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摘要

對於利用投擲 p­偏銅板來產生獨立無偏的位元亂數，馮·諾伊曼（1951）提

出了簡單的演算法，雖然這個演算法並非有效率地用上 p­偏銅板所蘊含的資訊

熵，然而 Peres（1992）提出可疊代使用上述演算法，並證明了這樣的疊代演算

法的亂數產生效率無限趨近於 p­偏銅板的資訊熵上界。確切來說，Peres證明了

1
n
b(n, p)均勻（於 p ∈ (0, 1)）收斂到 h(p)，其中 b(n, p)為 Peres演算法應用於 n

次 p­偏銅板投擲結果 (X1, . . . , Xn)所產生的獨立無偏位元亂數個數的期望值，而

h(p) = −p log p − (1 − p) log(1 − p)是單次 p­偏銅板投擲的資訊熵。我們考慮了

b(n, p)的二階行為，即 nh(p)− b(n, p)於 n趨近於無窮大時的漸近行為。在 p = 1
2

下，我們得到了 limn→∞ log[n − b(n, 1
2
)]/ logn = log[1+

√
5

2
]這樣的結果。我們也扼

要地討論了當 nh(p) − b(n, p)在 n趨近於無窮大時關於其行為的一些待解決問

題。Peres演算法在原來被提出時並非為串流演算法（streaming algorithm），亦即

(X1, . . . , Xn)所產生的亂數一般上並不一定會全被排在由 Xn+1 所產生的亂數之

前。我們介紹了 Peres演算法的二元樹表示，也進一步介紹了一類由二元樹上節

點的排序所決定的 Peres演算法的串流版本。在一般二元樹節點的排序下，Peres

演算法的串流版本並不會產生無偏的位元亂數列，然而在特定的排序下，我們證

明了這樣的串流版本所產生的位元亂數列是無偏的。

關鍵字：資訊熵、演算法分析、Elias提取器、Peres提取器、馮·諾伊曼提取器、

超可加性、串流演算法、狀態樹
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Abstract

von Neumann (1951) introduced a simple algorithm for generating independent and

unbiased random bits by tossing a coin of unknown bias p. While his algorithm fails to

attain the entropy bound, Peres (1992) showed that the entropy bound can be attained

asymptotically by iterating von Neumann’s algorithm. Specifically, Peres showed that

limn→∞
1
n
b(n, p) = h(p) uniformly in p ∈ (0, 1), where b(n, p) denotes the expected num­

ber of unbiased output bits generatedwhen Peres’ algorithm is applied to an input sequence

(X1, . . . , Xn) withXi being the outcome of the ith coin toss, and h(p) = −p log p− (1−

p) log(1− p) (the Shannon entropy of eachXi). We consider the (second­order) behavior

of nh(p)−b(n, p) as n→ ∞. For p = 1
2
, it is shown that limn→∞ log[n−b(n, 1

2
)]/ logn =

log[1+
√
5

2
]. Some open problems on the asymptotic behavior of nh(p)− b(n, p) are briefly

discussed. The original Peres’ algorithm is not streaming in the sense that some of the out­

put bits generated from (X1, . . . , Xn) (the first n coin tosses) may be placed after the out­

put bits induced by Xn+1. We introduce a binary tree representation of Peres’ algorithm,

vii
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based on which we further introduce a class of streaming versions of Peres’ algorithm in

terms of orderings of the nodes of the binary tree. We show by example that in general

a streaming version of Peres’ algorithm fails to generate unbiased output bits. However,

based on a special node ordering, the corresponding streaming version of Peres’ algorithm

is shown to be unbiased.

Keywords: entropy, analysis of algorithms, Elias’ extractor, Peres’ extractor, von Neu­

mann’s extractor, superadditivity, streaming algorithm, status tree
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Chapter 1 Introduction

1.1 von Neumann’s algorithm

In his seminal work [26], von Neumann introduced a simple algorithm AvN (also

known as an extractor) for generating independent unbiased random bits by tossing a (pos­

sibly) biased coin of unknown bias. (A random bit is said to be unbiased if its value is

0 or 1 with equal probability.) Specifically, for i = 1, 2, . . . , let Xi ∈ {H,T} denote

the outcome of the ith toss of the coin, where H and T stand for heads and tails, respec­

tively. Assume that the input sequenceX = (X1, X2, . . . ) is independent and identically

distributed (iid) with P(Xi = H) = p = 1 − P(Xi = T) where the bias p ∈ (0, 1) is

unknown. (The coin is unbiased if p = 1/2.) The algorithm AvN divides X into pairs

(X1, X2), (X3, X4), . . . , discards those pairs of equal values, and then generates an infi­

nite Bernoulli sequenceAvN(X) whose ith bit is either a 1 or a 0 according as the ith pair

of unequal values is HT or TH. It is readily seen that AvN(X) consists of iid unbiased

bits.

LetA denote a generic algorithm that generates independent unbiased bits from the

sequenceX = (X1, X2, . . . ). LetA(Xn) denote the set of unbiased bits generated byA

applied to Xn = (X1, . . . , Xn), the outcomes of the first n tosses. Denote by |A(Xn)|

the cardinality ofA(Xn), which is an integer­valued random variable whose distribution

1
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depends on n and p. We say that A is nested if A(Xn1) ⊂ A(Xn2) whenever n1 < n2.

We write X ∼ binomial(n, p) if a random variable X has the binomial distribution with

parameters n and p. Then given |AvN(Xn)| = ℓ, the ℓ bits generated by AvN applied to

Xn = (X1, . . . , Xn) are (conditionally) independent unbiased. Moreover, |AvN(Xn)| ∼

binomial(⌊n
2
⌋, 2pq), where q = 1− p and ⌊x⌋ denotes the largest integer not exceeding x.

WhenAvN is applied toXn, the expected number of unbiased bits generated per toss equals

Ep |AvN(Xn)|/n = 2pq⌊n
2
⌋/n, which converges to pq as n → ∞, where the subscript p

in Ep refers to the bias of each Xi. Note that pq is less than the entropy bound h(p) :=

−p log p − q log q (the Shannon entropy of each Xi), where log = log2 (the logarithm to

base 2). This indicates that AvN does not make efficient use of information contained in

X1, X2, . . . . It is also worth noting thatAvN is nested.

1.2 Elias’ algorithm

To improve the efficiency, Elias [5] presented a more sophisticated algorithm AE

which generates unbiased bits from Xn = (X1, . . . , Xn) by partitioning {H,T}n (the set

of all possible realizations ofXn) into disjoint subsets Sn,k = {x ∈ {H,T}n : |x|H = k},

k = 0, 1, . . . , n, with |x|H and |x|T being respectively the number of H’s and the number

of T’s in x. Write |Sn,k| =
(
n
k

)
=

∑⌊log (n
k
)⌋

ℓ=0 cℓ2
ℓ with cℓ ∈ {0, 1} (binary representation of(

n
k

)
). Then each Sn,k is further partitioned as Sn,k =

⋃
{ℓ:cℓ=1} Sn,k,ℓ, where |Sn,k,ℓ| = 2ℓ

for each ℓwith cℓ = 1. Specify an assignment of 2ℓ distinct (output) sequences of {0, 1}ℓ to

the 2ℓ distinct sequences ofSn,k,ℓ, so that ifXn ∈ Sn,k,ℓ, then an output sequence of ℓ bits is

generated according to the assignment. While a naive implementation of Elias’ algorithm

requires an exponential memory size to make a table of assignment of output sequences,

Ryabko andMatchikina [22] provided an efficient method to construct an assignment with

2
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much reducedmemory size and running time. Note thatAE is not nested. In fact, whenAE

is applied toXn = (X1, . . . , Xn), all of X1, . . . , Xn need to be observed before unbiased

bits are generated. To show that AE attains the entropy bound asymptotically, Elias [5,

equation (15)] proved that

n∑
k=0

(
n

k

)
pkqn−k log

(
n

k

)
− 3 ≤ Ep |AE(Xn)| ≤

n∑
k=0

(
n

k

)
pkqn−k log

(
n

k

)
. (1.1)

LettingH(Z) denote the Shannon entropy of a random variable Z and noting that |X|H ∼

binomial(n, p), we have

nh(p)−H
(
|X|H

)
= −np log p− nq log q +

n∑
k=0

(
n

k

)
pkqn−k log

[(
n

k

)
pkqn−k

]

=
n∑
k=0

(
n

k

)
pkqn−k log

(
n

k

)
,

from which it follows that (1.1) is equivalent to

H
(
|X|H

)
≤ nh(p)− Ep |AE(Xn)| ≤ H

(
|X|H

)
+ 3. (1.2)

SinceH
(
|X|H

)
= 1

2
logn+ 1

2
log e+ log

√
2πpq +O( 1

n
) (cf. [8]), we have

nh(p)− Ep |AE(Xn)| =
1

2
logn+O(1). (1.3)

Consequently, limn→∞ Ep |AE(Xn)|/n = h(p). Later Pae and Loui [19] established the

exact optimality of AE that for any algorithm A, Ep |AE(Xn)| ≥ Ep |A(Xn)| for all

p ∈ (0, 1) and n ≥ 1.

3
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1.3 Peres’ algorithm

While AvN fails to attain the entropy bound asymptotically, Peres [20] pointed out

that the entropy bound can be attained asymptotically by iteratingAvN. To describe Peres’

ingenious idea, let X = (X1, X2, . . . ) be decomposed into three infinite Bernoulli se­

quencesAvN(X), λ(X), and ρ(X), where the ith bit of λ(X) is T or H according as the

ith pair (X2i−1, X2i) is of equal values or of unequal values, and the ith bit of ρ(X) is the

common value of the ith pair of equal values. As an example, let

x = THHTHHTTHTTT · · · = TH HT HH TT HT TT · · ·

Then

λ(x) = HHTTHT · · · , ρ(x) = HTT · · · , and AvN(x) = 011 · · · .

(Here and below, we take the convention that capital X denotes a random sequence

and lower case x is a realization.) It is readily seen that (i) λ(X), ρ(X) and AvN(X)

are mutually independent, (ii) λ(X), ρ(X) and AvN(X) are each an iid Bernoulli se­

quence with respective biases fλ(p) := 2pq, fρ(p) := p2/(p2 + q2) and 1/2, (iii) X

can be recovered from λ(X), ρ(X) and AvN(X), implying that they together contain

all information in X . The first iteration of Peres’ algorithm AP yields λ(X), ρ(X)

and AvN(X). Letting ψ = λ or ρ, on the second iteration of AP, ψ(X)
(
= λ(X) or

ρ(X)
)
is further decomposed into three iid Bernoulli sequences λ

(
ψ(X)

)
, ρ
(
ψ(X)

)
and

AvN
(
ψ(X)

)
with respective biases fλ(fψ(p)), fρ(fψ(p)) and 1/2. Thus, after 2 iterations,

there are 7(= 23−1) Bernoulli sequences,AvN(X),AvN
(
λ(X)

)
,AvN

(
ρ(X)

)
, λ

(
λ(X)

)
,

λ
(
ρ(X)

)
, ρ
(
λ(X)

)
, and ρ

(
ρ(X)

)
. The first three have bias 1/2. More generally, after η

4
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iterations (η = 1, 2, . . . ), there are 2η+1−1 Bernoulli sequences, 2η−1 of which have bias

1/2. We refer to the 2η − 1 Bernoulli sequences having bias 1/2 as unbiased Bernoulli

sequences, and refer to the other 2η Bernoulli sequences as biased Bernoulli sequences.

Note that the 2η+1 − 1 Bernoulli sequences are all mutually independent, from which X

can be recovered.

We now consider the finite setting where only the first n terms of the infinite (input)

sequenceX are available. Let ψ = λ or ρ orAvN. ThenXn = (X1, . . . , Xn), the subse­

quence ofX consisting of the first n terms, induces a finite sequence ψ(Xn) consisting of

the first nψ terms of ψ(X) for some nψ. Specifically, nλ = ⌊n/2⌋, i.e. λ(Xn) consists of

the first ⌊n/2⌋ terms of λ(X). Moreover, nρ = |λ(Xn)|T and nAvN = |λ(Xn)|H. We have

nλ = nρ + nAvN = ⌊n
2
⌋, nρ ∼ binomial(⌊n

2
⌋, p2 + q2) and nAvN ∼ binomial(⌊n

2
⌋, 2pq).

While the infinite sequences ψ(X), ψ = λ, ρ,AvN, are mutually independent, the subse­

quences ψ(Xn)’s are no longer independent. However, it is readily seen that, given the

value of nAvN , the bits inAvN(Xn) are (conditionally) independent unbiased. In fact, given

the values of the bits in λ(Xn) and ρ(Xn), the bits inAvN(Xn) remain (conditionally) in­

dependent unbiased. Furthermore, for even n,Xn can be recovered from ψ(Xn), ψ = λ,

ρ, AvN, but for odd n, the last term of Xn cannot be recovered, resulting in a loss of in­

formation. After η iterations (η = 1, 2, . . . ),Xn induces a (possibly empty) subsequence

of each of the 2η+1 − 1 infinite Bernoulli sequences as decomposed fromX .

For η = 1, 2, . . . , let AP,η(Xn) denote the total collection of unbiased bits after η

iterations. ThenAP,1(Xn) = AvN(Xn) and η ≥ 2, we have the following recursion

AP,η(Xn) = AvN(Xn) ∗AP,η−1

(
λ(Xn)

)
∗AP,η−1

(
ρ(Xn)

)
, (1.4)

5
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where ∗ is the concatenation (binary) operator defined by d ∗ ∅ = ∅ ∗ d = d and d1 ∗ d2 =

d1d2. Since after ⌊logn⌋ iterations, the longest biased subsequence has length 1, no more

unbiased bits can be produced by further iteration. We have AP,η(Xn) = AP,⌊logn⌋(Xn)

for η ≥ ⌊logn⌋. LetAP(Xn) = AP,⌊logn⌋(Xn), so that

AP(Xn) = AvN(Xn) ∗AP
(
λ(Xn)

)
∗AP

(
ρ(Xn)

)
. (1.5)

Consider again the example where x = THHTHHTTHTTT · · · . For n = 12, we have

AP,1(x12) = 011, AP,2(x12) = 01111, and

AP(x12) = AP,3(x12) = 011111.

It is shown in Peres [20] that (i) for each η, given |AP,η(Xn)| = ℓ, the ℓ bits inAP,η(Xn)

are independent unbiased, (ii) the rates rη(p) := limn→∞ Ep |AP,η(Xn)|/n satisfy r1(p) =

pq and the recursion

rη(p) = pq +
1

2
rη−1(2pq) +

1

2
(p2 + q2) rη−1

(
p2

p2 + q2

)
for η ≥ 2, (1.6)

and (iii) rη(p) increases as η → ∞ to h(p) uniformly in p ∈ (0, 1). As a consequence,

Ep |AP(Xn)|/n → h(p) as n → ∞, showing that AP attains the entropy bound asymp­

totically. Moreover,AP is nested.

1.4 Binary tree representation of Peres’ algorithm

It is instructive to describe the iterations of Peres’ algorithm via a rooted (infinite)

complete binary treeT which is identifiedwith a sequence of nodes (ν1, ν10, ν11, ν100, ν101, . . . ).

6
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Here ν1 is the root node, whose left and right child nodes are denoted by ν10 and ν11, re­

spectively. More generally, for u = b1b2 . . . bη (a string of η bits with b1 = 1 and η ≥ 1),

the node νu has two (left and right) child nodes denoted by νu0 and νu1. It is also con­

venient to identify u = b1 . . . bη, with the positive integer v =
∑η

i=1 bi2
η−i and write

νu = ν(v). Thus we have (ν1, ν10, ν11, ν100, . . . ) = (ν(1), ν(2), ν(3), ν(4), . . . ). It is readily

seen that ν(v) has two (left and right) child nodes denoted by ν(2v) and ν(2v+1), respectively.

