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摘要

領域自適應是一種解決數據集分佈改變的技術，其中訓練 (源域)

資料和測試 (目標域)資料可能來自不同的分佈。目前的研究主要集中

在共變量分佈改變和標籤分佈改變這兩種設置，而不同的設置下，對

源域和目標域之間的關聯會做出不同的假設。然而，我們觀察到這兩

種設置都不能完全滿足現實世界生物化學的應用需求。我們仔細研究

了這些設置在應用層面遇到的困難，並提出了一種新穎的解決方法，

它將兩種設置都考慮在內以提高應用上的性能表現。我們提出的解決

方法的關鍵想法是從源域數據中挑選與目標域分佈相似的數據。我們

更進一步探索兩種挑選的方案，將相似性嵌入最近鄰居法風格的硬選

擇方案，以及透過軟性約束來強制相似性的軟選擇方案。實驗顯示我

們提出的解決方案不僅可以達到更高的精準度在生物化學應用上，而

且在能具體定義相似性的時候，其他領域自適應的任務上也展示出有

希望的性能表現。

關鍵字：領域自適應,數據集分佈改變,共變量分佈改變,標籤分佈改變
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Abstract

Domain adaptation is a technique that tackles the dataset shift scenario,

where the training (source) data and the test (target) data can come from dif-

ferent distributions. Current researchworksmainly focus on either the covari-

ate shift or the label shift settings, each making a different assumption on how

the source and target data are related. Nevertheless, we observe that neither of

the settings can perfectly match the needs of a real-world bio-chemistry appli-

cation. We carefully study the difficulties encountered by those settings on the

application and propose a novel method that takes both settings into account

to improve the performance on the application. The key idea of our proposed

method is to select examples from the source data that are similar to the target

distribution of interest. We further explore two selection schemes, the hard-

selection scheme that plugs similarity into a nearest-neighbor style approach,

and the soft-selection scheme that enforces similarity by soft constraints. Ex-

periments demonstrate that our proposed method not only achieves better

accuracy for the bio-chemistry application but also shows promising perfor-

mance on other domain adaptation tasks when the similarity can be concretely

defined.

Keywords: Domain Adaptation, Dataset Shift, Covariate Shift, Label Shift
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Chapter 1

Introduction

Machine learning has been a high-profile topic and succeeded in various kinds of real-

world tasks. Traditionally, it is assumed that the training data and the test data come

from the same task; that is, they share the same underlying distribution [22, 1]. In many

applications, we hope that themodel trained on one task could generalize to another related

task. For example, consider an object recognition task that tries to distinguish ten different

products based on their images on e-commerce websites. It is relatively easy to crawl and

gather well-labeled data from the websites to train a classifier. After training the classifier,

wemay encounter another task where we hope that the users can easily recognize a product

by taking pictures with their smartphones. Given that it is harder to gather well-labeled

data from the users to train a classifier, we hope to reuse the data and/or the classifier

obtained in the former task (product recognition from website data) to tackle the latter one

(product recognition from smartphone data). Due to the differences in brightness, in angle,

and in picture quality between images taken from the two tasks, the same-distribution

assumption on the training and test data may not hold. Such scenario is usually called

dataset shift [18], where the training and test data can come from different distributions.

Disease diagnosis [23] is another typical application that faces the dataset shift sce-

nario. Suppose we have access to a large number of training data from hospital A with

sufficient resources. We may hope to exploit those data to train an accurate model that

can be deployed in hospital B, where few or even no data is available. Somehow it is

difficult to achieve the hope in practice. The difficulty can be caused by different patient

1
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distributions between the two hospitals, including different eating habits, different sea-

sonal behaviors of patients, and so on. That is, the data distribution varies between the

source domain (hospital A) and the target domain (hospital B).

A family of techniques that aim at tackling the dataset shift problem is domain adapta-

tion. The goal of domain adaptation is to learn a model from the source data and to apply

the model successfully on the target domain where few or no labeled data is provided. In

particular, domain adaptation assumes that the source and the target domains share the

same task of interest, such as the same labels for classification, but receive data from dif-

ferent distributions. For example, semi-supervised domain adaptation [12, 4] assume that

a few labeled data in the target domain is available.

In this thesis, we try to solve the more challenging unsupervised domain adaptation

(UDA) problem, where we can only access the labeled source data and unlabeled target

data in the training phase. The goal of UDA is to learn a model from these data and to

achieve good performance on the target domain. Intuitively, learning under UDA is not

possible if the source and target domains do not share any properties. Previous works on

UDA thus make assumptions about the properties shared by the two domains and design

algorithms based on the assumptions. Two major assumptions have been considered sep-

arately in previous research works. One assumption is called covariate shift, and the other

is called label shift.

