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Abstract

Generalized frequency division multiplexing (GFDM) is a promising mod-
ulation scheme featuring low out-of-band (OOB) radiation, which is achieved
through the use of prototype filters. However, GFDM systems are usually
non-orthogonal with prototype filters commonly used in the literature, incur-
ring in-band performance degradation in receiver mean square error (MSE)
and symbol error rate (SER) compared to that achieved through orthogonal

frequency division multiplexing (OFDM).

In this thesis, a new matrix-based characterization of GFDM transmitter
matrices is proposed, as opposed to traditional vector-based characterization
with prototype filters. The new characterization facilitates deriving properties
of GFDM (transmitter) matrices, including conditions for GFDM matrices

being nonsingular and unitary, respectively.

Using the new characterization, the necessary and sufficient conditions
for the existence of a form of low-complexity implementation for a minimum
mean square error (MMSE) receiver are derived. Such an implementation
exists under multipath channels if the GFDM transmitter matrix is selected
to be unitary. For cases where this implementation does not exist, a low-
complexity suboptimal MMSE receiver is proposed, with its performance

approximating that of an MMSE receiver.

The new characterization also enables derivations of optimal prototype
filters in terms of minimizing receiver MSE. They are found to correspond

to the use of unitary GFDM matrices under many scenarios. The use of such

A\
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optimal filters in GFDM systems does not cause the problem of noise en-
hancement, thereby demonstrating the same MSE performance as OFDM.
In addition, based on the proposed matrix characterization, a filter opti-
mization algorithm that minimizes OOB radiation while maintaining good in-
band performance is developed for GFDM. Through the characteristic matrix
as the optimizing variable, the filter design problem is formulated as a non-
convex problem. After some transformations, an algorithm in which two con-
vex problems are solved iteratively is proposed to tackle the original problem.
Simulation results show that under the same spectral efficiency, optimized fil-
ters perform the best in terms of both OOB radiation and SER performance,

compared to OFDM and prototype filters existing in the literature.

Keywords: Generalized frequency division multiplexing (GFDM); char-
acteristic matrix; unitary matrix; low-complexity implementation; optimal
prototype filters; out-of-band (OOB) radiation; symbol-error-rate (SER) per-

formance.
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Chapter 1

Introduction

Generalized frequency division multiplexing (GFDM) [1], extensively studied in recent
years, is a potential modulation scheme for future wireless communication systems be-
cause it features good properties including low out-of-band (OOB) radiation and flexible
time-frequency structures to adapt to various application scenarios, such as cognitive ra-
dios and low latency applications [2]. However, some drawbacks for GFDM arise from
the non-orthogonality [3] of the system as a result of using prototype transmit filters [2]. In
this study, we address two specific drawbacks: the difficulty in designing low-complexity
transceivers, and performance degradation in receiver mean square error (MSE) and sym-
bol error rate (SER) compared to that achieved through orthogonal frequency division
multiplexing (OFDM) [4]. The severity of the performance degradation depends heavily
on the prototype transmit filter that is selected [3].

For GFDM systems with a matched filter (MF) receiver [2, 5], inter-carrier interfer-
ence (ICI) and inter-symbol interference (ISI) exist. To cancel ICI and ISI, successive
interference cancellation (SIC) receivers are employed [2,6,7]. However, long delays are
incurred in the process of interference cancellation. In this thesis, we focus on zero-forcing
(ZF) and linear minimum mean square error (MMSE) receivers [2,5], which eliminate ICI
and ISI. Although the ZF receiver is known for its low-complexity implementation under
either additive white Gaussian noise (AWGN) or multipath channels, MMSE receiver im-
plementations with linearithmic complexity, to the best of our knowledge, is known only

for the AWGN channels (see recent references [8,9]). In [10, 11], MMSE receivers for

1
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multipath channels with reduced complexity were proposed, but they still have at least a
quadratic complexity (in terms of numbers of GFDM subsymbols or subcarriers). In this
thesis, we study the feasibility of low-complexity MMSE receivers in presence of multi-

path channels and propose the first implementation with linearithmic complexity thereof.

In addition, we study the impact of GFDM prototype transmit filters on MSE and SER
performance. In the literature [1-3, 5, 8,9, 12-28], many prototype filters, including the
raised-cosine (RC), root-raised-cosine (RRC), Xia [29], Dirichlet [3], and Gaussian pulses,
have been proposed and used for GFDM systems. These prototype filters are mostly de-
signed to reduce OOB radiation of transmitted signals except that the Dirichlet pulse is
claimed to be rate-optimal under the ZF or MMSE receiver over the AWGN channel [23].
However, GFDM systems using all these filters are mostly non-orthogonal (except the
Dirichlet pulse) [3]. In other words, the corresponding GFDM transmitter matrices [2]
generally have a greater-than-unity condition number. This creates the noise enhance-
ment effect [5, 13,23], and GFDM systems using these filters suffer from MSE and SER

performance degradation compared to OFDM systems.
This study offers three main contributions:

1) New matrix characterization of GFDM transceivers: The modulation process in
a GFDM transmitter can be performed by multiplying the data vector by a matrix with
a special structure, called a GFDM matrix. A GFDM matrix is commonly characterized
by its first column, usually referred to as the prototype filter [2]. In some other refer-
ences [8, 12], a GFDM matrix is characterized by the frequency-domain prototype filter,
1.e., the discrete Fourier transform (DFT) of the prototype filter, which leads to some ad-
vanced implementations of GFDM transceivers. In this thesis, we propose an alternative
means for characterizing GFDM matrices, in which a characteristic matrix is used. On the
basis of this new characterization, we investigated several properties of GFDM matrices
and found that the conditions for some properties of a GFDM matrix (e.g., non-singularity,
unitary property) can be expressed very clearly with the new characterization parameters.
This characterization also leads to low-complexity transmitter implementations and pro-

vides a foundation for the other two contributions, described as follows.

2
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2) Low-complexity MMSE receivers under multipath channels: In this thesis, we pro-
pose a form of low-complexity implementation for an MMSE receiver. The necessary and
sufficient conditions for the existence of such an implementation are derived and clearly
expressed in terms of the new matrix characterization parameters. Particularly, the use of a
unitary GFDM transmitter matrix is a sufficient condition. Moreover, for cases where the
necessary condition is not satisfied, we also propose a low-complexity suboptimal MMSE
receiver whose performance approximates that of an MMSE receiver. This makes GFDM
transceivers very practicable even in multipath channels. The complexity of our proposed
implementation is analyzed in detail and compared to existing solutions. We show that

significant complexity reduction can be obtained through the use of our implementation.

3) Optimal prototype transmit filters in receiver MSE: In this study, we investigate
optimal prototype transmit filters that minimize in-band MSE or SER performance and
OOB radiation. We first identify the optimal prototype transmit filters in terms of mini-
mizing receiver MSEs with both ZF and MMSE receivers under the AWGN channel as
well as static and statistical linear time-invariant channels. We find that the optimal GFDM
transmitter matrices under most scenarios are unitary GFDM matrices and do not suffer
from the noise enhancement effect. Then, a filter optimization algorithm that minimizes
OOB radiation while maintaining good in-band performance is proposed. Simulation re-
sults show that under the same spectral efficiency, our optimized filters perform the best
in terms of both OOB radiation and SER performance, compared to RC filters, Dirichlet

pulses, and OFDM.

The remainder of this thesis is structured as follows. In Chapter 2, we present the
GFDM system model and the new matrix characterization. We also derive some properties
of GFDM matrices and present low-complexity transmitter implementations. In Chapter
3, we propose low-complexity ZF and MMSE receiver implementations. In Chapter 4,
we present a thorough complexity analysis for GFDM implementations. In Chapter 5,
we derive the analytical expression of power spectral density (PSD) and define the OOB
leakage as a performance measure for the OOB radiation. In Chapter 6, optimal prototype

transmit filters in terms of minimizing receiver MSEs are derived, and the optimality is
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verified by simulation results. In Chapter 7, optimal prototype transmit filters in terms
of minimizing OOB radiation under MSE performance constraints are derived, and the
optimality is verified by simulation results. In Chapter 8, a multiple-access scenario is
presented. Finally, the study conclusion is provided in Chapter 9.

Some parts (e.g., Chapters 2 to 6) of the thesis have been accepted to and will appear
in IEEE Transactions on Signal Processing [30]. The materials in Chapter 7 will also
be presented in the 18th IEEE International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), 2017 [31].

Notations: Boldfaced capital letters denote matrices, and boldfaced lowercase let-
ters are reserved for column vectors. We use (-) ,, (-)*, ()7, and (-)" to denote modulo
D, complex conjugate, transpose, and Hermitian transpose, respectively. We also use
()7 to denote ((-)~")". Given a matrix A, we denote by [Al,.., [A]., |All 5> vec(A),
tr(A), rank(A), and A°~! its (m, n)th entry (zero-based indexing), rth column, Frobe-
nius norm, column-wise vectorization, trace, rank, and Hadamard inverse (defined by
A n = [A]L,, ¥ m,n), respectively. For any diagonal matrix A, [A], denotes
[A],,.. For any matrices A and B, A ® B denotes their Kronecker product, and A o B their
Hadamard product. Given a vector u, we use [u],, to denote the nth component of u, ||ul|
the L2-norm of u, diag(u) the diagonal matrix containing u on its diagonal, and ¥ (u) the
circulant matrix whose first column is u. Given square matrices A,,, V 0 < m < p for
any positive integer p, we use blkdiag({A,, }*.,) to denote a block diagonal matrix whose
mth diagonal block is A,,,. We define I, to be the p x p identity matrix, 1, the p x 1 vector of
ones, W, the normalized p-point DFT matrix with [W,,],,, , = e 72™™"/? /. /p for any posi-
tive integer p, and J; the Kronecker delta. We use ZC' to denote the phase ¢ € (—m, 7] of
a nonzero complex number C, and ZA the matrix such that [ZA],, , = Z[A],,,, for each
entry. We use HY to denote the set of Hermitian positive semidefinite D x D matrices,
and =< to denote the matrix inequality. For any set .A, we denote its cardinality by |.A|.

Finally, we use E{-} to denote the expectation operator.
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Chapter 2

Characterization of GFDM Systems

GFDM is a block-based communication scheme as shown in Fig. 2.1 [2]. In a GFDM
block, M complex-valued subsymbols are transmitted on each of the K subcarriers, so a
total of D = K M data symbols are transmitted. The data symbol vector d[{] is decom-
posed as d[l] = [doo[l] - - drc—10[l] doa[l] - drc—11[l] - - drc—1.00-1[1]]*, where dy.,, [1] is
the data symbol on the kth subcarrier and mth subsymbol in the /th block, taken from
a complex constellation. Assume the data symbols are zero-mean and independent and
identically distributed (i.i.d.) with symbol energy Es, i.e., E{d[l]d?[n]} = EsIpd,.

Each data symbol d, ,,,[!] is pulse-shaped by the vector g ., whose nth entry is
[gk,m]n = [g]<nme>D€j27rkn/K7 n = 07 17 s 7D - ]-7 (21)

where g is a D x 1 vector, referred to as the prototype transmit filter [2]. Let x[I] =
[wo[l] 1[1] - - - xp_1[l]]T be the vector containing the transmit samples. Then, the GFDM

modulator can be formulated as the transmitter matrix [2]

A=1[2y0  8xk-1,0801" " 8k—11" " CK—1,M—1] (2.2)

such that x[/] = Ad|[l]. The matrix A as defined in (2.2) is called hereafter a GFDM matrix
with a prototype filter g. The vector x| is further added a cyclic prefix (CP) before sending

to the receiver through a linear time-invariant (LTI) channel. Details on the channel effects

5
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modulator channel ¢[n] demodulator

IREUE z[n] ol ] [S]y0]_Jam
A é CP c[n] p {) B

Figure 2.1: Block diagram of the transceiver. (”r/m” stands for “remove”.)

and the receiver are elaborated in Chapter 3.

2.1 Characterization of GFDM Matrices: Basic Defini-

tions

In the literature, GFDM transmitter matrices are often characterized by the prototype trans-
mit filter g. Alternatively, in [8, 12,23], GFDM matrices have been parametrized by the
frequency-domain prototype transmit filter g; = vV DWpg, i.e., the D-point DFT of g.
In this thesis, we propose an alternative means for characterizing a GFDM transmitter
matrix, namely, the characteristic matrix G of size K x M. We show that the proposed
characterization is useful for understanding some important properties of GFDM transmit-
ter matrices not easily derived in terms of the characterization of traditional time-domain
or frequency-domain prototype filters. The proposed characterization is essentially equiv-
alent to the discrete Zak transform (DZT) [5, 32], but all derivations in the thesis do not
require knowledge of the DZT. A formal definition of this characterization of a GFDM

transmitter matrix is given as follows.

Definition 1 (Characteristic matrix) Consider a KM x KM GFDM matrix A in (2.2)

with a prototype filter g. We define the characteristic matrix G of the GFDM matrix A as

G= \/Breshape(g, K, M)W, (2.3)

where reshape(g, K, M) is a K x M matrix whose (k, m)-entry is [@|x+mr, V0 < k < K,

0 < m < M. Moreover, the phase-shifted characteristic matrix G of the GEDM matrix

6
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A is defined as the K x M matrix whose (k, m)-entry is

[Glim = [Glpme 72™m/P. (2.4)

Finally, the energy & of the GFDM matrix A is defined by £ = ||G||% /D.

