimensionless system in ALE framework then reads:

∂

∂t

∣∣∣∣
x̂

v+(v−w) · ∇v− divσ = g in QT ,

div v = 0 in QT ,

(6.7)

where

σ = −p I+ Re−1
D(v),

D(v) = ∇v+∇vT .

Dimensionless system (6.7) is subjected to dimensionless boundary conditions

σnΓ · τ = −β−1(v−w) · τ −Bo−1(νΣ ·νΓ− cos θs)νΓ · τ δγ on Γ , ∀ τ ,

v ·n = 0 on Γ,

σn = Bo−1 divΣnn on Σ.

(6.8)

Assumption that the surface tension σ is constant has been made so the term ∇Σσ van-

ishes.
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6.4 Weak and FEM formulation

Let us introduce the following function spaces: for Ω ⊆ Rd with Lipschitz continuous

boundary

H1
Γ(Ω;Rd) = {φ ∈ H1(Ω;Rd) | φ = 0 on Γ},

L2
0(Ω) = {q ∈ L2(Ω) |

∫
Ω

p dx = 0}.
(6.9)

Then, the conservative weak formulation of the problem (6.7) reads:

find (v, p) ∈ H1
Γ(Ω;Rd)× L2

0(Ω) such that ∀(φ, q) ∈ H1
Γ(Ω;Rd)× L2(Ω)

d

dt

∫
Ω

φ ·v dx+

∫
Ω

(
φ ·(v−v) · ∇v−φ ·v divw+∇φ : σ

)
dx

−
∫
∂Ω

φ ·σn dS−
∫
Ω

φ ·k dx = 0,

∫
Ω

q div v dx = 0.

(6.10)

In the weak formulation (6.10), the boundary integral is rewritten employing the bound-

ary conditions (6.8) and the Laplace–Beltrami operator for the curvature evaluation, as

described in Chapter 5:

−
∫
∂Ω

φ ·σn dS = −
∫
Γ

φ ·σn dS−
∫
Σ

φ ·σn dS

=

∫
Γ

1

β
(v−w) · φ dS +

∫
γ

1

Bo
(νΓ ·νΣ− cos θs)νΓ ·φ ds

+

∫
Σ

1

Bo
∇Σ xΣ : ∇Σφ dS−

∫
γ

1

Bo
(νΓ ·νΣ)νΓ ·φ ds .

(6.11)

In order to obtain the FEM formulation, domain Ω has to be replaced with its dis-

crete counterpart Ωh and id triangulized into T h. Furthermore, the function spaces over

Ωh are to be replaced by their finite element counterparts over the triangulation T h. Let

Vh ⊂ H1(Ωh;Rd) and Qh ⊂ L2(Ωh) be (basis) finite element spaces for vh and ph, and

let Xh = Vh ∩H1
Γ(Ωh;Rd) and Mh = Qh ∩L2

0(Ωh). Then, the FEM problem states: find
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(vh, ph) ∈ Xh×Mh such that ∀(φh, qh) ∈ Xh×Qh FEM counterpart of the formulation

(6.10) holds. For the case when isoparametric elements are employed, the FEM counter-

part of formulation (6.10) is obtained straightforwardly from the weak formulation (6.10).

For the case where mesh T h is piecewise linear and Vh is the quadratic polynomial space

(or of higher order), approach described in Chapter 5 has to be employed in order to avoid

numerical pollution in the mean curvature field and the onset of the spurious velocities

near the gas–fluid interface.

6.5 Numerical results

Two different setups are considered below: a liquid droplet on the hydrophobic (θs =

2π/3) horizontal surface and a sliding droplet on an inclined surface (with θs = π/2).

Meshes on which simulations are performed are pre–adapted: denser near the free surface

and the contact points in order to credibly capture the details in the non–linear dynamics.

Initial shape of the droplet meniscus is a part of the circle – this is an equilibrium shape

in case external forces (gravity) are absent. Approach developed in Chapter 2 for volume

preserving moving mesh method is employed in order to ensure the volume conservation.

Indeed, for both cases the volume (mass) is preserved up to the order of 10−10. The ”aim

velocity vector” k introduced in Chapter 2 is chosen as k = v. This choice results in

good mesh properties for longer times and less need of the mesh adaptation.

6.5.1 Mesh adaptation

Due to the mesh movement, it is possible for the mesh to become too ”skew” which can

result in not credible numerical results. Hence, a mesh adaptation algorithm has been

added to the global simulation algorithm. Denote by haim the vector which contains the

initial diameters of mesh triangles and hcurr the vector which contains the diameters of

triangles in the current mesh. Then, the criteria for the mesh adaptation is given by scalar

m,

m =
‖haim−hcurr ‖∞

haim
. (6.12)
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Figure 6.3: Initial mesh is pre–adapted – it is denser near the free surface and, especially,
near the contact points.

If m > tol for tol ∈ R+ user prescribed, mesh is adapted and finite element spaces are

re–interpolated onto the new mesh. This ensures the top quality of the mesh at all times.

Initial mesh parameters, the largest and smallest diameter of mesh triangles, are given by

hmin = 0.005 and hmax = 0.05.

6.5.2 Droplet on a horizontal solid surface

For the first test, a liquid droplet on a horizontal surface is considered, i.e. the direction of

the gravity force is given by g = [0,−1]T . Static contact angle was chosen as θs = 2π
3

and

initial configuration of the droplet is shown in Figure 6.3. Numerical results presented are

obtained for the following choice of the dimensionless parameters:

Re = 20, Bo = 10, β = 10−2. (6.13)

In the beginning of the simulation, droplet meniscus shape is a part of the circle, i.e.

droplets shape is that of the equilibrium shape in case when there are no external forces.

However, in the gravity field, droplet meniscus will deform in order to balance out the

gravity and capillary forces. After the start of simulations, due to the inclusion of gravity
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Figure 6.4: Initial configuration (light gray) and configuration near the final equilibrium
state (dark gray). Volume is preserved within the order of 10−10.

force, initial configuration is not the equilibrium configuration and the droplet starts to

spread along the solid surface Γ. The moment gas–liquid interface is deformed, dynamic

contact angle differs from the prescribed static contact angle. Hence, an additional force

at the contact points is introduced which ”pulls” the gas–liquid interface near the contact

points towards the new equilibrium position. In Figure 6.4 comparison of the initial state

and the (near) equilibrium state in the gravity field is shown. Bond number measures the

relative importance of the gravity force compared to the surface tension force. Therefore,

the smaller the Bond number is, the more dominant the surface tension force with respect

to the gravity force is and the deformation of the droplet compared to the initial state is

less significant.

In Figure 6.5, velocity field, symmetric with respect to line {x = 0}, is shown at time

near the initial time t = 0 (when the free surface starts deforming under the gravity force)

and at a time when the new equilibrium state is nearly reached (i.e. near the steady state

solution). Deformation of the droplet is symmetric with respect to the line {x = 0}, as

can be observed in Figure 6.4.
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(a) (b)

Figure 6.5: Velocity field at a time near the initial time (start of simulations) when droplet
starts to deform (a) and at a time when the steady state will soon be reached (b).

6.5.3 Droplet on an inclined solid surface

For the second test, a liquid droplet on an inclined surface with inclination angle α is

considered, i.e. the direction of the gravity force is given by g = [sinα,− cosα]T . The

inclination angle α = π/6 is chosen. Two different Bond numbers are considered: Bo = 1

and Bo = 15. In physical world these two numbers correspond to small droplet (Bo = 1)

in which case capillary forces dominate and large droplet (Bo = 15) in which case gravity

forces dominate (e.g. droplets of volume around 1cm3). The rest of the dimensional

parameters are chosen the same for both cases:

Re = 20, β = 10−4.

Static contact angle has been chosen as θs = π/2 for the simulations of the droplet on an

inclined surface.

Case Bo = 1. In the beginning of the simulation, droplet meniscus shape is a part of

the circle, i.e. droplet shape is that of the equilibrium shape in case when there are no

external forces. However, in the gravity field, droplet meniscus will deform in order to

balance out the gravity, inertia and capillary forces. Droplet meniscus deforms due to

the ”gravitational pull” and, because the droplet is placed on an inclined surface, it starts

sliding down the solid surface. Since the inclination angle is α 6= 0, the deformation
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Figure 6.6: Magnitude of velocity field at time near the initial time (start of simulations)
when droplets starts to deform (left) and at time when the steady state will soon be reached
(right). Volume is preserved within the order of 10−10.

of the gas–liquid interface is not symmetric with respect to the center of the droplet.

However, since the Bond number is small, i.e. capillary forces dominate, the deformation

of the droplet meniscus is minimal (compared to the case of Bo = 15). In Figure 6.6

the magnitude of velocity field is shown at a time near the initial time t = 0 and at a

time near the steady state solution when droplet is, essentially, just sliding along the solid

surface without changing its shape. The equilibrium (sliding) contact angles differ in the

left (smaller) and the right (larger) contact points but the difference is minimal due to

the dominating surface tension force. This is in agreement with the physical intuition and

observations. Due to the minimal mesh deformation, no mesh adaptation is needed during

the simulation.

Case Bo = 15. More interesting case (in sense of simulations complexity) is obtained

for the case of Bo = 15 which simulates the sliding of a large droplet. Deformation of

the droplet meniscus due to gravity influence is significant as can be seen in Figure 6.7 in

which droplet states are shown for different times. Figure 6.8 shows the mesh of the full

droplet at time t = 4 and enlarged captions of the mesh near the contact points. It can be
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clearly seen that the advancing and receding contact angles differ significantly.

6.6 Discussion

In this chapter, preliminary results for the moving contact line problem have been pre-

sented and the credibility of the employed numerical method has been demonstrated. The

problem of choice for such illustration was a sliding droplet problem – a relatively sim-

ple problem in the class of the dynamic contact line problems but which involves most

of the problematics one might face in more complex examples. The results in general

showed good agreement with the ones already presented in the literature and with the

physical intuition. Although only 2D results are presented, generalization to the 3D case

is straightforward. Of course, the simulations in 3D are much more expensive in terms

of computational time and necessary machine memory. However, the underlying physics

of the flow is similar in both 2D and 3D cases for such simple examples (considered in

this chapter). 3D free surface simulations are performed in Chapter 7 for more complex

multiphysics problems. The aim of this chapter was only for the preliminary test of the

methodology derived in earlier chapters rather than to perform some parametric study

or investigate the dynamics of the sliding droplet for particular cases. More details on

numerical simulations of sliding droplets can be found in [54, 60] and references therein.
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(a) Begining of the simulation. (b) t = 1.

(c) t = 1.5. (d) t = 2.

(e) t = 2.5. (f) t = 3.

Figure 6.7: Velocity magnitude (lower figures) and pressure field (upper figures) at differ-
ent times.
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(a)

(b) (c)

Figure 6.8: The droplet mesh at time t = 4 (a) and enlarged caption of the mesh near the
contact points (b) and (c).
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CHAPTER 7

Chemotaxis

Suspension of an oxytactic bacteria (e.g. the species Bacillus subtilis) placed in a con-

tainer with its upper surface open to the atmosphere results in the formation of complex

bioconvection patterns. The bacteria consume the oxygen diluted in the water, thereby

causing the decrease of oxygen concentration everywhere except on the free surface.

Through the free surface, which is in direct contact with the air, oxygen diffuses into

the water. Slightly denser than water, the oxytactic bacteria are able to swim towards

the higher concentration of oxygen (i.e. upwards) and they concentrate in a thin layer

below the free surface. This causes the change of the suspension density and Rayleigh–

Taylor type instabilities to occur. The chemotaxis phenomenon has been successfully

modeled in the literature within continuum mechanics approach under certain simplifi-

cations. The set of (non–linearly) coupled equations describing the process involves the

Boussinesq approximation of the Navier–Stokes equations governing the fluid motion

and two convection–diffusion type equations governing the bacteria and oxygen concen-

trations. One of the simplifications in the models available in the literature is the bound-

ary condition for the fluid equations on the free surface. This condition ensures that the

vertical component of the velocity is zero, thus keeping the free surface fixed. This as-
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sumption significantly simplifies the numerical procedure since the non–linearly coupled

system can then be solved on a stationary mesh. However, allowing the motion of the free

surface and completing the system with appropriate boundary conditions on the triple con-

tact line (liquid–solid–gas interface), a more realistic model is derived and new insights

on nonlinear dynamics of the chemotaxis phenomenon are obtained.

In this chapter, currently available model is ”upgraded” into a more realistic one in

both two and three dimensions. The newly derived model allows the dynamic free sur-

face and it is able to capture the triple contact line. Furthermore, a numerical procedure is

proposed which is able to handle the new mathematical model (posed in time–depended

domain). Finally, numerical simulations are performed in order to demonstrate the effi-

ciency of the derived approach. Majority of material presented in this chapter has been

published recently in [39, 40]. The chemotaxis phenomenon exhibits the similar behav-

ior as the free thermal (natural) convection. Therefore, in the concluding section of this

chapter, free thermal convection problem is revisited and compared with the chemotaxis

phenomenon. Free thermal convection is a well studied problem due its significance in

engineering and industry. Hence, the governing system of equations is constrained with

less assumptions and approximations. For example, the dependence of the surface ten-

sion of water on the temperature is not neglected. Therefore, one is able to consider the

thermal gradients on the free surface accompanied with the (tangential) Marangoni flows.