We now describe Peres’ algorithm as follows. The input (finite or infinite) sequence

X = (X1, X2, . . . ) arrives at the root node ν1, which is decomposed into λ(X), ρ(X)

and AvN(X). The first two sequences λ(X) and ρ(X) become the (derived or induced)

input sequences at node ν10 and ν11, respectively, while AvN(X) is the output sequence

at ν1. On the second iteration of Peres’ algorithm, the input sequence λ(X) at ν10 is

decomposed into λ
(
λ(X)

)
= λ2(X), ρ

(
λ(X)

)
= ρλ(X), and AvN

(
λ(X)

)
, which be­

come, respectively, the input sequence at node ν100, the input sequence at node ν101, and

the output sequence at node ν10. Similarly, the input sequence ρ(X) at node ν11 is de­

composed into λ
(
ρ(X)

)
= λρ(X), ρ

(
ρ(X)

)
= ρ2(X) andAvN

(
ρ(X)

)
, which become,

respectively, the input sequence at node ν110, the input sequence at node ν111, and the

output sequence at ν11. More generally, on the ηth iteration (η ≥ 2), the input sequence

ψbη . . . ψb2(X) at node νb1b2...bη where ψbi = λ or ρ according as bi = 0 or 1, is decom­

posed into λψbη . . . ψb2(X), ρψbη . . . ψb2(X) and AvN
(
ψbη . . . ψb2(X)

)
, which become,

respectively, the input sequence at node νb1b2...bη0, the input sequence at node νb1b2...bη1,

and the output sequence at node νb1b2...bη . See Figure 1.1.

7
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ν1,X −→ AvN(X)

ν10, λ(X) −→ AvN
(
λ(X)

)

ν100, λ2(X)

...

ν101, ρλ(X)

...

ν11, ρ(X) −→ AvN
(
ρ(X)

)

ν110, λρ(X)

...

ν111, ρ2(X)

...

Figure 1.1: Binary tree representation ofAP.

1.5 Brief literature review

In addition to the papers mentioned earlier, a number of papers in the literature also

discuss von Neumann’s problem or related problems. Hoeffding and Simons [7] consid­

ered the problem of generating an unbiased bit by a stopping time when X1, X2, . . . (the

outcomes from repeatedly tossing a coin of unknown bias p) are observed sequentially.

Note that this problem may be referred to as in the variable­to­fixed length regime as op­

posed to the fixed­to­variable length regime where the number of input bits is fixed and the

number of output bits is random. (In particular, Elias’ algorithm is in the fixed­to­variable

length regime.) More specifically, their problem is to find an algorithm consisting of a

stopping time τ and a function f : {H,T}∗ → {0, 1}, where {H,T}∗ =
⋃∞
n=0{H,T}n,

such that

Pp
(
f(X1, . . . , Xτ ) = 0

)
= Pp

(
f(X1, . . . , Xτ ) = 1

)
=

1

2
, for all p ∈ (0, 1).

The objective is to choose τ such that Epτ is as small as possible for all p. Note that the

stopping time τvN corresponding to von Neumann’s algorithm is τvN = 2 inf{n : X2n−1 ̸=

8
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X2n} for which EpτvN = 1/pq ≥ 4. Dwass [4] and Bernard and Letac [1] considered

a more general problem of generating an r­valued equiprobable random variable by an

algorithm involving a stopping time when X1, X2, . . . are iid with an unknown discrete

distribution. By representing algorithms in terms of trees, Stout and Warren [25] were

able to improve the algorithms in Hoeffding and Simons [7], Dwass [4], and Bernard and

Letac [1].

Knuth and Yao [11] considered the problem of generating a random variable with a

given target discrete distribution when the input sequence consists of iid unbiased bits.

They developed optimal algorithms which minimize the expected number of input bits

required to generate a desired random variable. Han and Hoshi [6] generalized their ap­

proach to the setting where the common (discrete) distribution of the input sequence is

general. See [15] and [27] for recent development.

Samuelson [23] studied the problem of generating an unbiased bit when the input

sequence is a Markov chain. By considering transitions out of a specific state, he first

constructed an iid sequence (with an unknown common discrete distribution) from which

iid unbiased bits can then be generated. Elias [5] and Blum [2] also considered this prob­

lem. By generalizing Blum’s algorithm together with Elias’ method, Zhou and Bruck [29]

provided an algorithm that generates unbiased random bits from arbitrary finite Markov

chains, operates in expected linear time and attains asymptotically the information­theoretic

upper bound on efficiency. In the fixed­to­variable length regime, Seroussi and Wein­

berger [24] derived a second­order term (a term keeping the expected number of output

bits below the entropy of the input) for an optimal algorithm in the Markov setting.

As discussed in Sections 1.2 and 1.3 where the input sequence is iid Bernoulli, Elias

9
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[5] proposed an efficient algorithmAE whose exact optimality was established by Pae and

Loui [19]. Peres [20] presented an elegant algorithmAP and showed that it is asymptoti­

cally efficient. Prasitsupparote, Konno and Shikata [21] conducted an extensive numerical

study ofAP andAE (with the method of Ryabko and Matchikina [22]) by comparing their

memory and running time requirements. Their empirical results suggest that AP would

be superior toAE in practical applications. Pae [17] and Pae [18] generalized Peres’ algo­

rithm when the input iid sequence X1, X2, . . . has a common (unknown) distribution on

{0, 1, . . . , r−1}with r > 1. Zhou and Bruck [30] proposed a streaming version of Peres’

algorithm in the variable­to­fixed length regime where a given number of iid unbiased

bits is to be generated by a random number τ of (input)Xi’s with τ being a stopping time.

Their streaming algorithm will be discussed in Chapter 3.

Von Neumann’s algorithm has been used to remove bias in the output of a true ran­

dom number generator from a variety of physical devices (see e.g. Wei and Guo [28]). It

has applications in cryptography to generate random cryptographic keys for secure data

transmission.

The so­called Bernoulli factory refers to the problem of using a p­coin (coin with

probability of heads p) to simulate an f(p)­coin (coin with probability of heads f(p))

where (unknown) p is known only to belong to a given subset S of (0, 1) and the function

f : S → [0, 1] is known. The problem considered in this dissertation deals with the

special case that S = (0, 1) and f(p) = 1/2 for all p. Keane and O’Brien [10] obtained

necessary and sufficient conditions on f under which there exists an algorithm to simulate

an f(p)­coin using a p­coin. See also Nacu and Peres [14] for related results.

In Chapter 2, we present an asymptotic analysis of Peres’ algorithm along with nu­

10
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merical results. In Chapter 3, streaming versions of Peres’ algorithm are introduced and

their properties are discussed. Chapter 4 contains concluding remarks. Most of the results

in Chapter 2 have appeared in Lim, Liao and Yao [12] while Chapter 3 is based on Lim

and Yao [13].

11
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Chapter 2 Asymptotic Analysis of

Peres’ algorithm

2.1 Main results

WhileAE andAP both attain the entropy bound asymptotically, (1.2) and (1.3) pro­

vide a precise (second­order) behavior of nh(p) − Ep |AE(Xn)|. In contrast, there is not

much known about the behavior of nh(p) − Ep |AP(Xn)| for large n. In this regard,

Pae [16] gave a formula to compute Ep |AP(Xn)|, which is not convenient for deriving

the asymptotic behavior of nh(p) − Ep |AP(Xn)|. Recently, Prasitsupparote et al. [21]

showed, based on some heuristics, that for p = 1/2,

nh(p)− Ep |AP(Xn)| = n− E1/2 |AP(Xn)| ≥ nlog 3−1. (2.1)

To derive (2.1), they assumed, without rigorous justification, that

1

n
Ep |AP,η(Xn)| ≤ rη(p) for p ∈ (0, 1), n ≥ 1, η ≥ 1. (2.2)

In Section 2.2, we prove the following results while numerical results are presented

in Section 2.3.
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Proposition 2.1. Let a(n, p, η) = Ep |AP,η(Xn)|. Then for p ∈ (0, 1) and η = 1, 2, . . . ,

the sequence (a(1, p, η), a(2, p, η), . . . ) is superadditive, i.e. a(n, p, η) + a(m, p, η) ≤

a(n + m, p, η) for n,m ≥ 1. Consequently, limn→∞ a(n, p, η)/n exists and is equal to

supn≥1 a(n, p, η)/n. That is,

rη(p) := lim
n→∞

Ep |AP,η(Xn)|/n = sup
n≥1

Ep |AP,η(Xn)|/n,

which implies (2.2).

Proposition 2.2. For p = 1/2, let b(n) = E1/2 |AP(Xn)|. Then

(i) the b(n) satisfy b(0) = b(1) = 0 and the recursion

b(n) =
⌊n
2

⌋
/2 + b

(⌊n
2

⌋)
+ E b(B⌊n/2⌋,1/2) for n = 2, 3, . . . , (2.3)

where Bn,p denotes a binomial(n, p) random variable;

(ii)

lim
n→∞

log
(
n− b(n)

)
logn

= log
(
1 +

√
5

2

)
.

Note that with p = 1/2, the coin is unbiased and the input sequence consists on n

unbiased bits, so that n − b(n) may be referred to as the cost incurred by AP when not

knowing p = 1/2. The next section contains the proofs of Propositions 2.1 and 2.2. In

addition, for completeness, a rigorous proof of (2.1) is also given, which is needed for the

proof of Proposition 2.2(ii). Most of the results in this chapter have appeared in Lim et al.

[12].
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2.2 Proofs of Propositions 2.1 and 2.2 and (2.1)

Proof of Proposition 2.1. Recall that whenAP is applied toXn = (X1, . . . , Xn), 3 subse­

quencesλ(Xn), ρ(Xn) andAvN(Xn) are inducedwhere |λ(Xn)| = |ρ(Xn)|+|AvN(Xn)| =

⌊n/2⌋ and |AvN(Xn)| ∼ binomial(⌊n/2⌋, 2pq). It follows from (1.4) that

a(n, p, η) = Ep |AP,η(Xn)|

= Ep |AP,η−1(λ(Xn))|+ Ep |AP,η−1(ρ(Xn))|+ 2pq⌊n/2⌋.
(2.4)

Noting that λ(Xn) is distributed as a sequence U of nλ = ⌊n/2⌋ iid Bernoulli random

variables with bias fλ(p), we have

Ep |AP,η−1(λ(Xn))| = Efλ(p) |AP,η−1(U)| = a(⌊n/2⌋, fλ(p), η − 1). (2.5)

Similarly, conditioning on nρ = |λ(Xn)|T, ρ(Xn) is a sequence of nρ iid Bernoulli random

variables with bias fρ(p), so that the conditional expectation of |AP,η−1(ρ(Xn))| given nρ

equals a(nρ, fρ(p), η − 1). Since nρ ∼ binomial(⌊n/2⌋, 1− 2pq), we have

Ep |AP,η−1(ρ(Xn))| = E a(B⌊n/2⌋,1−2pq, fρ(p), η − 1), (2.6)

where the expectation operatorE on the right­hand side is onB⌊n/2⌋,1−2pq (a binomial(⌊n/2⌋, 1−

2pq) random variable). By (2.4), (2.5) and (2.6),

a(n, p, η) = a(⌊n/2⌋, fλ(p), η − 1) + E a(B⌊n/2⌋,1−2pq, fρ(p), η − 1) + 2pq⌊n/2⌋. (2.7)

We now prove by induction on η that

a(n, p, η) + a(m, p, η) ≤ a(n+m, p, η). (2.8)
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For η = 1, a(n, p, 1) = 2pq⌊n/2⌋. Since ⌊n/2⌋ + ⌊m/2⌋ ≤ ⌊(n +m)/2⌋ for n,m ≥ 1,

we have a(n, p, 1) + a(m, p, 1) ≤ a(n + m, p, 1), implying that (2.8) holds for η = 1.

Suppose that for an integer k > 0, (2.8) holds for all n,m ≥ 1, all p ∈ (0, 1), and η = k.

We need to show that (2.8) holds for n,m ≥ 1, p ∈ (0, 1) and η = k+1. By the induction

hypothesis,

a(⌊n/2⌋, fλ(p), k) + a(⌊m/2⌋, fλ(p), k) ≤ a(⌊n/2⌋+ ⌊m/2⌋, fλ(p), k)

≤ a(⌊(n+m)/2⌋, fλ(p), k),
(2.9)

where the second inequality follows from the fact that a(n, p, η) is non­decreasing in n.

Let U and V be independent random variables with U ∼ binomial(⌊n/2⌋, 1 − 2pq) and

V ∼ binomial(⌊m/2⌋, 1− 2pq). Then U +V ∼ binomial(⌊n/2⌋+ ⌊m/2⌋, 1− 2pq). If n

andm are both odd, letW be independent of U and V withW ∼ binomial(1, 1− 2pq). If

at least one of n andm is even, letW be identically 0. ThenU+V +W ∼ binomial(⌊(n+

m)/2⌋, 1− 2pq). We have by the induction hypothesis that

E a(B⌊n/2⌋,1−2pq, fρ(p), k) + E a(B⌊m/2⌋,1−2pq, fρ(p), k)

= E
{
a(U, fρ(p), k) + a(V, fρ(p), k)

}
≤ E a(U + V, fρ(p), k)

≤ E a(U + V +W, fρ(p), k)

= E a(B⌊(n+m)/2⌋,1−2pq, fρ(p), k).

(2.10)

Moreover,

2pq⌊n/2⌋+ 2pq⌊m/2⌋ ≤ 2pq⌊(n+m)/2⌋. (2.11)
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By (2.7) and (2.9)–(2.11),

a(n, p, k + 1) + a(m, p, k + 1) ≤ a(n+m, p, k + 1),

showing that (2.8) holds forn,m ≥ 1, p ∈ (0, 1) and η = k+1. The proof is complete.

Proof of (2.1). The following argument is taken from the proof of Theorem 1 in Prasit­

supparote et al. [21]. With p = 1/2, we have r1(1/2) = pq = 1
4
and, by (1.6)

rη(1/2) =
1

4
+

3

4
rη−1(1/2) for η ≥ 2,

from which it follows that rη(1/2) = 1− (3
4
)
η, η ≥ 1. By Proposition 2.1,

1−
(
3

4

)η
= rη(1/2) ≥ E1/2 |AP,η(Xn)|/n,

so that with η = ⌊logn⌋ and b(n) = E1/2 |AP(Xn)|, we have

1−
(
3

4

)⌊logn⌋
≥ E1/2 |AP,⌊logn⌋(Xn)|/n = E1/2 |AP(Xn)|/n = b(n)/n,

implying that

n− b(n) ≥ n

(
3

4

)⌊logn⌋
≥ n

(
3

4

)logn
= nlog 3−1,

proving (2.1).

Proof of Proposition 2.2(i). For p = 1/2, fλ(1/2) = fρ(1/2) = 1/2, and B⌊n/2⌋,1−2pq =

B⌊n/2⌋,1/2. Letting a(n, p, η) = Ep |AP,η(Xn)|, we have by (2.7) that

a(n, 1/2, η) = a(⌊n/2⌋, 1/2, η − 1) + E a(B⌊n/2⌋,1/2, 1/2, η − 1) + ⌊n/2⌋/2. (2.12)
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Recall thatAP(Xn) = AP,η(Xn) for η ≥ ⌊logn⌋. By (2.12),

b(n) = E1/2 |AP(Xn)| = E1/2 |AP,⌊logn⌋(Xn)|

= a(n, 1/2, ⌊logn⌋)

= a(⌊n/2⌋, 1/2, ⌊logn⌋ − 1) + E a(B⌊n/2⌋,1/2, 1/2, ⌊logn⌋ − 1) + ⌊n/2⌋/2

= b(⌊n/2⌋) + E b(B⌊n/2⌋,1/2) + ⌊n/2⌋/2,

proving (2.3).