The following lemma would be useful for derivations of low-complexity transceiver

implementations and optimal prototype filters later.

Lemma 1 Let A be a GEDM matrix with a K x M characteristic matrix G, a K x M
phase-shified characteristic matrix G, a D x 1 prototype filter g, and energy &¢, where
D = KM. Then,

(a) The prototype filter g can be expressed as g = vec (GW]\H4) / VD.

(b) The frequency-domain prototype filter g5 £ /DWpg can be expressed as g F =
vec(GTWy).

(c) The matrix A satisfies
A = (Wi @ 1g) diag(vec(G))(Wy @ Wi, (2.5)

(d) The energy &g satisfies £ = || gl

Proof: (a) The statement follows from the inverse operation of (2.3).
(b) According to (a), the prototype filter g satisfies [g],nx 1t = [GW4 ]r.m/V/D. Thus, g;

satisfies

K-1M-1

[gf]k/M+ml - Z Z [g]mK+k€_j2ﬂ(mK+k)(k/M-&-m’)/D
k=0 m=0

1 K-1
- [G}k’mleijWk(k/M+m’)/D’ (26)

VK |

[e=]

VO<K <K,0<m' < M,ie.,g; = vec(G"Wg).

(c) Using the famous matrix identity vec(ABC) = (CT @ A) vec(B) [33], we first obtain

that (W4, @ 1) vee(G) = vec(IxG(W)T) = vec(GWL,) = /Dg. Then, the zeroth
7

d0i:10.6342/NTU201701053



column of the right-hand side of (2.5) is (W4, ® I ) diag(vec(G)) - %ID = (Wi ®
Ix)vec(G)/vD = g, i.e., the prototype filter of A. The equality of the other columns
of both sides in (2.5) can be verified similarly, by noting that the (k + m K )th column of
Wi @ WiLis [Wyl. . @ [Wk].i.

(d) The proof is trivial in view of Lemma 1(a) and Parseval’s theorem. |

Lemmas 1(a) and 1(b) indicate the one-to-one correspondence among G, g, and g; and
are useful in developments later in this thesis. It is noted that a mathematically equivalent
form of them can also be derived from the definition and frequency-domain expression of
the DZT [32]. The statements and proofs provided here, however, do not require knowl-
edge of the DZT. Lemma 1(c) is a simplified form of the decomposition proposed in [34],
and we give a simple alternative proof above. We will use (2.5) to develop transceiver
implementations. Finally, Lemma 1(d) shows that the energy of A is simply the energy of

the prototype filter g, which can also be proved by unitarity of the DZT [32].

2.2 GFDM Transmitter Implementations

As presented earlier in this thesis, the transmitter simply modulates the data symbol vector
by
x[l] = Ad]l]. (2.7)

Then, x[[] is passed through a parallel-to-serial (P/S) converter, and a CP of length L is
added, as shown in Fig. 2.1. Denote € C {0,1,..., K —1}and M C {0,1,..., M — 1}
as the set of subcarrier indices and set of subsymbol indices, respectively, that are actually

used. The digital baseband transmit signal of GFDM can then be expressed as

x[n] = i Z Z dk,mmgm[n - lDl]ej2ﬂm%m7 (28)

l=—00 ke K meM
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where D' = D + L and

[g]m,m[(,m R n:O,l,...,D’—l
gm[n] = Y : (2.9)
0, otherwise

In most instances of this thesis, we omit the block index [I]”” for notational brevity.

For the implementation of the transmitter matrix A, two types pertaining to the con-
ventional time [2] and frequency [8] domains, respectively, are found in the literature. In
this thesis, we propose another implementation based on the characteristic matrix. These

implementations are described as follows:

2.2.1 Direct implementation

The matrix multiplication in (2.7) is directly implemented, which can be considered a

time-domain implementation that deals with the prototype filter g directly [2].

2.2.2 Frequency-domain implementation

Previous frequency-domain implementations [8, 12] have been proposed for complexity

reduction. The transmit signal is produced with

1
X = \/—?WE > P diag(g;)RW yd, (2.10)
ke

where dy = [dyo dp1 - dpar1]?, R = 1x @ Iy, and PO = ¥ (p*)) @ 1, with p®

being the K x 1 vector equal to the k£th column of I .

2.2.3 Characteristic-matrix-domain implementation

We propose two forms of characteristic-matrix-domain implementation. Using Lemma
1(c), we obtain a transmitter implementation based on (2.5), which we call Form-1 imple-

mentation, as shown in Fig. 2.2. An alternative form of decomposition of the transmitter

9
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do,o g

dio Ty
dléfl,o ' > TR

0,1 .G TK
di1 TK+1

: Wr v wil : i
dr—1,1 : } : ToK—1
" .
W s ‘ W{\{,

do,n—1 T(M—-1)K

di,m—1 T(M—1)K+1
. /reshape(-, K, M vec()\:

drg—1,M-1 pe( ) () TMK-1

Figure 2.2: Characteristic-matrix-domain Form-1 transmitter implementation.

do,o — Zo
dl,() > 1
(1/1571 0 B — TK-1
ao,1 G —— TK
(1’,171 ——> TK+1
drk-1,1 g T2K-1
Wik
do,M—1 — T(M-1)K
1,M—1 F——T(M-1)K+1
reshape(-, K, M)
dr—1,M-1 —— TMK-1

Figure 2.3: Characteristic-matrix-domain Form-2 transmitter implementation.

matrix that exploits the phase-shifted characteristic matrix G is formulated as

A = WETI(I,; ® W) diag(vec(G)) (W @ Wi, (2.11)

where II is the D x D permutation matrix defined by

T jartmmi 1 = OkiOmn, (2.12)

VO0<EkIl< K, 0<m,n< M. The matrix IT can be understood through the iden-

tity vec(M?T) = IIvec(M), where M is any K x M matrix. We obtain (2.11) by using

10
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(2.5) and the fact that a K M -point DFT can be decomposed into a K -point DFT, an M-
point DFT, and twiddle factors of the form e=72™*™/D which are incorporated into G.
Eq. (2.11) corresponds to the implementation shown in Fig. 2.3, which we call Form-
2 implementation. The complexity of both forms are in O(K M log K M). Yet, as will
be seen in Chapter 4, the complexity of Form-1 transmitter is slightly lower than that of
Form-2 transmitter, while the Form-2 structure based on the decomposition in (2.11) is

advantageous for receiver implementation.

2.3 Unitary and Invertible GFDM Matrices

With the characteristic-matrix-domain implementation, we can also easily identify the

class of unitary GFDM matrices as follows.

Theorem 1 (Unitary GFDM matrices) Let A be a GFDM matrix with a K x M char-
acteristic matrix G. Then, A is unitary if and only if G contains unit-magnitude en-
tries: |[Glgy] = 1V 0 < k < K,0 <1 < M. An equivalent condition is that its
phase-shifted characteristic matrix G, as defined in (2.4), contains unit-magnitude en-

tries: |[Glry| =1V0<k< K,0<I< M.

Proof: Since Wi, @ Ic and Wj; @ WE in (2.5) are both unitary, A is unitary if
and only if the diagonal matrix diag(vec(G)) is unitary. This is the case if and only if
Gy =1V 0 <k < K,0<I[< M. Finally, we have the equivalent condition since

[Glia| = 1[G, ¥V &, L. m

Observing the result in Theorem 1, we call a prototype filter g a constant-magnitude-
characteristic-matrix (CMCM) filter if the corresponding characteristic matrix contains
constant-magnitude entries, i.e., corresponding to a scalar multiple of a unitary GFDM
matrix. We will show that CMCM filters are solutions to several of our problems in min-
imizing the receiver MSE, and are an important class of filters for GFDM.

The following theorem expresses the conditions for the non-singularity of a GFDM
matrix in terms of its characteristic matrix and related properties. Later in this thesis, the

theorem is shown to be very useful in our study on a GFDM receiver.

11
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Theorem 2 (Properties of A~') Let A be a GFDM matrix with a K x M characteristic
matrix G. Then,

(a) A is invertible if and only if G has no zero entries.

(b) If A is invertible, then A=* is also a GFDM matrix whose characteristic matrix H

satisfies [H]x; = 1/[Gl;,, Vk, [, ie,

H=(G")° . (2.13)

(c) If A is invertible, the squared norm of each row of A~! equals the energy of A=,

& = |[H|[3 /D.

Proof: (a) According to (2.5), A is invertible if and only if G has no zero entries
since W @ I and Wj; ® W are both unitary matrices.

(b) According to (2.5), if A is invertible,

AT = (Wi @ 1) (diag(vec(G)) ™ (Wy @ WE). (2.14)

In other words, A~# is a GFDM matrix whose characteristic matrix H satisfies (2.13).
(c) According to (b), A~ is a GFDM matrix. Since the norm of each column of a GFDM

matrix equals the norm of its prototype filter, the result follows from Lemma 1(d). [ ]

The condition for the singularity of A is also found in [34]. In [5], Gabor analysis
results [32,35] and DZT [32] were applied to obtain a similar statement in Theorem 2(b).
Our derivations, however, involve only basic linear algebra and DFT, making the proper-

ties more accessible to general readers.

12
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Chapter 3

GFDM Receiver Implementations

In this section, we complete our description of the GFDM system model as illustrated in
Fig. 2.1, and propose a new form of low-complexity implementation of ZF and MMSE

receivers: the characteristic-matrix-domain implementation.

As shown in Fig. 2.1, the received signal after transmission through a wireless channel
is modeled as an LTI system y[n| = c[n] * z[n| 4+ ¢[n], where ¢[n] is the channel impulse
response, and ¢[n] is the complex AWGN with variance Ny. When ¢[n] = d,,0, the channel
reduces to an AWGN channel. More generally, we consider a multipath channel with
arbitrary coefficients c[n|. The channel order is assumed not to exceed the CP length; that
is, ¢[n] = 0 for all n such that n < 0 or n > L. The received samples after CP removal
and serial-to-parallel (S/P) conversion are collected as y[I| = [yo[l]y1[l] - - - yp_1[l]]*. The

transfer function from the transmitted block x[/] to the received block y/[l] is
yli] = Cx[i] + qlI], 3.1

where C, the channel circular convolution matrix [2], equals the circulant matrix W ([c[0]
c[1] - -+ c[D —1]]7) [36]. As there is no inter-block interference, the index “[{]” is omitted
in most parts of the following developments. Since a circulant matrix can be diagonalized
by the DFT matrix, we have

C = WEDWp, (3.2)

13
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Yo

Foy
S
Y1 Fﬁg di o
N 1
YK -1 > fih:—x 0
YK % H do 1
YK+1 2> dia
T = AN
- Wi
! N M "
Y2K -1 W > ‘@E T dg 1.1
v wi
QN — N
Wit —
Ym-1)K > do, v—1
YM-1)K+1 433 di m—1
; reshape(-, M, K)T .
YMK-1 —> dg—1,M—1
Fp_q

Figure 3.1: Characteristic-matrix-domain Form-2 receiver implementation.

where Do = diag([CoCy - - - Cp_y1]T) with C; = 327" e[n]e 7>™/P being the D-point

DFT of ¢[n].

From (2.7) and (3.1), we can express the received block in terms of the source data

symbol vector as

y = CAd + q. (3.3)

The receiver is responsible for obtaining the estimated data symbol vector d given the
received block y. In the literature, several standard types of receivers have been discussed
[2, 5], including MF, ZF, and linear MMSE receivers. Note that when unitary GFDM
transmitter matrices are used, an MF receiver is equivalent to a ZF receiver because A~! =

A if A is unitary. We study ZF and MMSE receivers in this thesis.

3.1 Low-Complexity ZF Receivers

In the ZF receiver, the demodulator By is formulated as a GFDM receiver matrix A~!

multiplied by an equalizer C~!. The estimated data symbol vector is
d=Byy=A"'Cly=d+A"'Clq. (3.4)

Note that the ZF receiver exists when both A and C are invertible. Theorem 2(b) im-

plies that A=! is just a Hermitian transpose of another GFDM matrix. Combined with the

14
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fact that C is diagonalizable by W, low-complexity implementations for the ZF receiver
based on the forms in (2.5) and (2.11) are readily available. Particularly, we obtain the ZF

receiver Form-1 implementation

Bzr = (Wi @ Wi )DZH (Wi @ Ix)WED W, (3.5)
where D = diag(vec(G)), and the ZF receiver Form-2 implementation

Bzr = (W, @ Wg)DZ! (I @ WIHIT' D' W, (3.6)

where D¢ diag(vec(G)). The block diagram of a Form-2 receiver is shown in Fig. 3.1,
with F; = 1/C;,V 0 <[ < D and H = G°~! therein. Although the complexity of both
forms is in O(K' M log K M), we show in Chapter 4 that Form 2 is generally of lower
complexity. Yet, under the special case of the AWGN channel, Form-1 implementation is

advantageous since it is simplified to
AT = (W @ Wi)DG (Wi @ 1), (3.7)

which does the reverse operation of Fig. 2.2.
The frequency-domain implementation can be used for ZF receivers. It is proposed

that the estimated data symbols for the kth subcarrier in the ZF receiver are given by [8,12]

N 1 ) _
d, = \/—EW]\IZRT diag(h;)(P*)T"D;'Wpy, (3.8)

where h; is the ZF frequency-domain prototype receive filter.