Similar behavior is expected for the bacterial chemotaxis, however, the physics of the

surface tension depending on bacteria concentration is still under the research.

7.1 Introduction

A taxis refers to the movement of organisms or cells in response to some (outside) stim-

ulus whose nature can be of, for example, chemical (chemotaxis), mechanical (gyro–,

hapto–, rheotaxis), physical (photo–, thermotaxis) origins. When a suspension of oxytac-

tic bacteria in water is placed in a container with its upper surface open to the atmosphere,

complex bioconvection patterns occur. ”Bioconvection” is a self–organized structure in

the fluid flow which arises in suspension of microorganisms. Hydrodynamic instabili-
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ties and patterns result from their collective swimming and physical properties coupled

with the fluid flow. A general term for a directional movement of organism in response

to some stimulus is taxis. Based on the nature of that stimulus, taxis can be categorized

into chemotaxis (chemical stimulus), gyrothaxis (gravitational and viscous torques), pho-

totaxis (light), rheotaxis (direction of fluid flow), and others. A good review on bacterial

bioconvection and its mathematical modelling can be found in [64]. Current advances

in study of bioconvection can be found in [65]. Ecological consequences of bioconvec-

tion and the mechanisms involved are an important manner as well as their potential for

industrial exploitation ([66]).

Oxytaxis is chemotaxis where chemical stimulus is oxygen. Bacterial oxytaxis in thin

fluid layers and the consequences of induced bioconvection are the topics investigated in

this paper. This phenomenon has already drawn a significant attention for various setup

cases, both experimentaly and theoretically. Bacteria consume oxygen in the suspension

and swim up the oxygen concentration gradient. Oxygen diffuses into the suspension

through the interface in contact with air so the highest oxygen concentration is in the

layer near the interface. This causes dense accumulation of bacteria in a thin layer near

the interface, thereby resulting in a non-uniform suspension density (cells are slightly

denser than water). When vertical density gradient becomes large enough, an overturning

(Rayleigh–Taylor like) instability occurs.

The aforementioned properties were incorporated into conservation equations describ-

ing the chemotaxis phenomenon in [67, 68] (and the references therein) establishing the

foundational mathematical model. The model includes a system of non–linearly cou-

pled equations governing the chemotaxis phenomena: two convection–diffusion equa-

tions for the bacteria and oxygen concentrations, and Navier–Stokes equations (or rather

the Boussinesq approximation) for the fluid. In [69], the numerical study based on the de-

veloped mathematical model on bacterial plume formation was performed. The authors

developed a high–resolution vorticity–based finite–volume finite–difference scheme and

investigated the non–linear dynamics of two–dimensional chemotaxis phenomenon with

a setup matching the experiment from [67]. Similarly, a numerical study of plume pat-

181



doi:10.6342/NTU202003676

terns for bacterial chemotaxis in rectangular container with fixed free surface has been

performed in [70] with convection–stabilized finite element method in two–dimensional

setup. A comparison has been made with other buoyancy–driven convections, such as

Rayleigh–Bénard convection, which shares many similar features with bacterial chemotaxis–

diffusion–convection system. In [71, 72] mainly experimental study on chemotactic dy-

namics near the contact line in millimetric water droplets has been performed. Collective

motion of bacteria due to a chemotactic response causes vortex formation near the contact

lines and it can be able to induce the motion of droplets ([71]). This leads to a colony mi-

gration speed above that of mass swarming and is of great importance to food processing,

transport and storage, showing the necessity of including the moving contact angle into

the description. Recently, in [73], deformed free surface has been incorporated into the

chemotaxis–diffusion–convection system and detailed linear stability analysis has been

performed.

A lot of studies, both experimental and numerical, have been carried out in controlled

environments in order to get more insights into bacterial swimming due to their biomed-

ical impact. It seems, however, that numerical studies, although more flexible than ex-

perimental counterparts, mostly have been performed in simplified setups. Most likely

this is due to the complexity of mathematical model and its numerical realization when

one wants to focus on more complex cases. However, recently, more and more attention

has been given to the study of bacterial motion in complex environments, in particular

near two–phase interfaces and three–phase contact lines, at least experimentally (see e.g.

[71] and references therein). In [74] the dynamics of swimming bacteria near complex

interfaces has been investigated. They reported that dynamics of swimming is strongly

affected by the boundary conditions, thus implying that simplified models might not cred-

ibly describe the real world phenomenon.

182



doi:10.6342/NTU202003676

7.2 Chemotaxis–diffusion–convection (CDC) coupling sys-

tem with fixed free surface

In this section the system of equations governing the chemotaxis–convection–diffusion

phenomenon is recalled and summarized. The assumption made in this section is that

motion of free surface is negligible and it is thus kept fixed. This system was already an-

alyzed and discussed in [67, 68, 69, 70] where the non–dimenzionalization was proposed

in order to make it feasible for the numerical implementation as well as for the paramet-

ric studies. In the next section, the system of equations is extended by incorporating the

dynamic free surface into the mathematical model.

7.2.1 The dimensional CDC system

The domain occupied by the suspension of bacteria (in water) at time t ∈ [0, T ] is denoted

by Ω. It is assumed that domain width is much larger than its height, i.e. shallow fluid

layer case is considered. The ratio between the domain height and width is denoted by

ε and, typically, one is interested in cases for ε << 1. The boundary ∂Ω consists of the

fixed rigid walls Γ and the fixed free surface Σ:

∂Ω = Γ ∪ Σ.

The set of contact points in the two dimensional case or contact line in the three dimen-

sional case can then be defined as:

γ = ∂Σ = ∂Γ = Γ ∩ Σ.

Due to the assumption of fixed free surface (for the moment), the domain Ω is time inde-

pendent during the whole process. Denote by n and τ normal and tangent vector to the

∂Ω, respectively. The sketch of the domain of interest is given in Figure 7.1.

The CDC phenomenon within continuum mechanics environment is described by the
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Figure 7.1: The sketch of the time–independent domain occupied by the suspension of
bacteria in water.

set of equations governing the fluid motion (the Navier–Stokes equations) and the equa-

tions governing the oxygen and bacteria concentrations (two convection–diffusion equa-

tions). In what follows, v denotes the fluid velocity, p the fluid pressure, c the oxygen

concentration and n the bacteria concentration – these are the unknowns of the CDC

system. Physical parameters of the CDC system are the fluid density %w and dynamic

viscosity µ for the fluid equations. The volume of the bacterium cell is denoted by Vb and

the volumetric mass, which is slightly larger than the fluid density, by %b. The bacterium

diffusivity, Db, comes from a random swimming of bacteria (details can be found in [67]).

The oxygen diffuses into the water with its diffusivity constant, DO, and is consumed by

bacteria with the bacterial oxygen consumption rate, κb, that is proportional to the con-

centration of the cells, n. Consequently, owing to the chemotaxis response, bacteria direct

its movement towards the higher concentration of oxygen (directional swimming). Such

a movement of bacteria depends on the chemotactic sensitivity, Sb. When the oxygen

concentration becomes lower than some threshold values, the bacteria become inactive

– they will stop both consuming oxygen and swimming towards higher concentration of

it. This property is expressed by a cut–off function r = r(c) which is modelled as a step

function based on experiments ([67, 68]). For a summary of nomenclature, see Table 7.1.

The full dimensional system in Ω× (0, T ) reads:

∂tc+ v ·∇c−DO ∆c = −κb r(c)n,

∂tn+ v ·∇n−Db ∆n+∇ · [Sb r(c)n∇c] = 0,

%w (∂t v+v ·∇v)− divσd = nVb ∆% g,

div v = 0,

(7.1)
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Table 7.1: Nomenclature description.

PARAMETER DEFINITION DIMENSION

v fluid velocity m s−1

p fluid pressure Pa
c oxygen concentration molecules m−3

n bacteria number density m−3

%w fluid density kg m−3

µ fluid dynamic viscosity kg m−1 s−1

%b bacteria volumetric mass density kg m−3

g gravitational acceleration m s−2

Db bacteria diffusivity m2 s−1

Sb chemotactic sensitivity m5 s−1

DO oxygen diffusivity m2 s−1

κb oxygen consuption rate molecules cell−1 s−1

σ surface tension N m−1

βw friction slip coefficient Pa s m−1

where

σd = −pd I+µD(v),

D(v) = ∇v+∇vT ,

g = [0,−g]T in 2D case and g = [0, 0,−g]T in 3D case with g being the gravitational ac-

celeration and ∆% = %b− %w being the difference between bacterium and water densities.

Subscript d in pd denotes that the considered pressure is the dynamic pressure, i.e.:

p = pd + %w g ·x , x = (x, y) in R2 , x = (x, y, z) in R3 (7.2)

and σd is the stress tensor corresponding to the dynamic pressure. The system is com-
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pleted by the following boundary and initial conditions :

v = 0 on Γ (no–slip boundary condition),

v ·n = 0 on Σ (zero velocity in vertical direction),

σn · τ = 0 on Σ (do–nothing condition in tangential direction),

∇c · n = 0 on Γ (no–flux of oxygen through the rigid walls),

c = cair on Σ (on surface oxygen diffuses freely from the air),

[Db∇n− Sb r(c)n∇c] · n = 0 on ∂Ω (no–flux of bacteria through the boundary),

v(0) = 0, c(0) = c0, n(0) = n0 in Ω

(7.3)

Subjected to the incompressibility constraint, the fluid equations employ the Boussinesq

approximation in which density variations appear only in the buoyant forcing term. Both

bacteria and oxygen concentrations are advected by the fluid. Furthermore, as discussed

in [68], it is assumed that the timescale for which biological growth and decay of bacteria

are significant is much greater than that required for bioconvection pattern formation.

Therefore, the total number of cells is assumed to be conserved during the time interval

of interest.

7.2.2 The dimensionless CDC system

In order to perform a systematical parametric study as well as for an efficient numerical

implementation, the CDC system is non–dimensionalized. The non–dimensionalization

is performed as in [70, 69, 68]. By overline, the dimensionless quantities are denoted.

The characteristic length L is the container height h, L = h, and the characteristic

time is dictated by the bacteria diffusivity constant, tc = h2/Db. Characteristic velocity

and pressure are, respectively, given by:

U =
Db

L
and pc =

µU

L
. (7.4)
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Dimensionless variables are then defined as follows:

x =
x

h
, t =

t

h2/Db

,

c =
c

cair
, n =

n

n0

, v =
v

Db /h
, p =

p

µDb /h2
,

(7.5)

where

n0 =
1

|Ω|

∫
Ω

n0 dx

is the average concentration of the initial bacterial population. The CDC system is char-

acterized by the five dimensionless parameters given by

Pr =
µ

%w Db

, Ra =
h3

Db µ
gVb n0∆%) ,

S =
Sb cair

Db

, H =
κbn0h

2

Db cair
, Le =

DO

Db

,
(7.6)

where Pr is the taxis Prandtl number, Ra the taxis Rayleigh number, and Le the taxis

Lewis number. These numbers are analogous to the respective quantities in mass and heat

transfer equations. S is the dimensionless chemotaxis sensitivity and H is the chemotaxis

head – they characterize the chemotaxis system. The threshold value of c for the cut–

off function r is c∗ = 0.3 in the dimensionless environment as discussed in [69, 70].

Let us employ the dimensionless quantities but drop the overline in order to simplify the

notation. From now on, only dimensionless system is considered so there should be no

confusion. The domain in its dimensionless form reads:

Ω = [−l, l]× [0, 1] , ∀t ∈ [0, T ], where l is s.t. ε =
1

2l
.

The dimensionless system of equations reads:

∂tc+ v ·∇c− Le ∆c = −H r(c)n,

∂tn+ v ·∇n−∆n+ div[S r(c)n∇c] = 0,

∂t v+v ·∇v−Pr divσ = −Ra Prnk,

div v = 0,

(7.7)
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in Ω × (0, T ) where k = [0, 1]T . The Neumann type boundary conditions remains the

same as those in the dimensional case, while the Dirichlet type boundary conditions have

to be non–dimensionalized accordingly:

v = 0 on Γ,

v ·n = 0, σn · t = 0 on Σ,

∇c · n = 0 on Γ,

c = 1 on Σ,

[−∇n+ S r(c)n∇c] · n = 0 on ∂Ω,

v(0) = 0, c(0) = c0/cair, n(0) = n0/n0 in Ω.

(7.8)

7.3 Chemotaxis–diffusion–convection (CDC) coupling sys-

tem with dynamic free surface

In order to allow free surface to move and deform, i.e. considering a dynamic free surface,

the generalized Navier boundary conditions in the Navier–Stokes equations are employed.

From physical observations, it is known that no–slip boundary conditions very well de-

scribe the behavior of the fluid in contact with the rigid walls, but, at the same time, the

contact line (interface between solid, liquid and gaseous phases) can move. Within con-

tinuum mechanics approach these are two contradictory conditions on the same part of

the boundary.

7.3.1 The generalized Navier boundary conditions

Recall that the no–slip boundary condition is just an approximation of the more general

Navier–slip boundary condition:

βw(v−w) · τ +σn · τ = 0 on Γ , ∀ τ tangent to Γ,
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Figure 7.2: The sketch of part of the domain near the contact line with the various unit
vectors necessary for formulating the boundary conditions.

where βw is the friction slip coefficient and w is the boundary velocity. In practice, the

coefficient βw is very large justifying the application of the no–slip approximation

βw(v−w) · τ = 0 on Γ , ∀ τ tangent to Γ.

