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摘要 

這份論文有兩部分。在第一部分，我們會用重要抽樣法來估計稀

有事件的期望值。在常態分配或是布朗運動模型下，可以證明我們提

出的方法是有效率的。我們也會說明如何應用重要抽樣法來評估系統

風險。在第二部分，我們會應用大離差理論在有限時間的投資最佳化

上面。 

關鍵詞：重要抽樣法、漸進最佳、大離差、體系風險、投資組合最佳

化 
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Abstract 

There are two parts in this paper. In the first part, we will focus on 

estimating the expectations under a rare event with the importance 

sampling method. Under Normal distribution or Brownian motion, we 

can prove that our proposed method is efficient. We will also show how 

to apply the importance sampling method to measure the systemic risk. In 

the second part, we will apply large deviation theory to the finite-horizon 

investment optimization. 

Keywords: importance sampling, asymptotic optimality, large deviation, 

systemic risk, optimal portfolio 
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Chapter 1

Introduction

It is a trend to use Monte Carlo simulation to estimate credit risk. However, it is not effi-

cient when the event become rare. For example, letZ be a random variable that follows the

standard normal distribution. We are interested in the expectation E[Z1(Z < c)], where c

is a negative constant. It is easy to compute the closed form− 1√
2π
e−

c2

2 . However, when c

is very small, we can see that the value will become very small, which makes it inefficient

to use crude Monte Carlo to estimate it. That is, we need to sample a lot of times so that

we can have a small standard error.

The importance samplingmethod helps us to solve the ”inefficient” problem. More specif-

ically, the importance sampling method helps to reduce the variance [9]. The idea of im-

portance sampling is to find a suitable change of measure so that the rare events we are

interested in will become ”not rare” under the new measure, which will be called P̃ in

this paper. Also, we need to reduce the variance of estimation under this new measure P̃ .

Since

V arP̃ = EP̃ [(f(Z)
dP

dP̃
)2]− (EP̃ [f(Z)

dP

dP̃
])2

= EP̃ [(f(Z)
dP

dP̃
)2]− (E[f(Z)])2,

we can see that the variance equals to 0 if we could minimize the second moment under

the measure P̃ . However, it is difficult to minimize it directly since the minimization

often relates to solving a nonlinear equation. Thus, we seek another way called ”asymp-

totically optimal” property to solve it [9]. That is, we will check if limc→−∞
1
c2
lnM2 =

1
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2 limc→−∞
1
c2
lnM1 under the measure P̃ , whereM1,M2 are the first moment and the sec-

ond moment, respectively. If it does, it implies that the importance sampling we proposed

is ”efficient”.

On the other hand, a lot of researchers use Importance Sampling to apply the theory of

large deviation to analyze the asymptotic properties of the tail probability. The famous

theories are Cramer Theorem, Schilder’s Theorem, Freidlin-Wentzell Theorem, etc. In

financial applications, some researchers let the time T go to infinity so that these large de-

viation theories can be easily applied. [8] provides a large deviations approach to optimal

long-term investment. However, some investors would like to earn their money as soon

as possible. Thus, we will try to apply the theory of large deviations to the finite-horizon

investment.

This paper is composed of two parts. In the first part, we will apply Importance Sampling

to estimate the expectation of a random variable under a rare event. In Chapter 2, we are

going to apply the method under the standard normal distribution. In Chapter 3 and 4,

we will extend it to Brownian motion and geometric Brownian motion. In Chapter 5, we

present some applications to estimate systemic risk under different models. In the second

part, we will apply the theory of large deviation to the finite-horizon investment, which

will be represented in Chapter 6.

2
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Part 1

Large Deviation Theory
applied to Systemic Risk

In this part, we will use importance sampling method to measure the systemic risk under

different models. In order to do this, we need to estimate the form E[1(X < c)] and

E[X1(X < c)], where X is a random variable and c is a (usually negative) constant.

There have been some papers about how to estimate E[1(X < c)] efficiently, such as [1]

and [2]. Thus, we will focus on E[X1(X < c)] in this part.

3
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Chapter 2

Standard Normal Case

SupposeXi = ρXM +
√
1− ρ2Y , whereXM , Y are independent standard normal distri-

bution, and ρ is correlation betweenXi and XM . We are going to estimate E[Xi1(XM <

c)]. When the value c is very small, it is difficult to use Monte Carlo to estimate. Thus, we

will use importance sampling by choosing a newmeasure P̃ such that the event {XM < c}

is no more ”rare” under this measure.

2.1 Change measure

Note that

E[Xi1(XM < c)] = E[(ρXM +
√

1− ρ2Y )1(XM < c)]

= ρE[XM1(XM < c)] +
√

1− ρ2E[Y 1(XM < c)]

We can see that the second term is equal to 0 sinceXM and Y are independent. Thus, we

just need to consider the first term.

The easiest way to choose a new measure P̃ such that the event {XM < c} is no more

”rare” under this measure is to make the mean of XM be c. That means XM will be a

normal distribution with the mean c and the variance 1 under the new measure P̃ . Then

4
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we can derive that

dP

dP̃
=

1√
2π
e−

X2
M
2

1√
2π
e−

(XM−c)2

2

= e−cXM+ c2

2 .

Due to the above, we can rewrite the first term as:

E[XM1(XM < c)] = Ẽ[XMexp(−cXM +
c2

2
)1(XM < c)].

2.2 Asymptotic variance analysis

The first moment is

M1 = −ρE[XM1(XM < c)]

= −ρ

∫ c

−∞

z√
2π

e−
z2

2 dz

=
ρ√
2π

e−
c2

2 .

It implies that

lim
c→−∞

1

c2
lnM1 = −1

2
.

