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Abstract

Heterogeneous computing has been proven as an efficient way to improve
system throughput. In these heterogeneous systems, Graphics Processing
Units (GPUs) play an important role for applications acceleration to assist
Central Processing Units (CPUs). In addition to traditional graphics work-
loads, GPUs are able to accelerate data parallel workloads effectively, and
have been widely used in data center, cloud computing, and even mobile de-
vices. As the demand of application acceleration increases, a preemption
mechanism to fully support Quality of Service (QoS) among different ap-
plications is needed, especially for those resource-limited mobile systems.
However, traditional context switching incurs tremendous preemption cost
due to the large context of GPUs. A high-priority task suffers from a long la-
tency to preempt the running task, and system throughput degrades during the
switch time. Therefore, supporting fast GPU preemption is a critical enabling
technology to the true heterogeneous computing paradigm.

Recently, many preemption mechanisms were proposed on GPUs with
architectural extension. However, these preemption schemes either do not
consider GPU resource utilization or the fragmentation problem caused by
fine-grained resource sharing among multiple kernels. Consequently, a high-
priority tasks may violate its deadline. To meet the QoS of a high-priority
task, we introduce a dual-kernel approach to support fast preemption on GPUs.
Our approach achieves fine-grained preemption and can simplify the frag-
mentation problem. First, we proposed an resource allocation policy to avoid
fragmentation problem. Second, a victim selection scheme is proposed to
minimize the preemption cost while satisfying a required preemption latency.
The experimental results show that our approach can reach very close to the
ideal preemption scheme within 2% difference in terms of deadline viola-
tions. Furthermore, on average we improves GPU resource utilization by
2.93x over prior technique during preemption.

Keywords — Heterogeneous Computing; Graphics Processing Unit; Mo-
bile System; Preemption; Context Switch
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Chapter 1
Introduction

With the rise of heterogeneous computing, today’s computer systems are increasingly
adopting Graphics Processing Units (GPUs) to assist Central Processing Units (CPUs),
spanning widely varied environments from mobile systems to cloud computing. In these
heterogeneous systems, workloads are offloaded to GPUs for application acceleration. In
addition to traditional graphics workloads, GPUs are able to accelerate data parallel work-
loads (or kernels) with the help of programming models such as CUDA [11] and OpenCL
[18], which exploit thread level parallelism to achieve high throughput on GPUs. As
the demand of application acceleration increases, a preemption mechanism to fully sup-
port QoS (Quality of Service) among different applications is needed, especially for those
resource-limited System-on-Chip (SoC) based mobile platforms. However, modern GPUs
can have up to 2048 threads concurrently running on a compute unit. With such a large
context, traditional context switching adopted in GPUs has high cost in both preemption
latency and throughput overhead. Therefore, supporting fast GPU preemption is a critical
enabling technology to the true heterogeneous computing paradigm.

In practical, the execution engine of GPU is composed of multiple Streaming Multi-
processors (SMs), and each SM includes large numbers of memory resources, such as reg-
isters and shared memory. In typical GPU execution models, a task (application) can be
split into multiple kernels, and each task is served by GPU exclusively. A kernel consists
of multiple thread blocks (TBs), which are dispatched to SMs for kernel execution, and a
TB is a basic unit of task dispatch. NVIDIA’s Hyper-Q [12] technology makes GPUs able
to execute independent kernels from multiple independent kernel queues concurrently.
However, this feature is limited to the kernels within a single application. Figure 1.1(a)
illustrates an example. There are two tasks, Ty and Ty, each of them is composed of two
independent kernels, respectively. Independent kernels within T, can share a GPU, but
kernels from T; have to wait until T finishes. To solve the aforementioned problem,

Multi-Process Service (MPS) [13] is introduced with a software solution, allowing ker-
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Figure 1.1: Execution model of GPUs. (a) Exclusive access of a GPU in typical execution
model, (b) Spatial resource sharing among SMs, (¢) A preemption scheme without mul-
tiple kernel support in an SM, and (d) The proposed preemption scheme with dual-kernel

support to enable fine-grained preemption.

nels from different applications to co-execute on the same GPU, but still has no control
of either kernel scheduling or resource management. As shown in Figure 1.1(b), kg from
Ty and k; from T; can spatially share SMs, but k’; still cannot be dispatched to SM;
until k finishes. Recently, many preemption schemes were proposed with architectural
extension [20, 16], allowing the new-coming high-priority kernel to preempt the running
kernel on an SM, rather than waiting for its completion. Figure 1.1(c) illustrates an ex-
ample. The kernels from the high-priority task T; preempts the running kernel T, on
both SM; and SMy, respectively. T; gains control of GPU resources after preempting Ty,
and T, resumes its execution after T finishes. Although these approaches can make the
high-priority task start its execution earlier, they still suffer from the problem of the in-
curred preemption latency and resource utilization degradation because their preemption
granularity is an entire SM.