To prove Proposition 2.2(ii), we need the following lemmas. Proposition 2.2(ii)

follows immediately from Lemmas 2.4 and 2.5 below. For the rest of this section, to

simplify notation, we write Bn = Bn,1/2 for a binomial(n, 1/2) random variable. Let

g(n) = n− b(n) ≥ 0, for n = 0, 1, . . . . We have g(0) = 0, g(1) = 1, and by Proposition

2.2(i), for even n ≥ 0,

g(n) = n− b(n) = n−
[
n

4
+ b

(n
2

)
+ E b(Bn

2
)

]
=

[
n

2
− b

(n
2

)]
+ E

[
Bn

2
− b(Bn

2
)
]

= g
(n
2

)
+ E g(Bn

2
),

and for odd n ≥ 1,

g(n) = n− b(n) = n−
[
n− 1

4
+ b

(n− 1

2

)
+ E b(B(n−1)/2)

]
= 1 +

[
n− 1

2
− b

(n− 1

2

)]
+ E

[
B(n−1)/2 − b(B(n−1)/2)

]
= 1 + g

(n− 1

2

)
+ E g(B(n−1)/2).

So, for n ≥ 0,

g(n) = g
(⌊n

2

⌋)
+ E g(B⌊n

2
⌋) + 1{n is odd}, (2.13)
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where 1 denotes the indicator function.

Lemma 2.1. For δ ∈ (0, 1), we have

lim
n→∞

1

n
logP

(
Bn >

n

2
(1 + δ)

)
= −1

2

[
(1− δ) log(1− δ) + (1 + δ) log(1 + δ)

]
< 0.

Lemma 2.2. If f(0) ≤ f(1) ≤ · · · ≤ f(n+ 1), then E f(Bn+1) ≥ E f(Bn).

Lemma 2.1 is a standard result in large deviation theory; see e.g. [9, pages 539–540].

Lemma 2.2 follows from the fact that Bn is stochastically smaller than Bn+1. By (2.13),

g(0) = 0, g(1) = 1, g(2) =
3

2
, g(3) =

5

2
, g(4) =

19

8
< g(3), (2.14)

so that g(n) is not non­decreasing. Lemma 2.3 below constructs two non­decreasing se­

quencesG andH that are closely related to g and satisfy 0 ≤ H(n) ≤ g(n) ≤ G(n) ≤ n.

Lemma 2.3. Let G(n) and H(n), n = 0, 1, . . . be defined by

G(n) = g(n) for n = 0, 1, 2, 3,

H(n) = g(n) for n = 0, 1,

and recursively

G(n) = G
(⌊n

2

⌋)
+ EG(B⌊n

2
⌋) + 1 for n ≥ 4, (2.15)

H(n) = H
(⌊n

2

⌋)
+ EH(B⌊n

2
⌋) for n ≥ 2. (2.16)

Then (i)G is non­decreasing and g(n) ≤ G(n) ≤ n for all n, and (ii)H is non­decreasing

and g(n) ≥ H(n) ≥ 0 for all n.

Proof. In view of (2.13) and (2.15), it is easily shown by induction that g(n) ≤ G(n) for
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all n. By (2.14), G(n) = g(n) ≤ n and G(n) is non­decreasing for n ≤ 3. For n ≥ 4, if

G(ℓ) ≤ ℓ for all ℓ < n, then

G(n) = G
(⌊n

2

⌋)
+ EG(B⌊n

2
⌋) + 1

≤
⌊n
2

⌋
+ EB⌊n

2
⌋ + 1

≤ 3

4
n+ 1 ≤ n.

It follows by induction that G(n) ≤ n for all n. That G(n) is non­decreasing in n also

follows by induction and Lemma 2.2. This proves part (i). In view of (2.13) and (2.16),

part (ii) can be proved similarly.

Lemma 2.4. For each δ ∈ (0, 1), there exists an N ≥ 4 and a non­decreasing sequence

(G′(0), G′(1), . . . ) such that G′(n) ≥ g(n) for all n and

G′(n) = G′
(⌊n

c

⌋)
+

4

c2
G′

(⌊ n
c2

⌋)
, for all n ≥ N ,

where c = c(δ) = 2/
√
1 + δ. Moreover,

lim sup
n→∞

log g(n)
logn

≤ lim sup
n→∞

logG′(n)

logn
≤ 1

log c
log

(
1

2
+

√
4

c2
+

1

4

)
.

Consequently, letting δ → 0 so that c = c(δ) → 2, we have

lim sup
n→∞

log g(n)
logn

≤ log
(
1 +

√
5

2

)
.

Proof. Let δ ∈ (0, 1) be fixed. Let G be defined as in Lemma 2.3, so that G is non­
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decreasing and 0 ≤ g(n) ≤ G(n) ≤ n for all n. We have

EG(B⌊n
2
⌋) + 1 ≤ 1 +G

(⌊⌊n
2

⌋(1 + δ

2

)⌋)
P
(
B⌊n

2
⌋ ≤

⌊⌊n
2

⌋(1 + δ

2

)⌋)
+G

(⌊n
2

⌋)
P
(
B⌊n

2
⌋ >

⌊⌊n
2

⌋(1 + δ

2

)⌋)
≤ 1 +G

(⌊⌊n
2

⌋(1 + δ

2

)⌋)
+
⌊n
2

⌋
P
(
B⌊n

2
⌋ >

⌊⌊n
2

⌋(1 + δ

2

)⌋)
.

(2.17)

By (2.1), G(⌊ ⌊n/2⌋
2

(1 + δ)⌋) ≥ g(⌊ ⌊n/2⌋
2

(1 + δ)⌋) → ∞ as n→ ∞, and by Lemma 2.1,

lim
n→∞

⌊n
2

⌋
P
(
B⌊n

2
⌋ >

⌊⌊n
2

⌋(1 + δ

2

)⌋)
= 0,

so that by (2.17), there is a (large) N ≥ 4 such that

EG(B⌊n
2
⌋) + 1 ≤ (1 + δ)G

(⌊⌊n
2

⌋(1 + δ

2

)⌋)
for all n ≥ N . (2.18)

Letting c = 2/
√
1 + δ, we have by (2.15) and (2.18) that for all n ≥ N (≥ 4),

G(n) = G
(⌊n

2

⌋)
+ EG(B⌊n

2
⌋) + 1

≤ G
(⌊n

c

⌋)
+

4

c2
G
(⌊ n
c2

⌋)
.

(2.19)

Define G′(n), n = 0, 1, . . . by G′(n) = G(n) for n < N and recursively

G′(n) = G′
(⌊n

c

⌋)
+

4

c2
G′

(⌊ n
c2

⌋)
for n ≥ N . (2.20)

(Note that for c >
√
2 and n ≥ N ≥ 4, ⌊n/c2⌋ ≤ ⌊n/c⌋ ≤ n− 1, so G′ is well defined.)

SinceG(n) is non­decreasing andG(n) = G′(n) for all n < N , we have by (2.19), (2.20)

and induction thatG′(n) ≥ G(n)(≥ g(n)) for all n. To show thatG′(n) is non­decreasing,

note that G′(N) ≥ G(N) ≥ G(N − 1) = G′(N − 1). Since G′(0) ≤ G′(1) ≤ · · · ≤

G′(N), it follows by (2.20) and induction that G′(n) ≤ G′(n+ 1) for all n ≥ N .
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It remains to prove that

lim sup
n→∞

logG′(n)

logn
≤ 1

log c
log

(
1

2
+

√
4

c2
+

1

4

)
. (2.21)

Let ℓk = ⌊ckN⌋, k = 0, 1, . . . . Let x0 = G′(ℓ0), x1 = G′(ℓ1), and

xk = xk−1 +
4

c2
xk−2, k = 2, 3, . . . . (2.22)

By (2.20) and monotonicity of G′, we have for k ≥ 2

G′(ℓk) = G′(⌊ckN⌋) = G′
(⌊⌊ckN⌋

c

⌋)
+

4

c2
G′

(⌊⌊ckN⌋
c2

⌋)
≤ G′(⌊ck−1N⌋

)
+

4

c2
G′(⌊ck−2N⌋

)
= G′(ℓk−1) +

4

c2
G′(ℓk−2).

(2.23)

Since xk = G′(ℓk) for k = 0, 1, it follows by (2.22), (2.23) and induction that

G′(ℓk) ≤ xk for all k ≥ 0. (2.24)

Since xk satisfies the difference equation (2.22), we have

xk = α1λ
k
1 + α2λ

k
2, k = 0, 1, . . .

where

λ1 =
1

2
(1 + γ), λ2 =

1

2
(1− γ)

α1 =
1

γ

(1
2
(γ − 1)x0 + x1

)
, α2 =

1

γ

(1
2
(γ + 1)x0 − x1

)

and γ =
√

1 + 16
c2
. Noting that −1 < λ2 < 0 < 1 < λ1 (since

√
2 < c < 2) and α1 > 0,
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it follows that

lim
k→∞

logxk
k

= logλ1 = log
(
1

2
+

√
4

c2
+

1

4

)
. (2.25)

By (2.24) and (2.25),

lim sup
k→∞

logG′(ℓk)

log ℓk
≤ lim sup

k→∞

logxk
log⌊ckN⌋

=
logλ1
log c

.

Since G′ is non­decreasing, for each n ≥ 1, let k = k(n) be such that ℓk ≤ n < ℓk+1, so

that

logG′(n)

logn
≤ logG′(ℓk+1)

log ℓk
,

implying that

lim sup
n→∞

logG′(n)

logn
≤ lim sup

k→∞

logG′(ℓk+1)

log ℓk

= lim sup
k→∞

logG′(ℓk+1)

log ℓk+1

log ℓk+1

log ℓk

≤ logλ1
log c

=
1

log c
log

(
1

2
+

√
4

c2
+

1

4

)
,

proving (2.21). The proof is complete.

Lemma 2.5. For each δ ∈ (0, 1), there exists an N ≥ 4 and a non­decreasing sequence

(H ′(0), H ′(1), . . . ) such that 0 ≤ H ′(n) ≤ g(n) for all n and

H ′(n) = H ′
(⌈n
d

⌉)
+

4

d2
H ′

(⌈ n
d2

⌉)
, for all n ≥ N ,

where d = d(δ) = 2 + δ and ⌈x⌉ denotes the smallest integer not less than x. Moreover,

lim inf
n→∞

log g(n)
logn

≥ lim inf
n→∞

logH ′(n)

logn
≥ 1

log d
log

(
1

2
+

√
4

d2
+

1

4

)
.
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Consequently, letting δ → 0 so that d = d(δ) → 2, we have

lim inf
n→∞

log g(n)
logn

≥ log
(
1 +

√
5

2

)
.

Proof. The following proof is similar to that of Lemma 2.4. Let δ ∈ (0, 1) be fixed. Let

H be defined as in Lemma 2.3, so that H is non­decreasing and 0 ≤ H(n) ≤ g(n) for all

n. Also H(0) = g(0) = 0, H(1) = g(1) = 1.

For d = 2 + δ > 2, by the law of large numbers, P(B⌊n
2
⌋ < ⌈ n

d2
⌉) → 0 as n → ∞.

So there exists an N ≥ 4 such that for all n ≥ N ,

H
(⌊n

2

⌋)
≥ H

(⌈n
d

⌉)
and P

(
B⌊n

2
⌋ ≥

⌈ n
d2

⌉)
≥ 4

d2
.

By (2.16), for n ≥ N ≥ 4,

H(n) = H
(⌊n

2

⌋)
+ EH(B⌊n

2
⌋)

≥ H
(⌈n
d

⌉)
+ P

(
B⌊n

2
⌋ ≥

⌈ n
d2

⌉)
H
(⌈ n
d2

⌉)
≥ H

(⌈n
d

⌉)
+

4

d2
H
(⌈ n
d2

⌉)
.

(2.26)

DefineH ′(n), n = 0, 1, . . . byH ′(0) = 0,H ′(1) = · · · = H ′(N−1) = 1 and recursively

H ′(n) = H ′
(⌈n
d

⌉)
+

4

d2
H ′

(⌈ n
d2

⌉)
for n ≥ N . (2.27)

(Note that ⌈ n
d2
⌉ ≤ ⌈n

d
⌉ ≤ n − 1 for n ≥ N ≥ 4, so that the recursion is well defined.)

Since by (2.27), H ′(N) = H ′(⌈N
d
⌉) + 4

d2
H ′(⌈N

d2
⌉) = 1 + 4

d2
> 1, we have H ′(0) <

H ′(1) = · · · = H ′(N − 1) < H ′(N). It follows by (2.27) and induction that H ′ is a

non­decreasing sequence. Since H(n) ≥ H ′(n) for all n < N , we have by (2.26), (2.27)

and induction that H ′(n) ≤ H(n) for all n.
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It remains to prove that

lim inf
n→∞

logH ′(n)

logn
≥ 1

log d
log

(
1

2
+

√
4

d2
+

1

4

)
(2.28)

Let ℓk = ⌈dkN⌉, k = 0, 1, . . . . Let x0 = H ′(ℓ0), x1 = H ′(ℓ1), and

xk = xk−1 +
4

d2
xk−2, k = 2, 3, . . . . (2.29)

By (2.27) and monotonicity of H ′, we have for k ≥ 2

H ′(ℓk) = H ′(⌈dkN⌉) = H ′
(⌈⌈dkN⌉

d

⌉)
+

4

d2
H ′

(⌈⌈dkN⌉
d2

⌉)
≥ H ′(⌈dk−1N⌉

)
+

4

d2
H ′(⌈dk−2N⌉

)
= H ′(ℓk−1) +

4

d2
H ′(ℓk−2).

(2.30)

Since xk = H ′(ℓk) for k = 0, 1, it follows by (2.29), (2.30) and induction that

H ′(ℓk) ≥ xk for all k ≥ 0. (2.31)

Note that the difference equation (2.29) is the same as (2.22) with c replaced by d. Solving

(2.29) yields (cf. (2.25))

lim
k→∞

logxk
k

= log
(
1

2
+

√
4

d2
+

1

4

)
.

By (2.31),

lim inf
k→∞

logH ′(ℓk)

log ℓk
≥ lim inf

k→∞

logxk
log⌈dkN⌉

=
1

log d
log

(
1

2
+

√
4

d2
+

1

4

)
.

Since H ′ is non­decreasing, for each n ≥ 1, let k = k(n) be such that ℓk ≤ n < ℓk+1, so
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that

logH ′(n)

logn
≥ logH ′(ℓk)

log ℓk+1

,

implying that

lim inf
n→∞

logH ′(n)

logn
≥ lim inf

k→∞

logH ′(ℓk)

log ℓk+1

= lim inf
k→∞

logH ′(ℓk)

log ℓk
log ℓk
log ℓk+1

≥ 1

log d
log

(
1

2
+

√
4

d2
+

1

4

)
,

proving (2.28). The proof is complete.

2.3 Numerical results and discussion

Recall that g(n) = n − b(n) = n − E1/2 |AP(Xn)|. By (2.13), we computed g(n)

for all n ≤ 65536. Figure 2.1 plots log g(n)/ logn versus n for n ≤ 65536 where θ =

log[(1 +
√
5)/2] ≈ 0.694. It shows that log g(n)/ logn is slightly greater than θ and

appears to converge to θ slowly. Figure 2.2 plots g(n)/nθ versus n for n ≤ 65536. By

Proposition 2.2(ii),

lim
n→∞

log
[
g(n)/nθ

]
/ logn = 0.

While it is unclear whether g(n)/nθ converges to some constant eventually, it appears

that g(n)/nθ fluctuates less when n becomes larger. Figure 2.3 plots g(2n)/g(n) versus

n for n ≤ 32768. It appears that g(2n)/g(n) is close to 2θ for large n. Figure 2.4 plots

g(3n)/g(n) versus n for n ≤ 21845, where g(3n)/g(n) oscillates around 3θ. Our limited

numerical results provide weak evidence that g(3n)/g(n) converges to 3θ eventually.

