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Abstract

von Neumann (1951) introduced a simple algorithm for generating independent and
unbiased random bits by tossing a coin of unknown bias p. While his algorithm fails to
attain the entropy bound, Peres (1992) showed that the entropy bound can be attained
asymptotically by iterating von Neumann’s algorithm. Specifically, Peres showed that
lim,,oc £b(n, p) = h(p) uniformly in p € (0,1), where b(n, p) denotes the expected num-
ber of unbiased output bits generated when Peres’ algorithm is applied to an input sequence
(X1,...,X,) with X; being the outcome of the ith coin toss, and h(p) = —plogp — (1 —
p) log(1 — p) (the Shannon entropy of each X;). We consider the (second-order) behavior

of nh(p)—b(n, p) asn — oo. Forp = 3, itis shown that lim,,_,. log[n—>b(n, 3)]/logn =

log| 1+2\/5]. Some open problems on the asymptotic behavior of nh(p) — b(n, p) are briefly
discussed. The original Peres’ algorithm is not streaming in the sense that some of the out-
put bits generated from (X7, ..., X,,) (the first n coin tosses) may be placed after the out-

put bits induced by X, ;. We introduce a binary tree representation of Peres’ algorithm,

vil doi:10.6342/NTU202004447
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based on which we further introduce a class of streaming versions of Peres’ algorithm'in

terms of orderings of the nodes of the binary tree. We show by example that in general

a streaming version of Peres’ algorithm fails to generate unbiased output bits. However,

based on a special node ordering, the corresponding streaming version of Peres’ algorithm

is shown to be unbiased.

Keywords: entropy, analysis of algorithms, Elias’ extractor, Peres’ extractor, von Neu-

mann’s extractor, superadditivity, streaming algorithm, status tree
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Chapter 1 Introduction

1.1 von Neumann’s algorithm

In his seminal work [26], von Neumann introduced a simple algorithm </, (also
known as an extractor) for generating independent unbiased random bits by tossing a (pos-
sibly) biased coin of unknown bias. (A random bit is said to be unbiased if its value is
0 or 1 with equal probability.) Specifically, for i = 1,2,..., let X; € {H, T} denote
the outcome of the sth toss of the coin, where H and T stand for heads and tails, respec-
tively. Assume that the input sequence X = (X, X5, ... ) is independent and identically
distributed (iid) with P(X; = H) = p = 1 — P(X; = T) where the bias p € (0,1) is
unknown. (The coin is unbiased if p = 1/2.) The algorithm &,y divides X into pairs
(X1, Xs), (X3,X4),..., discards those pairs of equal values, and then generates an infi-
nite Bernoulli sequence &/, (X ) whose ith bit is either a 1 or a 0 according as the ith pair
of unequal values is HT or TH. It is readily seen that of,n(X) consists of iid unbiased

bits.

Let o/ denote a generic algorithm that generates independent unbiased bits from the
sequence X = (Xj, Xy, ...). Let o/(X,,) denote the set of unbiased bits generated by &/
applied to X,, = (X1,...,X,), the outcomes of the first n tosses. Denote by |/ (X,,)|
the cardinality of &/ (X,,), which is an integer-valued random variable whose distribution

1 doi:10.6342/NTU202004447
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depends on n and p. We say that &/ is nested if &/(X,,,) C o/(X,,) whenever n; < ns.
We write X ~ binomial(n, p) if a random variable X has the binomial distribution with
parameters n and p. Then given |/,n(X,,)| = ¢, the ¢ bits generated by <,y applied to
X, = (Xy,...,X,) are (conditionally) independent unbiased. Moreover, |, (X,,)| ~
binomial(| 5], 2pq), where ¢ = 1 — p and |z denotes the largest integer not exceeding .
When &/, is applied to X, the expected number of unbiased bits generated per toss equals
E, [ (X5)|/n = 2pq| 5] /n, which converges to pg as n — oo, where the subscript p
in E,, refers to the bias of each X;. Note that pq is less than the entropy bound h(p) =
—plogp — qlog g (the Shannon entropy of each X;), where log = log, (the logarithm to
base 2). This indicates that o/, 5 does not make efficient use of information contained in

Xy, Xo,.... Itis also worth noting that &/, is nested.

1.2 Elias’ algorithm

To improve the efficiency, Elias [S] presented a more sophisticated algorithm /¢
which generates unbiased bits from X,, = (X3, ..., X,,) by partitioning {H, T}" (the set
of all possible realizations of X,) into disjoint subsets S,, , = {x € {H,T}" : |x|a = k},
k=0,1,...,n, with |z|g and |z|r being respectively the number of H’s and the number
of T’s in @. Write | S, x| = (}) = Z‘g (&) 2" with ¢, € {0, 1} (binary representation of
(Z)) Then each S, is further partitioned as S, = U{e;c€:1} Sy k0> Where | Sy, 5 o] = 2°
for each ¢ with ¢, = 1. Specify an assignment of 2¢ distinct (output) sequences of {0, 1} to
the 2¢ distinct sequences of Sh.ke, so thatif X, € S, ;. », then an output sequence of ¢ bits is
generated according to the assignment. While a naive implementation of Elias’ algorithm
requires an exponential memory size to make a table of assignment of output sequences,
Ryabko and Matchikina [22] provided an efficient method to construct an assignment with

2 doi:10.6342/NTU202004447
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much reduced memory size and running time. Note that &/ is not nested. In fact, when </¢
is applied to X, = (X1,..., X,,), all of X5, ..., X, need to be observed before unbiased
bits are generated. To show that /g attains the entropy bound asymptotically, Elias [5,

equation (15)] proved that

—~ (n k n—k n — (n k n—k n
1 —3<E, |de(X,) < 1 . 1.1
3 (i) oe() s <paoe < 3 () e(). -

k=

Letting 7 (Z) denote the Shannon entropy of a random variable Z and noting that | X |y ~

binomial(n, p), we have

" /n B n -
nh(p) — 7-[(|X|H) = —nplogp — nqlogq + Z (k)pkqn klog[(k>pkq k;:|

k=0

from which it follows that (1.1) is equivalent to
H(IX |u) < nhip) — B, [e(X)| < H(|X]u) + 3. (1.2)
Since H (| X |n) = 1logn + L loge + logy/2mpgq + O(2) (cf: [8]), we have
nh(p) — E, | de(X,)| = %logn—i—O(l). (13)

Consequently, lim,,_,., E, |e(X,,)|/n = h(p). Later Pae and Loui [19] established the
exact optimality of &g that for any algorithm o/, E, |#e(X,,)| > E, |/(X,,)] for all

p€(0,1)andn > 1.

3 doi:10.6342/NTU202004447
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1.3 Peres’ algorithm

While &/, fails to attain the entropy bound asymptotically, Peres [20] pointed out
that the entropy bound can be attained asymptotically by iterating &/,n. To describe Peres’
ingenious idea, let X = (X7, X5,...) be decomposed into three infinite Bernoulli se-
quences &N (X), A(X), and p(X), where the ith bit of A\(X) is T or H according as the
ith pair (Xo;_1, Xo;) is of equal values or of unequal values, and the ith bit of p(X) is the

common value of the ith pair of equal values. As an example, let

x = THHTHHTTHTTT--- = THHT HH TT HT TT - --

Then

Ax) = HHTTHT - - -, p(x) =HTIT:--, and An(x) =011---.

(Here and below, we take the convention that capital X denotes a random sequence
and lower case x is a realization.) It is readily seen that (i) A\(X), p(X) and /,n(X)
are mutually independent, (i) A(X), p(X) and &/,n(X) are each an iid Bernoulli se-
quence with respective biases fi(p) = 2pq, f,(p) = p*/(p* + ¢*) and 1/2, (iii)) X
can be recovered from A\(X), p(X) and o/,n(X), implying that they together contain
all information in X. The first iteration of Peres’ algorithm o/p yields A\(X), p(X)
and &/,n(X). Letting ¥ = X or p, on the second iteration of o/p, (X )(= A(X) or
p(X)) is further decomposed into three iid Bernoulli sequences A(¢(X)), p(¢(X)) and
A (¥ (X)) with respective biases f(fy(p)), f,(fy(p)) and 1/2. Thus, after 2 iterations,
there are 7(= 2% — 1) Bernoulli sequences, oyn (X)), dun (A(X)), Zun (p(X)), M(A(X)),
Ap(X)), p(MX)), and p(p(X)). The first three have bias 1/2. More generally, after 7

4 doi:10.6342/NTU202004447
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iterations (n = 1,2, ...), there are 27" — 1 Bernoulli sequences, 27 — 1 of which have bias
1/2. We refer to the 2" — 1 Bernoulli sequences having bias 1/2 as unbiased Bernoulli
sequences, and refer to the other 27 Bernoulli sequences as biased Bernoulli sequences.
Note that the 27" — 1 Bernoulli sequences are all mutually independent, from which X

can be recovered.

We now consider the finite setting where only the first n terms of the infinite (input)
sequence X are available. Let¢) = A or p or &,n. Then X, = (X,..., X,,), the subse-
quence of X consisting of the first n terms, induces a finite sequence ¥ (X, ) consisting of
the first n,, terms of ¢/(X) for some n,. Specifically, ny = |n/2],i.e. A\(X,,) consists of
the first | n/2] terms of A\(X). Moreover, n, = |A\(X,,)|r and ny, = |A\(X,)|n. We have
ny = n, + ng, = | 2], n, ~ binomial(|2],p* + ¢*) and ny,, ~ binomial(| 2], 2pq).
While the infinite sequences ¢(X), 1) = A, p, o\, are mutually independent, the subse-
quences 9 (X,,)’s are no longer independent. However, it is readily seen that, given the
value of ny,, , the bits in o/,n (X, ) are (conditionally) independent unbiased. In fact, given
the values of the bits in A(X,) and p(X,,), the bits in &/,(X,,) remain (conditionally) in-
dependent unbiased. Furthermore, for even n, X, can be recovered from ¢(X,,), 1) = A,
p, N, but for odd n, the last term of X, cannot be recovered, resulting in a loss of in-
formation. After 7 iterations (n = 1,2, ...), X, induces a (possibly empty) subsequence

of each of the 27! — 1 infinite Bernoulli sequences as decomposed from X .

Forn = 1,2,..., let o/p,(X,) denote the total collection of unbiased bits after 7

iterations. Then o/p 1 (X,,) = (X)) and n > 2, we have the following recursion

A (X)) = A (Xn) * dp 1 (MXn)) * e -1 (p( X)), (1.4)

5 doi:10.6342/NTU202004447
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where x is the concatenation (binary) operator defined by d () = ) x d = d'and d; x dy'=
dyds. Since after |logn| iterations, the longest biased subsequence has length 1, no more
unbiased bits can be produced by further iteration. We have op (X)) = &p ji0gn|(Xn)

forn > |logn|. Let #p(X,,) = &p |10gn| (X, ), s0 that
Consider again the example where € = THHTHHTTHTTT - - - . For n = 12, we have

dp’l(m12> = 01]., dp’g(flﬁlg) = 0].11]., and

ﬂp(d)lg) = .Q¢p73<$12) = 011111.

It is shown in Peres [20] that (i) for each 7, given |2/p ,(X,,)| = ¢, the ¢ bits in o/p , (X,)
are independent unbiased, (ii) the rates 1, (p) := lim,,_, E, |%p ,,(X,)|/n satisfy r1(p) =

pq and the recursion

1 1 9 p?
Tn(p> = pq + 57“77,1(2PQ) + 5(]9 +q )Tnl(m for n > 2, (16)

and (iii) 7, (p) increases as 7 — oo to h(p) uniformly in p € (0,1). As a consequence,
E, |9p(X,)|/n — h(p) as n — oo, showing that &/p attains the entropy bound asymp-

totically. Moreover, &/p is nested.
1.4 Binary tree representation of Peres’ algorithm
It is instructive to describe the iterations of Peres’ algorithm via a rooted (infinite)

complete binary tree T" which is identified with a sequence of nodes (11, 110, 11, V100, V1015 - - - )-

6 doi:10.6342/NTU202004447
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Here v, is the root node, whose left and right child nodes are denoted by v and vy, te-
spectively. More generally, for u = b1bs ... b, (a string of 7 bits with b; = 1 and > 1),
the node v, has two (left and right) child nodes denoted by v, and v,;. It is also con-
venient to identify u = b;...b,, with the positive integer v = > | b;2""" and write
Vu = V(). Thus we have (11, 110, V11, Vigo, - - - ) = (Va), Y(2), V(3), V@), - - - ). It is readily

seen that v,y has two (left and right) child nodes denoted by v/(3,) and v/, 41), Tespectively.

