
doi:10.6342/NTU201701053

國立臺灣大學電機資訊學院電信工程學研究所

碩士論文
Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

廣義分頻多工系統之矩陣式參數化與其低複雜度收發

機與最佳原型濾波器設計之應用

Matrix Characterization for Generalized Frequency
Division Multiplexing Systems and its Applications in
Low-Complexity Transceivers and Optimal Prototype

Filter Designs

陳柏志

Po-Chih Chen

指導教授：蘇柏青 博士

Advisor: Borching Su, Ph.D.

中華民國 106年 6月
June, 2017



doi:10.6342/NTU201701053

~ JLi:j~~ :k*k~ ±*1ft~~:)( 


o Ji(4- ~ ~. It • 

Matrix Characterization for Generalized Frequency 

Division Multiplexing Systems and its Applications in 


Low-Complexity Transceivers and Optimal Prototype Filter 

Designs 


~t@- x.1~ ft*a ,0 %" (R04942037) 1£ [@ iL *~~ :k. ~ 't it lf1.~,bff 
JtplTiL ~~~~± ~11L t@- X. ' m-~ [@ 106 If- 6 A 14 8 71'- T 7'1 ~t~-t- ~ -'i 
~ i!1& &. 0 t~&';f% ' 4~ Jt[:~1t 8~ 

0/)
- ~ 
/' 
- r,

,f 



doi:10.6342/NTU201701053

誌謝

我能夠順利完成這篇論文，需要感謝許多人的幫助。

首先，謝謝我的指導教授蘇柏青老師在我開始接觸研究初期，帶我

認識許多文獻中被提出的次世代通訊系統之候選波形。在此之前，我

少有文獻搜索的經驗，蘇老師的教導讓我了解最新通訊系統可能的研

究方向。我也是在這過程中，認識了作為我論文題目基礎的廣義分頻

多工系統。

其次，感謝黃彥銘學長發現文獻中認為廣義分頻多工系統具有的一

個不適用於偶數參數設定的缺陷。這個發現成為我整篇論文的最初動

機，後續帶出豐碩的研究成果。

同時，感謝黃彥銘學長與唐明甫學長在我的研究過程中，提供許多

寶貴的看法與建議。也謝謝實驗室同學許晉維、陳漢翔、陳啟祐在兩

年同窗期間的相互砥礪與協助。

再者，感謝我的家人的包容與支持，讓我能專心在我的研究上，順

利完成這篇論文。

最後，再次感謝蘇柏青老師從大四專題研究以來，給我的無數建議

與鼓勵。尤其謝謝蘇老師非常用心地和我一同修改我投稿的論文，讓

我成功在碩士期間發表一篇期刊論文與一篇會議論文。我從蘇老師身

上學到許多專業知識與做研究的方法，在此表達我深深的謝意。

i



doi:10.6342/NTU201701053

ii



doi:10.6342/NTU201701053

摘要

廣義分頻多工為一極富可能性之調變方式，藉由使用原型濾波器，

其具有低頻帶外輻射之特性。然而，當使用文獻中常見的一些原型濾

波器時，廣義分頻多工系統通常是非正交的，因而招致相較於正交分

頻多工，在接收機均方誤差與符元錯誤率上的頻帶內效能退化。

本論文提出一種新的基於矩陣來將廣義分頻多工傳送機矩陣參數化

之方式，而非如傳統上利用原型濾波器之基於向量的參數化方式。此

新的參數化方式使我們很容易推導廣義分頻多工（傳送機）矩陣的性

質，包括使廣義分頻多工矩陣為非奇異與么正各自的條件。

藉由使用此新的參數化方式，我們推導出使最小均方誤差接收機之

一種低複雜度實現方式存在的充分且必要條件。若選用么正的廣義分

頻多工傳送機矩陣，此實現方式在多路徑通道的情況下存在。在此實

現方式不存在的情況下，我們提出一種低複雜度次最佳最小均方誤差

接收機，其效能近似最小均方誤差接收機之效能。

此新的參數化方式也使我們能推導出可最小化接收機均方誤差的最

佳原型濾波器。在許多情況下，這些最佳原型濾波器對應於使用么正

的廣義分頻多工矩陣。在廣義分頻多工系統使用這些最佳原型濾波器

不會導致雜訊增強的問題，使得系統展現與正交分頻多工相同的均方

誤差效能。

此外，基於提出的矩陣式參數化方式，我們為廣義分頻多工發展出

一個能最小化頻帶外輻射並保持優良頻帶內效能的原型濾波器最佳化

演算法。透過將特徵矩陣作為最佳化變數，該濾波器設計問題被表示

為一個非凸問題。在一些轉換之後，我們提出一個迭代解決兩個凸問
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題的演算法來處理原問題。模擬結果顯示在相同頻譜效率的情況下，

相較於正交分頻多工與文獻中的原型濾波器，最佳化所得的濾波器在

頻帶外輻射與符元錯誤率上皆表現最好。

關鍵詞：廣義分頻多工；特徵矩陣；么正矩陣；低複雜度實現方

式；最佳原型濾波器；頻帶外輻射；符元錯誤率效能。
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Abstract

Generalized frequency divisionmultiplexing (GFDM) is a promisingmod-

ulation scheme featuring low out-of-band (OOB) radiation, which is achieved

through the use of prototype filters. However, GFDM systems are usually

non-orthogonal with prototype filters commonly used in the literature, incur-

ring in-band performance degradation in receiver mean square error (MSE)

and symbol error rate (SER) compared to that achieved through orthogonal

frequency division multiplexing (OFDM).

In this thesis, a new matrix-based characterization of GFDM transmitter

matrices is proposed, as opposed to traditional vector-based characterization

with prototype filters. The new characterization facilitates deriving properties

of GFDM (transmitter) matrices, including conditions for GFDM matrices

being nonsingular and unitary, respectively.

Using the new characterization, the necessary and sufficient conditions

for the existence of a form of low-complexity implementation for a minimum

mean square error (MMSE) receiver are derived. Such an implementation

exists under multipath channels if the GFDM transmitter matrix is selected

to be unitary. For cases where this implementation does not exist, a low-

complexity suboptimal MMSE receiver is proposed, with its performance

approximating that of an MMSE receiver.

The new characterization also enables derivations of optimal prototype

filters in terms of minimizing receiver MSE. They are found to correspond

to the use of unitary GFDM matrices under many scenarios. The use of such

v
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optimal filters in GFDM systems does not cause the problem of noise en-

hancement, thereby demonstrating the same MSE performance as OFDM.

In addition, based on the proposed matrix characterization, a filter opti-

mization algorithm that minimizes OOB radiation while maintaining good in-

band performance is developed for GFDM. Through the characteristic matrix

as the optimizing variable, the filter design problem is formulated as a non-

convex problem. After some transformations, an algorithm in which two con-

vex problems are solved iteratively is proposed to tackle the original problem.

Simulation results show that under the same spectral efficiency, optimized fil-

ters perform the best in terms of both OOB radiation and SER performance,

compared to OFDM and prototype filters existing in the literature.

Keywords: Generalized frequency division multiplexing (GFDM); char-

acteristic matrix; unitary matrix; low-complexity implementation; optimal

prototype filters; out-of-band (OOB) radiation; symbol-error-rate (SER) per-

formance.
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Chapter 1

Introduction

Generalized frequency division multiplexing (GFDM) [1], extensively studied in recent

years, is a potential modulation scheme for future wireless communication systems be-

cause it features good properties including low out-of-band (OOB) radiation and flexible

time-frequency structures to adapt to various application scenarios, such as cognitive ra-

dios and low latency applications [2]. However, some drawbacks for GFDM arise from

the non-orthogonality [3] of the system as a result of using prototype transmit filters [2]. In

this study, we address two specific drawbacks: the difficulty in designing low-complexity

transceivers, and performance degradation in receiver mean square error (MSE) and sym-

bol error rate (SER) compared to that achieved through orthogonal frequency division

multiplexing (OFDM) [4]. The severity of the performance degradation depends heavily

on the prototype transmit filter that is selected [3].

For GFDM systems with a matched filter (MF) receiver [2, 5], inter-carrier interfer-

ence (ICI) and inter-symbol interference (ISI) exist. To cancel ICI and ISI, successive

interference cancellation (SIC) receivers are employed [2,6,7]. However, long delays are

incurred in the process of interference cancellation. In this thesis, we focus on zero-forcing

(ZF) and linear minimummean square error (MMSE) receivers [2,5], which eliminate ICI

and ISI. Although the ZF receiver is known for its low-complexity implementation under

either additive white Gaussian noise (AWGN) or multipath channels, MMSE receiver im-

plementations with linearithmic complexity, to the best of our knowledge, is known only

for the AWGN channels (see recent references [8, 9]). In [10, 11], MMSE receivers for

1
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multipath channels with reduced complexity were proposed, but they still have at least a

quadratic complexity (in terms of numbers of GFDM subsymbols or subcarriers). In this

thesis, we study the feasibility of low-complexity MMSE receivers in presence of multi-

path channels and propose the first implementation with linearithmic complexity thereof.

In addition, we study the impact of GFDM prototype transmit filters on MSE and SER

performance. In the literature [1–3, 5, 8, 9, 12–28], many prototype filters, including the

raised-cosine (RC), root-raised-cosine (RRC), Xia [29], Dirichlet [3], andGaussian pulses,

have been proposed and used for GFDM systems. These prototype filters are mostly de-

signed to reduce OOB radiation of transmitted signals except that the Dirichlet pulse is

claimed to be rate-optimal under the ZF or MMSE receiver over the AWGN channel [23].

However, GFDM systems using all these filters are mostly non-orthogonal (except the

Dirichlet pulse) [3]. In other words, the corresponding GFDM transmitter matrices [2]

generally have a greater-than-unity condition number. This creates the noise enhance-

ment effect [5, 13, 23], and GFDM systems using these filters suffer from MSE and SER

performance degradation compared to OFDM systems.

This study offers three main contributions:

1) New matrix characterization of GFDM transceivers: The modulation process in

a GFDM transmitter can be performed by multiplying the data vector by a matrix with

a special structure, called a GFDM matrix. A GFDM matrix is commonly characterized

by its first column, usually referred to as the prototype filter [2]. In some other refer-

ences [8, 12], a GFDM matrix is characterized by the frequency-domain prototype filter,

i.e., the discrete Fourier transform (DFT) of the prototype filter, which leads to some ad-

vanced implementations of GFDM transceivers. In this thesis, we propose an alternative

means for characterizing GFDMmatrices, in which a characteristic matrix is used. On the

basis of this new characterization, we investigated several properties of GFDM matrices

and found that the conditions for some properties of a GFDMmatrix (e.g., non-singularity,

unitary property) can be expressed very clearly with the new characterization parameters.

This characterization also leads to low-complexity transmitter implementations and pro-

vides a foundation for the other two contributions, described as follows.

2
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2) Low-complexity MMSE receivers under multipath channels: In this thesis, we pro-

pose a form of low-complexity implementation for an MMSE receiver. The necessary and

sufficient conditions for the existence of such an implementation are derived and clearly

expressed in terms of the newmatrix characterization parameters. Particularly, the use of a

unitary GFDM transmitter matrix is a sufficient condition. Moreover, for cases where the

necessary condition is not satisfied, we also propose a low-complexity suboptimal MMSE

receiver whose performance approximates that of an MMSE receiver. This makes GFDM

transceivers very practicable even in multipath channels. The complexity of our proposed

implementation is analyzed in detail and compared to existing solutions. We show that

significant complexity reduction can be obtained through the use of our implementation.

3) Optimal prototype transmit filters in receiver MSE: In this study, we investigate

optimal prototype transmit filters that minimize in-band MSE or SER performance and

OOB radiation. We first identify the optimal prototype transmit filters in terms of mini-

mizing receiver MSEs with both ZF and MMSE receivers under the AWGN channel as

well as static and statistical linear time-invariant channels. We find that the optimal GFDM

transmitter matrices under most scenarios are unitary GFDM matrices and do not suffer

from the noise enhancement effect. Then, a filter optimization algorithm that minimizes

OOB radiation while maintaining good in-band performance is proposed. Simulation re-

sults show that under the same spectral efficiency, our optimized filters perform the best

in terms of both OOB radiation and SER performance, compared to RC filters, Dirichlet

pulses, and OFDM.

The remainder of this thesis is structured as follows. In Chapter 2, we present the

GFDM systemmodel and the newmatrix characterization. We also derive some properties

of GFDM matrices and present low-complexity transmitter implementations. In Chapter

3, we propose low-complexity ZF and MMSE receiver implementations. In Chapter 4,

we present a thorough complexity analysis for GFDM implementations. In Chapter 5,

we derive the analytical expression of power spectral density (PSD) and define the OOB

leakage as a performance measure for the OOB radiation. In Chapter 6, optimal prototype

transmit filters in terms of minimizing receiver MSEs are derived, and the optimality is

3
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verified by simulation results. In Chapter 7, optimal prototype transmit filters in terms

of minimizing OOB radiation under MSE performance constraints are derived, and the

optimality is verified by simulation results. In Chapter 8, a multiple-access scenario is

presented. Finally, the study conclusion is provided in Chapter 9.

Some parts (e.g., Chapters 2 to 6) of the thesis have been accepted to and will appear

in IEEE Transactions on Signal Processing [30]. The materials in Chapter 7 will also

be presented in the 18th IEEE International Workshop on Signal Processing Advances in

Wireless Communications (SPAWC), 2017 [31].

Notations: Boldfaced capital letters denote matrices, and boldfaced lowercase let-

ters are reserved for column vectors. We use ⟨·⟩D, (·)∗, (·)T , and (·)H to denote modulo

D, complex conjugate, transpose, and Hermitian transpose, respectively. We also use

(·)−H to denote ((·)−1)H . Given a matrix A, we denote by [A]m,n, [A]:,r, ∥A∥F , vec(A),

tr(A), rank(A), and A◦−1 its (m,n)th entry (zero-based indexing), rth column, Frobe-

nius norm, column-wise vectorization, trace, rank, and Hadamard inverse (defined by

[A◦−1]m,n = [A]−1
m,n, ∀ m,n), respectively. For any diagonal matrix A, [A]n denotes

[A]n,n. For any matrices A and B, A⊗B denotes their Kronecker product, and A ◦B their

Hadamard product. Given a vector u, we use [u]n to denote the nth component of u, ∥u∥

the L2-norm of u, diag(u) the diagonal matrix containing u on its diagonal, andΨ(u) the

circulant matrix whose first column is u. Given square matrices Am, ∀ 0 ≤ m < p for

any positive integer p, we use blkdiag({Am}p−1
m=0) to denote a block diagonal matrix whose

mth diagonal block isAm. We define Ip to be the p×p identity matrix, 1p the p×1 vector of

ones,Wp the normalized p-point DFT matrix with [Wp]m,n = e−j2πmn/p/
√
p for any posi-

tive integer p, and δkl the Kronecker delta. We use ∠C to denote the phase ϕ ∈ (−π, π] of

a nonzero complex number C, and ∠A the matrix such that [∠A]m,n = ∠[A]m,n for each

entry. We use HD
+ to denote the set of Hermitian positive semidefinite D × D matrices,

and ⪯ to denote the matrix inequality. For any set A, we denote its cardinality by |A|.