3.2 Low-Complexity MMSE Receivers

For an MMSE receiver, the existence of a low-complexity implementation at the order
O(K M log K M) has not been well studied previously except in the case of an AWGN

channel [8,9]. Assuming E{dd”} = Eslp, (i.e., all subcarriers are subsymbols are allo-

15
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cated with data)!, the MMSE receiver for (3.3) can be modeled as [36]
Bunse = ATCY [CAATCT +471,] ", (3.9)

where v = Eg/ N, is the signal-to-noise ratio (SNR), and

~

d = Bymisky- (3.10)
When both A and C are invertible, (3.9) reduces to [5]
Bumse = [CA +771(CA) 7] 7 (3.11)

Either (3.9) or (3.11) involves the inversion of a matrix that is not a GFDM matrix,
so Theorem 2 does not apply here to the reduction of the implementation complexity. A
direct implementation requires a complexity of O(K3M?3) and is often not a desirable
solution. Also, the frequency-domain implementation [8] is not applicable to the MMSE
receiver in general since (3.9) cannot be simplified to the form in (3.8).

We propose to use the structure depicted in Fig. 3.1 in our study of a potential MMSE
receiver, where coefficients F}, and entries of H are to be designed. The following theo-
rem provides the necessary and sufficient conditions on which an MMSE receiver can be

implemented with such a form.

Theorem 3 Let A be a nonsingular GFDM matrix with a K x M phase-shifted character-
istic matrix G, C be a D x D nonsingular circulant matrix, ~ be a positive real number,
Dc = WpCWE and C; = [D¢|;,V 0 < 1 < D, where D = KM. Then, there exist

D x D nonsingular diagonal matrices Dy, Dy such that Bywsg defined in (3.11) satisfies
Buuse = (W) @ Wi)Dy (I @ WHIT'DT'Wp (3.12)

if and only if V 0 < m < M, either (a) |[Gly.m| is a constant in k, or (b) |Ciarim| is a

UIf this is not the case, then the subsequent derived MMSE receiver is not exact, and one may want to
derive a low-complexity exact MMSE receiver in the future.

16
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constant in k, or both, where 11 is defined in (2.12).

Proof: Let Q = Iy ® W. Note that for any D x D diagonal matrix D = diag(s),
D’ £ II'DII is also a diagonal matrix with D’ = diag(IT”s). Using this property and
(2.11)(3.2), one can show that

[CA +771(CA) ] ™ = (W @ W )ET' TITW), (3.13)
where E is defined as
E =D.QD¢ +~'D;7QD;”, (3.14)

D = diag(vec(G)), D, = II"D(IT is a diagonal matrix with D}, = diag(IT"¢;), and
¢; = [CoCy -+ Cp_y1]T. Noting that W, @ Wy, TI”, and W, in (3.13) are all unitary,
and that HTDl_1 = D:;lHT if we define D5 as D3 = II7 D, II, we determine that (3.12) is
satisfied if and only if there exist nonsingular D x D diagonal matrices D3, D such that
E = D3QD,. Let u,,, Uy, Vi, Vi, Wy, Z, be K X 1 vectors V 0 < m < M such that
diag([uf - - ufy_,]") = D}, diag([af - -~ af,_,]") = D", diag(Iv] ---v%,_,]7) = D,

diag([v§ - - vi; 4]") = D",
diag([wOT . ~w§471]T) = D3, diag([zg . 'Zﬂfl]T) =D,. (3.15)

Noting that Q = I,;®@Wx = blkdiag({Wx }Z 1), we obtain that D;QD, = blkdiag({(w,,z")o

Wi I M=1) and E = blkdiag({F,, o W} 1), where V0 < m < M,
Fo, = [ 7 ) [Vin Vi) (3.16)

Since for both E and Q, each block diagonal submatrix is a full matrix without any zero
entry, E = D3QD; is satisfied if and only if F,,, = w,,z., is satisfied V 0 < m < M.
For any given m, if condition (a) is satisfied: |[V,u]x| = |[G]x.m| is a constant in k, then

17
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Vin = |[Glo.m| ?V.m and we can choose

Wy, = Uy, + (fYHG]O,mP)_lﬁma Zy, = Vi, (317)

to make F,,, = w,,z. ; if condition (b) is satisfied: |[w,,]r] = |Crarem| is a constant in &,

then u,, = |C,,| *u,, and we can choose

V. (3.18)

to make F,, = w,,z.. It is now clear that for any m, if at least one of (a) and (b) is
satisfied, then there exist w,,,, Z,,,, and consequently, D5, D3, such that E in (3.14) satisfies
E = D3QD,. Conversely, assume that F,, = w,,z. is satisfied V 0 < m < M, but
that both conditions (a) and (b) are not satisfied for some m, say, my. Then, both sets
{Wng, U } and {v,,,, Vi, } are linearly independent. Thus, rank(F,,,) = 2, which can
be proved by, e.g., Sylvester’ s law of nullity [37]. This contradicts to the assumption

_ T
Frg = WingZp,,- |

Theorem 3 implies that a unitary GFDM matrix and the AWGN channel are two suf-
ficient (but not necessary) conditions for the existence of the low-complexity MMSE re-
ceiver implementation in the form of Fig. 3.1. Specifically, assuming C in Theorem 3
is the channel circulant matrix, we obtain that |Cyps,,| is constant in & for all m under
the AWGN channel. Thus, according to (3.18), the MMSE receiver under the AWGN
channel can be implemented as shown in Fig. 3.1, with /; = 1,V 0 < [ < D and
H = (G + v }(G*)°1)°~! therein. For the more practical case where |Cjps4.| is non-
constant in & for all m, Theorem 3 implies that a sufficient condition for a low-complexity
MMSE receiver implementation in the form of Fig. 3.1 is that |[G]x,,| is a constant in
both k£ and m, i.e., using a unitary GFDM matrix A up to a scale factor, or equivalently,
a CMCM filter, in view of Theorem 1. In this case, each |[G]y.|? equals the energy &g
of A, and according to (3.17), we have the Form-2 implementation of the MMSE receiver

shown in Fig. 3.1, with F; = 1/(C; + (7¢¢C;)™'),V 0 <1 < D and H = G°~! therein.
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3.3 Low-Complexity Approximated MMSE Receivers

If neither conditions (a) nor (b) in Theorem 3 are satisfied for some m, then it is impossible
to find D3, Dy such that E = D3QD-, where E is defined in (3.14) and Q = I;; ® Wg.
In this case, an exact MMSE receiver cannot be implemented as shown in Fig. 3.1, but
we propose using an approximated MMSE receiver based on the same structure. Specif-
ically, we minimize the Frobenius norm ||[E — D3;QD;|| . by using low-rank matrix ap-
proximations. Since E = blkdiag({F,, o Wx}¥=}), D;QD, = blkdiag({(w,,z.) o
Wi M1, and Wi contains constant-magnitude entries, an equivalent condition is min-

imizing ||F,, — W,z vV 0 < m < M, where W,,, Z,,, and F,, are defined in (3.15)

T
mllp
and (3.16). By performing the singular value decomposition (SVD) of F,,, for each m,
we obtain F,,, = UmEmV,Hn, where U,,, and V,,, are D x D unitary matrices, and 3, =
(1) (2)

diag([ss20- - - 0]7) with st > s, Accordingly, we can minimize |Frm — Wiz ||

by taking w,,z! = si [Un):0[Vimlfh [38]. The complexity of computing the SVD of
each rank-2 matrix F,, is in O(K) [39], so the overall complexity of the receiver is still in
O(K M log K M). Moreover, we will show by simulation that this approximated MMSE
receiver has favorable MSE and SER performance. Note that Theorem 3 does not imply
the non-existence of a low-complexity MMSE receiver in O(K M log K M) when both
conditions (a) and (b) therein are not satisfied; it just states that an MMSE receiver cannot
be implemented in the form shown in Fig. 3.1. Whether an exact MMSE receiver can be
implemented with low complexity remains an open question.

In summary, a low-complexity MMSE receiver implementation exists in an AWGN
channel (as has been known). A less known condition for the existence of low-complexity
MMSE receiver implementation is to employ a unitary GFDM matrix. If one chooses not

to use a unitary GFDM matrix, the approximated MMSE receiver can be used for a low-

complexity implementation with suboptimal performance.

3.3.1 Simulation Results
The performance of the proposed low-complexity approximated MMSE (AMMSE) re-

ceiver is compared to those of the ZF and MMSE receivers through simulation. The MSE
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and SER performance is evaluated through Monte-Carlo simulation with 10000 blocks
for each prototype filter. We use (K, M) = (8,5) for GFDM, and (K, M) = (40, 1) for
OFDM (OFDM is a special case of GFDM using a rectangular window as the prototype
transmit filter) so that GFDM and OFDM have the same block size D = K M. A Rayleigh
fading channel is used. Specifically, the channel impulse response c[n] is independent cir-
cularly symmetric complex Gaussian with variance N9, and the (unnormalized) power
delay profile [36] is N = (0.64)" for 0 < n < D/4 and N\” = 0 for D/4 < n < D.
Finally, for MMSE (and AMMSE) receivers, unbiased estimates are used for symbol de-
tection [36].

The modulation is I6QAM, the symbol energy is F's = 1, and the energy of the GFDM
transmitter matrices is ¢ = 1. The CP length is L = D /4. The prototype transmit filters
used for GFDM include an RC filter with roll-off factor & = 0.7 and an RRC filter with
roll-off factor « = 1. To demonstrate that the AMMSE and MMSE receivers for any
CMCM filter are identical, CMCM Filter 1 with the characteristic matrix Gy is used in the
simulation, where the phases ZG; are arbitrarily selected and listed as follows:

[062 —040 —136 —216 —1.94]
-1.30 —2.65 278 —2.95 217

1.01 0.07 2.86 2.92 —-0.60

175 2.09 159 048 —1.89
/Gy = . 3.19
1 155 —1.83 —0.11 -3.01 —0.57 (3.19)
027 —121 —281 037 —227
—1.48 046 258 272 044

1.23 =031 1.19 0.06 —0.35

The simulation results of MSE and SER performance are shown in Figs. 3.2, 3.3,
and 3.4. The SER performance is shown in two figures (Figs. 3.3 and 3.4) to make the
curves clear. As indicated by Theorem 3, the AMMSE and MMSE receivers fora CMCM
filter are identical. By contrast, Figs. 3.2, 3.3, and 3.4 show that the MSE and SER per-
formance is degraded due to approximation for the RC and RRC filters, particularly the
RRC filter. In this case, £ = 1, 1.08, and 1.25 for the CMCM, RC, and RRC filters,
respectively. Together with the results in Figs. 3.2, 3.3, and 3.4, this implies that higher
nonuniformity of |[G]x;|,V 0 < k < K,0 <[ < M engenders more errors in the approx-

imation process. However, in Figs. 3.3 and 3.4, all AMMSE receivers show significant
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Figure 3.2: MSE for GFDM approximated MMSE (AMMSE) receiver over the Rayleigh
fading channel (compared to the corresponding ZF and MMSE receivers).

performance improvements over their ZF receiver counterparts, and exhibit SERs that are
the same as or only slightly higher than do the MMSE receiver counterparts. (MSEs of
ZF receivers are infinite and thus not shown in Fig. 3.2.) Besides, the complexity of the
MMSE receivers (directly implemented as in (3.11)) is in O(K?>M?), whereas that of the
AMMSE receivers is in O(K M log KM). These show that the AMMSE receiver is a

good compromise between complexity and performance.

