Fzi B FLPFTATRTAIAES
AL~ N
Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Scienee
National Taiwan University
Master Thesis

R [halb-L 13 ’t)‘]'ﬁ—: " BlA f 52 B o 7T 1%, A8 AT R
Improving GPU Memory Performance via Address

Pre-computation

FR = B
Li-Jhan Chen

B PEn gL
Advisor: Chia-Lin Yang, Ph.D.

PEAK 105 & 87
August, 2016

doi:10.6342/NTU201602569

fre

FILshs i ql 3o a3 R el indy iR b %
o h- BAETL O RIER s LALLM BT AR

PR LB G o o EAG) AT i B P M e e f =y
doenimdy F2oh o RGO KOS PR AT B A E en
TR BT RO GRARFE AT B HEF R BRI

SRR EAR o MR EMKE S F S E REIE RE AR

Foo T EETS G BN AT R A 5 R BB [b

%1 -
G TR EY o BB R EE L RS L SR AL Mg
R R0 31 4E A F

Gl ””iﬁﬁ”F%ﬂﬂéiﬁ%Sniﬁﬂwiiﬁﬁ

I FE D °&“&%?%i%i%ﬁ\i*ﬁ%§ RS E - A
o - ATRE AT s e PR GRA AR A R
mEEOTR By REHTREF I AR LZE > BA- AN
BT84 et A o B fd o RBTRA P end e s AN AU
iz FARLAr > ARGy FehPF G 0 2 A v o AN KT
Pl B0 Fr g e 0 BAG BFEMOT o B hE R
SR - kg

doi:10.6342/NTU201602569

A

3 &

BoLA i Y B AL B R R A EREFEOT TR TR
LA o B B ARIE B (THCA T o e F e g
KEF|IFARTE o R > F B ire 3 - Bi] s - &P
Kp "t GPeRBOUEBEFR -« Ax TR THA0 RS - B
- BB F R OER T R L PR Bk B OF] R] Tk Suak
i o
AFEw? > NP AT B AL R P R PR BN E warp 22 E
R NPF IR PR MR M e R DI B2 A 4T
IFARefiat oom ot 0 BB EAF R F s g o TRt oo PRt
HTRRE AR B S warp A2 E KA B o B oA s iE

FOBFALBELAF AT S BRAE Y DURL LB TR
FRIAR R B R BT e - B P B A B A enE 4F i F en
Bg oot FAE R R o warp 42 B e & enip 4] warp chi 7
MR RFRPEBFIEAFR T DB E c FREFHT > AR NSRS
BT AR ET UG s A R By o Tt R ALapfekit K-
£ 10% nFE Rl e o

MoEs — 0 FUASLE RASAE Wap 2AE - 5 - A

B Bk R

i

doi:10.6342/NTU201602569

Abstract

High performance computing on GPGPU is relied on maximizing thread-
level parallelism and fully resource utilization. In GPUs execution model,
thousands of threads are employed to achieve high level parallelism. How-
ever, only a small L1 cache resource is provided in each SM(streaming multi-
processor) to reduce memory access latency. Massive threads competing a
small L1 cache resource causes poor cache performance and limits system
performance.

In the thesis, we explore the current design of thread block and warp
scheduler. We find current thread block scheduler tends to allocate thread
blocks that use the same cache line to different SMs and reduce cache reuse
opportunities. Therefore, we design Locality-Aware scheduler for improv-
ing GPU cache performance. Based on our proposed software and hardware
cooperative method, cache line touched in a block can be known a priori so
that thread block scheduler could put thread block with sharing cache line
to the same SM for increasing cache line reuse opportunities. Besides that,
locality-aware warp scheduler fine-grained controls execution order of warp
to capture the cache locality. The result shows our Locality-Aware Scheduler
could effectively improve cache performance and achieve 10% performance

on average over the state-of-the-art scheduling policies.

Keywords — GPGPU, Block (CTA) Scheduler, Warp(Wavetront) Sched-

uler, L1 Data Cache, High Performance Computing

i doi:10.6342/NTU201602569

Contents

Abstract

1 Introduction

2 Background & Motivation

2.1

2.2

Background
2.1.1 GPGPU Architecture
2.1.2 Thread Block Scheduling
2.1.3 Warp Scheduling

Motivation e,

3 Locality-Aware Scheduler

3.1
3.2
33

34

Overview of locality-aware scheduler
Compiler Support
Locality-Aware Thread Block Scheduler
3.3.1 Thread-Block-Level Access Range Calculation
3.3.2 Thread-Block-Dispatching Decision
Locality-Aware Warp Scheduler
3.4.1 Warp-Level Access Range Calculation.
342 Two-level Warp Scheduler

v

ii

iii

doi:10.6342/NTU201602569

4 Experimental Methodology j " 22

5 Evaluation ' 24
5.1 Effect of thread block scheduler o =i 25
5.2 Effectofwarpscheduler 26
5.3 Pipeline stall reduction 27
54 Hardware Overhead L. 29

6 Related Works 30
6.1 Block Scheduling for improving cache locality 30
6.2 Warp Scheduling for improving cache locality 30
6.3 Improving resource utilizationon GPUs 31
6.4 Improving thread-level parallelonGPUs 32

7 Conclusion 33

Bibliography 34

doi:10.6342/NTU201602569

List of Figures

2.1 GPGPU Architecture 6
2.2 Data locality in workloads with different access behavior 9

2.3 Comparison of different thread block scheduling policies for row-major

and column-major applications 9
3.1 Overview of our locality-aware scheduler 12
3.2 Address calculation code extraction 13
3.3 Simple address calculation code (Array-based data structures) 13
3.4 Example of memory access region in a thread block 14
3.5 Extended block queueentries L. 15
3.6 Byte address to line address transformation 15

3.7 Mapping address range of the block to the coordinate of cache line address 15

3.8 Flow of the thread-block dispatching decision algorithm 16
3.9 Locality estimation between two blocks 17
3.10 hierarchical warpencoding, 18
3.11 Locality aware warp scheduler 19
3.12 Flowchart of the two-level warp dispatching decision 20
3.13 Example of the Locality degreetable 21
3.14 Example of inter-warp locality computation 21

5.1 Comparison of performance for different policies, normalize to baseline
architecture using GTO warp scheduler 25

5.2 LID cache miss comparisons, 26

vi doi:10.6342/NTU201602569

53

54

Breakdown pipeline stall cycles normalize to baseline execution cycles of
Type lapplications {7t =) | 28
Breakdown pipeline stall cycles normalize to baseline execution g:yc_lés in |

type-Iland type-IIT% B

vii doi:10.6342/NTU201602569

List of Tables

2.1 GPU and CPU per thread cacheresource 8
4.1 GPGPU-Sim Simulation Configuration 22
42 Workloads 23
5.1 Workload categories 24
5.2 Hardwareoverhead L 29

Vit doi:10.6342/NTU201602569

Chapter 1

Introduction

General Purpose Graphic Processing Units (GPGPUs) are becoming more and more popu-
lar and widely used in different areas such as image processing, physical based simulation,
and cloud computing due to their significant computing capability [14]. Modern GPG-
PUs allow thousands of threads to be executed in parallel. In order to manage the massive
threads on a GPGPU core and simplified hardware design, threads are typically grouped
into thread blocks and each thread block are divided into a small group of threads, called
warp. Threads within a warp are executed in lock-step, which means that they share the
fetch and decode unit in the pipeline and are all executed on the same instruction at the
same time. With multiple warps residing in a GPU core, the memory access latency can
be hidden by the fast context-switch between different warps. Therefore, GPGPUs can
offer better performance and power efficiency than CPUs.