Finally, we use E{·} to denote the expectation operator.
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Chapter 2

Characterization of GFDM Systems

GFDM is a block-based communication scheme as shown in Fig. 2.1 [2]. In a GFDM

block, M complex-valued subsymbols are transmitted on each of the K subcarriers, so a

total of D = KM data symbols are transmitted. The data symbol vector d[l] is decom-

posed as d[l] = [d0,0[l] · · · dK−1,0[l] d0,1[l] · · · dK−1,1[l] · · · dK−1,M−1[l]]
T , where dk,m[l] is

the data symbol on the kth subcarrier and mth subsymbol in the lth block, taken from

a complex constellation. Assume the data symbols are zero-mean and independent and

identically distributed (i.i.d.) with symbol energy ES , i.e., E{d[l]dH [n]} = ESIDδln.

Each data symbol dk,m[l] is pulse-shaped by the vector gk,m whose nth entry is

[gk,m]n = [g]⟨n−mK⟩De
j2πkn/K , n = 0, 1, . . . , D − 1, (2.1)

where g is a D × 1 vector, referred to as the prototype transmit filter [2]. Let x[l] =

[x0[l] x1[l] · · · xD−1[l]]
T be the vector containing the transmit samples. Then, the GFDM

modulator can be formulated as the transmitter matrix [2]

A = [g0,0 · · · gK−1,0 g0,1 · · · gK−1,1 · · · gK−1,M−1] (2.2)

such that x[l] = Ad[l]. The matrixA as defined in (2.2) is called hereafter aGFDMmatrix

with a prototype filter g. The vector x[l] is further added a cyclic prefix (CP) before sending

to the receiver through a linear time-invariant (LTI) channel. Details on the channel effects

5
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A
d[l]

modulator

P
/
S

x[l]
CP c[n]

x[n]

channel

+

q[n]

r/m
CP

y[n] S
/
P

B
y[l]

demodulator

d̂[l]

Figure 2.1: Block diagram of the transceiver. (”r/m” stands for ”remove”.)

and the receiver are elaborated in Chapter 3.

2.1 Characterization of GFDM Matrices: Basic Defini-

tions

In the literature, GFDM transmitter matrices are often characterized by the prototype trans-

mit filter g. Alternatively, in [8, 12, 23], GFDM matrices have been parametrized by the

frequency-domain prototype transmit filter gf =
√
DWDg, i.e., the D-point DFT of g.

In this thesis, we propose an alternative means for characterizing a GFDM transmitter

matrix, namely, the characteristic matrix G of size K ×M . We show that the proposed

characterization is useful for understanding some important properties of GFDM transmit-

ter matrices not easily derived in terms of the characterization of traditional time-domain

or frequency-domain prototype filters. The proposed characterization is essentially equiv-

alent to the discrete Zak transform (DZT) [5, 32], but all derivations in the thesis do not

require knowledge of the DZT. A formal definition of this characterization of a GFDM

transmitter matrix is given as follows.

Definition 1 (Characteristic matrix) Consider aKM ×KM GFDM matrix A in (2.2)

with a prototype filter g. We define the characteristic matrix G of the GFDM matrix A as

G =
√
D reshape(g, K,M)WM , (2.3)

where reshape(g, K,M) is aK×M matrix whose (k,m)-entry is [g]k+mK , ∀ 0 ≤ k < K,

0 ≤ m < M . Moreover, the phase-shifted characteristic matrix Ḡ of the GFDM matrix

6
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A is defined as the K ×M matrix whose (k,m)-entry is

[Ḡ]k,m = [G]k,me
−j2πkm/D. (2.4)

Finally, the energy ξG of the GFDM matrix A is defined by ξG = ∥G∥2F /D.

The following lemma would be useful for derivations of low-complexity transceiver

implementations and optimal prototype filters later.

Lemma 1 Let A be a GFDM matrix with a K × M characteristic matrix G, a K × M

phase-shifted characteristic matrix Ḡ, a D × 1 prototype filter g, and energy ξG, where

D = KM . Then,

(a) The prototype filter g can be expressed as g = vec
(
GWH

M

)
/
√
D.

(b) The frequency-domain prototype filter gf ≜
√
DWDg can be expressed as gf =

vec(ḠTWK).

(c) The matrix A satisfies

A = (WH
M ⊗ IK) diag(vec(G))(WM ⊗WH

K). (2.5)

(d) The energy ξG satisfies ξG = ∥g∥2.

Proof: (a) The statement follows from the inverse operation of (2.3).

(b) According to (a), the prototype filter g satisfies [g]mK+k = [GWH
M ]k,m/

√
D. Thus, gf

satisfies

[gf ]k′M+m′ =
K−1∑
k=0

M−1∑
m=0

[g]mK+ke
−j2π(mK+k)(k′M+m′)/D

=
1√
K

K−1∑
k=0

[G]k,m′e−j2πk(k′M+m′)/D, (2.6)

∀ 0 ≤ k′ < K, 0 ≤ m′ < M , i.e., gf = vec(ḠTWK).

(c) Using the famous matrix identity vec(ABC) = (CT ⊗ A) vec(B) [33], we first obtain

that (WH
M ⊗ IK) vec(G) = vec(IKG(WH

M)T ) = vec(GWH
M) =

√
Dg. Then, the zeroth

7
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column of the right-hand side of (2.5) is (WH
M ⊗ IK) diag(vec(G)) · 1√

D
1D = (WH

M ⊗

IK) vec(G)/
√
D = g, i.e., the prototype filter of A. The equality of the other columns

of both sides in (2.5) can be verified similarly, by noting that the (k +mK)th column of

WM ⊗WH
K is [WM ]:,m ⊗ [WK ]:,k.

(d) The proof is trivial in view of Lemma 1(a) and Parseval’s theorem.

Lemmas 1(a) and 1(b) indicate the one-to-one correspondence amongG, g, and gf and

are useful in developments later in this thesis. It is noted that a mathematically equivalent

form of them can also be derived from the definition and frequency-domain expression of

the DZT [32]. The statements and proofs provided here, however, do not require knowl-

edge of the DZT. Lemma 1(c) is a simplified form of the decomposition proposed in [34],

and we give a simple alternative proof above. We will use (2.5) to develop transceiver

implementations. Finally, Lemma 1(d) shows that the energy of A is simply the energy of

the prototype filter g, which can also be proved by unitarity of the DZT [32].

2.2 GFDM Transmitter Implementations

As presented earlier in this thesis, the transmitter simply modulates the data symbol vector

by

x[l] = Ad[l]. (2.7)

Then, x[l] is passed through a parallel-to-serial (P/S) converter, and a CP of length L is

added, as shown in Fig. 2.1. Denote K ⊆ {0, 1, . . . , K − 1} andM ⊆ {0, 1, . . . ,M − 1}

as the set of subcarrier indices and set of subsymbol indices, respectively, that are actually

used. The digital baseband transmit signal of GFDM can then be expressed as

x[n] =
∞∑

l=−∞

∑
k∈K

∑
m∈M

dk,m[l]gm[n− lD′]ej2π
k(n−lD′)

K , (2.8)

8
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where D′ = D + L and

gm[n] =

 [g]⟨n−mK−L⟩D , n = 0, 1, . . . , D′ − 1

0, otherwise
. (2.9)

In most instances of this thesis, we omit the block index ”[l]” for notational brevity.

For the implementation of the transmitter matrix A, two types pertaining to the con-

ventional time [2] and frequency [8] domains, respectively, are found in the literature. In

this thesis, we propose another implementation based on the characteristic matrix. These

implementations are described as follows:

2.2.1 Direct implementation

The matrix multiplication in (2.7) is directly implemented, which can be considered a

time-domain implementation that deals with the prototype filter g directly [2].

2.2.2 Frequency-domain implementation

Previous frequency-domain implementations [8, 12] have been proposed for complexity

reduction. The transmit signal is produced with

x =
1√
K
WH

D

∑
k∈K

P(k) diag(gf )RWMdk, (2.10)

where dk = [dk,0 dk,1 · · · dk,M−1]
T , R = 1K ⊗ IM , and P(k) = Ψ(p(k)) ⊗ IM , with p(k)

being theK × 1 vector equal to the kth column of IK .

2.2.3 Characteristic-matrix-domain implementation

We propose two forms of characteristic-matrix-domain implementation. Using Lemma

1(c), we obtain a transmitter implementation based on (2.5), which we call Form-1 imple-

mentation, as shown in Fig. 2.2. An alternative form of decomposition of the transmitter

9
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Figure 2.2: Characteristic-matrix-domain Form-1 transmitter implementation.
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Figure 2.3: Characteristic-matrix-domain Form-2 transmitter implementation.

matrix that exploits the phase-shifted characteristic matrix Ḡ is formulated as

A = WH
DΠ(IM ⊗WK) diag(vec(Ḡ))(WM ⊗WH

K), (2.11)

whereΠ is the D ×D permutation matrix defined by

[Π]kM+m,nK+l = δklδmn, (2.12)

∀ 0 ≤ k, l < K, 0 ≤ m,n < M . The matrix Π can be understood through the iden-

tity vec(MT ) = Π vec(M), where M is any K × M matrix. We obtain (2.11) by using
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(2.5) and the fact that a KM -point DFT can be decomposed into a K-point DFT, an M -

point DFT, and twiddle factors of the form e−j2πkm/D, which are incorporated into Ḡ.

Eq. (2.11) corresponds to the implementation shown in Fig. 2.3, which we call Form-

2 implementation. The complexity of both forms are in O(KM logKM). Yet, as will

be seen in Chapter 4, the complexity of Form-1 transmitter is slightly lower than that of

Form-2 transmitter, while the Form-2 structure based on the decomposition in (2.11) is

advantageous for receiver implementation.

2.3 Unitary and Invertible GFDMMatrices

With the characteristic-matrix-domain implementation, we can also easily identify the

class of unitary GFDM matrices as follows.

Theorem 1 (Unitary GFDM matrices) Let A be a GFDM matrix with a K ×M char-

acteristic matrix G. Then, A is unitary if and only if G contains unit-magnitude en-

tries: |[G]k,l| = 1 ∀ 0 ≤ k < K, 0 ≤ l < M . An equivalent condition is that its

phase-shifted characteristic matrix Ḡ, as defined in (2.4), contains unit-magnitude en-

tries: |[Ḡ]k,l| = 1 ∀ 0 ≤ k < K, 0 ≤ l < M .

Proof: Since WH
M ⊗ IK and WM ⊗WH

K in (2.5) are both unitary, A is unitary if

and only if the diagonal matrix diag(vec(G)) is unitary. This is the case if and only if

|[G]k,l| = 1 ∀ 0 ≤ k < K, 0 ≤ l < M . Finally, we have the equivalent condition since

|[G]k,l| = |[Ḡ]k,l|, ∀ k, l.

Observing the result in Theorem 1, we call a prototype filter g a constant-magnitude-

characteristic-matrix (CMCM) filter if the corresponding characteristic matrix contains

constant-magnitude entries, i.e., corresponding to a scalar multiple of a unitary GFDM

matrix. We will show that CMCM filters are solutions to several of our problems in min-

imizing the receiver MSE, and are an important class of filters for GFDM.

The following theorem expresses the conditions for the non-singularity of a GFDM

matrix in terms of its characteristic matrix and related properties. Later in this thesis, the

theorem is shown to be very useful in our study on a GFDM receiver.
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Theorem 2 (Properties of A−1) Let A be a GFDM matrix with aK ×M characteristic

matrix G. Then,

(a) A is invertible if and only if G has no zero entries.

(b) If A is invertible, then A−H is also a GFDM matrix whose characteristic matrix H

satisfies [H]k,l = 1/[G]∗k,l,∀k, l, i.e.,

H = (G∗)◦−1. (2.13)

(c) If A is invertible, the squared norm of each row of A−1 equals the energy of A−H ,

ξH = ∥H∥2F /D.

Proof: (a) According to (2.5), A is invertible if and only if G has no zero entries

sinceWH
M ⊗ IK andWM ⊗WH

K are both unitary matrices.

(b) According to (2.5), if A is invertible,

A−H = (WH
M ⊗ IK)(diag(vec(G))−H(WM ⊗WH

K). (2.14)

In other words, A−H is a GFDM matrix whose characteristic matrix H satisfies (2.13).

(c) According to (b), A−H is a GFDMmatrix. Since the norm of each column of a GFDM

matrix equals the norm of its prototype filter, the result follows from Lemma 1(d).

The condition for the singularity of A is also found in [34]. In [5], Gabor analysis

results [32,35] and DZT [32] were applied to obtain a similar statement in Theorem 2(b).

Our derivations, however, involve only basic linear algebra and DFT, making the proper-

ties more accessible to general readers.

12
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Chapter 3

GFDM Receiver Implementations

In this section, we complete our description of the GFDM system model as illustrated in

Fig. 2.1, and propose a new form of low-complexity implementation of ZF and MMSE

receivers: the characteristic-matrix-domain implementation.