To further increase SM resource utilization, Simultaneous Multikernel (SMK) [22, 23]
is proposed to make multiple kernels share all resource in an SM. By exploiting hetero-
geneity of different kernels, SMK can fully utilize the resources within an SM. In addition,
partial context switching in an SM is proposed for achieving fairness among multiple ker-
nels. Hence, the victims are thread blocks (TBs) from the kernel which occupies the most
of the resources. However, for a high-priority task with deadline, we have to allocate
GPU resources for the task as soon as possible to meet its deadline. Therefore, identi-
fying appropriate preemption victims to satisfy the given preemption latency constraint

is crucial. On the other hand, SMK needs complex resource allocation policy and ad-
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ditional hardware for resource sharing among kernels. Besides, resource fragmentation
problem becomes worse when the number of concurrent kernels increases due to kernel
heterogeneity. Resource fragmentation problem may have an impact on the high-priority
task, and its response time may be postponed because of insufficient active TBs. To con-
sider both the priority of a launching task and SM resource utilization, we introduce a
dual-kernel approach to enable partial preemption in this thesis. Rather than supporting
multiple kernels in an SM for fairness, we only need dual kernel in an SM to achieve fast
preemption for a high-priority kernel. Figure 1.1(d) illustrates an example. The kernels
from T, preempt the running kernels via dual-kernel support, and can be dispatched once
the SM resource is partially released. Instead of preempting all the running TBs in an
SM, this approach makes the preempting kernel be scheduled earlier, which reduces both
preemption latency and throughput overhead. Moreover, fragmentation problem can be
simplified with only two kernels in an SM. The contributions of this thesis are summarized

as follows:

1) We introduce a lightweight dual-kernel approach to support fine-grained preemp-
tion, and propose a resource allocation policy to avoid resource fragmentation prob-

lem in an SM.

2) We propose a victim selection scheme and a computing model for preemption cost

estimation to achieve fast preemption based on dual-kernel support.

3) The proposed scheme achieves fine-grained preemption to avoid resource utiliza-
tion degradation during preemption, and can identify the victims with minimal pre-

emption cost that satisfies a required preemption latency constraint.
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Chapter 2
Background

This section provides a brief background of modern GPU execution model and architec-
ture that are necessary for understanding our proposed scheme. We model the baseline ar-
chitecture according to NVIDIA Fermi GTX480 architecture [10], and we use NVIDIA’s
CUDA [11] terminology in this thesis.

2.1 GPU Execution Model

Typically, a GPU program consists of two parts: 1) host code, and 2) kernel code. Host
code is executed on the CPU to process I/O operations, including input data preparation
for the GPU, parallel workloads offload, and output data transfer from GPU to CPU. On
the other hand, kernel code is executed on the GPU, exploiting thread-level parallelism for
program acceleration. The host CPU offloads GPU kernels by kernel launch operation,
which passes and stores kernel parameters to GPU global memory. The kernel launch
overhead is in the order of microseconds (e.g., around 5 microseconds [8]).
Programmers write code for the execution of one thread, and multiple threads exe-
cute the same code on the GPU. Threads are grouped into thread blocks (TBs), which are
dispatched to Streaming Multiprocessors (SMs) for kernel execution by block scheduler.
The total number of threads and the number of threads in a TB are specified by program-
mers. Within a TB, threads can be synchronized with barrier operations, and communicate
through a on-chip scratchpad memory, called shared memory. Before dispatching a TB to

an SM, the following conditions should be checked due to hardware limitations [11]:

1) The maximum number of TBs and threads, which can be concurrent running within
an SM, is fixed.

2) The required memory resources must to be consecutive (i.e., registers and shared

memory).
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Figure 2.1: Baseline GPU architecture overview.

If all the mentioned requirements are met, a TB can be dispatched to the SM. As a ba-
sic unit of task dispatch, there is no shared state between TBs but within a TB. Therefore,
the occupied SM resources by a TB can be released when all the threads in the TB are
finished.

2.2 GPU Architecture

Figure 2.1 shows an overview of our baseline GPU architecture, which is composed of
a scheduling unit, multiple SMs and memory units. Block scheduler is responsible for
dispatching TBs to SMs, and managing the resource allocation between kernels. SM is
main execution unit with many CUDA cores (i.e., Streaming Processors (SPs) or SIMT
lanes, including ALUs and FPUs). Each SM has its own L1 cache, and all SMs share a
L2 cache. When a TB is dispatched to an SM, the threads within a TB are partitioned into
several warps. A warp consists of 32 threads, which is the SIMT width of the GPU. Warp
scheduler issues warps to SIMT lanes for threads execution, and each thread executes the
same instruction within a warp. SMs can switch warps without overhead because their
context are the same. Other warps can be scheduled to fill the SIMT lanes up while some
of the threads are stalled due to long latency operations or memory accesses. As a result,
the long latency can be hidden by warp scheduling if the number of warps (or thread) are

sufficient, improving the resource utilization and having no impact on throughput.
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2.3 Prior Preemption Techniques

Supporting preemption schemes on GPUs incurs additional cost both in preemption la-
tency and throughput overhead. However, different preemption techniques make different
trade-offs. Prior preemption techniques include context switching, draining and flushing.
GPU context switching is like conventional CPU context switching, which involves sav-
ing the context of current running task/threads to temporal memory space, scheduling the
preemting task/threads and loading the context of the preempted task/threads to restart its
execution.

However, Modern GPUs can have up to 2048 threads concurrently running on an SM.
Each thread accesses its own registers, and the threads within a TB share their own on-
chip scratchpad memory. With such a large context, traditional context switching adopted
in GPUs may cause high cost in preemption latency. Furthermore, no progress is done
during context switching and GPU throughput is degraded significantly. To overcome the
throughput overhead caused by context switching, Tanasic et al. [20] propose draining
technique. Draining keeps executing the running TBs and stops issuing TBs from the
running kernel. Therefore, throughput overhead can be reduced because the running TBs
still make progress during preemption, and the preempting kernel can be scheduled once
the running TBs are finished. Although draining has less throughput overhead when com-
pared to context switching, the preemption latency may be longer due to long running
TBs.

