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Abstract

Under global warming, many species might be unable to adapt to the

environmental changes, leading to extinction or migration. Predicting community

changes is therefore an urgent issue. However, many studies focused on predicting the

effects of climate change on individual species, ignoring that different magnitudes of

climate-change-driven migration among species might affect their potential interaction.

Given the limited geographical but wide altitudinal range, the island Taiwan is a

suitable location to study the effects of differential altitudinal shift of species facing

climate change. In this study, we modeled the impact of climate change on vegetation

community from two aspects: the decline of local species and the overall community

change after accounting for foreign migrating species. In terms of local species, regions

in low altitude (below 1,000 m above sea level [asl]) are highly threatened. For overall

community change, on the other hand, middle-altitude (1,000 - 2,800 m asl) mountains

across Taiwan, has the highest community change. However, species at high altitudes

(above 2,800 m asl) also face high abiotic stress, as well as competition from the

upward shift of some mid-altitude species. Such discrepancy might result from the

differential altitudinal migration of species: comparing to high-elevation species, those

originally reside in low elevation have higher upward altitudinal shift, resulting in large

local species decline in lower elevation and more immigrants causing overall
iii
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community change in middle-altitude regions. This was supported by species co-

existence network analyses: in the future, the boundaries among distinct vegetation

community modules identified by their current co-existence become more obscure,

especially between the modules originating from middle- and low-altitudes. Therefore,

although the future distribution of middle-altitude species seems less affected by the

change of abiotic climatic factors, such biotic factor of community structure disruption

might restrict the living space available to local middle-altitude species. Furthermore,

extreme weather must be considered in the discussion of climate change, and regions

with high frequency of extreme weather events from historical climate data require

more attention.

Keyword:

Climate change, Community change, Network, Vegetation composition, Extreme

weather

d0i:10.6342/NTU202102520



Table of contents

EH i
M2 i
Abstract il
Table of contents \4
Tables —--mmmmmmm oo vii
FigUIes —mmm o mm oo o s e viil
Introduction 1
Materials and Methods 7
Study area 7
Vegetation data 8
Climate data 9
Species distribution modelling (SDM) 10
Community change in the future 13
Community change with specialist and generalist 15
Identifying and characterizing plant co-existence modules 16
The phylogenetic structure of co-existing modules 18
The alteration of community structure 19
Extreme weather 20
Results 21
Species distribution modelling (SDM) 21
Patterns of local decline and overall community change across Taiwan---------- 22

Mismatch between local decline and overall community change caused by

Differential altitudinal shifts 26

d0i:10.6342/NTU202102520



The properties of species-co-existence network 28
The alteration of community structure 31
Extreme weather 32
Discussion 34
Novel approaches to investigate species’ fate 34
Community change 38
Generalist & specialist 45
Community restructuring 46
Extreme weather 48
Conclusion ---- 49
Reference 50
Tables 60
Figures 66

Vi

d0i:10.6342/NTU202102520



Tables

Table 1. Formula Table for converting TCCIP data to Worldclim format. --------=----- 60
Table 2. Proportion of the top three importance bioclimatic variables across all species

in all species distribution modelling. 61

Table 3. Proportion of the top three importance bioclimatic variables across all species

in all gradient forest models. 62
Table 4. Co-existence modules with species significantly concentrating in certain clades.
63

Table 5. Families with enriched number of species within each co- existence module. 64

vii

d0i:10.6342/NTU202102520



Figures

Figure 1. The biodiversity composition in current and future conditions. --=------==----- 66

Figure 2. The change of plant communities in Taiwan. 67

Figure 3. The local decline of plant community in species of different niche space. --- 68
Figure 4. The elevation shift (A) and extinction proportion (B) of plants. --------------- 69
Figure 5. The phylogenetic tree of all species used for analyses in eastern Taiwan.---- 70

Figure 6. Change of community structure between current and future conditions in the

eastern (A), western (B), southern (C), and northern (D) regions of Taiwan. ----------- 71
Figure 7. The frequency of four types of extreme weather events in Taiwan. ----------- 72
Supplementary Figure 1. All study sites in four regions of Taiwan. 73
Supplementary Figure 2. Pairwise correlation of 19 bioclimatic variables. -------------- 74

Supplementary Figure 3. Change of climatic variables in four regions under Rcp8.5

scenario and HadGEM2-AO general circulation models (GCMs). 75

Supplementary Figure 4. Change of climatic variables in four regions under Rcp4.5

scenario and HadGEM2-AO general circulation models (GCMs). 76
Supplementary Figure 5. The area under the ROC curve (AUC) of eight different

algorithms. 71

Supplementary Figure 6. True Skill Statistic (TSS) evaluation of eight different

algorithms. 78

Supplementary Figure 7. The correlation of suitability values between MAXENT and
ensemble methods in the current (A) and the future (B) conditions (Rcp8.5 in 2081-

2100). 79

Supplementary Figure 8. The change of climatic variable in Rcp8.5 at 2081-2100.---- 80

viii

d0i:10.6342/NTU202102520



Supplementary Figure 9. The local decline of plant communities in Taiwan with two
scenarios (Rcp4.5 and 8.5) and three time periods (p1: 2016-2035, p2: 2046-2065, p3:

2081-2100). 81

Supplementary Figure 10. The local decline of plant communities in Taiwan with two
scenarios (Rcp4.5 and 8.5) and three time periods (pl: 2016-2035, p2: 2046-2065, p3:

2081-2100). 82

Supplementary Figure 11. The overall change of plant communities in Taiwan with two
scenarios (Rcp4.5 and 85) and three time periods (p1: 2016-2035, p2: 2046-2065, p3:

2081-2100). &3

Supplementary Figure 12. The overall change of plant communities in Taiwan with two
scenarios (Rcp4.5 and 8.5) and three time periods (pl: 2016-2035, p2: 2046-2065, p3:

2081-2100). 84

Supplementary Figure 13. The overall cahange of plant communities in Taiwan with

two scenarios (Rcp4.5 and 8.5) and three time periods (p1: 2016-2035, p2: 2046-2065,

p3:2081-2100). 85
Supplementary Figure 14. The current (A) and future (B) altitudinal distribution of each

species. 86

Supplementary Figure 15. The modules’ distribution in the eastern (A), western (B),

southern (C), northern (D), southern (before merge) (E), northern (before merge) (E)

regions of Taiwan. 88

Supplementary Figure 16. The altitudinal distribution of different modules before merge.

89
Supplementary Figure 17. The altitudinal distribution of different modules. ------------ 90
Supplementary Figure 18. The percentage of different vegetation types in different
modules. 91

d0i:10.6342/NTU202102520



Supplementary Figure 19. The community structure change in current and future

conditions in the eastern (A), western (B), southern (C), and northern (D) regions of

Taiwan. 92
Supplementary Figure 20. The community structure change in current and future

conditions in the eastern (A), western (B), southern (C), and northern (D) regions of

Taiwan. 93
Supplementary Figure 21. The frequency of extreme high-temperature (A) low-
temperature (B) high-rainfall (C), and drought (D) events in three time periods. ------- 94
Supplementary Figure 22. The community offset from two data form. ------------------ 95
Supplementary Figure 23. The altitudinal distribution of different modules with three

different methods. 96

Supplementary Figure 24. The number of species in current and upon climate change

(Rep8.5, MAXENT, 2081-2100). 97
Supplementary Figure 25. The correlation between trace and determinant of species’

niche space. 98

d0i:10.6342/NTU202102520



Introduction

Due to anthropogenic climate change [1], recent reports indicated that the global

temperature has increased by 1.0 degree Celsius than pre-industrial levels [2]. If the

Earth maintains the present rate of warming, the temperature rise will reach 1.5 degree

Celsius in 2030-2050. Moreover, the Earth's surface temperature in 2006-2015 is higher

than the observed value of 1850-1900 by 0.87 degrees, indicating that the temperature

has increased more rapidly in recent years [2]. The pattern of precipitation has also been

changing. The massive increase in heat may cause more intense evaporation, resulting

in longer droughts in some areas. Furthermore, the air moisture content will increase by

7% as temperature increases by 1 degree Celsius. Therefore, the intensity of

precipitation from typhoon rain, convective rain, and topographic rain might increase

due to the increase of moisture in the atmosphere, potentially causing more flooding. In

general, dry regions may become drier in the future, and humid regions may become

more humid [3]. Such a drastic change in temperature and precipitation may cause many

organisms to shift to more suitable locations or even extinct if they cannot shift to

appropriate environments [4, 5]. Moreover, each species has a different response in face

of climate change, and such differences in the rates and magnitudes of distribution shift

may cause new co-existence relationships. These novel interactions may change

1
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ecosystem composition and function, potentially accelerating the collapse of the

ecosystem [5-7].

The geographic distribution of plants is strongly influenced by climatic factors [8].

Drastic climate change therefore may have a serious impact on vegetation. In particular,

montane vegetation is sensitive to climate change [9-12], since the steep topography

triggers more noticeable variation. These alterations have been confirmed in several

studies through repeated surveys at the same locations. By comparing the records of

past and current European vegetation, researchers showed that species have moved to

higher altitudes, and at the same time the richness of species in the highest altitudes has

increased [13-20]. Similarly, some studies show that the richness of high mountain

vegetation is gradually declining through surveys of long-term in high mountains [18,

21]. Similarly, a study comparing the current Andean vegetation composition with that

from 1802 has found that the whole vegetation has shifted to higher elevations [22].

These results indicate that climate change has strongly re-shaped the vegetation and

demonstrate that climate is the dominant factor controlling the difference in altitude

distribution of vegetation.