As shown in Fig. 2.1, the received signal after transmission through a wireless channel

is modeled as an LTI system y[n] = c[n] ∗ x[n] + q[n], where c[n] is the channel impulse

response, and q[n] is the complex AWGNwith varianceN0. When c[n] = δn0, the channel

reduces to an AWGN channel. More generally, we consider a multipath channel with

arbitrary coefficients c[n]. The channel order is assumed not to exceed the CP length; that

is, c[n] = 0 for all n such that n < 0 or n > L. The received samples after CP removal

and serial-to-parallel (S/P) conversion are collected as y[l] = [y0[l]y1[l] · · · yD−1[l]]
T . The

transfer function from the transmitted block x[l] to the received block y[l] is

y[l] = Cx[l] + q[l], (3.1)

where C, the channel circular convolution matrix [2], equals the circulant matrixΨ([c[0]

c[1] · · · c[D− 1]]T ) [36]. As there is no inter-block interference, the index “[l]” is omitted

in most parts of the following developments. Since a circulant matrix can be diagonalized

by the DFT matrix, we have

C = WH
DDCWD, (3.2)
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Figure 3.1: Characteristic-matrix-domain Form-2 receiver implementation.

where DC = diag([C0C1 · · ·CD−1]
T ) with Cl =

∑D−1
n=0 c[n]e−j2πnl/D being the D-point

DFT of c[n].

From (2.7) and (3.1), we can express the received block in terms of the source data

symbol vector as

y = CAd+ q. (3.3)

The receiver is responsible for obtaining the estimated data symbol vector d̂ given the

received block y. In the literature, several standard types of receivers have been discussed

[2, 5], including MF, ZF, and linear MMSE receivers. Note that when unitary GFDM

transmitter matrices are used, anMF receiver is equivalent to a ZF receiver becauseA−1 =

AH if A is unitary. We study ZF and MMSE receivers in this thesis.

3.1 Low-Complexity ZF Receivers

In the ZF receiver, the demodulator BZF is formulated as a GFDM receiver matrix A−1

multiplied by an equalizer C−1. The estimated data symbol vector is

d̂ = BZFy = A−1C−1y = d+ A−1C−1q. (3.4)

Note that the ZF receiver exists when both A and C are invertible. Theorem 2(b) im-

plies that A−1 is just a Hermitian transpose of another GFDM matrix. Combined with the
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fact that C is diagonalizable byWD, low-complexity implementations for the ZF receiver

based on the forms in (2.5) and (2.11) are readily available. Particularly, we obtain the ZF

receiver Form-1 implementation

BZF = (WH
M ⊗WK)D−1

G (WM ⊗ IK)WH
DD−1

C WD, (3.5)

where DG = diag(vec(G)), and the ZF receiver Form-2 implementation

BZF = (WH
M ⊗WK)D̄−1

G (IM ⊗WH
K)Π

TD−1
C WD, (3.6)

where D̄G diag(vec(Ḡ)). The block diagram of a Form-2 receiver is shown in Fig. 3.1,

with Fl = 1/Cl, ∀ 0 ≤ l < D and H = Ḡ◦−1 therein. Although the complexity of both

forms is in O(KM logKM), we show in Chapter 4 that Form 2 is generally of lower

complexity. Yet, under the special case of the AWGN channel, Form-1 implementation is

advantageous since it is simplified to

A−1 = (WH
M ⊗WK)D−1

G (WM ⊗ IK), (3.7)

which does the reverse operation of Fig. 2.2.

The frequency-domain implementation can be used for ZF receivers. It is proposed

that the estimated data symbols for the kth subcarrier in the ZF receiver are given by [8,12]

d̂k =
1√
K
WH

MRT diag(hf )(P(k))TD−1
C WDy, (3.8)

where hf is the ZF frequency-domain prototype receive filter.

3.2 Low-Complexity MMSE Receivers

For an MMSE receiver, the existence of a low-complexity implementation at the order

O(KM logKM) has not been well studied previously except in the case of an AWGN

channel [8, 9]. Assuming E{ddH} = ESID (i.e., all subcarriers are subsymbols are allo-
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cated with data)1, the MMSE receiver for (3.3) can be modeled as [36]

BMMSE = AHCH
[
CAAHCH + γ−1ID

]−1
, (3.9)

where γ = ES/N0 is the signal-to-noise ratio (SNR), and

d̂ = BMMSEy. (3.10)

When both A and C are invertible, (3.9) reduces to [5]

BMMSE =
[
CA+ γ−1(CA)−H

]−1
. (3.11)

Either (3.9) or (3.11) involves the inversion of a matrix that is not a GFDM matrix,

so Theorem 2 does not apply here to the reduction of the implementation complexity. A

direct implementation requires a complexity of O(K3M3) and is often not a desirable

solution. Also, the frequency-domain implementation [8] is not applicable to the MMSE

receiver in general since (3.9) cannot be simplified to the form in (3.8).

We propose to use the structure depicted in Fig. 3.1 in our study of a potential MMSE

receiver, where coefficients Fk and entries of H are to be designed. The following theo-

rem provides the necessary and sufficient conditions on which an MMSE receiver can be

implemented with such a form.

Theorem 3 LetA be a nonsingular GFDMmatrix with aK×M phase-shifted character-

istic matrix Ḡ, C be a D ×D nonsingular circulant matrix, γ be a positive real number,

DC = WDCWH
D , and Cl = [DC ]l,∀ 0 ≤ l < D, where D = KM . Then, there exist

D ×D nonsingular diagonal matrices D1,D2 such that BMMSE defined in (3.11) satisfies

BMMSE = (WH
M ⊗WK)D−1

2 (IM ⊗WH
K)Π

TD−1
1 WD (3.12)

if and only if ∀ 0 ≤ m < M , either (a) |[Ḡ]k,m| is a constant in k, or (b) |CkM+m| is a
1If this is not the case, then the subsequent derived MMSE receiver is not exact, and one may want to

derive a low-complexity exact MMSE receiver in the future.
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constant in k, or both, whereΠ is defined in (2.12).

Proof: LetQ = IM ⊗WK . Note that for anyD×D diagonal matrix D = diag(s),

D′ ≜ ΠTDΠ is also a diagonal matrix with D′ = diag(ΠT s). Using this property and

(2.11)(3.2), one can show that

[
CA+ γ−1(CA)−H

]−1
= (WH

M ⊗WK)E−1ΠTWD (3.13)

where E is defined as

E = D′
CQD̄G + γ−1D′−H

C QD̄−H
G , (3.14)

D̄G = diag(vec(Ḡ)), D′
C = ΠTDCΠ is a diagonal matrix with D′

C = diag(ΠT cf ), and

cf = [C0C1 · · ·CD−1]
T . Noting that WH

M ⊗WK , ΠT , and WD in (3.13) are all unitary,

and thatΠTD−1
1 = D−1

3 ΠT if we define D3 as D3 = ΠTD1Π, we determine that (3.12) is

satisfied if and only if there exist nonsingular D ×D diagonal matrices D3,D2 such that

E = D3QD2. Let um, ũm, vm, ṽm,wm, zm be K × 1 vectors ∀ 0 ≤ m < M such that

diag([uT0 · · · uTM−1]
T ) = D′

C , diag([ũT0 · · · ũTM−1]
T ) = D′−H

C , diag([vT0 · · · vTM−1]
T ) = D̄G,

diag([ṽT0 · · · ṽTM−1]
T ) = D̄−H

G ,

diag([wT
0 · · ·wT

M−1]
T ) = D3, diag([zT0 · · · zTM−1]

T ) = D2. (3.15)

Noting thatQ = IM⊗WK = blkdiag({WK}M−1
m=0 ), we obtain thatD3QD2 = blkdiag({(wmzTm)◦

WK}M−1
m=0 ) and E = blkdiag({Fm ◦WK}M−1

m=0 ), where ∀ 0 ≤ m < M ,

Fm = [um γ−1ũm][vm ṽm]T . (3.16)

Since for both E and Q, each block diagonal submatrix is a full matrix without any zero

entry, E = D3QD2 is satisfied if and only if Fm = wmzTm is satisfied ∀ 0 ≤ m < M .

For any given m, if condition (a) is satisfied: |[vm]k| = |[Ḡ]k,m| is a constant in k, then

17
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ṽm = |[Ḡ]0,m|−2vm and we can choose

wm = um + (γ|[Ḡ]0,m|2)−1ũm, zm = vm, (3.17)

to make Fm = wmzTm; if condition (b) is satisfied: |[um]k| = |CkM+m| is a constant in k,

then ũm = |Cm|−2um and we can choose

wm = um, zm = vm + (γ|Cm|2)−1ṽm. (3.18)

to make Fm = wmzTm. It is now clear that for any m, if at least one of (a) and (b) is

satisfied, then there exist wm, zm, and consequently, D2,D3, such that E in (3.14) satisfies

E = D3QD2. Conversely, assume that Fm = wmzTm is satisfied ∀ 0 ≤ m < M , but

that both conditions (a) and (b) are not satisfied for some m, say, m0. Then, both sets

{um0 , ũm0} and {vm0 , ṽm0} are linearly independent. Thus, rank(Fm0) = 2, which can

be proved by, e.g., Sylvester’s law of nullity [37]. This contradicts to the assumption

Fm0 = wm0zTm0
.

Theorem 3 implies that a unitary GFDM matrix and the AWGN channel are two suf-

ficient (but not necessary) conditions for the existence of the low-complexity MMSE re-

ceiver implementation in the form of Fig. 3.1. Specifically, assuming C in Theorem 3

is the channel circulant matrix, we obtain that |CkM+m| is constant in k for all m under

the AWGN channel. Thus, according to (3.18), the MMSE receiver under the AWGN

channel can be implemented as shown in Fig. 3.1, with Fl = 1, ∀ 0 ≤ l < D and

H = (Ḡ + γ−1(Ḡ∗)◦−1)◦−1 therein. For the more practical case where |CkM+m| is non-

constant in k for allm, Theorem 3 implies that a sufficient condition for a low-complexity

MMSE receiver implementation in the form of Fig. 3.1 is that |[Ḡ]k,m| is a constant in

both k and m, i.e., using a unitary GFDM matrix A up to a scale factor, or equivalently,

a CMCM filter, in view of Theorem 1. In this case, each |[Ḡ]k,m|2 equals the energy ξG

of A, and according to (3.17), we have the Form-2 implementation of the MMSE receiver

shown in Fig. 3.1, with Fl = 1/(Cl + (γξGC
∗
l )

−1), ∀ 0 ≤ l < D and H = Ḡ◦−1 therein.

18
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3.3 Low-Complexity Approximated MMSE Receivers

If neither conditions (a) nor (b) in Theorem 3 are satisfied for somem, then it is impossible

to find D3,D2 such that E = D3QD2, where E is defined in (3.14) and Q = IM ⊗WK .

In this case, an exact MMSE receiver cannot be implemented as shown in Fig. 3.1, but

we propose using an approximated MMSE receiver based on the same structure. Specif-

ically, we minimize the Frobenius norm ∥E− D3QD2∥F by using low-rank matrix ap-

proximations. Since E = blkdiag({Fm ◦ WK}M−1
m=0 ), D3QD2 = blkdiag({(wmzTm) ◦

WK}M−1
m=0 ), andWK contains constant-magnitude entries, an equivalent condition is min-

imizing
∥∥Fm − wmzTm

∥∥
F
,∀ 0 ≤ m < M , where wm, zm, and Fm are defined in (3.15)

and (3.16). By performing the singular value decomposition (SVD) of Fm for each m,

we obtain Fm = UmΣmVH
m, where Um and Vm are D × D unitary matrices, and Σm =

diag([s(1)m s
(2)
m 0 · · · 0]T ) with s

(1)
m ≥ s

(2)
m . Accordingly, we can minimize

∥∥Fm − wmzTm
∥∥
F

by taking wmzTm = s
(1)
m [Um]:,0[Vm]

H
:,0 [38]. The complexity of computing the SVD of

each rank-2matrix Fm is in O(K) [39], so the overall complexity of the receiver is still in

O(KM logKM). Moreover, we will show by simulation that this approximated MMSE

receiver has favorable MSE and SER performance. Note that Theorem 3 does not imply

the non-existence of a low-complexity MMSE receiver in O(KM logKM) when both

conditions (a) and (b) therein are not satisfied; it just states that an MMSE receiver cannot

be implemented in the form shown in Fig. 3.1. Whether an exact MMSE receiver can be

implemented with low complexity remains an open question.

In summary, a low-complexity MMSE receiver implementation exists in an AWGN

channel (as has been known). A less known condition for the existence of low-complexity

MMSE receiver implementation is to employ a unitary GFDM matrix. If one chooses not

to use a unitary GFDM matrix, the approximated MMSE receiver can be used for a low-

complexity implementation with suboptimal performance.

3.3.1 Simulation Results

The performance of the proposed low-complexity approximated MMSE (AMMSE) re-

ceiver is compared to those of the ZF and MMSE receivers through simulation. The MSE
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and SER performance is evaluated through Monte-Carlo simulation with 10000 blocks

for each prototype filter. We use (K,M) = (8, 5) for GFDM, and (K,M) = (40, 1) for

OFDM (OFDM is a special case of GFDM using a rectangular window as the prototype

transmit filter) so that GFDM and OFDMhave the same block sizeD = KM . A Rayleigh

fading channel is used. Specifically, the channel impulse response c[n] is independent cir-

cularly symmetric complex Gaussian with variance N (c)
n , and the (unnormalized) power

delay profile [36] is N (c)
n = (0.64)n for 0 ≤ n < D/4 and N

(c)
n = 0 for D/4 ≤ n < D.

Finally, for MMSE (and AMMSE) receivers, unbiased estimates are used for symbol de-

tection [36].

Themodulation is 16QAM, the symbol energy isES = 1, and the energy of the GFDM

transmitter matrices is ξG = 1. The CP length is L = D/4. The prototype transmit filters

used for GFDM include an RC filter with roll-off factor α = 0.7 and an RRC filter with

roll-off factor α = 1. To demonstrate that the AMMSE and MMSE receivers for any

CMCM filter are identical, CMCM Filter 1 with the characteristic matrixG1 is used in the

simulation, where the phases ∠G1 are arbitrarily selected and listed as follows:

∠G1 =



0.62 −0.40 −1.36 −2.16 −1.94

−1.30 −2.65 2.78 −2.95 2.17

1.01 0.07 2.86 2.92 −0.60

1.75 2.09 1.59 0.48 −1.89

1.55 −1.83 −0.11 −3.01 −0.57

0.27 −1.21 −2.81 0.37 −2.27

−1.48 0.46 2.58 2.72 0.44

1.23 −0.31 1.19 0.06 −0.35


. (3.19)

The simulation results of MSE and SER performance are shown in Figs. 3.2, 3.3,

and 3.4. The SER performance is shown in two figures (Figs. 3.3 and 3.4) to make the

curves clear. As indicated by Theorem 3, the AMMSE and MMSE receivers for a CMCM

filter are identical. By contrast, Figs. 3.2, 3.3, and 3.4 show that the MSE and SER per-

formance is degraded due to approximation for the RC and RRC filters, particularly the

RRC filter. In this case, ξH = 1, 1.08, and 1.25 for the CMCM, RC, and RRC filters,

respectively. Together with the results in Figs. 3.2, 3.3, and 3.4, this implies that higher

nonuniformity of |[G]k,l|, ∀ 0 ≤ k < K, 0 ≤ l < M engenders more errors in the approx-

imation process. However, in Figs. 3.3 and 3.4, all AMMSE receivers show significant
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Figure 3.2: MSE for GFDM approximated MMSE (AMMSE) receiver over the Rayleigh
fading channel (compared to the corresponding ZF and MMSE receivers).

performance improvements over their ZF receiver counterparts, and exhibit SERs that are

the same as or only slightly higher than do the MMSE receiver counterparts. (MSEs of

ZF receivers are infinite and thus not shown in Fig. 3.2.) Besides, the complexity of the

MMSE receivers (directly implemented as in (3.11)) is in O(K3M3), whereas that of the

AMMSE receivers is in O(KM logKM). These show that the AMMSE receiver is a

good compromise between complexity and performance.