5
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Suppose XM ∼ N(−c, 1), Z ∼ N(0, 1) under P̂ . Then the second moment is

M2 = Ẽ[X2
i exp(−2cXM + c2)1(XM < c)]

= ec
2

Ê[X2
i exp(−2cXM)1(XM < c)

dP̃

dP̂
]

= ec
2

Ê[X2
i exp(−2cXM)1(XM < c)e2cXM ]

= ec
2

Ê[X2
i 1(XM < c)]

= ρ2ec
2

Ê[X2
M1(XM < c)] + (1− ρ2)ec

2

Ê[Y 21(XM < c)]

= ρ2ec
2

Ê[(Z − c)21(Z < 2c)] + (1− ρ2)ec
2

Ê[1(Z < 2c)]

= ρ2ec
2{Ê[Z21(Z < 2c)]− 2cÊ[Z1(Z < 2c)] + c2Ê[1(Z < 2c)]}

+ (1− ρ2)ec
2

Φ(2c)

= ρ2ec
2{
∫ 2c

−∞

z2√
2π

e−
z2

2 dz − 2c

∫ 2c

−∞

z√
2π

e−
z2

2 dz + c2Φ(2c)}

+ (1− ρ2)ec
2

Φ(2c)

= ρ2ec
2

(1 + c2)Φ(2c) + (1− ρ2)ec
2

Φ(2c)

= (ρ2c2 + 1)ec
2

Φ(2c),

where Φ(z) is the cdf of a standard normal.

There is an important approximation to Φ(z):

lim
z→−∞

Φ(z) =
1√

2π(−z)
e−

z2

2 .

It implies that

lim
c→−∞

1

c2
lnM2

= lim
c→−∞

1

c2
[c2 + ln(ρ2c2 + 1) + ln(

1√
2π(−2c)

)− 2c2]

= −1.

Thus, we have the following theorem.

Theorem 1. Suppose Xi = ρXM +
√

1− ρ2Y , where XM , Y are independent standard

normal distribution, and ρ is correlation between Xi and XM . Also, let

M1 = −E[Xi1(XM < c)]

= Ẽ[Xi1(XM < c)
dP

dP̃
]

6
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M2 = Ẽ[X2
i 1(XM < c)(

dP

dP̃
)2].

Then,

lim
c→−∞

1

c2
lnM2 = 2 lim

c→−∞

1

c2
lnM1.

2.3 Numerical results

The numerical results are shown below. N is the simulation number. The value simulated

by basic Monte Carlo (BMC), importance sampling (IS) and the corresponding standard

error (S.E.) are given in the table. We also compare the value with the exact answer (exact).

Table 2.1: Standard normal case

c exact N BMC S.E. IS S.E.
10000 -0.2418 0.0058 -0.2377 0.0026

-1 -0.2420 40000 -0.2473 0.0029 -0.2416 0.0013
160000 -0.2403 0.0015 -0.2419 6.3741e-04
10000 -0.0028 0.0013 -0.0043 7.9976e-05

-3 -0.0044 40000 -0.0041 6.4021e-04 -0.0044 3.8964e-05
160000 -0.0041 3.0699e-04 -0.0044 1.9402e-05
10000 0 - -1.4956e-06 3.3274e-08

-5 -1.4867e-06 40000 0 - -1.4769e-06 1.7267e-08
160000 -3.2663e-05 3.2663e-05 -1.5034e-06 8.6994e-09

We can see that the basic Monte Carlo method can hardly sample a rare event when c =

−5, while the importance sampling method we provide gives an accurate estimation. In

addition, the sample error of importance sampling scheme is smaller than that of basic

Monte Carlo method.

7
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Chapter 3

Brownian Motion Case

LetWMt, Zt be independent Brownian motion. Define

Wit = ρWMt +
√

1− ρ2Zt,

where ρ is a correlation between Wit and WMt. Then Wit is also a Brownian motion. In

this chapter, we are going to estimate E[WiT1(WMT < c)].

3.1 Change measure

Note that if c becomes very small, the probability of the event {WMT < c} will also be

small, which means that it will be inefficient to use crude Monte Carlo method. Thus, we

need to find a new measure P̃ such that the event {WMT < c} would be no more ”rare”

under this measure. The following theorem helps us to find a good measure.

Girsanov’s Theorem. [6] Let Wt, 0 ≤ t ≤ T be a Brownian motion. Let Θt, 0 ≤ t ≤ T

be an adapted process. Define

Zt = exp{
∫ t

0

ΘuWu −
1

2

∫ t

0

Θ2
udu},

W̃t = Wt −
∫ t

0

Θudu,

and assume that

E[

∫ T

0

Θ2
uZ

2
udu] < ∞.

8
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We also define a new probability measure P̃ by the formula

P̃A =

∫
A

ZωdPω for all A ∈ F .

Set Z = ZT . Then E[Z] = 1 and under the probability measure P̃ , the process W̃t, 0 ≤

t ≤ T , is also a Brownian motion.

By the Girsanov’s Theorem, we can define

dP

dP̃
= e−αWMT+ 1

2
α2T ,

W̃MT = WMT − αT,

where α is a constant and W̃MT is a Brownian motion under P̃ .

Next, we are going to determine the constant α. If we hope to make the event {WMT < c}

no more ”rare”, we can simply let Ẽ[WMT ] = c. That is to say,

Ẽ[WMT ] = Ẽ[W̃MT + αT ] = αT = c,

which means that α = c
T
.

3.2 Asymptotic variance analysis

Note that WMT ∼ N(0, T ) since WMT is a Brownian motion. So we can get the first

moment as following:

M1 = −E[WiT1(WMT < c)]

= −ρE[WMT1(WMT < c)]

= −ρ

∫ c

−∞

x√
2πT

e−
x2

2T dx

=
ρ
√
T√
2π

e−
c2

2T .

It implies that

lim
c→−∞

1

c2
lnM1 = − 1

2T
.