In recent years, with the improvement in the accuracy of global climate datasets

[23-25], there has been an increase in the number of studies modelling the species

2
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distribution [26]. These studies have unequivocally predicted that vegetation may face

adaptation challenges as the changing pattern of precipitation and increasing

temperature at the end of the 21st century, in particular, the alpine community in the

cold and temperate zone may be the most vulnerable vegetation type under climate

change [27-29]. Ecologists have also predicted the vegetation in 22 protected areas in

North America and found that the original alpine communities at the highest elevations

would all disappear under the most severe scenario [30]. Moreover, most high-altitude

species in the tropical mountains of northeastern Australia are also predicted to lose

suitable habitat, indicating that species inhabiting tropical mountaintops are equally

vulnerable to threats caused by climate change [31].

While many such studies have been performed, most of these studies were

conducted at high-latitudes regions, and their main conclusions focused on the changes

and challenges of species at high altitudes or mountain tops (highest elevations) [13-20].

Although it has been reported that tropical vegetation is as strongly affected by climate

change as high latitude areas, studies on the fate of vegetation in low altitude or low

latitude are still scarce [32-37]. Therefore, in this study, we not only focused on the

change of species and vegetation at higher altitudes but also described the change of

vegetation along the altitudinal gradient sub-tropical mountains. With such efforts, one

3
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may be able to investigate the potentially distinct types of stresses that vegetation

communities from different altitudes may face.

Jump et al. (2009) mentioned that, on average, an altitude increase of 167 meters

can decrease the temperature by one degree Celsius, but the same temperature shift

requires 145 km of latitudinal change [38]. Taiwan is a small island with an altitudinal

difference of about 4,000 meters in an area of 36,000 square kilometers, and in the

mountainous regions, such temperature shift could be achieved in less than 2 km of

geographical distance. Therefore, Taiwan is an ideal site to more realistically model

Furthermore, the diverse climate has led to the growth of highly diverse vegetation

ecosystems including high-mountain coniferous woodlands and forests, subtropical

mountain zonal forests, tropical mountain zonal forests, tropical mountain azonal forests,

subtropical mountain azonal woodlands and forests, and seashore woodlands and

mangroves [39], thereby allowing us to simultaneously evaluate the changes of

vegetation in different altitudinal zones.

In Taiwan, Su ef al. (1984) defined the physiognomy of forests into six different

vegetation zones according to climate, altitude, and dominant tree species [40]. He also

described the relationship between geo-climatic zones and vegetation distribution.

Subsequently, from 2003 to 2009, the government of Taiwan conducted an island-wide

4
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vegetation inventory to investigate the composition and number of species based on

3,000 sample plots. Therefore, Li et al. (2013) used these detailed data to further

subdivide the forest into 21 vegetation types, including zonal forest azonal forest types,

providing formal definitions and describing their habitat characteristics, species

composition and geographic distribution.

With the presence of data for each species, the researcher could further predict

vegetation changes in the future through vegetation and climate information. Previous

studies have modelled the future vegetational distribution of Taiwan [37, 41], both

using the species distribution model (SDM) [42], a common tool for predicting species

distribution. The results are also consistent with most of the studies mentioned above.

They both mentioned that most of the vegetation might have an upward shift in altitude

distribution, and the distribution of area in high-altitude vegetation may shrink in the

future. This shift may cause overall community restructuring, potentially changing the

interaction relationships among species, increasing the biotic stress on local vegetation,

such as competition and compression niche, leading to another type of adversity.

However, both studies used vegetation type as units for distribution modelling instead

of species, potentially ignoring that each species has a different magnitude of altitudinal

shift under climate change. To address this, here we establish a large number of species-

5
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level SDM and compare species distributions between current and future conditions to

investigate community change.

This study aims to comprehensively analyze the different challenges that tropical

mountain vegetation might encounter under climate change. We predicted alterations in

vegetation composition through the multiple SDM. We also consider that each species

may have different magnitudes of altitudinal shift, resulting in the restructuring of the

overall community.
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Materials and Methods

Study area

Taiwan is a subtropical continental island in East Asia with an area of about 36,000

km?. More than 70% of the area contains mountains and hills with the highest peak at

3,952 m above sea level (asl) (Supplementary Figure 1). Due to the highly variable

topography, Taiwan contains many climate zones from low to high elevation. Therefore,

species with different niches distribute along the altitudinal gradient, resulting in a

highly diverse ecosystem, including, high-mountain coniferous woodlands and forests,

subtropical mountain zonal forests, tropical mountain zonal forests, tropical mountain

azonal forests, subtropical mountain azonal woodlands and forests, and seashore

woodlands and mangroves [39]. In addition to the altitudinal difference, the northern

and southern parts of Taiwan belong to different climatic zones due to seasonal

monsoon. In the north, the northeast monsoon brings cold weather and plentiful

precipitation in winter, resulting in a perennial humid climate in the northern area. In

contrast to the northern areas, the climate of the southern area is marked by distinct dry

and wet seasons.
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Vegetation data

The First National Vegetation Inventory in Taiwan [43], which established more

than 3000 permanent plots (20 x 20 m) throughout Taiwan’s natural forest (no open

ground) (Supplementary Figure 1). The survey was completed in 2008, and it recorded

more than 65% of native vascular plant species. In this investigation, 90% of plots
p Y g p

contain four or five sub-plots (10 x 10 m), while the remaining plots contain more than

five sub-plots. For this study, we selected plots with the four or five sub-plots and

averaged counting records of all subplots within the same plot. In summary, this dataset

contains 3080 plots with 2569 species recorded at least once. Based on subsequent

analysis needs, we separated Taiwan into four regions (East, West, South, North) by

major mountain ridgeline and climate zone, where the northern region covers area

facing northeastern winter monsoon, the southern region covers regions facing

southwestern summer monsoon, and the remaining region was separated into east and

west mainly based on the highest ridgeline of the central mountain range [44-46].

Furthermore, we removed 20 plots in Shoushan due to the geographical isolation from

other plots and filtered out species that appeared in less than five plots or more than

95% of plots in a region. For analysis in each region separately, we used the above

filtering criteria, and for the analyses involving whole Taiwan, species retained in each

8
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region were used together. Finally, we used 552 woody species and 447 herbaceous

plants for follow-up analyses.

Climate data

We used climate data (1960-2009) of 5 x 5 km grid from the Taiwan Climate

Change Projection Information And Adaptation Knowledge Platform (TCCIP;

http://tccip.ncdr.nat.gov.tw/NCDR/main/usage.aspx). In this dataset, the climate of each

grid was interpolated by summarizing data from more than one thousand weather

stations, providing better local climate estimates than global databases. This dataset

recorded many climate variables, including monthly mean temperature (Tmean0O1 to

Tmean12), monthly maximum temperature (Tmax01 to Tmax12), monthly minimum

temperature (TminO1 to Tmin12), and monthly precipitation (precipO1 to precipl2). For

future climate, TCCIP contains 49 different general circulation models (GCMs) with

four different magnitudes of warming scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5)

and three periods (2016-2035, 2046-2065, 2081-2100). Furthermore, to acquire more

precise and continuous climate values across finer geographic scale, we used the climate

regression method [47], which incorporates local altitudinal information (100 x 100 m)
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and spatial smoothing function. All data (100 x 100 m) were then converted to 1 x 1 km

grid data by R package raster [48]. Finally, nineteen bioclimatic variables were

calculated based on TCCIP data set and R function biovars in dismo packages [49]

(Table 1). These 19 bioclimate variables (BIO1-BIO19) include current and future

conditions, one GCM (HadGEM2-AO) which was recommended for Taiwan [50] two

warming scenarios (RCP4.5, RCP8.5) and three different periods (2016-2035, 2046-

2065, 2081-2100). In addition, to avoid autocorrelation, we conducted the pairwise

correlation analysis between all variables (BIO1-BIO19) to eliminate highly correlated

(Pearson’s r > 0.75) variables (Supplementary Figure 2). In summary, we used eight

variables including Biol: Annual Mean Temperature, BIO2: Mean Diurnal Range,

BIO4: Temperature Seasonality, BIO7: Temperature Annual Range, BIO12: Annual

Precipitation, BIO15: Precipitation Seasonality, BIO16: Precipitation of Wettest Quarter,

and BIO19: Precipitation of Coldest Quarter (Supplementary Figure 3, 4).

Species distribution modelling (SDM)

Species distribution modelling is a popular tool in ecology [42], and it has widely

been used on predicting species distribution at different climate scenarios. Before we
10
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modeled the species distribution, we needed to prepare three required data, including the

location of presence and absence, and environment variables. Here we used MAXENT

[51], a population SDM application, and the ensemble method [52], which calculated

the weighted average of eight different algorithms, including generalized linear mode

[53], generalized additive model [54], support vector machine [55], Flexible

Discriminant Analysis [56], multivariate adaptive regression spline [57], Random Forest

[58], boosted regression trees [59], and Maxent [51]. First, we did the SDMs with 552

woody species and 447 herbaceous species by their presence records and randomly

selected 1000 absence points to be background values. The models were evaluated with

five runs of 5-fold cross-validation, and model accuracy was evaluated by True Skill

Statistic [60, 61], recommended to be above 0.4, and AUC (The area under the ROC

curve), recommended to be above 0.7 [62]. Models with these values lower than

recommended were removed from the community change analyses. Finally, SDM was

extrapolated to GCM and two warming scenarios on three different periods as

mentioned above.

As part of the goal of this study, we estimated the altitudinal distribution of each

species in current and various future climatic conditions. Since SDM reported a

continuous value of suitability ranging from 0 to 1, we first identified the threshold of

11
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suitability value for each species to be called presence or absence in each location.

Sensitivity-specificity sum maximization approach, calculated by the maximized sum of

sensitivity (the proportion of real presence predicted to the presence in the model) and

specificity (the proportion of real absence predicted to absence in the model), was

recommended to be the threshold that transferred the probability distribution to presence

distribution for each species [63-65]. Based on the predicted current and future presence

locations of each species, we obtained their altitudinal distribution for further analyses.