The assumption of covariate shift considers the mismatch of feature distribution be-

tween the source and target domains. Although the distributions that generate the fea-

tures are different between the two domains, it is assumed that the labels of both do-

mains are drawn from the same conditional distribution given the features. There are

two main families of methods designed under this assumption, namely, the re-weighting

method [20, 10, 26], and adversarial training method [5, 15, 19, 14]. They solve the same

problem in different perspectives: Re-weighting based method estimates the difference in

feature distributions between the source and target domains, whereas a adversarial training

method aligns those distributions directly.

On the other hand, the label shift assumption refers to the change of label distributions

2
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between the source and target domain while assuming that the features of both domains

are drawn from the same conditional distribution given the label. Previous works focus on

utilizing re-weighting [27, 13, 2] to solve this task. Unlike the re-weighting method under

the covariate shift assumption, the re-weighting method under the label shift assumption

estimates the difference between source and target domain label distributions instead.

Most recent works extend from the two settings above and demonstrate promising

performance. However, motivated by a real-world bio-chemistry application, we find that

current domain adaptation methods designed for only one of the two assumptions cannot

cope with all the application needs that we encounter. We carefully examine the applica-

tion and find it comes with the shift of label distribution that can be easily observed from

the polarity of label distribution. However, the assumption that the conditional distribution

given label does not seem to be the same, violating label shift assumption. Accordingly,

we must use covariate shift assumption to model this application. Here comes the prob-

lem: If the application is tackled with the covariate shift assumption using adversarial

training (distribution alignment), the label distribution should be the same on the aligned

data, violating the polarity property of the data set. Therefore, we conclude that this appli-

cation requires considering both the covariate shift and label shift properly. In this thesis,

we study how to follow the covariate shift assumption while taking the possible label shift

into account for the bio-chemistry application. [25] also try to tackle the same issue. They

use adversarial training while imposing the constraint on the model. Therefore, the model

would not perfectly align the distribution of source and target domain.

In this thesis, inspired by some intuitive toy examples, we find that selecting rep-

resentative examples from the source data allows us to construct a similar-feature and

similar-label subset of the source data that resolves both covariate shift and label shift.

If the feature space has strong physical meaning, we can construct the subset through

nearest-neighbor by considering the distance between two features as the similarity mea-

sure. Based on this finding, we propose two methods, Hard/Soft Distance-Based Selec-

tion, to handle different situations. The hard selection directly uses the subset of the source

data we construct to train the model, whereas the soft selection enforces similarity on the

3
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subset by adding a soft constraint.

Experiments show that our methods successfully capture the structural information

and utilize the distance-based similarity and thus mitigate the impact from label shift in

the application. To test the performance of our methods in high-dimension space (e.g.,

image space) where the space has no physical meaning, we also do experiments on the

benchmark dataset (digits). Further, we extend our methods to tackle this scenario and

have promising experimental results. Finally, we discuss what are the good situations to

utilize our methods, through a simple noisy source data experiment. In the feature space

with physical meaning, directly use hard selection can obtain good accuracy. In the feature

space without physical meaning or with noise, choosing soft selection would be a reliable

way.

Our contributions of this thesis include

1. We carefully study the difficulties encountered by concurrent UDA methods on a

real-world application.

2. We propose two methods based on representative selection to overcome the diffi-

culties.

3. We study how the proposed methods can be extended in different scenarios.

The remaining of this thesis is organized as follows. Chapter 2 defines some notations

and lists related works. We discuss the properties of the real-world application and ourmo-

tivations of this work in Chapter 3. In Chapter 4, we propose two methods which consider

take two common shift settings to tackle the difficulties encountered in the real-world ap-

plication In Chapter 5, we do experiments in various perspectives to test the effectiveness

of our methods. We finally make a conclusion in Chapter 6.

4
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Chapter 2

Background

2.1 Notation and Problem Setup

We consider a K-way classification task and let X and Y represent the random variables

for the feature and label respectively, where Y = {0, . . . , K − 1}. We denote the joint

distributions for the source and target domains as PS(X,Y ) and PT (X,Y ). The marginal

distributions of X and Y in the source domain are defined as PS(X) and PS(Y ). Similarly,

PT (X) and PT (Y ) represent the marginal distributions of X and Y in the target domain.

The conditional label distributions in the two domains are denoted byPS(Y |X),PT (Y |X).

PS(X|Y ) and PT (X|Y ) stand for the conditional feature distribution in the two domains.

We consider the UDA setting in this thesis. There exists a set of labeled data DS =

{(xi, yi)}ni=1 in the source domain, where each instance (xi, yi) is drawn i.i.d. fromPS(X,Y ).

In the target domain, we have only a set of unlabeled data DT = {x̃j}mj=1, where each in-

stance x̃j is drawn i.i.d. from PT (X).

Our goal is to train a classifier f : X → Y , based on DS and DT and then predict the

corresponding labels ofDT . Note that there are labels for the target domain, but only used

for testing.

5
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2.2 Related Work

UDA has been studied in various fields, such as natural language processing for sentiment

analysis [6], health care for disease diagnosis [17], and computer vision [9] for object

detection [3] and semantic segmentation [28].