Before we consider the second moment, we define a new measure P̂ by

dP

dP̂
= eαWMT+ 1

2
α2T

ŴMT = WMT + αT,

9
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where ŴMT is a Brownian motion under P̂ . Then we can calculate the second moment as

follows:

M2 = Ẽ[W 2
iT1(WMT < c)(

dP

dP̃
)2]

= E[W 2
iT1(WMT < c)

dP

dP̃
]

= Ê[W 2
iT1(WMT < c)

dP

dP̃

dP

dP̂
]

= Ê[W 2
iT1(WMT < c)eα

2T ]

= eα
2T Ê[(ρWMT +

√
1− ρ2ZT )

21(WMT < c)]

= eα
2T{Ê[ρ2W 2

MT1(WMT < c)] + Ê[(1− ρ2)Z2
T1(WMT < c)]}

= ρ2eα
2T Ê[W 2

MT1(WMT < c)] + (1− ρ2)eα
2TTÊ[1(WMT < c)]

= ρ2eα
2T Ê[(ŴMT − αT )21(ŴMT < 2c)] + (1− ρ2)eα

2TTΦ(
2c√
T
)

= ρ2eα
2T{Ê[Ŵ 2

MT1(ŴMT < 2c)]− 2αTÊ[ŴMT1(ŴMT < 2c)]

+ α2T 2Ê[1(ŴMT < 2c)]}+ (1− ρ2)eα
2TTΦ(

2c√
T
)

= ρ2e
c2

T {−2c

√
T√
2π

e−
2c2

T + TΦ(
2c√
T
) +

2c
√
T√

2π
e−

2c2

T + c2Φ(
2c√
T
)}

+ (1− ρ2)e
c2

T TΦ(
2c√
T
)

= e
c2

T Φ(
2c√
T
)(ρ2c2 + T ).

It implies that

lim
c→−∞

1

c2
lnM2

= lim
c→−∞

1

c2
ln[e−

c2

T

√
T√

2π(−2c)
(ρ2c2 + T )]

= − 1

T
.

Thus, we have the following theorem.

Theorem 2. Suppose Wit = ρWMt +
√

1− ρ2Zt, where WMt, Zt are Brownian motion,

and ρ is correlation betweenWit andWMt. Also, let

M1 = −E[WiT1(WMT < c)]

= Ẽ[WiT1(WMT < c)
dP

dP̃
]

10
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M2 = Ẽ[W 2
iT1(WMT < c)(

dP

dP̃
)2].

Then,

lim
c→−∞

1

c2
lnM2 = 2 lim

c→−∞

1

c2
lnM1.

3.3 Numerical results

We perform the sampling again, the numerical results are shown below.

Table 3.1: Brownian motion case

c exact N BMC S.E. IS S.E.
10000 -0.9652 0.0274 -0.9846 0.0149

-5 -1.0084 40000 -1.0095 0.0140 -1.0089 0.0076
160000 -1.0157 0.0071 -1.0061 0.0038
10000 -0.0320 0.0064 -0.0354 6.3683e-04

-15 -0.0360 40000 -0.0426 0.0037 -0.0362 3.2467e-04
160000 -0.0344 0.0017 -0.0362 1.6229e-04
10000 0 - -4.5248e-05 1.0255e-06

-25 -4.5779e-05 40000 0 - -4.5761e-05 5.2068e-07
160000 0 - -4.5571e-05 2.6038e-07

T = 30, ρ = 0.7.

Again, we can see that when c = −25, the basic Monte Carlo method cannot sample a rare

event even we simulate 160000 times, while the importance sampling method we provide

gives an accurate estimation. In addition, the sample error of importance sampling scheme

is at least an order smaller than that of basic Monte Carlo method when c < −15.

11
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Chapter 4

Geometric Brownian Motion Case

Let two assets be defined by the following:

dSit = µiSitdt+ σiSitdWit

dSmt = µmSmtdt+ σmSmtdWmt,

whereWit,Wmt are Brownian motion satisfyingWit = ρWmt +
√
1− ρ2Zt. Wmt, Zt are

independent Brownian motion.

Let rit = ln Sit

Si0
, rmt = ln Smt

Sm0
. In this chapter, we are going to estimateE[riT1(rmT < c)].

4.1 Change measure

It can be derived that

ln
SiT

Si0

= (µi −
σ2
i

2
)T + σiWiT

ln
SmT

Sm0

= (µm − σ2
m

2
)T + σmWmT .

It means that the event {rmT < c} is equivalent to {WmT <
c−(µm−σ2

m
2

)T

σm
}. Thus, we can

again use a similar method as previous chapter. That is, we define

dP

dP̃
= e−hWmT+ 1

2
h2T

W̃mT = WmT − hT,

12
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where h is a constant and W̃mT is a Brownian motion under P̃ . Since we hope that

Ẽ[rmT ] = c, we can get

Ẽ[ln
SmT

Sm0

] = (µm − σ2
m

2
)T + σmẼ[WmT ]

= (µm − σ2
m

2
)T + σmẼ[W̃mT + hT ]

= (µm − σ2
m

2
)T + σmhT

= (µm − σ2
m

2
+ σmh)

= c,

which implies that h =
c−(µm−σ2

m
2

)T

σmT
.

4.2 Asymptotic variance analysis

Let c̃ = c−(µm−σ2
m
2

)T

σm
. Then the first moment is

M1 = E[riT1(rmT < c)]

= E[((µi −
σ2
i

2
)T + σiWiT )1((µm − σ2

m

2
)T + σmWmT < c)]

= (µi −
σ2
i

2
)T · E[1(WmT < c̃)] + σi · E[WiT1(WmT < c̃)]

= (µi −
σ2
i

2
)T · Φ( c̃√

T
)− ρσi

√
T√

2π
e−

c̃2

2T .

It implies that

lim
c→−∞

1

c2
ln |M1|

= lim
c→−∞

1

c2
ln |e−

c̃2

2T (
(µi − σ2

i

2
)T

√
T

√
2π(−c̃)

− ρσi

√
T√

2π
)|

= lim
c→−∞

1

c2
(−

[c− (µm − σ2
m

2
)T ]2

2Tσ2
m

)

= − 1

2Tσ2
m

.