We now describe Peres’ algorithm as follows. The input (finite or infinite) sequence
X = (X1, Xs,...) arrives at the root node v, which is decomposed into A(X), p(X)
and &/,n(X). The first two sequences A(X ) and p(X) become the (derived or induced)
input sequences at node vy and vq1, respectively, while &/,n(X) is the output sequence
at ;. On the second iteration of Peres’ algorithm, the input sequence A(X) at vy is
decomposed into A(A(X)) = A(X), p(A(X)) = pA(X), and oy (A(X)), which be-
come, respectively, the input sequence at node v, the input sequence at node 11, and
the output sequence at node vy,. Similarly, the input sequence p(X) at node v4; is de-
composed into A(p(X)) = Ap(X), p(p(X)) = p*(X) and &, (p(X)), which become,
respectively, the input sequence at node v, the input sequence at node v411, and the
output sequence at vy;. More generally, on the nth iteration (n > 2), the input sequence
Uy, - -y, (X)) at node vy,p,..4, Where 1y, = A or p according as b; = 0 or 1, is decom-
posed into Ay, . .. U, (X), pthy, . .. 1, (X) and &N (s, - - - b, (X)), which become,
respectively, the input sequence at node v4,3,...5,0, the input sequence at node v4,5,. 4,1,

and the output sequence at node vy, .5, See Figure 1.1.

7 doi:10.6342/NTU202004447
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l/l,X — ﬂVN(X)

10, )\(X) — .Q{VN (/\(X)) 11, p(X) — 'Q{VN (p(X))

V100, A2(X) V101, pPA(X) V110, Ap(X) vi11, p2(X)

Figure 1.1: Binary tree representation of </p.

1.5 Brief literature review

In addition to the papers mentioned earlier, a number of papers in the literature also
discuss von Neumann’s problem or related problems. Hoeffding and Simons [7] consid-
ered the problem of generating an unbiased bit by a stopping time when X7, X, ... (the
outcomes from repeatedly tossing a coin of unknown bias p) are observed sequentially.
Note that this problem may be referred to as in the variable-to-fixed length regime as op-
posed to the fixed-to-variable length regime where the number of input bits is fixed and the
number of output bits is random. (In particular, Elias’ algorithm is in the fixed-to-variable
length regime.) More specifically, their problem is to find an algorithm consisting of a
stopping time 7 and a function f : {H,T}* — {0,1}, where {H, T}* = |~ ,{H, T}",

such that
1
IP’p(f(Xl,...,XT) = O) :Pp(f(Xl,...,XT) = 1) = 3 forallp € (0,1).

The objective is to choose 7 such that [E, 7 is as small as possible for all p. Note that the
stopping time 7,y corresponding to von Neumann’s algorithm is 7,y = 2 inf{n : X5, 1 #

8 doi:10.6342/NTU202004447
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Xo, } for which E,7,y = 1/pg > 4. Dwass [4] and Bernard and Letac [1] considered
a more general problem of generating an r-valued equiprobable random variable by an
algorithm involving a stopping time when X, X5, ... are iid with an unknown discrete
distribution. By representing algorithms in terms of trees, Stout and Warren [25] were
able to improve the algorithms in Hoeffding and Simons [7], Dwass [4], and Bernard and

Letac [1].

Knuth and Yao [11] considered the problem of generating a random variable with a
given target discrete distribution when the input sequence consists of iid unbiased bits.
They developed optimal algorithms which minimize the expected number of input bits
required to generate a desired random variable. Han and Hoshi [6] generalized their ap-
proach to the setting where the common (discrete) distribution of the input sequence is

general. See [15] and [27] for recent development.

Samuelson [23] studied the problem of generating an unbiased bit when the input
sequence is a Markov chain. By considering transitions out of a specific state, he first
constructed an iid sequence (with an unknown common discrete distribution) from which
iid unbiased bits can then be generated. Elias [5] and Blum [2] also considered this prob-
lem. By generalizing Blum’s algorithm together with Elias’ method, Zhou and Bruck [29]
provided an algorithm that generates unbiased random bits from arbitrary finite Markov
chains, operates in expected linear time and attains asymptotically the information-theoretic
upper bound on efficiency. In the fixed-to-variable length regime, Seroussi and Wein-
berger [24] derived a second-order term (a term keeping the expected number of output

bits below the entropy of the input) for an optimal algorithm in the Markov setting.

As discussed in Sections 1.2 and 1.3 where the input sequence is iid Bernoulli, Elias
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[5] proposed an efficient algorithm &/ whose exact optimality was established by Pae and
Loui [19]. Peres [20] presented an elegant algorithm </p and showed that it is asymptoti-
cally efficient. Prasitsupparote, Konno and Shikata [21] conducted an extensive numerical
study of o/p and &/ (with the method of Ryabko and Matchikina [22]) by comparing their
memory and running time requirements. Their empirical results suggest that &/p would
be superior to &/ in practical applications. Pae [17] and Pae [18] generalized Peres’ algo-
rithm when the input iid sequence X, X, ... has a common (unknown) distribution on
{0,1,...,7—1} withr > 1. Zhou and Bruck [30] proposed a streaming version of Peres’
algorithm in the variable-to-fixed length regime where a given number of iid unbiased
bits is to be generated by a random number 7 of (input) X;’s with 7 being a stopping time.

Their streaming algorithm will be discussed in Chapter 3.

Von Neumann’s algorithm has been used to remove bias in the output of a true ran-
dom number generator from a variety of physical devices (see e.g. Wei and Guo [28]). It
has applications in cryptography to generate random cryptographic keys for secure data

transmission.

The so-called Bernoulli factory refers to the problem of using a p-coin (coin with
probability of heads p) to simulate an f(p)-coin (coin with probability of heads f(p))
where (unknown) p is known only to belong to a given subset S of (0, 1) and the function
f S — [0,1] is known. The problem considered in this dissertation deals with the
special case that S = (0, 1) and f(p) = 1/2 for all p. Keane and O’Brien [10] obtained
necessary and sufficient conditions on f under which there exists an algorithm to simulate

an f(p)-coin using a p-coin. See also Nacu and Peres [14] for related results.

In Chapter 2, we present an asymptotic analysis of Peres’ algorithm along with nu-
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merical results. In Chapter 3, streaming versions of Peres’ algorithm are introduced and
their properties are discussed. Chapter 4 contains concluding remarks. Most of the results
in Chapter 2 have appeared in Lim, Liao and Yao [12] while Chapter 3 is based on Lim

and Yao [13].
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Chapter 2 Asymptotic Analysis of

Peres’ algorithm

2.1 Main results

While o/ and &/p both attain the entropy bound asymptotically, (1.2) and (1.3) pro-
vide a precise (second-order) behavior of nh(p) — E, |#/g(X,,)|. In contrast, there is not
much known about the behavior of nh(p) — E, |/p(X,,)| for large n. In this regard,
Pae [16] gave a formula to compute E,, |2/p(X,,)|, which is not convenient for deriving
the asymptotic behavior of nh(p) — E, |#/p(X,,)|. Recently, Prasitsupparote et al. [21]

showed, based on some heuristics, that for p = 1/2,
nh(p) — E, |9p(X,)| = n — Eijo |p(X,,)| > n'e3 ", (2.1)

To derive (2.1), they assumed, without rigorous justification, that

1
EEP \p (X)) <ry(p) forpe (0,1),n>1,n7>1. (2.2)

In Section 2.2, we prove the following results while numerical results are presented

in Section 2.3.
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Proposition 2.1. Let a(n,p,n) = E, |9p ,(X,,)|. Then forp € (0,1) andn =1,2,.:.,
the sequence (a(1,p,n),a(2,p,n),...) is superadditive, i.e. a(n,p,n)+ a(m,p,n) <
a(n + m,p,n) for n,m > 1. Consequently, lim,_,, a(n,p,n)/n exists and is equal to

sup,,>; a(n, p,n)/n. Thatis,

ra(p) = lim By |, (X,)|/n = SUDE, [, (X.,) /.

which implies (2.2).

Proposition 2.2. Forp =1/2, let b(n) = Eq /5 |p(X,,)|. Then

(i) the b(n) satisfy b(0) = b(1) = 0 and the recursion

o) = | 5] 2+ 0([5]) + EOBlpie) forn=23,.... @3

where B, , denotes a binomial(n, p) random variable;

(i)

log(n — b(n)) log(l + \/5)

n—o0 lOg n

Note that with p = 1/2, the coin is unbiased and the input sequence consists on n
unbiased bits, so that n — b(n) may be referred to as the cost incurred by </p when not
knowing p = 1/2. The next section contains the proofs of Propositions 2.1 and 2.2. In
addition, for completeness, a rigorous proof of (2.1) is also given, which is needed for the
proof of Proposition 2.2(ii). Most of the results in this chapter have appeared in Lim et al.
[12].
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2.2  Proofs of Propositions 2.1 and 2.2 and (2.1)

Proof of Proposition 2.1. Recall that when &/p is applied to X,, = (X7, ..., X},), 3 subse-
quences A (X,), p(X,,) and o/, (X,,) are induced where | \(X,,)| = [p(X,)|+|n(X0)| =

|n/2| and |/,n(X,)| ~ binomial(|n/2], 2pq). It follows from (1.4) that

a(n,p,n) = E, |=97P,77(Xn)| (2.4)

=By |olp 1 (A(Xn)| + By |p -1 (p(Xn))| + 2pg /2]

Noting that A(X,) is distributed as a sequence U of ny, = |n/2] iid Bernoulli random

variables with bias f)(p), we have

E, |9p -1 (M X)) = Ef\ ) e 1 (U)| = a(|[n/2], f(p),n —1). (2.5)

Similarly, conditioningonn, = |A(X,,)|r, p(X,,) is a sequence of n,, iid Bernoulli random
variables with bias f,(p), so that the conditional expectation of |&/p ,_1(p(X,,))| given n,

equals a(n,, f,(p),n — 1). Since n, ~ binomial(|n/2],1 — 2pq), we have

E, "Q[F’m—l(p(Xn))‘ = EG(BLn/2J,172pqa fp(p)7 n—1), (2.6)

where the expectation operator E on the right-hand side is on B, 2| 1-2pq (a binomial (|n/2], 1—

2pq) random variable). By (2.4), (2.5) and (2.6),

a(n,p,n) = a([n/2], fr(p),n — 1) + Ea(Bnjaj1-2p0: fo(p); 1 — 1) + 2pg[n/2]. (2.7)

We now prove by induction on 7 that

a(n,p,n) +a(m,p,n) < a(n+m,p,n). (2.8)
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Forn =1, a(n,p,1) = 2pq|n/2]. Since |[n/2]| + |m/2| < [(n+ m)/2| forn,m >1,
we have a(n,p,1) + a(m,p,1) < a(n + m,p, 1), implying that (2.8) holds for = 1.
Suppose that for an integer k& > 0, (2.8) holds for all n,m > 1, all p € (0, 1), and 5 = k.
We need to show that (2.8) holds forn,m > 1,p € (0,1) and n = £+ 1. By the induction

hypothesis,

a([n/2], fx(p), k) + a(lm/2], fa(p), k) < a([n/2] + [m/2], fx(p), k) 29)

<a([(n+m)/2], fa(p). k),

where the second inequality follows from the fact that a(n, p,n) is non-decreasing in n.
Let U and V' be independent random variables with U ~ binomial(|n/2],1 — 2pq) and
V'~ binomial(|m/2],1—2pq). Then U +V ~ binomial(|n/2| + |m/2],1—2pq). Ifn
and m are both odd, let W be independent of U and V' with W ~ binomial(1, 1 — 2pq). If
at least one of n and m is even, let W be identically 0. Then U +V +W ~ binomial(| (n+

m)/2],1 — 2pq). We have by the induction hypothesis that

E a(Bln/2),1-2p0: fo(0), k) + Ea(Blms2),1-2pg, [o(D), k)
=E {a(U, f,(p), k) + a(V, f,(p), k) }
<Ea(U +V. f,(p). h) 210
<EaU+V+W,f(p),k)
= E a(B|ntm)/2),1-2p0: fo(P), ).