The predicted presence allowed us to calculate the number of species at each

geographical grid to identify current and future biodiversity composition and the median

altitude of each species’ distribution. If there is no suitable area in the future for a

species, it was treated as extinct.

To ensure that SDM using MAXENT algorithm was feasible for subsequent

analyses, we calculated the correlation between the suitability values estimated by

MAXENT and the ensemble method. From the predicted suitability map of each species,

we randomly selected 10% of the grids and calculated the correlation of suitability

values between MAXENT and ensemble. This was done for both the current and future

SDM results. All SDM runs were produced using the package sdm in R [66, 67], and

the conversion between numeric suitability and presence/absence data for each species

12
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in each grid was determined by a threshold value, determined using the sensitivity-

specificity sum maximization method in the “evaluate” functions.
y

Community change in the future

Based on SDM, we modeled the impact of climate change on vegetation

community from two aspects: the decline of local species and the overall community

change after accounting for foreign migrant species. In each geographical grid, the

“local species” was defined based on the threshold value above. For local decline, for

each resident species we first subtracted SDM current suitability from future suitability.

Since only the negative value represents decline, all positive values were substituted by

zero, and absolute value was then taken for the remaining negative value. In each

geographic grid, such values were averaged across all resident species. For overall

community change considering the alternation involving all species, we simply

averaged the absolute suitability change across time of all species without any

modification, thus incorporating both the decline of local species and the increased

suitability of foreign species.

In addition to the SDM-based methods, for overall community change we further

employed a new algorithm, “’Gradient Forest’” [68]. Such method used continuous

13
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abundance data instead of categorical presence and absence as in most SDMs to

investigate species-environment relationship. The method was later adopted in

population genetics, using the association between allele frequency and environments to

identify genomic locations for environmental adaptation [69]. Fitzpatrick and Keller

(2015) further extended the method to model future “genetic offset”, identifying

geographic regions where local alleles are unfit to future climate change. Here we apply

this method back to community ecology to model the “community offset”. However,

the original investigation data has two issues. First, woody species were recorded as

individual counts and herbaceous species as the percentage area covered within a sub-

plot. Second, the distribution of survey plots does not appear random across Taiwan

mountainous regions. We therefore did not directly use the original survey data, but

instead used the aforementioned SDM results, using suitability values as numerical

input into gradient forest. While standard SDM compare the future and current species

distribution to estimate the impact of climate change, gradient forest first identified the

environmental ranges that best distinguish the abundance records and compared current

and future climates across the map to identify geographic regions with environmental

changes in the sensitive ranges. Since such offset measure is based on climate rather

than species distribution, one should focus the analyses only in the regions where a

14
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species naturally distributes. Given that northern and southern Taiwan contain unique

vegetation zones and species not found elsewhere in Taiwan [36], this analysis was

performed separately for the four regions of Taiwan (East, West, South, North). We

randomly selected 10% grids in each region and extracted SDM suitability and

environmental values for gradient forest and community offset analyses.

In addition, to understand whether different magnitudes of community change in

these four regions were related to their magnitudes of environmental change, we

calculated the absolute differences between current and future bioclimatic variables and

visualized those on maps.

Community change of specialist and generalist species

Specialist species have a narrower niche space than generalists [70-75]. Here we

aim to investigate whether specialists are more threatened than generalists in the future

and whether different magnitudes of future local decline in Taiwan are associated with

the abundance of restricted-distribution species. We first established the niche space of

each species to define the specialist and generalist of this study. From the presence data

predicted by SDM (converted from the numeric suitability data using a threshold,

above), we randomly selected 50 presence 1 x 1 km grids and extracted the

15
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environmental data from these grids (re-sampling if the species has less than 50

presence grids). From the resulting 50 x 8 matrix of each species (50 presence grids and

eight standardized bioclimatic variables), we built a covariance matrix among

bioclimatic variables and calculated the sum (trace) and the multiplication of the

eigenvalues (determinant). Since trace and determinant are measures of the space

occupied by the covariance matrix, their values therefore represent the “niche breadth”

of a species in the multidimensional niche space defined by the eight bioclimatic

variables. Higher value means the species distributes across wide environmental ranges

in Taiwan. Therefore, we defined the top 100 species with largest niche breadth as the

generalist and 100 species from the other extreme as the specialist. Local decline, based

on SDM, upon climate change was calculated separately for the two groups.

Identifying and characterizing plant co-existence modules

We found that those who originally reside in low or middle elevation have higher

upward altitudinal shift compared with the high-elevation species. To investigate

whether such differential altitudinal shift affects community structure, we first used

current species distribution to identify distinct plant co-existence modules (a community)

and simulated their future distribution.
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We established the co-existence network and identified plant community clusters

in four regions by the weighted gene co-expression network analysis (WGCNA) [76]. In

molecular biology, WGCNA was used to identify groups of genes that are highly co-

expressed. We applied the same concept to identify groups of species that are highly co-

existing. Here, each module is similar to a community. We used the aforementioned

data for gradient forest analysis to conduct the network analysis separately for four

regions (East, West, South, North). In short, the WGCNA method used pairwise

correlation between species suitability records to construct a topology overlap matrix,

and hierarchical clustering with the average method was used to produce a clustering

tree of species. The best number of modules and species assignment into groups was

determined by the dynamic tree cut algorithm. Species not having high-enough

correlation with any module remained un-assigned.

We compared these WGCNA results with previous studies on the classification of

Taiwan vegetation [39]. First, we calculated the average suitability of each module in its

distribution region from the SDM results of species in each module. We then compared

these results with previous manually curated and defined vegetation membership of

3824 plots: by taking the geographic coordinates of these 3824 plots, we extracted the

predicted suitability of these points in each module. Using the criteria of Lin et al.
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(2020), each plot is assigned to the most probable module. In this way, we can compare

our modules with the vegetation classification based on dominant woody plants.

The phylogenetic structure of co-existing modules

Here we tested whether the composition of species in the same module is random

with respect to their phylogenetic relationship, or whether they are concentrated in

specific phylogenetic groups (but these groups are not necessarily close to each other).

Specifically, for each species, we estimated the phylogenetic distance to the most

closely related species within the same module. If species of the same module tend to

concentrate in some phylogenetic groups, in the same module a species would tend to

find its closest species within the same clade and hence smaller phylogenetic distance

than random expectation. The phylogenetic tree was obtained from Phylomatic 3.0 [77],

and pairwise genetic distance was estimated with function “’cophenetic.phylo’” in R

¢

package “’ape’” [78]. The analyses were done separately for each region of Taiwan,
where the pairwise genetic distance matrix was pruned to retain only species in that

region. In each module we estimated the mean of species’ phylogenetic distance to the

closest species in the same module, and statistical significance was tested with 1000
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permutations, where we randomized the label denoting species membership to modules,

generating the null models that modules were randomly assigned.

To investigate whether different plant communities were enriched for different taxa,

we tested whether each taxon was over-represented in species number in a specific

module, compared with all other modules in the same region of Taiwan. We separated

all species in a region into four groups: a — species in this module and this family, b —

species in this module but not this family, ¢ — species not in this module and in this

family, d — species not in this module nor this family. The fold enrichment (odds ratio)

was calculated as (a/b)/(c/d), and statistical significance was estimated with Fisher’s

exact test.

The alteration of community structure

To visualize whether climate change alters the association among plant

communities defined by current co-existence relationships, we performed dimension

reduction on the spatial relationship of species’ current and future suitability records.

Specifically, for the aforementioned 10% random locations within each region of

Taiwan, we extracted the current and future suitability of all species. For this table of

suitability where rows are current and future species and columns are locations, we
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applied the un-supervised Uniform Manifold Approximation and Projection (UMAP)

[79] algorithm to visualize the relationship among all current and future species based

on their relationship of co-existence across the map.

Extreme weather

The climate change was not only carried with gradual changes but also caused

immediate harm on vegetation community. Besides, the extreme weather has been

discussed more because of the high frequency of extreme weather events in recent years

[80]. Therefore, we counted the frequency of extreme weather events by the definition

of previous study [81] including Heat (Extreme high temperature), Cold (Extreme low

temperature), Extreme rainfall and Extreme drought. In this analysis, we used historical

climate (1960-2018) of 5 x 5 km grid data from the TCCIP recorded with three different

variables, including the daily maximum temperature, daily minimum temperature, and

daily rainfall.
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Results

Species distribution modelling (SDM)

We performed species distribution modelling (SDM) for 999 species. The area

under the ROC curve (AUC) value of most models were greater than 0.7

(Supplementary Figure 5), and the average True Skill Statistic (TSS) were above 0.6

(Supplementary Figure 6), showing that the prediction model for most species

performed well. However, there are 18 species with AUC values less than 0.7 and 8

species with TSS less than 0.4. These species were excluded from subsequent analyses.

The results of important bioclimatic variables show that the most important

bioclimatic variable for 70% of the species was BIO1, indicating that temperature was

the main factor affecting the distribution. The second and third most important

bioclimatic variables depend on the response of each species to the environment, with a

certain proportion of either temperature (BIO1, BIO2, BIO4, BIO7) or precipitation

(BIO12, BIO15, BIO16, BIO19) bioclimatic variables. (Table 2) In addition, similar

results can be seen in the gradient forest algorithm. (Table 3)

We compared results from MAXENT with the ensemble method [52], which

calculated the weighted average of eight different algorithms (see Materials and
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Methods). The correlation coefficients of predicted suitability across randomly sampled

locations in Taiwan between the two algorithms are higher than 0.75 for 998 species in

the current condition and 813 species in the future (Supplementary Figure 7). Since the

two methods gave highly similar results, for some later analyses we mainly used results

from MAXENT.

Patterns of local decline and overall community change across Taiwan

We first observed the community change through biodiversity composition. We

found the vegetation composition and abundance distribution may change under future

scenarios. The high richness area in current mainly concentrates at about 1500 m asl,

while these areas under future scenarios may move to a higher altitude to about 2000 m

asl (Figure 1). In addition, according to the vegetation composition changing in

different altitudes, we also could find that the number of species in the area around 2000

m asl did not change. However, the results do not indicate that the community has not

changed, since it is possible that the loss of local species might be replenished by the

same number of immigrating species from other areas.