Most UDA researchers put emphasis on covariate shift setting, which assumes that

PS(X) is different from PT (X). Among these methods, we can roughly divide them into

two main approaches. One is the re-weighting method. The goal of this kind of method is

to estimate the importance weightPT (X)/PS(X) for each source data. After obtaining the

importance weights, they can further do importance-weighted empirical risk minimization

to adapt their model to the target domain. Different methods estimate the importance

weight differently. [20] utilizes the Kullback-Leibler divergence and some [10, 26] borrow

the concept of kernel mean matching [8] to estimate the weight. The other method trying

to deal with covariate shift is adversarial training method [5, 15, 19, 14]. Inspired by the

Generative Adversarial Network (GAN) [7], adversarial training method tries to learn a

disentangle embedding bymaking use of discriminator. With these disentangle embedding

features which are domain invariant, they can reduce the distribution difference between

the source and target domains under covariate shift setting.

Another setting named label shift is assumed thatPS(Y ) ̸= PT (Y ). In this setting, pre-

vious works mostly utilize re-weighting method to solve the problem. But different from

covariate shift, they try to estimate the importance weight PT (Y )/PS(Y ). The concept of

kernel mean matching can spread to label shift setting [27]. However, time-consuming is

the drawback of re-weighting based method, because it requires calculating the inversion

of kernel matrix which would be dependent on data size. Therefore, it is hard to extend

to large scale scenarios. Recently, [13, 2] proposes the method by exploiting an arbitrary

classifier to estimate the importance weights and thus can easily be applied to large scale

scenarios.

Motivated by a real-world application, we find that current methods cannot success-

fully tackle this application which contains the properties from covariate and label shift.

Therefore, how to promote domain adaptation method to handle more general cases is

6
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essential. Recently, [25] raises a problem that adversarial training would cause a bad gen-

eralization to target domain when there exist label shift simultaneously, and proposed the

method to handle this.

7



doi:10.6342/NTU201903940

Chapter 3

Motivation

Commissioned by the Industrial Technology Research Institute (ITRI), we initiated a re-

search project on predicting compound-protein interaction (CPI), which is a vital topic

on drug discovery [11]. Briefly speaking, given a pair of compound and protein, the CPI

prediction task identifies whether the pair comes with chemical interaction or not. That

is, the task is a classic binary classification problem.

Our collaborators at ITRI provides us with the CheMBL dataset that contains 645461

pairs of (compound, protein), with a binary label for each pair. Note that each example was

generated according to the earlier work [24] to obtain 300-dimensional feature. Each fea-

ture is formed by concatenating a 200-dimension compound feature and a 100-dimension

protein feature. For the compound feature part, borrowing the technique in natural lan-

guage processing, they view a compound and its substructures as a document and terms,

respectively. They use latent semantic analysis technique to calculate the corresponding

term frequency-inverse document frequency (tf-idf) matrix and then do singular value de-

composition to obtain the features. For the protein feature construction, they consider a

protein sequence to be a sentence and every 12 units is regarded as a word. They use

Word2vec [16] to embed a protein sequence.

Additionally, they also indicated 3916 data that are relative to Chinesemedicine, named

Herb (target domain). They hope to get amodel having good accuracy onChinesemedicine

data. Themain difficulty they confront is that labeled Herb data is relatively less compared

with ChEMBL data. However, doing the experiments to label the data is time-consuming

8
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Figure 3.1: Distribution visualization for ChEMBL-(red) and Herb (purple) by t-sne

and burning up a lot of money. How to take advantage of a bunch of labeled ChEMBL-

(ChEMBL - Herb) data become important in this situation.

We first plot the scatter diagram through t-SNE [21] to analyze the dataset. From

Figure 3.1, we can find the distribution of ChEMBL- is different from the one of Herb.

This figure demonstrates a typical dataset shift scenario. Therefore, we look upon solving

a domain adaptation task. ChEMBL- represents the source domain and Herb stands for the

target domain. Especially, we consider UDA as our final problem, which is much more

meeting the expectation of ITRI.

3.1 Covariate Shift Assumption

Most literature focuses on covariate shift setting to date. In this setting, it assumes the

input distributions change between source and target domain (PS(X) ̸= PT (X)) while

the conditional label distributions remain invariant (PS(Y |X) = PT (Y |X)). Figure 3.1

shows that our dataset meets these assumptions so we do the experiments under this setting

first. There are two main approaches to deal with covariate shift: (1) re-weighting and (2)

adversarial training. However, when facing the situation where distribution difference

9
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between source and target is large, a re-weighting method may assign small weights to

a large number of source data. This would make the final classifier be high-variance.