Moreover,

2pq[n/2] + 2pg|m/2] < 2pq|(n+m)/2]. (2.11)
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By (2.7) and (2.9)—(2.11),
a(n,p,k+1)+a(m,p,k+1) <aln+m,p,k+1),

showing that (2.8) holds forn,m > 1,p € (0, 1) andn = k+1. The proofis complete. []

Proof of (2.1). The following argument is taken from the proof of Theorem 1 in Prasit-

supparote et al. [21]. With p = 1/2, we have r(1/2) = pg = { and, by (1.6)

1,3
r(1/2) = 1+ Jry(1/2) forn 2 2,

from which it follows that r,(1/2) = 1 — (2)", » > 1. By Proposition 2.1,

1= (3) =12 2 Bualoten (K1

so that with ) = [logn] and b(n) = E,/, |p(X,,)|, we have

[logn]
3
- (Z) > Eiy2 [ e jtogn) (Xn)| /1 = Ei/2 [op(X)|/n = b(n)/n,

implying that
proving (2.1). ]

Proof of Proposition 2.2(1). Forp = 1/2, f\(1/2) = f,(1/2) = 1/2, and B|;,/2),1-2pq =

Bin/2,1/2- Letting a(n, p,n) = E, |op ,(X,)|, we have by (2.7) that

a(n,1/2,m) = a([n/2],1/2,n = 1) + Ea(Bn/2)1/2,1/2,m — 1) + [n/2] /2. (2.12)
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Recall that o/p(X,,) = op., (X,,) forn > |logn]. By (2.12),

b(n) = Eq /2 e (X)| = Eq /2 |'Q[P,Llognj (X))
=a(n,1/2,|logn])
= a([n/2),1/2, [logn] — 1)+ Ea(Buay1/2,1/2 llogn] = 1) + |n/2)/2

=b([n/2]) + Eb(Bpuj2)12) + [n/2] /2,

proving (2.3). O

To prove Proposition 2.2(ii), we need the following lemmas. Proposition 2.2(ii)
follows immediately from Lemmas 2.4 and 2.5 below. For the rest of this section, to
simplify notation, we write B,, = B,, 1/, for a binomial(n, 1/2) random variable. Let
gn) =n—>b(n) >0,forn=0,1,.... Wehave g(0) = 0, g(1) = 1, and by Proposition

2.2(i), foreven n > 0,

g(n) =n —b(n) =n — B + b(g) +Eb(Bg)}

_ [g _ b(g)} +E [Bs — b(B

3

)]

0|

and foroddn > 1,

n—1 n—1

o) = = b() = = [T 4 5(GE) HED B

n—1 n—1
=1+ { 5 b( 2 )] +E [B(nfl)/Z —b(B(nfl)/2)}

n—1
=1+ g<T> + Eg(B(n_l)/g).
So, forn > 0,

9) = 9(|5]) +Ea(Biy) + Lnisouny .13)
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where 1 denotes the indicator function.

Lemma 2.1. For 6 € (0, 1), we have

lim ~logP(B, > La+0)) = —% (1) log(1 — 6) + (1+ ) log(1 +6)] <0.

n—oo M

Lemma 2.2. If f(0) < f(1) < -~ < f(n+1), then E f(Bys1) = E f(B,).

Lemma 2.1 is a standard result in large deviation theory; see e.g. [9, pages 539—-540].

Lemma 2.2 follows from the fact that B,, is stochastically smaller than B,,. ;. By (2.13),

., 93 = g g(4) = 5 < 9(3), (2.14)

so that g(n) is not non-decreasing. Lemma 2.3 below constructs two non-decreasing se-
quences GG and H that are closely related to ¢ and satisfy 0 < H(n) < g(n) < G(n) < n.
Lemma 2.3. Let G(n) and H(n), n = 0,1, ... be defined by

G(n) =g(n) forn=0,1,2,3,

H(n) = g(n) forn=0,1,

and recursively

Q
2
I
@
~—

gJ)—i—EG(BL%J)—Fl forn >4, (2.15)

=
S
||
=

gJ) +EH(Bz)  forn>2 (2.16)

Then (i) G is non-decreasing and g(n) < G(n) < n forall n, and (ii) H is non-decreasing

and g(n) > H(n) > 0 for all n.

Proof. In view of (2.13) and (2.15), it is easily shown by induction that g(n) < G(n) for
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all n. By (2.14), G(n) = g(n) < n and G(n) is non-decreasing for n < 3. For n > 4;if

G(¢) < (forall ¢ < n, then

It follows by induction that G(n) < n for all n. That G(n) is non-decreasing in n also
follows by induction and Lemma 2.2. This proves part (i). In view of (2.13) and (2.16),

part (ii) can be proved similarly. 0

Lemma 2.4. For each § € (0, 1), there exists an N > 4 and a non-decreasing sequence

(G'(0),G'(1),...) such that G'(n) > g(n) for all n and

G'(n) = G'(LED + %G’(L%J) foralln > N,

C

where ¢ = ¢(d) = 2/+/1 + 0. Moreover,

1
lim sup M < lim sup

n—00 ogn 00 logn ~ logc

+/ 5+ )

log G'(n) 1 ( 1 4 1 )
< log| =
2 2 4

Consequently, letting § — 0 so that c = ¢(6) — 2, we have

lim sup lolgﬂ < log (#)

n—o00 0og

Proof. Let § € (0,1) be fixed. Let G be defined as in Lemma 2.3, so that G is non-
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decreasing and 0 < g(n) < G(n) < n for all n. We have

EG(B)+1<1+6(|[5 J(1+6>J>P( 3 S H‘J(1+5)J>
() ECERIEIICSI)
<tea(| 5] + [3)p (B> 151 (50))

(2.17)

By (2.1), G(U"—é%(l +4)]) > g([%(l +9)|) = oo as n — oo, and by Lemma 2.1,

im 5]z > [[5](557)]) -

so that by (2.17), there is a (large) N > 4 such that

EG(Bpz)) + 1< (140) G(H%J (#)J) foralln>N.  (2.18)

Letting ¢ = 2/v/1 + 0, we have by (2.15) and (2.18) that for all n > N(> 4),

G(n) :G(bJ) +EG(Bps)) + 1

(2.19)
n
<a([2)+ze(lz)
Define G'(n),n =0,1,... by G'(n) = G(n) for n < N and recursively
G'(n) = G(EJ) CQG ({ J) forn > N. (2.20)

(Note that for ¢ > v/2andn > N > 4, In/c?] < |n/c] <n—1,s0G" is well defined.)
Since G(n) is non-decreasing and G(n) = G'(n) forall n < N, we have by (2.19), (2.20)
and induction that G'(n) > G(n)(> g(n)) for all n. To show that G’ (n) is non-decreasing,
note that G'(N) > G(N) > G(N — 1) = G'(N — 1). Since G'(0) < G'(1) < --- <

G'(N), it follows by (2.20) and induction that G'(n) < G'(n + 1) foralln > N.
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It remains to prove that

/ 1 1[4 1
lim sup 22F (") 1%<-+ —+—) (2.21)

nsoo  logn T logc 2 2 4

Let gkz = LCkNJ, k= 0, ]., .... Let Ty = Gl(go), T, = G/(gl), and
4
Tp = Tp—1 + —QI'k_g, k= 2, 3, e (222)
&
By (2.20) and monotonicity of G’, we have for k > 2

mm:a@wDﬂﬂlwwD+%aQwﬁD

C C

<G|V + %G’(LCHN ) (2.23)

! 4 /!
= G'(le1) + G (la).

Since x, = G'({,) for k = 0, 1, it follows by (2.22), (2.23) and induction that
G'(0) < xp, forallk > 0. (2.24)
Since 1z, satisfies the difference equation (2.22), we have
T = M+, E=01,...

where

1 1
A= =(1 A= —(1—
1/1 1/1
o1 = ;<§<’)/— 1)1’04‘371), Qo = ;(5(’}/4—1)370 —LC1>

and v = 1+i—§. Noting that —1 < Ay < 0 < 1 < )y (since v/2 < ¢ < 2)and oy > 0,
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it follows that

. logzy B 1 4 1
klggo =log )\, = log<§ + 2 + 1) (2.25)
By (2.24) and (2.25),
, logG' () .. log xy, log \;
1 ———— <1 = :
ot logly s log[*N] ~ Toge

Since G is non-decreasing, for each n > 1, let k = k(n) be such that £, < n < f;,1, so

that
logG'(n) _ 10 G/(f.1)
logn =  log¥,
implying that
log G’ log G'(¢
n—00 ogn k—00 IOg gk
— lim sup log G'(Ck41) log £y 11
k—o0 loglyy1  logly
log A\ 1 1 4 1
< — log| = 242
~ loge  logc og(2+ 02+4>’
proving (2.21). The proof is complete. ]

Lemma 2.5. For each § € (0, 1), there exists an N > 4 and a non-decreasing sequence

(H'(0),H'(1),...) such that 0 < H'(n) < g(n) for all n and

H'(n) = H'({S—D + %H’({%-D, foralln > N,

where d = d(0) = 2 + 0 and [x| denotes the smallest integer not less than x. Moreover,

.. dogg(n) _ .. . logH'(n) 1 1 [4 1
1 f———= >1 f > log|( = — 4.
e logn — i logn — logd 92\ 2 - d? i 4
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Consequently, letting § — 0 so that d = d(0) — 2, we have

1iminf1°1gﬂ > 1og(¥).

n—00 ogn -

Proof. The following proof is similar to that of Lemma 2.4. Let § € (0, 1) be fixed. Let
H be defined as in Lemma 2.3, so that H is non-decreasing and 0 < H(n) < g(n) for all

n. Also H(0) = ¢(0) =0, H(1) = g(1) = 1.

Ford = 2 + 0 > 2, by the law of large numbers, P(B|») < []) — 0 asn — oo.

So there exists an N > 4 such that foralln > N,

H(n):H(_g_ +EH(Bx))
() ez [l e

> 1([5]) + (7))
Define H'(n),n =0,1,... by H'(0) =0, H'(1) = - - - = H'(N —1) = 1 and recursively
H’@):H’([%D+%H’(%D forn > N. (2.27)

(Note that [ 5] < [5] < n —1forn > N > 4, so that the recursion is well defined.)

d
Since by (2.27), H'(N) = H'([Z]) + ZH'([%]) = 1+ & > 1, we have H'(0) <
H'(1) = .-+ = H'(N —1) < H'(N). It follows by (2.27) and induction that H' is a
non-decreasing sequence. Since H(n) > H'(n) for all n < N, we have by (2.26), (2.27)

and induction that H'(n) < H(n) for all n.
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It remains to prove that

. . logH'(n) 1 1 4 1
lim inf > dog( =44/ = 4= 228
M T oen ~logd 2tV e T i

Let gkz = (de—l, k= 0, 1, .... Let Ty = H/<€0), T = H/<€1), and

4
Ty = Tp—1 + El’/ﬁ_g, k= 2, 3, e (229)

By (2.27) and monotonicity of H’, we have for k > 2

H'(t;) = H'([d*N) = H’(WZNW) + %H’(WZWD

> 1 ([dNT) + %H'(mk—zm) (2:30)
= H/(t 1) + 5 H (b ).

Since x, = H'({y,) for k = 0, 1, it follows by (2.29), (2.30) and induction that

H'(6y) > x), forall k > 0. (2.31)

Note that the difference equation (2.29) is the same as (2.22) with c replaced by d. Solving

(2.29) yields (cf. (2.25))

Jim — —1°g<§+ Wz)-

By (2.31),

.. JdogH (L) _ .. . log x, 1 1 4 1
1 f———=>1 f = log| = — 4.
B Togt, B log[d N logd E\2 TV @& 11

Since H' is non-decreasing, for each n > 1, let k = k(n) be such that ¢, < n < 4,1, so
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that
log H'(n) S log H'(¢)

logn = loglpi1 ~
implying that
/ /!
n—00 log n k—o0 log ék—i—l
/
k—o00 IOg ék 10g €k+1
S 1 1 1 n 4 N 1
—_— O — J— p—
“logd B\ Ve T1)
proving (2.28). The proof is complete. [

2.3 Numerical results and discussion

Recall that g(n) = n — b(n) = n — Ky, |#p(X,,)|. By (2.13), we computed g(n)
for all n < 65536. Figure 2.1 plots log g(n)/logn versus n for n < 65536 where § =
log[(1 + v/5)/2] ~ 0.694. It shows that log g(n)/logn is slightly greater than  and
appears to converge to 6 slowly. Figure 2.2 plots g(n)/n’ versus n for n < 65536. By
Proposition 2.2(ii),

lim log[g(n)/n’]/logn = 0.

n—0o0

While it is unclear whether g(n)/n’ converges to some constant eventually, it appears
that g(n)/n? fluctuates less when n becomes larger. Figure 2.3 plots g(2n)/g(n) versus
n for n < 32768. It appears that g(2n)/g(n) is close to 2% for large n. Figure 2.4 plots
g(3n)/g(n) versus n for n < 21845, where g(3n)/g(n) oscillates around 3. Our limited

numerical results provide weak evidence that g(3n)/g(n) converges to 3° eventually.

Figure 2.5 plots log Var, /5 |ofp(Xor)|/log 2¥ for k = 1,...,25, where X, is a se-
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log g(n)/log n
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Figure 2.1: Plot of log g(n)/ logn versus n.

g(n)/n’
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0 10000 20000 30000 40000 50000 60000

Figure 2.2: Plot of g(n)/n’ versus n with § = log[(1 + v/5)/2].
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Figure 2.3: Plot of g(2n)/g(n) versus n.
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Figure 2.4: Plot of g(3n)/g(n) versus n.
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Figure 2.5: Plot for Varg 5|o/p (Xor)|.

quence of n unbiased bits. The first 9 points in the plot, with £ = 1,...,9, are ex-
act values calculated from the distribution of |o/p(Xyr)| with p = 1/2, while the lat-
ter 16 points in the plot are obtained from simulation with 10000 replications for each
k. The variance Var,,, |/p(X,,)| appears to increase in n. There is very weak evi-
dence that log Var, »(X,)/logn converges to a positive constant. While we have dis-
cussed mainly the asymptotic behavior of E; » |#p(X,,)| for p = 1/2, it is also of in-
terest to see how fast E, |/p(X,,)|/n approaches h(p) for p # 1/2. Figure 2.6 plots
log(nh(p) — E, |9p(X,,)])/logn forn = 2%, k = 1,...,26, p = 0.3, suggesting that
it might also converge to # as n — oo. In this plot, the first 9 points are exact values,
while the latter 17 points are obtained from simulation with 10000 replications for each

of k € {10,...,24}, 5000 replications for k = 25, and 2500 replications for k = 26.