Figure 2.5 plots logVar1/2 |AP(X2k)|/ log 2k for k = 1, . . . , 25, where Xn is a se­
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Figure 2.1: Plot of log g(n)/ logn versus n.
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Figure 2.2: Plot of g(n)/nθ versus n with θ = log[(1 +
√
5)/2].
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Figure 2.3: Plot of g(2n)/g(n) versus n.
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Figure 2.4: Plot of g(3n)/g(n) versus n.
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Figure 2.5: Plot for Var0.5|AP(X2k)|.

quence of n unbiased bits. The first 9 points in the plot, with k = 1, . . . , 9, are ex­

act values calculated from the distribution of |AP(X2k)| with p = 1/2, while the lat­

ter 16 points in the plot are obtained from simulation with 10000 replications for each

k. The variance Var1/2 |AP(Xn)| appears to increase in n. There is very weak evi­

dence that logVar1/2(Xn)/ logn converges to a positive constant. While we have dis­

cussed mainly the asymptotic behavior of E1/2 |AP(Xn)| for p = 1/2, it is also of in­

terest to see how fast Ep |AP(Xn)|/n approaches h(p) for p ̸= 1/2. Figure 2.6 plots

log(nh(p) − Ep |AP(Xn)|)/ logn for n = 2k, k = 1, . . . , 26, p = 0.3, suggesting that

it might also converge to θ as n → ∞. In this plot, the first 9 points are exact values,

while the latter 17 points are obtained from simulation with 10000 replications for each

of k ∈ {10, . . . , 24}, 5000 replications for k = 25, and 2500 replications for k = 26.

While the distribution of |AP(Xn)| is complicated, it seems natural to ask whether(
|AP(Xn)|−Ep |AP(Xn)|

)
/
√
Varp |AP(Xn)| is approximately standard normal for large

n. For p = 1/2, we conducted a simulation study with 10000 samples for each of n = 210,

217, 225. Let Qn,i, i = 1, . . . , 10000, denote the 10000 observations of |AP(Xn)|. For
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Figure 2.6: Plot for 2kh(0.3)− E0.3|AP(X2k)|.

n = 210, 217, 225, Figure 2.7(a)–(c) plots the histograms of the standardized observations

{(Qn,i − Qn)/s.d.(Qn) : i = 1, . . . , 10000} where Qn and s.d.(Qn) denote the sample

mean and sample standard deviation of {Qn,i : i = 1, . . . , 10000}. Also included in

the plots is the standard normal density function. It appears that the standard normal

distribution approximates reasonably well the standardized distribution of |AP(Xn)| for

n = 217 and 225.

Although we have no proof of the asymptotic normality result, the following argu­

ment suggests that the asymptotic normality may hold. Choose a sequence ℓn such that

limn→∞ ℓn = ∞ and limn→∞ ℓn/n = 0. Divide the sample Xn = (X1, . . . , Xn) into

blocks of size ℓn,

Y (i) = (X(i−1)ℓn+1, . . . , Xiℓn), i = 1, . . . , ⌊n/ℓn⌋.

ApplyAp to eachY (i), yielding output bitsAP(Y
(i)). Note that |AP(Y

(i))|, i = 1, . . . , ⌊n/ℓn⌋,

are iid, and that |AP(Xn)| ≥
∑⌊n/ℓn⌋

i=1 |AP(Y
(i))|. If ℓn increases to infinity sufficiently

fast, the difference of |AP(Xn)| and
∑⌊n/ℓn⌋

i=1 |AP(Y
(i))| may be negligible compared to
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Figure 2.7: Simulated histograms for the standardized distribution of |AP(Xn)| for p =
0.5 and n = 210, 217, 225.
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the standard deviation of |AP(Xn)|. In other words, |AP(Xn)| can be approximated by a

sum of iid random variables, which suggests the validity of the asymptotic normality.
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Chapter 3 Streaming versions of

Peres’ algorithm

3.1 Introduction and streaming algorithms

LetX = (X1, X2, . . . ) be the input sequence consisting of the outcomes when a coin

of bias p is tossed repeatedly (which is referred to as the source). LetXn = (X1, . . . , Xn).

Recall the binary tree representation of AP introduced in Section 1.4 where the rooted

binary tree T is identified with the sequence of nodes (ν1, ν10, ν11, ν100, ν101, . . . ). At

time n, n = 1, 2, . . . , the input bit Xn arrives (is received) at the root node ν1 from the

source. For a (fixed) time n, the input sequence Xn at ν1 is decomposed into λ(Xn),

ρ(Xn) and AvN(Xn), so that λ(Xn) and ρ(Xn) become the input sequences at nodes

ν10 and ν11, respectively, while AvN(Xn) is the output sequence at ν1. Furthermore, the

input sequence λ(Xn) (ρ(Xn), resp.) at node ν10 (ν11, resp.) is decomposed into λ2(Xn),

ρλ(Xn), AvN
(
λ(Xn)

) (
λρ(Xn), ρ2(Xn), AvN

(
ρ(Xn)

)
, resp.

)
. More generally, for a

node νb1···bη (of level η), when the input sequence ψbη · · ·ψb2(Xn) is received at node

νb1b2···bη whereψbℓ = λ or ρ according as bℓ = 0 or 1, it is decomposed into three sequences,

λψbη · · ·ψb2(Xn), ρψbη · · ·ψb2(Xn), AvN
(
ψbη · · ·ψb2(Xn)

)
, so that the first becomes the

input sequence at node νb1···bη0, the second becomes the input sequence at node νb1···bη1,
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and the third becomes the output sequence at node νb1···bη . Note that no input sequence

can be received at node νb1···bη of level η ≥ ⌊logn⌋+ 2.

We denote by AP(Xn) the total collection of the output sequences at all the nodes.

More precisely, the nodes are ordered lexicographically in the sense that νb1···bη ≺′ νb′1···b′η′

if for some 1 ≤ ℓ ≤ min{η, η′}, bi = b′i for i = 1, . . . , ℓ, and either ℓ = η < η′ or

bℓ+1 < b′ℓ+1. For example, ν101 ≺′ ν11 ≺′ ν110 ≺′ ν1100 ≺′ ν111. Then AP(Xn) is the

sequence of all output bits that results from arranging the (non­empty) output sequences

at all nodes according to the node ordering ≺′.

Given two time points n < n′, while AP(Xn) is contained in AP(Xn′) (due to AP

being nested), some (output) bits inAP(Xn) generated by time nmay be placed after bits

inAP(Xn′) \AP(Xn). As an example, consider x = HTHHTH · · · , we haveAP(x4) =

11 and AP(x6) = 101. The second 1 in AP(x4) is moved to the third place in AP(x6).

To avoid this undesirable property, we introduce the notion of streaming algorithm. For

a nested algorithm A, let A(Xn) be the sequence of output bits generated by A applied

to Xn. The output bits in A(Xn) \A(Xn−1) are said to be induced by the nth input bit

Xn. A (nested) algorithmA is said to be streaming if for every n, the output bits induced

by Xn are placed after the bits inAP(Xn−1). In other words,A is a streaming algorithm

if A(Xn) is a prefix of A(Xn′) for n < n′. It is easily seen that AvN is a streaming

algorithm although it is not efficient. In the previous example with AP applied to the

sequence x = HTHHTH · · · , we have that x2(= T) induces an output bit 1 at node ν1,

and x4(= H) induces an output bit 1 at node ν10, and x6(= H) induces an output bit 0 at

node ν1. The output sequence for a streaming version ofAP applied to x = HTHHTH · · ·

would be 110 · · · . Note that for odd n,Xn induces no output bit for any streaming version

of AP. To define a streaming version of AP, when an input bit Xn induces two or more
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output bits (necessarily at different nodes), it is required to order the output bits according

to a pre­specified rule (e.g. a given ordering of the nodes). For example, consider the

lexicographical ordering ≺′. We denote by A′
S the streaming version of AP based on the

ordering ≺′. When A′
S is applied to x = TTHTHTHH, the output sequence is 10110. In

this case, x8(= H) induces two output bits 1 and 0 at nodes ν10 and ν11, respectively, and

1 is placed ahead of 0 since ν10 ≺′ ν11. However, for n = 8, given |A′
S(X8)| = 5, the

conditional distribution ofA′
S(X8) is not uniform on {0, 1}5. Indeed, we have

Pp(A′
S(X8) = 00000)

= Pp(X8 ∈ {THTHTTTH,TTTHHHTH,THTHHHTH})

= p3q5 + p4q4 + p5q3,

Pp(A′
S(X8) = 00010)

= Pp(X8 ∈ {THTHTHTT,TTTHHHHT,TTTHTHHH,THTHTHHH})

= p3q5 + 2p4q4 + p5q3

> Pp(A′
S(X8) = 00000).

This shows that

Pp
(
A′

S(X8) = 00000
∣∣ |A′

S(X8)| = 5
)
< Pp

(
A′

S(X8) = 00010
∣∣ |A′

S(X8)| = 5
)
.

Thus, in general, the output bits generated byA′
S are not independent unbiased.

Instead of the ordering ≺′, we consider another lexicographical ordering ≺ with the

roles of 0 and 1 interchanged. Specifically, we write νb1···bη ≺ νb′1···b′η′ if for some 1 ≤ ℓ ≤

min{η, η′}, bi = b′i for i = 1, . . . , ℓ, and either ℓ = η < η′ or bℓ+1 > b′ℓ+1. For example,

ν11 ≺ ν111 ≺ ν110 ≺ ν1100 ≺ ν101. We denote by AS the streaming version of AP based
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on the ordering ≺. When AS is applied to x = TTHTHTHH · · · , the output sequence is

10101 · · · as compared to 10110 · · · generated byA′
S.

In the next section, we introduce the notation of status tree and discuss its proper­

ties, which plays an important role of establishing unbiasedness of AS in Section 3.3. In

Section 3.4, we discuss another streaming version of Peres’ algorithm which was first in­

troduced by Zhou and Bruck [30]. In Section 3.5, some results on counting status trees

are presented, which are useful for computing the distribution of |AP(Xn)|.

Remark 3.1. An algorithmA is said to be unbiased if for all n, p and ℓ, given |A(Xn)| = ℓ,

the conditional distribution of A(Xn) is uniform on {0, 1}ℓ. An unbiased algorithm is

not necessarily a streaming algorithm. In general, for an unbiased algorithm A, given

|A(Xn)| = ℓ and |A(Xn′)| = ℓ′ for some n < n′ and ℓ ≤ ℓ′, the conditional distribu­

tion of A(Xn′) is not uniform on {0, 1}ℓ′ . As an example, let A∗ denote either AP or a

streaming version ofAP. We have

Pp
(
A∗(X4) = 00

∣∣ |A∗(X2)| = 1, |A∗(X4)| = 2
)

= Pp
(
A∗(X4) = 10

∣∣ |A∗(X2)| = 1, |A∗(X4)| = 2
)

=
1

2
pq ≤ 1

8
<

1

4
.

On the other hand, von Neumann’s algorithmAvN enjoys the unbiasedness property in the

strongest sense. For any p, r ≥ 1, n1 < n2 < · · · < nr and ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓr, given

|AvN(Xni
)| = ℓi, i = 1, . . . , r, the conditional distribution of AvN(Xnr) is uniform on

{0, 1}ℓr .
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3.2 Status tree

To establish the unbiasedness property of AS, we need to introduce the notion of

status tree. Recall that an (input) sequence xn from the source can be decomposed into

λ(xn), ρ(xn) and AvN(xn). If n is even, xn can be recovered from λ(xn), ρ(xn) and

AvN(xn). If n is odd, the last bit xn of xn is lost. It is for this reason that we define

σ(xn) =


O, if n is even

xn, if n is odd,

where O stands for “void”. Thus σ(xn) ∈ {H,T,O}. (By convention, σ(xn) = O if

n = 0.) Then xn can be recovered from λ(xn), ρ(xn), AvN(xn) and σ(xn). Also it is

readily seen that

AvN(xn) = |λ(xn)|H, |ρ(xn)| = |λ(xn)|T, (3.1)

|xn|H = |λ(xn)|H + 2|ρ(xn)|H + 1(σ(xn) = H), (3.2)

|xn|T = |λ(xn)|H + 2|ρ(xn)|T + 1(σ(xn) = T), (3.3)

where 1(·) denotes the indicator function.

For the (infinite complete) binary tree T with nodes ν1, ν10, ν11, . . . , given an input

sequencexn at the root node ν1 from the source, we can derive an input sequence at each of

its descendant nodes. Specifically, the input sequence at node νb1b2···bη derived (or induced)

from xn is ψbη · · ·ψb2(xn) where ψbi = λ or ρ according as bi = 0 or 1. For notational

simplicity, we write Ixn(νb1···bη) = ψbη · · ·ψb2(xn). In particular, Ixn(ν1) = xn. (Here I

stands for “input”.) We call σ
(
Ixn(νb1···bη)

)
= σ

(
ψbη · · ·ψb2(xn)

)
the status (or label) of
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node νb1···bη at time n (derived from xn). A status tree S is the binary tree T together with

the node status (label) S(ν) for every node ν ∈ {ν1, ν10, ν11, . . . }. An admissible status

tree is a status tree whose status of each node is derived from some finite input sequence

at the root node ν1. Note that not every status tree is admissible. As an example, consider

the status tree S with S(ν1) = O, S(ν10) = H, S(ν11) = T, and S(ν) = O for all nodes

ν of level ≥ 3. Clearly, this status tree cannot be derived from any input sequence. From

now on, we drop the word “admissible”, so that a status tree always refers to an admissible

status tree. Note also that for an (admissible) status tree, all but finitely many nodes have

status O. A status tree may be derived from more than one input sequence. For example,

the status tree S with S(ν10) = H and S(ν) = O for all nodes ν ̸= ν10 is derived from the

two input sequences HT and TH.

For notational convenience, we denote by λν and ρν the left and right child nodes of

ν, respectively. Thus ρ2λ3ρν10 = ν10100011. By convention, λ0ν = ρ0ν = ν. For a status

tree S , define the depth δS of S by

δS =


0, if S(ν) = O for all nodes ν,

1 +max{m ≥ 0 : S(λmν1) ̸= O}, otherwise.

Note that ifS is derived from a sequencex of length n ≥ 1, then we have δS = ⌊logn⌋+1,

and S(λδS−1ν1) ̸= O, and S(ν) = O for all nodes ν of level > δS . Define {H,T}∗ =⋃∞
n=0{H,T}n, where {H,T}0 = ∅. Given a status tree S, define

XS = {x ∈ {H,T}∗ : Sx = S},

where Sx denotes the status tree derived from x. For a node ν, let∆(ν) denote the subtree

consisting of ν and all its descendant nodes. Note that∆(ν) is an infinite complete binary
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tree rooted at ν (and is isomorphic toT ). For a status treeS , letS|∆(ν) denote the status tree

S restricted to the subtree ∆(ν). Note that if S is derived from x, then S|∆(ν) is derived

from Ix(ν). Consequently, if S is an admissible status tree, S|∆(ν) is also admissible for

all nodes ν.

Proposition 3.1. Let S be a status tree. For x ∈ XS , the quantities |AP(x)|, |Ix(ν)|,

|Ix(ν)|H, |Ix(ν)|T and |AvN
(
Ix(ν)

)
| for all nodes ν are all S­properties (i.e. independent

of the individual input sequence x) where Ix(ν) denotes the input sequence at node ν

derived from x. In particular, for x ∈ XS , |x|, |x|H and |x|T are S­properties
(
since

x = Ix(ν1)
)
.