As a result, we modelled plant community alteration facing future climate change

from two aspects: the decline of local species and the overall community change,
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incorporating local decline and effects of immigration. In terms of the decline of local

species, we focused on whether local species will be able to adapt to climate change in

the future if they have no shift. Therefore, we only consider whether they could adapt to

future conditions at the original location. Based on the results of local decline and the

altitudinal information, we roughly divided the pattern of local decline into three

different altitude zones and combined the altitude distribution of vegetation from the

previous study to illustrate this result [36, 39]. We can see that the local decline in

altitudes below 1000 m asl (defined as low altitude in this study) is larger than in other

regions, and indicating the vegetation in low altitude regions including Drypetes-Helicia

forest, Dysoxylum-Machilus forest, Illicium-Cyclobalanopsis winter monsoon forest,

Phoebe-Machilus forest, Ficus-Machilus forest, and Pyrenaria-Machilus winter

monsoon forest may face highest local decline (Figure 2). The local decline in altitudes

between 1000 and 2800 meters asl (defined as middle altitude in this study) is lower

than in other regions, and this shows the vegetation in middle altitude including

Chamaecyparis cloud forest, Quercus cloud forest, Machilus-Castanopsis forest may

confront less abiotic stress (temperature or precipitation changing). However, we found

that the two vegetation zones, Fagus cloud forest, and Pasania-Elaeocarpus cloud

forest, have higher local decline than other cloud forests. Therefore, we checked the
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altitudinal distribution of this two vegetation and found they distribute at a lower

altitude (median below 1500 m asl). Finally, the local decline in altitudes higher than

2800 m asl (defined high altitude in this study) is higher than the middle altitude. This

result shows that both Juniperus woodland and scrub and Abies-Tsuga forest may face

environmental adaptation stress to a certain extent. In summary, the species in mid-

altitude might face relatively less environmental stress, followed by species in high-

altitude, while the species in low-altitude may face the strongest stress. However, it is

worth noting that the northern half of Taiwan had a higher local decline in middle

altitude areas than the south half (Figure 2). This result was supported by the climate

change in the northern region. The variables about precipitation (BIO12: Annual

Precipitation, BIO15: Precipitation Seasonality, BIO19: Precipitation of Coldest Quarter)

have more drastic change in the northern than the southern parts of Taiwan

(Supplementary Figure 8).

Why does such a pattern exist? Previous studies suggested species with narrower

niche space might be more vulnerable to climate change [82-85]. Therefore, we asked

whether different magnitudes of future local decline in Taiwan are associated with the

distribution of species with narrower niche space (niche specialists). We calculated the

trace value to define the niche space of each species and selected the top 100 species
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with the highest value as generalist (max 100) and the bottom 100 species with low

value as a specialist group (min 100). In terms of the number of species, both types of

species have similar patterns (Figure 3A), reflecting the pattern of overall species

richness across Taiwan (Figure 1).

On the other hand, in terms of the proportion of specialists and generalists among

local species in each geographical grid, specialists distributed at lower and higher

altitudes, while generalists distributed at lower and middle altitudes (Figure 3B). While

this distribution suggests the patterns of all-species local decline across Taiwan might

be driven by the uneven distribution of niche specialist, the predicted local decline

patterns of specialists and generalists resemble each other, and both have very similar

pattern with that obtained from all species combined (Figure 3C). Therefore, the results

suggest the uneven distribution of specialists and generalists may not be the main cause

of higher local decline at low and high altitudes.

In community change, we have the other viewpoint. In terms of overall change, it

considered the alternation involving all species, where we incorporated both the decline

of local species and the increased suitability of foreign species. All three methods

(MAXENT, ensemble, gradient forest) have the consistent results that that middle

altitude has the highest overall change, followed by high-altitude and low-altitude
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regions (Figure 2). This indicates that the greatest variation in the vegetation community

occurred at mid-altitude. It means if there is a high overall change, they might have

some issues with local communities not adapting in the future, face massive species

shifts from other areas (including from other elevation ranges) or both.

Mismatch between local decline and overall community change caused by differential

altitudinal shifts

While focusing on the effects of climate change on species suitability, most studies

emphasized the fate of high-elevation species [21, 85-87]. However, here we found a

mismatch between local decline and overall community change, each having the most

severe outcomes at different altitudinal ranges. Since local decline and overall change

differ by the factor of immigrant species, we further investigated whether differential

altitudinal shift results in such patterns. Therefore, we estimated the altitude distribution

of each species by SDM (MAXENT) and calculated the difference between the

elevation distribution in present and future. We can see that species distributed under

1500 m asl have a high upward shift (Figure 4A). In contrast, species in the 1500-2800

m asl altitude range have a relatively lower shift. In addition, it is worth noting that the

upward shift of species in high altitudes (higher than 2800 m asl) was also about 400 m.
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In summary, we found that different species have different magnitudes of altitude

shift due to climate change, and this variation is highly associated with the original

altitude of the species.

Although the highest peak of Taiwan is close to 4,000 m asl, the geographic area in

high elevation is limited (area higher than 3200 m asl consists of only 0.35 percent of

Taiwan). Therefore, is our prediction that low-elevation species have highest altitudinal

shift merely an artefact of the landscape of Taiwan, where species originating from mid-

or high-elevation regions have limited altitudinal space to climb up to? To test this, we

investigated whether the upper limits of species’ future altitudinal distributions reach

the altitudinal limits of Taiwan. From the results, we can see that the upper 90%

percentile of most of the species’ distribution range do not reach the limitation of

geography in Taiwan (Supplementary Figure 14), especially for the mid-altitude species,

whose upper range seldom reach 3,000 m asl. This indicates our prediction that low

altitude species have a higher upward shift than species in middle-altitude is not an

artefact of Taiwan’s topography.

However, due to geographical constraints, high-altitude species might not be able

to shift to higher altitudes, and it might lead to extinction. Indeed, the result shows that

high-altitude species have a high extinction risk (Figure 4B). Therefore, while the
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surviving high-altitude species have relatively low upward shift compared to species

from other altitudinal ranges, we do see higher extinction rate among high-elevation

species (Figure 4B), suggesting the magnitudes of upward shift for those extinct species

might exceed the geographic upper limit of Taiwan. Indeed, for the surviving high-

elevation species, their future altitudinal range are close to the geographic upper limit

(Supplementary Figure 14).

In summary, while the middle-altitude species might face less stress from abiotic

factors than low-altitude species do, resulting in less local decline and less need for an

upward altitudinal shift, biotic stress from large amounts of immigrant species from a

lower elevation might be an important impact. Such differential altitudinal shifts among

species might disrupt the boundaries among once distinct co-occurring species groups,

resulting in the restructuring of vegetation communities or even competition of habitats.

The properties of species-co-existence network

Before moving on to the restructuring of vegetation communities, we needed to

understand the species co-existence groups in Taiwan. To identify these groups, we

applied the weighted gene co-expression network analysis (WGCNA) [76, 88] to

identify groups of highly co-existing species. Here, each identified module is similar to
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a vegetation community. From the results of WGCNA, each of the four regions (east,

west, south, north) of Taiwan was divided into five modules. From the mean MAXENT

suitability of species within the same module (Supplementary Figure 15A-E) and their

altitudinal distributions (Supplementary Figure 16), we found that the distribution of

modules is mainly affected by altitude, so we defined these modules from high to low

altitude as module one to module five within each region. However, although the

southern and northern regions were divided into five groups by WGCNA, module four

and five were quite similar in their geographical and altitudinal distribution

(Supplementary Figure 17). We therefore merged these two groups into module four for

subsequent analyses.

In addition, we compared our modules with the expert-curated vegetation

classification of 3824 survey plots from previous studies [36, 39] The result shows that

our co-existence modules have different vegetation composition (Supplementary Figure

18). It is worth noting that modules three and four in the southern and northern regions

might have been classified in the same group in the previous classification since they

were mainly classified based on dominant woody plants. However, in our analysis, we

covered more species information (including herbaceous seed plants and ferns), which

contributes to the separation of these modules.
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To understand the properties of species composition of these modules, we

investigated their phylogenetic composition for species within the same module and

tested whether they distribute randomly across the phylogenetic tree or concentrate

within specific groups. The result shows that there are seven modules in which the mean

of species’ phylogenetic distance to the closest species in the same module is

significantly closer (p-value < 0.05) than the random expectation (Table 4).

Consistently, we found specific taxa are enriched in each module (Table 5). For

example, most of the modules in high altitude were enriched for Gentianaceae,

Pinaceae, and Poaceae. Mid-altitude modules are mostly enriched for Ericaceae and

Symplocaceae, and low-altitude modules are for Euphorbiaceae, Fabaceae, Moraceae,

and Rubiaceae. Eastern Taiwan

Eastern Taiwan has more modules with such property than other regions. From the

phylogenetic tree of all species in eastern Taiwan (Figure 5), we can see that the highest

altitude species were concentrated in gymnosperms, monocotyledons, and Asterids, and

the lowest altitude module was concentrated in Rosids.

Finally, according to the elevation distribution and families enriched, we found that

the species composition of the two highest modules (module one, module two) in the

southern and northern regions are similar to two middle-high modules (module two,

30

d0i:10.6342/NTU202102520



module three) in the eastern and western regions, indicating that the highest-elevation

locations in the northern and southern regions are lower than the eastern and western

regions (Supplementary Figure 16,17).