While the distribution of |&/p(X,)| is complicated, it seems natural to ask whether

(|p(X,)|—E, |4p(X,)|)/+/Var, |p(X,,)] is approximately standard normal for large
n. Forp = 1/2, we conducted a simulation study with 10000 samples for each of n = 219,
217, 2% Let Qn4, @ = 1,...,10000, denote the 10000 observations of |/p(X,,)|. For
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Figure 2.6: Plot for 2¢h(0.3) — Eq 3| &p (X))

n = 210, 217 225 Figure 2.7(a)—(c) plots the histograms of the standardized observations
{(Qni — Q,)/s.d.(Qy) : i = 1,...,10000} where Q,, and s.d.(Q,,) denote the sample
mean and sample standard deviation of {Q,; : ¢ = 1,...,10000}. Also included in
the plots is the standard normal density function. It appears that the standard normal
distribution approximates reasonably well the standardized distribution of |#/p(X,)| for

n = 217 and 2%°.

Although we have no proof of the asymptotic normality result, the following argu-
ment suggests that the asymptotic normality may hold. Choose a sequence /,, such that
lim,, . ¢, = oo and lim,,_, ¢,/n = 0. Divide the sample X,, = (Xi,...,X,) into

blocks of size 4,,,

Y(Z) - (X(i—l)fn—ﬁ-la"'aXi@n)’ L= 1""’ Ln/gnj

Apply o/, to each Y "), yielding output bits o/p (Y V). Note that |o/p (YD) |,i = 1,..., |n/l.],
are iid, and that |/p(X,,)| > ZZLZ{E"J |olp(Y'D)|. If ¢, increases to infinity sufficiently
fast, the difference of |/p(X,,)| and Z}Z/IM |96 (Y )| may be negligible compared to
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-4 4

Figure 2.7: Simulated histograms for the standardized distribution of |/p(X,)| for p =
0.5 and n = 210, 217 2%,
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the standard deviation of | 2/p(X,)|. In other words, |2/p(X,,)| can be approximated by a

sum of iid random variables, which suggests the validity of the asymptotic normality.
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Chapter 3 Streaming versions of

Peres’ algorithm

3.1 Introduction and streaming algorithms

Let X = (Xy, Xy, ...) be the input sequence consisting of the outcomes when a coin
of bias p is tossed repeatedly (which is referred to as the source). Let X,, = (X1,..., X,).
Recall the binary tree representation of &/p introduced in Section 1.4 where the rooted
binary tree T is identified with the sequence of nodes (v1, V10, Y11, V100, Y101, - - - ). At
time n, n = 1,2,..., the input bit X,, arrives (is received) at the root node vy from the
source. For a (fixed) time n, the input sequence X, at v, is decomposed into A(X,,),
p(X,,) and o,N(X,), so that A(X,,) and p(X,,) become the input sequences at nodes
v10 and 141, respectively, while o/,n(X,) is the output sequence at v4. Furthermore, the
input sequence A\(X,,) (p(X,,), resp.) at node vy (11, resp.) is decomposed into A\?(X,),
PA(X,), dn(NXR)) (Ap(X,), p*(Xn), du(p(X,,)), resp.). More generally, for a
node vy,.., (of level n), when the input sequence ¢y, - - -1y, (X,,) is received at node
Vbyby---b, Where 1y, = Aor paccordingas by = 0 or 1, itis decomposed into three sequences,
My, =+ (X0)s pn, -+ Uy (Xn)s Dun (U, -+ - ¥, (X)), s0 that the first becomes the
input sequence at node vy, ..5,0, the second becomes the input sequence at node vy, .5, 1,
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and the third becomes the output sequence at node 1, .., Note that no input sequence

can be received at node vy, .., of level n > [logn] + 2.

We denote by o/p(X,) the total collection of the output sequences at all the nodes.
More precisely, the nodes are ordered lexicographically in the sense that v, .., < vy )
if for some 1 < ¢ < min{n,n'}, b; = b, fori = 1,...,¢, and either { = n < 7’ or
biy1 < bj,,. Forexample, vig; <" vy <" v110 <" V100 <’ vi11. Then op(X,) is the
sequence of all output bits that results from arranging the (non-empty) output sequences

at all nodes according to the node ordering <’.

Given two time points n < n/, while &/p(X,) is contained in o/p(X,/) (due to ofp
being nested), some (output) bits in o/p(X,,) generated by time n may be placed after bits
in op(X,) \ &p(X,). As an example, consider & = HTHHTH - - -, we have o/p(x4) =
11 and ofp(xs) = 101. The second 1 in &/p(x4) is moved to the third place in o/p(x¢).
To avoid this undesirable property, we introduce the notion of streaming algorithm. For
a nested algorithm &, let &/ (X,,) be the sequence of output bits generated by &/ applied
to X,,. The output bits in &/ (X,,) \ & (X,,_1) are said to be induced by the nth input bit
X,. A (nested) algorithm & is said to be streaming if for every n, the output bits induced
by X, are placed after the bits in &/p(X,,_1). In other words, & is a streaming algorithm
if o (X,,) is a prefix of o/ (X,,) for n < n'. It is easily seen that o/, is a streaming
algorithm although it is not efficient. In the previous example with o/p applied to the
sequence * = HTHHTH - - -, we have that x5(= T) induces an output bit 1 at node v,
and z4(= H) induces an output bit 1 at node v, and x4(= H) induces an output bit 0 at
node ;. The output sequence for a streaming version of &/p applied to x = HTHHTH - - -
would be 110 - - - . Note that for odd n, X,, induces no output bit for any streaming version

of @/p. To define a streaming version of &/p, when an input bit X, induces two or more
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output bits (necessarily at different nodes), it is required to order the output bits according
to a pre-specified rule (e.g. a given ordering of the nodes). For example, consider the
lexicographical ordering <’. We denote by /¢ the streaming version of &/p based on the
ordering <’. When /¢ is applied to « = TTHTHTHH, the output sequence is 10110. In
this case, zg(= H) induces two output bits 1 and 0 at nodes v and v, respectively, and
1 is placed ahead of 0 since 14y <’ v17. However, for n = 8, given |#{(X3)| = 5, the

conditional distribution of &/¢(X5s) is not uniform on {0, 1}°. Indeed, we have

P, (a/4(Xs) = 00000)
= P,(Xs € {THTHTTTH, TTTHHHTH, THTHHHTH})
=0’ +p'¢" + 0,
P, (<4(Xs) = 00010)
= P,(Xs € {THTHTHTT, TTTHHHHT, TTTHTHHH, THTHTHHH})
:p3q5 + 2p4q4 +p5q3

> P, (4L (Xs) = 00000).

This shows that

P, (25(Xs) = 00000 | [¢(X5)| = 5) < P,(os(Xs) = 00010 | |e/s(Xs)| =5).

Thus, in general, the output bits generated by </{ are not independent unbiased.

Instead of the ordering <’, we consider another lexicographical ordering < with the

roles of 0 and 1 interchanged. Specifically, we write vy,...;, < vy ..y, if forsome 1 < £ <
n

min{n,n'}, b; = b} fori = 1,... ¢, and either ¢ = 1 < 0’ or byyy > b, . For example,

v < V111 < V110 = Vioo < VYio1- We denote by &5 the streaming version of &/p based
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on the ordering <. When s is applied to £ = TTHTHTHH - - -, the output sequence is

10101 - - - as compared to 10110 - - - generated by /<.

In the next section, we introduce the notation of status tree and discuss:its. proper-
ties, which plays an important role of establishing unbiasedness of &5 in Section 3.3. In
Section 3.4, we discuss another streaming version of Peres’ algorithm which was first in-
troduced by Zhou and Bruck [30]. In Section 3.5, some results on counting status trees

are presented, which are useful for computing the distribution of | &/p (X, )|.

Remark3.1. Analgorithm ¢/ is said to be unbiased if for all n, p and ¢, given |/ (X,,)| = ¢,
the conditional distribution of & (X,) is uniform on {0, 1}*. An unbiased algorithm is
not necessarily a streaming algorithm. In general, for an unbiased algorithm &/, given
| (X,,)| = ¢ and | (X, )| = ¢ for some n < n’ and ¢ < ¢, the conditional distribu-
tion of &/ (X,) is not uniform on {0,1}*. As an example, let o/* denote either o/p or a

streaming version of &/p. We have

P, (e (Xy) = 00 | |o7(Xo)| = 1, |2"(Xy)| = 2)

= B, ((X1) = 10 | |*(X0)] = 1, |o*(X0)| = 2)

A~ =

<

0|

pq <

On the other hand, von Neumann’s algorithm &/, enjoys the unbiasedness property in the
strongest sense. Forany p, 7 > 1,ny <ng < --- < mpand 1 < by < --- < /., given
|'vaN (an)

{0, 1}*.

= {;,i = 1,...,r, the conditional distribution of &/,n(X,,,) is uniform on

36 doi:10.6342/NTU202004447


http://dx.doi.org/10.6342/NTU202004447

3.2 Status tree

To establish the unbiasedness property of &/s, we need to introduce the notion of
status tree. Recall that an (input) sequence x,, from the source can be decomposed into
Mx,), p(x,) and An(x,). If n is even, x, can be recovered from A(x,), p(x,) and

AN (x,). If n is odd, the last bit z,, of x,, is lost. It is for this reason that we define

O, ifniseven
o(x,) =

T,, 1fnisodd,
where O stands for “void”. Thus o(x,) € {H,T,O}. (By convention, o(x,) = O if
n = 0.) Then x,, can be recovered from \(x,,), p(x,), ZN(x,) and o(x,). Also it is

readily seen that

A (®n) = M@l [p(@n)] = [A@n)]r, (3.1)
(@00 = [A@n)[n + 2[p(®n) |0 + 1(o(2,) = H), (3.2)
Znlr = |A(@n)lu + 2lp(2n)|r + 1o () = T), (3:3)

where 1(-) denotes the indicator function.

For the (infinite complete) binary tree T" with nodes vy, 149, 11, . . ., given an input
sequence x,, at the root node 1y from the source, we can derive an input sequence at each of
its descendant nodes. Specifically, the input sequence atnode v, ,...+, derived (or induced)
from x,, is ¢y, - - -1y, (x,,) where 1,, = X or p according as b; = 0 or 1. For notational
simplicity, we write I, (Vy,..b,) = s, - - - Uy, (€y). In particular, I, (v1) = @,. (Here I
stands for “input”.) We call o (I, (Vy,..4,)) = (¢, - - - p, (@) the status (or label) of

37 doi:10.6342/NTU202004447


http://dx.doi.org/10.6342/NTU202004447

node v, .., at time n (derived from x,,). A status tree S is the binary tree 1" together with
the node status (label) S(v) for every node v € {vy, v10, 111, . .. }. An admissible status
tree is a status tree whose status of each node is derived from some finite input sequence
at the root node v;. Note that not every status tree is admissible. As an example, consider
the status tree S with S(v1) = O, S(v10) = H, S(v11) = T, and S(v) = O for all nodes
v of level > 3. Clearly, this status tree cannot be derived from any input sequence. From
now on, we drop the word “admissible”, so that a status tree always refers to an admissible
status tree. Note also that for an (admissible) status tree, all but finitely many nodes have
status O. A status tree may be derived from more than one input sequence. For example,
the status tree S with S(v19) = Hand S(v) = O for all nodes v # vy is derived from the

two input sequences HT and TH.

For notational convenience, we denote by Av and pv the left and right child nodes of
v, respectively. Thus p?\3pv1g = vi9100011. By convention, \°v = p°v = v. For a status

tree S, define the depth ds of S by

0, if S(v) = O for all nodes v,
ds =

1 +max{m > 0:S(A\"v,) # O}, otherwise.

Note that if S is derived from a sequence x of length n > 1, then we have s = |logn|+1,
and S(\s~1y;) # O, and S(v) = O for all nodes v of level > 5. Define {H, T}* =

U o{H, T}", where {H, T}" = (. Given a status tree S, define

Xs={zec{HTV:S, =S},

where S, denotes the status tree derived from . For a node v, let A(v) denote the subtree

consisting of v and all its descendant nodes. Note that A(v) is an infinite complete binary

38 doi:10.6342/NTU202004447


http://dx.doi.org/10.6342/NTU202004447

tree rooted at v (and is isomorphic to T'). For a status tree S, let S| (,) denote the status tree
S restricted to the subtree A(v). Note that if S is derived from x, then S|a() is derived
from I, (v). Consequently, if S is an admissible status tree, S|, is also admissible for

all nodes v.