Before we consider the second moment, we define a new measure P̂ by

dP

dP̂
= ehWmT+ 1

2
h2T

ŴmT = WmT + hT,

13
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where ŴmT is a Brownian motion under P̂ . Then we can calculate the second moment as

follows:

M2 = Ẽ[r2iT1(rmT < c)(
dP

dP̃
)2]

= Ẽ[r2iT1(rmT < c)eh
2T−2hWmT ]

= eh
2T Ê[((µi −

σ2
i

2
)T + σiWiT )

21(WmT < c̃)]

= eh
2T{(µi −

σ2
i

2
)2T 2Ê[1(WmT < c̃)]

+ 2(µi −
σ2
i

2
)σiTÊ[WiT1(WmT < c̃)]

+ σ2
i Ê[W 2

iT1(WmT < c̃)]}

= eh
2T{(µi −

σ2
i

2
)2T 2Ê[1(WmT < c̃)]

+ 2(µi −
σ2
i

2
)σiTρÊ[WmT1(WmT < c̃)]

+ σ2
i (ρ

2Ê[W 2
mT1(WmT < c̃)] + (1− ρ2)Ê[Z2

T1(WmT < c̃)])}

= eh
2T{(µi −

σ2
i

2
)2T 2Ê[1(ŴmT < c̃+ hT )]

+ 2ρ(µi −
σ2
i

2
)σiTÊ[(ŴmT − hT )1(ŴmT < c̃+ hT )]

+ ρ2σ2
i Ê[(ŴmT − hT )21(ŴmT < c̃+ hT )] + (1− ρ2)σ2

i TΦ(
c̃+ hT√

T
)}

= eh
2T{(µi −

σ2
i

2
)2T 2Φ(

c̃+ hT√
T

)

+ 2ρ(µi −
σ2
i

2
)σiT (−

√
T√
2π

e−
(c̃+hT )2

2T − hTΦ(
c̃+ hT√

T
))

+ ρ2σ2
i Ê[(Ŵ 2

mT − 2hTŴmT + h2T 2)1(ŴmT < c̃+ hT )]

+ (1− ρ2)σ2
i TΦ(

c̃+ hT√
T

)}

= e
c̃2

T {(µi −
σ2
i

2
)2T 2Φ(

2c̃√
T
) + 2ρ(µi −

σ2
i

2
)σiT (−

√
T√
2π

e−
2c̃2

T − c̃Φ(
2c̃√
T
))

+ ρ2σ2
i (−

2c̃
√
T√

2π
e

2c̃2

T + TΦ(
2c̃√
T
) +

2c̃
√
T√

2π
e

2c̃2

T + c̃2Φ(
2c̃√
T
))

+ (1− ρ2)σ2
i TΦ(

2c̃√
T
)}

= e
c̃2

T {(µi −
σ2
i

2
)2T 2Φ(

2c̃√
T
) + 2ρ(µi −

σ2
i

2
)σiT (−

√
T√
2π

e−
2c̃2

T − c̃Φ(
2c̃√
T
))

+ σ2
iΦ(

2c̃√
T
)(ρ2c̃2 + T )}.

14
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It implies that

lim
c→−∞

1

c2
ln |M2|

= lim
c→−∞

1

c2
ln |e−

c̃2

T [
(µi − σ2

i

2
)2T 2

√
T

√
2π(−2c̃)

+ 2ρ(µi −
σ2
i

2
)σiT (−

√
T√
2π

− c̃
√
T√

2π(−2c̃)
) +

σ2
i

√
T√

2π(−2c̃)
(ρ2c̃2 + T )]|

= lim
c→−∞

1

c2
(−

[c− (µm − σ2
m

2
)T ]2

Tσ2
m

)

= − 1

Tσ2
m

.

Thus, we have the following theorem.

Theorem 3. Suppose Wit = ρWmt +
√
1− ρ2Zt, where Wmt, Zt are Brownian motion,

and ρ is correlation betweenWit andWmt. Define two assets

dSit = µiSitdt+ σiSitdWit

dSmt = µmSmtdt+ σmSmtdWmt.

Also, let

M1 = E[riT1(rMT < c)]

= Ẽ[riT1(rMT < c)
dP

dP̃
]

M2 = Ẽ[r2iT1(rMT < c)(
dP

dP̃
)2],

where

rit = ln
Sit

Si0

, rmt = ln
Smt

Sm0

Then,

lim
c→−∞

1

c2
ln |M2| = 2 lim

c→−∞

1

c2
ln |M1|.

In summary, we can get a more general theorem, shown as below.

Theorem 4. Let X,Y be random variables such thatX

Y

 ∼ N


m1

m2

,
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2




15
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Also, let

M1 = E[Y 1(X < c)]

M2 = Ẽ[Y 21(X < c)(
dP

dP̃
)2],

where

dP

dP̃
=

e
− (x−m1)

2

2σ2
1

e
− (x−c)2

2σ2
1

.

Then,

lim
c→−∞

1

c2
ln |M2| = 2 lim

c→−∞

1

c2
ln |M1|.

Proof. Define a random variable Z such that Y = ρX +
√

1− ρ2Z. Then

Z ∼ N(
m2 − ρm1√

1− ρ2
,
σ2
2 − ρ2σ2

1

1− ρ2
).

Thus,

M1 = ρE[X1(X < c)] +
√

1− ρ2E[Z1(X < c)]

= ρ(− σ1√
2π

e
− (c−m1)

2

2σ2
1 +m1Φ(

c−m1

σ1

)) +
√
1− ρ2

m2 − ρm1√
1− ρ2

Φ(
c−m1

σ1

)

= −ρ
σ1√
2π

e
− (c−m1)

2

2σ2
1 +m2Φ(

c−m1

σ1

).

Since

Φ(
c−m1

σ1

) ≈ −σ1√
2π(c−m1)

e
− (c−m1)

2

2σ2
1 as c → −∞,

we can derive that

lim
c→−∞

1

c2
ln |M1| = − 1

2σ2
1

.

On the other hand,

M2 = Ẽ[(ρ2X2 + 2ρ
√

1− ρ2XZ + (1− ρ2)Z2)1(X < c)(
dP

dP̃
)2]

= ρ2e
(c−m1)

2

σ2
1 [−2σ1m1√

2π
e
− 2(c−m1)

2

σ2
1 + (σ2

1 + (c− 2m1)
2)Φ(

2c− 2m1

σ1

)]

+ 2ρ(m2 − ρm1)e
(c−m1)

2

σ2
1 (− σ1√

2π
e
− 2(c−m1)

2

σ2
1 − (c− 2m1)Φ(

2c− 2m1

σ1

))

+ [σ2
2 − ρ2σ2

1 + (m2 − ρm1)
2]e

(c−m1)
2

σ2
1 Φ(

2c− 2m1

σ1

).