The Navier–slip boundary condition fails to adequately describe the behaviour of the

dynamic contact line. For that reason, the generalized Navier boundary condition (GNBC)

adapted from the molecular dynamics approach to the continuum mechanics approach

was introduced in [37, 38]. To express it, the following vectors and orientations have to

be defined (see Figure 7.2). Denote by nΣ and nΓ the unit normal vectors to the free

surface and the rigid walls, respectively. Then, on the contact line γ, tangential vector to

γ = Γ∩Σ is defined by tγ = nΣ×nΓ. Two normal vectors to γ lying on tangential planes

of Γ and Σ, νΓ ∈ Tp Γ and νΣ ∈ Tp Σ, are defined by νΓ = nΓ× tγ and νΣ = tγ ×nΣ,

respectively. Note that (tγ,nΣ,νΣ) and (tγ,νΓ,nΓ) form positively oriented orthonormal

basis. Dynamic contact angle θ – an angle that is formed between the free surface and

rigid wall – is defined by:

cos θ = tΣ · tΓ . (7.9)

In addition, a static contact angle θs has to be provided as an input parameter (an a priori

known value). When fluid is at rest i.e. all forces acting on it are in balance, the dynamic

contact angle equals to the static contact angle. The GNBC can now be written in the
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form of:

βw(v−w) · τ +σn · τ +σ(νΣ ·νΓ− cos θs)νΓ · τ δγ = 0 on Γ , ∀ τ tangent to Γ,

(7.10)

where δ∂γ is the distribution which localizes the last term to the γ = ∂Γ, β the fric-

tion slip coefficient and σ the surface tension coefficient. In [38], authors refer to the

(tΣ · tΓ− cos θs) as uncompensated Young stress. Essentially, it measures the force on the

contact line when dynamic contact angle differs from the static one.

The free surface boundary condition on on Σ reads:

σn = σ divΣnn−∇Σσ, on Σ, (7.11)

where divΣn is the mean curvature of Σ with divΣ and ∇Σ tangential divergence and

gradient. It is assumed that the surface tension coefficient is constant, σ = const.

Remark 18 It has to be mentioned that the surface tension σ is not a constant in reality.

It is a function of bacteria concentration n, σ = σ(n), and, generally, higher concentra-

tions of bacteria on surface Σ decrease the surface tension of the fluid. Reasons for that

have not been well investigated. There are some indications that physical presence of bac-

terial cells itself plays an important role in this connection. Furthermore, some bacteria

are known to produce surface–active chemical components which influence the surface

tension. Inclusion of this into the CDC system would result in a convection–diffusion type

surface PDE governing the law for surface tension of the suspension. Keeping in mind

the phenomena of flows in thin liquid films arising due to thermal gradients, one may

predict what types of instabilities are to be expected. Aside from the already mentioned

Bénard–Taylor type instabilities, Marangoni–Benard convection effect appears by includ-

ing the dependence of surface tension on the temperature ([75]). Similar behavior is most

likely to be expected by including the dependence of surface tension on bacteria concen-

tration. Some information on the influence of surfactants onto the surface tension can be

found in [76]. Although a fully general model considering σ to be a function of bacteria

concentration n is derived, for the numerical simulations in this work σ is taken to be
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constant independently of the bacteria concentration, σ = σ0. σ0 denotes the surface

tension characteristic for the fluid without the presence of bacteria.

7.3.2 CDC system with dynamic free surface

Three new dimensionless numbers characterizing the system come into play owing to

surface tension and friction slip coefficients contribution, and because of the change in the

hydrodynamic part of the pressure due to the surface deformation. The capillary number

Ca, dimensionless friction slip parameter β and the Froude number Fr are defined by

Ca =
Db µ

σ0h
, β =

%w Db h

β
, Fr =

U√
gL
, (7.12)

where σ0 is the characteristic surface tension (see Remark 18). The dimensionless surface

tension is introduced naturally as

σ =
σ

σ0

, (7.13)

and σ = 1 due to the assumption σ = σ0 (see Remark 18). Summary of characteristic

parameters and dimensionless numbers is given in Table 7.2.

Remark 19 Notice that the characteristic length is taken to be a height of the container

h. While this selection for the characteristic length makes sense for the other nondimen-

sional numbers, for the capillary number one should proceed carefully. Strictly speaking,

the characteristic length in any dimensionless number related to the surface tension effect

should be somehow related to the radius of the curvature ([77]), which is very different

from the container heigh (significantly larger). However, the chemotaxis phenomenon

is greatly determined by the depth of the container (shallow versus deep container) and

most reasonable characteristic length should be chosen as the container depth. Although

this selection of the characteristic length gives a distorted intuition on capillary number,

the compensation for surface tension effect comes through the free surface curvature term

which is close to zero (see the dimensionless governing equations).

The only difference introduced in the model is the boundary conditions in Boussinesq

approximation of the Navier–Stokes equations. The full within ALE framework system
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Table 7.2: Definitions of characteristic values and dimensionless numbers governing the
system (7.14)–(7.15). σ0 denotes the surface tension for pure water (σ0 ≈ 72 mN/m at
25◦C).

CHARACTERISTIC VALUES DEFINITION

length L = h

time tc = L/U

velocity U = Db /L

pressure pc = (µU)/L

surface tension σ0

oxygen concentration cair

bacteria concentration n0

DIMENSIONLESS PARAMETER DEFINITION

capillary number Ca = (Uµ)/σ0

Froude number Fr = U/
√
Lg

friction slip coefficient β = βw/(%wU)

Rayleigh number Ra = (n0 Vb ∆%gL2)/(µU)

Prandtl number Pr = µ/(%wUL)

chemotactic head H = (n0αbL)/(Ucair)

Lewis number Le = DO /Db

chemotactic sensitivity S = Sb cair/Db
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now reads:

∂

∂t

∣∣∣∣
x̂

c+ (v−w) · ∇c− Le ∆c = −H r(c)n,

∂

∂t

∣∣∣∣
x̂

n+ (v−w) · ∇n−∆n+ div[S r(c)n∇c] = 0,

∂

∂t

∣∣∣∣
x̂

v+(v−w) · ∇v−Pr divσ = −Fr−2 k−Ra Prnk,

div v = 0,

(7.14)

in QT = {(x, t) | x ∈ Ω, t ∈ (0, T )} with Ω̂ = Ω0. The boundary and initial conditions

completing the system are as follows (τ is an arbitrary tangent vector and n is an outer

unit normal vector to the ∂Ω)

PrσnΓ · τ = − 1

β
(v−w) · τ −Pr

Ca
(νΣ ·νΓ− cos θs)νΓ · τ δγ on Γ , ∀ τ ,

v ·n = 0 on Γ,

Prσn =
Pr

Ca

(
σ divΣnn−∇Σσ

)
on Σ,

∇c · nΓ = 0 on Γ, and c = 1 on Σ,

∇n · n = 0 on ∂Ω,

v(0) = 0, c(0) =
c0

cair
, n(0) =

n0

n0

in Ω0,

Ω(0) = Ω(0).

(7.15)

Employing the assumption σ(n) = const., boundary condition (7.15)3 becomes

Prσn =
Pr

Ca
divΣnn . (7.16)

Note the additional non–linearity in the problem formulation: the unknowns (v, p, c, n)

are all functions of time which are at a time t ∈ [0, T ] defined on Ω(t). However, at time

t ∈ (0, T ] domain Ω(t) is itself unknown and is an implicit function of v. This issue

presents a challenging problem from the numerical point of view and is hard to deal with.

It is discussed in more detail in the following section.
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7.4 FEM formulation

Numerical simulations of system (7.14,7.15) are performed employing the ALE finite

element method. Therefore, a weak and FEM formulations of the problem (7.14) have to

be derived first.

7.4.1 Weak formulation of system (7.14,7.15)

Weak formulation of the system (7.14,7.15) is obtained employing the tools derived in

previous chapters. Curvature is handled employing the Laplace–Beltrami operator tech-

nique to express it in a weak form. This has already been elaborated on in Chapter 5 and

Chapter 6. In Chapter 5 the necessary conditions on the choice of the underlying finite

element space have been investigated. The restriction on finite element spaces due to cur-

vature term only applies for the Navier–Stokes equations in system (7.14,7.15). Strongly

consistent stabilization techniques for the case of conservative formulations have been in-

vestigated in Chapter 4. Since there are two convection diffusion equations in the system

and the bacteria concentration has to be preserved during the whole simulation, conser-

vative weak formulation seems to be a natural choice. Indeed, recall from Chapter 1,

Section 1.2.4, that conservative formulation enjoys better conservation properties.

Let us introduce the following function spaces: for Ω ⊆ Rd with Lipschitz continuous

boundary

H1
n,Γ(Ω;Rd) = {φ ∈ H1(Ω;Rd) | φ ·nΓ = 0 on Γ},

L2
0(Ω) = {q ∈ L2(Ω) |

∫
Ω

p dx = 0},

H1
Σ(Ω) = {ψ ∈ H1(Ω) | φ = 0 on Σ}.

(7.17)

Then, the function spaces necessary for ALE formulation of the system (7.14,7.15) read
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(see Chapter 1):

Vv = {φ : Ω→ Rd | φ̂ ∈ H1
n,Γ(Ω̂)},

Vp = {q : Ω→ R | q̂ ∈ L2
0(Ω̂)},

Vc = {ψ : Ω→ R | ψ̂ ∈ H1
Σ(Ω̂)},

Vn = {χ : Ω→ R | χ̂ ∈ H1(Ω̂)}.

(7.18)

Thanks to all the necessary tools and function spaces introduced, the (conservative) weak

formulation of the CDC system in ALE framework can be derived. The problem in weak

form reads:

find (v, p, c, n) such that c = 1 on Σ and v ·n = 0 on Γ, and

∀(φ, q, χ, ψ) ∈ Vv×Vp×Vn×Vc

d

dt

∫
Ω

φ ·v dx+

∫
Ω

(
φ ·
(
[v−w] · ∇

)
v−φ ·v divw

)
dx

+

∫
Ω

(1

2
PrD(φ) : D(v)− Pr p divφ+ Ra Prnφk

)
dx

+

∫
Γ

1

β
φ ·v dS +

∫
Σ

(Pr

Ca
∇Σ xΣ : ∇Σφ+

1

Fr2 (k ·x)n ·φ
)

dS

−
∫
γ

Pr

Ca
cos θs νΓ ·φ ds = 0,

∫
Ω

q div v dx = 0,

d

dt

∫
Ω

χn dx+

∫
Ω

(
χ(v−w) · ∇n− χn divw

)
dx

+

∫
Ω

(
∇χ · ∇n− S r(c)n∇χ · ∇c

)
dx = 0,

d

dt

∫
Ω

ψc dx+

∫
Ω

(
ψ(v−w) · ∇c− ψc divw

)
dx

+

∫
Ω

(
Le∇ψ · ∇c+ H r(c)ψn

)
dx = 0.

(7.19)

Transition from weak to FEM formulation is obtained by triangulating the domain Ω̂, Ω̂ 7→
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T̂ h, and substituting function spaces with their finite element spaces counterparts: Vv 7→

Vv
h, Vp 7→ Vp

h, Vn 7→ Vn
h, Vc 7→ Vc

h. Finite element spaces Vv
h×Vp

h have to be chosen

such that they satisfy LBB condition. FEM formulation is then obtained straightforward

from weak formulation (7.19). In case non–isoparametric spaces are chosen, the curvature

evaluation has to be performed separately, as described in Chapter 5.

7.4.2 Numerical (FEM) approach

A fully monolithic approach is employed to numerical solve by the FEM counterpart

of formulation (7.19). Essentially, this means that all equations are solved at once. This

approach ensures a strong coupling between them (in contrast to weak coupling character-

istic for partitioned approaches), although this increases the dimension of the discrete sys-

tem to be solved. Note that all the unknowns at time t ∈ (0, T ) are defined on Ωh(t) which

is unknown itself at time t, and is an implicit function of the fluid velocity vh(t) ·n(t) on

the boundary ∂Ωh(t). Such an implicit nature of the equations introduces an additional

non–linearity in the system – these types of issues are characteristic moving mesh prob-

lems. An iterative technique combined with Newtons’ linearization is employed in order

to find vn+1
h , pn+1

h , cn+1
h , nn+1

h at time tn+1 defined on Ωn+1
h , provided that the previous

step solution at time tn is known. The algorithm is similar to that introduced in [78] for

the FSI problems.

The ALE map describing the evolution of the domain is constructed via the grid ve-

locity wh, whose calculation is decoupled from the chemotaxis system. Once the fluid

velocity is known, the boundary velocity of the domain can be constructed. In order to

obtain the grid velocity the harmonic extension technique is employed:

∆wn+1,n
h,n = 0 in Ωn

wh,n n+ 1, n = qn+1,n
h on ∂Ωn,

(7.20)

wherewn+1,n
h,n is the (constant in time) grid velocity on (tn, tn+1] and qn+1,n

h is the velocity

on the boundary constructed from the fluid velocity. Construction of volume preserving

qn+1,n
h has been explained in detail in Chapter 2. Without strict formality, qn+1,n

h is the
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Figure 7.3: An example of pre–adapted mesh with finer triangulation near the free surface
and contact points. Figure shows the clip of the mesh near the right contact point. The
meniscus position is obtained from the Young–Laplace equation with contact angle θ =
5π/3.

closest velocity to ϑn+1,n
h,n in sense of the least squares such that qn+1,n

h preserves the

volume of Ωh on the discrete level. ϑn+1,n
h,n is the target function constructed from the

condition

ϑn+1,n
h,n =

v
(α,β)
h,n ·n
k ·n

k on Σn
h.