The alteration of community structure

From the above results (community change, species shift), we learnt that each

species may have a different response to climate change in the future, particularly in

terms of altitudinal shifts. Different magnitudes of climate-change-driven migration

among species might cause the change of vegetation community. The boundaries

between communities might be more obscure, and species in the original community

would face competition from foreign species, eventually changing the interactions of

species in the whole community. Here we used the current and future (Rcp8.5 in 2081-

2100) distribution data to construct the co-existence relationship among species across

time and climate change scenarios and visualized them using Uniform Manifold

Approximation and Projection (UMAP). Since the species co-existence modules were

constructed from their current distribution, in current conditions the boundaries between

these modules are quite clear and there is no overlapping between the modules (Figure 6,

first column). However, the modules may become obscure in the future (Figure 6,

31

d0i:10.6342/NTU202102520



second and third columns). Moreover, we found a large number of species in the low-

altitude module moving to the niche space of middle altitude module. In contrast,

although the species in middle-altitude also has a certain degree of shifting to the space

of high-altitude module, the magnitude is relatively less (Figure 6 third column). These

results of the restructuring of the vegetation community also correspond to the above-

mentioned results that low-altitude species have stronger upward shift than mid-altitude

species (Figure 4A). Interestingly, not all regions of Taiwan would have similarly

serious response, as the eastern and southern regions have relatively less change than

the northern and western regions under the moderate warming scenario (Rcp4.5) (Figure

6 second column). From the combination of all time periods (2016-2035, 2046-2065,

2081-2100) and scenarios (Rcp4.5, Rcp8.5), we found that the restructuring of the

vegetation may not be so drastic as Rcp8.5 in 2081-2100 under a lower warming

scenario (Rcp4.5) before 2065 (Supplementary Figure 19, and 20).

Extreme weather

However, in addition to resulting in shifts of overall temperature or precipitation,

climate change also includes extreme weather. Therefore, according to a recent study

Dodd et al. (2021), we calculated the frequency of four different extreme weather
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events (extreme high temperature, extreme low temperature, extreme rainfall, and

extreme drought) by the data from the past to the present 1960-2018. The highest

frequency of extremely high temperature occurred in the high northern mountains, high

southern mountains, and northeastern Taiwan, which are also the areas with the highest

overall change or local decline (Figure 7). On the other hand, extremely low

temperatures occurred in the central high mountains and eastern Taiwan. (Figure 7), but

the frequency is declining in recent years (Supplementary Figure 21).

In contrast, extreme rainfall and drought occurred in the southwestern region, and

the frequency of events in the southern region seems to be increasing (Supplementary

Figure 21). Therefore, these areas with a high frequency of extreme weather events

should be of high sensitivity.
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Discussion

In this study, we utilized interdisciplinary approaches to ecological studies and

compared whether the results differ from previous works. On the topic of the

restructuring of vegetation community under climate change, we investigated the

changes in vegetation from two aspects and showed the vegetation community in three

altitude zones (low, middle, and high) may encounter distinct fates. Moreover, each

species’ distinct response upon climatic change might cause the boundary between

communities to become blurred and partially overlapped. Besides the warming changes,

the threat of extreme weather should not be underestimated.

Novel approaches to investigate species’ fate

In this study, we modeled the impact of climate change on vegetation community

from two aspects: the decline of local species and the overall community change after

accounting for foreign migrating species. In overall change, besides simply averaging

the absolute suitability change of all species based on the species distribution model

(SDM), we tried the new algorithm, gradient forest, in community change. This method

has the advantage of using abundance data to directly calculate the relationship with

environmental variables, presenting the species-environment relationship in the most
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original state. Later, Fitzpatrick and Keller (2015) extended the method to population

genetics, simulating future "genetic offset" to estimate the mismatch between locally

adaptive alleles and future climates. We applied this concept to vegetation ecology and

named it “community offset”. However, we know that all species in a geographic region

may be unsuitable or suitable for future climate. Here, the concept of community offset

is equivalent to the overall change calculated by SDM-based methods.

Both gradient forest and SDM-based methods show similar results of high overall

change in mid-altitude zones. In our attempt, we first used the original abundance data

as input into gradient forest and calculated the community offset, which we noticed was

very different from the results of SDM-based methods. We further used SDM

suitability (randomly sampled from 10% of the grids), instead of the original abundance

data, as input into gradient forest. In this way, the community offset is similar to the

overall community change trend from SDM-based methods (Figure 2). Therefore, using

different data sources (original abundance data versus SDM suitability), the same

gradient forest method yielded distinct results. This discrepancy could be due to either

the data source or the distinct distribution of sampling locations (original plots versus

randomly chosen grids). To test this, we used SDM suitability values from the location

of the original survey plots to model community offset. The result appears similar to the
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community offset from the abundance data of the survey plots (Supplementary Figure

22). Therefore, the pattern of community offset using abundance data from the original

plots appears to result from the non-random distribution of survey plots across Taiwan,

resulting in poor community offset results. If one could use environmental factors to fit

a model and extrapolate the original abundance of each species across Taiwan, gradient

forest using abundance from randomly selected sites might be feasible.

The other new attempt is using weighted gene co-expression network analysis

(WGCNA) for identifying co-existence species modules, which was originally used in

molecular biology to find genes with similar expression patterns. A co-existence species

module, hence, represents a community where species have similar presence-absence

patterns. By comparing the results with previous studies [36, 39] (Supplementary Figure

15-18), our classification method is also able to roughly separate different vegetation

types. Moreover, we not only used the information of woody plants but also include

herbs and fern species. As the result, we can further subdivide some previous groups

into distinct groups (Supplementary Figure 15-18). While the previous vegetation

classification methods were mostly based on supervised learning (based on pre-defined

and curated vegetation groups) and classified locations into vegetation zones, here we

performed un-supervised classification to group species into co-existence modules. In
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addition, each species is assigned to only one community (module), and not all species

would be assigned into a module, while those that could be assigned to a module have a

high probability of co-existence with the community. Compared with the traditional

hierarchical clustering (h-cluster) [89] and k-means clustering (k-means) [90], WGCNA

is a new attempt in ecology for clustering. The difference between WGCNA and

traditional methods that it first created weighted co-expression networks by soft

thresholds and weight networks [88]. Moreover, adding dynamic tree cutting in the

subsequent development is more advantageous than the height cutoff method [91].

Previous studies have also compared these three clustering methods (h-cluster, k-means,

WGCNA) and shown similar results [92]. Therefore, we also tried to compare the two

traditional methods with WGCNA. After clustering, we defined whether the altitude

distribution of the species within the community overlaps, and the range is concentrated

to indicate the merit of the clustering. The results show that WGCNA is more

concentrated and apparent than the other two traditional methods and has less overlap

with other communities (Supplementary Figure 23). In summary, WGCNA may be a

better clustering method in this study. Consequently, we further use Uniform Manifold

Approximation and Projection (UMAP) to visualize the modules and their changes

through different warming scenarios and time scales. In this way, not only we may
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clearly see the time periods of the change, but also which modules (communities) are

changing more severely.

Community change

In this study, we only analyzed 999 species since we set the selection criteria

filtered out species that appeared in less than five plots or more than 95% of plots in a

region. The number of species included in the analysis represents 39% [43] of the entire

dataset (2569 species) and 25% of the total number of native plant species identified in

Taiwan (4077 species) [93]. It may not completely represent the change of overall

vegetation in the future. However, this is unavoidable, as other species occur too

infrequently in the survey, and using all data without any filter might lead to unreliable

prediction results.

In addition, since SDM uses the grid climate data of the species' occurrence, even

though we have improved the resolution and accuracy of the climate variables by the

previous method, it is undeniable that the distribution of organisms is strongly affected

by a microclimate [94, 95]. The distribution of organisms may be affected by

topography, airflow, radiation, moisture interception, soil, and water conservation [96-

98]. Therefore, the SDM results do not necessarily indicate the most suitable niche and
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distribution of the species. However, in this study, we want to present the whole fate of

the vegetation in the future under macroscale climate and landscape patterns. In this

context, we consider that SDM is still a good tool for predicting potential species

distribution changes under climate change.

Following the above limitations, we move on to discuss community change, most

previous studies on vegetation shifts under climate change have focused on the fate of

alpine communities in temperate regions, either through in situ re-investigations or

model predictions. The general conclusions emphasized that alpine communities will

face a severe threat in the future and that mid-altitude species will replace the original

alpine communities [18, 20]. Our study is among the few conducted in tropical regions

with an environmental gradient from low to high altitude [33, 99, 100], and we illustrate

not only the fate of high-altitude vegetation in the future [86], but also the challenges

facing mid- and low-altitude vegetation. This study used two different perspectives,

local decline and overall community change, to predict alterations of vegetation

communities. In an overview of all the results, we defined three main altitude zones

mainly by the magnitude of community change: High-altitude (above 2800 m asl),

Middle-altitude (1000-2800 m asl), and low-altitude (below 1000 m asl):

(A)High-altitude regions
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Temperature is one of the main factors affecting the distribution of high-altitude

communities [101], and increasing temperatures have caused high altitude communities

to be affected [102, 103]. Our study indicates that high altitude communities have the

second highest local decline, suggesting that these species are unable to adapt to future

environmental changes and must have relatively long shift distances. However, these

species are unable to move upwards due to the topographical limitations, eventually

resulting in high extinction rates.

The findings are consistent with previous studies. Hsu et al. (2012) mentioned that

the area of suitable habitats of Picea and Tsuge, which distributed above 2500 m asl,

was predicted to shrink. Similarly, Lin ef al. (2020) predicted that two high-altitude

vegetation, Juniperus woodland and scrub and Abies-Tsuga forest, would lose most of

their distribution area in the future, especially Juniperus woodland and scrub (lost 92%

suitable areas) [41]. Correspondingly, our study showed that the extinction rate of

vegetation at the altitude of 3000 m asl was as high as 50%, indicating that nearly half

of the high-altitude species will be extinct in the future (i.e., there is no suitable area).

This result is consistent with other regional studies [27-29], implying that high altitude

vegetation is one of the most vulnerable vegetation types facing climate change.