Since

Φ(
2c− 2m1

σ1

) ≈ −σ1√
2π2(c−m1)

e
− 2(c−m1)

2

σ2
1 as c → −∞,

16
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we can derive that

lim
c→−∞

1

c2
ln |M2| = − 1

σ2
1

.

Therefore,

lim
c→−∞

1

c2
ln |M2| = 2 lim

c→−∞

1

c2
ln |M1|.

Remark. Theorem 1, Theorem 2, Theorem 3 are the special cases of Theorem 4.

4.3 Numerical results

We show the numerical results again. The results are shown below.

Table 4.1: Geometric Brownian motion case

c exact N BMC S.E. IS S.E.
10000 -7.8055e-04 2.0346e-04 -1.1732e-03 2.1354e-05

-1 -1.1527e-03 40000 -0.0010 1.1434e-04 -1.1581e-03 1.0481e-05
160000 -0.0011 5.9253e-05 1.1482e-03 5.2372e-06
10000 0 - -8.0165e-06 1.7730e-07

-1.5 -8.2625e-06 40000 -1.4882e-05 1.4882e-05 -8.1879e-06 9.0629e-08
160000 -8.4565e-06 5.9916e-06 -8.2925e-06 4.5457e-08
10000 0 - -7.7696e-09 1.9611e-10

-2 -7.9718e-09 40000 0 - -7.8575e-09 1.0036e-10
160000 0 - -8.0090e-09 5.0809e-11

T = 0.5, µi = 0.08, σi = 0.3, Si0 = 10, µm = 0.1, σm = 0.5, Sm0 = 100, ρ = 0.7.

Here we can see that when c = −2, the basic Monte Carlo method cannot sample a rare

event even we simulate 160000 times, while the importance sampling method we provide

gives an accurate estimation. In addition, the sample error of importance sampling scheme

is at least an order smaller than that of basic Monte Carlo method.
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Chapter 5

Applications toMeasuring SystemicRisk

After the 2008 financial crisis, measuring systemic risk has become a crucial issue for the

financial stability. Governments are trying to figure out why the regulation failed, how

much capital is required and how to address the next financial crisis. Bisias et al. [10] pro-

vide a survey on the systemic risk measures and conceptual frameworks that have been

developed in the past few years. There are some measures that are widely adopted, such

as SRISK and ∆CoVaR. Adrian and Brunnermeier (2011) allow for tail dependence and

use a quantile regression approach to estimate the∆CoVaR. Brownlees and Engle (2012)

model time-varying linear dependencies and use a multivariate GARCH-DCC model to

compute the SRISK.

In this chapter, wewill estimate the systemic riskmeasurement SRISK in the framework of

Stochastic Volatility Model(SVmodel). SRISK is defined as the expected capital shortfall

of a financial entity conditional on a prolonged market decline. SRISK can be considered

to be a function of several variables. One of these variables is Long Run Marginal Ex-

pected Shortfall(LRMES). Our goal is to estimate LRMES using the Monte Carlo method

and compare it with the importance sampling method.

5.1 Stochastic Volatility model

In order to estimate LRMES, we need an appropriate model to compute the expected mar-

ket return and firm’s return. Here we use the Heston model to simulate stochastic volatility

18
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and assume that stochastic correlation follows Jacobi process.

The overall model is constructed below:

d lnSmt = (µm − Vmt

2
)dt+

√
VmtdWmt

dVmt = κm(θm − Vmt)dt+ ξm
√
VmtdZmt

d lnSit = (µi − Vit

2
)dt+

√
VitdWit

dVit = κi(θi − Vit)dt+ ξi
√
VitdZit

d⟨Wm, Zm⟩t = ρmdt

d⟨Wi, Zi⟩t = ρidt

d⟨Wm,Wi⟩t = ρitdt

dρit = αi(mi − ρit)dt+ βi

√
1− ρ2itdXit

where Smt, Sit denote the market index and stock price of the i-th firm, respectively, and

Vmt, Vit are the corresponding stochastic volatility. Wmt,Wit, Zm, Zi, Xit are the stan-

dard Brownian motions, where ρm, ρi, ρit are correlations between each Brownian motion.

κm, κi are the mean reverting speed of corresponding volatility. θm, θi are the long-run

level of the volatility. ξm, ξi are the volatility of volatility. αi represents the mean recov-

ery rate. βi represents the volatility.

Define the i-th firm’s LRMES from time t to time t+ h by

LRMESi,t:t+h = −E[ri,t:t+h(t+ h)|Crisist:t+h]

= −E[ri,t:t+h(t+ h)1(rm,t:t+h(t+ h) < c)]

E[1(rm,t:t+h(t+ h) < c)]
, (5.1)

where rm,t:t+h and ri,t:t+h are the returns of index of market and the i-th firm over the

period [t, t+ h].

Sometimes the ”Crisis” is a rare event, depending on the value of c. If it is a rare event, then

we will introduce the importance sampling method to reduce sample variance. Otherwise,

the basic Monte Carlo method is enough.

The numerical results are presented in the following table.
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c BMC S.E. LRMES IS S.E. LRMES
-1 -0.0050 1.389e-04 0.3372 -0.0051 6.462e-05 0.3350
-2 -2.413e-05 8.717e-06 0.4897 -1.133e-05 2.067e-06 0.4627
-3 - - - -5.405e-10 2.876e-10 0.6757

Table 5.1: Results of basic Monte Carlo simulation and importance sampling scheme with N =
160000, T = 0.5, dt = 0.002, µm = 0.1, µi = 0.08, κm = 5, κi = 3, ξm = 2, ξi = 1, θm = 0.5, θi =
0.3, αi = 5, βi = 1,m = 0.5, ρi = 0.5, ρm = 0.5.