This is a necessary condition for volume preservation on the continuous level. v(α,β)
h,n is

taken as the most current iteration of vn+1
h , i.e. v(α,β)

h,n = vn+1
h,n . For details, please see

Chapter 2. It has to be mentioned that the deformation of free surface is very small at

each time step and satisfying qn+1,n
h is typically achieved in just a few iterations.

To remove numerical instabilities that may appear in convection dominated regime, a

strongly consistent least–squares stabilization technique is employed (described in Chap-

ter 4). Apart from influencing the accuracy of the solution and the stability of the scheme,

numerical instabilities that may appear in convection dominated regime can even intro-

duce negative concentrations. Consequently, non–physical solutions may be produced.

Negative concentrations or any visible non–physical oscillations in concentration fields

haven’t been observed in any numerical simulation. Simulations are typically ran on a

pre–adapted mesh with finer triangulation near the free surface and contact points (see

Figure 7.3). This allows to get the detailed insights on the free surface dynamics and its

influence on physics of the phenomenon.

197



doi:10.6342/NTU202003676

7.4.3 Multiscale to singlescale formulation

Capillary forces are enormous and dominating at the bacterial scale yet the system of

governing equations is scaled with respect to bacteria properties. Indeed, taking a look at

Table 7.2, one can see that characteristic velocity and time are defined through the bacteria

diffusion coefficient. For this reason, capillary and Froude numbers differ by few orders

of magnitude from the rest of the dimensionless numbers. Thus, one actually deals with

a multiscale problem in practice - on one scale there are capillary and gravity forces and

on the other scale are the forces induced by bacterial chemotaxis.

Consider for a moment a case where initial domain is chosen to be a rectangle and

neglect the influence of bacteria. Then capillary and gravity forces act on the fluid until

equilibrium is reached (force balance between capillary and gravity forces). It is well

known that the fluid meniscus (free surface) will be curved in equilibrium position de-

pending on the prescribed static contact angle. The shape of the meniscus is governed

by the Young–Laplace equation for which the exact solution is known in some cases (see

e.g. [79]). In two dimensions for a symmetric cylindrical container of diameter 2l with

a flat bottom, the meniscus is described by a function z = z(x) through the ordinary

differential equation (ODE) given below

2

a2
z − z′′

(1 + (z′)2)3/2
= λ in (−l, l)

z′(0) = 0

z′(l) = cot θ∫ l

l

z(x) dx = V,

(7.21)

where V is the fluid volume. Coefficient a defines the ratio of capillary and gravitational

forces, and λ acts as a Lagrange multiplier for the volume constraint. In the dimensionless

setup, a is defined through relation

2

a2
=

Ca

Fr Pr
+ Ca Ra .
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The exact solution describing the meniscus curve is given by: for η ∈ [0, π
2
− θ]

(x, z(x)) =

a
2

η∫
0

cos ξ d ξ√
A− cos ξ

, a
√
A− cos η +B

 , (7.22)

where constants A and B are given by the relations

B =
cos θ − V/a2

l
, l =

a

2

π/2−θ∫
0

cos ξ d ξ√
A− cos ξ

.

Now, if one considers a suspension of bacteria instead of a pure fluid, equilibrium due

to capillary and gravity forces is achieved (almost) instantaneously from the bacteria per-

spective. Therefore, without loss of generality, it is assumed that the initial domain is

the one where uniform suspension is in equilibrium with respect to capillary and gravity

forces. Starting from this domain, resultant fluid motion is the result of bacteria induced

forces.

7.5 Numerical simulations

In this section, results of the numerical simulations performed in two and three dimen-

sions are presented. Simulations have also been ran for a fixed free surface scenario,

and differences in result have been noticed. Apart from the obvious differences such

as deformation of the free surface and oscillating contact line, the time scale on which

bacterial sinking occurs is different for the two cases. Developed bacterial plumes also

differ significantly in two cases. Typically, on places where free surface ”sinks”, bacteria

accumulate more easily and the suspension density becomes large quickly.

7.5.1 Two–dimensional setup

Numerical results presented in this subsection have been performed for the following

case. The initial (non–dimensionalized) domain is defined as Ω(0) = [−10, 10] × [0, 1]

which corresponds to the static contact angle of π/2, θ = π/2. In [69] they provided
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the estimates on dimensionless numbers for a typical dimensional values in suspension of

bacteria of species Bacillus subtilis in water (see also [72]):

Pr ≈ 500 , Ra ≈ 2000 , Le ≈ 5 , S ≈ 10 , H ≈ 20. (7.23)

Rayleigh number Ra and chemotactic head H depend on the initial concentration of bac-

teria n0 which is chosen a priori and is related to concentrations used in an experiment

reported in [67]. For the case presented here, additional parameters arising from the dy-

namic free surface condition, namely, β, Ca and Fr, have been estimated to be of the

following orders (based on typical dimensional parameters for water):

β ≈ 1010 , Fr ≈ 10−10 , Ca ≈ 10−7. (7.24)

Comparing the orders of magnitude and taking into account the definitions of dimension-

less numbers, one may immediately expect that capillary forces dominate the forces pro-

duced by the bacteria. This should result in keeping the free surface ”almost stationary”,

i.e. the vibrations of the free surface are expected to be very small around the equilib-

rium position. This has indeed been confirmed by the simulations. For the case presented

below, bacterial plume patterns are symmetric with respect to the center of the domain,

hence only right side of the domain is shown in figures. Simulations are ran until T = 0.4

which corresponds to ≈ 10–15 minutes in dimensional time. Detailed parametric study

with respect to Rayleigh number has been performed in [40].

At the start of simulation at dimensionless time t = 0 there are a uniform concentra-

tions of bacteria and oxygen in a suspension, n(0) = 1 and c(0) = 1. As bacteria consume

oxygen, oxygen concentration drops everywhere except on the free surface which is the

oxygen source with constant value. Therefore, an oxygen gradient develops and bacteria

in layers near the free surface start to swim towards it (up the oxygen gradient). Con-

sequently, thin bacteria depletion layer is formed (see Figure 7.4 (a)). Since oxygen is

constantly consumed by active bacteria and diffuses into suspension through the free sur-

face, the oxygen concentration gradient can slowly be felt by the bacteria in lower layers
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of the suspension. This stimulates the bacteria from lower layers to direct their motion

towards the free surface as long as they are active (i.e. oxygen concentration is above

the critical value). Depletion layer slowly moves towards the bottom and becomes larger,

while the layer near the free surface becomes more densely packed with bacteria (see

Figure 7.4 (b)). Due to non–uniform distribution of bacteria in vertical direction and the

gravity force, Rayleigh–Taylor–like instabilities occur. First instabilities due to density

gradient can be observed at a time around t = 0.175. Eventually, sinking plume patterns

are developed from bacteria clusters at the free surface. Figure 7.5 shows the state of

phenomenon at t = 0.215 when bacterial plumes are almost fully developed. One should

notice that plumes 4 and 5 in Figure 7.5 (a) are ”underdeveloped” compared to the rest.

Also, there is one bacteria ”cluster” near the contact point which (in this case) is never

developed into a full plume. With time this cluster will disappear because it is constantly

convected with the fluid into the neighboring, already developed, plume. Each plume in-

duces the formation of two fluid vortices in opposite directions (compare Figure 7.5 (a)

and (c)). As can be seen from Figure 7.5 (c), the velocities in vortices induced by the (un-

derdeveloped) plumes 4 and 5 are of smaller magnitude than the ones in their neighboring

vortices (produced by the developed plumes 3 and 6, respectively). Consequently, plumes

4 and 5 are ”pushed” one towards the other and they eventually merge into a single plume.

The state of phenomenon at time t = 0.4 when the two plumes are merged is shown in

Figure 7.7. As the head of the plume approaches bottom, the plume is changed into a

mushroom–like shape. This is primarily because it is convected with the fluid in plume

induced vortex (see Figure 7.6). After the initial plume formation and sinking shown in

Figure 7.5 at time around t = 0.215, concentration of bacteria increases at the bottom.

Consequently, oxygen is consumed at a higher rate and reaches the critical value at which

bacteria become inactive (see Figure 7.7 (b)). After that, bacteria migration is achieved

primarily through the fluid convection. In the present case, convection is strong enough

to move the bacteria from the bottom to upper layers of the container where it become

active again and tends to swim towards the oxygen–rich free surface. Again, after some

time, density gradient become large enough once again and, aided by fluid convection, the
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(a)

(b)

Figure 7.4: Formation of the bacteria depletion layer near the free surface at early stages of
chemotaxis phenomenon, at times t = 0.005 (a) and 0.05 (b), for the case of Ra = 2000.
”n” denotes bacteria concentration.

secondary plume sinking occurs (t = 0.34). This process seems to repeat until the bal-

ance between plumes and vortices is achieved, i.e. it seems that phenomenon converges

towards its steady state.

As mentioned earlier, the deformation of the free surface is minimal and is hard to

notice. In Figure 7.8, layer just below the free surface has been extracted and scaled

around {y = 1} in order to emphasize the deformation of the free surface.

7.5.2 Three–dimensional setup

The numerical results for the three–dimensional case are presented below. Phenomenon

behaves essentially the same as that described above for the 2D case. Numerical sim-

ulations have been performed for the following dimensionless parameters (see [39]):

Pr = 7700, Ra = 400, S = 2, H = 1, Le = 1, Ca = 10−2, β = 10−3, Fr = 10−3,

θs = pi/2. Capillary and gravity forces have been deliberately weakened in order to

bring them closer to the forces appearing from the bacterial swimming. Hence, although

physically less reasonable, in this case the deformation of the free surface and the corre-
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(a)

(b)

(c)

Figure 7.5: State of chemotaxis phenomenon at time t = 0.175 for Ra = 2000. De-
veloped physics, bacteria (a) and oxygen (b) concentration and velocity (c) properties, is
mirror symmetric with respect to line {x = 0}. Concentration of bacteria is in logarithmic
scale. Black curves represent the induced velocity streamlines. ”n” denotes the bacteria
concentration.

Figure 7.6: Bacterial plumes from Figure 7.5 (a) at a time when they hit the bottom of the
container (t > 0.175). The shape changes into a mushroom–like because of the head of
the plume being convected with the fluid. ”n” denotes bacteria concentration.
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(a)

(b)

(c)

Figure 7.7: State of chemotaxis phenomenon at time t = 0.395 for Ra = 2000. De-
veloped physics, bacteria (a) and oxygen (b) concentration and velocity (c) properties, is
mirror symmetric with respect to line {x = 0}. Concentration of bacteria is in logarithmic
scale. Black curves represent the induced velocity streamlines. ”n” denotes the bacteria
concentration. Concentration of oxygen in lower layers of the container has reached its
critical value (c = 0.3) at which bacteria become inactive. Comparison with Figure 7.5
(a) reveals that plume merging occured.

Figure 7.8: Layer of the domain near the free surface scaled with respect to the y–direction
in order to emphasize distortion of the free surface. ”n” denotes bacteria concentration.
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(a) (b)

Figure 7.9: The formation of the bacterial plumes (at time t = 2.6). The domain in (a) is
clipped in order to illustrate the plume formation inside the domain – on the cross section.

(a) (b)

Figure 7.10: Figure shows an enlarged cubic clip of the domain in order to get a better
insight of the details. In (a) the velocity streamlines are shown. In (b) velocity streamlines
in context of bacterial plumes are shown.

sponding dynamics are more easily investigated.

Figures 7.9 and 7.11 show the bacteria concentration and velocty streamlines in 3D

context. If one compares these results with Figure 1 in [67], which shows the photograph

of the bioconvection patterns that form in a circular Petri dish from a real experiment,

similarities can be seen. Simulated patterns presented here follow very similar trends to

those obtained experimentally in [67], although, the physical parameters of the system are

not exactly the same. Figure 7.10 shows velocity streamlines in enlarged cubic clip of the

domain. Vortex–like streamlines can be observed. In Figure 7.12 surface streamlines on

the free surface, corresponding to Figure 7.10, are shown. Saddle, repelling and attracting

topological critical points can be observed.
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Figure 7.11: Velocity streamlines in 3D context. Streamline plot is clipped at front in
order to illustrate the vortex–like patterns.

(a) Surface streamlines on the free surface Σh. (b) Enlarged clip of the free surface. Position is
indicated in figure (a) with a red square.

Figure 7.12: Surface streamlines corresponding to state shown at Figure 7.10. Convection
cells can be observed.
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7.5.3 Bacterial chemotaxis in bacterial droplets

It is also of interest to investigate the chemotaxis phenomenon in millimetric droplets on

hydrophobic or hydrophilic surfaces. The focus for this case is on the effects near the

contact lines (or points in 2D) as well as on the free surface. This has been already inves-

tigated experimentally in [72, 71]. In [72], numerical simulations for the two dimensional

case have been performed but in a sessile (stationary) droplet. The numerical setup re-

mains the same as for the Petri dish case, except here the motion of free surface is not

only in vertical direction but, rather, in normal direction. To be more precise, condition

ϑn+1,n
h,n =

v
(α,β)
h,n ·n
k ·n

k is replaced with ϑn+1,n
h,n =

(
v

(α,β)
h,n ·n

)
n on Σn

h,

for the evaluation of the free surface motion.