In typical GPGPU execution model, a kernel, which is the minimum task unit on GPUs,
is composed of multiple thread blocks. The thread block scheduler distributes those thread
blocks to the Streaming Multiprocessors (SMs). In each SM, the thread blocks are fur-
ther divided into a small scheduling unit-warp, the warp scheduler issues warp to the
SIMD(single instructions, multiple data) lane for execution. Besides, each SM contains
large amounts of memory resources such as register files, 11 data cache, shared memory
resource etc to support the large number of threads for execution.

Despite the highly achievable thread-level parallelism, the GPU cores usually suffer

from the serious cache contention. In each core of modern GPGPU architecture, thou-

1 doi:10.6342/NTU201602569

sands of threads share a small 11 cache resource, which means that each thread oﬁiy has
an extremely small 11 cache resource quota. For example, in NVIDIA’s Kepierﬁhaf can.
support up to 2048 threads in each core, per-thread cache resource is only 24 b;fes [16]
which is far less than the CPU thread has. With the limited cache capacity, thé cache liﬁes
brought by one thread can easily be evicted by other threads, leading to serious perfor-
mance degradation.

Prior studies have been proposed different warp schedulers to mitigate cache con-
tention. G. Rogers et al. [19] propose cache-conscious warp scheduling which uses addi-
tional hardware to monitor cache thrashing behavior and then use warp throttling technique
to reduce inter-warp interference for preserving intra-warp cache locality. DAWS [20] fur-
ther preserves more intra-warp cache locality by using a predictor combined with profile-
based and online detection information. Most of them try to throttle the number of warps
that can access the cache resource to preserve the intra-warp locality. However, very few
studies try to mitigate cache contention by putting the warps with cache locality on the
same core. In addition to warp scheduling, recent work [11] also shows that thread block
scheduling is an another important factor to improve cache performance. It schedules
two consecutive thread blocks to the same core because they observe that the two con-
secutive thread blocks usually access the data in shared cache lines. However, their work
only focus on a specific data access behavior in various GPGPU workloads. For GPGPU
applications with different data access behavior, a comprehensive approach is needed to
exploit no only the cache locality between the two consecutive thread blocks but also the
cache locality existing in different thread block combinations.

In this thesis, we propose the software and hardware cooperative method to improve
cache performance. The main idea is to estimate the thread locality through address pre-
computation. With the locality information, the thread block scheduler and warp scheduler
within a SM (Streaming Multiprocessor) can then make smart decision for block/warp
dispatches with the goal to optimize 11 cache performance.

To achieve the goal, compiler helps to extract the address information from the GPU

program during compilation. By utilizing the address information, the thread block sched-

) doi:10.6342/NTU201602569

uler can estimate the cache locality between different thread blocks and assi'gn. the ﬁroper
thread block to the SM. Moreover, warp scheduler can fine-grained contrdl thé c:':_gg:’:cllltion.
order of warps to efficiently exploit the cache locality provided from the block sgheduler
based on the estimated warp locality. The key challenge is how to accurat..ely' estiméte
the locality between thread blocks and warps at runtime. First, we would need a metric
to quantify cache access locality between thread blocks and warps. Second, determine
what information is necessary for our metrics and how to get the required information.
Third, how to design the block scheduler policy and warp scheduler policy to capture
performance improve opportunities by exploiting the cache access locality.

The thesis offers the following contributions:

» We propose the first softwarehardware cooperative mechanism to estimate the cache
locality among different thread blocks/warps at run-time. Our mechanism can cap-
ture the cache access locality in a broad range of regular GPGPU applications with

diverse memory access behavior.

* We develop a locality-aware thread block scheduler and warp scheduler. The thread
block scheduler is able to increase the amount of shared cache lines and data reuse
in each SM and the warp scheduler is able to maximize cache reuse opportunities in

a SM based on the estimated cache locality.

* The Evaluations show that our mechanism can dramatically reduce 11 cache miss
rate and provide up to 59% (average 26%) and 42% (average 10%) performance
improvement over the conventional round-robin scheduler and the state-of-the-art

approach.

The rest of the thesis is organized as follows. In Chapter 2, we will introduce the
current GPGPU architecture and then describe our motivation for this thesis. In Chapter 3,
we will introduce our proposed software and hardware cooperative method to estimate
cache access locality and the proposed locality-aware scheduler policies and the details of
architecture. In Chapter 4, we will describe our methodology and workloads. In Chapter 5
we will evaluate our proposed scheduler with the state-of-the-art scheduling policies and

3 doi:10.6342/NTU201602569

show our experimental results. In Chapter 6, we will summarize related works. F'i-nally,

we will conclude the thesis in Chapter 7. _ Gl ;

T

fi

4 doi:10.6342/NTU201602569

Chapter 2

Background & Motivation

In this chapter, we first introduce GPGPU architecture and then provide background infor-

mation of thread block/warp scheduler. Next, we would briefly describe our motivation.

2.1 Background

With emerging of high performance computing, many applications are using GPU to ac-
celerate their performance. For GPGPU programing, CUDA(Computing Unified Device
Architecture) [17] and OpenCL(Open Computing Language) [22] are the most popular
language. In CUDA and OpenCL programming model, a kernel is defined as a minimum
unit launched on GPUs. A kernel is consist of thousands of threads and these threads are
organized as two-level thread hierarchy — thread block(or called CTA) and warp(or called
wavefront). A collection of threads are grouped to warp and one or more warps form a

thread block.

2.1.1 GPGPU Architecture

Fig. 2.1 shows a typical GPGPU architecture. It consists of thread block scheduler, mul-
tiple streaming multiprocessors(SMs), a L2 cache shared among all SMs and a off-chip
DRAM. Thread block scheduler is responsible to distribute thread blocks to SMs. Each
SM has dual warp scheduler, register files, L1 cache, texture cache and scratchpad mem-
ory. During kernel execution, thread block scheduler dispatches the whole threads within

5 doi:10.6342/NTU201602569

GPU

SM
/[Block scheduler | \ .
?
v ! v e

. Warp Warp
scheduler scheduler

SM SM (e @ of SM

Register Files

] Y
L2 cache | SIMD Lanes
‘) \ Shared || Texture

(+ ||L1 Cach
\ DRAM / Y ache Mem. Cache

Figure 2.1: GPGPU Architecture

the thread block to SM and fixed number of threads(usually 32, 64) in the thread block are
automatically grouped as warp by warp scheduler. Then, in each cycle, warp scheduler
issues warp to SIMD(single instruction, multiple data) pipeline. The private L1 cache is
used to cache data in the SM. However, scratchpad memory which is usually called shared
memory in CUDA programming is used as user-managed cache. The data stored in the

shared memory is only visible among warps within the same thread block.