From the numerical results, we can see that the basic Monte Carlo method doesn’t work

well when c is very small. On the other hand, the standard error was reduced when we use

the importance sampling method.

5.2 First Passage Time Case

In this section, we introduce another definition of LRMES. It is called the first passage

time problem, or the hitting time problem. We will also use the Heston model, but here

we define LRMES as follows:

LRMESi,0:T = −E[ri,0:T (T )|Crisis0:T ]

= −E[ri,0:T (T )1(infurm,0:T (u) < c)]

E[1(infurm,0:T (u) < c)]
. (5.2)

The only difference between (5.1) and (5.2) is the ”Crisis” event. Here we define the ”Cri-

sis” to be the minimum market return below c during the time [0, T ]. Before we show the

numerical results, we need to show how to compute the denominator and the numerator

of LRMES under the constant volatility model. More specifically, we need to derive the

density function.

Let Ŵmt = αt + Wmt, where Wmt is a standard Brownian motion. Define m̂(T ) =

min0≤t≤T Ŵmt, then we can derive the joint distribution of m̂(T ) and Ŵmt. Then deriva-

tion is similar to [6]. Let Ẑ(t) = e−αWmt− 1
2
α2t = e−αŴmt+

1
2
α2t. By Girsanov’s Theorem,

Ŵmt is a Brownian motion under the measure P̂ . By using a similar derivation in [6], we

can derive the joint density of (m̂(T ), ŴmT ) under P̂ is

f̂m̂(T ),ŴmT
(x, y) = −2(2x− y)

T
√
2πT

exp(−(2x− y)2

2T
), x < 0, y ≥ x.
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Hence,

P (m̂(T ) ≤ m, ŴmT ≤ w) = E[1(m̂(T ) ≤ m, ŴmT ≤ w)]

= Ê[
1

Ẑ(T )
1(m̂(T ) ≤ m, ŴmT ≤ w)]

= Ê[eαŴmT− 1
2
α2T1(m̂(T ) ≤ m, ŴmT ≤ w)]

=

∫ w

−∞

∫ m

−∞
eαy−

1
2
α2T f̂m̂(T ),ŴmT

(x, y)dxdy.

Therefore, under the measure P ,

fm̂(T ),Ŵmt
(x, y) = −2(2x− y)

T
√
2πT

exp(αy − 1

2
α2T − (2x− y)2

2T
), x < 0, y ≥ x.

Let α = 1
σm

(µm − 1
2
σ2
m) and ĉ = c

σm
.

Then we can see that

Smt = Sm0e
σmWmt+(µm− 1

2
σ2
m)t

= Sm0e
σmŴmt .

Hence, we can get the denominator

E[1(infurm,0:T (u) < c)]

= E[1(infu ln
Smu

Sm0

< c)]

= E[1(infuŴmu < ĉ)]

=

∫ ĉ

−∞

∫ ∞

x

fm̂(T ),Ŵmt
(x, y)dydx

=

∫ ĉ

−∞

∫ y

−∞
−2(2x− y)

T
√
2πT

eαy−
1
2
α2T− (2x−y)2

2T dxdy

+

∫ ∞

ĉ

∫ ĉ

−∞
−2(2x− y)

T
√
2πT

eαy−
1
2
α2T− (2x−y)2

2T dxdy

= e2αĉΦ(
ĉ+ αT√

T
) + Φ(

ĉ− αT√
T

)
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and the numerator

E[riT1(infurm,0:T (u) < c)]

= E[((µi −
σ2
i

2
)T + σiWiT )1(infuŴmu < ĉ)]

= (µi −
σ2
i

2
)T [e2αĉΦ(

ĉ+ αT√
T

) + Φ(
ĉ− αT√

T
)]

+ σiρE[(ŴmT − αT )1(infuŴmu < ĉ)]

= (µi −
σ2
i

2
)T [e2αĉΦ(

ĉ+ αT√
T

) + Φ(
ĉ− αT√

T
)]

+ σiρ[

∫ ĉ

−∞

∫ ∞

x

2y(2x− y)

T
√
2πT

eαy−
1
2
α2T− (2x−y)2

2T dydx

− αT (e2αĉΦ(
ĉ+ αT√

T
) + Φ(

ĉ− αT√
T

))]

= (µi −
σ2
i

2
)T [e2αĉΦ(

ĉ+ αT√
T

) + Φ(
ĉ− αT√

T
)]

+ σiρ[αTΦ(
ĉ− αT√

T
) + (2ĉ+ αT )e2αĉΦ(

ĉ+ αT√
T

)

− αT (e2αĉΦ(
ĉ+ αT√

T
) + Φ(

ĉ− αT√
T

))]

= (µi −
σ2
i

2
)(e2αĉΦ(

ĉ+ αT√
T

) + Φ(
ĉ− αT√

T
)) + 2σiρĉe

2αĉΦ(
ĉ+ αT√

T
).

Here the ”Crisis” can also be a rare event, depending on what value c is. Like the last

section, we introduce the basic Monte Carlo method to estimate LRMES and compare it

with the importance sampling method.

The numerical results are presented in the following table.

c BMC S.E. LRMES IS S.E. LRMES
-1 -2.053e-03 1.519e-04 0.3941 -1.874e-03 2.170e-05 0.4083
-1.5 -1.453e-05 -1.453e-05 0.5812 -1.352e-05 2.557e-07 0.6134
-2 - - - -1.288e-08 3.661e-10 0.8259

Table 5.2: Results of basic Monte Carlo simulation and importance sampling scheme withN = 40000, T =
0.5, dt = 0.002, µi = 0.08, µm = 0.1, σi = 0.3, σm = 0.5, ρ = 0.7.

As we can see, the basic Monte Carlo method doesn’t work well when c is very small. On

the other hand, the standard error was reduced by using the importance sampling method.
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Part 2

Large Deviation Theory
applied to Portfolio Optimization

In this part, we are going to apply large deviation theory to the finite-horizon investment

optimization.
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Chapter 6

Optimal Finite-Horizon Investment

There have been a lot of research about large deviations approach to optimal long term

investment. For example, [8] considered a Bachelies model for the stock price: St =

µt+σWt, whereWt is a Brownian motion. Suppose that an investor trades a number α of

shares in stock of priceS, and keep it until timeT . Thewealth at timeT is thenXα
t = αST .