To enable low latency preemption, Park et al. [16] introduce flushing, and further
utilize flushing with the two mentioned techniques collaboratively to reduce preemption
cost based on the progress of a TB. Context switching has almost constant cost across
the execution, while draining has lower cost when a TB is near the end of its execution.
Flushing drops the execution of the running TBs immediately without saving any context.
The dropped TBs resume their execution from the beginning afterwards. Although flush-
ing can achieve extremely low preemption latency (i.e., almost zero latency), the wasted
throughput can grow quickly if the progress of the preempted TBs are nearly at the end
of its execution. Hence, flushing has lower cost when a TB is near the beginning of its

execution.
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Chapter 3

Mechanism

3.1 Fast GPU Preemption Mechanism

To provide a fast preemption mechanism on GPUs, we first propose dual kernel execution
in an SM. With dual-kernel support, we allow the preempting kernel to co-execute with
the running kernel. Once the required resources are partially released, the new TBs can
be dispatched. Instead of preempting all the running TBs in an SM, this approach makes
the preempting kernel be scheduled earlier, which reduces both preemption latency and
throughput overhead. However, resource fragmentation may occur while two different
kernels are concurrent running on the same SM if we allocate SM resource for the pre-
empting kernel naively. Second, determine which TBs to preempt and which preemption
technique to use are crucial. The preemption decisions are critical to minimize throughput
overhead while meeting the preemption latency constraint given by the preempting kernel
or application.

Figure 3.1 shows the overview of our proposed preemption framework on GPUs. Once
a high-priority task is launched, the GPU driver will deliver the preemption request from
the host (i.e., OS or kernel scheduler) to the GPU device. At first, we restrict the allocation
positions for the preempting kernel to avoid resource fragmentation within an SM. The
predetermined positions are stored in block scheduler. Next, block scheduler determines
candidate victim sets based on the resource usage and the allocation status of the run-
ning and preempting kernel. As mentioned in Chapter 2, Section 2.1, the kernel launch
overhead is in the order of microseconds, hence the above latency can be hidden. Af-
terwards, the SM passes the required information to block scheduler for preemption cost
estimation (i.e., executed cycles/instructions per running TB). At last, block scheduler
makes preemption decisions based on the preemption cost of each candidate to identify
the least throughput overhead one that satisfies the given preemption latency. The algo-

rithm preempts a subset of the running TBs once at a time for each SM, which are itera-
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Figure 3.1: Overview of the proposed preemption framework on GPUs.

tively performed until the preempting kernel gains control of the GPU. Since we require
fine-grained and frequent decisions, we can leverage a small, in-order, programmable

processor in today’s GPU [14].

3.2 Dual-Kernel Support with Allocation Alignment

We add very little hardware to enable dual kernel execution in an SM, including preempt-
ing kernel information and the metadata for its execution. Before dispatching a new TB
to an SM, we have to ensure that the required SM resource (i.e., registers and shared
memory) for the new TB are sufficient [11]. Moreover, the allocated resource must be
consecutive because a TB is a basic unit of dispatch. However, resource fragmentation
may occur in an SM if we do not allocate SM resource for the preempting kernel care-
fully. As shown in Figure 3.2, there are four TBs (TBy"TB3) running on the SM in the
beginning, then TB; and TB, are leaving. We assume a new TB can be dispatched if
any two consecutive running TBs are preempted. Hence, in the case of naive allocation
(Figure 3.2(a)), a new TB can be dispatched to the position of TB; and TB,. However, we
cannot dispatch another new TB when TB( and TB3 both leave the SM. Even the released
resources are sufficient, but we still need consecutive resource allocation for a new TB.
In this case, only one new TB runs on the SM, but actually the maximum number can be

two. The fragmentation problem may lead to insufficient active TBs (or threads) in an
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Figure 3.2: An illustration of SM resource allocation. Fragmentation occurs in the case
of (a) Naive Resource Allocation, but can be avoided with (b) Resource Allocation Align-

ment.

SM, causing low SM resource utilization and throughput. Moreover, the response time of
the task may be postponed.

In order to avoid this problem, we propose allocation alignment for the new TBs from
the preempting kernel. We allocate SM resource at the predetermined positions that are
aligned to the resource usage per TB of the preempting kernel, as shown in Figure 3.2(b).
The allocation positions for the preempting kernel are shown with the arrows. We do
not dispatch a new TB in the beginning, because no sufficient and consecutive resource
at Position O or Position 1. However, we allocate the required resource for a new TB at
Position 0 while TB( leaves the SM. Similarly, we can allocate the resource for another
new TB at Position 1 while TB; leaves. In this case, we can make two new TBs run on the
SM (i.e., the case of Figure 3.2(b)) rather than one. By restricting the allocation positions,

SM resource are allocated consecutively in a steady state to avoid resource fragmentation.
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3.3 Victim Selection

With dual-kernel support, we can achieve fine-grained preemption by partially preempting
the running TBs in an SM. However, we still have to further determine appropriate victims
to release the required resource for a new TB, and appropriate preemption techniques
for the victims to achieve fast preemption. The proposed algorithm helps to determine
multiple candidate victim sets in the beginning, and estimates the preemption cost for
each candidate. At last, we identify the final victim to minimize throughput overhead

while meeting the preemption latency constraint.

3.3.1 Candidate Victim Sets Determination

A candidate victim set contains a set of running TBs that could release the required re-
source for a new TB while they are preempted. Besides, the required resource for a new
TB must be consecutive, a candidate should be composed of consecutive TBs. However,
we cannot determine candidate victim sets naively through dividing the resource usage of
anew TB by a running TB, because sometimes it is not divisible. Since the allocation po-
sitions for the preempting kernel are predetermined, we can further determine candidate
victim sets based on these positions. Note that candidate victim sets are determined only
once in an SM for a single preemption request.