3.4 Remarks on Soft-Output Demodulation

In a receiver that applies soft-output demodulation, it is essential to have the knowl-
edge of error variances ai’m 2 Rpymr, V0 < k < K,0 < m < M, where
R, = E{ee”’} and e = d — d. It is worthy to note that low-complexity algorithms at
the order O(K M log K) can be found to obtain thses values, using characteristic ma-
trix techniques presented above. For the ZF receiver, using (3.4) and (3.2), we can de-
rive R, = No(WpA~H)ED;'D " (WpA~H). One may verify with some efforts, using

2.11), that 02 is constant in m for any k, and that the vectoro £ [02, 02 ---02_, |7
k,m Yy 0o,m~1m K—-1m
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Figure 3.3: SER for GFDM approximated MMSE (AMMSE) receiver over the Rayleigh
fading channel (compared to the corresponding ZF and MMSE receivers).
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Figure 3.4: SER for GFDM approximated MMSE (AMMSE) receiver over the Rayleigh
fading channel (compared to the corresponding ZF and MMSE receivers).

has the form
N M—1
o= 5OWK [diag(t;) W] (3.20)
1=0
where
r = |:|Cl|72|CM+l‘72"'|C(K_1)M+l‘72}T (321)
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and
K—-1

tf = > [H], [H), Wy, Hpi,.] (3.22)

p=0

with H = G°~!. Note that t; can be pre-computed, so the complexity for calculating (3.20)
is at the order O(K M log K'). For the MMSE receiver, assuming A is unitary, we can
similarly derive R, = Es(Ip —(WpA~ ) DE(DcDE +~+71p) ' Do(WpA~H)). Thus,
we can derive that o for the MMSE receiver can be expressed as in (3.20) by changing
the kth entry of r; from |Chari1| 72 to [Crarsal®/(|Crara|* + 771, so the complexity for

calculating the error variances is again at the order O(K M log K).
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Chapter 4

Complexity Analysis

The computational complexity of the proposed transceiver implementations in Chapters
2 and 3 is compared to that of several GFDM and conventional OFDM transceiver im-
plementations. As the case of AWGN channels has been well studied, we focus our com-
plexity analysis on the case under multipath channels, which are more general and more
practical. For GFDM transmitters and ZF receivers, we include the frequency-domain
implementation [12] mentioned in Chapters 2 and 3, the implementation proposed in [8],
which is based on performing frequency-domain convolution in time domain as element-
wise vector multiplication, and the implementation in [9], which is based on exploiting
the block circularity of matrices involved in modulation and demodulation. For GFDM
MMSE receivers, we include the implementation in [10], which is based on calculating
filter coefficients and filtering in the Zak domain, and the implementation in [11], which
is based on simplifying the inversion of a band-diagonal matrix with LU decomposition.
Since [11] 1s for a multiple-antenna system, we calculate its complexity by reducing it to
a single-antenna system. It is assumed in [10, 11] that the frequency-domain prototype
transmit filter g has only 21/ nonzero entries, so the complexity formulae for the MMSE
receivers in [10, 11] cannot be used for all general prototype filters. We also compare to
direct implementations, where the matrix multiplications and inverses in (2.7), (3.4), and
(3.10) are implemented directly. The comparison is based on the number of complex mul-
tiplications (CMs) required to transmit or receive K M symbols, as shown in Tables 4.1

and 4.2. For a fair comparison, the same block size K M as GFDM is used for OFDM [36].
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Table 4.1: Computational complexity of GFDM transmitter and ZF receiver implementa-
tions under multipath channels

Implementation ‘ Transmitter ‘ ZF receiver
OFDM 1KMlog KM $KMlog KM + KM
Direct K2M? K2M? + KM (log KM + 1)
Frequency-domain [12] KM(%log KM? + Lp)® KM(%log KM? + Lg) + KM"
Frequency-convolution [8] KM(3log K + M) KM(%logK + M) + KM(log KM + 1)
Block-circularity [9] KM(% log K + M) KM(% log K + M)+ KM (log KM + 1)
Block-circularity [9], power-of-2 M KM(3log KM? +1) KM(3log KM? +1) + KM(log KM + 1)
Zak-domain [10] Not applicable Not applicable
LU-decomposition [11] Not applicable Not applicable
Proposed Form 1 KM(Llog KM? +1) KM(3log KM? +1) + KM(log KM + 1)
Proposed Form 2 KM(3log K3 M2 +1) KM(Llog K3M? + 1)+ KM

@ Assumption: The frequency-domain prototype transmit filter g s has only L7 M nonzero entries.

b Assumption: The frequency-domain prototype receive filter h ¢ has only L g M nonzero entries.

Table 4.2: Computational complexity of GFDM MMSE receiver implementations under
multipath channels

Implementation ‘ MMSE receiver
OFDM KM(3log KM +1)
Direct TK3M3 4+ 2K2M?
Frequency-domain [12] Applicable only to AWGN channels
Frequency-convolution [8] Applicable only to AWGN channels
Block-circularity [9] Applicable only to AWGN channels
Block-circularity [9], power-of-2 M Applicable only to AWGN channels
Zak-domain [10] KM(logM + 6K + 12M + 4)*
LU-decomposition [11] KM(% log KM + 20M? + 22M)@
Proposed Form 1 KM(% log K3 M* 4 4)°
Proposed Form 2 KM(%log K3M? + 4)°

@ Assumption: The frequency-domain prototype transmit filter g has only 2M nonzero entries.

b Assumption: The prototype transmit filter is a CMCM filter.

To obtain the complexity formulae, we assume that a p-point DFT [40] and the inversion of
a p X p matrix based on Gaussian elimination [41] take £ log p and p3/3 CMs, respectively,
for any positive integer p, where the base of the logarithm is 2. The prototype filters for
all implementations are assumed to take complex values. Since the prototype filter in [9]
is assumed to be real-valued, we extend their results to the case of complex-valued filters.

As depicted in Fig. 2.2, the proposed Form-1 transmitter implementation involves
four steps: M sets of K-point inverse-DFTs (IDFTs), K sets of M-point DFTs, element-
wise multiplication with a K x M matrix, and K sets of M -point IDFTs. These result in
MElog K + K& logM + KM + K& log M = KM (35 log KM? 4+ 1) CMs. Similarly,
we can derive the complexity formulae for the proposed Form-2 transmitter (2.11), Form-

1 receiver (3.5), and Form-2 receiver (3.6) as described in Tables 4.1 and 4.2. If CMCM
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Figure 4.1: Computational complexity of GFDM transmitter implementations. K = 64.

filters are used, MMSE receivers can also be implemented based on (3.5) and (3.6) by
replacing each diagonal entry C; in the matrix D¢ with C; + (v£cCy) ™, where &g is the
energy of the transmitter matrix, and v = FEg/Ny is the SNR. In view of the number
of CMs described in Tables 4.1 and 4.2, we recommend using the Form-1 implementa-
tion for transmitters and Form-2 implementation for receivers. For the frequency-domain
implementation [12], the parameter L, < K is the number of subcarriers spanned by
the frequency-domain prototype transmit filter (i.e., g has only LrM nonzero entries),
and Lr < K is the number of subcarriers spanned by the frequency-domain prototype
receive filter. It was stated in [9] that the complexity of their implementation can be re-
duced when M is a power of two. The reduced complexity is listed separately in Table
4.1. For a fair comparison, frequency-domain one-tap equalization WED_ "W, taking
KM(log KM + 1) CMs, as in (3.5) or in (7) of [9] is used for all GFDM ZF receivers
except for the proposed Form-2 receiver and the implementation in [12], in which, due to

cancellation of a pair of DFT and IDFT, only K M additional CMs are needed.

The complexity formulae in Tables 4.1 and 4.2 are evaluated and plotted for K = 64

subcarriers with respect to different values of number of subsymbols M. The complexity
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Figure 4.2: Computational complexity of GFDM ZF receiver implementations. K = 64.

of the transmitter implementations is shown in Fig. 4.1. As suggested in [12], L7 = 2 is
chosen for calculating the complexity of the frequency-domain implementation. Accord-
ing to Fig. 4.1, the number of CMs required by the proposed Form-1 transmitter is the
least among all GFDM transmitters, and is only about 1.5 times as much as that required
by the OFDM transmitter. The complexity of the frequency-domain implementation [12],
under the assumption that Ly is as small as 2, is around 1.1 to 1.2 times the complexity
of the proposed Form-1 transmitter. The complexity of the implementation in [8] and the
one in [9] is even over 3 times the complexity of the proposed Form-1 transmitter when
M isrelatively large. (The complexity of the implementation in [12] would be higher than
that of the one in [8] if L, = K for general filters.) The reduced complexity of the imple-
mentation in [9] when M is a power of two, nevertheless, coincides that of the proposed

Form-1 transmitter.

The complexity of the ZF receiver implementations is shown in Fig. 4.2. Based on the
suggestion in [2], Lr = 16 is chosen for the frequency-domain ZF receiver implementa-
tion [12]. According to Fig. 4.2, the number of CMs required by the proposed Form-2 ZF

receiver is the least among all GFDM ZF receivers, and is only about 2.5 times as much
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Figure 4.3: Computational complexity of GFDM MMSE receiver implementations. K =
64.

as that required by the OFDM ZF receiver. The complexity of the frequency-domain im-
plementation [12] is around 1.6 to 1.8 times the complexity of the proposed Form-2 ZF
receiver. The complexity of the implementation in [8] and the one in [9] is even nearly
3 times the complexity of the proposed Form-2 ZF receiver when M is relatively large.
The reduced complexity of the implementation in [9] is still around 1.1 to 1.3 times the
complexity of the proposed Form-2 ZF receiver when M is a power of two.

The complexity of the MMSE receiver implementations is shown in Fig. 4.3. We see
in Fig. 4.3 that the number of CMs required by the proposed Form-2 MMSE receiver is
the least among all GFDM MMSE receivers, and is only about 2.8 times as much as that
required by the OFDM MMSE receiver. Compared to the implementations in [10, 11],
complexity reduction of around 2 to 3 orders of magnitude can be achieved by the pro-
posed Form-2 MMSE receiver because the complexity of the proposed implementation is
linearithmic while that of the one in [10] is quadratic with the numbers of both subsym-
bols M and subcarriers K, and that of the one in [11] is even cubic with the number of
subsymbols.

In summary, with the use of the proposed implementations, significant complexity re-
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Figure 4.4: Computational complexity of GFDM transmitter implementations. M = 31.

duction can be obtained for receivers, while moderate complexity reduction is also ob-
tained for transmitters. Note that direct implementations are not shown in Figs. 4.1,
4.2, and 4.3 because they demand extremely large numbers of CMs. For example, when
K = 64 and M = 16, direct implementations require about two orders of magnitude
more CMs than the proposed implementations do for a transmitter or ZF receiver, and
about five orders of magnitude more CMs than the proposed implementations do for an

MMSE receiver.

4.1 Additional Complexity Comparison Results

In this section, we show complexity comparison results under the case of varying K. We
will see that similar results can be obtained as under the case of varying M. Specifically,
the complexity formulae in Tables 4.1 and 4.2 are evaluated and plotted for M = 31
subsymbols with respect to different values of number of subcarriers K.

The complexity of the transmitter, ZF receiver, and MMSE receiver implementations

is shown in Figs. 4.4, 4.5, and 4.6, respectively. The parameter settings L = 2 and
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Lr = 16 are used again for the frequency-domain implementation [12]. According to
Figs. 4.4, 4.5, and 4.6, the numbers of CMs required by the proposed Form-1 transmit-
ter, proposed Form-2 ZF receiver, and proposed Form-2 MMSE receiver are the least
among all GFDM transmitters, all GFDM ZF receivers, and all GFDM MMSE receivers,
respectively. Besides, compared to the implementations in [10, 11], complexity reduction
of around 2 to 3 orders of magnitude can be achieved by the proposed Form-2 MMSE

receiver. These results are similar to those under the case of varying M.
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Chapter 5

Power Spectral Density and OOB

Leakage

In this section, which serves as an aid for simulation later, we define the OOB leakage O
as a performance measure for the OOB radiation of transmit signals. To evaluate O for
GFDM, we first address the power spectral density (PSD) of GFDM signals. We derive an
analytical PSD expression encompassing an interpolation filter used in a D/A converter.
This approach conforms to the practical realization of modern digital-signal-processing-

based communication systems [36].

The GFDM digital baseband transmit signal z|n| is described as in (2.8). The analog
baseband transmit signal z,(¢) is obtained by passing x[n] through a D/A converter with
a sampling interval T, and an interpolation filter p(t), i.e., z,(t) = >~ _ x[n|p(t —
nT,). The PSD of z,(t) is defined as S,(f) = limg o B{gk| [7 2(t)e 927/t dt|?}
[42]. Let P(f) = [~ p(t)e *"/* dt be the Fourier transform of p(t), and G,,(e/*) =
> gm[n]e 7™ be the discrete-time Fourier transform of g,,[n], where g,,,[n] is de-

fined in (2.9). Assuming the data symbols are zero-mean and i.i.d. with symbol energy

Eg, we can derive that

Sa(f) = ESgD,T ; > ’ (32” (7 H))Q. (5.1)

ke meM
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With some derivations, we further obtain that

D' —1
Gr(e™) = 3 g™ sincpy (wf) 7477, (5.2)
=0

where w; = w — (27l/D’) and

(m) Dl D-1 . k l jﬂ'(ﬁ—i)(D,—l) - .27rka+L
[gf ]l = 5 Z [gf]k sincp: | 2w 5 — E e/"\ D D7 e’ D ) (5_3)
k=0

In (5.3), gy is the frequency-domain prototype transmit filter, defined as the D-point DFT

of g, i.e.,
and
| (_1)I<:(p—1)7 T = 271'/{3, keZ
o] € (5.5)
%7 otherwise

is the periodic sinc function for any positive integer p. Using (5.1), (5.2), (5.3), and
(5.4), we can express the PSD with g;, which enables designing the PSD in terms of
the frequency-domain prototype transmit filter. A special case that leads to a simple ex-

pression of G,,,(¢7*) is L = 0. When L = 0, (5.2) can be reduced to

D1
m(e7%) Z g )ie 2 sincp (w) e T (5.6)
1=0

where w; = w — (27l/ D).
To characterize the OOB radiation, we define the OOB leakage [3] as

Bi|  Jyen, Salf) df
|BO| ffeBI Sa(f) df,

0= (5.7)

In (5.7), B; and By, are the set of frequencies considered in-band and out of band, respec-
tively, and | B;| and |Bo| denote the lengths of the corresponding intervals. Recall that X
is the set of subcarrier indices actually used. The nominal frequencies of the subcarriers

in C lie in By, several guard subcarriers are used between B; and Bp, and By is reserved
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for the use of other users.