The average wealth is X̄α
T =

Xα
T

T
. The asymptotic version of the outperforming benchmark

criterion is then formulated as:

sup
α∈R

lim
T→∞

1

T
lnP[X̄α

T ≥ x] = − inf
α∈R

I(x, α),

where

I(x, α) = sup
θ∈R

[θx− Γ(θ, α)]

Γ(θ, α) = lim sup
T→∞

1

T
lnE[eθXα

T ].

In [8], it is derived that the solution is given by α∗ = x/µ, which means that the associated

expected wealth E[X̄α∗
T ] is equal to the target x.

In this chapter, we consider a large deviations approach to optimal finite-horizon in-

vestment. We first describe some very important large deviations results that will be used

in this chapter.

Definition 1. Large-deviations principle. [7] A sequence Y1, Y2,... obeys the large-

deviations principle (LDP) with rate function I(·) if
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a. For any closed set F ,

lim sup
n→∞

1

n
logP (

1

n

n∑
i=1

Yi ∈ F ) ≤ − inf
a∈F

I(a);

b. For any open set G,

lim inf
n→∞

1

n
logP (

1

n

n∑
i=1

Yi ∈ G) ≥ − inf
a∈G

I(a).

Freidlin-Wentzell Theorem. [1, 2] Let Wt be a standard Brownian motion. Then the

solution of

dXt = a(Xt)dt+
√
ϵb(Xt)dWt

satisfies LDP with rate function

I(f) =


1
2

∫ T

0
( ḟ−a

b
)2dt, f ∈ C1,x[0, T ] and

∫
(ḟ)2dt < ∞

∞, otherwise.

6.1 Constant Investment Strategy

Let the bond price S0 and the stock price S satisfy dS0
t = rS0

t dt

dSt = µStdt+ σStdWt.

Define the wealth process V α
t =

αV α
t

St
St +

(1−α)V α
t

S0
t

S0
t , where α is the proportion invested

in the stock. Then we can get

dV α
t =

αV α
t

St

dSt +
(1− α)V α

t

S0
t

dS0
t

= αV α
t (µdt+ σdWt) + (1− α)V α

t rdt

= V α
t [((µ− r)α + r)dt+ σαdWt].

By Itô’s formula, we can derive

d lnV α
t = (r + (µ− r)α− σ2

2
α2)dt+ σαdWt.

Integrate the above equation from 0 to T , then we can get

V α
T = V α

0 e(r+(µ−r)α−σ2

2
α2)T+σαWT .
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Define τα = inf0≤t≤T{t : V α
t ≥ x}, where x > 0. We are interested in the problem

supα P (τα < T ). Let Xα
t =

∫ t

0
asds +

∫ t

0
bsdWs, where as = r + (µ − r)α − σ2

2
α2 and

bs = σα. Then

{τα < T} = { sup
0≤t≤T

V α
t ≥ x}

= { sup
0≤t≤T

Xα
t ≥ ln

x

V α
0

}

= { inf
0≤t≤T

−Xα
t ≤ − ln

x

V α
0

}

= { inf
0≤t≤T

X̃α
t ≤ x̃},

where we define X̃α
t = −Xα

t , x̃ = − ln x
V α
0
, b̃s = bs.

To apply the theory of large deviations, we introduce a scaling factor
√
ϵ and reformulate

X̃α
t as dX̃α

t = ãtdt+
√
ϵb̃tdWt, where ãt = −(r + (µ− r)α− ϵσ2

2
α2).

Define pα = P (τα < T ) and ât = −(r+(µ− r)α). Then according to Freidlin-Wentzell

theorem,

lim
ϵ→0

ϵ log pα,ϵ

= − inf
f
I(f)

= − inf
f

1

2

∫ T

0

(
ḟ − ât

b̃t
)2dt

:= −I(f ∗)

Let L(t, f(t), ḟ(t)) = ( ḟ(t)−ât
b̃t

)2. By Euler-Lagrange equation, we have

∂L

∂f
− d

dt

∂L

∂ḟ
= 0.

After some calculation, we can get

ḟ(t) = ât +
c1
2
b̃2t

and so

f(t) = c2 +

∫ t

0

âsds+
c1
2

∫ t

0

b̃2sds,

where c1 and c2 are constant.

Note that f ∗(0) = 0 and f ∗(T ) = x̃. Thus, we can derive that c1 = 2
b̃2
( x̃
T
− â) and c2 = 0,

26



doi:10.6342/NTU201901030

where â = âs and b̃ = b̃s. Therefore,

I(f ∗) =
T

2b̃2
(
x̃

T
− â)2. (6.1)

So the problem can be reduced to find α such that

sup
α

lim
ϵ→0

ϵ log pα,ϵ = sup
α
(−I(f ∗(α)))

= − inf
α
I(f ∗(α))

Note that it is equivalent to find α ∈ [0, 1] such that the function h(α) = T
2b̃2

( x̃
T
− â)2 is

minimum.

Remark. If we use the closed-form to consider the above problem, and we let ln x
V α
0

>

(r + (µ− r)α)T , then we can get the same answer.

Proof. By [6], we can derive that

pα = 1− Φ(
c− kT√

T
) + e2kcΦ(

−c− kT√
T

),

where c = 1
σα

ln x
V α
0
, k =

r+(µ−r)α−σ2

2
α2

σα
.

Again, we introduce a scaling factor
√
ϵ and rewrite c = 1√

ϵσα
ln x

V α
0
and k =

r+(µ−r)α− ϵσ2

2
α2

√
ϵσα

.

Then we will have

pα,ϵ ≈
√
T√

2π(c− kT )
e−

(c−kT )2

2T + e2kc
√
T√

2π(c+ kT )
e−

(c+kT )2

2T

=

√
T√
2π

e−
(c−kT )2

2T (
1

c− kT
+

1

c+ kT
)2.