However, our study not only indicates that species in high altitude mountains might face
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threats due to temperature increase, but also demonstrates that species in middle

altitudes may move upwards. Therefore, the overall change is relatively high in high

altitudes. Not only are there species with the high local decline due to loss of suitable

area, but they also have to face competition from mid-altitude species moving upwards

[104]. Therefore, for high-altitude vegetation, such a circumstance may be more severe

than previous thought, which only considered environmental changes.

In our results, the number of species in high altitudes does not decrease and even

increase due to the upward shift of mid-altitude species (Figure 1), which is consistent

with the majority of studies [14, 17-20, 105]. However, for high-altitude mountain areas,

the slope is an important factor for successful species shifting [106], and there are also

studies that show that different landscapes may have different results in the upward shift

of species in the future [107]. Therefore, we should be more careful when predicting the

number of species in high-altitude vegetation. The factors such as geomorphology or

slope should be considered.

Besides, some studies have recently reported that non-climatic variables such as

winter snowmelt [108, 109] and frozen soil melt [110] due to climate warming are

changing dramatically in high latitudes, and these alterations may affect the evaluation

of species numbers at high altitudes. However, in tropical regions such as Taiwan,
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where winter snowfall occurs above 3000 m asl (only 0.4% of Taiwan's area) with little

accumulated snow, the above issues have a low effect for evaluating the number of

species in high-altitude Taiwan.

It is worth mentioning that H. Pauli et al. (2012) suggested that while the number

of species is generally increasing in the high-altitude mountains of Europe, it is

decreasing in the Mediterranean region. The main reason for this is that the local

environment has a more drastic change and is drier than other areas, leading to the

extinction of the vegetation composed of most endemic species. A similar pattern may

occur in northern and southern Taiwan, where the number of species declined more in

the northern high-elevation areas (Supplementary Figure 24), probably due to the more

intense environmental changes in precipitation in the north compared to the south

(Supplementary Figure 8).

(B) Middle-altitude regions

The species in middle altitude are also affected by climate change in the future

[111]. However, the local decline in this zone is weaker than in other altitudes. This

result is also consistent with previous studies. Lin et al. (2020) indicated that two

vegetations, Quercus forset, and Machilus-Castanopsis forest, would be stable (less

change in the area of suitable habitats) compared to other vegetation types in middle
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altitude [41], and Hsu et al. (2012) also mentioned that two vegetation groups, highland

broad-leaved forest and Pinus, have the less upward shift. These vegetation types also

belong to the mid-altitude group in our definition, and their overall changes are

relatively stable. The cloud forest in Taiwan also happens to be located at this altitude

[112], and most studies suggested the importance of cloud forests as having more

specialists due to the unique environmental conditions [113, 114], which is consistent

with our results (Figure 3). However, Lin ef al. (2020) mentioned two other cloud forest

types, Fagus cloud forest and, Pasania-Elaeocarpus cloud forest, will be threatened by

climate change leading to vegetation loss in extreme scenario in extreme scenarios [41].

We noticed that the altitudinal distribution of this two vegetation is 1200-1600 m asl

and 1000-1400 m asl, which are lower compared to other cloud forest vegetations, and

consistently, they face higher degrees of abiotic adversity based on our finding in local

decline. In summary, except for the two vegetation types mentioned above, the response

of communities to environmental change is relatively low.

However, by using the results of overall change and the degree of species shift, we

suggest that the mid-altitude communities may face stronger biotic stress. Furthermore,

we show a range of altitudes between 1800-2200 m asl where species numbers may not

change in the future. In fact, this is the range where overall change is highest, and
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community change is most severe. This issue highlights the advantage of using two

different perspectives on community change: biological adversity can be identified from

the difference between the shift of biodiversity composition and comparative local

decline and overall change, rather than being considered stable simply by the fact that

species richness does not change much, the suitable area does not change greatly, or

shift does not move with a long distance.

(C) Low-altitude regions

Low-altitude species are also exposed to warming and changes in precipitation

patterns [33, 115], which result in species that are unable to stay in the same location

and must shift upward to find suitable environments [4, 22, 100]. Consistent with

previous studies [37, 41], our results show that the local decline of low elevation species

is quite high, consistent with the decline in the number of species, and requires a high

shift distance. Hsu et al. (2012) mentioned that the two vegetation types distributed

under 1500 elevation in the broad-leaved forest lowland and midland have the higher

upward shift distance among all vegetation types. The research of Lin et al. (2020) also

similarly suggests that vegetation groups in low altitude, Drypetes-Helicia forest, and

Phoebe-Machilus forest, distributed at 500-1000 m asl, have the highest shift distance

consistent with our results [41]. In contrast to previous studies, we calculated and
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compared the suitability of each species in each location both in the present and in the

future. As a result, we can further indicate that low-altitude species may face a great

degree of abiotic adversity and predict most species in low-altitude to be extinct in low-

altitude environments. Such results are close to those of Duque et al. (2015), who

observed the same upward trend in the distribution of species at lower elevations in

tropical forests, and showed higher mortality rates in the lower elevations. Therefore,

they concluded that changes in the composition of tropical forest species are not shifts

or expansions but rather a concentration of their ranges to higher elevations [99, 100]. If

these low-elevation species move successfully to middle altitudes in the future and the

middle altitude flora does not have the same magnitudes of the upward shifting, the

distribution of the vegetation may overlap. Therefore, lower altitude species may be

inevitably competing with species in middle altitudes [114, 116, 117].

Generalist & specialist

Previous research indicates that generalists, the species having a wider niche and

broader distribution on the environmental gradient, have higher tolerance to climate

change than specialists [82-85]. There are also researches showing that specialists have

been severely impacted by climate change [118, 119]. Moreover, some researchers

explained that the decrease of species richness in specific regions was caused by the
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high ratio of the specialist in its local species composition, which led to the difference

between regions while under the same effect of climate change [120].

We compared the response to climate change in the future between specialists and

generalists using 999 species, including woody, herbaceous, and fern. We found that

specialists are primarily in high altitude areas, while the generalists are in intermediate

and low altitude areas. However, the predicted local decline patterns of specialists and

generalists resemble each other, and both have very similar patterns (Figure 3C). Hsu et

al. (2012) also indicated similar patterns by using 221 species of epiphyte to compare

the specialist and the generalist. Thus, the result shows that it is a general trend, not only

for epiphytes.

Community restructuring

Strong climate change will affect the distribution of species, as a result, ecologists

are focusing on the effect of climate change on species. The previous forecasting was

mainly focusing on the direct effect of climate change, nevertheless, the interaction

between species plays a role in an individual’s adaptiveness and geographical

distribution as well [121]. Besides, from the result of community change, we can tell

that the vegetation in the future, especially the middle-altitude community, may face
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biotic stress from the upward shift of low-altitude species, which is consistent with

previous studies [114, 116, 117]. Consequently, this will probably result in the

coextinction cascades, that is to say, the community will disappear due to the extinction

of their dependent species then cause much more species to die out. The series of effects

will contribute to the crash of the community [35, 122]. There is also research

suggesting the complicated interaction network is able to stabilize the effect of the

ecological community [123]. However, the interaction will definitely change in the

future. Accordingly, we need a long-term investigation to determine whether this

change has a positive effect on the whole community or not.

It is worth noticing that we could found some interesting patterns from the

combination of other time periods (2016-2035, 2046-2065, 2081-2100) and different

scenarios (Rcp4.5, Rep8.5). For example, before 2035, we seem not to predict module

overlap and the boundaries of the communities are quite clear under both the Rcp4.5

and Rcp8.5 scenarios. However, we can begin to see that the modules overlap, and the

boundaries of the communities become blurred by 2065 and under the warming

scenario of Rcp4.5. Therefore, if we could maintain a lower warming scenario (Rcp4.5)

or even lower before 2065, the module among vegetation communities may be non-
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overlapping and may not lead to the issues mentioned above (Supplementary Figure 19-

20).

Furthermore, aside from causing the plants’ interaction network to change, the

change of distribution of plants will also change the larger interaction network (plants &

animals), which is shown in some research of phytophagous insects with plants [124-

127].

In conclusion, climate change will not only affect the adaptiveness of the species.

The community restructuring caused by climate change will be one of the following

focusing points.

Extreme weather

With Climate Change, the occurrence of extreme climatic events is gradually

increasing [128]. Extreme weather events have an impact on organisms in an ecosystem

[128-131] and is even a key factor of regional biodiversity [132]. Furthermore, since the

magnitude of damage and changes caused by extreme weather are immediate, the

vegetation might not have enough time to adapt [129, 133]. However, as we know the

prediction of the occurrence of extreme weather events is very difficult. We try to find

the high-frequency occurrence of extreme weather events from the historical database.
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In our study, we informed about the frequency of extreme weather occurrences in

various regions. In particular, the precipitation should be noted, as extreme precipitation

and drought will cause severe threats to the southern cloud forests [41].

Conclusion

In conclusion, the vegetation in each altitude zones encounters a different

challenge. We emphasized that the vegetation in the low-altitude faces the strongest

abiotic stress, seconded by high-altitude, and the vegetation in middle-altitude faces the

least abiotic stress. However, such differences in stress requires different degrees of

altitudinal shift, resulting in an overlap in some altitude zones. Furthermore, extreme

climate should be included in the discussion of climate change. The information which

could show unstable regions provided additional view.
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Table 1. Formula Table for converting TCCIP data to Worldclim format.

Bioclimate Definition
BIO1 Mean (Tavg01 + Tavg02 + ... + Tavgl2)
BIO2 Mean ((Tmax01-Tmin01) + (Tmax02-Tmin02) ... (Tmax12- Tmin12))
BIO4 Sd (Tavg01, Tavg02, ... Tavgl2)
BIO7 Max (Tmax01: Tmax12) — Min (Tmin0O1: Tmin12)
BIO12 Sum (precip 01 + ... + precip 12)
BIO15 Cv (precip 01 + 1, precip 02 + 1 ...precip 12 + 1)
BIO16 Mean (Precipitation of wettest quarter)
BIO19 Mean (Precipitation of coldest quarter)

We convert the TCCIP data into Worldclim format by using the formula in the table

above. The following explanation of the terms in the formula.