Finally, note that in (2.8), the sets M and K are not required tobe M = {0, 1,..., M —
1} or £ = {0,1,..., K — 1}. This means some guard symbols or guard subcarriers can
be used. GFDM is proposed to exhibit low OOB radiation. This advantage is particularly

significant if some guard symbols and guard subcarriers are used [3].
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Chapter 6

Optimal Prototype Filters that

Minimize MSE

We propose in this section to design optimal prototype filters in terms of minimizing the
receiver MSE before considering the OOB radiation performance. Due to the one-to-one
relation between the prototype transmit filter g and the characteristic matrix G in Lemma
1(a), the design of the characteristic matrix is essentially equivalent to the prototype filter
design. We address the problem mainly from the perspective of the characteristic matrix,

which yields many insights.

The receiver MSE is formally defined as follows. Denote the error variance on the kth

subcarrier and mth subsymbol after demodulation as

Thm :E{Ha—d]HmK\Q} (6.1)

fork=0,1,..., K—landm =0,1,..., M — 1,whereaisdeﬁnedasin(3.4)0r(3.10)
if the ZF or MMSE receiver is used, respectively. The expectation is taken on both the

noise and channel distributions. Define the receiver MSE o2 as

N

M-

H

or, . (6.2)

m

?

0 m=0
Our goal is to identify the optimal K x M characteristic matrix G ofa D x D GFDM matrix
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A that minimizes the receiver MSE o2 as defined in (6.2) under the following scenarios:
1. the ZF receiver over the AWGN channel;
2. the ZF receiver over (statistical) multipath channels;
3. the MMSE receiver over the AWGN channel,
4. the MMSE receiver over (statistical) multipath channels,

which we call Problems 1-4. We fix &, which equals ||g||*> by Lemma 1(d), as a normal-

ization of the energy of the prototype filter.

6.1 Optimization Results for ZF Receivers

The solutions to Problems 1 and 2 are identified in the following theorem, with some

additional requirements introduced for Problem 2.

Theorem 4 (a) Under the ZF receiver over the AWGN channel, a prototype transmit filter
g minimizes MSE o2 if and only if it is a CMCM filter. The corresponding minimum MSE
iso2. = No/&a.

(b) Under the ZF receiver over any statistical channel such that the channel frequency
response Cy satisfies E{1/|Cy|*} being a finite constant 3,¥ 0 < | < D, a prototype
transmit filter g minimizes MSE o if and only if it is a CMCM filter. The corresponding

minimum MSE is o2, = BNy/¢c.

Proof: (a) By (3.4) with C = I and Theorem 2(c),

O-Iz,m =E { ’ [Ail(ﬂlﬁmK}Q} = &Ny, (6.3)

VO0<k<K,0<m< M,where £y is the energy of A=, Then, the statement follows

from (6.2) and the inequality

§alm > 1, (6.4)
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which is shown below. By Theorem 2(b), & = S.0 " S°M 1 (1/(D|[G]i4[?)). Then,

¢a€y > 1 follows from the Cauchy-Schwarz inequality,

K—-1M-1 K—-1M-1 1
[Z Z jeim [Z IEME > (KM)?, 6.5)
k=0 1=0 k=0 1=0 ;

where the equality holds if and only if |[G]x,| is a constant in both & and [. The expression

for o2

min

follows from (6.3) and the condition for the equality to hold for {6y > 1.

(b) Taking the expectation of (3.20) and noting that E{r;} = 51k, we can derive that
Orm = BIH|?No/D,VO <k < K,0<1<M. (6.6)

Thus, we have 02 = S||H||?No/D = £ Ny, and the result follows from £qéy > 1 as

proved in (a). [ ]

Note that in Theorem 4(b) (i.e., solution to Problem 2), E{1/|C;|?} is required to be
a finite constant V 0 < [ < D. Requiring them to be finite is a necessary condition for
the receiver MSE o2 to also be finite, and is an inherent limitation of a ZF receiver since
o? oc E{1/|C)|?},V 0 < I < D in this case. Besides, we require them to be a constant
so that there remains some sort of symmetry as we move from the AWGN channel to

statistical channels.

2

.., on each subcarrier and sub-

The following corollary considers the error variance o

symbol for the two scenarios in Theorem 4.

Corollary 1 For any GFDM systems, O-I%,m is a constant in both k and m under each
of the scenarios: the ZF receiver over the AWGN channel and the ZF receiver over any
statistical channel such that the channel frequency response Cy satisfies E{1/|C}|?} being

a finite constant 5,¥ 0 < 1 < D.

Proof: See Appendix C. |

The main idea of the proof is that the equal-norm property in Theorem 2(c) implies
equal noise enhancement for each subcarrier and subsymbol. As mentioned in Chapter

5, some guard symbols and guard subcarriers are often used for GFDM [3]. Corollary 1
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implies that we can just null the data symbols leading to the highest OOB radiation without
considering the MSE performance of each subcarrier or subsymbol, as demonstrated in the
simulation in Section 6.4.

After considering the statistical case for Problem 2, we now evaluate the static case.
Specifically, we consider a deterministic multipath channel, or a slow fading channel such
that obtaining perfect channel state information at the transmitter (CSI-T) is practical. The

solution is as follows.

Theorem 5 Under the ZF receiver over any (static) multipath channel Cy such that C #
0,V 0 <1 < D, aprototype transmit filter g minimizes MSE o if and only if |(Gli.|*/ /ou

is a constant in both k and 1, where oy, = 3" 1 1/(|Cyyas|?). The corresponding mini-

mum MSE is o2, = (M1 Jar)* No/ (K M?¢).

min

Proof: See Appendix A. [ |

The proposed filters in Theorem 5 are optimal in terms of minimizing MSE, but they
require CSI-T and are less applicable than the CMCM filters derived under statistical chan-

nels in Theorem 4(b).

6.2 Optimization Results for MMSE Receivers

The solution to Problem 3 is given by the following theorem, whose proof is similar to

that of Theorem 4(a).

Theorem 6 Under the MMSE receiver over the AWGN channel, a prototype transmit filter

g minimizes MSE o if and only if it is a CMCM filter. The corresponding minimum MSE

is qum = ES/(’YgG + 1)'

Proof: See Appendix B. [ |
Similar to Corollary 1, the following corollary considers the error variance o ,, on

each subcarrier and subsymbol for the scenario in Problem 3.
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Corollary 2 For any GFDM systems, a,im is a constant in both k and m under the MMSE

receiver over the AWGN channel.

Proof: See Appendix C. [ |

Similarly, Corollary 1 imply that we can just null the data symbols leading to the
highest OOB radiation without considering the MSE performance of each subcarrier or

subsymbol, as demonstrated in the simulation in Section 6.4.

Observing that each of the solutions to Problems 1, 2, and 3 is a CMCM filter, we
make the following conjecture that the solution to Problem 4, under the assumption of

identically distributed C;, V 0 <[ < D, is also a CMCM filter.

Hypothesis 1: Under the MMSE receiver over any statistical channel such that the
channel frequency response C; are identically distributed V 0 < [ < D, a prototype
transmit filter g minimizes MSE o2 if and only if it is a CMCM filter. The corresponding

minimum MSE is 02, = E{Es/(7¢c|Col* + 1)}.

In Hypothesis 1, the assumption of identically distributed C}, V 0 < [ < D is practical
since many realistic channels, such as Rayleigh fading channels [42], have identically dis-
tributed C). Note that we do not require each E{1/|C}|?} to be finite because an MMSE
receiver does not suffer from this limitation. While a mathematical proof for Hypothesis
1 is unavailable now because the inverse of CAA” C + =11 in (3.9) cannot be readily
simplified (one may consider properties of block circulant matrices for the simplification
in the future), numerical results in Section 6.4 verify that this hypothesis tends to be cor-

rect.

The solutions to all the four problems provide criteria for the prototype transmit filter
g to minimize the MSE under various types of channels and receivers. Since some degrees
of freedom (i.e., Z[G]x,;) remain in all the solutions, minimizing the OOB radiation with
respect to g under the derived criteria would be a suitable research direction for future

studies.
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6.3 Comparison of Prototype Filter Candidates

Considering the optimization results, we find it natural to categorize GFDM prototype
filters into two classes: The first class comprises CMCM filters, corresponding to the
class of unitary GFDM matrices (up to a scale factor), and the second class comprises
non-CMCM filters, corresponding to the class of non-unitary GFDM matrices. The first
class is advantageous in minimizing the receiver MSE, whereas the second class suffers

from the noise enhancement effect [5,13,23].

The RC, RRC, Xia [29], and Gaussian pulses [3], adopted by many previous stud-
ies, fall into the class of non-CMCM filters. GFDM systems using these filters are non-
orthogonal [3]. In fact, since RC and RRC filters are even-symmetric, i.e., [g], = [g]p—n
forn = 1,2,...,D — 1, their GFDM matrices are singular when K, M are both even
integers. This can be proved by using (2.3) to show that the corresponding characteristic
matrix G satisfies [G] KM o= 0 and using Theorem 2(a) (see also [5], which also observed
this point using Gabor analysis). Thus, to avoid MSE and SER performance degradation,
we would not set D = K M as a power of 2 for GFDM systems using RC and RRC filters.
By contrast, the simulation results in this thesis show that if the prototype transmit filter
is not even-symmetric, both K" and M being even does not prevent a GFDM system from
exhibiting good MSE and SER performance. There is also no constraint on K and M in

Theorem 1 for GFDM matrices to be unitary.

The class of CMCM prototype filters were less common in previous studies. Yet, their
existence implies that noise enhancement is not always a problem of GFDM. As a simple
example of CMCM filters, consider the GFDM matrix whose phase-shifted characteristic
matrix G satisfies

Gl =1,V0<k< K 0<I<M. (6.7)

The corresponding frequency-domain prototype filter is [g/];, = VK Ek 0 Yo 1
0,1,...,D — 1. In fact, it is a frequency-shifted version of the Dirichlet pulse [3]. The

Dirichlet pulse is defined by a perfect rect function in the frequency domain with the
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width of M frequency bins located around the DC bin!. In other words, by defining
X ={0,1,..., [ %L and X = {D — [, D - [21] +1,...,D — 1}, we

can express the frequency-domain prototype filter as

gi=VK > 6wl=01,...,D-1 (6.8)

ke X1UXy

It is also a CMCM filter, and its corresponding GFDM matrix is unitary, as shown in the

following corollary.

Corollary 3 The GFDM matrix for the Dirichlet pulse is unitary.

Proof: By Lemma 1(b) and (6.8), we can derive that the phase-shifted character-
istic matrix G satisfies V0 < k < K,
_ 1, 0<Il<[M/2]
(Gl = } ; (6.9)
e IR/ M2l <1< M
for the Dirichlet pulse. Thus, it is a CMCM filter, and by Theorem 1, the corresponding

GFDM matrix is unitary. |

The Dirichlet pulse (6.8) instead of its frequency-shifted version (corresponding to
(6.7)) will be used in the simulations because its passband is centered at the DC bin.
As another example of CMCM filters, we propose the modified Dirichlet pulse, de-

fined by the frequency response

g/l = VES™5 > by + VKT Yy, (6.10)

keXy keXs

I =0,1,...,D — 1. The phase-shifted characteristic matrix G for the filter satisfies

eiml/D. 0<1<[M/2]
Gl — , (6.11)
€j7r(—2k]\/[+(l—M))/D7 [M/2] <l< M

! Although this definition is only clear for an odd M, we give a reasonable extension for an even M.
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Figure 6.1: Magnitudes of entries in characteristics matrices G for several GFDM proto-
type filters when K = 8, M = 4.

V0<k<K,soitisa CMCM filter. In Section 6.4.3, we will show by simulation that
modified Dirichlet pulse exhibits lower OOB radiation than does the Dirichlet pulse. Here
we briefly explain why the modified Dirichlet pulse has this advantage. Taking the abso-
lute value of (5.6) and setting m = 0 yields |Go(e™)| = | S22 5" [gs): sincp (w;)el™ D |.
Since sincp () alternates between positive and negative values as x crosses nonzero in-
teger multiples of 27/ D, sincp(x) + € sincp(x — 27/ D) with ¢ = 7 can be viewed as
the extreme case of ’constructive interference” for the tails of the periodic sinc functions.

Jml/D introduced in (6.10) combine to form /™, the mod-

Thus, as ¢/™“5" and the factor e
ified Dirichlet pulse exhibits lower OOB radiation than does the Dirichlet pulse under the
scenario that the Oth subsymbol is used as a guard symbol. In other words, we allocate as

much OOB energy as possible on the discarded subsymbol.

The absolute values of the entries of characteristic matrices for the RC filter with roll-
off factor a = 0.7, the Dirichlet pulse, and the modified Dirichlet pulse are compared in
Fig. 6.1. Note the zero for the RC filter (which makes the corresponding GFDM matrix
singular). However, the other two are advantageous because they have constant magni-

tudes in the characteristic matrix, making both of them unitary.
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6.4 Simulation Results

In this section, we provide numerical examples to compare the derived optimal prototype
transmit filters, especially the CMCM filters, with the conventional RC and RRC filters,

in terms of receiver MSE, SER, peak-to-average power ratio (PAPR), and OOB leakage.