2.1.2 Thread Block Scheduling

Thread block scheduler, which is called gigathread engine in NVIDIA GPUss, is responsi-
ble to assign thread blocks to the SMs when SMs have enough hardware resource. There
are four hardware source limiting the number of thread blocks running on the SM: reg-
ister files usage/per thread block, scratchpad memory usage/per thread block, number of
threads, and the number of blocks, respectively. Once SM has enough hardware resource
to support a new thread block, thread block scheduler would assign a new thread block
to the SM. However, there is very few information on the scheduling policy used thread
block scheduler. In this work, we use Round-Robin(RR) thread block scheduler as our

baseline [1].

6 doi:10.6342/NTU201602569

2.1.3 Warp Scheduling

In NVIDIA GPUs, 32 threads within a thread block are grouped as a single warp. .@ﬁltiple
warps in the SM can be used to hide memory access latency by fine-grained __mulﬁthfead-
ing. For instance, when one warp suffers a stall, warp scheduler would continuéily 1ssue
other available warps to hide stall latency for achieving high performance. Today, various
warp scheduling policy has been proposed to achieve high performance. Here, we will

introduce three basic warp scheduler as following.

Round-Robin warp scheduler

In Round-Robin warp scheduler, each warp has an equal priority and warp scheduler issues
warp based on the warp priority. This naive warp scheduler policy tends to make all
warps have the same progress which potentially makes all warps stalled on the same long
latency operation(i.e. off-chip memory access) in the same time and degrades the system

performance.

GTO warp scheduler

GTO(greedy-then-oldest)[19] warp scheduler has been proposed to improve the draw-
backs of RR warp scheduler. The main idea is to make different warps have different
progress such that they might not be stalled on the same time. The detailed policy is
explained as following, first, GTO scheduler would greedily select the same warp for ex-
ecution until it suffers a stall and then choose the oldest warp for execution. Each warp’s
age is determined by the time it enters the SM. Note that although all warps within a thread
block enter the SM at the same time but different warps still have different age. The warp
with smaller thread id has more older age than the warp with bigger thread id. Since the
warp with oldest age usually has the highest priority, the oldest warp usually has fastest
progress while the youngest warp has the slowest progress. The different progress among
warps means that they might not be stalled on the same time. That is, once a warp is
stalled, other available warps can be selected for execution to make the core busy and

improve the system performance.

7 doi:10.6342/NTU201602569

Table 2.1: GPU and CPU per thread cache resource

Device | Maximum threads per core/SM L1 cache size

Fermi 1536 16/48KB(configurable)
Kepler 2048 16/32/48KB(configurable) .
Haswell 2 32KB
Skylake 2 32KB

Two-level warp scheduler

Two-level warp scheduler is also proposed [6, 13] to improve the shortcomings of RR-
scheduler. It maintains two warp groups — active group and pending group. Only warps
in the active group can be issued by warp scheduler. When any warp in the active group
is stalled on the long latency operations, the warp is demoted to the pending group. At the
same time, a warp is promoted from pending group to active group. As a result, different
warp progress between warps in the active group and the pending group can prevent all

warps from suffering stalls in the same time.

2.2 Motivation

In previous section, we have already introduced the GPGPU architecture. Thousands of
threads are employed in a SM to achieve high throughput but only a small L1 cache
resource is provided to reduce memory access latency. As shown in table 2.1, Kepler-
GPU [16] has a 48KB L1 cache and support 2048 threads in a SM while Skylake-CPU
has 32KB L1 cache and support 2 threads concurrently running in a core. On average, a
gpu thread has only around 24 bytes cache resource which is far less than CPU threads
has(around 16KB). With limited per-thread cache capacity, cache block brought by one
thread would easily be kicked out by other threads, leading to serious performance loss.
Besides, current thread block scheduler is unaware of cache locality among thread
blocks and adopts a Round-Robin fashion policy to dispatch thread blocks. Recent work [11]
observes that consecutive thread blocks often access data in shared cache lines, and they

proposed a thread block scheduling policy called BCS to improve performance by allocat-

8 doi:10.6342/NTU201602569

cache line
e

Row-major access

Bo

1 P

Bn

Col-major access

cache line
N

Bo

Bn

Rows
width

B.

Bn+1

Rows
width

Cols width Cols width
Figure 2.2: Data locality in workloads with different access behavior

v’ v’
[BoJMEE [, |ES [B2][B:] [B2] B:]

SMO SM 1 SM 0 SM 1 SM 0 SM 1
Block scheduler (RR) Block scheduler (BCS) Block scheduler (Ideal)

Row-major access example

Col-major access example

[BoJ[B2] [B:/HEE [B: |[Bs]

SMO SM 1 SM O SM 1 SM O SM 1

Block scheduler (RR) Block scheduler (BCS) Block scheduler (Ideal)

Figure 2.3: Comparison of different thread block scheduling policies for row-major and
column-major applications

v

[Bo|[Ba] [Bi|Bedd

ing consecutive thread blocks to the same SM. However, not all workloads benefit from
BCS, as the thread block combinations that share cache lines vary in workloads with dif-
ferent memory access behavior. Figure 2.2 shows two common data access behavior in
current GPGPU workloads. For row-major access application, consecutive thread blocks
usually share the same cache line entries. However, for column-major access application,
cache lines are shared between stride thread blocks such as block 1 and block N+1. Fig-
ure 2.3 illustrates the impact of different thread block scheduling policies on these two
type of applications. As we can see, current RR thread block scheduler design tends to

allocate thread block using same cache lines to different cores. Prior work(BCS) could

9 doi:10.6342/NTU201602569

only capture performance improvement opportunities in row-major access’ appliczitions.
Our goal is to design a locality-aware scheduler that can exploit the data reuse-bétween
thread blocks in different types of workloads, including both row-major and colﬁnﬁi—maj or

applications, as presented in the ideal case in figure 2.3.

10 doi:10.6342/NTU201602569

Chapter 3

Locality-Aware Scheduler

In this chapter, we first describe the main idea of our locality-aware scheduler and then

introduce our scheduler policies in block scheduler and warp scheduler, respectively.

3.1 Overview of locality-aware scheduler

To improve cache performance, we design locality-aware scheduler which can enhance
the cache reuse opportunities. The goal of our design is to let thread blocks using the
same cache line be assigned to the same core and warps using the same cache line entries
could be issued nearly at the same time such that cache lines could be reused as many times
as possible before they get evicted and therefore raise L1 hit rate. To achieve our goal,
we propose software and hardware cooperative mechanism to estimate locality among
different thread blocks and warps at runtime.

Figure 3.1 shows the overview of proposed locality-aware scheduling method. The
boxes with green color are software side and others are hardware side. The locality-aware
scheduling method includes address calculation code extraction and locality-aware block
dispatcher. The address calculation code extraction is done by compiler, which extracts
the code from a kernel program during compilation and generates a separate address cal-
culation binary. The GPU driver passes the binary to block scheduler at the start of GPU
application. The locality-aware block dispatcher is a scheduling algorithm running on a

small, in-order processor [18] in block scheduler, which incorporates the address calcula-

11 doi:10.6342/NTU201602569

GPU
/ Block Scheduler \
%ocality-aware scheduling R
algorithm

Thread-Block-Level]
Access Range Calculation |

GPU program

SMs

Extract address

Thread-Block Dispatching]
Decision B

ananb yoo|g

[Warp-Level Access Range]

calculation code
[
Calculation)

Address'CaIcuIation Two-level warp
Al k scheduler
K\ a small, in-order processor J /

Figure 3.1: Overview of our locality-aware scheduler

executable

tion binary and dispatches thread blocks to SMs maximizing the inter-block locality. After
kernel is launched on GPUss, its thread blocks are enqueued in the block queue of the block
scheduler. The memory access range of each thread block in the block queue are calcu-
lated based on the address calculation binary and stored in the same block queue entry.
When any SM has available resources(i.e. a thread block has finished), the thread-block
dispatching decision is triggered. The thread-block dispatching decision algorithm would
estimate locality among thread blocks and select a thread block, which has the highest
locality with all the running blocks in the SM. The access range of warps in the block
is then calculated and attached to the corresponding warps during dispatching. Finally,
the locality-aware warp scheduler schedules warps based on the access range information

generated by the block scheduler to preserve the inter-block locality at warp-level.