Figure 3.3(a) illustrates a flow chart of candidate victim set determination. The can-
didates are determined based on the predetermined positions. The running TBs between
any of two consecutive predetermined positions will be pushed into the candidate for the

former position. In the example of Figure 3.3(b), a victim set for Position 0 is composed
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of TBy, TB; and TB, because the SM resource between Position 0 and Position 1 is oc-
cupied by TBy, TB; and TB,. Once a candidate is preempted, we have to update the
candidate victim sets by evicting the preempted TB IDs, and this can be done by adding a
control logic in an SM. Note that predetermined positions include both register and shared
memory, we first generate multiple sets for each of them, and then the candidate victim set

for each position can be obtained by taking the union of the sets from the same position.

3.3.2 Preemption Cost Estimation

To minimize preemption cost, we have to further determine the final victim among can-
didate victim sets. We first estimate the preemption cost of each TB in a candidate with
respect to different preemption techniques, then the minimal cost of the candidate can be
calculated. The cost is interpreted as an aggregate of preemption latency and through-
put overhead. In this thesis, we define throughput overhead as wasted instructions that is
incurred by preemption.

As mentioned before, similar to the approach in [16], we integrate three preemption
techniques (i.e., context switching, draining, and flushing) for our preemption scheme.
For flushing, the preemption latency can be neglected because running TBs are dropped
immediately, and the throughput overhead is equal to the number of executed instruc-
tions of the preempted TBs. For context switching, due to the fixed context size of each
TB in a kernel, the SM resource requirement can be calculated before a kernel launches.
Therefore, the preemption latency can be estimated by dividing the context size based on
an SM’s share of global memory bandwidth. We assume global memory bandwidth is
fairly shared among all SMs. To estimate the throughput overhead of context switching,
the average instruction-per-cycle (IPC) of the preempted TBs in the SM is multiplied by
the double of its preemption latency. Note that preemption latency is doubled because
we have to consider the overhead incurred by both saving and restoring the context. We
accumulate the executed instructions of each running TB in cycles by adding very little
hardware in an SM. Hence, the average cycle-per-instruction (CPI) or IPC can be cal-
culated. Note that we accumulate executed instructions for each TB at warp granularity
instead of thread granularity to minimize the variation of instruction counts introduced by
branch divergences.

For draining, the draining latency for a TB is defined as the remaining time for the
GPU to finish it, which is the product of the remaining instructions and the CPI of exe-
cuting those instructions. The number of remaining instructions can be simply obtained
by subtracting the executed instructions from the average instructions of a TB in the pre-
empted kernel. On the other hand, the CPI of executing remaining instructions cannot be

obtained the same way as the number of remaining instructions, as CPIs of the TBs have
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higher variation. CPIs may vary across time for the same TB because of indirect memory
accesses or branch divergences. Therefore, the past CPIs may not be representative for
future CPIs even in the same TB. CPIs can also be data dependent, as some TBs access
data regions with better locality than the others, leading to lower CPI. Hence, represent-
ing a TB’s CPI with the average CPI of other finished TBs may not be accurate. In order
to predict the future CPIs more accurately, we choose the way that has lower variation
(1.e., use past CPIs of running TBs as prediction over the CPIs of finished TBs if the stan-
dard deviation of the former is lower than the latter, and vice versa). In [16], draining
incurs some throughput overhead because the number of active threads within an SM is
decreasing during preemption, the latency cannot be hidden as long as the active threads
are insufficient. However, in our scheme, the throughput overhead of draining is assumed
zero because we can smoothly dispatch new TBs once there are enough SM resources.
Note that if the cost cannot be estimated due to the insufficiency of gleaned statistics, we

conservatively apply the maximum value as the estimated cost.

3.3.3 Identifying the Final Victim

Figure 3.4 illustrates the procedure of how the final victim is determined. Once the pre-
emption cost is calculated for each TB, the preemption technique is also determined to
minimize the cost while meeting the preemption latency constraint (line 1-14). If a TB
cannot meet the preemption latency constraint by using any one of the three preemption
techniques, we select the one with the minimal preemption latency. Once the preemption
technique is determined for each TB, we then calculate the cost of each candidate (line
15-20). The cost of a candidate can be calculated as shown in the formulas below:

Preemption_Latency(Candidatey,) = '_maxil(Preemption,Latency(TBi)) (3.1)

1=0...

and
n—1
Throughput_Overhead(Candidatey,) =~ Throughput_Overhead(TB;)  (3.2)
i=0
, where n is number of TBs in candidate k. The preemption latency of a candidate is
bounded by the last leaving TB, and the throughput overhead is the summation of the
overhead caused by preempting each TBs in the candidate. Last, we select the least
throughput overhead one while meeting the preemption latency constraint to be the fi-
nal victim (line 21-26). Again, if all the candidates fail to meet the preemption latency
constraint, we select the one with the minimal preemption latency.
The time complexity of Figure 3.4 is O(NlogN+KlogK), where N is the number of

TBs among all candidates, and K is the number of candidates. The first term is from the
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first for loop (line 1-14), estimation for N TBs takes O(TN)=0O(N), where T is the number
of preemption techniques which is at most 3, and sorting takes O(TNIogTN)=O(NIogN).

The second term is from the remaining instructions (line 15-26), summing up the overhead
for all TBs among K candidates takes O(N) and sorting takes O(KlogK). Note that N and

K are fixed numbers (e.g., 8 is the maximum number of TBs on an SM for NVIDIA Fermi

GTX480 [10], also the maximum number of victim candidates is at most 8, but in general

these two number are less than the maximum). Since the complexity of the algorithm is

almost constant, this overhead is nearly negligible.