Proposition 3.1. Let S be a status tree. For x € Xs, the quantities |fp(x)

Im(”)

’ )

| L (V) |n, | Iz(V) |1 and |\ (Iw(l/)) | for all nodes v are all S-properties (i.e. independent
of the individual input sequence x) where I,(v) denotes the input sequence at node v
derived from x. In particular, for x € Xs, |x|, ||y and || are S-properties (since

Xr = Im(Vl))

Proof. Note that |I,(v)| = |I.(v)|u + |I:(v)|1 and |op(x)| = 3, [Zn (Ix(v))]. So it

suffices to show that for x, ' € X,

L)l = Lo (W), L) =Le@,  [dn(L@))] = g (L ()] (3.4)

If 05 = 0 (i.e. S(v) = O for all nodes v), then necessarily x = &’ = (), so that (3.4) holds
trivially for S with 05 = 0. If s = 1, then necessarily Xs consists only of one element
and x = ' = §(11), so that (3.4) also holds trivially for S with 65 = 1. We now proceed
by induction on ds. Suppose that for m > 1, (3.4) holds for all S with 65 < m. Consider a
status tree S with s = m + 1, and two sequences x, ' € Xs. Then S|a(,y) and S|a@,)
are both status trees of depth less than or equal to m. For ¢ = 0,1, if a node v of level
n is such that v € A(vy;), then the level of v is n — 1 with respect to A(vy;). Moreover,
for i = 0, 1, the status tree S|a(,,,) is derived from each of the two sequences I, (v4;) and
I, (vy;). For v € A(vy;), the input sequence I, (v) (I (v), resp.) at v derived from @
(', resp.) is exactly the input sequence at v derived from I, (14;) (Iz/(l/h»), resp.) with
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respect to A(vy;). By the induction hypothesis, we have for nodes v of level > 2,

L) = L), LW = L@,  |dn(@))] = g @))]- (3:5)

By (3.2) and (3.5),

[ L (1) [0 = [x|n = M) |n + 2|p(x) |0 + 1(o(z) = H)
= |Ix(v10)|u + 2|1z (v11) |u + 1{Sz (1) = H}
= | Iy (v10) | + 2| L (v11) | + 1{Sz (1) = H}

= |2'|y = Ly (v1)|u

and similarly, by (3.3) and (3.5), |I.(v1)|r = | Lz (v1)|1. Moreover, by (3.1) and (3.5),

| (Io(11))| = ()] = [A(2) |0
= | Lz (v10)n
= [Ter(v10) |0 = [M@)|u

= | (Im’(Vl)) .

This shows that (3.4) holds for S with 6s = m + 1. The proof is complete. O

Remark 3.2. For a status tree S and the corresponding set of sequences Xs = {x : S, =
S}, let ns(v), ks(v), €s, £s(v) be non-negative integers such that ns(v) = |I,(v)],
ks(v) = [L)lu, ns(v) — ks(v) = |L©)|r, ls = |dp(@)], ls(v) = |Fn(La(v))]
for all x € Xs. Thus, for a given status tree S, the above quantities are known. We write
ns = ns(v1) and ks = ks(v1). Furthermore, for all x € Xs, P,(X = x) = pFsqms—hs,
independent of . In other words, this probability is also an S-property.

Remark 3.3. A status tree S of depth 05 > 1 with {5 = 0 is referred to as trivial. A

40 doi:10.6342/NTU202004447


http://dx.doi.org/10.6342/NTU202004447

sequence x of length n for which S, is trivial must be

either t=H---H, or *=T---T,
(3.6)

or =H---HT (foroddn >3), or & =T---TH (for odd n > 3).

Furthermore, by Lemma 3.2 below, we have |Xs| = 1 for a trivial status tree S. Indeed,
if @ satisfies (3.6), then X's, = {x}. (The status tree S of depth s = 0 is also trivial for

which Xs = {0}.)

Lemma 3.1. For a status tree S, the S-properties ns(v), ks(v), {s(v) satisfy the following

conditions. For each node v,

ls(v) = ks(\v), ns(pv) = ns(Av) — ks(A\v),
ks(v) = ks(Av) + 2ks(pv) + 1(S(v) = H),
ns(v) — ks(v) = ks(\v) + 2(ns(pv) — ks(pv)) + 1(S(v) = T).

Proof. For x € X’s, we have by (3.1)—(3.3),

|°Q{vN (I:c(V))| = |Im()‘V)|Ha |Im(py)| = |Iﬂc(/\V)|T
L) = [ LWl + 2T s + 1(S(v) = H),

L)l = LWl + 2| L)+ 1(S() = T),

from which the lemma follows. O]

Lemma 3.2. If'S is a trivial status tree (i.e. {s = 0), then | Xs| = 1.

Proof. For S with §s = 0, we have S(v) = O for all nodes v, implying that Xs = {0}.
So |Xs| = 1. For S with 65 = 1, we have S(v1) = Hor T and S(v) = O for all nodes
v of level > 2. Clearly, we have Xs = {H} or {T}, implying that |Xs| = 1. We now
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proceed by induction on ds. Suppose |Xs| = 1 for all trivial status trees of depth Js </m
for some m > 1. Consider a trivial status tree S of depth 65 = m + 1. Let x and &’ € Xs.
We need to show = &’ Since S is trivial, both S = S|a(,,.) and S® = S|ap,)
are trivial of depth < m. We have A(x), A\(x') € Xsu) and p(x), p(x’) € Xgw . By the
induction hypothesis, |Xsw)| = |[Xsw| = 1, so that A(x) = A(x’) and p(x) = p(z’).
Since Zyn(x) = dn(x') = D and o(x) = o(a’) = S(v1), we have ¢ = «’. (Recall that

Ax), p(x), S (x) and o(x) together determine x.) The proof is complete. O

Proposition 3.2. Let S be a status tree and Xs = {x : S = S}. Let n(v) = ns(v),
k(v) = ks(v), { = Us, L(v) = Uls(v) be the S-properties such that |I,(v)| = n(v),

Lo (v)n = k(v),

dp(x)| = ¢,

A (I (v))| = L(v) for all nodes v and all x € Xs.
Assume ( > 1. Then for y € {0,1}¢, there is a unique © € Xs such that dp(x) = y.
That is, o, (Ix(yl)) consists of the first {(v1) bits of y, (Iw(l/lo)) consists of the next
U(11) bits of y, and so on, according to the node ordering <'. In other words, dp|x, :

Xs — {0,1}" is 1-1 and onto (i.e. bijective). In particular, |Xs| = 2°.

Proof. Although the proposition only considers S with /s > 1, we will say that the
proposition holds for S if either / = /s = 0 (i.e. S is trivial) or / = {5 > 1 and
Ap|lxs + Xs — {0,1} is 1-1 and onto. Thus, the proposition holds trivially for S
with /s = 0. Since a status tree S of depth ds < 1 has /s = 0, the proposition holds
for S with §s < 1. We proceed by induction on ds. Suppose the proposition holds for
all S with s < m for some m > 1. Consider a status tree S with s = m + 1 and
(=1ls>1 Let SM = S|a(,p) and S® = S|a(,). Then dga) = m and dgm < m.
If gy = 0, then S (R) is the trivial status tree for which the status of each node is O. It
follows that for © = zy25---x, € Xs where n = ng(vy), we have z1 # x9, 3 # x4,
ey Tonog #+ Ta|n|. Giveny = vy, - - - Y, let xo;_1x9; = HT or TH according as y; = 1
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or0,i=1,...,[5]. Ifnisodd, let z, = S(vy). It is readily seen * = z -+~ x, is the
unique sequence in Xs such that o/p(x) = y. This shows that &p|y, : Xs — {0;1}¢ is

1-1 and onto.

We now assume 1 < dga < m. Letting (™ =37\, ~l(v)and (®) =37\ 0(v),
for y € {0,1}¢, write y = y'yWy® where 9y consists of the first £(1,) bits of y, y™
consists of the next /(1) bits of y, and y®) consists of the remaining /®) bits of y. By con-
vention, y' = ) for {(v;) = 0, y™ = () for /() = 0, and y® = @ for (R = 0. If (L) = 0,
then S is trivial and |Xsw)| = 1 by Lemma 3.2, in which case we write Xgu) = {xM}

(i.e. ™ denotes the only sequence in Xgw)). If ¢ > 0, by the induction hypothesis ap-
plied to S and y™), there is a unique = € Xsq) such that op(x™) = y). Similarly,
if ¢(®) = 0, then S® is trivial and let z® denote the only sequence in Xgw). If (R > 0,
by the induction hypothesis applied to S®) and y®, there is a unique z™® € Xsr) such

that o/p(x®) = y®). Note by Lemma 3.1 that

2| = n(0), 2y = k(v10) = (1) = |y,

2] = n(v1) = () - k(vi0) = 2] ~ 2.

It follows that there is a unique * € X5 such that

Mz)=2b,  plx)=2z®, and dn(z) =y

(Recall that A(x), p(x), Zun(x) and o(x) together determine x.) We have shown that

there is a unique * € X’s such that

sto() = () o (@) o (p(2)) = () tp @) (@) = y/yVy® — y.
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The proof is complete. 0

Remark 3.4. Peres [20] proved that given |o/p(X,,)| = ¢ > 1, the conditional distribution
of ofp(X,,) is uniform on {0, 1}*. By Proposition 3.2, if we further condition on the status
tree Sx = S (with /s = /), the conditional distribution of &/p(X ) remains uniform on
{0, 1}*. Actually, Peres [20] proved that if X is an exchangeable sequence (which is more
general than an iid sequence), given |/p(X)| = ¢, the conditional distribution of o/p(X)
is uniform on {0, 1}*. Since for an exchangeable sequence X, the probability of X = x
is the same for all x € X, it follows that given Sx = S with £ = /s > 1, the conditional

distribution of «/p (X ) remains uniform on {0, 1}* when X is an exchangeable sequence.

Remark 3.5. While o/p () is the total collection of the (non-empty) output sequences at all
nodes arranged according to the node ordering <’, <’ may be replaced by any other node
ordering without losing the unbiasedness property. For example, let <” be the ordering
such that vy <" v <" g <" ---, where vy = vy,..p, Withv = 377 277,
Let @} (x) = dun(Io(v(1))) D (Te(v(2)) Y (Te(v(3))) - - -, which is the collection of
the output sequence at all nodes arranged according to the node ordering <”. Then for a
status tree S with { = (s > 1, given Sx = S, the conditional distribution of &/} (X) is
uniform on {0, 1}¢. This is due to the fact that the number of output bits at each node is an

S-property so that for x € X, there is a 1-1 correspondence between o/p(x) and &/} (x).

Remark 3.6. 1t is instructive to describe how the status tree evolves (changes) as input bits
arrive at v one after another. Initially, at time 0, we have the trivial status tree S with
S(v) = O for all nodes v. We write Sy = S. At time 1 when an input bit z; arrives at
11, the status tree becomes S; with S (1) = z1 and S;(v) = O for v # ;. At time 2
when a second input bit x4 arrives at v, the status tree becomes Sy with (i) So(v) = O
for v = vy and for all nodes v of level > 3, (ii) Sa(v10) = H and Sy(v11) = O if 21 # o,
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(iii) Sa(v19) = T and Sa(v41) = x4 if ©1 = xo. Moreover, if x1 # w5, an output bit is
generated at v;, which is 0 or 1 according as x;25 = TH or HT. More-generally, given
the status tree S,, at time n, when an input bit x,, | arrives at 1, the updated status tree
S,+1 and the output bits induced by x,,,; are determined by S,, and x,, 1. The following
procedure describes how the status tree is updated when input bits arrive at 1y one after
another. Initially, all nodes are labeled as O. When an input symbol (H or T) arrives at 1/,
each node v may receive a symbol (H or T) from its parent node 7 (7v is referred to as
the source if ¥ = 1), and may send a symbol (H or T) to Av or pr. Meanwhile, an output
bit (0 or 1) may be generated at v. Specifically, let v be a node with a label s € {H, T, 0}
and it receives a symbol ¢« € {H, T} from its parent node v (or from the source if v = 1).

We do the following operations on v.

(1) When s = O, set (update) s = ¢, and send no symbol to A\v or pv.

(i1) If st = HT, set s = O, output a bit 1, and send a symbol H to Av.

(i) If se = TH, set s = O, output a bit 0, and send a symbol H to Av.

(iv) If s = HH, set s = O and send a symbol T to Av and a symbol H to pv.

(v) If st =TT, set s = O and send a symbol T to Av and a symbol T to pv.

If a node receives no symbol from its parent node, then its label (status) is not updated.