Proof. Note that |Ix(ν)| = |Ix(ν)|H + |Ix(ν)|T and |AP(x)| =
∑

ν |AvN
(
Ix(ν)

)
|. So it

suffices to show that for x, x′ ∈ XS ,

|Ix(ν)|H = |Ix′(ν)|H, |Ix(ν)|T = |Ix′(ν)|T, |AvN
(
Ix(ν)

)
| = |AvN

(
Ix′(ν)

)
|. (3.4)

If δS = 0 (i.e. S(ν) = O for all nodes ν), then necessarily x = x′ = ∅, so that (3.4) holds

trivially for S with δS = 0. If δS = 1, then necessarily XS consists only of one element

and x = x′ = S(ν1), so that (3.4) also holds trivially for S with δS = 1. We now proceed

by induction on δS . Suppose that form ≥ 1, (3.4) holds for all S with δS ≤ m. Consider a

status tree S with δS = m+1, and two sequences x, x′ ∈ XS . Then S|∆(ν10) and S|∆(ν11)

are both status trees of depth less than or equal to m. For i = 0, 1, if a node ν of level

η is such that ν ∈ ∆(ν1i), then the level of ν is η − 1 with respect to ∆(ν1i). Moreover,

for i = 0, 1, the status tree S|∆(ν1i) is derived from each of the two sequences Ix(ν1i) and

Ix′(ν1i). For ν ∈ ∆(ν1i), the input sequence Ix(ν)
(
Ix′(ν), resp.

)
at ν derived from x

(x′, resp.) is exactly the input sequence at ν derived from Ix(ν1i)
(
Ix′(ν1i), resp.

)
with
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respect to ∆(ν1i). By the induction hypothesis, we have for nodes ν of level ≥ 2,

|Ix(ν)|H = |Ix′(ν)|H, |Ix(ν)|T = |Ix′(ν)|T, |AvN
(
Ix(ν)

)
| = |AvN

(
Ix′(ν)

)
|. (3.5)

By (3.2) and (3.5),

|Ix(ν1)|H = |x|H = |λ(x)|H + 2|ρ(x)|H + 1(σ(x) = H)

= |Ix(ν10)|H + 2|Ix(ν11)|H + 1{Sx(ν1) = H}

= |Ix′(ν10)|H + 2|Ix′(ν11)|H + 1{Sx′(ν1) = H}

= |x′|H = |Ix′(ν1)|H

and similarly, by (3.3) and (3.5), |Ix(ν1)|T = |Ix′(ν1)|T. Moreover, by (3.1) and (3.5),

|AvN
(
Ix(ν1)

)
| = |AvN(x)| = |λ(x)|H

= |Ix(ν10)|H

= |Ix′(ν10)|H = |λ(x′)|H

= |AvN
(
Ix′(ν1)

)
|.

This shows that (3.4) holds for S with δS = m+ 1. The proof is complete.

Remark 3.2. For a status tree S and the corresponding set of sequences XS = {x : Sx =

S}, let nS(ν), kS(ν), ℓS , ℓS(ν) be non­negative integers such that nS(ν) = |Ix(ν)|,

kS(ν) = |Ix(ν)|H, nS(ν) − kS(ν) = |Ix(ν)|T, ℓS = |AP(x)|, ℓS(ν) = |AvN
(
Ix(ν)

)
|

for all x ∈ XS . Thus, for a given status tree S, the above quantities are known. We write

nS = nS(ν1) and kS = kS(ν1). Furthermore, for all x ∈ XS , Pp(X = x) = pkSqnS−kS ,

independent of x. In other words, this probability is also an S­property.

Remark 3.3. A status tree S of depth δS ≥ 1 with ℓS = 0 is referred to as trivial. A
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sequence x of length n for which Sx is trivial must be

either x = H · · ·H, or x = T · · ·T,

or x = H · · ·HT (for odd n ≥ 3), or x = T · · ·TH (for odd n ≥ 3).
(3.6)

Furthermore, by Lemma 3.2 below, we have |XS | = 1 for a trivial status tree S. Indeed,

if x satisfies (3.6), then XSx = {x}. (The status tree S of depth δS = 0 is also trivial for

which XS = {∅}.)

Lemma 3.1. For a status treeS, theS­propertiesnS(ν), kS(ν), ℓS(ν) satisfy the following

conditions. For each node ν,

ℓS(ν) = kS(λν), nS(ρν) = nS(λν)− kS(λν),

kS(ν) = kS(λν) + 2kS(ρν) + 1
(
S(ν) = H

)
,

nS(ν)− kS(ν) = kS(λν) + 2
(
nS(ρν)− kS(ρν)

)
+ 1

(
S(ν) = T

)
.

Proof. For x ∈ XS , we have by (3.1)–(3.3),

|AvN
(
Ix(ν)

)
| = |Ix(λν)|H, |Ix(ρν)| = |Ix(λν)|T

|Ix(ν)|H = |Ix(λν)|H + 2|Ix(ρν)|H + 1
(
S(ν) = H

)
,

|Ix(ν)|T = |Ix(λν)|H + 2|Ix(ρν)|T + 1
(
S(ν) = T

)
,

from which the lemma follows.

Lemma 3.2. If S is a trivial status tree (i.e. ℓS = 0), then |XS | = 1.

Proof. For S with δS = 0, we have S(ν) = O for all nodes ν, implying that XS = {∅}.

So |XS | = 1. For S with δS = 1, we have S(ν1) = H or T and S(ν) = O for all nodes

ν of level ≥ 2. Clearly, we have XS = {H} or {T}, implying that |XS | = 1. We now
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proceed by induction on δS . Suppose |XS | = 1 for all trivial status trees of depth δS ≤ m

for somem ≥ 1. Consider a trivial status tree S of depth δS = m+1. Let x and x′ ∈ XS .

We need to show x = x′. Since S is trivial, both S(L) = S|∆(ν10) and S(R) = S|∆(ν11)

are trivial of depth ≤ m. We have λ(x), λ(x′) ∈ XS(L) and ρ(x), ρ(x′) ∈ XS(R) . By the

induction hypothesis, |XS(L)| = |XS(R) | = 1, so that λ(x) = λ(x′) and ρ(x) = ρ(x′).

Since AvN(x) = AvN(x
′) = ∅ and σ(x) = σ(x′) = S(ν1), we have x = x′. (Recall that

λ(x), ρ(x),AvN(x) and σ(x) together determine x.) The proof is complete.

Proposition 3.2. Let S be a status tree and XS = {x : Sx = S}. Let n(ν) = nS(ν),

k(ν) = kS(ν), ℓ = ℓS , ℓ(ν) = ℓS(ν) be the S­properties such that |Ix(ν)| = n(ν),

|Ix(ν)|H = k(ν), |AP(x)| = ℓ, |AvN
(
Ix(ν)

)
| = ℓ(ν) for all nodes ν and all x ∈ XS .

Assume ℓ ≥ 1. Then for y ∈ {0, 1}ℓ, there is a unique x ∈ XS such that AP(x) = y.

That is,AvN
(
Ix(ν1)

)
consists of the first ℓ(ν1) bits of y,AvN

(
Ix(ν10)

)
consists of the next

ℓ(ν10) bits of y, and so on, according to the node ordering ≺′. In other words, AP|XS :

XS → {0, 1}ℓ is 1­1 and onto (i.e. bijective). In particular, |XS | = 2ℓ.

Proof. Although the proposition only considers S with ℓS ≥ 1, we will say that the

proposition holds for S if either ℓ = ℓS = 0 (i.e. S is trivial) or ℓ = ℓS ≥ 1 and

AP|XS : XS → {0, 1}ℓ is 1­1 and onto. Thus, the proposition holds trivially for S

with ℓS = 0. Since a status tree S of depth δS ≤ 1 has ℓS = 0, the proposition holds

for S with δS ≤ 1. We proceed by induction on δS . Suppose the proposition holds for

all S with δS ≤ m for some m ≥ 1. Consider a status tree S with δS = m + 1 and

ℓ = ℓS ≥ 1. Let S(L) = S|∆(ν10) and S(R) = S|∆(ν11). Then δS(L) = m and δS(R) ≤ m.

If δS(R) = 0, then S(R) is the trivial status tree for which the status of each node is O. It

follows that for x = x1x2 · · ·xn ∈ XS where n = nS(ν1), we have x1 ̸= x2, x3 ̸= x4,

. . . , x2⌊n
2
⌋−1 ̸= x2⌊n

2
⌋. Given y = y1 · · · yℓ, let x2i−1x2i = HT or TH according as yi = 1
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or 0, i = 1, . . . , ⌊n
2
⌋. If n is odd, let xn = S(ν1). It is readily seen x = x1 · · ·xn is the

unique sequence in XS such that AP(x) = y. This shows that AP|XS : XS → {0, 1}ℓ is

1­1 and onto.

We now assume 1 ≤ δS(R) ≤ m. Letting ℓ(L) =
∑

ν∈∆(ν10)
ℓ(ν) and ℓ(R) =

∑
ν∈∆(ν11)

ℓ(ν),

for y ∈ {0, 1}ℓ, write y = y′y(L)y(R) where y′ consists of the first ℓ(ν1) bits of y, y(L)

consists of the next ℓ(L) bits of y, and y(R) consists of the remaining ℓ(R) bits of y. By con­

vention, y′ = ∅ for ℓ(ν1) = 0, y(L) = ∅ for ℓ(L) = 0, and y(R) = ∅ for ℓ(R) = 0. If ℓ(L) = 0,

then S(L) is trivial and |XS(L)| = 1 by Lemma 3.2, in which case we write XS(L) = {x(L)}

(i.e. x(L) denotes the only sequence in XS(L)). If ℓ(L) > 0, by the induction hypothesis ap­

plied to S(L) and y(L), there is a unique x(L) ∈ XS(L) such thatAP(x
(L)) = y(L). Similarly,

if ℓ(R) = 0, then S(R) is trivial and let x(R) denote the only sequence in XS(R) . If ℓ(R) > 0,

by the induction hypothesis applied to S(R) and y(R), there is a unique x(R) ∈ XS(R) such

thatAP(x
(R)) = y(R). Note by Lemma 3.1 that

|x(L)| = n(ν10), |x(L)|H = k(ν10) = ℓ(ν1) = |y′|,

|x(R)| = n(ν11) = n(ν10)− k(ν10) = |x(L)| − |x(L)|H.

It follows that there is a unique x ∈ XS such that

λ(x) = x(L), ρ(x) = x(R), and AvN(x) = y′.

(Recall that λ(x), ρ(x), Avn(x) and σ(x) together determine x.) We have shown that

there is a unique x ∈ XS such that

AP(x) = AvN(x)AP
(
λ(x)

)
AP

(
ρ(x)

)
= AvN(x)AP(x

(L))AP(x
(R)) = y′y(L)y(R) = y.
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The proof is complete.

Remark 3.4. Peres [20] proved that given |AP(Xn)| = ℓ ≥ 1, the conditional distribution

ofAP(Xn) is uniform on {0, 1}ℓ. By Proposition 3.2, if we further condition on the status

tree SX = S (with ℓS = ℓ), the conditional distribution of AP(X) remains uniform on

{0, 1}ℓ. Actually, Peres [20] proved that ifX is an exchangeable sequence (which is more

general than an iid sequence), given |AP(X)| = ℓ, the conditional distribution ofAP(X)

is uniform on {0, 1}ℓ. Since for an exchangeable sequence X , the probability of X = x

is the same for all x ∈ XS , it follows that given SX = S with ℓ = ℓS ≥ 1, the conditional

distribution ofAP(X) remains uniform on {0, 1}ℓ whenX is an exchangeable sequence.

Remark 3.5. WhileAP(x) is the total collection of the (non­empty) output sequences at all

nodes arranged according to the node ordering ≺′, ≺′ may be replaced by any other node

ordering without losing the unbiasedness property. For example, let ≺′′ be the ordering

such that ν(1) ≺′′ ν(2) ≺′′ ν(3) ≺′′ · · · , where ν(v) = νb1···bη with v =
∑η

i=1 2
η−ibi.

Let A′
P(x) = AvN

(
Ix(ν(1))

)
AvN

(
Ix(ν(2))

)
AvN

(
Ix(ν(3))

)
· · · , which is the collection of

the output sequence at all nodes arranged according to the node ordering ≺′′. Then for a

status tree S with ℓ = ℓS ≥ 1, given SX = S, the conditional distribution of A′
P(X) is

uniform on {0, 1}ℓ. This is due to the fact that the number of output bits at each node is an

S­property so that for x ∈ XS , there is a 1­1 correspondence betweenAP(x) andA′
P(x).

Remark 3.6. It is instructive to describe how the status tree evolves (changes) as input bits

arrive at ν1 one after another. Initially, at time 0, we have the trivial status tree S̃ with

S̃(ν) = O for all nodes ν. We write S0 = S̃. At time 1 when an input bit x1 arrives at

ν1, the status tree becomes S1 with S1(ν1) = x1 and S1(ν) = O for ν ̸= ν1. At time 2

when a second input bit x2 arrives at ν1, the status tree becomes S2 with (i) S2(ν) = O

for ν = ν1 and for all nodes ν of level ≥ 3, (ii) S2(ν10) = H and S2(ν11) = O if x1 ̸= x2,
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(iii) S2(ν10) = T and S2(ν11) = x1 if x1 = x2. Moreover, if x1 ̸= x2, an output bit is

generated at ν1, which is 0 or 1 according as x1x2 = TH or HT. More generally, given

the status tree Sn at time n, when an input bit xn+1 arrives at ν1, the updated status tree

Sn+1 and the output bits induced by xn+1 are determined by Sn and xn+1. The following

procedure describes how the status tree is updated when input bits arrive at ν1 one after

another. Initially, all nodes are labeled as O. When an input symbol (H or T) arrives at ν1,

each node ν may receive a symbol (H or T) from its parent node πν (πν is referred to as

the source if ν = ν1), and may send a symbol (H or T) to λν or ρν. Meanwhile, an output

bit (0 or 1) may be generated at ν. Specifically, let ν be a node with a label s ∈ {H,T,O}

and it receives a symbol ι ∈ {H,T} from its parent node πν (or from the source if ν = ν1).

We do the following operations on ν.

(i) When s = O, set (update) s = ι, and send no symbol to λν or ρν.

(ii) If sι = HT, set s = O, output a bit 1, and send a symbol H to λν.

(iii) If sι = TH, set s = O, output a bit 0, and send a symbol H to λν.

(iv) If sι = HH, set s = O and send a symbol T to λν and a symbol H to ρν.

(v) If sι = TT, set s = O and send a symbol T to λν and a symbol T to ρν.

If a node receives no symbol from its parent node, then its label (status) is not updated.

Note that if a node receives no symbol from its parent node, then none of its descendant

nodes receives a symbol, so that their labels are not updated. When the label of a node

ν is updated from H or T to O, it must have received a symbol from πν and must send

a symbol to λν and may also send a symbol to ρν if the current label and the received

symbol are the same.
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3.3 Unbiasedness ofAS

For a finite random sequenceX , the status tree SX generated fromX is random. In

this section, we prove that conditioning on SX = S for a given (fixed) status tree S, the

sequence of ℓS output bits generated byAS are (conditionally) iid unbiased. For notational

simplicity, we write n = nS , k = kS , ℓ = ℓS , ℓ(ν) = ℓS(ν). Note that ℓ =
∑

ν ℓ(ν).

Assume ℓ ≥ 1. By Proposition 3.2, XS = {x : Sx = S} consists of 2ℓ sequences of

length n each of which has k H’s and n − k T’s. Each sequence of XS yields an output

sequence of {0, 1}ℓ. We will show thatAS|XS : XS → {0, 1}ℓ is 1­1 (and hence onto).