3.2 Compiler Support

A GPGPU application is composed of one or more kernels. Each kernel is an array of
thread blocks with unique IDs and each thread in the same thread block is given a unique
thread id. The programmer usually uses these unique blockIDs and threadIDs to calculate
the individual data position of each thread. In regular GPGPU applications, threads often
operate on structural data such as one or two dimension data array. So the mapping be-

tween thread to data can be computed through simple arithmetics. For example, figure 3.2

12 doi:10.6342/NTU201602569

Kernel Function

1: global void kernel{float *J cuda, int BLOCK SIZE, ...)
L + Constant Value & Data Array Pointer
4 int blockid = blockIdx.x;
5 int threadid = threadIdx.x;
7 int index = blockid * BLOCK SIZE + threadid;
ﬂ . Address Calculation Code
9: I c cuda temp[ty][tx] = J cuda[index] ;I
10: e
) Index Data Array
11: // computation
12: //
13:}

Figure 3.2: Address calculation code extraction

shows a simplified kernel code. The code in the top box(line 1) shows a typical input ker-
nel parameters including data array(i.e., J_cuda) and constant value(i.e., BLOCK SIZE).
The code in the middle box(line 4-7), which is called the address calculation code, com-
putes the index of the input data array. Finally, the ”index” variable is used to access the
data array of J cuda, as shown in the bottom box(line 9). The compiler can easily extract
these address calculation code segments from a kernel function and generate the address
calculation binary with those code segments and base address of the data array pointers.
The block scheduler utilizes the binary, the threadID, and the blockID to compute the

memory address on an arbitrary thread in the kernel, as shown in figure 3.3.

Code Segment
int xidx = blockID * BLOCK_SIZE + threadID

Int data = *(gpuSrc_Base_Pointer + xidx)

gpuSrc_Base Pointer xidx

Figure 3.3: Simple address calculation code (Array-based data structures)

13 doi:10.6342/NTU201602569

Data array

Figure 3.4: Example of memory access region in a thread block

3.3 Locality-Aware Thread Block Scheduler

In this section, we first introduce how to calculate access range of each thread block and
then describe our thread block dispatching process including computing inter-block local-

ity by utilizing the access range information and block dispatching criteria.

3.3.1 Thread-Block-Level Access Range Calculation

For regular GPGPU applications, threads often access contiguous memory regions. The
memory region usually be linear or 2D data block when threads access data on one di-
mension or two dimension data array. So the memory access range of each thread block
can be viewed as rectangle, as shown in the figure 3.4. Therefore, we could use the start
point(i.e., upper-left point), width, and height to represent the rectangle. The start point
could be computed by the 1°st thread in the block and the width/height could be computed
by the differences of the memory address of the 1’st thread and last thread in the block.
We extend the original block queue entries to store the access range rectangles of the block
on the data arrays, as shown in figure 3.5.

In order to calculate how many cache lines shared between thread blocks, the memory
access range of the thread block could be further represented in the coordinate of cache
lines. As shown in figure 3.6, the data array is transformed from byte addresses to the

cache line addresses. For example, the memory addresses (0, 0) to (127, 0) are mapped to

14 doi:10.6342/NTU201602569

start point | width | height

\, - —th
\ e —
N 7 - |
\, -,

0y >

N
=L

Block queue

Bo B1 B2 B3 Bn
Figure 3.5: Extended block queue entries

the cache line address (0, 0), and the memory addresses (128, 2) to (255, 2) are mapped
to the cache line address (1, 2), due to 128 bytes 11 cache size in modern GPUs.

The memory access range of the block could be transformed into cache line access
range. Therefore, cache lines accessed by the block could be represented in a rectangle

with a start point, width, and height, as shown in figure 3.7.

2D data array (MxN bytes) 2D line address (x’,y’)
0,0[1,0(2,0 0,0 1,0
01 0,1
0,2

—>

X

].y)

([cache line size

M
MN |2l M
\/
cache line size

Figure 3.6: Byte address to line address transformation

(xy) =

@ 1'stthread

2D line address (x’,y’) © Last thread

|
. 0,0 1,0 \
Block accessing] 1 \
range ’ width,
/ Rows
L] width
width,
ﬂ] N
[128 ’
Cols width

Figure 3.7: Mapping address range of the block to the coordinate of cache line address

15 doi:10.6342/NTU201602569

3.3.2 Thread-Block-Dispatching Decision

Locality estimation for each

candidate TB with running
TBs in a SM x

OnceaTBis
finished in a
SM x

Find a candidate TB with
highest locality

Locality estimation for
No— each candidate TB with
running TBs in other SMs

Yes

Issue TB to SM Find a c_andldate TB with
minimum locality

Figure 3.8: Flow of the thread-block dispatching decision algorithm

The flowchart of the thread-block dispatching decision is plotted in figure 3.8. Once a
thread block has finished on a particular SM x, the block scheduler would allocate a thread
block to the SM based on inter-block locality of the candidate block and all the running
blocks on the SM x. The inter-block locality of two blocks is defined as the the aggregated
overlapped cache lines access range of the two, which is the summation of overlapped area

of all data arrays. For each data array, the overlapped area is computed as following:

1. As shown in figure 3.9, the distance, and distance, are the difference between two

block’s upper left position.

2. If distance, > width, or distance, > width,, there is no overlapped area between
the two block, which means that there is no locality between these two blocks on

this data array.

3. Otherwise, the overlapped area is (width, — distance,) * (width, — distance,),

which is the number of cache lines that shared by the two blocks on this data array.

Finally, the block scheduler would select a thread block that has the highest inter-block
locality with the blocks running on the SM x. However, if all the candidate thread blocks

have no inter-block locality, i.e., zero overlapped area, with SM x, the thread block, which

16 doi:10.6342/NTU201602569

distance, = X, — X3

(X1, Y1) —— ¥

1 f

distancey < 1 \ =
(XZ IYz) : 7
: : Wldthy Y3 - Y1
: overlapped I
I

|

! l

o ___ p

_/
Wdthx: X3 — X1 (X3' YS)

Figure 3.9: Locality estimation between two blocks

has minimal inter-block locality with the blocks running on the other SMs is selected.
Since if a thread block, which has cache locality with the running blocks in other SMs, is

selected to issue, the cache reuse opportunities in other SMs are reduced.

3.4 Locality-Aware Warp Scheduler

In this section, we first introduce how to calculate access range of each warp and then
describe our proposed locality-aware warp scheduler to capture the benefits provided from

block scheduler.