Algorithm 1: Victim Selection

Input: k victim candidates, n TBs and t techniques

Output: Preemption decision with selected candidate
for each TB in the SM

1

P OO NO O WM

cost_estimation(TB)
for each preemption technique t

iIf meet_latency then

set technique t

end if
end for
sort_overhead(TB) with set techniques
if no technique meet_latency then

Technique[TB] = minimal latency technique

else

Technique[TB] = least overhead technique

end if
end for
for each victim candidate VC
if meet_latency for all TBs in VC then
set candidate VC
end if
Sum up the overhead for VC
end for
sort_overhead(VC) with set candidates
If no candidate meet_latency then
FinalVictim = minimal latency candidate
else
FinalVictim = least overhead candidate
end if

Figure 3.4: Algorithm 1: Victim Selection
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Figure 3.5: Architectural support for the proposed preemption framework.

3.4 Architectural Support

Figure 3.5 shows the architectural support for our proposed preemption frame work on
GPUs. We add very little hardware in GPU and SMs (the highlighted part with bold
frame) to enable dual-kernel execution in an SM. The added hardware keeps the infor-
mation that is required for both the execution of the preempting kernel and preemption
decision making. Preempting kernel allocation status records the mapping of TB-to-SM
and resource allocation status for the preempting kernel. Preempting kernel allocation
positions record the allocated positions of the register/shared memory for the TBs from
the preempting kernel. Candidate victim sets contain multiple sets of running TBs’ ID.
Running TB status accumulates the executed instructions of each running TB in cycles,
and use a bit to indicate if a TB can be flushed or not. Once a preemption request arrives,
the processor in block scheduler first initializes candidate victim sets for each SM, and

then gather the required information from SMs for the preemption decision making.

3.4.1 Preempting Kernel Allocation Status

Block scheduler records preempting kernel allocation status and the mapping of TB-to-
SM, as shown in Figure 3.6. Block scheduler updates the allocation status once a TB

is dispatched, similarly, once a TB from the preempting kernel finishes, SM reports its
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SMID [ Position Status

SMM |0 True (Issued)
1 False (Finished)
N True (Issued)

Figure 3.6: An example of preempting kernel allocation status.

Position 0 | Position1| ... | Position N
Register 0 4096 | ... 65536
Sh. Mem 0 2048 | ... 49152

Figure 3.7: An example of preempting kernel allocation positions.

kernel info and allocated position to block scheduler, then block scheduler updates the

preempting kernel’s allocation status.

3.4.2 Preempting Kernel Allocation Positions

Preempting kernel allocation positions record the allocated position for the TBs from the
preempting kernel, including the predetermined addresses of register and shared memory,

as shown in Figure 3.7.

3.4.3 Candidate Victim Sets

Candidate victim sets contain multiple sets of running TBs’ ID, as shown in Figure 3.8.
In the y-axis, it represents the number of candidates. While in the x-axis, it represents
a bitset for each candidate, and a bit stands for a allocated position of the running TB

in an SM. If the bit is set, it means the corresponding TB of the position belongs to the

candidate.
Bitsets
Candidate O 11100000
Candidate 1 00111000
Candidate K 00000011

Figure 3.8: An example of candidate victim sets.
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Signal === 00111000
124/

Candidate 0 11100000 Candidate 0 11000000
Candidate 1 00111000 Candidate 1 00000000
Candidate 2 00001110 ‘ Candidate 2 00000110
Candidate 3 00000011 Candidate 3 00000011

Figure 3.9: An example of updating candidate victim sets.

TB ID | Executed Instructions | Issue Cycle | Flush
0 486 2000 True
1 20 2474 False
N 574 1862 True

Figure 3.10: An example of TB Progress Status.

During the preemption process, we have to update the candidate victim sets once a
candidate are preempted, and this can be done by adding a control logic in an SM. When
a candidate 1s preempted, the added logic receives a signal and evicts the same positions
of the bits from each candidate if the bits are set in the preempted candidate, as shown
in Figure 3.8. We assume the preempted candidate is Candidate 1 in this case, and the

updated victim candidate sets after preemption are shown on the right of Figure 3.9.

3.4.4 Running TB Status

Once a preemption request arrives, SMs report the status of each running TB to block
scheduler for preemption cost estimation. As shown in Figure 3.10, the required informa-
tion includes the executed instructions, issue cycle and a flush bit to check if a TB can be

flushed or not.

3.4.5 Storage Overhead

Total storage overhead is shown in Table 3.1. In linux operating system, default maxi-
mum value of pid is 32768, which can be represented with 15bits. The maximum number
that can be concurrent running on current generation GPUs is 32, which can be repre-

sented with 5bits. Since the minimum number of threads in a thread block is 32 and the
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Table 3.1: Total storage overhead of the proposed preemption framework.

Components

Contents

Storage Overhead

Preempting Kernel Allocation Status

TB-to-SM Mapping

4bits*16*15=120bytes

Process ID 15bits
Preempting Kernel Allocation Positions Kerr.161 b 5b1t.s
Register 16bits*64=128bytes
Shared Memory 16bits*64=128bytes
Candidate Victim Sets Thread Block ID 4bits*16*16=128bytes
Instructions 4bytes*16=64bytes
Running TB Status Issue Cycle 4bytes*16=64bytes
Flush Bit 1bit*16=2bytes

Total

~0.5kB per SM + 0.12kB

17

maximum number of thread blocks in an SM is 2048 in current generation of GPUs, the
predetermined allocation positions can be represented with 16bits*64=128bytes for 65536
registers and 48kB shared memory, respectively. Candidate victim list can be composed
up to 16 candidates, and the maximum thread blocks in each candidate can be 16, which
can be represented with 4bits*16*16=128bytes. The executed instructions and issue cycle
for a TB requires 4byte respectively. Hence, we need 4bytes*2*16+16bits=130bytes to
record the status of each TB in an SM. To sum up, the total storage cost is around 0.5kB

per SM, which is less than 0.2% of the capacity of an SM in current generation GPUs.
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Chapter 4