3.4 Remarks on Soft-Output Demodulation

In a receiver that applies soft-output demodulation, it is essential to have the knowl-

edge of error variances σ2
k,m ≜ [Re]k+mK , ∀ 0 ≤ k < K, 0 ≤ m < M , where

Re = E{eeH} and e = d̂ − d. It is worthy to note that low-complexity algorithms at

the order O(KM logK) can be found to obtain thses values, using characteristic ma-

trix techniques presented above. For the ZF receiver, using (3.4) and (3.2), we can de-

rive Re = N0(WDA−H)HD−1
C D−H

C (WDA−H). One may verify with some efforts, using

(2.11), that σ2
k,m is constant inm for any k, and that the vectorσ ≜ [σ2

0,mσ
2
1,m · · ·σ2

K−1,m]
T
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Figure 3.3: SER for GFDM approximated MMSE (AMMSE) receiver over the Rayleigh
fading channel (compared to the corresponding ZF and MMSE receivers).
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Figure 3.4: SER for GFDM approximated MMSE (AMMSE) receiver over the Rayleigh
fading channel (compared to the corresponding ZF and MMSE receivers).

has the form

σ =
N0

D
WK

M−1∑
l=0

[
diag(tl)WH

Krl
]

(3.20)

where

rl =
[
|Cl|−2|CM+l|−2 · · · |C(K−1)M+l|−2

]T (3.21)
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and

tTl =
K−1∑
p=0

[H̄]∗p,l
[
[H̄]⟨p⟩K ,l[H̄]⟨p+1⟩K ,l · · · [H̄]⟨p+K−1⟩K ,l

]
, (3.22)

with H̄ = Ḡ◦−1. Note that tl can be pre-computed, so the complexity for calculating (3.20)

is at the order O(KM logK). For the MMSE receiver, assuming A is unitary, we can

similarly deriveRe = ES(ID−(WDA−H)HDH
C (DCDH

C +γ−1ID)−1DC(WDA−H)). Thus,

we can derive that σ for the MMSE receiver can be expressed as in (3.20) by changing

the kth entry of rl from |CkM+l|−2 to |CkM+l|2/(|CkM+l|2 + γ−1), so the complexity for

calculating the error variances is again at the order O(KM logK).
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Chapter 4

Complexity Analysis

The computational complexity of the proposed transceiver implementations in Chapters

2 and 3 is compared to that of several GFDM and conventional OFDM transceiver im-

plementations. As the case of AWGN channels has been well studied, we focus our com-

plexity analysis on the case under multipath channels, which are more general and more

practical. For GFDM transmitters and ZF receivers, we include the frequency-domain

implementation [12] mentioned in Chapters 2 and 3, the implementation proposed in [8],

which is based on performing frequency-domain convolution in time domain as element-

wise vector multiplication, and the implementation in [9], which is based on exploiting

the block circularity of matrices involved in modulation and demodulation. For GFDM

MMSE receivers, we include the implementation in [10], which is based on calculating

filter coefficients and filtering in the Zak domain, and the implementation in [11], which

is based on simplifying the inversion of a band-diagonal matrix with LU decomposition.

Since [11] is for a multiple-antenna system, we calculate its complexity by reducing it to

a single-antenna system. It is assumed in [10, 11] that the frequency-domain prototype

transmit filter gf has only 2M nonzero entries, so the complexity formulae for the MMSE

receivers in [10, 11] cannot be used for all general prototype filters. We also compare to

direct implementations, where the matrix multiplications and inverses in (2.7), (3.4), and

(3.10) are implemented directly. The comparison is based on the number of complex mul-

tiplications (CMs) required to transmit or receive KM symbols, as shown in Tables 4.1

and 4.2. For a fair comparison, the same block sizeKM as GFDM is used for OFDM [36].
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Table 4.1: Computational complexity of GFDM transmitter and ZF receiver implementa-
tions under multipath channels

Implementation Transmitter ZF receiver

OFDM 1
2
KM logKM 1

2
KM logKM +KM

Direct K2M2 K2M2 +KM(logKM + 1)

Frequency-domain [12] KM( 1
2
logKM2 + LT )a KM( 1

2
logKM2 + LR) +KMb

Frequency-convolution [8] KM( 1
2
logK +M) KM( 1

2
logK +M) +KM(logKM + 1)

Block-circularity [9] KM( 1
2
logK +M) KM( 1

2
logK +M) +KM(logKM + 1)

Block-circularity [9], power-of-2M KM( 1
2
logKM2 + 1) KM( 1

2
logKM2 + 1) +KM(logKM + 1)

Zak-domain [10] Not applicable Not applicable
LU-decomposition [11] Not applicable Not applicable

Proposed Form 1 KM( 1
2
logKM2 + 1) KM( 1

2
logKM2 + 1) +KM(logKM + 1)

Proposed Form 2 KM( 1
2
logK3M2 + 1) KM( 1

2
logK3M2 + 1) +KM

aAssumption: The frequency-domain prototype transmit filter gf has only LTM nonzero entries.
bAssumption: The frequency-domain prototype receive filter hf has only LRM nonzero entries.

Table 4.2: Computational complexity of GFDM MMSE receiver implementations under
multipath channels

Implementation MMSE receiver

OFDM KM( 1
2
logKM + 1)

Direct 7
3
K3M3 + 2K2M2

Frequency-domain [12] Applicable only to AWGN channels
Frequency-convolution [8] Applicable only to AWGN channels

Block-circularity [9] Applicable only to AWGN channels
Block-circularity [9], power-of-2M Applicable only to AWGN channels

Zak-domain [10] KM(logM + 6K + 12M + 4)a

LU-decomposition [11] KM( 1
2
logKM + 20M2 + 22M)a

Proposed Form 1 KM( 1
2
logK3M4 + 4)b

Proposed Form 2 KM( 1
2
logK3M2 + 4)b

aAssumption: The frequency-domain prototype transmit filter gf has only 2M nonzero entries.
bAssumption: The prototype transmit filter is a CMCM filter.

To obtain the complexity formulae, we assume that a p-point DFT [40] and the inversion of

a p×pmatrix based on Gaussian elimination [41] take p
2
log p and p3/3CMs, respectively,

for any positive integer p, where the base of the logarithm is 2. The prototype filters for

all implementations are assumed to take complex values. Since the prototype filter in [9]

is assumed to be real-valued, we extend their results to the case of complex-valued filters.

As depicted in Fig. 2.2, the proposed Form-1 transmitter implementation involves

four steps: M sets of K-point inverse-DFTs (IDFTs), K sets of M -point DFTs, element-

wise multiplication with aK ×M matrix, andK sets ofM -point IDFTs. These result in

M K
2
logK +KM

2
logM +KM +KM

2
logM = KM(1

2
logKM2 +1) CMs. Similarly,

we can derive the complexity formulae for the proposed Form-2 transmitter (2.11), Form-

1 receiver (3.5), and Form-2 receiver (3.6) as described in Tables 4.1 and 4.2. If CMCM
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Figure 4.1: Computational complexity of GFDM transmitter implementations. K = 64.

filters are used, MMSE receivers can also be implemented based on (3.5) and (3.6) by

replacing each diagonal entry Cl in the matrix DC with Cl + (γξGC
∗
l )

−1, where ξG is the

energy of the transmitter matrix, and γ = ES/N0 is the SNR. In view of the number

of CMs described in Tables 4.1 and 4.2, we recommend using the Form-1 implementa-

tion for transmitters and Form-2 implementation for receivers. For the frequency-domain

implementation [12], the parameter LT ≤ K is the number of subcarriers spanned by

the frequency-domain prototype transmit filter (i.e., gf has only LTM nonzero entries),

and LR ≤ K is the number of subcarriers spanned by the frequency-domain prototype

receive filter. It was stated in [9] that the complexity of their implementation can be re-

duced when M is a power of two. The reduced complexity is listed separately in Table

4.1. For a fair comparison, frequency-domain one-tap equalization WH
DD−1

C WD, taking

KM(logKM + 1) CMs, as in (3.5) or in (7) of [9] is used for all GFDM ZF receivers

except for the proposed Form-2 receiver and the implementation in [12], in which, due to

cancellation of a pair of DFT and IDFT, onlyKM additional CMs are needed.

The complexity formulae in Tables 4.1 and 4.2 are evaluated and plotted for K = 64

subcarriers with respect to different values of number of subsymbolsM . The complexity
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Figure 4.2: Computational complexity of GFDM ZF receiver implementations. K = 64.

of the transmitter implementations is shown in Fig. 4.1. As suggested in [12], LT = 2 is

chosen for calculating the complexity of the frequency-domain implementation. Accord-

ing to Fig. 4.1, the number of CMs required by the proposed Form-1 transmitter is the

least among all GFDM transmitters, and is only about 1.5 times as much as that required

by the OFDM transmitter. The complexity of the frequency-domain implementation [12],

under the assumption that LT is as small as 2, is around 1.1 to 1.2 times the complexity

of the proposed Form-1 transmitter. The complexity of the implementation in [8] and the

one in [9] is even over 3 times the complexity of the proposed Form-1 transmitter when

M is relatively large. (The complexity of the implementation in [12] would be higher than

that of the one in [8] if LT = K for general filters.) The reduced complexity of the imple-

mentation in [9] when M is a power of two, nevertheless, coincides that of the proposed

Form-1 transmitter.

The complexity of the ZF receiver implementations is shown in Fig. 4.2. Based on the

suggestion in [2], LR = 16 is chosen for the frequency-domain ZF receiver implementa-

tion [12]. According to Fig. 4.2, the number of CMs required by the proposed Form-2 ZF

receiver is the least among all GFDM ZF receivers, and is only about 2.5 times as much
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Figure 4.3: Computational complexity of GFDMMMSE receiver implementations. K =
64.

as that required by the OFDM ZF receiver. The complexity of the frequency-domain im-

plementation [12] is around 1.6 to 1.8 times the complexity of the proposed Form-2 ZF

receiver. The complexity of the implementation in [8] and the one in [9] is even nearly

3 times the complexity of the proposed Form-2 ZF receiver when M is relatively large.

The reduced complexity of the implementation in [9] is still around 1.1 to 1.3 times the

complexity of the proposed Form-2 ZF receiver whenM is a power of two.

The complexity of the MMSE receiver implementations is shown in Fig. 4.3. We see

in Fig. 4.3 that the number of CMs required by the proposed Form-2 MMSE receiver is

the least among all GFDM MMSE receivers, and is only about 2.8 times as much as that

required by the OFDM MMSE receiver. Compared to the implementations in [10, 11],

complexity reduction of around 2 to 3 orders of magnitude can be achieved by the pro-

posed Form-2 MMSE receiver because the complexity of the proposed implementation is

linearithmic while that of the one in [10] is quadratic with the numbers of both subsym-

bols M and subcarriers K, and that of the one in [11] is even cubic with the number of

subsymbols.

In summary, with the use of the proposed implementations, significant complexity re-
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Figure 4.4: Computational complexity of GFDM transmitter implementations. M = 31.

duction can be obtained for receivers, while moderate complexity reduction is also ob-

tained for transmitters. Note that direct implementations are not shown in Figs. 4.1,

4.2, and 4.3 because they demand extremely large numbers of CMs. For example, when

K = 64 and M = 16, direct implementations require about two orders of magnitude

more CMs than the proposed implementations do for a transmitter or ZF receiver, and

about five orders of magnitude more CMs than the proposed implementations do for an

MMSE receiver.

4.1 Additional Complexity Comparison Results

In this section, we show complexity comparison results under the case of varyingK. We

will see that similar results can be obtained as under the case of varyingM . Specifically,

the complexity formulae in Tables 4.1 and 4.2 are evaluated and plotted for M = 31

subsymbols with respect to different values of number of subcarriersK.

The complexity of the transmitter, ZF receiver, and MMSE receiver implementations

is shown in Figs. 4.4, 4.5, and 4.6, respectively. The parameter settings LT = 2 and
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Figure 4.5: Computational complexity of GFDM ZF receiver implementations. M = 31.
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Figure 4.6: Computational complexity of GFDMMMSE receiver implementations. M =
31.
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LR = 16 are used again for the frequency-domain implementation [12]. According to

Figs. 4.4, 4.5, and 4.6, the numbers of CMs required by the proposed Form-1 transmit-

ter, proposed Form-2 ZF receiver, and proposed Form-2 MMSE receiver are the least

among all GFDM transmitters, all GFDM ZF receivers, and all GFDMMMSE receivers,

respectively. Besides, compared to the implementations in [10,11], complexity reduction

of around 2 to 3 orders of magnitude can be achieved by the proposed Form-2 MMSE

receiver. These results are similar to those under the case of varyingM .
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Chapter 5

Power Spectral Density and OOB

Leakage

In this section, which serves as an aid for simulation later, we define the OOB leakage O

as a performance measure for the OOB radiation of transmit signals. To evaluate O for

GFDM, we first address the power spectral density (PSD) of GFDM signals. We derive an

analytical PSD expression encompassing an interpolation filter used in a D/A converter.

This approach conforms to the practical realization of modern digital-signal-processing-

based communication systems [36].