3.4.1 Warp-Level Access Range Calculation

Unlike the access range of a block, the access range of a warp usually does not have a
fixed shaped, so it can not be represented as the start point, width, and height. Instead,
the access range of a warp can be represented as a bit-vector. In the bit-vector, each bit is
used to represent the access status of a unique cache line. Bit 0 means that the cache line
is not accessed by the warp and bit 1 means that the cache line is accessed by the warp.
However, the one-bit-per-line representation is impractical due to the huge working set in
the kernel. Hence, we propose the hierarchical encoding method to cut down bit usage, as

shown in figure 3.10. The hierarchical encoding method contains the following two steps.

Step 1 : The data array is partitioned into 2™ small regions where each region is repre-
p y1sp g g p

17 doi:10.6342/NTU201602569

2D cache line coordinate
00101
step 1 step 2
1,0
Row - -
Width .
Reglon
‘ ‘ ‘ ‘ XY Each region is further divided into N
Cols Width sub-region, and each sub-region use 1
bit to indicate whether it is accessed by
DataArray is partitioned into 2M region a warp or not
E.g. M= 4in this example E.g. N =4 in this example

Figure 3.10: hierarchical warp encoding

sented by a region bit-vector with M bits. Then, each thread block could get a M-bit
region vector by mapping its memory access range to the data array. As shown in
figure 3.10, the data array is partitioned into 2* region. If the access range of a block

is fallen into the green box (region 11), the 4-bit region vector becomes 1011.

Step 2 : Each region is further partitioned into N sub-region where each sub-region is rep-
resented by a subregion bit-vector with N bits. Then, the warp could get a N-bit
subregion vector by mapping its memory access range to the subregion. As shown
in figure 3.10, each region is partitioned into 4 sub-region. Each subregion uses
1 bit to indicate whether it is accessed by the warp or not. If a warp accesses the
subregions with the blue box(the upper-left and lower-right subregions), the 4-bit

subregion vector becomes 1001.

Combine the region vector of the block and subregion vector of the warp, the access
range of a warp can be represented as a bit-vector with M(length of region bit-vector) +

N(length of subregion bit-vector) bits.

3.4.2 Two-level Warp Scheduler

In order to capture the inter-block locality at warp-level, we should put the warps with
inter-warp locality together and then execute those warps roughly at the same time such
that shared cache lines could be use as many times as possible before they get evicted.
Based on the above thought, we employ widely used two-level warp scheduler to de-
velop our locality-aware warp scheduler. Figure 3.11 shows our proposed locality-aware

18 doi:10.6342/NTU201602569

@/l Warp queue \
/ Two-level warp scheduler \
Pending group

W@W®W 000000 WW
©) Promc.)te a warp havm.g thg (@ Long latency operation
most inter-warp locality with R
A X (off-chip memory access)
other warps in active group

(@ Greedy to execute a warp until
| Selector | short stall then locality select the
next issued warp

[[l][
\ LANE LANE LANE /

Figure 3.11: Locality aware warp scheduler

Active group

warp scheduler. In the SM, an additional warp queue is introduced to store the access
range of the running warps on the SM as well as the inter-warp locality between warps.
The access range information of warps is updated by the block scheduler and the inter-
warp locality between warps is computed by the warp scheduler during execution. The
idea of the proposed two-level warp scheduler is to divide all the running warps in the
SM into two warp groups, active group and pending group. In each cycle, a warp from
the active group is issued to the SIMD lane for execution in the priority order of greedy
then locality. Once any warp suffers a long latency stall , i.e., off-chip memory access,
the warp is demoted to pending group. At the same time, one of ready warp which has
the highest sharing degree with the warps in the active group is promoted from pending
group to active group.

Since we always promote warps with locality from pending group to active group,
starvation may occur when some warp naturally has no locality with other warps. Once
a warp starves, the other warps within the same thread block can not leave SM until the
starved warp is finished, leading to performance degradation. To tackle starvation issue,
a simple timeout solution is adopted. Each thread block is given an age when it is as-
signed to the SM. We detect the starvation happened when Age,,c—dispatched—threadbiock -

Agecurrent—threadviock > 2N, where N is the max number of thread block in the SM. Once

19 doi:10.6342/NTU201602569

Greedily selects the
same warp in the active o
group for execution until
it suffers a stall

Select a warp that has the
most inter-warp locality with
Yes

the recently stalled warp

Y

No
y . .
Promote a warp having highest
Demote the warp to sharing degree with all warps
pending group in active group from pending
group to active group

Figure 3.12: Flowchart of the two-level warp dispatching decision

starvation is detected, those starved warps are severed in the first priority.

The flowchart of the two-level warp dispatching decision is shown in figure 3.12. First,
warp scheduler would greedily select the same warp in the active group for execution until
it suffers a stall. If the stall is a short stall such as pipeline stalls, the warp scheduler would
select a warp which has the highest inter-warp locality with last issued warp from the
active group for execution. Otherwise, the warp is stalled by a long latency operation
and is demoted to the pending group. At the same time, a warp has the highest inter-warp
locality with all warps in the active group is promoted from the pending group to the active
group.

The inter-warp locality described in the above is kept in a locality degree table, as
shown in figure 3.13. Each entry in the locality degree table represents the inter-warp
locality of the corresponding two warps. For example, inter-warp locality between warp
0 and warp 1 is stored in the entry (0, 1). The inter-warp locality between the two warps

can be computed by comparing their warp access range information as following:

1. Check whether the region-vector between the two warps are the same, if they have

different region-vector, there is no inter-warp locality among them. As shown in

20 doi:10.6342/NTU201602569

Warp access range information

Region bit-vector i it- ‘ -
’ g §ubreg|on bit-vector inter-warp locality between warp 0 and warp 1

N .

Warp 0 (001-1011) |Warp 1 (001—0011)/ Warp2 (010-1111)
Warp 0 2 / 0
Warp 1 0
Warp 2

Figure 3.13: Example of the Locality degree table

Region vector Subregion vector

T~ 7

Warp 0 access range: 1001-001001
‘_1 Same region vector: inter-warp locality = 2

Warp 1 access range: 1001-001001 =

Different region vector : inter-warp locality = 0

Warp 2 access range: 1011-001001
Figure 3.14: Example of inter-warp locality computation

figure 3.14, warp 1 and warp 2 have different region-vector, so there is no inter-

warp locality between them.

2. Otherwise, the inter-warp locality is the number of same bit 1 in the subregion-
vector. As shown in figure 3.14, warp 0 and warp 1 have the same region-vector,
so the inter-warp locality becomes 2 because there are 2 of the same bit 1 in the

subregion-vector (001001).

21 doi:10.6342/NTU201602569

Chapter 4

Experimental Methodology

Table 4.1: GPGPU-Sim Simulation Configuration

Parameters \ Value
Cores 15
Warp Size 32
Max number of threads / Core 1536
Max number of thread block / Core 8
Number of registers / Core 32768
Shared Memory 48KB
L1 Data Cache 16KB, 128B line, 4-way
L2 Cache 128B line, 8-way associated, total 768KB
DRAM Model FR-FCFS, 6MCs, 16-entry request/MC
GDDRS5 Tll’IllIlg tRRD = 6, tRCD = 12, tRAS =28
trp = 12, tpe = 40, tcr, = 12

We model locality-aware scheduling mechanism as described in Chapter 3 in GPGPU-
Sim [4]. The baseline configuration is a Fermi-like architecture. Each SM has a private
16KB L1 data cache and 48KB shared memory. There are totally 15 SMs sharing a 768KB
L2 cache. The global memory is partitioned into 6 DRAM channels and each DRAM
channel has a First-Ready First-Come-First-Served(FR-FCFS) memory controller. The
other detailed configuration of the simulator is summarized in table 4.1.