Therefore, recent methods which follow covariate shift setting attempt to learn a shared

transform function E through adversarial training to map source and target data into the

same embedding space reducing the distribution difference between the source and target

domains. In other words, the core objective of these methods is discovering a shared

feature space where the difference of embedding distribution between source and target

is small. Ideally, if we can find a transform function such that PS(E(X)) = PT (E(X))

(i.e., aligning the source and target embedding distribution), and base on the assumption

PS(Y |E(X)) = PT (Y |E(X)), we can adapt the model trained on source embedding to

target embedding successfully.

We simply do the experiment utilizingDomainAdversarial Neural Network (DANN) [5]

and consider it a baseline performance. We also train the model on the source domain and

directly test it on the target domain, which is called source-only. target-only means that

we train the model on training target data then evaluate it on testing target data. Note

that, we choose weighted accuracy as evaluation criterion on Herb dataset because it is an

imbalanced dataset.

In Figure 3.2, we notice that the weighted accuracy of DANN is worse than source-

only. Confounding by the result, we dig deeper to analyze the property of dataset. One

possible reason is if we letPS(E(X)) = PT (E(X)), we can derivePS(Y ) = PT (Y ) based

on covariate shift assumption. However, we find that the positive to negative ratio of the

number of data is 2:1 in the source domain. In the target domain, the correspondent ratio

is 1:4. This finding shows that the label distribution of the source domain is different from

the one of the target domain, i.e., PS(Y ) ̸= PT (Y ). In this circumstance, if we insist on

aligning source and target distribution, wemay have bad accuracy. Based on this result, we

argue that current adversarial methods designed under covariate shift assumption cannot

handle the situation where PS(Y ) is also not equal to PT (Y ), e.g., our task. Thus, we

decide to resort to label shift setting.

10
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Figure 3.2: weighted accuracy on Herb dataset

(a) label distribution of ChEMBL- (b) label distribution of Herb

Figure 3.3: label distribution comparison between ChEMBL- and Herb

11
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Table 3.1: PT (Y )/PS(Y ) Importance weights estimation between the source and target domains.
class 0 class 1

ground truth 2.3685 0.3130
RLLS 0.0000014 1.0348

3.2 Label Shift Assumption

The other setting is label shift which is relatively understudied. It makes the following

assumptions. First, the label distribution changes from source to target (i.e. PS(Y ) ̸=

PT (Y )). Then it further assumes that the conditional feature distributions stay the same

(PS(X|Y ) = PT (X|Y )). Recent works deal with this problem through re-weighting and

do importance-weighted empirical risk minimization after getting the weights.

Ex,y∼PT (X,Y ) ℓ(y, h(x)) = Ex,y∼PS(X,Y )
PT (X,Y )

PS(X,Y )
ℓ(y, h(x))

= Ex,y∼PS(X,Y )
PT (Y )

PS(Y )
ℓ(y, h(x))

= Ex,y∼PS(X,Y ) w(y)ℓ(y, h(x)).

(3.1)

We consider a K-way classification task here. h stands for a classifier: x → {0, 1}K ,

ℓ represents the loss function: y × y → [0, 1] and w(y) denotes the importance weight

vector which stands for PT (Y )/PS(Y ). Note that, in equation 3.1, the second equation is

derived from Bayes’ theorem.

Under label shift assumption, most of the methods concentrate on how to estimate the

importance weight precisely. We take Regularized Learning under label Shifts (RLLS) [2]

as our baseline. The results are reported in Table 3.1. The table shows RLLS couldn’t

estimate well on the importance weight. To analyze what takes place in the experiment

and cause this bad estimation, we plot figures displaying the source and target distribution

separately to observe. According to Figure 3.1, we are able to confirm that the conditional

input distributions are quite different, i.e., PS(X|Y ) ̸= PT (X|Y ). This observation breaks

the label shift assumption.

12
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3.3 C2H Dataset

From the previous discussion, current domain adaptation methods could not cover all vari-

ous dataset shift cases, e.g., our real-world dataset. Hence, a more general method needs to

be proposed. Before we discuss this further, we first formally construct the C2H dataset

for this particular domain adaptation task which current methods cannot well solve. It

comprises CheEMBL- and Herb represented as source and target domain respectively.

The source domain includes 641,545 data, and the target domain contains 3,916 data. Ad-

ditionally, both input and label distributions vary between source and target. Note that

each data point is a 300-dimension feature embedding.

13
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Chapter 4

Proposed Method

On the basis of the observations in section 3.1, if we stop at nothing to align the input distri-

bution such that PS(X) ̸= PT (X), we may finally get an unexpected bad performance on

target domain due to a false premise, e.g. put too much attention on the covariate shift but

neglect to take the label shift into consideration at the same time. Motivate by adversarial

training, we illustrate the toy example in Figure 4.2. In Figure 4.2(a), if we use adversar-

ial training to align two distribution even the embedding space has physical meaning and

do not take PS(X) ̸= PT (X) into consideration, we would probably have bad accuracy

on target data. Figure 4.2(b) shows that when the embedding space has strong physical

meaning, selecting the source data which is close to target data directly could get some

benefit on classification. In this toy example, we see that selection may improve model

performance. Based on this intuition, we start to think whether selection can gain other

benefits. We use Figure 4.3 to demonstrate the benefit. Figure 4.3(a) represents using the

original source data to get the corresponding classifier. Figure 4.3(b) shows that choos-

ing the source data which is close to target data could avoid the negative influence from

the source data which is far from the target. Until now, we find that selection in some

situations could improve domain adaptation.