6.4.1 MSE and SER Performance

The MSE and SER performance is evaluated through Monte-Carlo simulation with 10000

blocks for each prototype filter under each of the following five cases:

1. ZF-DFERF: the ZF receiver over a deep-fade-excluded Rayleigh fading channel;
2. MMSE-RF: the MMSE receiver over the Rayleigh fading channel;

3. ZF-AWGN: the ZF receiver over the AWGN channel;

4. MMSE-AWGN: the MMSE receiver over the AWGN channel;

5. ZF-MP: the ZF receiver over a (static) multipath channel.

We use (K, M) = (8,4), (8,5), or (32,16) for GFDM, and K = 32, 40, or 512, M =1
for OFDM (OFDM is a special case of GFDM using a rectangular window as the pro-
totype transmit filter) so that GFDM and OFDM have the same block size D = K M.
For the used Rayleigh fading channels, ¢[n] is independent circularly symmetric com-
plex Gaussian with variance NT(LC), and two kinds of power delay profiles [36] are used.
For cases when (K, M) = (8,4) or (8,5), we use N = (0.64)" for0 < n < D/4
and N\? = 0 for D/4 < n < D. For cases when (K, M) = (32,16), we use N =
0,—1,-2,—3,—8,—17.2,—20.8dB forn = 0,3,7,9, 11, 19, 41, respectively, and N,\” =
0 otherwise, which is derived from the LTE Extended Pedestrian A model [43]. In Case
ZF-DFEREF, the channel is derived from the Rayleigh fading channel by excluding all
channel realizations leading to a tap gain |C;| smaller than -30 dB for some subcarrier [
from the channel pool. This exclusion results in finite E{1/|C;|?}, and is practical since
transmission is given up when deep fades occur in real communication. The (static) mul-

tipath channel (in case ZF-MP) is composed of four taps: —0.1518 + 50.6475,0.2701 +
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70.3063,0.5703 + 50.0767, —0.0900 + 70.2274. Finally, for MMSE receivers (Cases 2

and 4), unbiased estimates are used for symbol detection [36].

The modulation is 16QAM, the symbol energy is Fs = 1, and the energy of the GFDM
transmitter matrices is ¢ = 1. The CP length is L = D /4. The prototype transmit filters
used for GFDM include an RC filter with roll-off factor « = 0.7. To demonstrate that
MSE performance is not affected by phases of entries of constant-magnitude characteristic
matrices, we use CMCM filters with arbitrarily chosen phases in most of the simulation
cases (except for ZF-MP). Specifically, we use CMCM Filters 1 and 2 with characteristic
matrices G; and Go, respectively, with the phases ZG; and ZG,, being arbitrarily selected

and listed as follows. For systems with K = 8 M = 4, /G, and ZG; are set as

[075 250 —1.09 —1.98]
295 016 1.29  1.59
210 059 312 —031
053 304 028 —1.11
£Gy = 158  1.37 —3.02 —1.80 (6.12)
311 105 047 —0.73
078 —1.88 0.85 —2.24
157 —283 —056 2.81
[—0.31 —311 082 —1.04]
~170 253 —029 0.71
249 219 -2.69 —1.55
144 —077 —2.06 0.19
2Gy = 023 —1.00 031 048 (6.13)
095 —1.50 226  0.09
021 —1.03 0.76 057
217 179 —2.15 1.88

For systems with K = 8 M =5, ZG; and ZG are set as

[ 062 —040 —1.36 —2.16 —1.94
130 —265 278 —295 217
1.0l 007 286 292 —0.60
175 209 159 048 —1.89
LGy = 155 —1.83 —0.11 -3.01 —0.57]|"’ (6.14)
027 —1.21 —-281 037 —227
148 046 258 272 044

1.23 -0.31 1.19 0.06 —0.35
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Figure 6.2: MSE for GFDM ZF receiver over a deep-fade-excluded Rayleigh fading
(DFERF) channel and the corresponding OFDM receiver. K = 8, M = 5.

(2890 —1.87 —240 —3.02 —1.22]
073 222 —279 308 3.04
090 —214 —151 —213 —1.69
242 —299 —1.16 —0.08 —0.63
194 —257 222 117 289
133 110 —251 —1.44 1.36
~3.06 -3.05 —254 -3.09 0.36
053 022 288 —208 0.54

/Gy = (6.15)

For systems with K = 32, M = 16, /G, and ZG, are set in ways such that CMCM Filters
1 and 2 are the Dirichlet pulse (6.8) and modified Dirichlet pulse (6.10), respectively.
For Case ZF-MP, we also use two filters proposed in Theorem 5, with the phases of the
characteristic matrices Z/G; and ZGs again arbitrarily set as in (6.12) and (6.13) for the
case of K = 8, M = 4. For cases where both K and M are even, the ZF receiver for an
RC filter does not exist, so we use instead the pseudo-inverse of the GFDM matrix.

Figs. 6.2, 6.3, and 6.4 show the simulation results under statistical channels. We first
consider the case K = 8, M = 5. Fig. 6.2 verifies the MMSE property of CMCM filters
under the ZF receiver over the deep-fade-excluded Rayleigh fading channel, as stated in
Theorem 4(b). The CMCM filters are better than the RC filter, and essentially the same
as OFDM in terms of MSE performance. Turning to the case K = 8, M = 4, we see

similar results in Fig. 6.3. Yet, the RC filter performs even worse due to the singularity of
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Figure 6.3: MSE for GFDM ZF receiver over a deep-fade-excluded Rayleigh fading
(DFERF) channel and the corresponding OFDM receiver. K = 8, M = 4.

Dirichlet
3 Modified Dirichlet

10
RC, a=0.7
OFDM

— Hypothetical MMSE
10™ : : :
0 10 20 30 40

E/N, (dB)

Figure 6.4: MSE for GFDM MMSE receiver over the Rayleigh fading (RF) channel and
the corresponding OFDM receiver. K = 32, M = 16.

its transmitter matrix, whereas the CMCM filters do not have such degradation. Finally,
similar results are again observed in Fig. 6.4 for the case of the MMSE receiver over
the Rayleigh fading channel. Meanwhile, the MSEs of the CMCM filters correspond to

the hypothetical minimum MSE in Hypothesis 1. These imply that Hypothesis 1 tends

48

d0i:10.6342/NTU201701053



102t [ 5 CMCM Filter 1
—X— CMCM Filter 2
—0—RC, a=0.7
—+— OFDM

0 5 10 15 20
E/N, (dB)

Figure 6.5: MSE for GFDM ZF receiver over the AWGN channel and the corresponding
OFDM receiver. K =8, M = 4.

10°
107 ¢
L
(p)
=
102+ CMCM Filter 1
CMCM Filter 2
RC, a=0.7
OFDM
1073 : : .
0 5 10 15 20
E/N, (dB)

Figure 6.6: MSE for GFDM MMSE receiver over the AWGN channel and the correspond-
ing OFDM receiver. K =8, M = 4.

to be correct. Note that the channels used for the ZF and MMSE receivers have different

statistics, so the results in Figs. 6.3, and 6.4 cannot be compared directly.

Figs. 6.5, 6.6, and 6.7 show the simulation results under static channels, including the

AWGN channel. Fig. 6.5 shows that the CMCM filters are better than the RC filter, and
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Figure 6.7: MSE for GFDM ZF receiver over a (static) multipath (MP) channel and the
corresponding OFDM receivers. K = 8, M = 4.

essentially the same as OFDM in terms of MSE performance. It verifies that the CMCM
filters are the prototype filters that minimize receiver MSE under the ZF receiver over the
AWGN channel, as stated in Theorem 4(a). Similar results can be observed in Fig. 6.6. It
verifies that the CMCM filters are the prototype filters that minimize receiver MSE under
the MMSE receiver over the AWGN channel, as stated in Theorem 6. Fig. 6.7 verifies
the MMSE property of the proposed filters under the ZF receiver over (static) multipath
channels as stated in Theorem 5. The advantages of the proposed filters in this case come
from the use of CSI-T, whereas the RC filter and the prototype filter of OFDM, 1i.e., the
rectangular window, are predefined and are not designed according to CSI-T.

Fig. 6.8 shows the magnitude response of the prototype filters used for Case MMSE-
RF,i.e., Fig. 6.4. The Dirichlet and modified Dirichlet pulses are both frequency-localized,
and their spectral properties are similar to that of the RC filter. In fact, the magnitude re-
sponse of the Dirichlet and modified Dirichlet pulses is a perfect rectangular window.
However, we will show in the Section 6.4.3 that the RC filter exhibits lower OOB radia-
tion. In other words, it is possible that a prototype filter with a less localized magnitude
response can result in better OOB performance than that with a more localized magnitude

response. This strengthens the importance of a low-complexity implementation of GFDM
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Figure 6.9: CCDF of PAPR for MMSE-RF. K = 32, M = 16.

transceivers that is applicable to general prototype filters without any limitations on their

spanned number of subcarriers.

6.4.2 PAPR

For Case MMSE-RF, we also evaluate the PAPR [44] of the transmit signal, which is
defined as max |x[n]|?/ E{|x[n]|?}, where x[n] is the digital baseband transmit signal (2.8).
PAPR is an important issue in the multicarrier communication [45]. PAPR complementary
cumulative distribution function (CCDF) curves are shown in Fig. 6.9. The Dirichlet
pulse, modified Dirichlet pulse, and OFDM are shown to have similar PAPR, while the RC
filter has a higher PAPR. It suggests that CMCM filters can have better PAPR performance

than non-CMCM filters.
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Figure 6.10: PSD for GFDM and OFDM.

6.4.3 OOB Leakage

The PSD of GFDM and OFDM signals is simulated according to (5.1), and the OOB
leakage is evaluated according to (5.7). The average in-band PSD is normalized to 1. We
basically follow the simulation parameters in [3]. An RC filter with a roll-off factor of
0.5, the Dirichlet pulse [3], and the modified Dirichlet pulse defined in (6.10) are used
for GFDM. We use K = 128 and M = 15 for GFDM, the Oth subsymbol is used as
a guard symbol, and subcarriers 50 to 78 are switched off, i.e., K = {0,1,...,49} U
{79,80,...,127}, M = {1,2,...,14}. For a fair comparison, K = 1920 and M = 1
are used for OFDM so that the GFDM and OFDM block sizes are equal, and the number
of used OFDM subcarriers is the same as the number of used resource elements in GFDM
systems, |KC||M|. Thus, the spectral efficiency of all systems with all filters are the same.
The used OFDM subcarriers are contiguous, and their center is located at the DC bin.
The number of GFDM guard subcarriers used between in-band B; and out-of-band B is
N,

g

RC filter with roll-off factor & = 0.1, and the sampling rate is 1/7; = 1.92 MHz. Thus,

. = lor 6. The CP length is L = 16. The interpolation filter p(¢) is a sample-level

B = (—49.5,49.5) - (1/(1287,)) Hz and Bp = ((—64(1 + o), —49.5 — N,.) U (49.5 +
Nye,64(1 4 «v))) - (1/(128T)) Hz, where e = 0.1 and N,. = 1 or 6.

We compare the OOB leakage of GFDM and OFDM systems, as presented in Table
6.1, by using the simulated PSD shown in Fig. 6.10. As shown in Table 6.1, the Dirichlet
pulse, which is optimal in terms of minimizing the MSE, outperforms OFDM by at least
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Table 6.1: OOB leakage in dB of the simulation in Fig. 6.10

Guard OFDM GFDM GFDM GFDM
carriers Dirichlet | modified Dirichlet RC
1 -35.1 -47.7 -48.0 -51.0
6 -37.1 -51.5 -51.8 -54.8
10

107"}

5| |—B— CMCM filter 1
10 —— CMCM filter 2

—&0—RC, a=0.7
—+— OFDM

0 10 20 30
E/N, (dB)

Figure 6.11: SER for GFDM ZF receiver over a deep-fade-excluded Rayleigh fading
(DFERF) channel and the corresponding OFDM receiver. K = 8, M = 5.

12 dB, and has an OOB leakage comparable to that of the RC filter. Besides, the OOB
leakage of the proposed modified Dirichlet pulse in this study is even lower than that of the
Dirichlet pulse; this suggests that the Dirichlet pulse known in the literature is not optimal
in terms of OOB leakage among all CMCM filters, and that we may further minimize the
OOB leakage in the future with respect to the prototype transmit filter under the derived

MMSE criterion.