Figures 7.13 and 7.14 show the results of numerical simulations for the dimensionless

parameters provided in [72], but for the case of the dynamic free surface. In the beginning

of the simulations, there are uniform concentrations of bacteria and oxygen in the droplet.

When the oxygen concentration drops in the droplet interior due to the consumption by

bacteria, bacteria start to swim towards the gas–fluid interface. Thus, the density of the

suspension becomes nonuniform and deformation of the free surface can be observed. In-

duced fluid velocity pattern forms a vortex–like structure in the direction from the droplet

center towards the contact line in the layers near the free surface, and from the contact

line towards the center in layers near the solid–gas interface. For illustration please see

Figure 7.13 (b) for the two dimensional case, and Figures 7.14 (c) and (d) for the three

dimensional case. With time, bacteria concentrate in layers near the free surface and, in

particular, in the neighborhood of the contact line due to the gravity pull–down. This is

shown in Figure 7.13 (a) for the two dimensional case and Figure 7.14 (a) for the three

dimensional case.
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(a) Bacteria concentration plotted in log–scale and
velocity streamlines in the background.

(b) Velocity streamlines with indicated direction.

Figure 7.13: State of the two dimensional bacterial chemotaxis at a time when bioconvec-
tion patterns are already developed.

(a) Contours of the bacteria concentration. (b) Contours of the oxygen concentration.

(c) Velocity streamlines. (d) Velocity glyphs corresponding to the velocity
streamlines shown in figure (c).

Figure 7.14: State of the three dimensional bacterial chemotaxis at time when bioconvec-
tion patterns are already developed.
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7.6 Free (thermal) convection

The main objective of this chapter is to introduce and investigate (to some extent) bacterial

chemotaxis in thin fluid layers. However, the system of equations governing the chemo-

taxis phenomenon shares many similar features with system of equations governing the

free thermal convection. Hence, these two systems exhibit similar behaviors. Thermal

convection problem has many important applications in engineering and, for that reason,

it has been well studied. In particular, physical properties of water which depend on the

temperature are well investigated. For example, surface tension of water is a function of

the water temperature. For a relatively small change in the temperature, a linear approxi-

mation holds

σ(T ) = σ0 − ς(T − T0),

where ς = −dσ

dt
is a constant rate of change of the surface tension with temperature,

and σ0 = σ(T0) is a reference surface tension at temperature T0. For most liquids, ς >

0 holds. Therefore, since the dependence of the surface tension on the temperature is

known, influence of the tangential surface forces arising from the surface tension gradient

can be investigated.

7.6.1 Mathematical model

The mathematical model for free thermal convection consists of the Navier–Stokes equa-

tions coupled with the energy equation governing the temperature. The system of equa-

tions reads:

%

(
∂ v

∂t
− v ·∇v

)
− divσ = −%g k

σ = µD(v)− p I , with D(v) = ∇v+∇vT ,
∂%

∂t
+ div(%v) = 0,

%c

(
∂T

∂t
− v ·∇T

)
− κ∆T = 2µεijεij , with εij =

1

2
D(v).

(7.25)
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In the above system of equations, T denotes the temperature, c is the thermal capacity

and κ is the thermal conduction coefficient for the fluid. Notation for the fluid equations

is the same as that used in the first part of the chapter. The system of equations (7.25)

applies primarily for liquids; for the case of gasses, term compensating for the pressure

work might be needed in the energy equation as well as a modified continuity equation.

Einsteins summation convection has been applied in the term εijεij .

A common approximation is to neglect the density variations in all terms in the system

of equations (7.25) except for the forcing gravity term. This results in the Boussinesq

approximation, similar to that one made for the chemotaxis governing system in earlier

sections. Boussinesq approximation is considered to be a good approximation as long as

the variation of the density % = %(T ) is not too large. Common functional relationship

between the fluid density and the temperature is

%(T ) = %0 + %β(T − T0), (7.26)

where %0 = %(T0) is the reference density and

β = −1

%

(
∂%

∂T

)∣∣∣∣
p

is the thermal expansion coefficient of the fluid under the constant pressure. Employing

the constant density approximation (except in the forcing term) on system of equations

(7.25), and slightly abusing the notation with % = %0, Boussinesq approximation of (7.25)

reads:

%

(
∂ v

∂t
− v ·∇v

)
− divσ = −

(
%− %β(T − T0)

)
g k

div v = 0,

%c

(
∂T

∂t
− v ·∇T

)
− κ∆T = 2µεijεij.

(7.27)

In this section, a free thermal convection of water in shallow container is investigated.

Domain remains the same as for the chemotaxis case given in Figure 7.1 for the two
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dimensional case. In the three dimensional case, Ω is a shallow cylinder of radius l and

height h

Ω = {x2 + y2 ≤ l, 0 < z < h},

with ∂Ω = Γ ∪ Σ, where Γ denotes the rigid vertical walls and bottom, and Σ is the free

surface which is allowed to move. Let Γ = ΓB ∪ΓW where ΓW denotes the vertical walls

and ΓB is the bottom of the container. The contact line is denoted by γ. For simplicity,

it is assumed that the vertical walls and free surface are isolated and temperature is not

increased nor decreased through them. Furthermore, temperature is prescribed on the

bottom (hot), and kept fixed. Therefore, system (7.27) is completed with the following

boundary conditions:

v ·n = 0 on Γ,

σn · τ = −βw(v−w) · τ −σ(νΣ ·νΓ− cos θs)νΓ · τ δγ , τ ∈ Tp Γ,

σn · τ = σ divΣn−∇Σσ,

T = TD on ΓB,

∇T · n = 0 on ΓW , , Σ,

(7.28)

where σ(T ) = σ0 − ς(T − T0).

7.6.2 Non–dimensionalization

Again, as it was the case with the chemtoaxis, the system governing free thermal convec-

tion is non–dimensionalized for the numerical implementation. Dimensionless variables

are introduced as follows:

x =
x

L
, L = h, t =

t

tc
, tc =

L

U
, v =

v

U
, p =

p

%U2
, T =

T − T0

λ
, (7.29)

where T0 is the reference temperature and λ = ∆T is the range of temperature considered.

Characteristic velocity U is implied by ∆T : assuming that the convection term dominates

over the diffusion term, momentum equation (7.27)1 features the balance between the
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buoyancy and convection, namely

|%v ·∇v | ∼ %gβ∆T.

Hence, using this similarity relation and expressing it in terms of scales, it is obtained

%U2/L ∼ %gβ∆T

and an estimate for the characteristic velocity follows (λ = ∆T ):

U =
√
gβLλ. (7.30)

Hence, the following dimensionless system is obtained:

∂ v

∂t
− v ·∇v− divσ = −Fr−2 k+T k,

div v = 0,

∂T

∂t
+ v ·∇T − Pr−1 Gr-1/2 ∆T = 2 Ec Gr-1/2 εijεij,

(7.31)

in QT and σ(T ) = 1 − ΘT on Σ. System (7.31) is subjected to the following boundary

conditions:

v ·n = 0 on Γ,

σn · τ = − 1

β
(v−w) · τ − σ

We
(νΣ ·νΓ− cos θs)νΓ · τ δγ , τ ∈ Tp Γ,

σn · τ =
1

We

(
σ divΣn−∇Σσ

)
on Σ,

T = TD on ΓB,

∇T · n = 0 on ΓW , Σ.

(7.32)
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σ = Gr-1/2
D(v) − p I is the Newtonian stress tensor in dimensionless form and the

dimensionless parameters are given by

Θ =
ςλ

σ0

, β =
%U

βw
, We =

%U2L

σ0

, Pr =
µc

κ
, Ec =

U2

cλ
, Fr =

U√
GL

,

Gr =

√
U%L

µ
.

(7.33)

Term εijεij in system (7.31) is much more relative for the forced convection and in fluids

with a very large viscosity. Heating due to the work of viscous forces plays a major role

in forging and extrusion of metals where viscosity is very large and large external forces

are required to drive the flow in motion. In this section, a simple free thermal convection

of water in shallow container is considered and, therefore, term εijεij is neglected in the

numerical simulations.

7.6.3 Weak and FEM formulation

Weak formulation of the free thermal convection problem (7.31) subjected to the boundary

conditions (7.33) is obtained in the same fashion as it has been shown for the chemotaxis

system (7.14). The set of equations is even, basically, the same: Boussinesq approxima-

tion of the Navier–Stokes equations and one convection–diffusion equation. Moreover,

the convection–diffusion equation governing the temperature is coupled with the Navier–

Stokes equations in almost the same manner as the convection–diffusion equation gov-

erning the bacteria concentration in the chemotaxis system. The coupling of the energy

equation for the temperature with the Navier–Stokes equations is performed thorough the

forcing term (the same as for the bacteria concentration in the chemotaxis system) and

also through the surface tension dependence on the temperature T , σ(T ) = 1 − ΘT , on

the free surface Σ. Therefore, the only difference is in the forcing term on the free surface,
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which can be written as∫
Σ

Pr

Ca

(
σ divΣnn−∇Σσ

)
· φ dS

=

∫
γ

Pr

Ca
(νΣ ·νΓ)νΓ ·σφ ds −

∫
Σ

Pr

Ca

(
∇Σ xΣ : ∇Σ(σφ)−∇Σσ · φ

)
dS .

Hence, details are omitted.

7.6.4 Numerical results

Numerical results below are shown for the following choice of the dimensionless param-

eters:

Θ = 20, We = 1, β = 10−5, Pr = 10−2, Fr2 = 10, Gr1/2 = 800.

The idea behind such choice is to emphasize the forces arising from surface tension gra-

dient (σ = σ(T )) and to minimize the fluid convection in vertical direction due to the

temperature difference. The major part of the heat transport comes from the diffusion.

Indeed, in Figure 7.15, the heat distribution and the corresponding vertical velocity com-

ponent magnitude are shown. It can be observed that vertical component of the velocity is

of small magnitude across the domain, except in layers near the free surface. Therefore,

the velocity streamlines across the whole domain, such as, for example, in Figure 7.11 for

the chemotaxis case, are not developed at this point.

Figure 7.16 shows the temperature gradient on the free surface and the correspond-

ing tangential velocities. These velocities are induced primarily by the tangential forces

resulting from the surface tension gradient. Figure 7.16 should be compared with Fig-

ure 7.12 for the chemotaxis case.

In Figure 7.17, scaled free surface deformation is shown. It can be noticed that free

surface is indeed deformed due to the vertical component of the fluid velocity in the layers

near the free surface.

Taking the discussion above into account, one can conclude that the non–constant
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(a) Temperature distribution in log–scale from
heated bottom to isolated top.

(b) Magnitude of the vertical component of the ve-
locity field (z–component).

Figure 7.15: Temperature distribution (a) and vertical component of the velocity field
(b) on a clip of the domain. From the vertical component of the velocity field it can be
observed that convection from top to bottom is of small magnitude. Hence, the primary
mechanism for the heat transport from bottom to top is diffusion.

(a) Temperature distribution on the free surface.
Nonuniform distribution can be observed.

(b) Surface streamlines of the velocity field on the
free surface.

Figure 7.16: Temperature distribution and surface velocity streamlines on the free surface.
Tangential velocities induced by the surface tension forces arising from the surface tension
gradient can be observed.

surface tension can indeed play a major role for the overall chemotaxis phenomenon in

both thin fluid layers and in millimetric droplets. It is to be expected that surface tension is

influenced by the bacteria concentration. This would be particularly important for the case

of the bacterial chemotaxis in millimetric droplets. Since it has been shown that bacteria

accumulate near the triple contact line, lowering the surface tension in layers near contact

line might significantly enhance the droplet spreading or surfing.

7.7 Discussion

A realistic model for chemotaxis–diffusion–convection coupling system with free surface

and dynamic contact line has been derived or, rather, extended from the simplified model

215



doi:10.6342/NTU202003676

(a) Enlarged clip of the free surface corresponding
to Figure 7.16 (b).

(b) Deformation of the free surface induced by the
vertical component of the velocity field (compare
with Figure 7.15 (b)). Deformation is scaled with
factor 10 w.r.t. plane {z = 1} in order to emphasize
the deformation.

Figure 7.17: Enlarged clip of the surface streamlines on the free surface (a), and scaled
deformation of the free surface (b).

already proposed in the literature. Numerical method for simulating the accompanied

phenomena has been proposed in two and three dimensions and its credibility demon-

strated. The novelty is in considering the influence of bioconvection on the motion of

the free surface and vice versa. The influence of the moving free surface on the overall

phenomenon has also been addressed. Both surface tension phenomenon and dynamic

contact line have been considered and incorporated into the model restricting the simpli-

fications to a minimum level.

It is important to mention here the drawbacks of the present mathematical model de-

scribing the chemotaxis phenomenon. Assumption that fluid is Newtonian might become

questionable when high concentrations of bacteria is considered. It is to be expected that

in that case visco–elastic properties might become significant. However, generalization

to this case is straightforward, at least from the mathematical point of view. The de-

pendence of the surface tension and static contact angle on bacteria concentration could

also play a significant part in overall phenomenon even for low bacteria concentrations.