Note that if a node receives no symbol from its parent node, then none of its descendant

nodes receives a symbol, so that their labels are not updated. When the label of a node

v is updated from H or T to O, it must have received a symbol from 7~ and must send

a symbol to A\ and may also send a symbol to pv if the current label and the received

symbol are the same.
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3.3 Unbiasedness of /s

For a finite random sequence X, the status tree Sx generated from X is random. In
this section, we prove that conditioning on Sx = S for a given (fixed) status tree S, the
sequence of /s output bits generated by /s are (conditionally) iid unbiased. For notational
simplicity, we write n = ng, k = ks, { = {s, {(v) = ls(v). Note that { = > /((v).
Assume ¢ > 1. By Proposition 3.2, Xs = {x : S, = S} consists of 2 sequences of
length n each of which has £ H’s and n — k£ T’s. Each sequence of Xs yields an output

sequence of {0, 1}*. We will show that /5|y, : Xs — {0, 1}* is 1-1 (and hence onto).

It is worth noting that if &/ is used instead of /s, there may be two different & and
' € Xs such that o/{(x) = {(x’). Specifically, consider the status tree S given by
S(v) = O for all nodes v except S(v1000) = T, S(v1001) = H, S(v110) = H. (See Figure

3.1 in which those nodes not explicitly shown have status of O.) It is readily seen that
O
O/ \O
VANVAN
/\

Figure 3.1: The status tree S given by S(v) = O for all nodes v except S(v1900) = T,
S(v10m) = H, S(v110) = H.

n —=mns = 8, k’ = ks = 4, f = ES = 5, g(Vl) = gg(l/l) = 2, g(ljlo) = 63(1/10) = 2,
l(v11) = ls(v11) = 1. Moreover, o{(x) = {(x") = 00010 for ¢ = TTTHTHHH and
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' = TTTHHHHT. On the other hand, &/s(x) = 00001 and o/s(x’) = 00010. In fact, it

can be shown that o/s|x, : Xs — {0,1}° is 1-1 and onto.

Proposition 3.3. For a given status tree S with n = ns and { = (s > 1 such that Xs
consists of 2° sequences of length n, we have that ds|xs : Xs — {0,1}  is a I-1 (and
hence onto). Consequently, given Sx = S, the conditional distribution of ofs(X) is

uniform on {0, 1}, which implies that

P, (os(X) =P+ B | |9s(X)| = 1) = % forall 3; € {0,1},i=1,...,L

Proof. Although the proposition only considers S with /s > 1, we will say that the
proposition holds for S if either / = /s = 0 (i.e. S is trivial) or / = {5 > 1 and
Aslys :+ Xs — {0,1}" is 1-1. Thus, the proposition holds trivially for S with s = 0.
For § with ng = 1, X's must be either {H} or {T}, so that /s = 0. This shows that the

proposition holds trivially for S with ng = 1. We now proceed by induction on ns.

Suppose that for some m > 2, the proposition holds for all status trees S with ng <
m — 1. Consider a status tree S with ng = m. Let { = (s > 1 and {(v) = (5(v)
for all nodes v. Since m = ng and ¢ = (s, Xs consists of 2¢ sequences of length m.
Forx = 2, - -2, € Xs, we write x_,, = x1---x,,_1 (Which is  with the last bit
rm, deleted). A node v is said to be affected by x,, (or more precisely, by the last bit
xy of ®) if I, (v) # I, (v). Itis readily seen that v is affected by x,, if and only if
Sz(v) # Sy, (v). In other words, v is affected by z,, if and only if the status of v
changes at time m when z,, joins the input sequence at v;. Note that if a node v is not
affected by z,,, then none of its descendant nodes are affected by x,,. Note also that
I.(v) = 0 for all nodes v of level > ds, implying that none of the nodes of level > dg are
affected by the last bit x,, of x € Xs.
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Letx' =a) -2/ € Xs, 2" =2 2! € Xsandy =y, - -y, € {0,1}* be such
that ofs(x') = os(x”) = y. We want to show &’ = «” (implying that Zs|v, + Xs —
{0, 1} is 1-1). We make the following claim.

Claim (A):

We have 2, = 2, and Sy = S, (i.e. the status trees derived

from «’_, and ", are identical).

Assume for now that claim (A) holds. In view of Spy = S, and z;, = a7, for
any node v, =/, induces an output bit at v if and only if 2/, induces the same output bit at
v (¢f- Remark 3.6). Since os(x’) = os(x”)(= y), we must have s(x’ ) = ds(x” ).

Letting §* = Sy (= Sy ), ifls- = 0,then ', = x”  since |Xs-

= 1 by Lemma
3.2. If bs« > 0, since ', ", € Xs+ and since Hs(x’,,) = As(x”,,), it follows from
the induction hypothesis that ', = a” . In either case, we have ' ,, = =”,, which

together with /= 2!/ implies that ' = x”.

It remains to establish claim (A). If S(v;) = Hor T (i.e. m is odd), then 2], = 2/, =
S(v1), and v is the only node affected by 77, (and 77,). S0 Sy (v1) = Spr, (v1) = Oand
Sy (V) = S (v) = S(v) for v # vy. This proves claim (A) for the case S(v1) = H
or T. Next suppose S(v1) = O (i.e. m is even). Forany x = 1 - -z, € X5, we must
have that S,._, (v1) # O and vy is affected by z,,,. If S(v19) = O, then S, (v19) # O
and vy is affected by z,,,. More generally, \'vy, 7 = 0, 1,. .., r are affected by x,,, where
r=min{i > 1: S(\'vy) # O} > 1. Clearly, S, (\N'vy) # O fori = 0,...r — 1,
and S, _,, (\"v1) = O. Moreover, all descendant nodes of A"v; are not affected by x,,. So

Sz_,, (v) = S(v) for all descendant nodes v of A\"v.
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A node v is said to be good if

L)\ Ly (V)= Lp(v)\ Iy (v) and Sy (v) =S8z (V).

—m —m

The first equality implies that one of the two cases occurs:

(i) node v is neither affected by z, nor by z ;

(ii) v is affected by 2/, and by 2/ and the input bit at v derived from 2/ is the same as

that derived from 7 .

A good node v is said to be great if

L)\ Ly, (v) = Ly (v) \ Lo (v) # 0.

—m

We have shown that for all x € Xs, S, (N'v1) = O and S (A\"vq) = S(A\"v4) # O and
all descendant nodes of \"v; are not affected by z,,, where r = min{i : S(\'v;) # O} >
L. Inparticular, Sy (A1) = Sz (N'v1) = O and S (A1) = Ser(AN'11) # O, which
implies that the node \"v, is great. Moreover, all the descendant nodes of A" are good
since they are not affected by 2/, or z!/ . Note also that a node v > A" is necessarily a

descendant node of \"v4. So all nodes v > A"1; are good. We make the following claim.

Claim (B):

If a node v/ # v, is great and all nodes v >~ v/ are good,

then there is a node v/ < v/ such that v/ is great and all nodes v = v are good.

If claim (B) holds, then starting with / = A"y, there is a node v < A"v; such that

V" is great and all nodes v > v” are good. If "/ # 14, by claim (B) applied to v, there is
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anode v < v such that v"” is great and all nodes v > 1" are good. Since there are only
finitely many nodes that are great, eventually v, will be reached. That is, v, is great and

all nodes v > v; are good, which implies claim (A).

It remains to establish claim (B). Suppose v/ # v is great and all nodes v > 1/ are
good. We need to show that there is a node v/ < 1/ such that v/ is great and all nodes

v = V" are good. Consider the following four cases separately.

Case (1): v/ is the left child node of its parent node (denoted 72') and I (V') \ I (V') =
L (V') \ Iy (V') = H. Clearly, x;, induces an output bit at 72 and z7/, induces an
output bit at 7/. Let S’ = {v > v/ : 2/, induces an output bitat v} and S" =
{v = v/ : 2!, induces an output bit at v}. Since all nodes v > v/ are good, we have
S" = S". Since ds(x') = ds(x”) = y = yi---ye, the output bits at the nodes
in S’ (= S”) induced by x/, (by x/,) must be yy_41---ye or § if v = 0, where
v = |9 = |5”]. Thus, the output bit at v/ induced by z/, (and by z//)) must be
Yoy fyey = 0,then Sy (7)) = Spr (7)) = T, and L (7v') \ Iy (mV') =
Lo (7)) \ Iy (7v') = H. Ify,, = 1, then Sy (7v') = Spr(7/') = H, and
L/(mV/')\ Iy (7V') = Ipn(7v') \ Ipr (') = T. So v/ is great. Moreover, prv/’
and its descendant nodes are not affected by «/, or by 2. So prv/ and its descendant
nodes are good. Furthermore, a node v >~ mv/ must satisfy one of the following
conditions: v = v'; v = V', v = pm/; v is a descendant node of prr/. It follows that

all nodes v = 7/ are good. So "/ = 71/ satisfies the requirement in claim (B).

Case (2): v/ is the left child node of 7" and Iy (V') \ Iy (V') = Ipn(V')\ Iy (V') =T.
It follows that prv/’ (the sibling node of v') is affected by «/, and by 2. Let v’ =
min{i : S(\'pmr/) # O} > 0. It is readily seen that the nodes N'pm/, i = 0, ... 1/
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are affected by 7, and by /.. Moreover, letting " = A" pr1/, we have Sy (/)=
Spr (V') =O0and Ly (V") \ Iy (V") = Lpn (V") \ Lyr (V") = S(¥") # O,implying
that /" is great. Furthermore, no descendant nodes of " are affected by:x. orby z/ .
Thus, all descendant nodes of v/ are good. Note that every node v >~ " must satisfy

one of the following conditions: v = v/; v = /; v is a descendant node of v”’. So v/

satisfies the requirement in claim (B).

H.

Case (3): v'is theright child node of 7" and L (V') \ Ly (V') = Ly (V')\ I (V')

and Iy (V") \ Ipr (V") = Lpy/(V") \ Ipr (V") = H. Thus, v" is great. Also, every
node v > /" is good since either v = v/ or v = /. So 1" satisfies the requirement in

claim (B).

Case (4): v'is theright child node of 70/ and Iy (V') \ Iy (V') = Ly (V' )\ Lyr (V') =T.
This case is similar to Case (3). It can be shown that " = 71/ satisfies the requirement

in claim (B).

The proof is complete. ]

The proof of Proposition 3.3 contains (implicitly) a procedure to reconstruct  from
Sz and ds(x). As an illustration, consider a status tree S given in Figure 3.2(a) and
ds(x) = 00001. It is readily seen that n = |x| = 8 for all x € Xs. We write x,, = x3
for the “unknown” « satisfying o/s(x,) = 00001. For v with I, (v) = 0, let r,(v) =
min{i > 0: S,, (\'v) # O} and 2, (v) = \™)v. Recall that v is said to be affected by
the last term x,, of @,, if I, (v) \ I, _,(v) # 0. To find the last term zg of &g = x1 - - - xs,
we need to identify all the nodes affected by xg backwards (with respect to the ordering
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<). By definition, v, is always affected by an input symbol.

(1) The last affected node is 25(v1) = v/(s).

Since Sg, (v(s)) = T, we have I, (v(s)) \ I, (v5)) = T and S, (v(s)) = O. As I (s)) \

IZ7 (V(B)) = T:»

(ii) the second-to-last affected node is 25(p7r/(s)) = V().

Since Sz, (v(9)) = H and vy is a right child node, we have S, ((9)) = O and

(1i1) the third-to-last affected node is Tv(g) = v/4),

and I (V1)) \ Io; (1(0)) = Hand S, (1(4)) = H. Since I (v(4)) \ Lo, (v(4)) = Hand v(4)

is a left child node, we have

(iv) the fourth-to-last affected node is 7v/(4) = 1v(2) and

an output bit (indeed the last output bit) is induced at v(3) by zg, which is “1” according
to .Qfs(wg) = 00001. So Ims(l/@)) \ Iw7(l/(2)) = T and S;m(y(g)) = H. As Iscg(V(2)) \

L. () =T,

V) the fifth-to-last affected node is 25(pmr(2)) = V(g).

Since Sz, (v(6)) = H, we have Sz, (v(6)) = O and I (v)) \ I, (1)) = H, so that

(vi) the sixth-to-last affected node is mv/(g) = v/(3)
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and an output bit (second-to-last output bit) is induced at v/(3) by xg, which is*0” according
to os(xs) = 00001. As the output bit is a 0, we have S, (v(3)) = T and Ly (v/3)) \
I,.(v3) = H, implying that z72s = HH. Figure 3.2(a)~(h) provides a step-by-step
description of identifying the affected nodes along with their labels at time 7.

(a) Sas (b)

@ © @ @

Figure 3.2: An illustration of reconstructing x given S, and &/s(x) = 00001.
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Figure 3.2: (contd.) An illustration of reconstructing « given S,, and &/s(x) = 00001.

We have found xg = H and 27 = H as well as S, and S, which is given in Figure
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3.2(i). Given S,,, and o/s(x¢) = 000, we can further identify 24 and x;. In the end, we

arrive at zg = TTTHTHHH.