6.4.4 Additional Simulation Results for SER Performance

Here, we offer additional simulation results for SER performance. The same set of pa-
rameter settings in Section 6.4.1 are used.
First, consider scenarios under statistical channels. Figs. 6.11, 6.12, and 6.13 show the

SER performance of the three scenarios for Figs. 6.2, 6.3, and 6.4, respectively. According
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Figure 6.12: SER for GFDM ZF receiver over a deep-fade-excluded Rayleigh fading
(DFERF) channel and the corresponding OFDM receiver. K = 8, M = 4.
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Figure 6.13: SER for GFDM MMSE receiver over the Rayleigh fading (RF) channel and
the corresponding OFDM receiver. K = 32, M = 16.

to Figs. 6.11, 6.12, and 6.13, the CMCM filters are better than the RC filter in terms of
SER performance. A difference between MSE and SER is that the CMCM filters have
the same MSE performance as but better SER performance in the higher SNR region and

worse SER performance in the lower SNR region than OFDM, which can be explained
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Figure 6.14: SER for GFDM ZF receiver over the AWGN channel and the corresponding
OFDM receiver. K =8, M = 4.
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Figure 6.15: SER for GFDM MMSE receiver over the AWGN channel and the corre-
sponding OFDM receiver. K = 8, M = 4.

by the effect of a orthogonal precoder on OFDM (due to convex and concave regions of
a function composed of the Q-function) [46]. It can also be seen that for a larger block
size KM, such as the case for Fig. 6.13, the SER performance degradation of RC filter

compared to OFDM is less significant. This may be because a larger block size tends
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Figure 6.16: SER for GFDM ZF receiver over a (static) multipath (MP) channel and the
corresponding OFDM receivers. K = 8, M = 4.

to make the vectors in the GFDM transmitter matrix of the RC filter closer to becoming
perpendicular.

Then, consider scenarios under static channels. Figs. 6.14, 6.15, and 6.16 show the
SER performance of the three scenarios for Figs. 6.5, 6.6, and 6.7, respectively. According
to Figs. 6.14 and 6.15, the CMCM filters are better than the RC filter, and essentially the
same as OFDM in terms of SER performance. Fig. 6.16 shows that the SERs of the
proposed filters are much better than both the RC filter and OFDM in the higher SNR
region in terms of SER performance.

Observing the subtle difference between the results of MSE and SER performance,
one may want to derive optimal prototype filters that minimize SER or bit error rate in the

future. This kind of design would depend on the used receivers and channels.
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Chapter 7

Optimal Prototype Filters that

Minimize MSE and OOB Radiation

In Chapter 6, optimal GFDM prototype filters in terms of minimizing MSE performance
are derived without considering OOB radiation. In this chapter, we design prototype filters

by considering performance and OOB radiation simultaneously.

7.1 Problem Formulation

We formulate a filter optimization problem to minimize OOB radiation while maintaining
good in-band performance. Consider a GFDM system with the GFDM transmitter matrix
A and prototype filter g. Let K, M, L, K, Eg, T, p(t), and Bo be given and fixed, where
Bo denotes the set of frequencies considered out of band. Let M = {1,2,... M — 1},
i.e., 1 guard subsymbol is used, which is conventional in the literature [3]. Let D = KM,

and 7 be some positive real number. The problem is given by

i S, 7.1
min  max 5,(f) (7.12)
subject to ||g||% =1 (7.1b)
Ea <, (7.1¢)
57

d0i:10.6342/NTU201701053



where S,(f) is the PSD (5.1) of the GFDM analog baseband transmit signal, and £y is
the energy of A=, According to the derived results in Chapter 6, £;; determines the SNR
reduction of a GFDM system. For example, by Theorem 4(a), under an AWGN channel,
the MSE at the ZF receiver is £ Ny. The constraint (7.1c) thus pertains to maintaining a
sufficiently good MSE or SER performance. The constraint (7.1b) is introduced as nor-
malization of the prototype filter. Besides, according to (2.3), (6.4), and the definition of
energy of a GFDM matrix, the constraint (7.1b) implies a natural constraint £ > 1. Thus,
the problem (7.1) is feasible only if 7 > 1. In particular, when 7 = 1, the feasible set is

equivalent to using unitary transmitter matrices.

7.2 Proposed Algorithm

We intend to solve the optimization problem (7.1) by the techniques for solving con-
vex optimization problems [47]. Since the problem (7.1) is nonconvex, some transfor-
mations on the problem is required. We introduce variables S € HY, defined as S =
vec(G)(vec(G))H, where G is defined in (2.3). By the definition of the energy £ and

Theorem 2, we have

1 K—1M-1
= G ’2 (7.2)
D = 1= Gl

Using (7.2), we obtain an equivalent form of the problem
min max S, 7.3a
min  mex Sa(f) (7.3a)
subject to tr(S) = D (7.3b)
tr(S°) < Dny (7.3¢)
rank(S) = 1. (7.3d)
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According to (5.1), (5.2), (5.3), we have

Es|P(f)?
Sulf) = =g 2 2 Zan (@ (T = k/K),m)[gfla| - - (74)
ke meM
where
D= koo
ap(w,m) = — sincp (27T (— — —)>
D — D D
. I (5= 57 ) (D' =) —jamk AL sincpr (w)) eI = E } (7.5)
By Lemma 1(b), we can further derive that
D 2
5u() = BIPUE S~ S~ IS k) fvee(@)), (7.6)
¢ KD'T, '
ke meM | n=0

where
ol i) = Zamﬂ 2 (2n(fT, — ), m)e LRI /D 2nk 1 (7.7)

Letting b(f, k,m) be a D x 1 vector with [b(f, k,m)], = b,(f, k, m), we obtain

Es|P(f

S = =5

’ZZbekme(fk;m) (7.8)

kel meM

Therefore, the objective function (7.3a) is a supremum of affine functions of S, and thus
convex in S. We can also show that the constraints (7.3b) and (7.3c) are convex. Yet, the

problem (7.3) is still nonconvex because the rank constraint (7.3d) is nonconvex.

To approach an optimization problem with a rank constraint, an iterative algorithm [48]

may be used. We propose to tackle the problem (7.3) by iterating the optimal point S of

Srgﬁ% w [tr(SV)| + max Sa(f) (7.9a)
subject to tr(S) = D (7.9b)
tr(S°) < Dny (7.9¢)
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with the optimal point V of

min  |tr(SV)| (7.10a)

VeH?
subjectto 0 =V <1Ip (7.10b)
tr(V) =D —1 (7.10c)

until convergence, where w > (. The algorithm in [48] is used only for real variables.
Here we extend the algorithm so that it can be used for complex variables. Specifically,
the domain is changed from the set of real symmetric positive semidefinite matrices to the
set of complex Hermitian positive semidefinite matrices, and we introduce the operator | - |
to assure that the objective functions are real-valued. According to our simulation results,

the extension indeed works.

The problems (7.9) and (7.10) are convex, so the techniques for solving convex op-
timization problems can be applied. It is not difficult to show that all constraints of the
two problems are convex. Also note that w > 0 and that maxscp, S,(f) is convex in
S. Thus, to prove the convexity of the problems, we only have to show that | tr(SV)] is
convex in V. Regard the complex variables V as independent real variables, i.e., their real
parts and imaginary parts. Then |tr(SV)| is a norm of an affine transformation of these
real variables. Since any norm is convex, and composition with an affine transformation

preserves convexity, the problems are convex.

To understand the concept of the algorithm, it would be beneficial to know the solution
of the problem (7.10). In fact, this problem can be solved analytically [48]. Specifically,
with the ordered (in the order of non-increasing eigenvalues) eigendecomposition S =
QAQ", the optimal point is V = UU*, where U is the submatrix of Q obtained by
removing the first column of Q. In other words, the first D — 1 eigenvectors of V are the
same as the last D — 1 eigenvectors of S, and all correspond to eigenvalue 1. The last
eigenvalue of V is 0. Therefore, the term w| tr(SV)| introduced in the objective function
(7.9a) can be considered as favoring the direction, uu’, in the vector space H”, where u

is the first column of Q. In this way, we expect that the algorithm can converge to a point
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corresponding to a rank-1 S.

Our iterative algorithm starts with the problem (7.9), so the initial value of V is a
parameter that we can design. The choice of the weight w, which is also a parameter to
be designed, can affect the rate of convergence and the result S at convergence. We will

show by simulation how w affects these in general.

7.3 Simulation Results

Simulation results of our iterative algorithm are shown for three cases. To solve the prob-
lem (7.9), we use CVX, a package for specifying and solving convex programs [49]. In
our program, we discretize the frequency variable f by sampling at integer multiples of
1/(16DTy) Hz. The stopping criterion of the iterative algorithm is |s; — s;_1|/s;i-1 <
5 x 107°, where s; is the value maxcp, S,(f) obtained in the ith iteration. The opti-
mization results are compared to GFDM systems using RC filters [2] with a roll-off factor
of 0.5 and Dirichlet pulses [3], and with OFDM systems in terms of PSD, &y, and SER
performance. Note that OFDM is a special case of GFDM using a rectangular window as
the prototype filter, and always with M = 1 and {5 = 1. For a fair comparison, the block
size of OFDM systems is the same as that of GFDM systems, D, and the number of used
OFDM subcarriers, denoted as [V, is the same as the number of used resource elements in
GFDM systems, |KC||M|. Thus, the spectral efficiency of all systems with all filters are
the same. The used OFDM subcarriers are contiguous, and their center is located at the

DC bin.

7.3.1 Parameter Settings

The CP length is L = 0, the symbol energy is F's = 1, and the sampling interval is 75 = 1
ps. We use n = 1 in (7.9¢). The interpolation filter p(t) is a sample-level RC filter [42]
with a roll-off factor of 0.1. Besides, we use the D x D zero matrix as the initial value
of V. In Table 7.1, parameter settings are shown for three simulation cases, including the

weight w, the number of GFDM subcarriers K and subsymbols M, the set of used GFDM
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Table 7.1: Parameter settings

Parameter Case 1 Case 2 Case 3
w 0.0003 0.001 0.003
K 8 16 8
M 7 5 3
{0,1,2,3,4,
K {0,1,7} 12,13, 14, 15} {0,1,2,6,7}
M {1,2,...,6} | {1,2,...,4} {1,2}
N 18 36 10
B, | Coomn) | (Coomrn) | (oo )
U(IGTS’OO) U(ﬁ7 00) U(16TS7OO>

subcarriers K and subsymbols M, the number of used OFDM subcarriers [V, and the set of
frequencies considered out of band . Note that we select M as an odd number for each
case because RC filters are essentially not applicable to cases where both K and M are
even, as GFDM transmitter matrices under such cases are singular [5]. We set By based
on the usage of 1 guard subcarrier for GFDM. For the evaluation of SER performance,
Monte-Carlo simulation with 10° blocks is run for each prototype filter. The modulation

is QPSK. The ZF receiver and an AWGN channel are used.

7.3.2 Simulation Results for the Case of n = 1

For Case 1, the magnitude responses of the optimized filter, RC filter, and Dirichlet pulse
are shown in Fig. 7.1. The optimized filter is well-localized, but its side lobes are more
significant than those of the other filters. The PSD is shown in Fig. 7.2. The PSD is
normalized according to the RC filter so that the maximum value of its PSD is 0 dB.
Compared to the PSD of the RC filter and Dirichlet pulse, the optimized PSD is higher in
the guard band, in exchange for lower OOB radiation. The higher guard-band PSD does
not matter since guard band would not be used by other users. The maximum OOB PSD
maxyeg, Sq(f) is presented in Table 7.2. The optimized filter outperforms the RC filter

by about 7 dB, Dirichlet pulse by about 10 dB, and OFDM by about 24 dB.

The energy &y is also presented in Table 7.2. Observe that £ = 1 for the optimized
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Table 7.2: Maximum OOB PSD max ¢, S.(f) in dB and energy &g

Case 1 Case 2 Case 3
OOB En OOB & 0OOB En
OFDM -19.76 | 1.000 | -19.49 | 1.000 | -15.66 | 1.000
Dirichlet [3] -33.88 | 1.000 | -33.30 | 1.000 | -28.89 | 1.000
RC [2] -37.32 | 1.200 | -36.35 | 1.117 | -31.30 | 1.063
Optimized filter | -44.11 | 1.000 | -42.01 | 1.000 | -41.95 | 1.000

3.5 T
3~ Dirichlet . |
ey — — RC, =05 ,-Ii-
25+ \'|_ —-—- Optimized filter il .
= 2 [} [] ]
o ! ]
= 15+ | | .
\ !
1 I " |
L I\ " il
0.5 i /i
0 Lk O S O E O NSRS ORIt PO = o S
0 10 20 30 40 50 60

k

Figure 7.1: Magnitude response of the frequency-domain prototype filter g for Case 1.
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Figure 7.2: PSD for Case 1.

filter, Dirichlet pulse, and OFDM, which means unitary transmitter matrices are used. By
Theorem 4, unitary transmitter matrices minimize the MSE at ZF receivers. By contrast,
& > 1 for the RC filter. Thus, we expect that the SER performance of the optimized filter
should be the same as those of the Dirichlet pulse and OFDM, and better than that of the
RC filter. This is confirmed in Fig. 7.3.

In view of these results, using RC filters can be regarded as sacrificing SER perfor-
mance for lower OOB radiation, compared to Dirichlet pulses. However, this sacrifice

is unnecessary because our optimized filter performs the best among the three filters and
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Figure 7.4: PSD for Case 2.
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Figure 7.5: PSD for Case 3.

OFDM in terms of both OOB radiation and SER performance. Moreover, RC filters are

essentially not applicable to cases where both A and M are even [5].