We use the same notation as above. That is, ã = −(r + (µ − r)α − ϵσ2

2
α2) â = −(r +

(µ− r)α), b̃ = σα, and x̃ = − ln x
V α
0
.

Hence, we can derive that

lim
ϵ→0

ϵ log pα,ϵ = lim
ϵ→0

ϵ[−(c− kT )2

2T
+ log

2
√
T√
2π

+ log(
c

c2 − k2T 2
)]

= lim
ϵ→0

ϵ[
1

2T
(− 1

√
ϵb̃
x̃+

ã
√
ϵb̃
T )2 + log

2
√
T√
2π

+ log(
√
ϵb̃(−x̃)

x̃2 − ã2T 2
)]

= − 1

2T
(−1

b̃
x̃+

â

b̃
T )2 + 0 + 0

= − T

2b̃2
(
x̃

T
− â)2,
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which is the same as (6.1).

Thus,

sup
α

lim
ϵ→0

ϵ log pα = − inf
α

T

2b̃2
(
x̃

T
− â)2.

6.2 Deterministic Investment Strategy

In the last section, we considered α to be constant. In this section, we will let α be a

function of time t, which will be denoted by αt. In other words, the problem will be

supαt
P (ταt < T ). Similar to the last section, we define dX̃α

t = ãtdt +
√
ϵb̃tdWt, where

ãt = −(r + (µ− r)αt − ϵσ2

2
α2
t ), b̃t = σαt and ât = −(r + (µ− r)αt).

According to Freidlin-Wentzell theorem, we can rewrite our problem as following:

inf
αt

inf
f∈B

I(f(t)) = inf
αt

inf
f∈B

1

2

∫ T

0

(
ḟ(t)− ât

b̃t
)2dt,

where the set B = {f ∈ C1[0, T ], f(0) = 0, inf0<t≤T f(t) ≤ x̃ < 0}.

Again, by the Euler-Lagrange equation, we can derive that

I(f(t)) =
c21σ

2

8

∫ T

0

α2
tdt,

where

c1 =
2(f(t)−

∫ t

0
âsds)∫ t

0
b̃2sds

.

First, we consider the problem:

inf
inf0<t≤T f(t)≤x̃

c21.

Since c1 is constant, we know that ∀t ∈ (0, T ], the value 2(f(t)−
∫ t
0 âsds)∫ t

0 b̃2sds
is fixed.

If there exists tj such that
∫ tj
0
âsds ≤ x̃, then we choose f(tj) =

∫ tj
0
âsds. Note that in

this case, c1 = 0.

Thus, we will only consider the case that
∫ t

0
âsds > x̃, ∀t ∈ (0, T ].

Let x̂ < x̃, then ∀t ∈ (0, T ], x̂−
∫ t

0
âsds < x̃−

∫ t

0
âsds. Also,

∫ t

0
b̃2sds > 0. Hence,

x̂−
∫ t

0
âsds∫ t

0
b̃2sds

<
x̃−

∫ t

0
âsds∫ t

0
b̃2sds

< 0.
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So we can derive that

(
x̂−

∫ t

0
âsds∫ t

0
b̃2sds

)2 > (
x̃−

∫ t

0
âsds∫ t

0
b̃2sds

)2.

Therefore, we have to choose f(tj) = x̃, where

(
x̃−

∫ tj
0
âsds∫ tj

0
b̃2sds

)2 = inf
0<t≤T

(
x̃−

∫ t

0
âsds∫ t

0
b̃2sds

)2 (6.2)

so that we can ensure that c21 is minimized.

That is,

c1 =
2(x̃−

∫ tj
0
âsds)∫ tj

0
b̃2sds

.

Then we can derive that

f ∗(t) =
x̃−

∫ tj
0
âsds∫ tj

0
b̃2sds

×
∫ t

0

b̃2sds+

∫ t

0

âsds.

We can easily check that f ∗ ∈ C1[0, T ].

Therefore, the problem can be reduced to the following problem:

inf
αt

σ2

2
(
x̃−

∫ tj
0
âsds∫ tj

0
b̃2sds

)2
∫ T

0

α2
tdt. (6.3)

Due to that fact that it is very hard to solve the problem directly, we can reformulate the

problem as following:

Let 0 < t1 < t2 < ... < tn = T , and g(αt1 , αt2 , ..., αtn) = c21(αt1 , αt2 , ..., αtn)
∑n

i=1 α
2
ti
.

It is equivalent to minimize the function g in the space [0, 1]n.

Remark. If αt = α is a constant, we can check that (6.3) is equal to (6.1).

In summary, we can give the theorem.

Theorem 5. Let the bond price S0 and the stock price S satisfy dS0
t = rS0

t dt

dSt = µStdt+ σStdWt.

The wealth process is defined by V αt
t =

αtV
αt
t

St
St +

(1−αt)V
αt
t

S0
t

S0
t . In addition, we define

ταt = inf0≤t≤T{t : V αt
t ≥ x}, where x > 0. Let

∫ t

0
−(r + (µ − r)αs)ds > − ln x

V
αt
0
,
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∀t ∈ (0, T ]. Then,

sup
αt

lim
ϵ→0

ϵ logP (ταt,ϵ < T )

= − inf
αt

σ2

2
(
− ln x

V
αt
0

−
∫ tj
0
−(r + (µ− r)αs)ds∫ tj

0
(σαs)2ds

)2
∫ T

0

α2
tdt

if we introduce a scaling factor
√
ϵ such that

d ln
V αt
t

V αt
0

= (r + (µ− r)αt −
ϵσ2

2
α2
t )dt+

√
ϵσαtdWt,

and if ∃tj ∈ (0, T ] such that (6.2) is satisfied.
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Chapter 7

Conclusion

In this thesis, we applied importance sampling method to estimate the expectation of a

random variable with an indicator function under different models. It was shown that our

method is efficient under those models. In addition, our importance sampling method can

be applied to measure the systemic risk. On the other hand, we can apply the theory of

large deviations to the finite-horizon investment optimization.
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