Results

4.1 Methodology

To evaluate the proposed preemption mechanism, we use a cycle-accurate GPU simulator,
GPGPU-Sim [2] in this thesis. We use default configuration to model a Fermi architecture
[10], which is similar to NVIDIA GTX480. The configuration parameters are listed in
Table 4.1. The default warp scheduling policy is Greedy-Then-Oldest (GTO) policy [17].
For the implementation of context switching, the latency depends on the current memory
loading of GPUs, and the consumed bandwidth will affect other SMs. In this thesis, We
implement context switching by stalling TBs for estimated context switch time to simplify
the problem, and the memory bandwidth is assumed fairly shared among each SM.

We use two popular benchmark suites from Rodinia [3] and Parboil [19] in this the-
sis. To evaluate the effectiveness of our proposed scheme, we select benchmarks with
various characteristics (i.e., threads number, memory resource usage, and idempotence).
The selected benchmarks and kernel attributes are listed in Table 4.2. A kernel is idem-
potent if it can be executed multiple times without changing the results beyond the initial
execution [6, 9]. Therefore, an idempotent kernel should not have any atomic or global
memory overwrite operations [16]. If we drop the execution of a non-idempotent kernel
by flushing, the correctness of its execution cannot be ensured.

Although the Flushing mechanism can achieve low preemption latency, it is not eligi-

Table 4.1: Simulator configuration parameters.

# of SMs 15 SIMT width 32
SM Frequency 1.4GHz Max # CTAs / SM 8
Memory Channels 6 Max # Threads / SM | 1536
Memory Bandwidth 177.4GB/s | # Registers / SM 32768
Default Warp Scheduler | GTO Shared Memory / SM | 48kB
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Table 4.2: Benchmarks with different characteristics.

# Regs Sh. M. | #Threads | TBs
Benchmark | Kernel Idempotent
/TB | / TB (B) /TB | /SM
pathfinder dynproc 4096 2048 256 6 Yes
hotspot calculate_temp 9216 3072 256 3 Yes
streamcluster | Kernel_compute_cost 6144 0 512 3 Yes
dwind c_CopySrcToComponents | 3584 3096 64 8 Yes
w
Fdwt53Kernel 3072 768 256 6 Yes
invert_mapping 3072 3072 256 6 Yes
kmeans
kmeansPoint 3072 3072 256 6 Yes
stencil block2D_hybrid_coarsen_x | 3584 0 128 8 Yes
d srad_cuda_1 5120 6144 256 6 Yes
sra
srad_cuda_2 5120 5120 256 6 No
findRangeK 5120 0 256 6 No
b+tree
findK 4096 0 256 6 No
needle_cuda_shared_1 1536 2180 32 8 No
nw
needle_cuda_shared 2 1536 2180 32 8 No
b Kernel 8192 0 512 3 No
s
Kernel2 6144 0 512 3 No
bpnn_layerforward_cuda 3072 1088 256 6 No
backprop - -
bpnn_adjust_weights_cuda | 6144 0 256 5 No
heartwall kernel 8192 11872 256 4 No

ble with non-idempotent kernel due to the strict restrictions. To increase the opportunities
for flushing, the relaxed idempotent condition is introduced in [16]. A TB can be regarded
as idempotent if the mentioned operation (i.e., atomic or global memory overwrites) have
not been executed yet. Therefore, the execution of a TB can be safely dropped with the
relaxed idempotence condition even if the kernel is non-idempotent. The detection of
these operations can be done by compiler analysis. In this thesis, we follow the same idea

and apply relaxed idempotent condition on flushing during simulations.

4.2 Prioritized Task with Deadline

We use a synthetic benchmark to mimic a high priority task with a hard deadline, and
the GPGPU benchmarks from Table 4.2 are the tasks to be preempted. The deadline is
preemption latency constraint plus the execution time of the preempting task (i.e., the
synthetic benchmark in this thesis). The synthetic benchmark uses 4096 registers, 2048
bytes shared memory, and 256 threads per TB with real world benchmark behavior.
Figure 4.1 illustrates the percentage of violations among multiple preemption requests

under 2us preemption latency constrain. The preemption time is assumed an uniform tim-
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Figure 4.1: The percentage of violations among multiple preemptions with different pre-

emption points. The preemption latency constraint is set to 2us.
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Figure 4.2: Error rate of draining latency estimation.

ing distribution across the execution of the GPGPU benchmarks. To clarify the effective-
ness of our proposed scheme, we also compare the experimental results to Chimera [16]
and Oracle. The oracle scheme is an ideal preemption mechanism, which can preempt
the kernels with completed information of preemption latency from off-line profiling.
As shown in Figure 4.1, the deadline violation rates by applying Chimera, the proposed
scheme, and Oracle are 14.0%, 8.4% and 6.9% of preemptions respectively. Obviously,
the proposed scheme can make the violation rate very close to the idea result of Oracle.
The deadline violations are primarily caused from the inaccurate estimation of drain-
ing latency and the strict restrictions of flushing. The result of b+tree shows the highest
violation rate because b+tree is an idempotent kernel with short TB execution time. Be-
cause there are over 60% TBs are belong to non-idempotent, flushing is not eligible to
achieve low preemption latency at most of the time. The other reason is that b+tree is

a tree-based traversal algorithm with many indirect memory accesses. The long latency
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memory accesses cannot be hidden without enough active threads when a TB is drained,
which cause the inaccurate estimation of draining latency much more serious. On the
other hand, srad has complex conditional branches. The control flow divergences incur
significant pipeline stalls with insufficient active threads, which also leads to inaccurate
estimation of draining latency.