The PSDs for Cases 2 and 3 are shown in Figs. 7.4 and 7.5, respectively. The results

of maxyep, Sq(f) and &y are presented in Table 7.2. Trends similar to those of Case 1
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Figure 7.6: Maximum OOB PSD max;cp, S,(f) and rank(S) obtained at convergence,
and number of iterations /N; versus weight w for Case 3.

can be observed for Cases 2 and 3. That is, the optimized filter is the best in terms of both
OOB radiation and &g, with £ characterizing MSE or SER performance. These results

confirm the general effectiveness of the proposed algorithm.

7.3.3 Influence of the Weight w

To study the effects of the weight w on the obtained objective max e, S.(f) and rank(S)
at convergence, and the number of iterations, denoted as N;, the proposed algorithm is
implemented with different values of w for Case 3. All the other simulation parameters
remain the same. As shown in Fig. 7.6, it is observed that when w is chosen within the
range, 0.003 < w < 30, the obtained objective is the least and the rank constraint (7.3d)
is met. In fact, the obtained prototype filter g at convergence is the same for all w in the
range. The rank constraint is not met if w is too small, and the obtained objective gets
greater if w is too large. These effects of w coincide with the empirical evidence gathered
by [48]. Also, we see in Fig. 7.6 that N; is the least when w = 0.003. As w increases
above 0.003, N increases nearly proportionally. Thus, to minimize the obtained objective
and maximize the rate of convergence, we should select w = 0.003. In fact, w in Table

7.1 has been selected in this way for each case.
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Figure 7.8: PSD for Case 1. n = 1.1.

7.3.4 Simulation Results for the Case of n > 1

The parameter 7 in our optimization problems enables us to exploit the trade-off between
OOB radiation and MSE performance. To show that even lower OOB radiation can be
obtained with the proposed algorithm by sacrificing a little MSE performance, we provide
simulation for the case of > 1. The same set of parameter settings for Case 1 in Section
7.3.1, except that the parameter 7 is set as 1.1 instead of 1.

The magnitude responses of the optimized filter obtained under n = 1.1, RC filter,
and Dirichlet pulse are shown in Fig. 7.7. Again, the optimized filter is well-localized,
but its side lobes are more significant than those of the other filters. The PSD is shown in
Fig. 7.8. The PSD is normalized according to the RC filter so that the maximum value of
its PSD is 0 dB. The maximum OOB PSD max;cp, S,(f) is presented in Table 7.3. We
also include the results of the optimized filter obtained under = 1 in Section 7.3.2 for
comparison. The optimized filter obtained under = 1.1 outperforms the optimized filter

obtained under n = 1.1 by about 7 dB, RC filter by about 13 dB, Dirichlet pulse by about
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Table 7.3: Maximum OOB PSD max ¢z, S,(f) in dB and energy £y for Case 1

0OB | &g
OFDM -19.76 | 1.000
Dirichlet [3] -33.88 | 1.000
RC [2] -37.32 | 1.200

Optimized filter, n =1 | -44.11 | 1.000
Optimized filter, » = 1.1 | -50.73 | 1.100

17 dB, and OFDM by about 31 dB. Meanwhile, the NEF of the optimized filter obtained
under 7 = 1.1 is greater than the NEF of the optimized filter obtained under = 1, but
less than the NEF of the RC filter. This implies that the MSE or SER performance of the
optimized filter obtained under = 1.1 would lie between those of the optimized filter
and RC filter. In other words, we can obtain even lower OOB radiation by sacrificing
a little MSE or SER performance. In the future, one may exploit this trade-off between
OOB radiation and performance systematically to achieve certain goals and meet certain

constraints.

7.4 Future Work

There are many issues one can explore on the optimization problem (7.3) and the proposed
iterative algorithm. First, one may want to prove whether or not the iterative algorithm
indeed leads to the optimal solution of the problem (7.3). Second, one may want to prove
whether or not the iterative algorithm can guarantee a rank-1 S at convergence for all cases
of parameter settings, or one may identify particular ranges of weight w that guarantee a
rank-1 S, guarantee a non-rank-1 S, and lead to indefinite results at convergence, respec-
tively. Finally, the complexity of the iterative algorithm can be analyzed in the future.
For example, one may want to derive an upper bound for the number of iterations of the
algorithm if it converges. One may also develop other algorithms with less complexity to
solve the optimization problem (7.3). It is worth noting that relaxing the problem (7.3)
simply by ignoring the constraint (7.3d) does not lead to a desirable result. For instance,

for Case 3 in Section 7.3.1, if we adopt this relaxation, we will obtain a rank-3 S with the
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first three singular values 15.8888, 6.6526, and 1.45855.

Furthermore, many more optimization problems similar to the problem (7.1) can be
formulated and solved in the future. For instance, the design of the prototype filter based
on the characteristic matrix together with the design of the number and position of guard
subcarriers and subsymbols for maximizing spectral efficiency under OOB-radiation and

performance constraints can be studied. That is, one may want to solve the problem

max |IC|| M| (7.11a)
g, K,.M
subject to ||g|| = 1 (7.11b)
< A1
max Sa(f) <p (7.11c)
Em <, (7.11d)

where 7 and p are some positive real numbers. With some modifications, we believe that
the proposed algorithm can be used to solve the problem (7.11). One may also consider

the sum rate R as the objective function, formulating the problem

max R (7.12a)

g, .M

subject to ||g|| =1 (7.12b)
max S,(f) < p. (7.12c¢)
feBo

A constraint of the form {5 < 7 is not introduced in the problem (7.12) because per-
formance is already involved in the objective function, the sum rate R. The sum rate R
depends on the used type of receivers and channels, so the solution to the problem (7.12)

may vary case by case.
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Chapter 8

Multiple Access with Optimized

Prototype Filters

We briefly evaluate the performance of generalized frequency division multiple access
(GFDMA) [44] and compare it to that of orthogonal frequency division multiple access
(OFDMA) [36]. In particular, GFDMA with the CMCM filters, which are optimal in terms
of MSE performance, is shown to be promising. In our simulation, uplink transmission
i1s considered, and the same GFDM transmitter matrix with X = 32 and M = 15 1s
used by two users. The subcarriers used by the two users are £ = {0,1,...,14} and
K ={16,17,...,30}, respectively, and the Oth subsymbol is used as a guard symbol. For
a fair comparison, for OFDMA, we use ' = 480 and M = 1, and the subcarriers used by
the two users are I = {0, 1,...,209} and KL = {240, 241, ..., 449}, respectively, so that
the spectral efficiency of GFDMA and OFDMA is the same. We evaluate the performance
of one user while assuming that the other user has a normalized carrier frequency offset
(CFO) [36] € = 0 or 0.2 (normalized to the OFDM subcarrier spacing). The ZF receiver
under the same deep-fade-excluded Rayleigh fading channel as mentioned in Section 6.4

is used. The modulation is 16QAM, and the CP length is L = D /4.

Fig. 8.1 shows that the MSE performance of GFDMA using the Dirichlet pulse and
modified Dirichlet pulse and OFDMA are the same when ¢ = 0. However, when € = (.2,

the Dirichlet pulse performs much better than OFDMA, and the modified Dirichlet pulse
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Figure 8.1: MSE for GFDMA ZF receiver over a deep-fade-excluded Rayleigh fading
channel and the corresponding OFDMA receiver. K = 32, M = 15.
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Figure 8.2: SER for GFDMA ZF receiver over a deep-fade-excluded Rayleigh fading
channel and the corresponding OFDMA receiver. K = 32, M = 15.

performs a little better than the Dirichlet pulse, which can be explained by their OOB
leakage. The RC filter performs the worst when ¢ = 0 and 0.2 since its ZF prototype re-
ceiver filter is not frequency-localized and collects interference outside the desired band-

width [2]. Similar results can be seen in Fig. 8.2 for the SER performance. Particularly,
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when € = 0.2, the Dirichlet pulse performs much better than OFDMA, and the modified
Dirichlet pulse performs a little better than the Dirichlet pulse, which can be explained by
their OOB leakage. A difference between MSE and SER is that the Dirichlet and modi-
fied Dirichlet pulses have the same MSE performance as but better SER performance in
the higher SNR region than OFDM, which can be explained by the effect of a orthogonal
precoder on OFDM (due to convex and concave regions of a function composed of the
Q-function) [46].

These simulation results show that GFDMA using the proposed CMCM filters is
promising. According to the simulation results, we believe that GFDMA is more robust
against CFO than OFDMA. In the future, one may want to explore how CFOs influence
MSE ans SER performance in multiple access thoroughly and systematically, such as for-

mulating an optimization problem that involves CFOs.
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Chapter 9

Conclusions

In this thesis, a new matrix-based characterization of generalized frequency division multi-
plexing (GFDM) systems is proposed. The new characterization facilitates deriving prop-
erties of GFDM (transmitter) matrices which were not easily obtained under the traditional
prototype-filter point of view. The class of unitary GFDM matrices is identified through
the matrix characterization, and conditions for non-singularity of GFDM matrices can be
expressed clearly with the new characterization.

Moreover, low-complexity transceiver implementations are derived on the basis of the
characteristic matrix. Particularly, the necessary and sufficient conditions for the existence
of a form of implementation with a linearithmic complexity for an MMSE receiver are de-
rived. Such a receiver is determined to exist if the GFDM transmitter matrix is selected
to be unitary. In the case where the implementation does not exist, a low-complexity sub-
optimal MMSE receiver is proposed, and its performance approximates that of an MMSE
receiver, as shown by numerical results.

This study also reveals that prototype transmit filters minimizing the MSE perfor-
mance under the ZF or MMSE receiver over various types of channels correspond to
the class of CMCM filters, which subsequently correspond to scalar multiples of unitary
GFDM matrices. The simulation verifies the MSE optimality for the CMCM filters and
shows that their SER performance is superior to that of non-CMCM filters. Furthermore,
joint optimization on performance and OOB radiation is considered. Specifically, a fil-

ter optimization algorithm is proposed for suppressing OOB radiation while the in-band
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MSE and SER performance is maintained. The optimization problem is formulated in
terms of the proposed characteristic matrix of the GFDM transmitter matrix. Simulation
results show that under the same spectral efficiency, optimized filters perform the best
in terms of both OOB radiation and SER performance, compared to RC filters, Dirichlet
pulses, and OFDM. Finally, the advantage of GFDMA using CMCM filters, including
the Dirichlet and modified Dirichlet pulses, over OFDMA is verified through numerical
results.

In the future, the design of the prototype filter based on the characteristic matrix to-
gether with the design of the number and position of guard subcarriers and subsymbols for
maximizing spectral efficiency under OOB-radiation and performance constraints can be
studied. One may want to formulate optimization problems that directly involve carrier
frequency offset (CFO) and SER (or bit error rate). We might also design the prototype
filter based on the characteristic matrix to obtain a minimum PAPR. Moreover, issues on
optimality condition, convergence condition, and complexity reduction of the proposed
iterative algorithm for filter optimization are desirable for future study. Besides, a proof
to Hypothesis 1, which states that CMCM filters minimize the MSE under the MMSE

receiver over a statistical multipath channel, is desirable.
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Appendix A

Proof of Theorem 5

Using (3.20) and noting that 02 = 1%.0/ K, we obtain

N K-1M-1 /K 1

0

= —= . A.l
KD & & (Z |ol+,M|2> Glud? (A1

k=0 I= r=0

Let oy = 3.2 1/(|Cryrar|?). According to the Cauchy-Schwarz inequality, we have

Z| l|2

> 1[Gl

[KZ Y va ] (A2)

k=0 [=0

where the equality holds if and only if |[Gl;;|*//a; is a constant in both k and [. Using
(A.1) and (A.2), we obtain

M-1 2
2
o2 > KM%G <z; \/—) (A.3)
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Appendix B

Proof of Theorem 6

Lete = d—d be the error vector. By direct computation, we obtain that the autocorrelation

matrix R, = E{ee’’} is
R, = Es(Ip — AT (AAT +47'1p)'A). (B.1)

Plugging (2.5) into (B.1) yields R, = (Wi @ W )D.(Wy; @ W), where D, isa D x D
diagonal matrix with D] ix w1 = No/([[Gllz, +771), VO <K < K,0 <1 < M.
Since the magnitude of each entry of (WX @ W) is 1/v/D, we obtainV 0 < k < K,0 <

m< M,

K-1M-1

No/D
T = Relbrmr jrmic = Z Z . _ /D Fay (B.2)
=0 1=0 k'l i

According to the Cauchy-Schwarz inequality, we have

> D?, (B.3)

P Dre
Kl |[G] z',l + .

B!

(I

k'l

where the equality holds if and only if |[G]x | is a constant in both &” and [. Thus,

V0<k<KO<m<M (B.4)
750

and the result follows from (6.2).

&3

d0i:10.6342/NTU201701053



84

d0i:10.6342/NTU201701053



Appendix C

Proof of Corollaries 1 and 2

According to (6.3), we have a,im =E&yNy, V0 < k< K,0 <m < M under the ZF
receiver over the AWGN channel. Thus, o}, is a constant in both & and 7 under this
scenario. The statement for the other two scenarios can be proved in a similar way by

noting (6.6) and (B.2), respectively.
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