Mean: Calculate the average of values in parentheses

Sd: Calculate the standard deviation of values in parentheses

Max: Selects the maximum value of values in parentheses

Min: Selects the minimum value of values in parentheses

Sum: Accumulate all values in parentheses

Cv: Calculate the coefficient of variation of values in parentheses
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Table 2. Proportion of the top three important bioclimatic variables across all

species in all species distribution modelling.

Climatic variables Imp1 Imp2 Imp3
BIO1 70.00% 15.00% 8.00%
BIO2 3.00% 9.00% 11.00%
BI04 7.00% 18.00% 20.00%
BIO7 4.00% 4.00% 8.00%
BIO12 2.00% 8.00% 9.00%
BIO15 4.00% 19.00% 15.00%
BIO16 3.00% 11.00% 14.00%
BIO19 8.00% 16.00% 16.00%

We summarize the top three important bioclimatic variables across all species in all

species distribution modelling.
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Table 3. Proportion of the top three important bioclimatic variables across all

species in all gradient forest models.

Climatic variables Imp1 Imp2 Imp3
BIO1 66.00% 10.00% 9.00%
BIO2 4.00% 15.00% 16.00%
BI04 12.00% 36.00% 19.00%
BI1O7 8.00% 13.00% 15.00%
BIO12 2.00% 5.00% 11.00%
BIO15 2.00% 5.00% 10.00%
BIO16 4.00% 9.00% 9.00%
BIO19 2.00% 8.00% 12.00%

We summarize the top three important bioclimatic variables across all species in all

gradient forest models.
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Table 4. Co-existence modules with species significantly concentrating in certain

clades.
Region Module
modulel module3 module4 moduleS
east 0.007* 0.047* 0.01* 0.001*
west 0.096 0.217 0.067 0.115
south 0.747 0.518 0.104 -
north 0.127 0.016* 0.724 -

Shown are the p-values comparing data to permuted null expectation. Significant results

denote mean species’ distance to nearest neighbor within the same module is closer than

null expectation.
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Table 5. Families with enriched number of species within each co- existence

module.

Species in  Species in  Species not in Species not in
this module this module this module this module

and this  but not this  and in this nor this Odds P Family Module
family family family family
4 36 2 392 21.778 0.001  Gentianaceae El
5 35 6 388 9.238 0.002 Poaceae El
4 28 1 401 57.286  0.000 Pinaceae E2
3 29 5 397 8.214 0.016 Asteraceae E2
3 29 8 394 5.095 0.040  Ericaceae E2
8 152 0 274 Inf 0.000 Symplocaceae E3
9 151 3 271 5.384 0.011 Theaceae E3
8 152 3 271 4.754 0.022 Fagaceae E3
3 157 0 274 Inf 0.050 Celastraceae E3
6 140 0 288 Inf 0.001 Zingiberaceae E4
15 131 8 280 4.008 0.002 Rubiaceae E4
7 49 4 374 13.357  0.000 Euphorbiaceae  ES
8 48 7 371 8.833 0.000 Moraceae ES
5 51 4 374 9.167 0.003 Rutaceae ES
4 52 4 374 7.192 0.012 Fabaceae ES
6 30 10 383 7.660 0.001 Poaceae W1
5 31 6 387 10.403 0.001  Asteraceae Wi
4 49 1 375 30.612  0.001 Pinaceae w2
3 50 3 373 7.460 0.027 Oleaceae w2
8 135 1 285 16.889  0.001 Symplocaceae @ W3
3 140 0 286 Inf 0.037 Ranunculaceae W3
8 135 5 281 3.330 0.037  Ericaceae W3
5 131 0 293 Inf 0.003 Euphorbiaceae =~ W5
9 127 6 287 3.390 0.023 Rubiaceae W5
5 131 2 291 5.553 0.035 Moraceae W5
4 132 1 292 8.848 0.037 Zingiberaceae =~ W5
9 132 0 355 Inf 0.000 Ericaceae S1
10 131 3 352 8.957 0.000 Rosaceae S1
10 131 4 351 6.698 0.001 Symplocaceae S1
13 87 23 373 2.423 0.018  Orchidaceae S3
3 97 1 395 12.216  0.027 Begoniaceae S3
11 89 20 376 2.324 0.037 Lauraceae S3
9 105 2 380 16.286  0.000 Euphorbiaceae  S4
11 103 8 374 4.993 0.001 Rubiaceae S4
8 106 4 378 7.132 0.001 Moraceae S4
7 107 6 376 4.100 0.014 Fabaceae S4
4 110 2 380 6.909 0.027 Araceae S4
3 111 1 381 10.297  0.040 Ulmaceae S4
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4 73 0 363 Inf 0.001 Berberidaceae N1
3 74 0 363 Inf 0.005 Cupressaceae N1
3 74 0 363 Inf 0.005 Pinaceae N1
4 73 3 360 6.575 0.020 Asteraceae N1
6 71 8 355 3.750 0.022  Ericaceae N1
7 70 12 351 2.925 0.033 Rosaceae N1
4 73 4 359 4918 0.035 Poaceae N1
11 124 2 303 13.440  0.000 Symplocaceae = N2
3 132 0 305 Inf 0.028 Dryopteridaceac N2
10 94 12 324 2.872 0.020 Lauraceae N3

99 4 332 4.192 0.037 Smilacaceae N3

117 2 314 9.393 0.003 Moraceae N4
5 119 1 315 13.235  0.008 Fabaceae N4
12 112 12 304 2.714 0.020  Orchidaceae N4
12 112 12 304 2.714 0.020 Rubiaceae N4
4 120 1 315 10.500  0.024 Euphorbiaceae N4

We separated all species in a region into four groups: a — species in this module and this
family, b — species in this module but not this family, ¢ — species not in this module and
in this family, d — species not in this module nor this family. The fold enrichment (odds
ratio) was calculated as (a/b)/(c/d), and statistical significance was estimated with

Fisher’s exact test.
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Figure 1. The biodiversity composition in current and future conditions. The figure
shows the number of species on each 1x1 km grid in the current and future (Rcp8.5 at
2081-2100) climatic conditions. The triangle on the map is the Geographic Center of
Taiwan (23.973875°N, 120.982024°E), used to separate Taiwan into the northern and
southern parts for the scatter plots. For the top row, colors present the number of species
on each grid with red areas representing predicted biodiversity composition, and regions
encompassed by solid lines are national parks, nature reserves, or forest reserves. The
middle and bottom rows are for northern and southern Taiwan respectively, showing the
altitudinal distribution of biodiversity composition from the corresponding maps on the
top row. Each dotisa 1 x 1 km grid.
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Figure 2. The change of plant communities in Taiwan. The top row shows two
different perspectives of community change calculated by multiple algorithms, shown
separately in the five columns of this figure. The triangle on the map is the Geographic
Center of Taiwan (23.973875°N, 120.982024°E), used to separate Taiwan into the
northern and southern parts for the scatter plots. Panels in the middle row show, for
northern Taiwan, relationships between elevation and local decline or overall change
values from the corresponding maps on the top row. Each dot in the scatter plots
represents one 1 x 1 km geographic grid, and the range of the vertical axis corresponds

to the colored legend for the map. Panels in the bottom row are for southern Taiwan.
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Figure 3. The local decline of plant community in species of different niche space.

Panel A shows number of specialist and generalist species across Taiwan, and panel B

shows their proportion over local species in each 1 x 1 km geographical grid. Panel C

shows the magnitude of local decline upon climate change (Rcp8.5, MAXENT, 2081-

2100) in three different groups, comparing all species, the top 100 species with broadest

niche space (max100), and the top 100 species with narrowest niche space (min100).
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Figure 4. The elevation shift (A) and extinction proportion (B) of plants. Species
were first ranked by their original elevation, and each point represents a sliding widow
with size of 20 and step size of 10 species, taking the median value of all 20 species

within.
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Figure 5. The phylogenetic tree of all species used for analyses in eastern Taiwan.
The tree was obtained from Phylomatic [78] with major clades noted by black curves
and labels. The names and terminal branches of species belonging to the highest-
elevation co-existence community (east module 1) were labeled blue, and those from
lowest-elevation community (module 5) were labeled red. In the outer ring, colored
curves and labels denote families with enriched number of species in the corresponding

modules.
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Figure 6. Change of community structure between current and future conditions

in the eastern (A), western (B), southern (C), and northern (D) regions of Taiwan.