3.4 Zhou-Bruck’s streaming version of Peres’ algorithm

Peres [20] described and analyzed his algorithm in the fixed-to-variable length regime
where the length of the input sequence is fixed. In order to generate a pre-specified number
k of (unbiased) output bits, Zhou and Bruck [30] introduced a streaming version of Peres’
algorithm (denoted by o/7g). Letting 7 = inf{n : |fzg(X,,)| > k}, they showed that the
first k bits in o/7g(X;) are independent unbiased. While we do not consider the variable-
to-fixed length regime in this dissertation, we will show that given |/7zg(X,,)| = /¢, the

conditional distribution of &zg(X,) is uniform on {0, 1}*.

We first describe the {H, T, O, 0, 1}-labeled status tree introduced in [30], which
is different from our {H, T, O}-labeled status tree discussed in Section 3.2. For x,, =

(1,...,2,) € {H,T}", let

z,, 1fnisodd
O, ifn=0orn>0isevenand z,_; = z,,
0, ifn>0isevenandz,_1x, =TH

1, ifn>0isevenandz,_ 1z, = HT.

Given an input sequence € {H, T}* (from the source), let I,(v) be the input sequence at
node v derived from «. Then Zhou-Bruck’s status tree Y., derived from « is the (infinite
complete) binary tree T with the label X(v) = ¢’ (I, (v)) at each node v. Note that S,, can
be derived from X, by converting a label of 0 or 1 to O. We may describe dynamically
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how Zhou-Bruck’s status tree evolves as input bits (symbols) arrive at the root node 7,
from the source. Initially at time 0, we have the trivial status tree ¥y with 3o () = O for
all v. Given the status tree X.,, at time n, when an input symbol z,,,; arrives at node vy, the
updated status tree X, and the output bits induced by x,; are determined by 3J,, and
ZTna1. The following procedure describes how the label of each node is updated. When an
input symbol (H or T) arrives at /1, each node v may receives a symbol (H or T) from its
parent node 7v (7v is referred to as the source if ¥ = v4), and may send a symbol (H or
T) to Av or pv. Meanwhile, an output bit (0 or 1) may be induced at v. Specifically, let v
be a node with a label s € {H, T, 0, 0, 1}. Suppose it receives a symbol ¢ € {H, T} from

its parent node 7. We do the following operations on v.
(1) When s = O, set (update) s = ¢ (and send no symbol to Av or pv).
(i1)) When s = 0 or 1, output s and set s = ¢ (and send no symbol to A\v or pv).
(i11) If se = HT, set s = 1 and send a symbol H to Av (and send no symbol to pv).
(iv) If st = TH, set s = 0 and send a symbol H to Av (and send no symbol to pv).
(v) If st = HH, set s = O and send a symbol T to A\v and a symbol H to pv.
(vi) If st =TT, set s = O and send a symbol T to A\v and a symbol T to pv.
If a node receives no symbol from its parent node, then its label is unchanged and it sends
no symbol to its child nodes. Thus, if a node receives no symbol from its parent node, then
none of its descendant nodes receives a symbol, so that their labels remain unchanged.
When the label of a node v is updated from H or T to O or 0 or 1, it must have received
a symbol from v and must send a symbol to A\ and may also send a symbol to pv if the

current label and the received symbol are the same. As an example, let xzg = TTTHTHHH
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be the input sequence. Then X, ¢ = 1,...,8 are presented in Figure 3.3 where those
nodes not shown have label O. Note that at time 4, we have ¥, (v1) = Xz, (v10) = 0,
and these two 0’s have yet to join the output sequence. At time 5, the label 0 at node v
joins the output sequence. At time 6, the label 0 at node vy, joins the output sequence,
while X, (v1) = 0. The second 0 at v, joins the output sequence at time 7. At time 8, we
have ¥, (v19) = 1 and X, (v11) = 0, and these labels 1 and 0 have yet to join the output

sequence. So we have o/zg(xs) = 000.

Remark 3.7. To implement &/7g, a node ordering needs to be specified when two or more
bits are simultaneously ready to join the output sequence. However, unlike &/s which
requires a particular node ordering to guarantee unbiasedness, we will show that any node
ordering in implementation of &g yields independent and unbiased output bits. We may
refer to &/zg as a delayed version of &fs as a label of 0 or 1 at a node v has to wait to join
the output sequence until the node v receives a symbol from its parent node. Zhou and
Bruck [30] wrote that “the timing is crucial that we output a node’s label (when it is 1 or
0) only after it receives the next symbol from its parent node or from the source.” But they
did not explain what may go wrong with “no delay”. Their approach may be related to an
important observation of Blum [2] where in a more general setting, “no delay” results in

biased output bits.

Remark 3.8. Before we establish the unbiasedness property of /7, we need to discuss
the properties of Zhou-Bruck’s status tree. While a status tree 3. is the binary tree 1" with
a node label X(v) € {H, T, 0,0, 1} for each node v, not all such status trees are derived
from an input sequence € {H, T}*. A status tree is said to be admissible if it is derived
from some input sequence € {H, T}*. In what follows, we drop the word “admissible”
so that a status tree always refers to an admissible status tree. The depth Jy; of a status tree
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(a) Xz, (b) Xz, (c) Xy

VAN

A AN
AN

) Z:Be (2 Em7 (h) Ems

f/\ /Kx VN
/<\ /N

Figure 3.3: An example of Zhou-Bruck {H, T, O, 1,0}-labeled status trees >, , i =
1,...,8, where zg = TTTHTHHH.
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3} is defined by

0, if ¥(v) = O for allnodes v,
oy =

1+ max{m >0:X(\"v;) =Hor T}, otherwise.

Note that dy,, = ds, for x € {H, T}*.

Lemma 3.3. For an (admissible) status tree 3, let X, = {x € {H,T}* : ¥, = X} # (.

Then for x,x' € X, we have

| I(v)|a = I (V) T | LN (Iw<7/))| = | (Im’(’/)>

wo (W)= L (v)

’

for all nodes v. Consequently, there are non-negative integers nx(v), ks(v), lx(v) such

that for all x € Xy, and for all nodes v,

nx(v) = [L(v) wo ns(v) = ks(v) = L)l

o ke =L(v)

ls(v) = | (I (v))] — 1(2(r) = 0or 1)

xTr

xr

In particular, for x € Xy, Hs

)

wlrandls =Y, ls(v) =3, [dun (L)) - [{v:

%(v) = 0 or 1}| are S-properties.

Proof. Let S be a {H, T, O}-labeled status tree given by

Y(v) ifX(v)=H,TorO,
S(v) = (3.7)

o) ifX(v) =0orl.
Then we have Xy, C X’s, which together with Proposition 3.1 implies Lemma 3.3. O

Lemma 3.4. Let 3 be a status tree with the corresponding set Xs, = {x € {H, T}* : X, =
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Y} # 0. Forx € Xy, let w, = w(x) denote the last term of the sequence x, N, = {v :
v is affected by w(x)}, and N, = {v : an output bit is induced at v by w(x)}. Then, for

x', x" € Xs, we have for all nodes v,

w(Im/(V)) = U)(I;y/(V)), Nw/ = Nm// and Nm/ = Nm//.
In other words, there are 0(v) € {H, T} for all nodes v and two sets of nodes S and S

such that for all x € Xy, and for all nodes v, w(I,(v)) = 0(v), Ny = S and N, =8S.

Remark 3.9. Let n = |x|. By w(x) inducing an output bit at , we mean that the {0, 1}-
valued label of v joins the output sequence at time n. More precisely, with respect to «,
the label of v at time n — 1 is 0 or 1. When w(x) arrives at the root node v4, v receives a
{H, T}-valued symbol from its parent node which triggers the {0, 1}-valued label of v to

join the output sequence at time n.

Proof of Lemma 3.4. The lemma holds trivially for ¥ with d5; = 0 or 1 since |Xx| = 1.
We proceed by induction on dx. Suppose the lemma holds for > with oy < m — 1 for
some m > 2. Consider a status tree 3 with d;, = m. By the induction hypothesis applied
to ) = B|apy,) and T® = ¥[a(,,) (both of depth < m — 1), we have w(I,(v))
independent of € A, for all v # . (More precisely, for a descendant node v of vy,
the input sequence I, (v) at v derived from the input sequence € Xy at v, may also be
referred to as the input sequence at v derived from the input sequence I, (1) at the “root”
node vy (with respect to A(r4g)). Then by the induction hypotheses applied to A(v4),

we have w(I,(v)) independent of & € Xs.) It remains to show that w(z) = w(I,(11)),

N, and Nm are independent of x € A..

By Lemma 3.3, let n = ny(v1) be such that |x| = |I,(11)| = nforallx € Xy. Ifnis

60 doi:10.6342/NTU202004447


http://dx.doi.org/10.6342/NTU202004447

odd, then w(x) = ¥(11) for z € Xy, (i.e. w(z) is independent of z € X;). Moreover, 10
node of level > 2 is affected by w(x), implying that N, = {1}, independent of & € A..
We have N, C N, = {v1}. To show that N, = 0 forall z € Xs, or Ny = {wy} for
all x € Xx, by the induction hypothesis applied to X, there is a z € {H, T} such that
z = w(xW) for all x™ € Xyw). Noting that I, (vy) € Xsw) for & € Xy, we have
w(Im(ylo)) = zforx € Xsx. Forx € X, let x_,, be x with the last term x,, deleted.
If = = H, then w(I,(v10)) = w(I,_,(r10)) = H, implying that £, _ (1) = 0or 1
forx € AXs, so Nw = {11}, independent of x € AXx. If z = T, then w(Iw(ylo)) =
w(I,_,(v10)) = T, implying that ¥,_ (1) = O for x € X, so N, = 0, independent of

x € Xxs.

Next suppose n is even. If ¥(v;) = 0, then we have w(x) = H, independent of
x € Xs. Moreover, for x € A%, when the symbol w(x) = H arrives at vy, v; sends
a symbol H to vy and sends no symbol to v, implying that N, contains no nodes in
A(vyy) forall x € Ay, (For notational convenience, we write Ny N A(vq;) = (0 for
x € Xs.) By the induction hypothesis applied to (), N, N A(vy9) and N, N A(vyg)
are independent of * € Xy, where N, N A(vyg) is the set of nodes in A(r) that are
affected by the input symbol H at 119, and N, N A(1) is the set of nodes in A (1)
where an output bit is induced by the input symbol H at 4. Since N, N A(vy;) = () for
x € X, (implying that N, N A(v11) = 0), we have N, = {11} U (]Vf,c N A(Vlo)) and
N, = N, N A(vy9) independent of & € Xy,. Similarly, if ¥(v;) = 1, we have w(x) = T,

N, and Nm independent of & € Ax..

Finally, suppose ¥(1;) = O. By the induction hypothesis applied to X and ©®), we
have 2 € {H, T} and 2® € {H, T} such that w (I (v10)) = 2" and w (I, (v11)) = 2™

for x € Xs. The fact that X(v;) = O implies that 2(®) = T. Let N (N®), resp.)
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be the set of nodes in A(v1g) (A(v41), resp.) that are affected by w (I, (119)) = 2V
(w(Ix(r11)) = 2®), resp.). Let N® (N®_ resp.) be the set of nodes in-A(vio) (A(v11),
resp.) where an output bit is induced by w (I (v19)) = 2 (w(Ix(v11)) = 2™, resp.).
Note that by the induction hypothesis, the sets N, N®_ N1 and N® are independent
of x € Xs. It follows that N, = {1} UN® U N® and N, = N® U N® are
independent of x € AXy. If z® = H, then w(x) = H, independent of x € Ax. If

2z®) =T, then w(x) = T, independent of = € Xsx. The proof is complete. O

Lemma 3.5. For a status tree 3., the 3-properties nx,(v), ks(v), Us(v) satisfy the follow-

ing conditions. For each node v,

ls(v) +1(S(v) = 0or 1) = ks(Av), nx(pr) = ng(A\v) — ks(Av)
k)g(V) = ]{?g()\l/) + 2]€g(pV) + I(Z(V) = H),

ns(v) — ks(v) = ks(\v) + 2(ns(pv) — ks(pr)) + 1(2(v) = T).

Proof. Let Sbea {H, T, O}-labeled status tree as defined in (3.7). Noting that X5, C X,

Lemma 3.5 follows from Lemma 3.1. O]

Lemma 3.6. Let X be a status tree and Xy, = {x : Xy = X} # 0. Let n(v) = nx(v),
k(v) = ks(v), £ = lx, l(v) = Uls(v) be the X-properties such that |I,(v)| = n(v),
LW = k), ((v) = |dw(L1)] — 1(Z(v) = 0orl), and ¢ = > ((v) =

|\dp(x)| — {v : S(v) = 0 or 1}| for & € Xs. Then | Xs| = 2"

Proof. The lemma holds trivially for > with 0x, = 0 or 1 since ¢/ = 0 and |Xx| = 1. We
proceed by induction on dx;.. Suppose the lemma holds for 3 with 5, < m for some m > 1.
Consider a status tree ¥ with §x, = m + 1. Let 3 = X|a(,,,) and Z®) = |5, Let
() =3 enp () and (&) =357 ((v). By the induction hypothesis applied to
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>0 and ©®) we have | X0 | = 2 and | Xow | = 2. By Lemma 3.5, for 2® € X,

and z® € Xow),

(@M = k(v10) = L07)+1(3() = Oor 1), M7 = n(1v10)—k(r10) = nlvn) = [2®)].