14
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4.1 Domain Adversarial Neural Network (DANN)

In this thesis, we mainly compare our method with adversarial training methods. There-

fore, we first introduce a classic method DANN, proposed by [5]. Figure 4.1 shows the

overall architecture. There exists four main components inside the architecture: (i) en-

coder, (ii) classifier, (iii) discriminator and (iv) gradient reversal layer (GRL). Without

loss of generality, we suppose that we now tackle a K-way classification problem. En-

coder E is responsible for mapping the original data to the embedding space Z, where

E : X → Z and try to fool the Discriminator so that it cannot distinguish between the

source and target embedding. The goal of Classifier is to predict well on the source em-

bedding data C : Z → {0, 1}K . What Discriminator do is to verify correctly on the

source and target embedding generating from Encoder E : Z → {0, 1}. The following is

the current objective function

Lcls(C,E,DS) =
1

n

n∑
i=1

[yTi log C(E(xi))] (4.1)

Ladv(D,E,DS,DT ) =
1

n

n∑
i=1

log[D(E(xi))] +
1

m

m∑
j=1

log[1−D(E(x̃j))] (4.2)

where Lcls represents a cross-entropy loss for the source data and Ladv is the objective

function for encoder and discriminator. We can notice that the goal of encoder opposite

to discriminator

min
E

max
D

Ladv(D,E,DS,DT ). (4.3)

GRL in charge of this goal by assigning a negative sign on the gradient to update the

Encoder. The overall optimization is

min
E,C

max
D

Lcls(C,E,DS) + Ladv(D,E,DS,DT ). (4.4)

Ideally, through the optimization, we can align the source and target embedding distribu-

tion PS(E(X)) = PT (E(X)). Besides, we would have a good Classifier predicting well

15
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Figure 4.1: DANN architecture

(a) adversarial training (b) data selection

Figure 4.2: the intuition and illustration of our proposed method

on the source embedding. Therefore, we can achieve domain adaptation.

4.2 Representatives Selection

In Figure 4.2(a), we know that adversarial training would get bad accuracy on the target

domain when there exists label shift simultaneously and selection could avoid this prob-

lem. Figure 4.3(b) demonstrates that select the source data which is close to target data

can reduce the impact from the source data which is far from target data. Based on the two

findings, we further make continuity assumption, i.e., points which are close to each other

are more likely to share the same label. If the assumption holds, we can achieve domain

adaptation through selecting the target-like source data, i.e., the source data which is close

to target data. We define the target-like source data as representatives in this thesis.

16
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(a) unaware label shift (b) representative selection

Figure 4.3: the intuition and illustration

4.2.1 Hard Distance-Based Selection (HS)

The first method is based on K-Nearest Neighbor (KNN), a classic lazy algorithm. KNN

take euclidean distance as a similarity measurement and usually collaborate with the as-

sumption that for any data point and its neighborhood must belong to the same class, i.e.,

similar points share similar class. We feed the source data into KNN as training data first

and then input all the target data to get the corresponding representatives. The procedure

can be formulated from a different perspective as

for each x̃j, let sj = argmin
xi∈DS

||x̃j − xi||22,

Drep
S = {sj}mj=1,

whereDrep
S denote the representatives we choose. Hence, employing KNN, we can select

the representatives. After gathering the representatives, we can use them as a new source

dataset to train a model.

4.2.2 Soft Distance-Based Selection (SS-β)

Here come the two problems. First, if continuity assumption is wrong e.g., data in high

dimensional space like image data, directly take distance as a similarity measure to select

the representative may be a catastrophe. As the data dimension grows, the KNN assump-

tion fails due to the curse of dimensionality. In high-dimension space, the data sparsity
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problem exists naturally. We may face that the distance does not represent a sort of sim-

ilarity. Second, if the source data is noisy, choose the representatives by distance may

bring a lot of biases into the model and thus have bad accuracy. Therefore, to overcome

these two problems, we proposed the second method called SS-β. The soft means we do

not drop the rest of the source data after selecting the representatives. Instead, we add the

following constraint into the minimization objective. Supposed we train a neural netN as

a classifier with L layers, we add the following constraint on the k-th hidden layer

min
f

1

m

m∑
j=1

||Nk(sj)−Nk(Drep
Sj

)||22.