It is worth noting that if A′
S is used instead of AS, there may be two different x and

x′ ∈ XS such that A′
S(x) = A′

S(x
′). Specifically, consider the status tree S given by

S(ν) = O for all nodes ν except S(ν1000) = T, S(ν1001) = H, S(ν110) = H. (See Figure

3.1 in which those nodes not explicitly shown have status of O.) It is readily seen that

Figure 3.1: The status tree S given by S(ν) = O for all nodes ν except S(ν1000) = T,
S(ν1001) = H, S(ν110) = H.

n = nS = 8, k = kS = 4, ℓ = ℓS = 5, ℓ(ν1) = ℓS(ν1) = 2, ℓ(ν10) = ℓS(ν10) = 2,

ℓ(ν11) = ℓS(ν11) = 1. Moreover, A′
S(x) = A′

S(x
′) = 00010 for x = TTTHTHHH and
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x′ = TTTHHHHT. On the other hand, AS(x) = 00001 and AS(x
′) = 00010. In fact, it

can be shown thatAS|XS : XS → {0, 1}5 is 1­1 and onto.

Proposition 3.3. For a given status tree S with n = nS and ℓ = ℓS ≥ 1 such that XS

consists of 2ℓ sequences of length n, we have that AS|XS : XS → {0, 1}ℓ is a 1­1 (and

hence onto). Consequently, given SX = S, the conditional distribution of AS(X) is

uniform on {0, 1}ℓ, which implies that

Pp
(
AS(X) = β1 · · · βℓ

∣∣ |AS(X)| = ℓ
)
=

1

2ℓ
, for all βi ∈ {0, 1}, i = 1, . . . , ℓ.

Proof. Although the proposition only considers S with ℓS ≥ 1, we will say that the

proposition holds for S if either ℓ = ℓS = 0 (i.e. S is trivial) or ℓ = ℓS ≥ 1 and

AS|XS : XS → {0, 1}ℓ is 1­1. Thus, the proposition holds trivially for S with ℓS = 0.

For S with nS = 1, XS must be either {H} or {T}, so that ℓS = 0. This shows that the

proposition holds trivially for S with nS = 1. We now proceed by induction on nS .

Suppose that for somem ≥ 2, the proposition holds for all status trees S with nS ≤

m − 1. Consider a status tree S with nS = m. Let ℓ = ℓS ≥ 1 and ℓ(ν) = ℓS(ν)

for all nodes ν. Since m = nS and ℓ = ℓS , XS consists of 2ℓ sequences of length m.

For x = x1 · · ·xm ∈ XS , we write x−m = x1 · · ·xm−1 (which is x with the last bit

xm deleted). A node ν is said to be affected by xm (or more precisely, by the last bit

xm of x) if Ix(ν) ̸= Ix−m(ν). It is readily seen that ν is affected by xm if and only if

Sx(ν) ̸= Sx−m(ν). In other words, ν is affected by xm if and only if the status of ν

changes at time m when xm joins the input sequence at ν1. Note that if a node ν is not

affected by xm, then none of its descendant nodes are affected by xm. Note also that

Ix(ν) = ∅ for all nodes ν of level > δS , implying that none of the nodes of level > δS are

affected by the last bit xm of x ∈ XS .
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Let x′ = x′1 · · ·x′m ∈ XS , x′′ = x′′1 · · ·x′′m ∈ XS and y = y1 · · · yℓ ∈ {0, 1}ℓ be such

that AS(x
′) = AS(x

′′) = y. We want to show x′ = x′′ (implying that AS|XS : XS →

{0, 1}ℓ is 1­1). We make the following claim.

Claim (A):

We have x′m = x′′m and Sx′
−m

= Sx′′
−m

(i.e. the status trees derived

from x′
−m and x′′

−m are identical).

Assume for now that claim (A) holds. In view of Sx′
−m

= Sx′′
−m

and x′m = x′′m, for

any node ν, x′m induces an output bit at ν if and only if x′′m induces the same output bit at

ν (cf. Remark 3.6). SinceAS(x
′) = AS(x

′′)(= y), we must haveAS(x
′
−m) = AS(x

′′
−m).

Letting S∗ = Sx′
−m

(= Sx′′
−m

), if ℓS∗ = 0, then x′
−m = x′′

−m since |XS∗| = 1 by Lemma

3.2. If ℓS∗ > 0, since x′
−m, x′′

−m ∈ XS∗ and sinceAS(x
′
−m) = AS(x

′′
−m), it follows from

the induction hypothesis that x′
−m = x′′

−m. In either case, we have x′
−m = x′′

−m, which

together with x′m = x′′m implies that x′ = x′′.

It remains to establish claim (A). If S(ν1) = H or T (i.e.m is odd), then x′m = x′′m =

S(ν1), and ν1 is the only node affected by x′m (and x′′m). SoSx′
−m

(ν1) = Sx′′
−m

(ν1) = Oand

Sx′
−m

(ν) = Sx′′
−m

(ν) = S(ν) for ν ̸= ν1. This proves claim (A) for the case S(ν1) = H

or T. Next suppose S(ν1) = O (i.e. m is even). For any x = x1 · · ·xm ∈ XS , we must

have that Sx−m(ν1) ̸= O and ν10 is affected by xm. If S(ν10) = O, then Sx−m(ν10) ̸= O

and ν100 is affected by xm. More generally, λiν1, i = 0, 1, . . . , r are affected by xm where

r = min{i ≥ 1 : S(λiν1) ̸= O} ≥ 1. Clearly, Sx−m(λ
iν1) ̸= O for i = 0, . . . r − 1,

and Sx−m(λ
rν1) = O. Moreover, all descendant nodes of λrν1 are not affected by xm. So

Sx−m(ν) = S(ν) for all descendant nodes ν of λrν1.
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A node ν is said to be good if

Ix′(ν) \ Ix′
−m

(ν) = Ix′′(ν) \ Ix′′
−m

(ν) and Sx′
−m

(ν) = Sx′′
−m

(ν).

The first equality implies that one of the two cases occurs:

(i) node ν is neither affected by x′m nor by x′′m;

(ii) ν is affected by x′m and by x′′m and the input bit at ν derived from x′m is the same as

that derived from x′′m.

A good node ν is said to be great if

Ix′(ν) \ Ix′
−m

(ν) = Ix′′(ν) \ Ix′′
−m

(ν) ̸= ∅.

We have shown that for all x ∈ XS , Sx−m(λ
rν1) = O and Sx(λ

rν1) = S(λrν1) ̸= O and

all descendant nodes of λrν1 are not affected by xm, where r = min{i : S(λiν1) ̸= O} ≥

1. In particular, Sx′
−m

(λrν1) = Sx′′
−m

(λrν1) = O and Sx′(λrν1) = Sx′′(λrν1) ̸= O, which

implies that the node λrν1 is great. Moreover, all the descendant nodes of λrν1 are good

since they are not affected by x′m or x′′m. Note also that a node ν ≻ λrν1 is necessarily a

descendant node of λrν1. So all nodes ν ≻ λrν1 are good. We make the following claim.

Claim (B):

If a node ν ′ ̸= ν1 is great and all nodes ν ≻ ν ′ are good,

then there is a node ν ′′ ≺ ν ′ such that ν ′′ is great and all nodes ν ≻ ν ′′ are good.

If claim (B) holds, then starting with ν ′ = λrν1, there is a node ν ′′ ≺ λrν1 such that

ν ′′ is great and all nodes ν ≻ ν ′′ are good. If ν ′′ ̸= ν1, by claim (B) applied to ν ′′, there is
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a node ν ′′′ ≺ ν ′′ such that ν ′′′ is great and all nodes ν ≻ ν ′′′ are good. Since there are only

finitely many nodes that are great, eventually ν1 will be reached. That is, ν1 is great and

all nodes ν ≻ ν1 are good, which implies claim (A).

It remains to establish claim (B). Suppose ν ′ ̸= ν1 is great and all nodes ν ≻ ν ′ are

good. We need to show that there is a node ν ′′ ≺ ν ′ such that ν ′′ is great and all nodes

ν ≻ ν ′′ are good. Consider the following four cases separately.

Case (1): ν ′ is the left child node of its parent node (denoted πν ′) and Ix′(ν ′)\Ix′
−m

(ν ′) =

Ix′′(ν ′) \ Ix′′
−m

(ν ′) = H. Clearly, x′m induces an output bit at πν ′ and x′′m induces an

output bit at πν ′. Let S ′ = {ν ≻ ν ′ : x′m induces an output bit at ν} and S ′′ =

{ν ≻ ν ′ : x′′m induces an output bit at ν}. Since all nodes ν ≻ ν ′ are good, we have

S ′ = S ′′. Since AS(x
′) = AS(x

′′) = y = y1 · · · yℓ, the output bits at the nodes

in S ′ (= S ′′) induced by x′m (by x′′m) must be yℓ−γ+1 · · · yℓ or ∅ if γ = 0, where

γ = |S ′| = |S ′′|. Thus, the output bit at ν ′ induced by x′m (and by x′′m) must be

yℓ−γ . If yℓ−γ = 0, then Sx′
−m

(πν ′) = Sx′′
−m

(πν ′) = T, and Ix′(πν ′) \ Ix′
−m

(πν ′) =

Ix′′(πν ′) \ Ix′′
−m

(πν ′) = H. If yℓ−γ = 1, then Sx′
−m

(πν ′) = Sx′′
−m

(πν ′) = H, and

Ix′(πν ′) \ Ix′
−m

(πν ′) = Ix′′(πν ′) \ Ix′′
−m

(πν ′) = T. So πν ′ is great. Moreover, ρπν ′

and its descendant nodes are not affected by x′m or by x′′m. So ρπν ′ and its descendant

nodes are good. Furthermore, a node ν ≻ πν ′ must satisfy one of the following

conditions: ν ≻ ν ′; ν = ν ′; ν = ρπν ′; ν is a descendant node of ρπν ′. It follows that

all nodes ν ≻ πν ′ are good. So ν ′′ = πν ′ satisfies the requirement in claim (B).

Case (2): ν ′ is the left child node of πν ′ and Ix′(ν ′)\Ix′
−m

(ν ′) = Ix′′(ν ′)\Ix′′
−m

(ν ′) = T.

It follows that ρπν ′ (the sibling node of ν ′) is affected by x′m and by x′′m. Let r′ =

min{i : S(λiρπν ′) ̸= O} ≥ 0. It is readily seen that the nodes λiρπν ′, i = 0, . . . , r′

50

http://dx.doi.org/10.6342/NTU202004447


doi:10.6342/NTU202004447

are affected by x′m and by x′′m. Moreover, letting ν ′′ = λr
′
ρπν ′, we have Sx′

−m
(ν ′′) =

Sx′′
−m

(ν ′′) = O and Ix′(ν ′′)\Ix′
−m

(ν ′′) = Ix′′(ν ′′)\Ix′′
−m

(ν ′′) = S(ν ′′) ̸= O, implying

that ν ′′ is great. Furthermore, no descendant nodes of ν ′′ are affected by x′m or by x′′m.

Thus, all descendant nodes of ν ′′ are good. Note that every node ν ≻ ν ′′ must satisfy

one of the following conditions: ν ≻ ν ′; ν = ν ′; ν is a descendant node of ν ′′. So ν ′′

satisfies the requirement in claim (B).

Case (3): ν ′ is the right child node of πν ′ and Ix′(ν ′)\Ix′
−m

(ν ′) = Ix′′(ν ′)\Ix′′
−m

(ν ′) = H.

Let ν ′′ = πν ′. Necessarily, we have S(ν ′′) = O, and Sx′
−m

(ν ′′) = Sx′′
−m

(ν ′′) = H,

and Ix′(ν ′′) \ Ix′′
−m

(ν ′′) = Ix′′(ν ′′) \ Ix′′
−m

(ν ′′) = H. Thus, ν ′′ is great. Also, every

node ν ≻ ν ′′ is good since either ν = ν ′ or ν ≻ ν ′. So ν ′′ satisfies the requirement in

claim (B).

Case (4): ν ′ is the right child node of πν ′ and Ix′(ν ′)\Ix′
−m

(ν ′) = Ix′′(ν ′)\Ix′′
−m

(ν ′) = T.

This case is similar to Case (3). It can be shown that ν ′′ = πν ′ satisfies the requirement

in claim (B).

The proof is complete.

The proof of Proposition 3.3 contains (implicitly) a procedure to reconstruct x from

Sx and AS(x). As an illustration, consider a status tree S given in Figure 3.2(a) and

AS(x) = 00001. It is readily seen that n = |x| = 8 for all x ∈ XS . We write xn = x8

for the “unknown” x satisfying AS(xn) = 00001. For ν with Ixn(ν) = ∅, let rn(ν) =

min{i ≥ 0 : Sxn(λ
iν) ̸= O} and rn(ν) = λrn(ν)ν. Recall that ν is said to be affected by

the last term xn of xn if Ixn(ν) \ Ixn−1(ν) ̸= ∅. To find the last term x8 of x8 = x1 · · ·x8,

we need to identify all the nodes affected by x8 backwards (with respect to the ordering
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≺). By definition, ν1 is always affected by an input symbol.

(i) The last affected node is r 8(ν1) = ν(8).

Since Sx8(ν(8)) = T, we have Ix8(ν(8)) \ Ix7(ν(8)) = T and Sx7(ν(8)) = O. As Ix8(ν(8)) \

Ix7(ν(8)) = T,

(ii) the second­to­last affected node is r 8(ρπν(8)) = ν(9).

Since Sx8(ν(9)) = H and ν(9) is a right child node, we have Sx7(ν(9)) = O and

(iii) the third­to­last affected node is πν(9) = ν(4),

and Ix8(ν(4)) \ Ix7(ν(4)) = H and Sx7(ν(4)) = H. Since Ix8(ν(4)) \ Ix7(ν(4)) = H and ν(4)

is a left child node, we have

(iv) the fourth­to­last affected node is πν(4) = ν(2) and

an output bit (indeed the last output bit) is induced at ν(2) by x8, which is “1” according

to AS(x8) = 00001. So Ix8(ν(2)) \ Ix7(ν(2)) = T and Sx7(ν(2)) = H. As Ix8(ν(2)) \

Ix7(ν(2)) = T,

(v) the fifth­to­last affected node is r 8(ρπν(2)) = ν(6).

Since Sx8(ν(6)) = H, we have Sx7(ν(6)) = O and Ix8(ν(6)) \ Ix7(ν(6)) = H, so that

(vi) the sixth­to­last affected node is πν(6) = ν(3)
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and an output bit (second­to­last output bit) is induced at ν(3) by x8, which is “0” according

to AS(x8) = 00001. As the output bit is a 0, we have Sx7(ν(3)) = T and Ix8(ν(3)) \

Ix7(ν(3)) = H, implying that x7x8 = HH. Figure 3.2(a)–(h) provides a step­by­step

description of identifying the affected nodes along with their labels at time 7.

(a) Sx8 (b)

(c) (d)

Figure 3.2: An illustration of reconstructing x given Sx andAS(x) = 00001.
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(e) (f)

(g) (h) Sx7

(i) Sx6

Figure 3.2: (contd.) An illustration of reconstructing x given Sx andAS(x) = 00001.

We have found x8 = H and x7 = H as well as Sx7 and Sx6 , which is given in Figure
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3.2(i). Given Sx6 and AS(x6) = 000, we can further identify x6 and x5. In the end, we

arrive at x8 = TTTHTHHH.

3.4 Zhou­Bruck’s streaming version of Peres’ algorithm

Peres [20] described and analyzed his algorithm in the fixed­to­variable length regime

where the length of the input sequence is fixed. In order to generate a pre­specified number

k of (unbiased) output bits, Zhou and Bruck [30] introduced a streaming version of Peres’

algorithm (denoted byAZB). Letting τ = inf{n : |AZB(Xn)| ≥ k}, they showed that the

first k bits inAZB(Xτ ) are independent unbiased. While we do not consider the variable­

to­fixed length regime in this dissertation, we will show that given |AZB(Xn)| = ℓ, the

conditional distribution ofAZB(Xn) is uniform on {0, 1}ℓ.