The GFDM digital baseband transmit signal x[n] is described as in (2.8). The analog

baseband transmit signal xa(t) is obtained by passing x[n] through a D/A converter with

a sampling interval Ts and an interpolation filter p(t), i.e., xa(t) =
∑∞

n=−∞ x[n]p(t −

nTs). The PSD of xa(t) is defined as Sa(f) = limT→∞ E{ 1
2T
|
∫ T

−T
xa(t)e

−j2πft dt|2}

[42]. Let P (f) =
∫∞
−∞ p(t)e−j2πft dt be the Fourier transform of p(t), and Gm(e

jω) =∑∞
n=−∞ gm[n]e

−jωn be the discrete-time Fourier transform of gm[n], where gm[n] is de-

fined in (2.9). Assuming the data symbols are zero-mean and i.i.d. with symbol energy

ES , we can derive that

Sa(f) =
ES|P (f)|2

D′Ts

∑
k∈K

∑
m∈M

∣∣∣Gm

(
ej2π(fTs− k

K )
)∣∣∣2 . (5.1)
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With some derivations, we further obtain that

Gm(e
jω) =

D′−1∑
l=0

[g(m)
f ]l sincD′ (ω′

l) e
−jω′

l
D′−1

2 , (5.2)

where ω′
l = ω − (2πl/D′) and

[g(m)
f ]l =

D′

D

D−1∑
k=0

{
[gf ]k sincD′

(
2π

(
k

D
− l

D′

))
ejπ(

k
D
− l

D′ )(D′−1)e−j2πkmK+L
D

}
. (5.3)

In (5.3), gf is the frequency-domain prototype transmit filter, defined as theD-point DFT

of g, i.e.,

gf =
√
DWDg, (5.4)

and

sincp(x) =

 (−1)k(p−1), x = 2πk, k ∈ Z
sin(px/2)
p sin(x/2) , otherwise

(5.5)

is the periodic sinc function for any positive integer p. Using (5.1), (5.2), (5.3), and

(5.4), we can express the PSD with gf , which enables designing the PSD in terms of

the frequency-domain prototype transmit filter. A special case that leads to a simple ex-

pression of Gm(e
jω) is L = 0. When L = 0, (5.2) can be reduced to

Gm(e
jω) =

D−1∑
l=0

[gf ]le−j2π lm
M sincD (ωl) e

−jωl
D−1
2 , (5.6)

where ωl = ω − (2πl/D).

To characterize the OOB radiation, we define the OOB leakage [3] as

O =
|BI |
|BO|

·
∫
f∈BO

Sa(f) df∫
f∈BI

Sa(f) df
, (5.7)

In (5.7), BI and BO are the set of frequencies considered in-band and out of band, respec-

tively, and |BI | and |BO| denote the lengths of the corresponding intervals. Recall that K

is the set of subcarrier indices actually used. The nominal frequencies of the subcarriers

in K lie in BI , several guard subcarriers are used between BI and BO, and BO is reserved

34



doi:10.6342/NTU201701053

for the use of other users.

Finally, note that in (2.8), the setsM andK are not required to beM = {0, 1, . . . ,M−

1} or K = {0, 1, . . . , K − 1}. This means some guard symbols or guard subcarriers can

be used. GFDM is proposed to exhibit low OOB radiation. This advantage is particularly

significant if some guard symbols and guard subcarriers are used [3].
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Chapter 6

Optimal Prototype Filters that

Minimize MSE

We propose in this section to design optimal prototype filters in terms of minimizing the

receiver MSE before considering the OOB radiation performance. Due to the one-to-one

relation between the prototype transmit filter g and the characteristic matrix G in Lemma

1(a), the design of the characteristic matrix is essentially equivalent to the prototype filter

design. We address the problem mainly from the perspective of the characteristic matrix,

which yields many insights.

The receiver MSE is formally defined as follows. Denote the error variance on the kth

subcarrier andmth subsymbol after demodulation as

σ2
k,m = E

{
|[d̂− d]k+mK |2

}
(6.1)

for k = 0, 1, . . . , K − 1 andm = 0, 1, . . . ,M − 1, where d̂ is defined as in (3.4) or (3.10)

if the ZF or MMSE receiver is used, respectively. The expectation is taken on both the

noise and channel distributions. Define the receiver MSE σ2 as

σ2 =
1

D

K−1∑
k=0

M−1∑
m=0

σ2
k,m. (6.2)

Our goal is to identify the optimalK×M characteristic matrixG of aD×DGFDMmatrix
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A that minimizes the receiver MSE σ2 as defined in (6.2) under the following scenarios:

1. the ZF receiver over the AWGN channel;

2. the ZF receiver over (statistical) multipath channels;

3. the MMSE receiver over the AWGN channel;

4. the MMSE receiver over (statistical) multipath channels,

which we call Problems 1-4. We fix ξG, which equals ∥g∥2 by Lemma 1(d), as a normal-

ization of the energy of the prototype filter.

6.1 Optimization Results for ZF Receivers

The solutions to Problems 1 and 2 are identified in the following theorem, with some

additional requirements introduced for Problem 2.

Theorem 4 (a) Under the ZF receiver over the AWGN channel, a prototype transmit filter

g minimizes MSE σ2 if and only if it is a CMCM filter. The corresponding minimum MSE

is σ2
min = N0/ξG.

(b) Under the ZF receiver over any statistical channel such that the channel frequency

response Cl satisfies E{1/|Cl|2} being a finite constant β, ∀ 0 ≤ l < D, a prototype

transmit filter g minimizes MSE σ2 if and only if it is a CMCM filter. The corresponding

minimum MSE is σ2
min = βN0/ξG.

Proof: (a) By (3.4) with C = ID and Theorem 2(c),

σ2
k,m = E

{∣∣[A−1q]k+mK

∣∣2} = ξHN0, (6.3)

∀ 0 ≤ k < K, 0 ≤ m < M , where ξH is the energy of A−H . Then, the statement follows

from (6.2) and the inequality

ξGξH ≥ 1, (6.4)
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which is shown below. By Theorem 2(b), ξH =
∑K−1

k=0

∑M−1
l=0 (1/(D|[G]k,l|2)). Then,

ξGξH ≥ 1 follows from the Cauchy-Schwarz inequality,

[
K−1∑
k=0

M−1∑
l=0

|[G]k,l|2
][

K−1∑
k=0

M−1∑
l=0

1

|[G]k,l|2

]
≥ (KM)2, (6.5)

where the equality holds if and only if |[G]k,l| is a constant in both k and l. The expression

for σ2
min follows from (6.3) and the condition for the equality to hold for ξGξH ≥ 1.

(b) Taking the expectation of (3.20) and noting that E{rl} = β1K , we can derive that

σ2
k,m = β∥H̄∥2N0/D, ∀ 0 ≤ k < K, 0 ≤ l < M. (6.6)

Thus, we have σ2 = β∥H̄∥2N0/D = βξHN0, and the result follows from ξGξH ≥ 1 as

proved in (a).

Note that in Theorem 4(b) (i.e., solution to Problem 2), E{1/|Cl|2} is required to be

a finite constant ∀ 0 ≤ l < D. Requiring them to be finite is a necessary condition for

the receiver MSE σ2 to also be finite, and is an inherent limitation of a ZF receiver since

σ2 ∝ E{1/|Cl|2}, ∀ 0 ≤ l < D in this case. Besides, we require them to be a constant

so that there remains some sort of symmetry as we move from the AWGN channel to

statistical channels.

The following corollary considers the error variance σ2
k,m on each subcarrier and sub-

symbol for the two scenarios in Theorem 4.

Corollary 1 For any GFDM systems, σ2
k,m is a constant in both k and m under each

of the scenarios: the ZF receiver over the AWGN channel and the ZF receiver over any

statistical channel such that the channel frequency response Cl satisfies E{1/|Cl|2} being

a finite constant β, ∀ 0 ≤ l < D.

Proof: See Appendix C.

The main idea of the proof is that the equal-norm property in Theorem 2(c) implies

equal noise enhancement for each subcarrier and subsymbol. As mentioned in Chapter

5, some guard symbols and guard subcarriers are often used for GFDM [3]. Corollary 1
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implies that we can just null the data symbols leading to the highest OOB radiation without

considering theMSE performance of each subcarrier or subsymbol, as demonstrated in the

simulation in Section 6.4.

After considering the statistical case for Problem 2, we now evaluate the static case.

Specifically, we consider a deterministic multipath channel, or a slow fading channel such

that obtaining perfect channel state information at the transmitter (CSI-T) is practical. The

solution is as follows.

Theorem 5 Under the ZF receiver over any (static) multipath channel Cl such that Cl ̸=

0, ∀ 0 ≤ l < D, a prototype transmit filter gminimizes MSE σ2 if and only if |[G]k,l|2/
√
αl

is a constant in both k and l, where αl =
∑K−1

r=0 1/(|Cl+rM |2). The corresponding mini-

mum MSE is σ2
min = (

∑M−1
l=0

√
αl)

2N0/(KM2ξG).

Proof: See Appendix A.

The proposed filters in Theorem 5 are optimal in terms of minimizing MSE, but they

require CSI-T and are less applicable than the CMCM filters derived under statistical chan-

nels in Theorem 4(b).

6.2 Optimization Results for MMSE Receivers

The solution to Problem 3 is given by the following theorem, whose proof is similar to

that of Theorem 4(a).

Theorem 6 Under theMMSE receiver over the AWGNchannel, a prototype transmit filter

g minimizes MSE σ2 if and only if it is a CMCM filter. The corresponding minimum MSE

is σ2
min = ES/(γξG + 1).

Proof: See Appendix B.

Similar to Corollary 1, the following corollary considers the error variance σ2
k,m on

each subcarrier and subsymbol for the scenario in Problem 3.
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Corollary 2 For any GFDM systems, σ2
k,m is a constant in both k andm under the MMSE

receiver over the AWGN channel.

Proof: See Appendix C.

Similarly, Corollary 1 imply that we can just null the data symbols leading to the

highest OOB radiation without considering the MSE performance of each subcarrier or

subsymbol, as demonstrated in the simulation in Section 6.4.

Observing that each of the solutions to Problems 1, 2, and 3 is a CMCM filter, we

make the following conjecture that the solution to Problem 4, under the assumption of

identically distributed Cl, ∀ 0 ≤ l < D, is also a CMCM filter.

Hypothesis 1: Under the MMSE receiver over any statistical channel such that the

channel frequency response Cl are identically distributed ∀ 0 ≤ l < D, a prototype

transmit filter g minimizes MSE σ2 if and only if it is a CMCM filter. The corresponding

minimum MSE is σ2
min = E{ES/(γξG|C0|2 + 1)}.

In Hypothesis 1, the assumption of identically distributed Cl, ∀ 0 ≤ l < D is practical

since many realistic channels, such as Rayleigh fading channels [42], have identically dis-

tributed Cl. Note that we do not require each E{1/|Cl|2} to be finite because an MMSE

receiver does not suffer from this limitation. While a mathematical proof for Hypothesis

1 is unavailable now because the inverse of CAAHCH + γ−1ID in (3.9) cannot be readily

simplified (one may consider properties of block circulant matrices for the simplification

in the future), numerical results in Section 6.4 verify that this hypothesis tends to be cor-

rect.

The solutions to all the four problems provide criteria for the prototype transmit filter

g to minimize theMSE under various types of channels and receivers. Since some degrees

of freedom (i.e., ∠[G]k,l) remain in all the solutions, minimizing the OOB radiation with

respect to g under the derived criteria would be a suitable research direction for future

studies.
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6.3 Comparison of Prototype Filter Candidates

Considering the optimization results, we find it natural to categorize GFDM prototype

filters into two classes: The first class comprises CMCM filters, corresponding to the

class of unitary GFDM matrices (up to a scale factor), and the second class comprises

non-CMCM filters, corresponding to the class of non-unitary GFDM matrices. The first

class is advantageous in minimizing the receiver MSE, whereas the second class suffers

from the noise enhancement effect [5, 13, 23].

The RC, RRC, Xia [29], and Gaussian pulses [3], adopted by many previous stud-

ies, fall into the class of non-CMCM filters. GFDM systems using these filters are non-

orthogonal [3]. In fact, since RC and RRC filters are even-symmetric, i.e., [g]n = [g]D−n

for n = 1, 2, . . . , D − 1, their GFDM matrices are singular when K,M are both even

integers. This can be proved by using (2.3) to show that the corresponding characteristic

matrixG satisfies [G]K
2
,M
2
= 0 and using Theorem 2(a) (see also [5], which also observed

this point using Gabor analysis). Thus, to avoid MSE and SER performance degradation,

we would not setD = KM as a power of 2 for GFDM systems using RC and RRC filters.

By contrast, the simulation results in this thesis show that if the prototype transmit filter

is not even-symmetric, bothK andM being even does not prevent a GFDM system from

exhibiting good MSE and SER performance. There is also no constraint on K and M in

Theorem 1 for GFDM matrices to be unitary.

The class of CMCM prototype filters were less common in previous studies. Yet, their

existence implies that noise enhancement is not always a problem of GFDM. As a simple

example of CMCM filters, consider the GFDM matrix whose phase-shifted characteristic

matrix Ḡ satisfies

[Ḡ]k,l = 1, ∀ 0 ≤ k < K, 0 ≤ l < M. (6.7)

The corresponding frequency-domain prototype filter is [gf ]l =
√
K
∑M−1

k=0 δlk, l =

0, 1, . . . , D − 1. In fact, it is a frequency-shifted version of the Dirichlet pulse [3]. The

Dirichlet pulse is defined by a perfect rect function in the frequency domain with the
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width of M frequency bins located around the DC bin1. In other words, by defining

X1 = {0, 1, . . . , ⌊M−1
2

⌋} and X2 = {D − ⌈M−1
2

⌉, D − ⌈M−1
2

⌉ + 1, . . . , D − 1}, we

can express the frequency-domain prototype filter as

[gf ]l =
√
K

∑
k∈X1∪X2

δlk, l = 0, 1, . . . , D − 1. (6.8)

It is also a CMCM filter, and its corresponding GFDM matrix is unitary, as shown in the

following corollary.

Corollary 3 The GFDM matrix for the Dirichlet pulse is unitary.

Proof: By Lemma 1(b) and (6.8), we can derive that the phase-shifted character-

istic matrix Ḡ satisfies ∀ 0 ≤ k < K,

[Ḡ]k,l =

 1, 0 ≤ l < ⌈M/2⌉

e−j2πk/K , ⌈M/2⌉ ≤ l < M
, (6.9)

for the Dirichlet pulse. Thus, it is a CMCM filter, and by Theorem 1, the corresponding

GFDM matrix is unitary.