Bioconvection flow patterns induced by bacteria swimming are similar to those charac-

teristic for thermal convection phenomenon. Comparing the numerical results for the free

thermal convection, it has been noticed that surface tension gradients influence the dy-
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namics of the overall process significantly. Allowing the surface tension to vary with the

temperature results in Marangoni flows (see, for example, [80] and references therein).

Based on the performed numerical studies, similar phenomenon should be expected for

the bacterial chemotaxis if one includes the dependence of surface tension on the bacteria

concentration. Consequences might be of major importance for the bacterial chemotaxis,

especially for the case of bacterial chemotaxis in millimetric droplets (see also discussion

in Section 7.6.4).
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CHAPTER 8

Fluid–Structure Interaction

In this chapter, numerical methods derived in Part I is employed for the simulations of

the fluid–structure interaction (FSI) problems. FSI problems arise from vast variety of

engineering fields, from the aerospace engineering, structural engineering and similar

technical fields, to the applications in biomedicine. FSI falls under the category of mul-

tiphysics modeling. It is an interaction of some deformable (elastic or plastic) structure

with the surrounding fluid flow. Neglecting the effects of oscillatory interactions between

the fluid and the structure can result in catastrophic consequences. The most common ex-

ample of such possible consequences given in any classic literature on FSI is probably the

case of first Tacoma Narrows Bridge. It was built in Washington and it opened to traffic

in 1940., and collapsed the same year due to deck oscillations caused by winds of (only)

64 km/h. While problems arising from the technical engineering fields take the most of

recognition for the development of FSI, significant area of practical applications for FSI

arises from the bio–medical field. FSI plays a major role in mathematical modeling and

numerical simulations of the blood flow (in large arteries). Failure to take into account the

changes in the dynamics of the blood vessels due to changes in the blood pressure may

result in bad estimation of the wall shear stress. This is particularly important in modeling
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of aneurysms which are prone to rupture when aneurysm wall is weakened by the effects

of shear stress. Similarly, FSI is important in stent modeling. Stents are metal or plastic

meshes which are inserted into the lumen of the deformed blood vessel to keep the pas-

sageway open. Blood vessels may deform due to the long–term build up of fat, cholesterol

and other substances on the walls of arteries (atherosclerosis). Over time, these build–ups

(sometimes called plaques) can make arteries passage narrow or even completely block

the arteries causing strokes.

Cardiovascular diseases in general are among the leading causes of death in most

parts of the world. Understanding the bio–physics of the disease helps to find a better

treatment and improve the quality of life. Therefore, a realistic mathematical modeling

and numerical simulations are of great importance in the field.

The objective of this chapter is to introduce some basic concepts in FSI modeling.

Few examples are then considered on which the adaptation of the methodology derived

in Part I for the FSI class of problems is illustrated. Problems considered are motivated

from the field of bio–medicine.

8.1 Introduction

This chapter is devoted to extension of methodology derived in Part I to the class of FSI

problems. FSI problems arising from the field of biomedicine are of particular interest

in this work. The methodology derived, however, is general and can easily be adapted

to problems arising from other fields provided that they fall in the same class from the

mathematical modeling point of view. For example, modeling of the blood flow in various

setups results in a moving domain problem for which an accurate tracking of the interfaces

is of high importance. Furthermore, changes in the blood flow domain topology are not

expected since this corresponds to the blood vessel rupture. Hence, ALE is a natural

choice of the framework to be employed for the mathematical modeling.

Mathematical model for an arbitrary FSI problem involves two significantly different

approaches which have to be coupled together – modeling the fluid part and modeling the

structure part. Typically, Lagrangian approach is adapted for the modeling of structure
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deformation, while Eulerian approach, or, rather, arbitrary Lagrangian Eulerian in context

of moving meshes, is employed for the modeling of fluid. Furthermore, the kinematics of

structure is preferred to be described in terms of displacement field while the dynamics

of the fluid is naturally described in terms of the velocity field. Hence, it can be observed

that two different viewpoints are natural based on which part of the problem one has a

focus on, yet they interact as a unit on the interface.

For illustration, let us consider the setup sketched in Figure 8.1 – a simplified model

for the blood flow in artery. Ωs denotes the vessel wall (structure) and Ωf the vessel in-

terior filled with blood (fluid). Clearly, considering the geometry of the whole vessel is

computationally infeasible, so only a clip of the vessel is considered, typically around

the area of interest. Area of interest is problem dependent, for example, in case one in-

vestigates the flow in aneurysm, clip of the blood vessel containing the whole aneurysm

would normally be taken into the account. Since only a part of the domain is considered

for the mathematical model (or, rather, for the numerical model), artificial boundaries are

introduced: Γin, Γout, Γs,D and Γs,N , on which appropriate boundary conditions have to

be prescribed. Γi denotes the fluid–structure (blood–vessel wall) interface. Γs,N is an

artificially introduced boundary which is in reality surrounded by other tissue. On Γin,

fluid enters the domain, while on Γout fluid exits the domain. Ω = Ωf ∪ Ωs could, for

example, be a part of the blood vessel in which aneurysm has started to form or which

has a significant plaque buildup and is investigated in preparation for the stent insertion.

Blood flow typically exhibits pulsatile flow behavior, also known as Womersley flow, due

to the fact that it is periodically pumped by heart. Various models for modeling blood

and vessel wall within continuum mechanics approach have been proposed in the litera-

ture. Some basics are summarized in Section 8.2 but derivation and details are omitted

since this topic is not of primary importance for this chapter and it exceeds the scope

of this work. Examples considered in this chapters are motivated by the blood flow, but

typically the most simple models for blood and vessel wall are considered. However, the

methodology is derived in such a way that generalization is straightforward.
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Γ̂
s,N

Ω̂
f

Ω̂
s

Γ̂
in

Γ̂
out

Γ̂
s,D

(a) Referential (initial) configuration.

Ωf

Ωs

Γin Γout

Γs,N

Γs,D

Γi

(b) Deformed (physical) configuration.

Figure 8.1: Simplified blood vessel geometry.

8.2 Mathematical models for blood and vessel wall

In this section some basics regarding the continuum mechanics models for blood and

vessel walls are recalled. This topic is very well covered in the literature. An excellent

introductory but also quite detailed text on FSI modeling for the problems arising from

cardiovascualr field is given in [81].

8.2.1 Mathematical model for the blood

Blood consists of the living cells and plasma, which represents the ∼ 55% of the blood

volume while the rest being the cells. Plasma contains ∼ 92% water with the rest being

proteins, small molecules and ions. Red blood cells – erythrocytes – represent the ∼ 97%

of the cell volume and are the main responsible for the special mechanical properties of

blood. On the macroscopic level, blood is a shear thinning fluid, i.e. the viscosity de-

creases with the increase of the rate of deformation. The shear thinning effect is stronger

in smaller vessels, like arterioles and capillaries. Bellow the critical point of about 1mm,

blood viscosity depends on the radius of the blood vessel and decreases very sharply. In

small capillaries, the continuum approximation for the blood becomes questionable since,

in that case, the size of red blood cells become comparable to the radius of vessels. In

this work, only large blood vessel scenarios are considered so the fluid is considered to

be a Newtonian – i.e. shear thinning and viscoelastic effects are neglected. Hence, the

mathematical model governing the blood flow considered in this chapter consists of the
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incompressible Navier–Stokes equations for the Newtonian fluid: for t > 0 in Ωf

%

(
∂ v

∂t
+ v ·∇v

)
− divσ = % g

σ = −p I+µD(v), D(v) = ∇v+∇vT ,

div v = 0,

(8.1)

where v denotes the fluid velocity, p denotes the fluid pressure, µ denotes the dynamic

viscosity and % denotes the (constant) fluid density. g denotes the gravity force. Recalling

Figure 8.1, system of equations 8.1 is posed in the time dependent domain Ωf , for t > 0.

For consistency, fields describing the blood flow will be denoted with superscript f when

the FSI coupled system is considered.

Prescribing the boundary conditions on artificial boundaries, Γin and Γout, is still a

heavily studied subject. It is of essential importance to prescribe the boundary conditions

which will not ruin the physics of the flow. Boundary conditions on artificial boundaries

are often the result of a trade–off between the necessary conditions which ensure that the

problem is well posed and the conditions which are obtained from physical observations

and practical measurements. For example, the prescribed pressure drop or the total flux

can be measured at artificial boundaries but the velocity profile is much harder or even

impossible to estimate. This is a very important topic but it outreaches the scope of this

work. More details on this topic can be found in [82, 42, 43]. Appropriate artificial bound-

ary conditions are also related with the stability of the discretized systems, especially on

the Neumann boundaries.

8.2.2 Mathematical model for the vessel wall

Walls of large arteries have a circumferential layer structure consisting of three principal

layers: intima, media and adventitia. Intima is the internal layer made up of endothelium

and a thin layer of connective tissue. Media is the medium layer made up of smooth mus-

cle cells and adventitia is the most outer layer consisting mainly of loose connective tissue

and smooth muscle cells. Hence, the vessel wall in large arteries exhibits non–uniform
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properties and it is typically modeled as an (non–homogeneous in radial direction) elastic

structure. The motion of the elastic structure is described in terms of its displacement u

from the referential configuration Ω̂
s
. The PDE governing the motion of vessel wall is

thus given by

%̂
∂2 û

∂t2
− Ĵ d̂ivσ = %̂ f̂ in Ω̂

s
, t > 0, (8.2)

where Ĵ is the Jacobian of the deformation map x̂ 7→ x̂+ û(x̂, t) and σ is the Cauchy’s

stress tensor. Denote the deformation map x̂ 7→ x̂+ û(x̂, t) by Â(x̂, t) = x̂+ û(x̂, t),

F̂ = ∇̂ Â and Ĵ = det F̂ . Term d̂ivσ is in ”mixed form” since the divergence is

performed with respect to the physical configuration. Hence, a so called Piola transform

is performed on term d̂ivσ (similarly as it was shown in Chapter 1, Section 1.1.7) to

obtain

%̂
∂2 û

∂t2
− d̂iv Π̂ = %̂ f̂ in Ω̂

s
, t > 0, (8.3)

where Π̂ = Ĵ σ̂ F̂ -T is the first Piola–Kirchhoff tensor. Often, a symmetrized variant

of the first Piola–Kirchhoff tensor is used, the second Piola–Kirchhoff tensor defined by

Σ̂ = F̂ -1 Π̂. The constitutive equation is most commonly written in terms of the Green–

Lagrange strain tensor Ê defined by

Ê =
1

2

(
F̂
T
F̂ − I

)
=

1

2

(
∇̂ û+ ∇̂ ûT + ∇̂ ûT ∇̂ û

)
.

(8.4)

For an elastic material, the stress is a function of the deformation but it is independent

of the deformation history. However, material’s physical characteristics may still vary

in space. The material is homogeneous if the mechanical properties do not vary with x

and it is isotropic if its response to deformations is the same in all directions. When the

deformation is small, Green–Lagrange strain tensor (8.4) is often linearized by neglecting

the non–linear term.

Many constitutive laws have been derived in the literature for various elastic materials.

For the case of hyperelastic material, its second Piola–Kirchhoff stress tensor is given in
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terms of density of elastic energy W : R3×3 → R+,

Σ̂(Ê) =
∂W (Ê)

∂ Ê
. (8.5)

An example of energy density for a homogeneous isotropic material whose reference

configuration is in the natural state is the Saint–Venant Kirchhoff model:

W (Ê) =
1

2
λ(tr Ê)2 + µ tr(Ê

2
) (8.6)

with λ and µ denoting the first and second Lamé coefficients. The natural state is a con-

figuration where the Cauchy stress tensor is zero. For the case of Saint–Venant Kirchhoff

model,

Σ̂(Ê) = λ(tr Ê) I+2µ Ê . (8.7)

This is indeed one of the most simple models for elasticity available in the literature and

can only be adopted when the details of stress inside the arterial wall are not of the primary

interest, but rather its effect on haemodynamics. More complex models are available in

the literature for modeling the arterial wall, but in this chapter Saint–Venant Kirchhoff

model is employed.

It has been observed that vessels, when extracted outside of the body, change their

shapes and they open up when being cut longitudinally. This is an indication that the

Cauchy stress tensor in artery in its natural site is not zero, i.e. within a body, vessels

are not in their natural configurations. Hence, for practical evaluation of Piola–Kirchhoff

tensors, pre–stressed configuration has to be taken into account for a credible mathemati-

cal model. However, for this work this is not of particular importance since emphasize is

only on the methodology for the numerical simulations. Hence, linearized Saint–Venant

Kirchhoff model is employed for the structure model and it is assumed that the reference

configuration, which coincides with the initial configuration, is the natural configuration.

More details on alternative models can be found in [81].
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8.3 Fluid–structure interaction modeling

As already described above, in FSI problems, it is natural to consider the structure part

of the problem from Lagrangian standpoint while the fluid part is naturally considered

in the ALE framework. Due to fluid–structure coupling, fluid domain is determined by

the deformation of the structure, or, more precisely, by the deformation of fluid–structure

interface Γi (keep in mind Figure 8.1). Hence, if the displacement field ûs : Ω̂s → Rd

for the structure is known, the fluid–structure interface Γi ⊂ ∂Ωs is also known and,

consequently, Ωf is actually already determined (or, rather, its boundary ∂Ωf ). Hence,

the ALE map Â : Ω̂f → Rd can be constructed, Â = x̂+ ûf where

ûf
∣∣∣
Γ̂
i = ûs

∣∣∣
Γ̂
i .