We first describe the {H,T,O, 0, 1}­labeled status tree introduced in [30], which

is different from our {H,T,O}­labeled status tree discussed in Section 3.2. For xn =

(x1, . . . , xn) ∈ {H,T}n, let

σ′(xn) =



xn, if n is odd

O, if n = 0 or n > 0 is even and xn−1 = xn

0, if n > 0 is even and xn−1xn = TH

1, if n > 0 is even and xn−1xn = HT.

Given an input sequence x ∈ {H,T}∗ (from the source), let Ix(ν) be the input sequence at

node ν derived from x. Then Zhou­Bruck’s status tree Σx derived from x is the (infinite

complete) binary tree T with the labelΣ(ν) = σ′(Ix(ν)) at each node ν. Note that Sx can

be derived from Σx by converting a label of 0 or 1 to O. We may describe dynamically
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how Zhou­Bruck’s status tree evolves as input bits (symbols) arrive at the root node ν1

from the source. Initially at time 0, we have the trivial status tree Σ0 with Σ0(ν) = O for

all ν. Given the status treeΣn at time n, when an input symbol xn+1 arrives at node ν1, the

updated status tree Σn+1 and the output bits induced by xn+1 are determined by Σn and

xn+1. The following procedure describes how the label of each node is updated. When an

input symbol (H or T) arrives at ν1, each node ν may receives a symbol (H or T) from its

parent node πν (πν is referred to as the source if ν = ν1), and may send a symbol (H or

T) to λν or ρν. Meanwhile, an output bit (0 or 1) may be induced at ν. Specifically, let ν

be a node with a label s ∈ {H,T,O, 0, 1}. Suppose it receives a symbol ι ∈ {H,T} from

its parent node πν. We do the following operations on ν.

(i) When s = O, set (update) s = ι (and send no symbol to λν or ρν).

(ii) When s = 0 or 1, output s and set s = ι (and send no symbol to λν or ρν).

(iii) If sι = HT, set s = 1 and send a symbol H to λν (and send no symbol to ρν).

(iv) If sι = TH, set s = 0 and send a symbol H to λν (and send no symbol to ρν).

(v) If sι = HH, set s = O and send a symbol T to λν and a symbol H to ρν.

(vi) If sι = TT, set s = O and send a symbol T to λν and a symbol T to ρν.

If a node receives no symbol from its parent node, then its label is unchanged and it sends

no symbol to its child nodes. Thus, if a node receives no symbol from its parent node, then

none of its descendant nodes receives a symbol, so that their labels remain unchanged.

When the label of a node ν is updated from H or T to O or 0 or 1, it must have received

a symbol from πν and must send a symbol to λν and may also send a symbol to ρν if the

current label and the received symbol are the same. As an example, letx8 = TTTHTHHH
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be the input sequence. Then Σxi
, i = 1, . . . , 8 are presented in Figure 3.3 where those

nodes not shown have label O. Note that at time 4, we have Σx4(ν1) = Σx4(ν10) = 0,

and these two 0’s have yet to join the output sequence. At time 5, the label 0 at node ν1

joins the output sequence. At time 6, the label 0 at node ν10 joins the output sequence,

while Σx6(ν1) = 0. The second 0 at ν1 joins the output sequence at time 7. At time 8, we

have Σx8(ν10) = 1 and Σx8(ν11) = 0, and these labels 1 and 0 have yet to join the output

sequence. So we haveAZB(x8) = 000.

Remark 3.7. To implementAZB, a node ordering needs to be specified when two or more

bits are simultaneously ready to join the output sequence. However, unlike AS which

requires a particular node ordering to guarantee unbiasedness, we will show that any node

ordering in implementation ofAZB yields independent and unbiased output bits. We may

refer toAZB as a delayed version ofAS as a label of 0 or 1 at a node ν has to wait to join

the output sequence until the node ν receives a symbol from its parent node. Zhou and

Bruck [30] wrote that “the timing is crucial that we output a node’s label (when it is 1 or

0) only after it receives the next symbol from its parent node or from the source.” But they

did not explain what may go wrong with “no delay”. Their approach may be related to an

important observation of Blum [2] where in a more general setting, “no delay” results in

biased output bits.

Remark 3.8. Before we establish the unbiasedness property of AZB, we need to discuss

the properties of Zhou­Bruck’s status tree. While a status tree Σ is the binary tree T with

a node label Σ(ν) ∈ {H,T,O, 0, 1} for each node ν, not all such status trees are derived

from an input sequence x ∈ {H,T}∗. A status tree is said to be admissible if it is derived

from some input sequence x ∈ {H,T}∗. In what follows, we drop the word “admissible”

so that a status tree always refers to an admissible status tree. The depth δΣ of a status tree
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(a) Σx1 (b) Σx2 (c) Σx3

(d) Σx4 (e) Σx5

(f) Σx6 (g) Σx7 (h) Σx8

Figure 3.3: An example of Zhou­Bruck {H,T,O, 1, 0}­labeled status trees Σxi
, i =

1, . . . , 8, where x8 = TTTHTHHH.
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Σ is defined by

δΣ =


0, if Σ(ν) = O for all nodes ν,

1 +max{m ≥ 0 : Σ(λmν1) = H or T}, otherwise.

Note that δΣx = δSx for x ∈ {H,T}∗.

Lemma 3.3. For an (admissible) status tree Σ, let XΣ = {x ∈ {H,T}∗ : Σx = Σ} ≠ ∅.

Then for x,x′ ∈ XΣ, we have

|Ix(ν)|H = |Ix′(ν)|H, |Ix(ν)|T = |Ix′(ν)|T, |AvN
(
Ix(ν)

)
| = |AvN

(
Ix′(ν)

)
|,

for all nodes ν. Consequently, there are non­negative integers nΣ(ν), kΣ(ν), ℓΣ(ν) such

that for all x ∈ XΣ and for all nodes ν,

nΣ(ν) = |Ix(ν)|, kΣ = |Ix(ν)|H, nΣ(ν)− kΣ(ν) = |Ix(ν)|T

ℓΣ(ν) = |AvN
(
Ix(ν)

)
| − 1

(
Σ(ν) = 0 or 1

)

In particular, for x ∈ XΣ, |x|, |x|H, |x|T and ℓΣ =
∑

ν ℓΣ(ν) =
∑

ν

∣∣AvN
(
Ix(ν)

)∣∣− ∣∣{ν :

Σ(ν) = 0 or 1}
∣∣ are Σ­properties.

Proof. Let S be a {H,T,O}­labeled status tree given by

S(ν) =


Σ(ν) if Σ(ν) = H, T or O,

O if Σ(ν) = 0 or 1.

(3.7)

Then we have XΣ ⊂ XS , which together with Proposition 3.1 implies Lemma 3.3.

Lemma 3.4. LetΣ be a status tree with the corresponding setXΣ = {x ∈ {H,T}∗ : Σx =
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Σ} ̸= ∅. For x ∈ XΣ, let wx = w(x) denote the last term of the sequence x, Nx = {ν :

ν is affected by w(x)}, and Ñx = {ν : an output bit is induced at ν by w(x)}. Then, for

x′,x′′ ∈ XΣ, we have for all nodes ν,

w
(
Ix′(ν)

)
= w

(
Ix′′(ν)

)
, Nx′ = Nx′′ and Ñx′ = Ñx′′ .

In other words, there are θ(ν) ∈ {H,T} for all nodes ν and two sets of nodes S and S̃

such that for all x ∈ XΣ and for all nodes ν, w
(
Ix(ν)

)
= θ(ν), Nx = S and Ñx = S̃.

Remark 3.9. Let n = |x|. By w(x) inducing an output bit at ν, we mean that the {0, 1}­

valued label of ν joins the output sequence at time n. More precisely, with respect to x,

the label of ν at time n− 1 is 0 or 1. When w(x) arrives at the root node ν1, ν receives a

{H,T}­valued symbol from its parent node which triggers the {0, 1}­valued label of ν to

join the output sequence at time n.

Proof of Lemma 3.4. The lemma holds trivially for Σ with δΣ = 0 or 1 since |XΣ| = 1.

We proceed by induction on δΣ. Suppose the lemma holds for Σ with δΣ ≤ m − 1 for

somem ≥ 2. Consider a status tree Σ with δΣ = m. By the induction hypothesis applied

to Σ(L) := Σ|∆(ν10) and Σ(R) := Σ|∆(ν11) (both of depth ≤ m − 1), we have w
(
Ix(ν)

)
independent of x ∈ XΣ for all ν ̸= ν1.

(
More precisely, for a descendant node ν of ν10,

the input sequence Ix(ν) at ν derived from the input sequence x ∈ XΣ at ν1 may also be

referred to as the input sequence at ν derived from the input sequence Ix(ν10) at the “root”

node ν10 (with respect to ∆(ν10)). Then by the induction hypotheses applied to ∆(ν10),

we have w
(
Ix(ν)

)
independent of x ∈ XΣ.

)
It remains to show that w(x) = w

(
Ix(ν1)

)
,

Nx and Ñx are independent of x ∈ XΣ.

By Lemma 3.3, let n = nΣ(ν1) be such that |x| = |Ix(ν1)| = n for allx ∈ XΣ. If n is
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odd, then w(x) = Σ(ν1) for x ∈ XΣ

(
i.e. w(x) is independent of x ∈ XΣ

)
. Moreover, no

node of level ≥ 2 is affected by w(x), implying that Nx = {ν1}, independent of x ∈ XΣ.

We have Ñx ⊂ Nx = {ν1}. To show that Ñx = ∅ for all x ∈ XΣ or Ñx = {ν1} for

all x ∈ XΣ, by the induction hypothesis applied to Σ(L), there is a z ∈ {H,T} such that

z = w(x(L)) for all x(L) ∈ XΣ(L) . Noting that Ix(ν10) ∈ XΣ(L) for x ∈ XΣ, we have

w
(
Ix(ν10)

)
= z for x ∈ XΣ. For x ∈ XΣ, let x−n be x with the last term xn deleted.

If z = H, then w
(
Ix(ν10)

)
= w

(
Ix−n(ν10)

)
= H, implying that Σx−n(ν1) = 0 or 1

for x ∈ XΣ, so Ñx = {ν1}, independent of x ∈ XΣ. If z = T, then w
(
Ix(ν10)

)
=

w
(
Ix−n(ν10)

)
= T, implying that Σx−n(ν1) = O for x ∈ XΣ, so Ñx = ∅, independent of

x ∈ XΣ.

Next suppose n is even. If Σ(ν1) = 0, then we have w(x) = H, independent of

x ∈ XΣ. Moreover, for x ∈ XΣ, when the symbol w(x) = H arrives at ν1, ν1 sends

a symbol H to ν10 and sends no symbol to ν11, implying that Nx contains no nodes in

∆(ν11) for all x ∈ XΣ.
(
For notational convenience, we write Nx ∩ ∆(ν11) = ∅ for

x ∈ XΣ.
)
By the induction hypothesis applied to Σ(L), Nx ∩ ∆(ν10) and Ñx ∩ ∆(ν10)

are independent of x ∈ XΣ, where Nx ∩ ∆(ν10) is the set of nodes in ∆(ν10) that are

affected by the input symbol H at ν10, and Ñx ∩ ∆(ν10) is the set of nodes in ∆(ν10)

where an output bit is induced by the input symbol H at ν10. Since Nx ∩∆(ν11) = ∅ for

x ∈ XΣ (implying that Ñx ∩ ∆(ν11) = ∅), we have Nx = {ν1} ∪
(
Nx ∩ ∆(ν10)

)
and

Ñx = Ñx ∩∆(ν10) independent of x ∈ XΣ. Similarly, if Σ(ν1) = 1, we have w(x) = T,

Nx and Ñx independent of x ∈ XΣ.

Finally, supposeΣ(ν1) = O. By the induction hypothesis applied toΣ(L) andΣ(R), we

have z(L) ∈ {H,T} and z(R) ∈ {H,T} such thatw
(
Ix(ν10)

)
= z(L) andw

(
Ix(ν11)

)
= z(R)

for x ∈ XΣ. The fact that Σ(ν1) = O implies that z(L) = T. Let N (L) (N (R), resp.)
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be the set of nodes in ∆(ν10) (∆(ν11), resp.) that are affected by w
(
Ix(ν10)

)
= z(L)(

w
(
Ix(ν11)

)
= z(R), resp.

)
. Let Ñ (L) (Ñ (R), resp.) be the set of nodes in∆(ν10) (∆(ν11),

resp.) where an output bit is induced by w
(
Ix(ν10)

)
= z(L)

(
w
(
Ix(ν11)

)
= z(R), resp.

)
.

Note that by the induction hypothesis, the setsN (L),N (R), Ñ (L) and Ñ (R) are independent

of x ∈ XΣ. It follows that Nx = {ν1} ∪ N (L) ∪ N (R) and Ñx = Ñ (L) ∪ Ñ (R) are

independent of x ∈ XΣ. If z(R) = H, then w(x) = H, independent of x ∈ XΣ. If

z(R) = T, then w(x) = T, independent of x ∈ XΣ. The proof is complete.

Lemma 3.5. For a status tree Σ, the Σ­properties nΣ(ν), kΣ(ν), ℓΣ(ν) satisfy the follow­

ing conditions. For each node ν,

ℓΣ(ν) + 1
(
Σ(ν) = 0 or 1

)
= kΣ(λν), nΣ(ρν) = nΣ(λν)− kΣ(λν)

kΣ(ν) = kΣ(λν) + 2kΣ(ρν) + 1
(
Σ(ν) = H

)
,

nΣ(ν)− kΣ(ν) = kΣ(λν) + 2
(
nΣ(ρν)− kΣ(ρν)

)
+ 1

(
Σ(ν) = T

)
.

Proof. Let S be a {H,T,O}­labeled status tree as defined in (3.7). Noting that XΣ ⊂ XS ,

Lemma 3.5 follows from Lemma 3.1.

Lemma 3.6. Let Σ be a status tree and XΣ = {x : Σx = Σ} ≠ ∅. Let n(ν) = nΣ(ν),

k(ν) = kΣ(ν), ℓ = ℓΣ, ℓ(ν) = ℓΣ(ν) be the Σ­properties such that |Ix(ν)| = n(ν),

|Ix(ν)|H = k(ν), ℓ(ν) = |AvN
(
Ix(ν)

)
| − 1

(
Σ(ν) = 0 or 1

)
, and ℓ =

∑
ν ℓ(ν) =∣∣AP(x)

∣∣− ∣∣{ν : Σ(ν) = 0 or 1}
∣∣ for x ∈ XΣ. Then |XΣ| = 2ℓ.

Proof. The lemma holds trivially for Σ with δΣ = 0 or 1 since ℓ = 0 and |XΣ| = 1. We

proceed by induction on δΣ. Suppose the lemma holds forΣwith δΣ ≤ m for somem ≥ 1.

Consider a status tree Σ with δΣ = m + 1. Let Σ(L) = Σ|∆(ν10) and Σ(R) = Σ|∆(ν11). Let

ℓ(L) =
∑

ν∈∆(ν10)
ℓ(ν) and ℓ(R) =

∑
ν∈∆(ν11)

ℓ(ν). By the induction hypothesis applied to
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Σ(L) andΣ(R), we have |XΣ(L) | = 2ℓ
(L) and |XΣ(R)| = 2ℓ

(R) . By Lemma 3.5, for x(L) ∈ XΣ(L)

and x(R) ∈ XΣ(R) ,

|x(L)|H = k(ν10) = ℓ(ν1)+1
(
Σ(ν1) = 0 or 1

)
, |x(L)|T = n(ν10)−k(ν10) = n(ν11) = |x(R)|.