If ¢(1) > 1, then for each y € {0,1}), (™), ™ y) determines a unique z € s
such that A\(z) = =), p(x) = z® and Fn(z) = yif (1) # 0 or 1 or An(z) =
y * X(11) if B(v1) = 0 or 1, where * is concatenation. If {(v;) = 0, then (), z®)
determines a unique = € Ay such that A\(z) = =), p(z) = z® and A n(x) = 0 if
Y(vy1) # 0or1or dyn(x) = X(1y) if 2(v1) = 0 or 1. Indeed, the mapping f : Xs —
Xow) X Xywm x {0,114 with f(z) = (M=), p(x), dj\(x)) is 1-1 and onto where
i (x) is dyn(x) if X(v1) # 0 or 1 or o () with the last bit deleted if ¥(v1) = 0 or 1.

This shows that

‘XE‘ = ’X2(L>’ X |X2(R)| x 2t)

— 9 o™ oln) — of

The proof is complete.

Proposition 3.4. Let of75(x) denote the output sequence generated by 9f7g applied to x
according to any given node ordering. Let Y be a status tree with { = (s, > 1. Then given
Yx = Y, the conditional distribution of Azg(X) is uniform on {0,1}%. Consequently,

given |d7g(X)| = {, the conditional distribution of 97g(X) is uniform on {0, 1}*.

Proof. To establish that of7g|x,. : X5, — {0, 1}%is 1-1 and onto, by Lemma 3.6, it suffices
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to show that
if d7p(x’) = Szg(x") for ', 2" € Xy, then ' = z”. (3.8)

Let ny, be such that |x| = ny, for x € Xyx. If ny = 1, (3.8) holds trivially since |Xx| = 1.

We proceed by induction on ny.

Suppose (3.8) holds for X with ny; < m — 1 for some m > 2. Consider a status tree
Y withny =mand / = lx > 1. Let2’, 2" € Xy, be such that of7g(x') = Azg(x”). We
need to show that ' = «”. By Lemma 3.4, w(x') = w(x”), Np = Ng» and N, = Ny
Lety = g1y = dzp(@') = dza(x”) € {0,1}". Lety = [Nos|(= |Ngw). Since
Nu = N, we have dzg(x’ ) = dzg(x” ) = yp-- - Y¢—~y, Where &’ and x”
are, respectively, ' and =" with the last term deleted. We claim that ¥y = X v .
To prove the claim, we have Y3y (v) = Xgor (v) = X(v) for v & Np(= Ngv). For

v € Ny(= Ny»), Y (v)and ¥gr (v) are the (same) output bit at v (induced by w(x')

and w(z")). Forv € Ny \ Ng' (= Ng» \ Ng»), we have

0) if¥(v)=HorT,
w(I(pr)) ifS(v) =0,

Sur (V) = S () =
H ifS(v) =1,

T if X(v) = 0.

(Note that for v € Ny \ N, £4r (v) # 0 or 1. Note also that w (I, (pv)) is independent

of ¢ € Xy, by Lemma 3.4.) This established the claim that ¥, =2

By the induction hypothesis applied to the status tree of X,» = 3g» together

"
—m»

with ozg(x’ ) = dzs(x”,,), we have ' = x” , implying that ' = " (since
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w(zx') = w(x”) by Lemma 3.4). The proof is complete. 0

3.5 Counting status trees

For X,, = (Xi,...,X,) € {H,T}", an iid sequence with P(X; = H) = p, to
compute E, |/p(X,,)], it is useful to find aé"’k) = |{S ‘ns =n,ks = k,ls = é}‘ for
integers k < n, ¢ < n — 1, where ng, ks and (s are the S-properties such that x| = ng,
|z|y = ks and |op(x)| = (s for x € Xs. By Proposition 3.2, we have |Xs| = 2°s.
We write € ~ x’ if S, = S,/, which is an equivalence relation. The set .S, = {a: €
{H,T}" : |x|y = k, |&|r = n — k} is then partitioned into equivalence classes each of

which corresponds to a status tree. The equivalence class corresponding to a status trees

S is Xs whose cardinality is 2°s. Given agn’k) = ‘{S :ns =n, ks = k,ls = (}|, the set
Sy, k 1 partitioned into agn’k) classes of cardinality 2¢, / = 0,1, . ... Consequently,
n n,k) ¢
(k:) => a2
>0
As an example, for n = 10, k = 4, we have
a(110’4) 1, ag1o,4) _9 a§10’4) Y a§10’4) _y, aé10’4) _9 aé10’4) 1

and a,gloA) =0forl ¢ {1,...,6}. Itis easily verified that

1
> a2l =210 = ( 40).

>0
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Given aé s, E, |9/p(X,,)| can be calculated by

Ep|dp |_ZZ€Q(”/€)2Eknk

k=0 ¢>0

(n,k) s

To derive a recursive formula for a, "™’s, we need the following lemma.

Lemma 3.7. For a status tree S, we have
|| — |ofp ()| = [{v: S(v) # O}
forx € Xs.
Proof. The lemma holds trivially for S with s = 0 and 65 = 1. We proceed by induction
on ds. Suppose the lemma holds for S with 6s < m —1 for some m > 2. Consider a status

tree S with 0s = m. Let S® = 8|a(,,) and S® = S|a(,,,), both of depth < m — 1. For

x € Xs, we have

|| = 2L, (v10)| + 1(S(11) # O), (3.9)

[ L (v10)] = [Tz (v11)] + |un (). (3.10)

By the induction hypothesis applied to S™ and S®, we have

L (110)| = | olp (L (v10)) | = [{v : SV ()

(3.11)

L. (Vll)’—\ﬂP( z(V11) ’—HV s® )7&0}’ (3.12)

Adding the equations (3.9)—(3.12) yields

| — |olp (Lx(v10))| — |fp (L(vir)) | = {v - S(v) # O}| + | ()],
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implying that

x| — e ()| = [{v: S(v) # O}].

The proof is complete. O

By Lemma 3.7, a status tree S satisfies
ns —Lls = |{v: S(v) # O}|.

It is convenient to introduce the infinite-dimensional vector

In other words, the i-th element of D, ;, (¢ < n + 1) is the number of status trees S with
ns = n, ks = k and |{V :S(v) # O}‘ = i — 1 (implying that /s = ns — i + 1). Let
N°° be the set of infinite-dimensional vectors of non-negative integers with finitely many

non-zero elements. For D = (dy,ds,...) and D' = (d}, d),...) € N*°, define
D+ D' = (dy+dj,dy+d,...)
and
DD/ = ( Z d,ez) ( Z d;-ej>
i J
= Z dzd;ele]
.3
= Z did}eiﬂfl,
1,J

where e; = (0,...,0,1,0,...) is the infinite-dimensional vector with the ith element 1
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and all the other elements zeros.

Lemma 3.8. We have D,,, = D,, ,,_.

Proof. Forx = (21,...2,) € {H,T}", letx = (Zy,...,7,) € {H, T}" be such that
T # 2,10 =1,...,n. Wehave x € S, ifand only if x € S, ,,_j. It is readily seen
that S, and Sz satisfy that S;(v) = Sz(v) for v # vpi_y), ¢ = 1,2,... and that for
v = Vgi_1), either Sp(v) = Sz(v) = O or Sp(v), Sz(v) € {H, T} and Sp(v) # Sz(v).

In particular,

{v: 8Su(v) # O} = {v : Sz(v) # O}|. It follows from Lemma 3.7 that

al™* = a{""* The proof is complete. O

Note that D(),(_) = (1,0,0, .. ) = e and Dl,O = D171 = (0, 1, O, .. ) = €o.

Proposition 3.5. Letn > 2and k > 1. Then

(i) forevenn > 2and k < n/2,

[%/2]
Dpk =Y Day2iDs kinii

i=0
(i) foroddn > 3 and k < n/2,
D= Do (Dn—l,k + Dn—1,k—1)-
Proof. To prove (i), let n > 2be even and 0 < k < n/2. Forx € S,, s, we have
Ax) € S k-2 and plx) € Sn_pioii forsome( <i < Lk/2].

Moreover, Sy (v1) = O,

Sm|A(V10) = S)\(:c) and Sm|A(V11) = Sp(:l:)’
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implying that S, is uniquely determined by Sy ;) and S,(z). On the other hand, for u €
Sn g9 and v € Sn_jyo; ;, there is a unique x € S, ;. such that A(x) = u and p(z) = v.
Furthermore, the three status trees S, S, and S, satisty S, = Sz |a@w10)s So = Salawiy)
and [{v : Sp(v) # O} = |[{v : Su(v) # O} + [{v : Su(v) # O}|. This establishes the

formula in (i). To prove (ii), note that

Sn,k = {a: *xT:x € Sn—l,k} U {w «xH:x € Sn—l,k—l}

A status tree S, with @ € S, and S;(r1) = T induces the status tree S, , with
Sz (1) =0and S, (v) = S;(v) for v # vy, where ©_,, € S, is & with the last
term deleted. Similarly, a status tree S, with € S, ;, and S;(v1) = H induces the status
tree S , with S, (r1) = Oand S, , (v) = Sp(v) for v # vy, where x_,, € Sp,—1, 1.
Conversely, a status tree S, with © € S,,_1 ; induces the status tree Sp.r withx +*T € S,
and Sz.r(11) = T and Szur(v) = S (v) for v # vy, A status tree S, withx € S, ;1
induces the status tree Sy With  * H € S, and Sp.n(v1) = Hand Szun(v) = Si(v)

for v #£ v;. This establishes the formula in (ii). The proof is complete. [
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Chapter 4 Concluding remarks

In this dissertation, we have studied the asymptotic behavior of Peres’ algorithm and
introduced and analyzed its streaming versions. Specifically, by exploiting the recursion

in (2.3), we derived for p = %

log(nh(p) — E, |9p (X, 1 5
i log(nh(p) — By e (X)) :Qzlog( +\/_), @1
n—o0 logn 2
where X,, = (X1,...,X,) is the input sequence of the outcomes of n coin tosses with

bias p, | 9/p(X,)| is the number of unbiased output bits generated by Peres’ algorithm o/p
applied to X,, and h(p) = —plogp — (1 — p)log(1 — p) is the Shannon entropy of each
X;. Forp = %, the coin is unbiased and the input sequence consists of n iid unbiased
observations, so that nh(p) — E, |p(X,,)| = n — Ey /2 |9p(X,,)| may be referred to as
the cost incurred by &/p when not knowing p = % It is a challenging task to obtain more
refined results beyond (4.1). A positive sequence {L(n)} is said to be regularly varying
of index 6 if

lim L(lan])/L(n) = o’ forall a > 0.

n—oo

(See Bojanic and Seneta [3] for a unified theory of regularly varying sequences.) Fig-
ures 2.3 and 2.4 suggest that n — E,, |/p(X,,)| may be a regularly varying sequence.

Furthermore, it is of interest to see if (n — B2 |&p(X,)|)/n’ converges to a positive
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constant (which would imply that n — E, 5 |&/p(X,,)| is regularly varying of index ¢)..If
so, how can this constant be characterized? For p # %, no recursion like (2.3) is avail-
able. It seems difficult to derive an asymptotic result on nh(p) — E, |/p(X,,)| similar
to (4.1). Furthermore, Var, (|p(X,)|), the variance of |/p(X,)|, is also of interest and
importance. Even for p = %, it seems challenging to derive the asymptotic behavior of

Vary 5 (|9p(X,)|) as n — oc.

The original Peres’ algorithm /p is not streaming in the sense that some of the output
bits in o/p(X,,) may be placed after the output bits induced by X,,.;. We introduced a
binary tree representation of &/p, based on which we further introduced a class of streaming
versions of &p in terms of orderings of the nodes of the binary tree. We showed by example
that in general a streaming version of &/p is not unbiased. By establishing some useful
properties of status trees, we showed that a particular streaming version of </p (denoted
s) is unbiased. We also showed that a delayed version of &/s proposed by Zhou and

Bruck [30] is unbiased.

The algorithms considered in this dissertation are in the fixed-to-variable length regime
where the length of the input sequence is fixed while the number of output bits is random.
In practical applications, the variable-to-fixed length regime may be more relevant where
a (fixed) number of (unbiased) output bits is required and the length of the input sequence
is random, in which case a stopping time is involved (i.e. stopping at the first time when
the number of output bits meets the requirement). Variants of Peres’ algorithm in the

variable-to-fixed length regime are worth further investigation.
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