It has already been described that the ALE map can be chosen arbitrarily in the interior

of the fluid domain. If the harmonic extension approach is used, the above discussion can

be formalized:

given the displacement field of the structure ûs : Ω̂s → Rd

define the displacement of the domain Ω̂f , ûf = Ext(ûs
∣∣∣
Γ̂
i) by

ûf : Ω̂f → Rd , ûf = ûs on Γ̂
i
, ûf = 0 on Γ̂

in
∪ Γ̂

out
,

∆̂ ûf = 0 in Ω̂f ,

(8.8)

where Ext denotes the (harmonic) extension map which extends the displacement field in

the whole domain Ω̂ = Ω̂s ∪ Ω̂f . For consistency, let us denote

û : Ω̂→ Rd , û = ûs
∣∣∣
Ω̂s

+ ûf
∣∣∣
Ω̂f
,

and

Â : Ω̂→ Rd , Â = x̂+ û(x̂).

Note that Â
∣∣∣
Ω̂s

is the structure deformation map and Â
∣∣∣
Ω̂f

is the standard ALE map.
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Remark 20 Note that requirement ûf
∣∣∣
Γ̂
i = ûs

∣∣∣
Γ̂
i poses a first restriction on the choice

of finite element space for the ALE map, Ah. In order for the extension to be consistent,

Ah has to be of the same order as is the finite element space for the displacement field ûh

(at least on the interface Γ̂
i

h). In practice, linear elements are most often employed since

working with linear meshes is most convenient. However, this does not have to be the case

and one can choose higher order elements for the displacement field (and consequently,

the ALE map). This, in practice, results in the isoparametric concept, i.e. using same

finite element spaces for the mesh and the unknown.

8.3.1 Fluid–structure coupling

Given the system of equations governing the fluid dynamics in Ωf and system of equation

governing the structure deformation in Ω̂s, the coupling conditions on the fluid–structure

interface Γi have to be specified. More precisely, this means that the ”interaction” part in

FSI has to be ”defined”.

One coupling condition has already been given, namely, the so called geometric cou-

pling

ûf
∣∣∣
Γ̂
i = ûs

∣∣∣
Γ̂
i . (8.9)

Second coupling condition refers to the (normal) velocity continuity across the fluid–

structure interface,

v̂f =
∂

∂t
ûs on Γ̂

i
. (8.10)

For consistency, it is denoted as

v̂s =
∂ ûs

∂t
, in Ω̂s .

Third coupling condition refers to the balance of stresses across the fluid–structure inter-

face

σf nf,s +σsns,f = 0 on Γi, (8.11)

where nf,s = −ns,f on the interface Γi and σ denotes the Cauchy stress tensors for fluid
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and structure (indicated by superscript). Based on the approach for the satisfaction of

the above coupling conditions (8.10) and (8.11), the coupling can be explicit (or weak)

and implicit (or strong). In the explicit coupling, conditions (8.10) and (8.11) are treated

explicitly and spurious numerical sources are generated at the interface since the energy

is not exactly balanced due to the explicit treatment. Energy in the discretization scheme

has to be controlled in order to guarantee the stability. The explicit treatment is charac-

teristic for the partitioned approaches, where the equations governing the FSI are solved

separately and iteratively. More details on this manner can be found in [83] and references

therein. Explicit treatment of coupling conditions is not of interest in this chapter; hence,

the details are omitted. Monolithic approach for solving the FSI problem is employed in

this work. This means that the whole FSI governing system is solved at once and that

implicit coupling is exhibited. Implicit coupling enjoys good stability properties, even

unconditional stability can be achieved under some mild conditions. Detailed analysis on

the energy estimates can be found in [81] and references therein. More details on implicit

coupling will be given below.

8.3.2 Weak formulation and implicit coupling

Recall that the interaction between incompressible Newtonian fluid and homogeneous

isotropic elastic material is investigated. Problem in the strong form is separated into

three subproblems for easier readability:

• fluid–subproblem in ALE framework: forD(v) = ∇v+∇vT andσ = −p I+µD(v),

%

(
∂

∂t

∣∣∣∣
x̂

v+(v−w) · ∇v
)
− divσ = % g in Ωf , t > 0,

div v = 0 in Ωf , t > 0

v = vD on Γin, t > 0,

σn = 0 on Γout, t > 0;

(8.12)
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• structure subproblem in Lagrangian framework: for Σ̂(Ê) = λ(tr Ê) I+2µ Ê

%̂
∂2 û

∂t2
− d̂iv

(
F̂ Σ̂

)
= %̂ f̂ in Ω̂

s
, t > 0,

û = 0 on Γ̂
s,D

, t > 0,

F̂ Σ̂ n̂ = 0 on Γ̂
s,N

, t > 0;

(8.13)

• coupling conditions:

ûf = Ext(ûs
∣∣∣
Γ̂
i),

v̂f =
∂ ûs

∂t
on Γ̂

i
,

F̂ Σ̂ n̂s,f +σ̂f nf,s = 0 on Γ̂
i
.

(8.14)

Note that the coupling conditions have been pulled back to the reference configuration for

consistency.

The weak formulation is then obtained from the system of equations (8.12)–(8.14) by

standard approach. Notation is slightly abused in the weak formulation below. It is writ-

ten over physical configuration for the Navier–Stokes equations and over the reference

configuration for the elasticity equations. However, for the FEM formulation, weak for-

mulation of Navier-Stokes equations has to be pulled back to the reference configuration

in order to employ SCL preserving method derived in Chapter 3. For simplicity, assume

that the forcing (gravity) terms vanish in the above system.
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Weak formulation reads:

find vf ∈ H1
Γin(Ωf ;Rd), p ∈ L2

0(Ωf ), ûs ∈ H1
Γs,D(Ω̂s;Rd)

such that ∀(ϕ, q, ψ̂) ∈ H1
Γin(Ωf ;Rd)× L2(Ωf )× H1

Γs,D(Ω̂s;Rd)

d

dt

∫
Ωf

ϕ ·%v dx−
∫
Ωf

(
ϕ ·%v divw+ϕ ·%(v−w) · ∇v

)
dx

+

∫
Ωf

(1

2
D(ϕ) : µD(v)− p divϕ

)
dx

−
∫
Γi

ϕ ·σnf,s dS = 0

∫
Ωf

q div v dx = 0

∫
Ω̂s

(
ψ̂ ·%∂

2 u

∂t2
+ ∇̂ ψ̂ :

[
λ(tr Ê(û)) F̂(û) + µ F̂(û) Ê(û)

])
dx̂

−
∫
Γ̂
i

ψ̂ · F̂(û) Σ̂(Ê(û)) n̂s,f dŜ = 0

and

v = vD on Γin, û = 0 on Γ̂
s,D

.

(8.15)

In other examples in earlier chapters, transition from the weak formulation to the

finite element formulation has been relatively straightforward. This is not the case with

the weak formulation (8.15) due to the implicit coupling requirement

∫
Γ̂
i

ψ̂ · F̂(û) Σ̂(Ê(û)) n̂s,f dŜ +

∫
Γ̂
i

ϕ̂ ·σ̂f nf,s dŜ = 0 (8.16)

Indeed, condition (8.14)3 can be enforced in the expression (8.16) only if

ϕ̂ = ψ̂ on Γ̂
i
.
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8.3.3 Implicit coupling in FEM formulation

Since monolithic approach is employed, this means that the whole FEM formulation is

posed on a single triangulation T h(Ωh), where Ωh = Ωs
h ∪ Ωf

h. Consequently, triangu-

lations (meshes) of Ωs
h and Ωf

h are mutually consistent in the sense that they match at

the interface Γih. Hence, condition (8.16) can be ensured in FEM context by carefully

choosing the finite element spaces for the displacement field ûh and the velocity field vh.

It was already elaborated that the choice of finite element space for the displacement

field ûh dictates the choice of finite element space for the ALE map, due to the geometric

coupling (8.14)1.

Let us assume that linear mesh is preserved during the deformation of the structure,

i.e. finite element space for ûh is piecewise linear polynomials, Xh = [P1]d. The finite

element space for the ALE map is then also piecewise linear, Ah = [P1]d. Furthermore,

the finite element space for the velocity field has to be piecewise linear on Γih. Taking

into account that the LBB condition has to be satisfied, the natural choice for Vh are the

mini–elements, [Pb
1]d. Consequently, the space for pressure is chosen as Qh = P1.

Remark 21 Recall that in Chapter 4, a stabilization procedure has been derived for the

Navier–Stokes equation which turned out to be stabilizing with respect to inf–sup condi-

tion as well. Hence, if such stabilization is employed, the restrictions on the finite element

space for the velocity–pressure pair can be weakened.

Let ψh ∈ Xh = [P1]d and ϕh ∈ Vh = [Pb
1]. Then,

ψh = ϕh on Γih (8.17)
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and implicit coupling requirement (8.16) is satisfied on the discrete level:

∫
Γ̂
i
h

ψ̂h · F̂(ûh) Σ̂(Ê(ûh)) n̂
s,f dŜ +

∫
Γ̂
i
h

ϕ̂h ·σ̂
f
hn

f,s dŜ

=

∫
Γ̂
i
h

ψ̂h

[
F̂(ûh) Σ̂(Ê(ûh)) n̂

s,f +σ̂fh n
f,s

]
dS

= 0.

In case condition (8.17) does not hold, artificial sinks/sources are generated at the discrete

interface Σi
h, and energy stability might be ruined.

8.3.4 Implicit coupling through Lagrange multipliers

In order to remove restrictions for the choices of finite element spaces Vh and Xh, and

alternative formulation with Lagrange multipliers may be introduced. Let Λ be a finite

element space defined on the interface Γi, Λ(Γ) = H−1/2(Γ;Rd). Then, the coupling

conditions (8.14)2 may be treated in variational sense:

∀µ ∈ Λ(Γ)

∫
Γi

(vf −∂ u
s

∂t
) · µ dS = 0 (8.18)

Remark 22 Note the choice of space for the Lagrange multipliers, Λ(Γ) = H−1/2(Γ).

Since V ⊂ H1(Ωf ;Rd) and X ⊂ H1(Ωs;Rd), the functions from V and X have well

defined trace on Γi which is in space H1/2(Γi;Rd).

Consequence of variational treatment of velocity continuity condition is extending the

variational formulation (8.15) with two extra terms: µ, λ ∈ Λ

∫
Γi

(vf −∂ u
s

∂t
) · µ dS = 0, ∀µ , and

∫
Γi

(
[σ]n ·1

2
(ϕ+ψ) + λ ·(ϕ−ψ)

)
dS

(8.19)

is added to the weak formulation for velocity/displacement. Above [σ] = σf −σs de-

notes the jump of the stresses across the interface. From the coupling condition (8.14)3 it
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follows [σ] = 0. Furthermore, integrating by parts ”backwards” in the weak formulation

(under sufficient regularity assumption) and taking into account (8.14)3, it is straightfor-

ward to obtain

λ =
1

2
(σf +σs)n = σf n = σsn, (8.20)

which is in general unknown and has to be treated as an additional degree of freedom.

Hence, variable λ is the Lagrange multiplier corresponding to the velocity continuity con-

straint. Equation (8.20) implies the implicit treatment of the stress continuity condition

and hence it results in energy stable discretization schemes.

It is easy to see that the extended variational formulation is in fact a saddle point

problem. Within this approach, one uses the Lagrange multiplier field to treat the the

Dirichlet boundary conditions at the interface Γi, which are themselves part of the prob-

lem. The Lagrange multiplier method for treating the Dirichlet boundary conditions has

been introduced in [84] and investigated in details in [85, 86, 87, 88]. It has been shown

that constructing the necessary inf–sup stable finite element space is quite problematic for

Lagrange multipliers defined only on the mesh boundary. Therefore, a stabilization proce-

dures received a lot of attention in the literature. One may refer to [93, 89, 90, 92, 91, 94]

for more details. Similar FSI (for St. Venant–Kirchhoff elasticity models) formulations

with Lagrange multipliers can also be found in [95, 96, 97, 98].

8.4 Numerical validation

In this section, a standard academic example is considered in order to demonstrate the

numerical method: a flow past rigid cylinder with attached elastic beam (see Figure 8.2).

This is a benchmark problem proposed in [99] and is often used as a validation problem

(see also [78]).

Finite element spaces are chosen as follows:

Vh×Qh×Xh = [Pb
1]d × P1×[P1]d, (8.21)
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so the implicit coupling requirement (8.16) is satisfied in FEM formulation by default.

System of equations (8.12)–(8.14) is non–dimensionalized, although, mathematical mod-

els of elasticity are rarely presented in dimensionless form in the literature. Dimensionless

set of equations reads:

∂ v

∂t
+ v ·∇v− divσ = 0

σ = −p I+
1

Re
D(v), D(v) = ∇v+∇vT ,

div v = 0,

%̂
∂2 û

∂t2
− d̂iv

(
F̂ Σ̂

)
= 0,

Σ̂(Ê) = κξ(tr Ê) I+2ξ Ê,

(8.22)

where

Re =
µf

%fLvc
, κ =

λs

µs
, ξ =

Lµs

%sv2
cuc

. (8.23)

In the above equations, L denotes the characteristic length, and vc and uc are the char-

acteristic velocity and displacement. These quantities are problem dependent: in exam-

ple below, L = 0.4 and the characteristic velocity is determined from the inlet velocity.