Via this term, we enforce that the close data pair in original space must be close in em-

bedding space. The overall objective can be

min
N

1

n

n∑
i=1

ℓ(N(xi), yi) + β
1

m

m∑
j=1

||Nk(x̃j)−Nk(sj)||22,

where β is a hyperparameter to control the importance of this constraint and ℓ represents

a loss function.
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Chapter 5

Experiments

In this chapter, we evaluate our proposed methods on three parts: (i) C2H and (ii) digits

(iii) Noisy C2H. For part (i), we want to show selection based methods can improve the

performance in our C2H dataset, which coexists covariate and label shift. To evaluate

the scalability of our methods to high-dimension space, we do the experiments on digits

dataset and show the results in part (ii). In part (iii), we test our methods in the noisy

source domain and discuss what is the best circumstances for our methods to be used.

We name our methods as follows: (1) HS: use the representatives selected by Hard

Distance-Based Selection to train the model and then direct apply it to the target domain.

(2) SS-β: train the model on the source domain and add the Soft Distance-Based Selection

constraint which is controlled by the hyperparameter β to restrict the influence of this term.

For each result, we repeat 5 times trials with different random seeds and show the

average on the table. We also indicate the standard deviation to demonstrate the stability

for each method.

5.1 C2H Dataset Evaluation

First, we do the experiments to evaluate our method on C2H dataset which we found the

inspiration in. We run the followingmethods as our competitors. (i) KMM [10], the classic

re-weighting method. (ii) DANN [5]. (iii) fDANN and sDANN proposed by [25] which

implicitly deals with the same problem as we do by relaxing the objective function Ladv
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Figure 5.1: Model architecture for C2H dataset

to not align the source and target distributions perfectly. source-only and target-only are

also placed as the baselines. Note that, we subsample 20000 data points from ChEMBL-

for efficient evaluation. The architectures we used in each experiment are listed in Figure

5.1. For DANN-like models, we all use Adam as the optimizer with 512 and 64 batch size

for the source and target data respectively, set the learning rate=0.0001. It’s noteworthy

that encoder, discriminator, and classifier have their optimizer with different weight decay

(0.01, 0.001, 0, respectively). For non-DANN-like models, we use Adam with 0.0001

learning rate as the optimizer.

Table 5.1 shows that HS have an improvement compared with source-only and outper-

form other methods in this task. We can see that there is a big performance gap between

DANN-like methods and ours. This finding may be caused by over aligning the source

and target distribution because there’s no guarantee that DANN-like method would map

the source and target data which share the same class together. The original dataset al-

ready has interpretable and discriminative features. Therefore, aligning the distributions

aggressively would lead to declining performance, not to mention label shift would de-

teriorate the performance too. fDANN and sDANN are expected to somewhat ease the

impact of label shift by restricting the model not to align the distribution perfectly, but still

have bad performance due to destroying the good feature embedding. In C2H dataset, the

distributions between the source and target domains are slightly different and that’s why

re-weighting methods have good accuracy. HS can basically be regarded as a re-weighting
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Figure 5.2: different number of neighbors k

method that only assign the weight to the representatives and others assign 0 weight. In

Table 5.1, we can see that re-weighting methods are competitive to HS. However, HS is

computational efficiency because we don’t need to calculate the kernel matrix that KMM

should do. We just run the KNN algorithm. We can also see that our SS-β perform poorly

because it suffers from the impact of non-representative and difficult hyperparameter tun-

ing.

Furthermore, we do the experiment to test accuracy under a different number of neigh-

bors. The results plot in Figure 5.2. We can find that under different k, the accuracy has

slightly different.

Briefly, if we encounter an adaptation task where we are sure that the source data and

its corresponding target data have similar features, taking HS into account would gain

some benefits and mitigate the label shift impact.

5.2 Digit Dataset Evaluation

To extend to a more severe shift scenario, we follow the procedure of previous work [25]

to artificially generate the shift datasets. In brief, the source domain keeps class-balanced
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accuracy
source-only 65.0 ± 2.1
KMM-1 66.7 ± 1.5
KMM-10 66.2 ± 1.0
KMM-100 67.0 ± 1.1
DANN 57.4 ± 1.6
fDANN-1 56.3 ± 1.6
sDANN-4 57.8 ± 1.7
HS 67.0 ± 0.1
SS-10 62.3 ± 1.5
target-only 82.2 ± 1.1

Table 5.1: Chembl→ Herb .

and the shift part comes from the target domain. To yield the target label distribution

shift, we subsample target data from half of the classes in a uniform sampling manner.

That is to say, we create the target dataset which contains only half of the original classes.

Therefore, following the procedure, we obtain covariate shift dataset with severe label

distribution shift. In more depth, we want our model trained on the 10-class source domain

to predict correctly on the target domain which only has 5 classes. We consider USPS and

MNIST datasets, so there would be two tasks: (i) USPS → MNIST and (ii) MNIST →

USPS. For each task, we do the following experiments. (a) [0-4] shift: target data only

sample from class 0-4. (b) [5-9] shift: target data only sample from class 5-9. (c) [0-9]

no shift: sample data from all classes. Note that, we subsample 2000 data from MNIST

and subsample 1800 data from USPS according to given distribution (shift or no shift).