To evaluate our mechanism, we use 12 benchmarks from different benchmark suits as
listed in table 4.2. In order to evaluate the diverse image processing workloads, we also

add two benchmarks — SIFT and Gabor filter, which are the well-known workloads in the

27 doi:10.6342/NTU201602569

area of computer vision, in our benchmark lists. All benchmarks are fully simulated on

the GPGPU-sim.

Table 4.2: Workloads

Name Abbr. No. of | No. of
kernels | CTAs
Hotspot [5] HS 1 7396
Back Propagation [5] BP 2 8192
LU Decomposition [5] LUD 223 140675
Nearest Neighbor [5] NN 1 5120
Needleman-Wunsch [5] NW 511 65536
Speckle Reducing Anisotropic Diffusion [5] SRAD 4 65536
Gaussian Elimination [5] GAUSSIAN | 1022 | 525308
Separable Convolution filter [5] CONV 34 52224
Transpose [15] TRAN 24 98304
Histogram [15] HIS 8 9860
Gabor filters Gabor 68 49017
Scale-invariant feature transform SIFT 2 263164

23

doi:10.6342/NTU201602569

Chapter 5

Evaluation

In this chapter, we use the simulation methodology described in chapter 4 and evaluate
our locality-aware scheduler described in chapter 3 with the state-of-the-art locality-aware
thread block scheduler—BCS [11]. The prior work observes the workload behavior and
finds that consecutive thread blocks usually have better cache locality. Hence, BCS dis-
patches two consecutive thread blocks to the SM at the same time. In order to understand
the result of BCS and our proposed scheduler, we classify workloads into three categories
according to their data access behavior,as shown in table 5.1.

Workloads are classified into Type-I because their data access behavior is dominated
by row-major access while applications with a mixture of column-major accesses, random
accesses, etc. are classified into Type-II. Other workloads that do not have inter-block
locality are classified into Type-III.

The performance result of our locality-aware scheduler is shown in figure 5.1 normal-
ize to the baseline configuration using GTO warp scheduler and L1 miss rate is shown in
figure 5.2. For type-I workloads, our locality-aware scheduler improve approximately 3%

performance compared to BCS but for type-II workloads, approximately 26% speedup is

Table 5.1: Workload categories
’ Type \ benchmark ‘
Type-I HS, Srad, Conv, His and BP
Type-1l | Lud, Tran, Gaussian, and SIFT
Type-111 NN and NW

24 doi:10.6342/NTU201602569

further achieved. For type-III workloads, our proposed scheduler has no-effect:

16
Type-I| Type-ll Type-lll

14

1.2

Speedup
=]
00

0.6

04

0.2

0
HOTSPOT SRAD_v2 CONVSEP HIS Gabor filter BACKPROP LUD TRANSPOSE GAUSSIAN SIFT NN NW

mBCS MWProposedblock M Proposed block + warp (10+16)

Figure 5.1: Comparison of performance for different policies, normalize to baseline ar-
chitecture using GTO warp scheduler

5.1 Effect of thread block scheduler

For type-I applications, two consecutive thread blocks usually have better cache locality
which is consistent with the observations in [11]. Therefore, in this case, our thread block
scheduler achieves roughly the same performance with BCS because our thread block dis-
patched decision is the same as BCS. However, BCS has two limitations: 1) Due to lack
of locality detection in the runtime, it could not dispatch thread block until SM has enough
hardware resource for supporting the requirement of two thread block. Hence, this kind of
delay scheduling causes (1) block-throttle-effect which may relieves resource contention
and provides some performance improvement (2) latency-hiding-ability reduction 2) The
other limitation is that BCS could only exploit the cache locality among two thread blocks.
For SRAD application, although our dispatched decision is the same as BCS, BCS can per-
form better than our scheduler due to the effect of block throttling. For HS and His, cache
locality is not only existing in the two consecutive thread blocks but in the N consecutive

thread blocks (more than 2) and our scheduler can correctly detect locality among thread

5 doi:10.6342/NTU201602569

-

Type-I Type-Il Type-llI

0 ||| ||‘ ||| ||| ||| || ||| ||| ||| |“ “‘ |||

HOTSPOT ~ SRAD_v2 CONVSEP HIS Gabor filter BACKPROP LUD TRANSPOSE GAUSSIAN SIFT

L1 miss rate
o o o o =) =] o o
o w i tn o 3 @ o

=]
-

Baseline mWBCS mProposedblock W Proposed block +warp (10+16)

Figure 5.2: L1D cache miss comparisons

blocks and dispatch those N consecutive thread blocks to the same SM as many as possible
for exploiting more cache locality.

For type-II applications, since BCS usually can not correctly detect the locality be-
tween thread blocks in this type, our proposed thread block scheduler could further achieve
24% speedup and reduce 10% miss rate. For type-III applications like NN and NW, our
scheduler has no effect but BCS degrades 8% in NN application due to the effect of de-
lay scheduling. For NN application, there are only 8 warps in the SM; therefore, it is
hard to hide memory access latency especially applying delay scheduling policy on block

scheduler; Only 6 warps can be used to hide the memory access latency.

5.2 Effect of warp scheduler

In order to exploit more cache locality, we design our locality-aware warp scheduler. As
we mentioned in chapter 3, we use a bit-vector to represent its access range by hierarchical
encoding method. Here, we choose configuration using at most 10 bits for region-vector
and 16 bits for subregion-vector on a data array because its performance and hardware
resource is more feasible.

For type-I and type-II applications, after adding our proposed warp scheduler, perfor-

26 doi:10.6342/NTU201602569

mance could be further improved 3% on average. For HS, Srad, His, and SIF. T) ou.r.- warp
scheduler can further capture more cache locality provided by thread block scheq;,;léf andl
improve performance from 2%-10%. However, for the other applications, our];;fopgscd
warp scheduler could not acquire the more benefits because their cache footpri'.nts' are ﬁtfed

into L1 cache after allocating thread blocks with inter-block locality to the same SM.

5.3 Pipeline stall reduction

We further breakdown pipeline stall cycles to analysis which parts of stall cycles could
be reduced by our locality-aware scheduler. A pipeline stall is caused by three type of
hazards: structural hazards, idle or control hazards, and RAW hazards. Structural hazards
occur when there is no available hardware resource for warp execution (i.e. lack of miss
status holding register(MSHR) resource). When warps do not have a valid instruction for
execution, an idle or control hazards occurs. It often happens when a barrier or control
branch instruction is executed. The RAW hazards are caused by the two reasons: mem-
ory access operations(read after write to register) or data dependences. As we can see in
figure 5.3 and 5.4, our locality-aware thread block scheduler can effectively reduce stall
cycles which come from RAW and structural hazards. Since our locality-aware scheduler
is to put threads with cache locality together, there are two benefits. First, memory requests
for acquiring the same cache line are increased and these requests can be coalesced in the
MSHR entries which reduce the original structural hazards. Besides, increasing cache
performance means that the memory access latency is shorten and the RAW hazards are
also reduced. However, after our proposed warp scheduler is adopted, there is a portion
of idle or control stall cycles increased in some applications. In these applications, we
find programmers tend to use shared memory to optimize the performance. When shared
memory is used, it would need barrier instructions to synchronize threads within a thread
block to guarantee correctness. However, our locality-aware scheduler may cause more
large warp progress variation within a thread block compared to GTO warp scheduler due
to capturing inter-warp locality. Hence, our warp scheduler prolongs the average waiting
time of the warp at barrier and increases the idle or control hazards.