Shown are the Uniform Manifold Approximation and Projection (UMAP) dimension

reduction of species suitability across Taiwan, presenting the co-existence relationship

among species across time and climate change scenarios. On UMAP, each species is

represented by three dots, presenting its distribution patterns across Taiwan for current

and two future conditions (Rcp4.5 and Rep8.5 in 2081-2100). Within the same region,

the three graphs are the same except modules were painted for species in different time

points or climate change scenarios (left to right: Current, Rcp4.5, and Rcp8.5).
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Figure 7. The frequency of four types of extreme weather events in Taiwan. The
figure shows the frequency of extreme weather events. Each point is a data grid (5 x 5
km) that records three different variables: daily maximum temperature, daily minimum
temperature, and daily rainfall. The legend shows the frequency of events in different

colors.
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Supplementary Figure 1. All study sites in four regions of Taiwan. This figure
shown 3060 plots (black point) in four regions (separated by solid lines within Taiwan).
All plots are set in the natural forest of Taiwan (no open ground). We separated Taiwan
into four regions (East, West, South, North) by major mountain ridgelines and climatic

Zz0ones.
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Supplementary Figure 2. Pairwise correlation of 19 bioclimatic variables. We

calculated the pairwise correlation for 19 climatic variables to remove highly correlation

variables (Pearson’s r > 0.75). Finally, we selected BIO1: Annual Mean Temperature,

BIO2: Mean Diurnal Range, BIO4: Temperature Seasonality, BIO7:

Temperature

Annual Range, BIO12: Annual Precipitation, BIO15: Precipitation Seasonality, BIO16:

Precipitation of Wettest Quarter, and BIO19: Precipitation of Coldest Quarter for our

analyses.
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Supplementary Figure 3. Change of climatic variables in four regions under
Rcp8.5 scenario and HadGEM2-AO general circulation models (GCMs). This
figure shows the eight climatic variables (BIO1: Annual Mean Temperature, BIO2:
Mean Diurnal Range, BIO4: Temperature Seasonality, BIO7: Temperature Annual
Range, BIO12: Annual Precipitation, BIO15: Precipitation Seasonality, BIO16:
and BIO19: Precipitation of Coldest Quarter)

Precipitation of Wettest Quarter,

simulated in three periods (P1: 2016-2035, p2:2046-2065, p3:2081-2100).
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Supplementary Figure 4. Change of climatic variables in four regions under

Rcp4.5 scenario and HadGEM2-AO general circulation models (GCMs). This

figure shows the eight climatic variables (BIO1: Annual Mean Temperature, BIO2:

Mean Diurnal Range, BIO4: Temperature Seasonality, BIO7: Temperature Annual

Range, BIO12: Annual Precipitation, BIO15: Precipitation Seasonality, BIO16:

Precipitation of Wettest Quarter,

and BIO19: Precipitation of Coldest Quarter)

simulated in three periods (p1: 2016-2035, p2:2046-2065, p3:2081-2100).
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Supplementary Figure 5. The area under the ROC curve (AUC) of eight different
algorithms. We established the species distribution models (SDMs) with eight different
algorithms. In each algorithm, each data point is the mean AUC value of 25 independent

runs of a species.
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Supplementary Figure 6. True Skill Statistic (TSS) evaluation of eight different
algorithms. We established the species distribution models (SDMs) by eight different
algorithms. In each algorithm, each data point is the mean TSS value of 25 independent

runs of a species.
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Correlation coefficients
Supplementary Figure 7. The correlation of suitability values between MAXENT

and ensemble methods in the current (A) and the future (B) conditions (Rcp8.5 in
2081-2100). For each species’ MAXENT and ensemble prediction results, we randomly
sampled geographical grids and estimated the correlation of suitability between the two

methods. Show is the distribution for all 999 species used in this study.
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BIO12 BIO15 BIO16 BIO19

Supplementary Figure 8. The change of climatic variable in Rcp8.5 at 2081-2100.
We calculated the absolute changes of eight climatic variables between current and
future conditions. The legends show the change of climatic variables with different
colors. BIOIl: Annual Mean Temperature, BIO2: Mean Diurnal Range, BIO4:
Temperature Seasonality, BIO7: Temperature Annual Range, BIOI12: Annual
Precipitation, BIO15: Precipitation Seasonality, BIO16: Precipitation of Wettest Quarter,
and BIO19: Precipitation of Coldest Quarter for our analyses. The values are in units of

standard deviation of current climatic variations across Taiwan.
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Supplementary Figure 9. The local decline of plant communities in Taiwan with
two scenarios (Rcp4.5 and 8.5) and three time periods (p1: 2016-2035, p2: 2046-
2065, p3: 2081-2100). We simulated species distribution with MAXENT algorithm and
estimated the decline of suitability of future compared to current conditions. See
Materials and Methods for detail. The value on the graph represents local decline. High
value of local decline means that local community cannot adapt to climate change in the

future, while the lower value means they are less affected in the future.
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Supplementary Figure 10. The local decline of plant communities in Taiwan with
two scenarios (Rcp4.5 and 8.5) and three time periods (p1: 2016-2035, p2: 2046-
2065, p3: 2081-2100). We simulated the species distribution with ensemble algorithm
and estimated the decline of suitability of future compare to current conditions. See
Materials and Methods for detail. The value on the graph represents local decline. High
value of local decline means the local community cannot adapt to climate change in the

future, while the lower value means they are less affected in the future.
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Supplementary Figure 11. The overall change of plant communities in Taiwan with
two scenarios (Rcp4.5 and 85) and three time periods (p1: 2016-2035, p2: 2046-
2065, p3: 2081-2100). We simulated the species distribution with MAXENT algorithm
and estimated the overall change of suitability of future compared to current conditions.
See Materials and Methods for detail. The value on the graph represents the overall
change, which considers the alternation involving all species, thus incorporating both
the decline of local species and the increased suitability of foreign species. High value
of overall change means the community has a high decline of local species, increased

suitability of foreign species, or both.
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Supplementary Figure 12. The overall change of plant communities in Taiwan with
two scenarios (Rcp4.5 and 8.5) and three time periods (p1: 2016-2035, p2: 2046-
2065, p3: 2081-2100). We simulated the species distribution with ensemble algorithm
and estimated the overall change of suitability of future compared to current conditions.
See Materials and Methods for detail. The value on the graph represents the overall
change, which considers the alternation involving all species, thus incorporating both
the decline of local species and the increased suitability of foreign species. High value
of overall change means the community has a high decline of local species, increased

suitability of foreign species, or both.
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Supplementary Figure 13. The overall cahange of plant communities in Taiwan
with two scenarios (Rcp4.5 and 8.5) and three time periods (p1: 2016-2035, p2:
2046-2065, p3: 2081-2100). Gradient forest first identified the environmental ranges
that best distinguish the suitability value and compared current and future climates
across the map to identify geographic regions with environmental changes in the
sensitive ranges. See Materials and Methods for detail. The value on the graph
represents the overall change, which considers the alternation involving all species, thus
incorporating both the decline of local species and the increased suitability of foreign
species. High value of overall change means the community has a high decline of local

species, increased suitability of foreign species, or both.

85

d0i:10.6342/NTU202102520



(A) (B)

4000
4000

3000
3000

Elevation (m)
2000
2000

1000
1000

0
0

Species

Supplementary Figure 14. The current (A) and future (B) altitudinal distribution
of each species. Species were ordered along the horizontal axis based on their median
elevation distribution. The black line connects the median elevation of each species, and
grey shades represent the range between 10% and 90% percentiles of the distribution in
each species. Different colors represent different altitude regions, and the green color is

low- altitude, the yellow color is middle- altitude, and the blue color is high altitude.
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Supplementary Figure 15. The modules’ distribution in the eastern (A), western
(B), southern (C), northern (D), southern (before merge) (E), northern (before
merge) (E) regions of Taiwan. We used Maxent to calculate the distribution of species
in each module, and averaged the suitability value to indicate module distribution. Thus,

high value means the species in the module have a high probability of presence.
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Supplementary Figure 16. The altitudinal distribution of different modules before

merge. The boxplots show altitudinal distribution of species in each module. Each data

point is the median of a species’ altitudinal range.
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Supplementary Figure 17. The altitudinal distribution of different modules. The
boxplots show altitudinal distribution of species in each module. Each data point is the

median of a species’ altitudinal range.
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Supplementary Figure 18. The percentage of different vegetation types in different

modules. This bar plots show the association between previously defined forest types

(Liet al., 2013; Lin et al., 2020) and modules identified in this study.
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Supplementary Figure 19. The community structure change in current and future

conditions in the eastern (A), western (B), southern (C), and northern (D) regions

of Taiwan. Shown are the UMAP dimension reduction of species suitability across

Taiwan, presenting the co-existence relationship among species across time and climate

change scenarios. On UMAP, each species is represented by three dots, presenting its

distribution patterns across Taiwan for current and two future conditions (Rcp4.5 and

Rcp8.5 in 2016-2035). Within the same region, the three graphs are the same except

modules were painted for species in different time points or climate change scenarios

(left to right: Current, Rcp4.5, and Rep8.5).
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Supplementary Figure 20. The community structure change in current and future

conditions in the eastern (A), western (B), southern (C), and northern (D) regions

of Taiwan. Shown are the UMAP dimension reduction of species suitability across

Taiwan, presenting the co-existence relationship among species across time and climate

change scenarios. On UMAP, each species is represented by three dots, presenting its

distribution patterns across Taiwan for current and two future conditions (Rcp4.5 and

Rcp8.5 in 2046-2065). Within the same region, the three graphs are the same except

modules were painted for species in different time points or climate change scenarios

(left to right: Current, Rcp4.5, and Rep8.5).
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Supplementary Figure 21. The frequency of extreme high-temperature (A) low-
temperature (B) high-rainfall (C), and drought (D) events in three time periods.
Each box shows the frequency of extreme climate events, and different colors represent

four regions of Taiwan.
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Supplementary Figure 22. The community offset from two data form. The left
figure shows the result of using abundance data for gradient forest and community
offset analyses, and the right one is we selected grids in the original site and extracted
SDM suitability and environmental values for gradient forest and community offset

analyses.
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Supplementary Figure 23. The altitudinal distribution of different modules with
three different methods. We used three different clustering methods, which were the
weighted gene co-expression network analysis (WGCNA), hierarchical clustering (h-
cluster), and k-means clustering (k-means). The boxplots show the altitudinal

distribution of species in each module. Each data point is the median of a species’

altitudinal range.
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Supplementary Figure 24. The number of species in current and upon climate
change (Rcp8.5, MAXENT, 2081-2100). This figure shows the number of species
relationships between elevation in current and upon climate change (Rcp8.5, MAXENT,
2081-2100), and we used the Geographic Center of Taiwan (23.973875°N,
120.982024°E) to separate the result of biodiversity composition into the northern and

southern parts for the box plots, then compare these two parts.
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Supplementary Figure 25. The correlation between trace and determinant of

species’ niche space. Each data point is a species.
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