In this section, we resize all the image to 28x28, convert each value into [0, 1] and do

channel-wise normalization with 0.5 mean and 0.5 standard deviation. Figure 5.3 shows

the model architecture. Note that we don’t put a re-weighting method into comparison

because the distribution difference between the source and target domains is large.

For task (i), the results are listed in Table 5.2. From the table, we can discover that

fDANN outperform other methods on the severe shift setting (i.e. [0-4] Shift and [5-9]

Shift). In [0-9] No-Shift setting, the original DANN, which is not restricted to align the

source and target distributions imperfectly like fDANN and sDANN, outperform other

methods. As our expected, our distance-based methods perform ordinary or even worsen
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Figure 5.3: Model architecture for MNIST and USPS datasets

because the features do not have great physical meanings. But we can also find out that

fDANNand sDANNare unstable with high standard deviations. Therefore, it is not certain

whether applying fDANN and sDANN for a real-world application is suitable.

For task (ii), Table 5.3 shows that fDANN still do well on severe shift settings. How-

ever, to our surprise, we have a great improvement on [0-4] Shift. In general, the distance

between two images may be meaningless, thus the good performance is beyond our ex-

pectation. We further investigate this phenomenon by plotting the source and target dis-

tributions in Figure 5.4. From the figure, we can find that class 0-4 from both MNIST

and USPS have great discriminability because they separate obviously in contrast to class

5-9. Additionally, the source data with the labels among class 0-4 is relatively close to

the corresponding target data. Therefore, our method can have great performance in [0-4]

Shift.

We can notice that SS-β in both tasks have the same phenomenon: if β is assigned

the bigger weight, the accuracy which SS-β get is much more like HS. On the contrary,

the accuracy which SS-β has is much more like source-only. We also do the experiment

to test accuracy under a different number of neighbors. The results list in Table 5.7 and

Table 5.8. We can find that under different k, the accuracy almost remains the same.

Even though our methods perform well only on [0-4] Shift, the performance of our

methods on other tasks are still worse than other methods, because the input features are

not concrete. Therefore, obtaining a feature embedding with physical meaning is crucial

before applying our methods. We try three different ways to get an embedding. (1) princi-

pal component analysis (PCA). (2) extractor: build a model from the source domain first,
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Figure 5.4: t-sne of MNIST (src) and USPS (tgt)

then use it as feature extractor on the source data and target data. (3) Imagenet pre-trained

model. Note that, for the PCAmethod, we concatenate both the source and target data and

then run the method to obtain the features. After getting all feature embedding, we then

apply our methods on these embedding. Table 5.4 and Table 5.5 show the results. We can

see that our method well generalizes to the target domain, under the feature embedding

generating by the extractor, i.e., the model pre-trained on the source domain. Using the

features generated by PCA to run our methods has bad performance on each task. This

result shows PCA let the target data lose a lot of important information. The Imagenet

pre-trained model method performs poorly, either. Because that the pre-trained model

train on a non-digits dataset, the model cannot extract the features which are important for

digits classification.

5.3 Noisy C2H Dataset Evaluation

In this section, we want to compare our two proposed method themselves. More specif-

ically, under what circumstances, choosing HS would have good performance. On the

other hand, in what situation, we should prevent from using HS and resort to SS-β. We
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[0-4] Shift [5-9] Shift [0-9] No-Shift
source-only 73.1 ± 4.5 29.2 ± 3.3 50.1 ± 3.0
DANN 62.1 ± 1.9 38.8 ± 4.0 88.6 ± 1.5
fDANN-1 74.2 ± 2.2 69.5 ± 7.8 82.1 ± 1.8
sDANN-1 71.7 ± 2.3 42.0 ± 3.5 84.8 ± 1.3
HS 72.3 ± 5.4 26.4 ± 5.4 43.2 ± 4.7
SS-100 71.3 ± 3.2 25.8 ± 3.0 42.9 ± 4.1
SS-10 69.9 ± 2.8 25.9 ± 4.3 41.8 ± 3.8
SS-1 69.7 ± 3.9 26.0 ± 5.2 45.7 ± 4.1
SS-0.1 70.5 ± 2.5 26.9 ± 5.0 48.5 ± 5.2
SS-0.01 73.0 ± 3.1 28.6 ± 3.4 50.2 ± 3.2

Table 5.2: accuracy for USPS→MNIST .