The Dirichlet pulse (6.8) instead of its frequency-shifted version (corresponding to

(6.7)) will be used in the simulations because its passband is centered at the DC bin.

As another example of CMCM filters, we propose the modified Dirichlet pulse, de-

fined by the frequency response

[gf ]l =
√
Kejπ

l
D

∑
k∈X1

δlk +
√
Kejπ

l−D
D

∑
k∈X2

δlk, (6.10)

l = 0, 1, . . . , D − 1. The phase-shifted characteristic matrix Ḡ for the filter satisfies

[Ḡ]k,l =

 ejπl/D, 0 ≤ l < ⌈M/2⌉

ejπ(−2kM+(l−M))/D, ⌈M/2⌉ ≤ l < M
, (6.11)

1Although this definition is only clear for an oddM , we give a reasonable extension for an evenM .
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Figure 6.1: Magnitudes of entries in characteristics matrices G for several GFDM proto-
type filters whenK = 8,M = 4.

∀ 0 ≤ k < K, so it is a CMCM filter. In Section 6.4.3, we will show by simulation that

modified Dirichlet pulse exhibits lower OOB radiation than does the Dirichlet pulse. Here

we briefly explain why the modified Dirichlet pulse has this advantage. Taking the abso-

lute value of (5.6) and setting m = 0 yields |G0(e
jω)| = |

∑D−1
l=0 [gf ]l sincD(ωl)e

jπlD−1
D |.

Since sincD(x) alternates between positive and negative values as x crosses nonzero in-

teger multiples of 2π/D, sincD(x) + ejϕ sincD(x− 2π/D) with ϕ = π can be viewed as

the extreme case of ”constructive interference” for the tails of the periodic sinc functions.

Thus, as ejπlD−1
D and the factor ejπl/D introduced in (6.10) combine to form ejπl, the mod-

ified Dirichlet pulse exhibits lower OOB radiation than does the Dirichlet pulse under the

scenario that the 0th subsymbol is used as a guard symbol. In other words, we allocate as

much OOB energy as possible on the discarded subsymbol.

The absolute values of the entries of characteristic matrices for the RC filter with roll-

off factor α = 0.7, the Dirichlet pulse, and the modified Dirichlet pulse are compared in

Fig. 6.1. Note the zero for the RC filter (which makes the corresponding GFDM matrix

singular). However, the other two are advantageous because they have constant magni-

tudes in the characteristic matrix, making both of them unitary.
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6.4 Simulation Results

In this section, we provide numerical examples to compare the derived optimal prototype

transmit filters, especially the CMCM filters, with the conventional RC and RRC filters,

in terms of receiver MSE, SER, peak-to-average power ratio (PAPR), and OOB leakage.

6.4.1 MSE and SER Performance

The MSE and SER performance is evaluated through Monte-Carlo simulation with 10000

blocks for each prototype filter under each of the following five cases:

1. ZF-DFERF: the ZF receiver over a deep-fade-excluded Rayleigh fading channel;

2. MMSE-RF: the MMSE receiver over the Rayleigh fading channel;

3. ZF-AWGN: the ZF receiver over the AWGN channel;

4. MMSE-AWGN: the MMSE receiver over the AWGN channel;

5. ZF-MP: the ZF receiver over a (static) multipath channel.

We use (K,M) = (8, 4), (8, 5), or (32, 16) for GFDM, and K = 32, 40, or 512, M = 1

for OFDM (OFDM is a special case of GFDM using a rectangular window as the pro-

totype transmit filter) so that GFDM and OFDM have the same block size D = KM .

For the used Rayleigh fading channels, c[n] is independent circularly symmetric com-

plex Gaussian with variance N (c)
n , and two kinds of power delay profiles [36] are used.

For cases when (K,M) = (8, 4) or (8, 5), we use N
(c)
n = (0.64)n for 0 ≤ n < D/4

and N
(c)
n = 0 for D/4 ≤ n < D. For cases when (K,M) = (32, 16), we use N (c)

n =

0,−1,−2,−3,−8,−17.2,−20.8 dB forn = 0, 3, 7, 9, 11, 19, 41, respectively, andN (c)
n =

0 otherwise, which is derived from the LTE Extended Pedestrian A model [43]. In Case

ZF-DFERF, the channel is derived from the Rayleigh fading channel by excluding all

channel realizations leading to a tap gain |Cl| smaller than -30 dB for some subcarrier l

from the channel pool. This exclusion results in finite E{1/|Cl|2}, and is practical since

transmission is given up when deep fades occur in real communication. The (static) mul-

tipath channel (in case ZF-MP) is composed of four taps: −0.1518 + j0.6475, 0.2701 +
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j0.3063, 0.5703 + j0.0767,−0.0900 + j0.2274. Finally, for MMSE receivers (Cases 2

and 4), unbiased estimates are used for symbol detection [36].

Themodulation is 16QAM, the symbol energy isES = 1, and the energy of the GFDM

transmitter matrices is ξG = 1. The CP length is L = D/4. The prototype transmit filters

used for GFDM include an RC filter with roll-off factor α = 0.7. To demonstrate that

MSE performance is not affected by phases of entries of constant-magnitude characteristic

matrices, we use CMCM filters with arbitrarily chosen phases in most of the simulation

cases (except for ZF-MP). Specifically, we use CMCM Filters 1 and 2 with characteristic

matricesG1 andG2, respectively, with the phases∠G1 and∠G2 being arbitrarily selected

and listed as follows. For systems withK = 8,M = 4, ∠G1 and ∠G2 are set as

∠G1 =



0.75 2.50 −1.09 −1.98

−2.95 0.16 1.29 1.59

−2.10 0.59 3.12 −0.31

0.53 3.04 0.28 −1.11

1.58 1.37 −3.02 −1.80

−3.11 1.05 0.47 −0.73

0.78 −1.88 0.85 −2.24

1.57 −2.83 −0.56 2.81


, (6.12)

∠G2 =



−0.31 −3.11 0.82 −1.04

−1.70 2.53 −0.29 0.71

−2.49 2.19 −2.69 −1.55

−1.44 −0.77 −2.06 0.19

0.23 −1.00 0.31 0.48

0.95 −1.50 2.26 0.09

0.21 −1.03 0.76 0.57

2.17 1.79 −2.15 1.88


. (6.13)

For systems with K = 8,M = 5, ∠G1 and ∠G2 are set as

∠G1 =



0.62 −0.40 −1.36 −2.16 −1.94

−1.30 −2.65 2.78 −2.95 2.17

1.01 0.07 2.86 2.92 −0.60

1.75 2.09 1.59 0.48 −1.89

1.55 −1.83 −0.11 −3.01 −0.57

0.27 −1.21 −2.81 0.37 −2.27

−1.48 0.46 2.58 2.72 0.44

1.23 −0.31 1.19 0.06 −0.35


, (6.14)
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Figure 6.2: MSE for GFDM ZF receiver over a deep-fade-excluded Rayleigh fading
(DFERF) channel and the corresponding OFDM receiver. K = 8,M = 5.

∠G2 =



−2.89 −1.87 −2.40 −3.02 −1.22

0.73 2.22 −2.79 3.08 3.04

0.90 −2.14 −1.51 −2.13 −1.69

−2.42 −2.99 −1.16 −0.08 −0.63

−1.94 −2.57 2.22 1.17 2.89

1.33 1.10 −2.51 −1.44 1.36

−3.06 −3.05 −2.54 −3.09 0.36

0.53 0.22 2.88 −2.08 0.54


. (6.15)

For systems withK = 32,M = 16,∠G1 and∠G2 are set in ways such that CMCMFilters

1 and 2 are the Dirichlet pulse (6.8) and modified Dirichlet pulse (6.10), respectively.

For Case ZF-MP, we also use two filters proposed in Theorem 5, with the phases of the

characteristic matrices ∠G1 and ∠G2 again arbitrarily set as in (6.12) and (6.13) for the

case of K = 8,M = 4. For cases where both K and M are even, the ZF receiver for an

RC filter does not exist, so we use instead the pseudo-inverse of the GFDM matrix.

Figs. 6.2, 6.3, and 6.4 show the simulation results under statistical channels. We first

consider the case K = 8,M = 5. Fig. 6.2 verifies the MMSE property of CMCM filters

under the ZF receiver over the deep-fade-excluded Rayleigh fading channel, as stated in

Theorem 4(b). The CMCM filters are better than the RC filter, and essentially the same

as OFDM in terms of MSE performance. Turning to the case K = 8,M = 4, we see

similar results in Fig. 6.3. Yet, the RC filter performs even worse due to the singularity of
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Figure 6.3: MSE for GFDM ZF receiver over a deep-fade-excluded Rayleigh fading
(DFERF) channel and the corresponding OFDM receiver. K = 8,M = 4.
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Figure 6.4: MSE for GFDM MMSE receiver over the Rayleigh fading (RF) channel and
the corresponding OFDM receiver. K = 32,M = 16.

its transmitter matrix, whereas the CMCM filters do not have such degradation. Finally,

similar results are again observed in Fig. 6.4 for the case of the MMSE receiver over

the Rayleigh fading channel. Meanwhile, the MSEs of the CMCM filters correspond to

the hypothetical minimum MSE in Hypothesis 1. These imply that Hypothesis 1 tends
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Figure 6.5: MSE for GFDM ZF receiver over the AWGN channel and the corresponding
OFDM receiver. K = 8,M = 4.
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Figure 6.6: MSE for GFDMMMSE receiver over the AWGN channel and the correspond-
ing OFDM receiver. K = 8,M = 4.

to be correct. Note that the channels used for the ZF and MMSE receivers have different

statistics, so the results in Figs. 6.3, and 6.4 cannot be compared directly.

Figs. 6.5, 6.6, and 6.7 show the simulation results under static channels, including the

AWGN channel. Fig. 6.5 shows that the CMCM filters are better than the RC filter, and
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Figure 6.7: MSE for GFDM ZF receiver over a (static) multipath (MP) channel and the
corresponding OFDM receivers. K = 8,M = 4.

essentially the same as OFDM in terms of MSE performance. It verifies that the CMCM

filters are the prototype filters that minimize receiver MSE under the ZF receiver over the

AWGN channel, as stated in Theorem 4(a). Similar results can be observed in Fig. 6.6. It

verifies that the CMCM filters are the prototype filters that minimize receiver MSE under

the MMSE receiver over the AWGN channel, as stated in Theorem 6. Fig. 6.7 verifies

the MMSE property of the proposed filters under the ZF receiver over (static) multipath

channels as stated in Theorem 5. The advantages of the proposed filters in this case come

from the use of CSI-T, whereas the RC filter and the prototype filter of OFDM, i.e., the

rectangular window, are predefined and are not designed according to CSI-T.

Fig. 6.8 shows the magnitude response of the prototype filters used for Case MMSE-

RF, i.e., Fig. 6.4. TheDirichlet andmodifiedDirichlet pulses are both frequency-localized,

and their spectral properties are similar to that of the RC filter. In fact, the magnitude re-

sponse of the Dirichlet and modified Dirichlet pulses is a perfect rectangular window.

However, we will show in the Section 6.4.3 that the RC filter exhibits lower OOB radia-

tion. In other words, it is possible that a prototype filter with a less localized magnitude

response can result in better OOB performance than that with a more localized magnitude

response. This strengthens the importance of a low-complexity implementation of GFDM
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Figure 6.9: CCDF of PAPR for MMSE-RF. K = 32,M = 16.

transceivers that is applicable to general prototype filters without any limitations on their

spanned number of subcarriers.

6.4.2 PAPR

For Case MMSE-RF, we also evaluate the PAPR [44] of the transmit signal, which is

defined asmax |x[n]|2/E{|x[n]|2}, where x[n] is the digital baseband transmit signal (2.8).

PAPR is an important issue in the multicarrier communication [45]. PAPR complementary

cumulative distribution function (CCDF) curves are shown in Fig. 6.9. The Dirichlet

pulse, modified Dirichlet pulse, and OFDM are shown to have similar PAPR, while the RC

filter has a higher PAPR. It suggests that CMCM filters can have better PAPR performance

than non-CMCM filters.
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Figure 6.10: PSD for GFDM and OFDM.

6.4.3 OOB Leakage

The PSD of GFDM and OFDM signals is simulated according to (5.1), and the OOB

leakage is evaluated according to (5.7). The average in-band PSD is normalized to 1. We

basically follow the simulation parameters in [3]. An RC filter with a roll-off factor of

0.5, the Dirichlet pulse [3], and the modified Dirichlet pulse defined in (6.10) are used

for GFDM. We use K = 128 and M = 15 for GFDM, the 0th subsymbol is used as

a guard symbol, and subcarriers 50 to 78 are switched off, i.e., K = {0, 1, . . . , 49} ∪

{79, 80, . . . , 127}, M = {1, 2, . . . , 14}. For a fair comparison, K = 1920 and M = 1

are used for OFDM so that the GFDM and OFDM block sizes are equal, and the number

of used OFDM subcarriers is the same as the number of used resource elements in GFDM

systems, |K||M|. Thus, the spectral efficiency of all systems with all filters are the same.

The used OFDM subcarriers are contiguous, and their center is located at the DC bin.

The number of GFDM guard subcarriers used between in-band BI and out-of-band BO is

Ngc = 1 or 6. The CP length is L = 16. The interpolation filter p(t) is a sample-level

RC filter with roll-off factor α = 0.1, and the sampling rate is 1/Ts = 1.92 MHz. Thus,

BI = (−49.5, 49.5) · (1/(128Ts)) Hz and BO = ((−64(1 + α),−49.5 −Ngc) ∪ (49.5 +

Ngc, 64(1 + α))) · (1/(128Ts)) Hz, where α = 0.1 and Ngc = 1 or 6.

We compare the OOB leakage of GFDM and OFDM systems, as presented in Table

6.1, by using the simulated PSD shown in Fig. 6.10. As shown in Table 6.1, the Dirichlet

pulse, which is optimal in terms of minimizing the MSE, outperforms OFDM by at least
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Table 6.1: OOB leakage in dB of the simulation in Fig. 6.10
Guard
carriers OFDM GFDM

Dirichlet
GFDM

modified Dirichlet
GFDM
RC

1 -35.1 -47.7 -48.0 -51.0
6 -37.1 -51.5 -51.8 -54.8
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Figure 6.11: SER for GFDM ZF receiver over a deep-fade-excluded Rayleigh fading
(DFERF) channel and the corresponding OFDM receiver. K = 8,M = 5.