Domain is as follows: cylinder of radius 0.05 with center (0.2, 0) is set inside the tube

[0, 2.5] × [−0.21, 0.2]. An elastic beam of length 0.35 and thickness 0.02 is attached to

the cylinder end. Hence, the cylinder and the beam are slightly above the tube symmetry

line. The inlet velocity field is prescribed. Details can be found in [99]. Dimensionless

domain can be seen in Figure 8.2.

On the inlet part of the tube, a parabolic profile for the velocity field is prescribed,

vD = (y + 0.525)(0.5− y)
6L2

H2
on Γin

where H = 0.41, Γin = {x = 0}, do–nothing boundary conditions are given on the outlet

Γout = {x = 6.25} and no–slip condition is imposed on the rigid walls. Ω = Ωf ∪Ωs has

a fixed boundary since the structure Ωs is ”emebedded” inside the fluid domain (tube).

Ωs and Ωf , however, are time–dependent. Such a problem is commonly constructed for
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(a)

(b)

Figure 8.2: Mesh of the discretized domain (a) and enlarged mesh around the elastic beam
(b).

testing the FSI numerical methods since it, in general, enjoys good stability properties.

Numerical results are shown in Figure 8.3 for the case of Re = 5× 103, κξ = 36.75,

ξ = 5.25 × 104. At the initial time, the elastic beam is in horizontal position. Constant

velocity profile on the inlet causes the beam to deform and it starts oscillating around its

initial ”horizontal” profile. This is illustrated in Figure 8.3, where the FSI state is shown

for four different time–steps at a time when the beam has already started oscillating. The

structure domain has been extracted and enlarged for better visibility. Complex vortex

patterns are formed behind the elastic beam. Comparing the results with the benchmark

an excellent agreement has been observed in both pressure and velocity fields and in

periodical beam oscillations.

This numerical test has been performed for various choices of dimensionless param-

eters and different lengths of the tube and the beam. In general, it showed good stability

properties and physically reasonable results. In case the deformation of the beam is too

large and results in bad mesh, re–meshing might be necessary. However, this is common

and expected problem that arises within ALE framework, and it can be handled reason-

ably well without influencing the accuracy too much. During the re–meshing step the
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(a) t = 1. (b) t = 1.3.

(c) t = 1.5. (d) t = 2.

Figure 8.3: Velocity (on the left) and corresponding pressure (on right) fields at four
different time instants, at the time when beam has already started oscillating. Deformation
of the (enlarged) beam can be observed.

current positions of the boundaries ∂Ωf and ∂Ωs are preserved, and only the interior is

typically re–meshed.

Good stability properties are in direct correlation with the SCL preserving scheme

proposed in Chapter 3. Indeed, it has been shown in [81] that under some mild condition

and under assumption that the discrete SCL property is preserved, an unconditionally sta-

ble numerical scheme can be constructed. The numerical scheme employed in this work

is the same as the one proposed in [81] while the discrete SCL is handled as described in

Chapter 3. For details on these stability issues, one is referred to [81].

Remark 23 This problem was inspired by aortic valves whose purpose is to ensure the

blood flow only in one direction.

8.5 Discussion

A framework for fluid–structure interaction problems has been established in context of

methodology for moving domain problems derived in Part I. The monolithic approach for
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fluid–structure coupling has been employed. This results in implicit (strong) coupling of

the boundary conditions for the fluid and for the structure on the fluid–structure interface

at the continuous level. On the discrete level, however, this does not have to be the case if

finite element spaces are chosen arbitrarily. It was argued that, within the approach used

in this chapter, it was enough that the finite element test functions for the displacement

of the structure and for the velocity of the fluid coincide on the fluid–structure interface.

This was possible due to the consistency of the triangulation, i.e. the fluid domain mesh

and the structure mesh match at the interface. This does not have to be the case in general

approaches, and strong coupling is in general hard to impose. An alternative way to

ensure the implicit coupling is to employ the Lagrange multipliers for the for imposing

the velocity continuity at the interface. In this approach, finite element spaces can be

chosen (relatively) independently one of the other. This has been elaborated to some

extent as well. Physical interpretation of the introduced Lagrange multiplier has been

formally explained.

Numerical method was illustrated on a classic benchmark example inspired from bio–

medical field. Simulations showed good stability properties and flexibility for a relatively

large range of dimensionless parameters. It is important to notice that the discrete SCL

is always satisfied in the fluid equations due to the application of SCL preserving scheme

developed in Chapter 3. Note that the physical influence of artificial sinks/sources is not

of primary concern for the simple FSI problems considered in this chapter, however, it

becomes important for the real world problems. For example, in context of FSI problems

arising from cardiovascular conditions, drug delivery might be of interest to be investi-

gated. In that case, a convection–diffusion type equation modeling the drug concentration

would be coupled with the existing FSI problem. It has already been shown that violating

the discrete SCL can pollute the concentration field in introduces non–physical oscilla-

tions.
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Conclusion

In this thesis, a new methodology for simulating moving mesh problems with finite el-

ement method within arbitrary Lagrangian Eulerian framework has been derived and

demonstrated. Thesis consists of two main parts. In the first part, theoretical back-

ground of the methodology has been rigorously derived and numerically demonstrated

by the benchmark problems. In the second part, the newly derived methodology has been

adapted to simulate some complex problems arising from the computational fluid dynam-

ics.

In Part 1, Chapter 1, FEM within the ALE framework has been recalled and the nota-

tion introduced. Two variants of the weak formulation for a generic conservation law

have been introduced – conservative and non–conservative. It has been illustrated that

on the discrete level, conservative formulation may result in discretization which enjoys

better conservation properties, thus motivating a deeper investigation of the conservative

FEM formulations.

In Chapter 2, method for the construction of volume preserving ALE map has been

derived (new contribution). Essentially, the classical method for the extension of the ALE

map from the mesh boundary to the interior has been modified by adding a constraint

which ensures the volume preservation. The resulting constrained optimization problem
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was then proposed to be solved by employing the Lagrange multiplier technique from the

field of Calculus of variations.

In Chapter 3, temporal discretization of the conservative weak formulations has been

investigated. Discrete space conservation law (SCL) problematics has been addressed

and the method which satisfies the discrete SCL independently on the temporal disretiza-

tion scheme has been derived (new contribution). Stability, accuracy and convergence

estimates have been numerically investigated for some popular discretization schemes.

In Chapter 4, strongly consistent convection stabilization method for the conservative

FEM formulations has been proposed and numerically investigated. The method derived

is consistent with the method derived in Chapter 3 in sense that it does not violate the

discrete SCL. It also enjoys the strong consistency which is normally hard to ensure for

the conservative FEM formulations.

In Chapter 5, Laplace–Beltrami operator technique for the curvature evaluation has

been investigated for FEM. It was shown that the choice of finite element space employed

for the evaluation of the mean curvature vector cannot be chosen arbitrarily but depends

on the underlying triangulation (new contribution). In general, it has been shown that

finite element spaces for the curvature vector evaluation and mesh construction have to be

of the same order. Otherwise, spurious oscillations are introduced in the mean curvature

field.

In Part 2, methodology from Part 1 has been employed to simulate moving mesh problem

from the class of free surface flow and FSI problems.

In Chapter 6, the sliding droplet problem was implemented and simulated. In Chap-

ter 7, bacterial chemotaxis phenomenon and free thermal convection have been simu-

lated and compared. In Chapter 8, methodology was adapted for FSI problems within

the monolithic approach. Consistency of the approach has been illustrated on a classical

benchmark problem.

Implementation of the FEM formulations has been performed in FreeFem++ ([50]) soft-
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ware, while the visualization was performed in Paraview ([57]).
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[14] I. Demirdžić and M. Perić. “Space conservation law in finite volume calcula-

tions of fluid flow”. In: International Journal for Numerical Methods in Fluids

8 (1998), pp. 1037–1050.

[15] M. Lesoinne and C. Farhat. “Geometric conservation laws for flow problems with

moving boundaries and deformable meshes, and their impact on aeroelastic com-

putations”. In: Computer Methods in Applied Mechanics and Engineering 134

(1996), pp. 71–90.

244



doi:10.6342/NTU202003676

[16] B. Koobus and C. Farhat. “Second–order time–accurate and geometrically conser-

vative implicit schemes for flow computations on unstructured dynamic meshes”.

In: Computer Methods in Applied Mechanics and Engineering 170 (1999), pp. 103–

129.

[17] H. Guillard and C. Farhat. “On the significance of the geometric conservation

law for flow computations on moving meshes”. In: Computer Methods in Applied

Mechanics and Engineering 190 (2000), pp. 1467–1482.

[18] C. Farhat, P. Geuzaine, and C. Grandmont. “The discrete geometric conservation

law and the nonlinear stability of ALE schemes for the solution of flow problems

on moving grids”. In: Journal of Computational Physics 174 (2001), pp. 669–694.

[19] D. Boffi and L. Gastaldi. “Stability and geometric conservation laws for ALE

formulations”. In: Computer Methods in Applied Mechanics and Engineering 193

(2004), pp. 4717–4739.

[20] S. Etienne, A. Garon, and D. Pelletier. “Geometric conservation law and finite el-

ement methods for 3D unsteady simulations of incompressible flow”. In: Journal

of Computational Physics 228 (2009), pp. 2313–2333.

[21] M. Solovchuk F. Ivancic T. W.–H. Sheu. “Arbitrary Lagrangian Eulerian-type

finite element methods formulation for PDEs on time–dependent domains with

vanishing discrete space conservation law”. In: SIAM Journal of Scientific Com-

puting 41 (2019), A1548–A1573.

[22] A. N. Brooks and T. J. R. Hughes. “Streamline Upwind/Petrov Galerkin method

formulation for convection dominated flows with particular emphasis on the in-

compressible Navier–Stokes equations”. In: Computer Methods in Applied Me-

chanics and Engineering 32 (1982), pp. 199–259.

[23] S. Ganesan and S. Srivastava. “ALE–SUPG finite element method for convection–

diffusion problems in time–dependent domains: Conservative form”. In: Applied

Mathematics and Computation 303 (2017), pp. 128–145.

245



doi:10.6342/NTU202003676

[24] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert. “A new finite element formula-

tion for computational fluid dynamics: VIII. The Galerkin/Least–Squares method

for advective diffusive equations”. In: Computer Methods in Applied Mechanics

and Engineering 73 (1989), pp. 173–189.

[25] J. Douglas Jr. and J. Wang. “An absolutely stabilized finite element method for

the Stokes problem”. In: Mathematics of Computation 52 (1989), pp. 495–508.

[26] L. P. Franca, S. L. Frey, and T. J. R. Hughes. “Stabilized finite element methods, I.

Application to the advective–diffusive model”. In: Computer Methods in Applied

Mechanics and Engineering 95 (1992), pp. 253–276.

[27] L. P. Franca and C. Farhat. “Bubble function prompt unusual stabilized finite el-

ement methods”. In: Computer Methods in Applied Mechanics and Engineering

123 (1995), pp. 299–308.

[28] J.A. Sethian. Level Set Methods and Fast Marching Methods; Evolving Interfaces

in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials

Science. Cambridge: Cambridge University Press, 1999.

[29] S. Osher and R. Fedkiw. “Level Set Methods and Dynamic Implicit Surfaces”. In:

(2003).

[30] C. W. Hirt and B. D. Nichols. “Volume of fluid (VOF) method for the dynamics of

free boundaries”. In: Journal of Computational Physics 39 (1981), pp. 201–225.

[31] W. Aniszewski, T. Ménard, and M. Marek. “Volume of Fluid (VOF) type advec-

tion methods in two–phase flow: A comparative study”. In: Computers and Fluids

97 (2014), pp. 52–73.

[32] S. Ganesan, G. Matthies, and L. Tobiska. “On spurious velocities in incompress-

ible flow problems with interfaces”. In: Computer Methods in Applied Mechanics

and Engineering 196 (2007), pp. 1193–1202.

[33] S. Elgeti et al. “On the usage of NURBS as interface representation infree-surface

flows”. In: International Journal for Numerical Methods in Fluids 69 (2012),

pp. 73–87.

246



doi:10.6342/NTU202003676

[34] E. Gros, G. R. Anjos, and J. R. Thome. “Interface–fitted moving mesh method for

axisymmetric two–phase flow in microchannels”. In: International Journal for

Numerical Methods in Fluids 86 (2018), pp. 201–217.

[35] S. Quan and D. P. Schmidt. “A moving mesh interface tracking method for 3D in-

compressible two–phase flows”. In: Journal of Computational Physics 221 (2007),

pp. 761–780.

[36] M. Botsch et al. Polygon Mesh Processing. AK Peters / CRC Press, Sept. 2010,

p. 250. URL: https://hal.inria.fr/inria-00538098.

[37] T. Z. Qian, X. P. Wang, and P. Sheng. “Molecular scale contact line hydrodynam-

ics of immiscible flows”. In: Physical Review E 68 (2003), p. 016306.

[38] T. Z. Qian, X. P. Wang, and P. Sheng. “Molecular scale contact line in two–

phase immiscible flows”. In: Communications in Computational Physics 1 (2006),

pp. 1–52.
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