27 doi:10.6342/NTU201602569

Breakdown pipeline stall cycles

100.00%
90.00% . .
0,
80.00% . . | |] . u .
70.00% m [] B I
60.00% I
50.00% I I
40.00%
30.00%
20.00%
10.00% I
0.00% -
Q wn Z = 1) (0]) 4 o [0} (%] 4 (] wn X (o)) [} [} 4 o [J] 2] £ Q.
o Q) = = c O =3 = c O o c @ =4 — c = = C Q = =
= | 9 c = @m O © = m O = m O © = a O c = @m O @
UJ 5 3 U o 3 © o @ 5 3 v 5 3 O s 3
@ - ¥ B - 3 & - ® - X @ - 3 B -
m g § a 3 8 m 3 a8} g 8 a % 8 a g 8
o = Qo = (o]} Q = Qo = e =
3 = g 3 g 8 = g 3 8 =
hel o o o o)
£ @ & 9 a £ 9 £ 2 & 9
o (o} [e] [} o
o a Q a o
(=] [e] o] o
= b et < o
o a o a o5

Proposed block+warp

HOTSPOT SRAD_v2 CONVSEP HIS Gabor filter BACKPROP
M Structure hazards idle or ctrl hazards B RAW hazards

Figure 5.3: Breakdown pipeline stall cycles normalize to baseline execution cycles of
Type I applications

Breakdown pipeline stall cycles

100.00% -
90.00%]
80.00% I
70.00% - . |
60.00%
50.00% I I I
40.00%
30.00%
20.00%
10.00% I I I I
0.00%
18 % 2L B 20y 208 ¥ e pEg a OG- X
= @m =9 © = @m O © = @m © ®© = m O ®© = m O © = m O
3“5 9" 3 $3°3s:y°s:yTc:yC g
g 3T t& & 3 e pte 3 ite 3oz
o o o o o o
a o 8 = 2 = 2 = S = S =
° T 2 o e T o o T o T
a3 [a 3 a 3 a3 a2
o] <] o] o) o] o}
a Q. Q Q Q Q
2 o 2 = g]
a. a a. Q. o a.
LUD TRANSPOSE GAUSSIAN SIFT NN NW
M Structure hazards idle or ctrl hazards W RAW hazards

Figure 5.4: Breakdown pipeline stall cycles normalize to baseline execution cycles in
type-1I and type-III

28 doi:10.6342/NTU201602569

5.4 Hardware Overhead

The hardware cost includes the storage cost for block queue information and wa'_ijgi_;.queue
information. In each block queue entry, additional information of access tange r_ectarig-lés
of the block including start points, width and height where each element requires 1 byte.
In our experiments, total 15 bytes are required for each block queue entry. For warp
queue information, there are two additional information. One is warp access range bit-
vector and the other is locality degree table. For each warp access range bit-vector, 16
bytes are required including 6 bytes for region bit-vector and 10 bytes for sub-region bit-
vector. For locality degree table, 1 byte-per-entry is required for recording inter-warp
locality. Therefore, the total storage cost for warp queue information is around 2.1KB due
to current generation GPU supported up to 48 warps. The details of the hardware overhead
cost are listed in table 5.2.

The performance overhead in our design is negligible. For block scheduler, the block
dispatching process is fast due to the required information stored into the block entries.
Besides, the block dispatching process is not on the critical path because there are other
running blocks in the SM. For warp scheduler, the inter-warp sharing degree is stored in
the locality-degree table. Hence, finding the maximum sharing degree warp requires only
linear search time. The consuming time could be hidden by the warp scheduler, which

would greedily issues the same warp until it suffers a stall.

Table 5.2: Hardware overhead

| Location | Components | Storage overhead |
Block scheduler | Block queue 15 bytes / per entry
SM Warp queue Locality degree table: 1.1(48*48/2*1) KB / per SM
Warp access range information: 1 (48*16) KB / per SM

29 doi:10.6342/NTU201602569

Chapter 6

Related Works

In this chapter, we would summarize the related works. First, we will summarize the
works for improve cache locality on block scheduler and warp scheduler. Second, we will

introduce other works for improving GPU resource utilization and thread-level parallel.

6.1 Block Scheduling for improving cache locality

Existing researches on thread block scheduler are quite less. M. Lee et al. [11] observe
that two consecutive thread blocks usually have spatial cache locality, which means that
two consecutive thread blocks often access the data in the shared cache lines. Therefore,
they propose BCS scheduling which assigns two consecutive thread blocks to the same
SM for exploiting more cache locality. As we discussed in the previous section, their work
is suitable for row-major applications while our work is suitable for various applications
with different data access behaviors by estimating cache locality at runtime. Moreover,
our block scheduler collaborates with warp scheduler to capture as much cache locality as

possible.

6.2 Warp Scheduling for improving cache locality

G. Rogers etal. [19] propose cache-conscious warp scheduling which uses additional hard-

ware to monitor cache thrashing behavior and then use warp throttling technique to reduce

30 doi:10.6342/NTU201602569

inter-warp interference and preserve intra-warp cache locality. DAWS [20] fﬁrthéf pre-
serves more intra-warp cache locality by using a predictor combined with pr.oﬁl_@%basedl
and online detection information. Although throttle technique mitigates cache tlﬁashing,
it reduces TLP and make other shared resource under-utilize. Therefore, D. Li el al. [12]
propose priority-based cache allocation which limits the number of warps that can allocate
cache line entries while other warps bypass cache. X. Xie [24] proposes coordinated static
and dynamic cache bypassing mechanism to determine which warp should be allocated
the cache resource to improve overall cache locality.

Our work targets on preserving inter-warp locality by putting threads with better cache
locality together which is orthogonal to preserving intra-warp locality work likes CCWS,
DAWS ...etc. Additionally, our work is unlike other related works which only design from
the aspect of warp scheduler. Our locality-aware scheduler design takes one further step

from top to bottom, from block scheduler to warp scheduler.

6.3 Improving resource utilization on GPUs

There have been many works on improving GPU resource utilization. Gebhart et al. [7]
propose a unified on-chip resource management to manage the on-chip resource, includ-
ing the register files, scratchpad memory and data cache, for different applications. O.
Kayiran et al. [10] reduce cache, network, and memory contention by limiting the number
of blocks running in a SM. A. Jog et al. [9] propose a scheduling mechanism that enables
GPU data pre-fetch by utilizing a simple predictor and improve bank-level parallelism.
R. Ausavarungnirun et al. [3] propose a memory controller design that is able to batch
the memory requests with accessing the same row to improve the row buffer locality and
therefore improve the DRAM performance. J. T. Adriaens et al. [2] propose a scheme
that enables spatial multi-tasking on GPUs, which partitions the SMs for different appli-
cations to improve the SM resource utilization and fairness. Z. Wang et al. [23] enable
spatial multi-tasking within a SM on GPUs, which supports for multiple kernels in a SM
by solving the fragmentation issues and improve the on-chip resource utilization by ex-
ploiting heterogeneity of different kernels.