If ℓ(ν1) ≥ 1, then for each y ∈ {0, 1}ℓ(ν1),
(
x(L),x(R),y

)
determines a unique x ∈ XΣ

such that λ(x) = x(L), ρ(x) = x(R) and AvN(x) = y if Σ(ν1) ̸= 0 or 1 or AvN(x) =

y ∗ Σ(ν1) if Σ(ν1) = 0 or 1, where ∗ is concatenation. If ℓ(ν1) = 0, then
(
x(L),x(R))

determines a unique x ∈ XΣ such that λ(x) = x(L), ρ(x) = x(R) and AvN(x) = ∅ if

Σ(ν1) ̸= 0 or 1 or AvN(x) = Σ(ν1) if Σ(ν1) = 0 or 1. Indeed, the mapping f : XΣ →

XΣ(L) × XΣ(R) × {0, 1}ℓ(ν1) with f(x) =
(
λ(x), ρ(x),A∗

vN(x)
)
is 1­1 and onto where

A∗
vN(x) isAvN(x) if Σ(ν1) ̸= 0 or 1 orAvN(x) with the last bit deleted if Σ(ν1) = 0 or 1.

This shows that

|XΣ| = |XΣ(L)| × |XΣ(R)| × 2ℓ(ν1)

= 2ℓ
(L) × 2ℓ

(R) × 2ℓ(ν1) = 2ℓ.

The proof is complete.

Proposition 3.4. Let AZB(x) denote the output sequence generated by AZB applied to x

according to any given node ordering. Let Σ be a status tree with ℓ = ℓΣ ≥ 1. Then given

ΣX = Σ, the conditional distribution of AZB(X) is uniform on {0, 1}ℓ. Consequently,

given |AZB(X)| = ℓ, the conditional distribution of AZB(X) is uniform on {0, 1}ℓ.

Proof. To establish thatAZB|XΣ
: XΣ → {0, 1}ℓ is 1­1 and onto, by Lemma 3.6, it suffices
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to show that

ifAZB(x
′) = AZB(x

′′) for x′,x′′ ∈ XΣ, then x′ = x′′. (3.8)

Let nΣ be such that |x| = nΣ for x ∈ XΣ. If nΣ = 1, (3.8) holds trivially since |XΣ| = 1.

We proceed by induction on nΣ.

Suppose (3.8) holds for Σ with nΣ ≤ m− 1 for somem ≥ 2. Consider a status tree

Σ with nΣ = m and ℓ = ℓΣ ≥ 1. Let x′,x′′ ∈ XΣ be such that AZB(x
′) = AZB(x

′′). We

need to show that x′ = x′′. By Lemma 3.4, w(x′) = w(x′′), Nx′ = Nx′′ and Ñx′ = Ñx′′ .

Let y = y1 · · · yℓ = AZB(x
′) = AZB(x

′′) ∈ {0, 1}ℓ. Let γ = |Ñx′ |(= |Ñx′′ |). Since

Ñx′ = Ñx′′ , we have AZB(x
′
−m) = AZB(x

′′
−m) = y1 · · · yℓ−γ , where x′

−m and x′′
−m

are, respectively, x′ and x′′ with the last term deleted. We claim that Σx′
−m

= Σx′′
−m

.

To prove the claim, we have Σx′
−m

(ν) = Σx′′
−m

(ν) = Σ(ν) for ν ̸∈ Nx′(= Nx′′). For

ν ∈ Ñx′(= Ñx′′), Σx′
−m

(ν) and Σx′′
−m

(ν) are the (same) output bit at ν
(
induced by w(x′)

and w(x′′)
)
. For ν ∈ Nx′ \ Ñx′ (= Nx′′ \ Ñx′′), we have

Σx′
−m

(ν) = Σx′′
−m

(ν) =



O if Σ(ν) = H or T,

w
(
Ix(ρν)

)
if Σ(ν) = O,

H if Σ(ν) = 1,

T if Σ(ν) = 0.

(
Note that for ν ∈ Nx′ \ Ñx′ , Σx′

−m
(ν) ̸= 0 or 1. Note also that w

(
Ix(ρν)

)
is independent

of x ∈ XΣ by Lemma 3.4.
)
This established the claim that Σx′

−m
= Σx′′

−m
.

By the induction hypothesis applied to the status tree of Σx′
−m

= Σx′′
−m

together

with AZB(x
′
−m) = AZB(x

′′
−m), we have x′

−m = x′′
−m, implying that x′ = x′′ (since
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w(x′) = w(x′′) by Lemma 3.4). The proof is complete.

3.5 Counting status trees

For Xn = (X1, . . . , Xn) ∈ {H,T}n, an iid sequence with P(Xi = H) = p, to

compute Ep |AP(Xn)|, it is useful to find a(n,k)ℓ =
∣∣{S : nS = n, kS = k, ℓS = ℓ}

∣∣ for
integers k ≤ n, ℓ ≤ n− 1, where nS , kS and ℓS are the S­properties such that |x| = nS ,

|x|H = kS and |AP(x)| = ℓS for x ∈ XS . By Proposition 3.2, we have |XS | = 2ℓS .

We write x ∼ x′ if Sx = Sx′ , which is an equivalence relation. The set Sn,k =
{
x ∈

{H,T}n : |x|H = k, |x|T = n − k
}
is then partitioned into equivalence classes each of

which corresponds to a status tree. The equivalence class corresponding to a status trees

S is XS whose cardinality is 2ℓS . Given a(n,k)ℓ =
∣∣{S : nS = n, kS = k, ℓS = ℓ}

∣∣, the set
Sn,k is partitioned into a(n,k)ℓ classes of cardinality 2ℓ, ℓ = 0, 1, . . . . Consequently,

(
n

k

)
=

∑
ℓ≥0

a
(n,k)
ℓ 2ℓ.

As an example, for n = 10, k = 4, we have

a
(10,4)
1 = 1, a

(10,4)
2 = 2, a

(10,4)
3 = 1, a

(10,4)
4 = 4, a

(10,4)
5 = 2, a

(10,4)
6 = 1.

and a(10,4)ℓ = 0 for ℓ ̸∈ {1, . . . , 6}. It is easily verified that

∑
ℓ≥0

a
(10,4)
ℓ 2ℓ = 210 =

(
10

4

)
.
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Given a(n,k)ℓ ’s, Ep |AP(Xn)| can be calculated by

Ep |AP(Xn)| =
n∑
k=0

∑
ℓ≥0

ℓa
(n,k)
ℓ 2ℓpkqn−k.

To derive a recursive formula for a(n,k)ℓ ’s, we need the following lemma.

Lemma 3.7. For a status tree S, we have

|x| − |AP(x)| =
∣∣{ν : S(ν) ̸= O}

∣∣
for x ∈ XS .

Proof. The lemma holds trivially for S with δS = 0 and δS = 1. We proceed by induction

on δS . Suppose the lemma holds for S with δS ≤ m−1 for somem ≥ 2. Consider a status

tree S with δS = m. Let S(L) = S|∆(ν10) and S(R) = S|∆(ν11), both of depth≤ m− 1. For

x ∈ XS , we have

|x| = 2|Ix(ν10)|+ 1
(
S(ν1) ̸= O

)
, (3.9)

|Ix(ν10)| = |Ix(ν11)|+ |AvN(x)|. (3.10)

By the induction hypothesis applied to S(L) and S(R), we have

|Ix(ν10)| − |AP
(
Ix(ν10)

)
| =

∣∣{ν : S(L)(ν) ̸= O}
∣∣, (3.11)

|Ix(ν11)| − |AP
(
Ix(ν11)

)
| =

∣∣{ν : S(R)(ν) ̸= O}
∣∣. (3.12)

Adding the equations (3.9)–(3.12) yields

|x| − |AP
(
Ix(ν10)

)
| − |AP

(
Ix(ν11)

)
| =

∣∣{ν : S(ν) ̸= O}
∣∣+ |AvN(x)|,
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implying that

|x| − |AP(x)| =
∣∣{ν : S(ν) ̸= O}

∣∣.
The proof is complete.

By Lemma 3.7, a status tree S satisfies

nS − ℓS =
∣∣{ν : S(ν) ̸= O}

∣∣.
It is convenient to introduce the infinite­dimensional vector

Dn,k = (a(n,k)n , a
(n,k)
n−1 , . . . , a

(n,k)
1 , a

(n,k)
0 , 0, 0, . . . ).

In other words, the i­th element of Dn,k (i ≤ n + 1) is the number of status trees S with

nS = n, kS = k and
∣∣{ν : S(ν) ̸= O}

∣∣ = i − 1 (implying that ℓS = nS − i + 1). Let

N∞ be the set of infinite­dimensional vectors of non­negative integers with finitely many

non­zero elements. For D = (d1, d2, . . . ) and D′ = (d′1, d
′
2, . . . ) ∈ N∞, define

D +D′ = (d1 + d′1, d2 + d′2, . . . )

and

DD′ =
(∑

i

diei

)(∑
j

d′jej

)
=

∑
i,j

did
′
jeiej

=
∑
i,j

did
′
jei+j−1,

where ei = (0, . . . , 0, 1, 0, . . . ) is the infinite­dimensional vector with the ith element 1
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and all the other elements zeros.

Lemma 3.8. We have Dn,k = Dn,n−k.

Proof. For x = (x1, . . . xn) ∈ {H,T}n, let x̃ = (x̃1, . . . , x̃n) ∈ {H,T}n be such that

x̃i ̸= xi, i = 1, . . . , n. We have x ∈ Sn,k if and only if x̃ ∈ Sn,n−k. It is readily seen

that Sx and Sx̃ satisfy that Sx(ν) = Sx̃(ν) for ν ̸= ν(2i−1), i = 1, 2, . . . and that for

ν = ν(2i−1), either Sx(ν) = Sx̃(ν) = O or Sx(ν),Sx̃(ν) ∈ {H,T} and Sx(ν) ̸= Sx̃(ν).

In particular,
∣∣{ν : Sx(ν) ̸= O}

∣∣ = ∣∣{ν : Sx̃(ν) ̸= O}
∣∣. It follows from Lemma 3.7 that

a
(n,k)
ℓ = a

(n,n−k)
ℓ . The proof is complete.

Note that D0,0 = (1, 0, 0, . . . ) = e1 and D1,0 = D1,1 = (0, 1, 0, . . . ) = e2.

Proposition 3.5. Let n ≥ 2 and k ≥ 1. Then

(i) for even n ≥ 2 and k ≤ n/2,

Dn,k =

⌊k/2⌋∑
i=0

Dn
2
,k−2iDn

2
−k+2i, i,

(ii) for odd n ≥ 3 and k < n/2,

Dn,k = D1,0

(
Dn−1,k +Dn−1,k−1

)
.

Proof. To prove (i), let n ≥ 2 be even and 0 ≤ k ≤ n/2. For x ∈ Sn,k, we have

λ(x) ∈ Sn
2
,k−2i and ρ(x) ∈ Sn

2
−k+2i, i for some 0 ≤ i ≤ ⌊k/2⌋.

Moreover, Sx(ν1) = O,

Sx|∆(ν10) = Sλ(x) and Sx|∆(ν11) = Sρ(x),
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implying that Sx is uniquely determined by Sλ(x) and Sρ(x). On the other hand, for u ∈

Sn
2
,k−2i and v ∈ Sn

2
−k+2i, i, there is a unique x ∈ Sn,k such that λ(x) = u and ρ(x) = v.

Furthermore, the three status trees Sx, Su and Sv satisfy Su = Sx|∆(ν10), Sv = Sx|∆(ν11)

and
∣∣{ν : Sx(ν) ̸= O}

∣∣ = ∣∣{ν : Su(ν) ̸= O}
∣∣ + ∣∣{ν : Sv(ν) ̸= O}

∣∣. This establishes the
formula in (i). To prove (ii), note that

Sn,k = {x ∗ T : x ∈ Sn−1,k} ∪ {x ∗ H : x ∈ Sn−1,k−1}

A status tree Sx with x ∈ Sn,k and Sx(ν1) = T induces the status tree Sx−n with

Sx−n(ν1) = O and Sx−n(ν) = Sx(ν) for ν ̸= ν1, where x−n ∈ Sn−1,k is x with the last

term deleted. Similarly, a status tree Sx with x ∈ Sn,k and Sx(ν1) = H induces the status

tree Sx−n with Sx−n(ν1) = O and Sx−n(ν) = Sx(ν) for ν ̸= ν1, where x−n ∈ Sn−1,k−1.

Conversely, a status tree Sx with x ∈ Sn−1,k induces the status tree Sx∗T with x∗T ∈ Sn,k

and Sx∗T(ν1) = T and Sx∗T(ν) = Sx(ν) for ν ̸= ν1. A status tree Sx with x ∈ Sn−1,k−1

induces the status tree Sx∗H with x ∗ H ∈ Sn,k and Sx∗H(ν1) = H and Sx∗H(ν) = Sx(ν)

for ν ̸= ν1. This establishes the formula in (ii). The proof is complete.
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Chapter 4 Concluding remarks

In this dissertation, we have studied the asymptotic behavior of Peres’ algorithm and

introduced and analyzed its streaming versions. Specifically, by exploiting the recursion

in (2.3), we derived for p = 1
2

lim
n→∞

log
(
nh(p)− Ep |AP(Xn)|

)
logn

= θ = log
(
1 +

√
5

2

)
, (4.1)

where Xn = (X1, . . . , Xn) is the input sequence of the outcomes of n coin tosses with

bias p, |AP(Xn)| is the number of unbiased output bits generated by Peres’ algorithmAP

applied toXn, and h(p) = −p log p− (1− p) log(1− p) is the Shannon entropy of each

Xi. For p = 1
2
, the coin is unbiased and the input sequence consists of n iid unbiased

observations, so that nh(p) − Ep |AP(Xn)| = n − E1/2 |AP(Xn)| may be referred to as

the cost incurred byAP when not knowing p = 1
2
. It is a challenging task to obtain more

refined results beyond (4.1). A positive sequence {L(n)} is said to be regularly varying

of index θ if

lim
n→∞

L(⌊αn⌋)/L(n) = αθ for all α > 0.

(See Bojanic and Seneta [3] for a unified theory of regularly varying sequences.) Fig­

ures 2.3 and 2.4 suggest that n − E1/2 |AP(Xn)| may be a regularly varying sequence.

Furthermore, it is of interest to see if
(
n − E1/2 |AP(Xn)|

)
/nθ converges to a positive
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constant (which would imply that n− E1/2 |AP(Xn)| is regularly varying of index θ). If

so, how can this constant be characterized? For p ̸= 1
2
, no recursion like (2.3) is avail­

able. It seems difficult to derive an asymptotic result on nh(p) − Ep |AP(Xn)| similar

to (4.1). Furthermore, Varp
(
|AP(Xn)|

)
, the variance of |AP(Xn)|, is also of interest and

importance. Even for p = 1
2
, it seems challenging to derive the asymptotic behavior of

Var1/2
(
|AP(Xn)|

)
as n→ ∞.

The original Peres’ algorithmAP is not streaming in the sense that some of the output

bits in AP(Xn) may be placed after the output bits induced by Xn+1. We introduced a

binary tree representation ofAP, based onwhichwe further introduced a class of streaming

versions ofAP in terms of orderings of the nodes of the binary tree. We showed by example

that in general a streaming version of AP is not unbiased. By establishing some useful

properties of status trees, we showed that a particular streaming version of AP (denoted

AS) is unbiased. We also showed that a delayed version of AS proposed by Zhou and

Bruck [30] is unbiased.

The algorithms considered in this dissertation are in the fixed­to­variable length regime

where the length of the input sequence is fixed while the number of output bits is random.

In practical applications, the variable­to­fixed length regime may be more relevant where

a (fixed) number of (unbiased) output bits is required and the length of the input sequence

is random, in which case a stopping time is involved (i.e. stopping at the first time when

the number of output bits meets the requirement). Variants of Peres’ algorithm in the

variable­to­fixed length regime are worth further investigation.
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