Figure 4.2 shows the error rate of draining latency estimation for Chimera and our
scheme, respectively. We demonstrate the results of the three benchmarks which have
violation reduction after using our estimation method, we can see the average error rate
reduction is ~15.6% when compared to Chimera. With dual-kernel support, the proposed
victim selection scheme can achieve low preemption latency through fine-grained pre-
emption. Moreover, we estimate draining latency based on program behavior to achieve
higher accuracy, which leads to less violations than Chimera. The reasons mentioned
above lead to the most violations reduction in b+tree and srad. Even when the preemp-
tion latency constraint is extremely low as in the case of 2us (In GK110 [12], context
switch time can take up to 44us for an SM [20]), we still achieve low violation rate that

is very close to oracle with ~1.5% difference.

4.3 Impact of Preemption

When preemption occurs, GPUs suffer from utilization degradation, which may cause sig-
nificant throughput overhead. To demonstrate the effectiveness of our proposed scheme,
we also evaluate the throughput overhead and the resource utilization in each cycle during
the preemption process. In this thesis, we define the throughput overhead as the wasted
instructions, which are incurred by the three preemption mechanisms as mentioned ear-
lier. For fair comparison, we normalize the throughput overhead to the result of flushing
the preempted TBs.

Figure 4.3 shows normalized throughput overhead when the preemption latency con-
straint is set to 2us. Chimera+ stands for the preemption scheme of applying our draining
latency estimation model on Chimera [16]. In srad and b+tree, most of the cases show
that the inaccurate draining latency estimations in Chimera can be improved through our
proposed estimation model, as shown in Figure 4.1 and Figure 4.2. Therefore, in these
cases, Chimera+ utilize less draining to reduce the wasted instructions, which results in
higher throughput overhead when compared to Chimera. On the other hand, we can see
the incurred overhead by our proposed scheme is no more than Chimera under most of
the cases due to dual-kernel support. Overall, the proposed scheme reduces through-
put overhead by 25.3% compared to Chimera. In Figure 4.3, our scheme can achieve

the largest throughput overhead reduction in bfs because the execution time of its TB is
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Figure 4.3: Normalized throughput overhead under 2us preemption latency constraint

when preemption occurs.
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Figure 4.4: Average resource utilization rate in each cycle during the preemption process.

very short. Therefore, most of the TBs can be drained within the latency constraint, which
causes very little wasted instructions. Compared with Chimera, we achieve more through-
put overhead reduction among all benchmarks except b+tree. Chimera makes decisions
without considering its program behavior, which cause inaccurate estimations of draining
latency as explained in Section 4.2. However, we make decisions more accurately and use
much less draining in this case, showing 23.1% violations reduction in Figure 4.1, but at
the expense of additional 12.5% overhead in Figure 4.3.

As shown in Figure 4.4, MAX represents the maximum resource utilization rate for
each GPGPU benchmark while there are no preemption occurs. We can obtain higher
resource utilization rate than MAX in hotspot because the resources usage of hotspot and
the synthetic benchmark are complementary. Therefore, the synthetic benchmark can be
directly dispatched to SMs at the beginning of preemption. By leveraging the property

of concurrent kernel execution in an SM, we can keep GPU busy rather than idle while
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maintain resource utilization rate during the preemption process. On average we improve

the resource utilization by 2.93x compared to Chimera.

4.4 Study of Preemption Latency Constraint

To demonstrate the impact of preemption latency constraint, we further study the violation
rate, throughput overhead and strategy distribution when the preemption latency constrain
is set from 2us to Sus. In Figure 4.5(a), Chimera [16] and our scheme shows higher viola-
tion rate at strict constraint. The reasons are that both two approaches rely on flushing to
achieve low preemption latency, but flushing cannot be applied under all circumstances.
However, we can still benefit from the property of concurrent kernel execution in an SM
and start the execution of the preempting kernel earlier. As the preemption latency con-
straint increases, the proposed preemption scheme can benefit more from this property as
well because of the increasing slack time. On average, Chimera violates the deadline for
14.03%, 7.95%, 1.93%, and 1.28% when constraint is varied from 2us to Sus, while our
scheme are 8.36%, 1.30%, 0%, and 0%, respectively, which are very close to the results
of Oracle within 2% difference.

As Figure 4.5(b) illustrates, Chimera causes the normalized throughput overhead for
67%, 55.3%, 50.1% and 40.5% when constraint is varied from 2us to Sus, while our
scheme are 50.1%, 38.2%, 26.6%, and 15.9%, respectively. When the preemption latency
constraint is tight, most of the TBs are forced to be flushed in both two approaches to
meet deadline, which results in higher throughput overhead. In this case, the decisions
of the proposed scheme are almost the same as Chimera’s, as shown in Figure 4.5(c).
However, the benefit of our scheme is clarified when the preemption latency constraint
becomes loose. Because we leverage the property of dual-kernel execution in an SM and
utilize draining to reduced wasted instructions, much throughput overhead reduction is

demonstrated.
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Chapter 5

Related Work

As GPUs are increasingly becoming important components of modern computer systems,
GPU sharing among multiple tasks is receiving a lot of attention from the research com-
munity. First, we introduce prior techniques and several works on supporting multitasking
on GPUs. Next, we list several works on enabling preemptive multitasking on GPUs. At

last, we present recent studies on fine-grained GPU resource sharing.