31 doi:10.6342/NTU201602569

6.4 Improving thread-level parallel on GPUs

Narasiman et al. [13] propose a two-level warp scheduler, which divides the wz;rps mto
fetch groups to overlap the computation with memory access by distorting the progreSs
between different fetch groups so that some warps within a fetch group perform compu-
tation while other warps within other fetch groups execute the memory operations. Jog
et al. [8] propose a scheduler called OWL to increase latency hiding ability by reducing
cache contention and exploit DRAM bank-level parallelism to improve performance. The
OWL aims to mitigate long memory access latency by prioritizing on a selected subset of
blocks. A. Sethia et al. [21] propose cache access re-execution system and memory-aware
scheduling to improve the system performance. It detects the memory saturation and pri-
oritizes memory requests of one warp to enable the opportunities to overlap compute and
memory accesses. Besides, it also enables warp execution even though the memory sat-
uration. Once the warp is failed to execution, the additional hardware queue is used to

buffer the warp for future re-execution.

37 doi:10.6342/NTU201602569

Chapter 7

Conclusion

In this work, we develop a locality aware scheduler to improve the poor cache perfor-
mance in modern GPGPU applications. We point out that the cache access locality ex-
isting in different thread block combinations due to different memory access behavior in
various GPGPU workloads, which is not addressed in current studies. Hence, a compre-
hensive approach is needed to improve performance by exploiting cache access locality
in different GPGPU workloads. Therefore, We propose the software and hardware coop-
erative mechanism to estimate the cache locality in thread-block-level and warp-level at
run-time. Based on the estimated locality information, we design the locality-aware block
scheduler, which is able to maximize the cache reuse opportunities, and the locality-aware
warp scheduler, which is able to capture performance improve opportunities provided
from block scheduler. The experimental results show that our locality-aware scheduler
can effectively reduce L1 cache miss rate (at most 15%) and totally achieve 10% perfor-

mance on average compared to the state-of-art scheduling policies.

33 doi:10.6342/NTU201602569

Bibliography

[1] K. M. abdalla et al. Scheduling and execution of compute tasks. US Patent

US20130185725, 2013.

[2] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte. The case for gpgpu
spatial multitasking. In /[EEE International Symposium on High-Performance Comp

Architecture, pages 1-12, Feb 2012.

[3] R. Ausavarungnirun, K. K. W. Chang, L. Subramanian, G. H. Loh, and O. Mutlu.
Staged memory scheduling: Achieving high performance and scalability in hetero-
geneous systems. In Computer Architecture (ISCA), 2012 39th Annual International

Symposium on, pages 416427, June 2012.

[4] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. Analyzing
cuda workloads using a detailed gpu simulator. In Performance Analysis of Systems
and Software, 2009. ISPASS 2009. IEEE International Symposium on, pages 163—
174, April 2009.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron.
Rodinia: A benchmark suite for heterogeneous computing. In Workload Charac-
terization, 2009. IISWC 2009. IEEE International Symposium on, pages 44—54, Oct

2009.

[6] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm, and
K. Skadron. Energy-efficient mechanisms for managing thread context in through-
put processors. In Proceedings of the 38th Annual International Symposium on Com-
puter Architecture, ISCA 11, pages 235-246, New York, NY, USA, 2011. ACM.

34 doi:10.6342/NTU201602569

[7] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J. Dally; Uﬁifyi'ng
primary cache, scratch, and register file memories in a throughput proéeséorf,[ﬁ'?()l 2.
45th Annual IEEE/ACM International Symposium on Microarchitecture, pgge,s:96_—
106, Dec 2012. " '

[8] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das. Owl: Cooperative thread array aware scheduling
techniques for improving gpgpu performance. SIGPLAN Not., 48(4):395-406, Mar.
2013.

[9] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R.
Das. Orchestrated scheduling and prefetching for gpgpus. In Proceedings of the

40th Annual International Symposium on Computer Architecture, ISCA °13, pages

332-343, New York, NY, USA, 2013. ACM.

[10] O. Kayrran, A. Jog, M. T. Kandemir, and C. R. Das. Neither more nor less: Opti-
mizing thread-level parallelism for gpgpus. In Proceedings of the 22nd International

Conference on Parallel Architectures and Compilation Techniques, pages 157166,

Sept 2013.

[11] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu. Improving gpgpu re-
source utilization through alternative thread block scheduling. In 2074 IEEE 20th In-
ternational Symposium on High Performance Computer Architecture (HPCA), pages
260-271, Feb 2014.

[12] D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D. Burger, D. S. Fussell, and
S. W. Redder. Priority-based cache allocation in throughput processors. In 2015

IEEE 2Ist International Symposium on High Performance Computer Architecture

(HPCA), pages 89—-100, Feb 2015.

[13] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N.

Patt. Improving gpu performance via large warps and two-level warp scheduling. In

35 doi:10.6342/NTU201602569

Proceedings of the 44th Annual IEEE/ACM International Symposiuni on Mzcroar—
chitecture, MICRO-44, pages 308-317, New York, NY, USA, 2011. ACM

[14] J. Nickolls and W. J. Dally. The gpu computing era. /EEE Micro, 30(2):56:—69,
March 2010.

[15] NVIDIA. Cuda c/ct++ sdk code samples, 2011.

[16] NVIDIA. Kepler GK110 whitepaper. http://www.nvidia.com/content/PDF/
kepler /NVIDIA-Kepler-GK110- Architecture-Whitepaper.pdf, 2012.

[17] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Pro-
gramming Guide. NVIDIA Corporation, 2007.

[18] M. S. Orr, B. M. Beckmann, S. K. Reinhardt, and D. A. Wood. Fine-grain task ag-
gregation and coordination on gpus. In Proceeding of the 41st Annual International

Symposium on Computer Architecuture, ISCA *14, pages 181-192, Piscataway, NJ,
USA, 2014. IEEE Press.

[19] T.G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-conscious wavefront schedul-
ing. In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-45, pages 72—83, Washington, DC, USA, 2012. IEEE

Computer Society.

[20] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Divergence-aware warp schedul-
ing. In Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, pages 99-110, New York, NY, USA, 2013. ACM.

[21] A. Sethia, D. A. Jamshidi, and S. Mahlke. Mascar: Speeding up gpu warps by
reducing memory pitstops. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), pages 174—185, Feb 2015.

[22] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming standard for

heterogeneous computing systems. /EEE Des. Test, 12(3):66—73, May 2010.

36 doi:10.6342/NTU201602569

[23] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Gue. Simultaneous
multikernel gpu: Multi-tasking throughput processors via ﬁne-gra_iﬁed sha;;mg In
2016 IEEE International Symposium on High Performance Computer: Aicﬁfte;qture

(HPCA), pages 358369, March 2016.

[24] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang. Coordinated static and dynamic
cache bypassing for gpus. In 2015 IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA), pages 7688, Feb 2015.

37 doi:10.6342/NTU201602569