12 dB, and has an OOB leakage comparable to that of the RC filter. Besides, the OOB

leakage of the proposed modified Dirichlet pulse in this study is even lower than that of the

Dirichlet pulse; this suggests that the Dirichlet pulse known in the literature is not optimal

in terms of OOB leakage among all CMCM filters, and that we may further minimize the

OOB leakage in the future with respect to the prototype transmit filter under the derived

MMSE criterion.

6.4.4 Additional Simulation Results for SER Performance

Here, we offer additional simulation results for SER performance. The same set of pa-

rameter settings in Section 6.4.1 are used.

First, consider scenarios under statistical channels. Figs. 6.11, 6.12, and 6.13 show the

SER performance of the three scenarios for Figs. 6.2, 6.3, and 6.4, respectively. According
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Figure 6.12: SER for GFDM ZF receiver over a deep-fade-excluded Rayleigh fading
(DFERF) channel and the corresponding OFDM receiver. K = 8,M = 4.
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Figure 6.13: SER for GFDMMMSE receiver over the Rayleigh fading (RF) channel and
the corresponding OFDM receiver. K = 32,M = 16.

to Figs. 6.11, 6.12, and 6.13, the CMCM filters are better than the RC filter in terms of

SER performance. A difference between MSE and SER is that the CMCM filters have

the same MSE performance as but better SER performance in the higher SNR region and

worse SER performance in the lower SNR region than OFDM, which can be explained
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Figure 6.14: SER for GFDM ZF receiver over the AWGN channel and the corresponding
OFDM receiver. K = 8,M = 4.
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Figure 6.15: SER for GFDM MMSE receiver over the AWGN channel and the corre-
sponding OFDM receiver. K = 8,M = 4.

by the effect of a orthogonal precoder on OFDM (due to convex and concave regions of

a function composed of the Q-function) [46]. It can also be seen that for a larger block

size KM , such as the case for Fig. 6.13, the SER performance degradation of RC filter

compared to OFDM is less significant. This may be because a larger block size tends
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Figure 6.16: SER for GFDM ZF receiver over a (static) multipath (MP) channel and the
corresponding OFDM receivers. K = 8,M = 4.

to make the vectors in the GFDM transmitter matrix of the RC filter closer to becoming

perpendicular.

Then, consider scenarios under static channels. Figs. 6.14, 6.15, and 6.16 show the

SER performance of the three scenarios for Figs. 6.5, 6.6, and 6.7, respectively. According

to Figs. 6.14 and 6.15, the CMCM filters are better than the RC filter, and essentially the

same as OFDM in terms of SER performance. Fig. 6.16 shows that the SERs of the

proposed filters are much better than both the RC filter and OFDM in the higher SNR

region in terms of SER performance.

Observing the subtle difference between the results of MSE and SER performance,

one may want to derive optimal prototype filters that minimize SER or bit error rate in the

future. This kind of design would depend on the used receivers and channels.
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Chapter 7

Optimal Prototype Filters that

Minimize MSE and OOB Radiation

In Chapter 6, optimal GFDM prototype filters in terms of minimizing MSE performance

are derived without considering OOB radiation. In this chapter, we design prototype filters

by considering performance and OOB radiation simultaneously.

7.1 Problem Formulation

We formulate a filter optimization problem to minimize OOB radiation while maintaining

good in-band performance. Consider a GFDM system with the GFDM transmitter matrix

A and prototype filter g. LetK,M , L, K, ES , Ts, p(t), and BO be given and fixed, where

BO denotes the set of frequencies considered out of band. Let M = {1, 2, . . . ,M − 1},

i.e., 1 guard subsymbol is used, which is conventional in the literature [3]. LetD = KM ,

and η be some positive real number. The problem is given by

min
g

max
f∈BO

Sa(f) (7.1a)

subject to ∥g∥2F = 1 (7.1b)

ξH ≤ η, (7.1c)
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where Sa(f) is the PSD (5.1) of the GFDM analog baseband transmit signal, and ξH is

the energy of A−1. According to the derived results in Chapter 6, ξH determines the SNR

reduction of a GFDM system. For example, by Theorem 4(a), under an AWGN channel,

the MSE at the ZF receiver is ξHN0. The constraint (7.1c) thus pertains to maintaining a

sufficiently good MSE or SER performance. The constraint (7.1b) is introduced as nor-

malization of the prototype filter. Besides, according to (2.3), (6.4), and the definition of

energy of a GFDMmatrix, the constraint (7.1b) implies a natural constraint ξH ≥ 1. Thus,

the problem (7.1) is feasible only if η ≥ 1. In particular, when η = 1, the feasible set is

equivalent to using unitary transmitter matrices.

7.2 Proposed Algorithm

We intend to solve the optimization problem (7.1) by the techniques for solving con-

vex optimization problems [47]. Since the problem (7.1) is nonconvex, some transfor-

mations on the problem is required. We introduce variables S ∈ HD
+ , defined as S =

vec(G)(vec(G))H , where G is defined in (2.3). By the definition of the energy ξH and

Theorem 2, we have

ξH =
1

D

K−1∑
k=0

M−1∑
l=0

1

|[G]k,l|2
. (7.2)

Using (7.2), we obtain an equivalent form of the problem

min
S∈HD

+

max
f∈BO

Sa(f) (7.3a)

subject to tr(S) = D (7.3b)

tr(S◦−1) ≤ Dη (7.3c)

rank(S) = 1. (7.3d)
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According to (5.1), (5.2), (5.3), we have

Sa(f) =
ES|P (f)|2

D′Ts

∑
k∈K

∑
m∈M

∣∣∣∣∣
D−1∑
n=0

an(2π(fTs − k/K),m)[gf ]n

∣∣∣∣∣
2

, (7.4)

where

an(ω,m) =
D′

D

D′−1∑
l=0

{
sincD′

(
2π

(
k

D
− l

D′

))

· ejπ(
k
D
− l

D′ )(D′−1)e−j2πkmK+L
D sincD′ (ω′

l) e
−jω′

l
D′−1

2

}
. (7.5)

By Lemma 1(b), we can further derive that

Sa(f) =
ES|P (f)|2

KD′Ts

∑
k∈K

∑
m∈M

∣∣∣∣∣
D−1∑
n=0

bn(f, k,m)[vec(G)]n

∣∣∣∣∣
2

(7.6)

where

bn(f, k,m) =
K−1∑
k′=0

ak′M+⌊ n
K
⌋(2π(fTs − k

K
),m)e−j2π⌊ n

K
⌋k′/Dej−2π⟨n⟩Kk′/K . (7.7)

Letting b(f, k,m) be a D × 1 vector with [b(f, k,m)]n = bn(f, k,m), we obtain

Sa(f) =
ES|P (f)|2

D′Ts

∑
k∈K

∑
m∈M

bH(f, k,m)Sb(f, k,m). (7.8)

Therefore, the objective function (7.3a) is a supremum of affine functions of S, and thus

convex in S. We can also show that the constraints (7.3b) and (7.3c) are convex. Yet, the

problem (7.3) is still nonconvex because the rank constraint (7.3d) is nonconvex.

To approach an optimization problemwith a rank constraint, an iterative algorithm [48]

may be used. We propose to tackle the problem (7.3) by iterating the optimal point S̃ of

min
S∈HD

+

w
∣∣tr(SṼ)∣∣+ max

f∈BO

Sa(f) (7.9a)

subject to tr(S) = D (7.9b)

tr(S◦−1) ≤ Dη (7.9c)
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with the optimal point Ṽ of

min
V∈HD

+

∣∣tr(S̃V)∣∣ (7.10a)

subject to 0 ⪯ V ⪯ ID (7.10b)

tr(V) = D − 1 (7.10c)

until convergence, where w > 0. The algorithm in [48] is used only for real variables.

Here we extend the algorithm so that it can be used for complex variables. Specifically,

the domain is changed from the set of real symmetric positive semidefinite matrices to the

set of complex Hermitian positive semidefinite matrices, and we introduce the operator | · |

to assure that the objective functions are real-valued. According to our simulation results,

the extension indeed works.

The problems (7.9) and (7.10) are convex, so the techniques for solving convex op-

timization problems can be applied. It is not difficult to show that all constraints of the

two problems are convex. Also note that w > 0 and that maxf∈BO
Sa(f) is convex in

S. Thus, to prove the convexity of the problems, we only have to show that | tr(S̃V)| is

convex in V. Regard the complex variablesV as independent real variables, i.e., their real

parts and imaginary parts. Then | tr(S̃V)| is a norm of an affine transformation of these

real variables. Since any norm is convex, and composition with an affine transformation

preserves convexity, the problems are convex.

To understand the concept of the algorithm, it would be beneficial to know the solution

of the problem (7.10). In fact, this problem can be solved analytically [48]. Specifically,

with the ordered (in the order of non-increasing eigenvalues) eigendecomposition S̃ =

QΛQH , the optimal point is Ṽ = UUH , where U is the submatrix of Q obtained by

removing the first column of Q. In other words, the first D − 1 eigenvectors of Ṽ are the

same as the last D − 1 eigenvectors of S̃, and all correspond to eigenvalue 1. The last

eigenvalue of Ṽ is 0. Therefore, the term w| tr(SṼ)| introduced in the objective function

(7.9a) can be considered as favoring the direction, uuH , in the vector space HD
+ , where u

is the first column of Q. In this way, we expect that the algorithm can converge to a point
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corresponding to a rank-1 S.

Our iterative algorithm starts with the problem (7.9), so the initial value of Ṽ is a

parameter that we can design. The choice of the weight w, which is also a parameter to

be designed, can affect the rate of convergence and the result S at convergence. We will

show by simulation how w affects these in general.

7.3 Simulation Results

Simulation results of our iterative algorithm are shown for three cases. To solve the prob-

lem (7.9), we use CVX, a package for specifying and solving convex programs [49]. In

our program, we discretize the frequency variable f by sampling at integer multiples of

1/(16DTs) Hz. The stopping criterion of the iterative algorithm is |si − si−1|/si−1 <

5 × 10−5, where si is the value maxf∈BO
Sa(f) obtained in the ith iteration. The opti-

mization results are compared to GFDM systems using RC filters [2] with a roll-off factor

of 0.5 and Dirichlet pulses [3], and with OFDM systems in terms of PSD, ξH , and SER

performance. Note that OFDM is a special case of GFDM using a rectangular window as

the prototype filter, and always withM = 1 and ξH = 1. For a fair comparison, the block

size of OFDM systems is the same as that of GFDM systems, D, and the number of used

OFDM subcarriers, denoted asN , is the same as the number of used resource elements in

GFDM systems, |K||M|. Thus, the spectral efficiency of all systems with all filters are

the same. The used OFDM subcarriers are contiguous, and their center is located at the

DC bin.

7.3.1 Parameter Settings

The CP length is L = 0, the symbol energy is ES = 1, and the sampling interval is Ts = 1

µs. We use η = 1 in (7.9c). The interpolation filter p(t) is a sample-level RC filter [42]

with a roll-off factor of 0.1. Besides, we use the D × D zero matrix as the initial value

of Ṽ. In Table 7.1, parameter settings are shown for three simulation cases, including the

weight w, the number of GFDM subcarriersK and subsymbolsM , the set of used GFDM
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Table 7.1: Parameter settings
Parameter Case 1 Case 2 Case 3

w 0.0003 0.001 0.003
K 8 16 8
M 7 5 3

K {0, 1, 7} {0, 1, 2, 3, 4,
12, 13, 14, 15} {0, 1, 2, 6, 7}

M {1, 2, . . . , 6} {1, 2, . . . , 4} {1, 2}
N 18 36 10

BO
(−∞, −5

16Ts
)

∪( 5
16Ts

,∞)

(−∞, −11
32Ts

)

∪( 11
32Ts

,∞)

(−∞, −7
16Ts

)

∪( 7
16Ts

,∞)

subcarriersK and subsymbolsM, the number of used OFDM subcarriersN , and the set of

frequencies considered out of band BO. Note that we selectM as an odd number for each

case because RC filters are essentially not applicable to cases where both K and M are

even, as GFDM transmitter matrices under such cases are singular [5]. We set BO based

on the usage of 1 guard subcarrier for GFDM. For the evaluation of SER performance,

Monte-Carlo simulation with 105 blocks is run for each prototype filter. The modulation

is QPSK. The ZF receiver and an AWGN channel are used.

7.3.2 Simulation Results for the Case of η = 1

For Case 1, the magnitude responses of the optimized filter, RC filter, and Dirichlet pulse

are shown in Fig. 7.1. The optimized filter is well-localized, but its side lobes are more

significant than those of the other filters. The PSD is shown in Fig. 7.2. The PSD is

normalized according to the RC filter so that the maximum value of its PSD is 0 dB.

Compared to the PSD of the RC filter and Dirichlet pulse, the optimized PSD is higher in

the guard band, in exchange for lower OOB radiation. The higher guard-band PSD does

not matter since guard band would not be used by other users. The maximum OOB PSD

maxf∈BO
Sa(f) is presented in Table 7.2. The optimized filter outperforms the RC filter

by about 7 dB, Dirichlet pulse by about 10 dB, and OFDM by about 24 dB.

The energy ξH is also presented in Table 7.2. Observe that ξH = 1 for the optimized
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Table 7.2: Maximum OOB PSD maxf∈BO
Sa(f) in dB and energy ξH

Case 1 Case 2 Case 3
OOB ξH OOB ξH OOB ξH

OFDM -19.76 1.000 -19.49 1.000 -15.66 1.000
Dirichlet [3] -33.88 1.000 -33.30 1.000 -28.89 1.000

RC [2] -37.32 1.200 -36.35 1.117 -31.30 1.063
Optimized filter -44.11 1.000 -42.01 1.000 -41.95 1.000
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Figure 7.1: Magnitude response of the frequency-domain prototype filter gf for Case 1.
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Figure 7.2: PSD for Case 1.

filter, Dirichlet pulse, and OFDM, which means unitary transmitter matrices are used. By

Theorem 4, unitary transmitter matrices minimize the MSE at ZF receivers. By contrast,

ξH > 1 for the RC filter. Thus, we expect that the SER performance of the optimized filter

should be the same as those of the Dirichlet pulse and OFDM, and better than that of the

RC filter. This is confirmed in Fig. 7.3.