5.1 Multitasking on GPUs

Supporting kernel concurrency relies on the programmers that define CUDA stream, and
each CUDA stream contains a sequence of kernels with dependencies [11]. Hyper-Q [12]
technology further improves the concurrency by providing several hardware queues for
CUDA streams. Therefore, the kernels from different hardware queues can be processed
concurrently on the same GPU. However, the above mentioned techniques are restricted
to a single application.

Multitasking on GPUs are intitially supported by providing an illusion of single pro-
cess to a GPU or using cooperative multitasking. MPS [13] is a software solution that can
make kernels for different applications share the same GPU by inserting kernels into a
single MPS server process, and context funneling [21] merges GPU contexts of multiple
processes into a shared GPU context so that they can run concurrently on a single GPU.
KernelMerge [4] makes GPUs only see a single kernel rather than individual independent
kernels. Ino et al. [S] propose a cooperative multitasking method for concurrent execution
of scientific and graphics applications on GPUs.

Many works are also proposed to increase GPU throughput when multitasking is en-
abled. Spatial multitasking [1] is proposed to allow multiple kernels to simultaneously
share the same GPU. Different kernels can occupy different subset of the SMs by parti-

tioning GPU resource. Pai et al. [15] and Wu et al. [24] propose code transformation
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techniques to enable more flexible spatial multitasking on GPUs so that they can utilize
SMs more efficiently. Lee et al. [7] exploit the interaction between thread block schedul-
ing and warp scheduling. They also propose multiple kernels on the same SM, but do
not provide any detailed implementation. Although these approaches show throughput
improvement, they still do not facilitate dynamic sharing within a GPU. A running kernel
may want to dynamically take SMs that are already occupied by others, but the kernel has

to wait because kernels cannot be preempted.

5.2 Preemptive Multitasking on GPUs

Recently, many preemption mechanisms have been proposed with architectural extensions
for preemptive multitasking on GPUs. Tanasic et al. [20] implement context switching on
GPUs, which swap the context of an SM to a temporal memory space, allowing another
kernel to execute on the preempted SM, but this may incur tremendous overhead due
to the large context of numerous concurrently executing threads in the SM. They also
propose draining, which stops dispatching TBs to an SM and wait until the SM finishes
the running TBs [20]. Therefore, throughput overhead can be reduced because the SM is
still in progress during preemption.

In addition to context switching and draining, Chimera [16] introduces flushing to
achieve low preemption latency by dropping the execution of the running TBs immedi-
ately. However, certain conditions have to be met to ensure the correctness of the TB ex-
ecution that was dropped and restart from the beginning (i.e., the idempotence of the ker-
nels [6, 9]). To increase the opportunities for flushing, Chimera also proposes the relaxed
idempotent condition to detect specific operations through compiler support. Chimera is
a collaborative preemption mechanism that utilizes flushing with context switching and
draining collaboratively to further reduce both preemption latency and thoughpur over-
head within an SM. Because thread block executions are independent from each other,
different TBs can be preempted by different preemption techniques. However, the pre-
emption granularity of these approaches is an entire SM. A preempting kernel cannot be
dispatched to an SM until all the running TBs are preempted, as a result, the preemption

latency is bounded by the last leaving TB.

5.3 Fine-Grained GPU Resource Sharing

Wang et al. [22, 23] first discuss the resource sharing granularity within a GPU, and
then propose a fine-grained resource sharing approach, Simultaneous Multikernel (SMK)

to maximize GPU throughput. They observe that resource usage and runtime behavior
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change from kernel to kernel, leading to significant GPU resource underutilization due
to hardware limitations. For instance, some kernels fully use registers but leave shared
memory almost entirely unused. Similarly, some are limited by the hardware constraint
on the number of threads, which causes registers and shared memory to be underutilized.
This problem cannot be solved by partitioning SMs among kernels because each SM can
only be assigned to one kernel at a time. Therefore, the resources within an SM are
still underutilized. On the other hand, some kernels are compute intensive, while other
kernels are memory intensive. Compute intensive kernels tend to use more compute units
within an SM. Memory intensive kernels use thread concurrency to hide memory memory
latency. However, overlapping compute cycles and memory cycles only occurs within an
SM. Hence, if multiple kernels with different characteristics can be dispatched to the same
SM, the resources can be fully utilized and the overall stall cycles can be reduced.

In order to improve GPU resource utilization effectively, SMK allows multiple kernels
to share the resources within an SM by exploiting the heterogeneity of different kernels.
Besides, partial context switching and fair resource allocation policies are also proposed
to improve system throughput while maintaining fairness. Partial context switching only
swaps out just enough TBs in an SM to make enough room for a new TB from the pre-
empting kenel, which reduces context switching overhead because the other TBs are still
in progress. However, increasing concurrent kernels requires additional hardware over-

head and the incurred resource fragmentation problem within an SM may be worse.
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Chapter 6
Conclusion

In this thesis, we present a fast preemption mechanism via dual-kernel support on GPUs,
which makes a high-priority task able to finish before the deadline. We extend GPU ar-
chitecture to enable dual-kernel execution, allowing two concurrent kernels to run on the
same SM. This approach can help the proposed scheme to make fine-grained preemption
decisions, and the preemption cost can be further reduced by partially preempting the run-
ning TBs. In addition, it also simplifies resource fragmentation problem due to at most
two different kernels in an SM, and the problem can be avoided through our proposed
resource allocation policy. With dual-kernel support, the incurred throughput overhead
can be minimized while meeting the given preemption latency constraint through our vic-
tim selection algorithm and preemption cost estimation model. Evaluations show that the
proposed preemption scheme can reach very close to the ideal preemption scheme within
2% difference in terms of deadline violations. Furthermore, on average we improves GPU

resource utilization by 2.93x over prior technique during preemption.
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