[0-4] Shift [5-9] Shift [0-9] No-Shift
source-only 83.5 ± 1.5 58.3 ± 4.4 71.2 ± 2.2
DANN 48.9 ± 4.3 39.2 ± 1.8 87.0 ± 1.4
fDANN-1 81.7 ± 2.3 72.1 ± 7.7 84.2 ± 3.7
sDANN-4 61.5 ± 8.4 42.4 ± 6.4 82.7 ± 2.5
HS 85.2 ± 0.1 47.5±9.7 70.1±1.4
SS-100 87.3 ± 1.1 58.1 ± 2.3 75.5 ± 0.9
SS-10 88.4 ± 1.3 60.7 ± 2.1 76.3 ± 1.0
SS-1 88.8 ± 1.2 62.6 ±1.7 76.7 ± 0.8
SS-0.1 87.7 ± 1.4 62.9 ± 2.2 77.3 ± 0.8
SS-0.01 84.8 ± 1.5 59.7 ± 3.0 74.6 ± 0.9

Table 5.3: accuracy for MNIST→ USPS .

create a noisy C2H dataset and try to choose the better method in this scenario. First,

we add Gaussian noise with 0 mean and 0.01 variance into each feature dimension inde-

pendently for every ChEMBL- data point, while Herb dataset remains the same. In this

setting, the source data which is close to the target may be different from the one in the

original setting.

The experiment results are listed in Table 5.6. From the table, we can see that HS

perform poorly than SS-β. As expected, in the noisy source scenario, if we over-rely on the

close source dataset selected by HS, we would suffer from the impact of noisy data. In this

circumstance, choose SS-β can mitigate the noisy data effect by careful hyperparameter

tuning.

We can briefly summarize when to use hard version selection and when to use the soft

one. If we know in advance that the data has strong physical meaning in your task, use
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[0-4] Shift [5-9] Shift [0-9] No-Shift
pca 29.2 ± 2.9 14.7±6.6 23.6±3.7
extractor 83.6 ± 5.3 55.8 ±6.9 69.3 ± 1.7
Imagenet pre-trained model 43.9 ± 3.3 26.9 ±3.2 34.0 ± 3.1

Table 5.4: MNIST→ USPS under different embeddings.

[0-4] Shift [5-9] Shift [0-9] No-Shift
pca 24.9 ± 2.7 4.7±1.4 13.9±2.5
extractor 77.1 ± 5.3 51.4 ±9.1 67.4 ± 4.2
Imagenet pre-trained model 43.9 ± 3.7 18.8 ±1.7 30.6 ± 2.4

Table 5.5: USPS→MNIST under different embeddings .

hard version would gain muchmore benefit without the effort for tuning the parameter. On

the contrary, in the task where you have non-physical meaning data, choose soft version

selection and coupe with careful parameter search can avoid from over-confidence on the

fake representative. By the same token, in the source noisy setting, the soft version can

still prevent the noise impact.
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[0-9] No-Shift
source-only 56.9 ± 1.2
HS 55.6 ± 1.1
SS-1 57.7 ± 1.3
target-only 82.2 ± 1.1

Table 5.6: accuracy for noisy ChEMBL-→ Herb .

[0-4] Shift [5-9] Shift [0-9] No-Shift
K=1 72.3 ± 5.4 26.4 ± 5.4 43.2 ± 4.7
K=2 71.5 ± 4.1 27.2 ± 3.5 46.9 ± 3.4
K=3 72.9 ± 4.5 27.3 ± 3.2 46.0 ± 3.2
K=4 72.9 ± 3.7 26.8 ± 2.1 47.4 ± 3.9
K=5 74.4 ± 3.3 27.2 ± 3.1 48.9 ± 3.9
K=6 73.3 ± 2.7 27.1 ± 2.1 47.5 ± 3.5

Table 5.7: accuracy for USPS→MNIST with different k.

[0-4] Shift [5-9] Shift [0-9] No-Shift
K=1 85.2 ± 0.1 47.5±9.7 70.1±1.4
K=2 85.7 ± 1.8 50.5 ± 6.0 70.9 ± 2.2
K=3 86.5 ± 2.0 50.3 ± 3.7 71.8 ± 1.2
K=4 86.8 ± 1.5 51.6 ± 3.7 72.8 ± 1.0
K=5 86.9 ± 2.0 53.8 ± 2.5 72.8 ± 0.7
K=6 87.1 ± 1.4 54.9 ± 3.4 73.0 ± 1.2

Table 5.8: accuracy for MNIST→ USPS with different k.
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Chapter 6

Conclusion

In this thesis, motivated by the real-world bio-chemistry application, we indicate the prob-

lem recent domain adaptation methods cannot deal with. To tackle this problem, we pro-

pose HS and SS-β, which take similarity measure between the source and target domains

into account. Experimental results show that each method has its usage timing. Use HS

when Feature space has good physical meaning. SS-β gain much more benefit when the

source data contains noise. In high-dimension space (e.g., image) where feature space has

no physical meaning, we find a possible way by applying a pre-trained model to extend

our methods and get promising results.

Our methods are mainly based on the similarity, that is, how to get a feature space

with strong physical meaning would be a big problem. A possible extension of this work

is regarding our methods as a complement for current domain adaptation methods.
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