In view of these results, using RC filters can be regarded as sacrificing SER perfor-

mance for lower OOB radiation, compared to Dirichlet pulses. However, this sacrifice

is unnecessary because our optimized filter performs the best among the three filters and
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Figure 7.3: SER for Case 1.
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Figure 7.4: PSD for Case 2.
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Figure 7.5: PSD for Case 3.

OFDM in terms of both OOB radiation and SER performance. Moreover, RC filters are

essentially not applicable to cases where bothK andM are even [5].

The PSDs for Cases 2 and 3 are shown in Figs. 7.4 and 7.5, respectively. The results

of maxf∈BO
Sa(f) and ξH are presented in Table 7.2. Trends similar to those of Case 1
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Figure 7.6: Maximum OOB PSD maxf∈BO
Sa(f) and rank(S) obtained at convergence,

and number of iterations NI versus weight w for Case 3.

can be observed for Cases 2 and 3. That is, the optimized filter is the best in terms of both

OOB radiation and ξH , with ξH characterizing MSE or SER performance. These results

confirm the general effectiveness of the proposed algorithm.

7.3.3 Influence of the Weight w

To study the effects of the weightw on the obtained objective maxf∈BO
Sa(f) and rank(S)

at convergence, and the number of iterations, denoted as NI , the proposed algorithm is

implemented with different values of w for Case 3. All the other simulation parameters

remain the same. As shown in Fig. 7.6, it is observed that when w is chosen within the

range, 0.003 ≤ w ≤ 30, the obtained objective is the least and the rank constraint (7.3d)

is met. In fact, the obtained prototype filter g at convergence is the same for all w in the

range. The rank constraint is not met if w is too small, and the obtained objective gets

greater if w is too large. These effects of w coincide with the empirical evidence gathered

by [48]. Also, we see in Fig. 7.6 that NI is the least when w = 0.003. As w increases

above 0.003,NI increases nearly proportionally. Thus, to minimize the obtained objective

and maximize the rate of convergence, we should select w = 0.003. In fact, w in Table

7.1 has been selected in this way for each case.
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Figure 7.8: PSD for Case 1. η = 1.1.

7.3.4 Simulation Results for the Case of η > 1

The parameter η in our optimization problems enables us to exploit the trade-off between

OOB radiation and MSE performance. To show that even lower OOB radiation can be

obtained with the proposed algorithm by sacrificing a little MSE performance, we provide

simulation for the case of η > 1. The same set of parameter settings for Case 1 in Section

7.3.1, except that the parameter η is set as 1.1 instead of 1.

The magnitude responses of the optimized filter obtained under η = 1.1, RC filter,

and Dirichlet pulse are shown in Fig. 7.7. Again, the optimized filter is well-localized,

but its side lobes are more significant than those of the other filters. The PSD is shown in

Fig. 7.8. The PSD is normalized according to the RC filter so that the maximum value of

its PSD is 0 dB. The maximum OOB PSD maxf∈BO
Sa(f) is presented in Table 7.3. We

also include the results of the optimized filter obtained under η = 1 in Section 7.3.2 for

comparison. The optimized filter obtained under η = 1.1 outperforms the optimized filter

obtained under η = 1.1 by about 7 dB, RC filter by about 13 dB, Dirichlet pulse by about
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Table 7.3: Maximum OOB PSD maxf∈BO
Sa(f) in dB and energy ξH for Case 1

OOB ξH

OFDM -19.76 1.000
Dirichlet [3] -33.88 1.000

RC [2] -37.32 1.200
Optimized filter, η = 1 -44.11 1.000
Optimized filter, η = 1.1 -50.73 1.100

17 dB, and OFDM by about 31 dB. Meanwhile, the NEF of the optimized filter obtained

under η = 1.1 is greater than the NEF of the optimized filter obtained under η = 1, but

less than the NEF of the RC filter. This implies that the MSE or SER performance of the

optimized filter obtained under η = 1.1 would lie between those of the optimized filter

and RC filter. In other words, we can obtain even lower OOB radiation by sacrificing

a little MSE or SER performance. In the future, one may exploit this trade-off between

OOB radiation and performance systematically to achieve certain goals and meet certain

constraints.

7.4 Future Work

There are many issues one can explore on the optimization problem (7.3) and the proposed

iterative algorithm. First, one may want to prove whether or not the iterative algorithm

indeed leads to the optimal solution of the problem (7.3). Second, one may want to prove

whether or not the iterative algorithm can guarantee a rank-1 S at convergence for all cases

of parameter settings, or one may identify particular ranges of weight w that guarantee a

rank-1 S, guarantee a non-rank-1 S, and lead to indefinite results at convergence, respec-

tively. Finally, the complexity of the iterative algorithm can be analyzed in the future.

For example, one may want to derive an upper bound for the number of iterations of the

algorithm if it converges. One may also develop other algorithms with less complexity to

solve the optimization problem (7.3). It is worth noting that relaxing the problem (7.3)

simply by ignoring the constraint (7.3d) does not lead to a desirable result. For instance,

for Case 3 in Section 7.3.1, if we adopt this relaxation, we will obtain a rank-3 S with the
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first three singular values 15.8888, 6.6526, and 1.45855.

Furthermore, many more optimization problems similar to the problem (7.1) can be

formulated and solved in the future. For instance, the design of the prototype filter based

on the characteristic matrix together with the design of the number and position of guard

subcarriers and subsymbols for maximizing spectral efficiency under OOB-radiation and

performance constraints can be studied. That is, one may want to solve the problem

max
g,K,M

|K||M| (7.11a)

subject to ∥g∥ = 1 (7.11b)

max
f∈BO

Sa(f) ≤ ρ (7.11c)

ξH ≤ η, (7.11d)

where η and ρ are some positive real numbers. With some modifications, we believe that

the proposed algorithm can be used to solve the problem (7.11). One may also consider

the sum rate R as the objective function, formulating the problem

max
g,K,M

R (7.12a)

subject to ∥g∥ = 1 (7.12b)

max
f∈BO

Sa(f) ≤ ρ. (7.12c)

A constraint of the form ξH ≤ η is not introduced in the problem (7.12) because per-

formance is already involved in the objective function, the sum rate R. The sum rate R

depends on the used type of receivers and channels, so the solution to the problem (7.12)

may vary case by case.

68



doi:10.6342/NTU201701053

Chapter 8

Multiple Access with Optimized

Prototype Filters

We briefly evaluate the performance of generalized frequency division multiple access

(GFDMA) [44] and compare it to that of orthogonal frequency division multiple access

(OFDMA) [36]. In particular, GFDMAwith the CMCM filters, which are optimal in terms

of MSE performance, is shown to be promising. In our simulation, uplink transmission

is considered, and the same GFDM transmitter matrix with K = 32 and M = 15 is

used by two users. The subcarriers used by the two users are K = {0, 1, . . . , 14} and

K = {16, 17, . . . , 30}, respectively, and the 0th subsymbol is used as a guard symbol. For

a fair comparison, for OFDMA, we useK = 480 andM = 1, and the subcarriers used by

the two users are K = {0, 1, . . . , 209} and K = {240, 241, . . . , 449}, respectively, so that

the spectral efficiency of GFDMA and OFDMA is the same. We evaluate the performance

of one user while assuming that the other user has a normalized carrier frequency offset

(CFO) [36] ϵ = 0 or 0.2 (normalized to the OFDM subcarrier spacing). The ZF receiver

under the same deep-fade-excluded Rayleigh fading channel as mentioned in Section 6.4

is used. The modulation is 16QAM, and the CP length is L = D/4.

Fig. 8.1 shows that the MSE performance of GFDMA using the Dirichlet pulse and

modified Dirichlet pulse and OFDMA are the same when ϵ = 0. However, when ϵ = 0.2,

the Dirichlet pulse performs much better than OFDMA, and the modified Dirichlet pulse
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Figure 8.1: MSE for GFDMA ZF receiver over a deep-fade-excluded Rayleigh fading
channel and the corresponding OFDMA receiver. K = 32,M = 15.
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Figure 8.2: SER for GFDMA ZF receiver over a deep-fade-excluded Rayleigh fading
channel and the corresponding OFDMA receiver. K = 32,M = 15.

performs a little better than the Dirichlet pulse, which can be explained by their OOB

leakage. The RC filter performs the worst when ϵ = 0 and 0.2 since its ZF prototype re-

ceiver filter is not frequency-localized and collects interference outside the desired band-

width [2]. Similar results can be seen in Fig. 8.2 for the SER performance. Particularly,
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when ϵ = 0.2, the Dirichlet pulse performs much better than OFDMA, and the modified

Dirichlet pulse performs a little better than the Dirichlet pulse, which can be explained by

their OOB leakage. A difference between MSE and SER is that the Dirichlet and modi-

fied Dirichlet pulses have the same MSE performance as but better SER performance in

the higher SNR region than OFDM, which can be explained by the effect of a orthogonal

precoder on OFDM (due to convex and concave regions of a function composed of the

Q-function) [46].

These simulation results show that GFDMA using the proposed CMCM filters is

promising. According to the simulation results, we believe that GFDMA is more robust

against CFO than OFDMA. In the future, one may want to explore how CFOs influence

MSE ans SER performance in multiple access thoroughly and systematically, such as for-

mulating an optimization problem that involves CFOs.
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Chapter 9

Conclusions

In this thesis, a newmatrix-based characterization of generalized frequency divisionmulti-

plexing (GFDM) systems is proposed. The new characterization facilitates deriving prop-

erties of GFDM (transmitter) matrices which were not easily obtained under the traditional

prototype-filter point of view. The class of unitary GFDM matrices is identified through

the matrix characterization, and conditions for non-singularity of GFDM matrices can be

expressed clearly with the new characterization.

Moreover, low-complexity transceiver implementations are derived on the basis of the

characteristic matrix. Particularly, the necessary and sufficient conditions for the existence

of a form of implementation with a linearithmic complexity for an MMSE receiver are de-

rived. Such a receiver is determined to exist if the GFDM transmitter matrix is selected

to be unitary. In the case where the implementation does not exist, a low-complexity sub-

optimal MMSE receiver is proposed, and its performance approximates that of an MMSE

receiver, as shown by numerical results.

This study also reveals that prototype transmit filters minimizing the MSE perfor-

mance under the ZF or MMSE receiver over various types of channels correspond to

the class of CMCM filters, which subsequently correspond to scalar multiples of unitary

GFDM matrices. The simulation verifies the MSE optimality for the CMCM filters and

shows that their SER performance is superior to that of non-CMCM filters. Furthermore,

joint optimization on performance and OOB radiation is considered. Specifically, a fil-

ter optimization algorithm is proposed for suppressing OOB radiation while the in-band
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MSE and SER performance is maintained. The optimization problem is formulated in

terms of the proposed characteristic matrix of the GFDM transmitter matrix. Simulation

results show that under the same spectral efficiency, optimized filters perform the best

in terms of both OOB radiation and SER performance, compared to RC filters, Dirichlet

pulses, and OFDM. Finally, the advantage of GFDMA using CMCM filters, including

the Dirichlet and modified Dirichlet pulses, over OFDMA is verified through numerical

results.

In the future, the design of the prototype filter based on the characteristic matrix to-

gether with the design of the number and position of guard subcarriers and subsymbols for

maximizing spectral efficiency under OOB-radiation and performance constraints can be

studied. One may want to formulate optimization problems that directly involve carrier

frequency offset (CFO) and SER (or bit error rate). We might also design the prototype

filter based on the characteristic matrix to obtain a minimum PAPR. Moreover, issues on

optimality condition, convergence condition, and complexity reduction of the proposed

iterative algorithm for filter optimization are desirable for future study. Besides, a proof

to Hypothesis 1, which states that CMCM filters minimize the MSE under the MMSE

receiver over a statistical multipath channel, is desirable.
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Appendix A

Proof of Theorem 5

Using (3.20) and noting that σ2 = 1TKσ/K, we obtain

σ2 =
N0

KD

K−1∑
k=0

M−1∑
l=0

(
K−1∑
r=0

1

|Cl+rM |2

)
1

|[G]k,l|2
. (A.1)

Let αl =
∑K−1

r=0 1/(|Cl+rM |2). According to the Cauchy-Schwarz inequality, we have

[∑
k,l

|[G]k,l|2
][∑

k,l

αl

|[G]k,l|2

]
≥

[
K−1∑
k=0

M−1∑
l=0

√
αl

]2
, (A.2)

where the equality holds if and only if |[G]k,l|2/
√
αl is a constant in both k and l. Using

(A.1) and (A.2), we obtain

σ2 ≥ N0

KM2ξG

(
M−1∑
l=0

√
αl

)2

. (A.3)
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Appendix B

Proof of Theorem 6

Let e = d̂−d be the error vector. By direct computation, we obtain that the autocorrelation

matrix Re = E{eeH} is

Re = ES(ID − AH(AAH + γ−1ID)−1A). (B.1)

Plugging (2.5) into (B.1) yields Re = (WH
M ⊗WK)De(WM ⊗WH

K), where De is aD×D

diagonal matrix with [De]k′+lK,k′+lK = N0/(|[G]|2k′,l + γ−1), ∀ 0 ≤ k′ < K, 0 ≤ l < M .

Since the magnitude of each entry of (WH
M ⊗WK) is 1/

√
D, we obtain ∀ 0 ≤ k < K, 0 ≤

m < M ,

σ2
k,m = [Re]k+mK,k+mK =

K−1∑
k′=0

M−1∑
l=0

N0/D

|[G]|2k′,l + 1/γ
. (B.2)

According to the Cauchy-Schwarz inequality, we have

[∑
k′,l

1

|[G]|2k′,l + 1
γ

][∑
k′,l

(
|[G]|2k′,l +

1

γ

)]
≥ D2, (B.3)

where the equality holds if and only if |[G]k′,l| is a constant in both k′ and l. Thus,

σ2
k,m ≥ ES

γξG + 1
, ∀ 0 ≤ k < K, 0 ≤ m < M, (B.4)

and the result follows from (6.2).
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Appendix C

Proof of Corollaries 1 and 2

According to (6.3), we have σ2
k,m = ξHN0, ∀ 0 ≤ k < K, 0 ≤ m < M under the ZF

receiver over the AWGN channel. Thus, σ2
k,m is a constant in both k and m under this

scenario. The statement for the other two scenarios can be proved in a similar way by

noting (6.6) and (B.2), respectively.
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