
doi: 10.6342/NTU201704114

國立台灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

半中心化的區塊鏈智能合約：以太坊區塊鏈上的中心

化驗證及鏈下計算的智能合約

Semi-Centralized Blockchain Smart Contract : Smart

Contract of Centralized verification and Off-Chain

Execution on Ethereum Blockchain

林修平

Hsiu-Ping Lin

指導教授： 廖世偉 博士

Advisor: Dr. Shih-Wei Liao

中華民國 106 年 7 月
July 2017

doi: 10.6342/NTU201704114

Acknowledgments

首先感謝廖世偉教授讓我有機會接觸到區塊鏈。當我一上研究所的時候，其實我

還不太清楚自己未來的方向，直到我開始接觸比特幣及乙太鏈之後，我開始了解

到去中心化的重要性、會對社會、經濟、權力結構產生的影響，並深深為此著

迷，這也是我第一次這麼確定未來的計劃。

其次感謝ABCLAB的各位，水深火熱之中的夥伴，大家都過得很辛苦但還是撐過

來了，感謝大陸同胞志峰、南部同胞德楷和天龍公子宜霖帶給我這麼多歡樂，當

然還有論文的各種建議。

最後感謝我的家人與女友在這段期間對我的支持，很多時候都是靠著你們的鼓勵

我才沒打算延畢。

i

doi: 10.6342/NTU201704114

摘摘摘要要要

部署在區塊鏈上的智能合約強調的是它的去中心化優勢。但在區塊鏈下一波的革

新技術尚未成熟落地前，隨著加密貨幣日漸走紅，區塊鏈上的虛擬貨幣價值迅速

攀升，造成以該鏈貨幣為計算支付單位的區塊鏈技術如以太坊面臨開發和執行成

本暴增。

在這個情況下，我們提出一個半中心化的智能合約，將原本區塊鏈上去中心化的

智能合約執行方式，搬至鏈下以中心化的方式來執行和驗證。目標是讓某些應用

可以在不犧牲可驗證性及資料不可篡改性的前提下，藉由部分的取捨來提高執行

效率和降低執行成本。

我們並非提出一個新的共識演算法或是分片技術來提高區塊鏈的每秒交易量或每

秒計算量。我們提出的是一個不同的合約執行方式，讓合約使用者可以在中心

化、去中心化、執行效率和每秒計算量限制之間權衡，選擇自己合約適合的執行

方式。

關關關鍵鍵鍵字字字：：：區塊鏈、以太坊、Gcoin、去中心化、智能合約、鏈下計算

ii

doi: 10.6342/NTU201704114

Abstract

Smart contract deployed on Blockchain has the advantage of decentralization.

However, with the increasing popularity and surging market cap of Blockchain tech-

nology such as Ethereum, it has become much more expensive and difficult to deploy

and execute a smart contract on Blockchain.

We propose a semi-centralized smart contract architecture to move the smart

contract execution and verification away from the Ethereum blockchain. We hope

applications can improve efficiency and save execution cost of their smart contract

by balancing the trade-off between centralization and decentralization while retain

computation verifiability and tamper-proof data.

We didn’t propose a new consensus algorithm or sharding scheme to increase

transaction-per-second or compuation-per-second on Blockchain. What we proposed

is a different approach to execute smart contract. User gets to decide between

different property he desires such as centralization, decentralization, efficiency and

computation-per-second and choose the best way to execute his smart contract.

Key Words: Blockchain, Ethereum, Gcoin, Decentralization, Smart Contract,

Off-Chain Computation

iii

doi: 10.6342/NTU201704114

iv

doi: 10.6342/NTU201704114

Contents

口口口試試試委委委員員員會會會審審審定定定書書書 i

Acknowledgments i

摘摘摘要要要 ii

Abstract iii

List of Figures viii

List of Tables ix

Chapter 1 Introduction 1

1.1 Research background . 1

1.2 Research motivation . 3

Chapter 2 Background 5

2.1 Blockchain . 5

2.2 Bitcoin . 6

v

doi: 10.6342/NTU201704114

2.3 Ethereum . 7

2.3.1 Public key, Private key and Address 7

2.3.2 Gas, Gas Price and Gas Limit 8

2.3.3 Smart contract . 8

2.4 Gcoin . 9

2.5 Hyperledger . 10

2.6 Docker . 10

Chapter 3 Approach 11

3.1 Initiating Contract . 13

3.2 Executing contract using Docker and submitting result 13

3.2.1 Save whole and submit . 14

3.2.2 Save storage and submit . 15

3.3 Gathering results and deriving final result 15

3.3.1 Random judge . 16

3.4 Overall architecture . 16

Chapter 4 Analysis 18

4.1 Gas cost . 18

4.1.1 Batching transactions . 18

4.2 Gas limit . 19

Chapter 5 Conclusion 22

vi

doi: 10.6342/NTU201704114

Chapter 6 Future Work 24

Bibliography 26

vii

doi: 10.6342/NTU201704114

List of Figures

3.1 Basic work flow . 12

3.2 Essential information stored in on-chain contract 14

3.3 Recording hash of the storage . 15

3.4 Overall architecture . 17

4.1 Batching requests to save gas cost. 21

viii

doi: 10.6342/NTU201704114

List of Tables

4.1 Gas cost of different operation in on-chain contract. 19

4.2 Gas cost of basic operation. 19

4.3 Gas cost of expensive computation. 21

ix

doi: 10.6342/NTU201704114

Chapter 1

Introduction

1.1 Research background

As Blockchain technology becomes popular and mature over the past few years, more

and more applications and use cases are being experimented and tested out on dif-

ferent Blockchain platforms. Because some use cases such as financial settlement[4],

advertisement[6], regulation[1] and others[3] that required complex execution logic,

a more capable and sophisticated-designed Blockchain platform is strongly needed.

And this is where Blockchain platforms with Turing-complete characteristic like

Ethereum[8] comes into play.

Founding members of Ethereum builds the Ethereum Virtual Machine from

scratch. Programs running on Ethereum have no limits on either its program size or

storage size. Compared with limited capability of Bitcoin scripts, Ethereum Virtual

Machine makes Ethereum more than just a platform for store of value or simple

1

doi: 10.6342/NTU201704114

2 CHAPTER 1. INTRODUCTION

value transfer. Being a Turing-complete system means you can in fact simulate a

computer on top of it. We can think of Ethereum as a distributed world computer.

Turing-completeness of Ethereum enables users to write smart contracts like a

simple escrow, a vault or whatever business model desired. However, performance

and scalability issues of Ethereum have become significant problems for both devel-

opers and users. Every node in the network has to verify transactions itself which

means one’s smart contract is executed not only by himself but also by rest of the

network. This design has raised many concerns regarding its scalability and privacy.

Also, as public blockchains like Ethereum and Bitcoin are gaining enormous

attention from investors, transaction fee continues to surge and reaches new height.

As the time of writing, price of one bitcoin has tripled while price of one ether is

now almost ten times higher than it was, even just three months ago. This has

made executing a smart contract more costly both for developers and users. It also

means that developers will have to spend more efforts on trimming the size of their

program.

On the other hand, Gcoin[2] Blockchain uses a different approach to build it’s

smart contract service. Instead of having contracts executed by every node in the

network, users who want to start a smart contract select their counter parties to

be the executors of their smart contracts. We will refer to these smart contract

executors as validators in the following sections. All executions are recorded on

Gcoin Blockchain so every interested individual can execute the contract and validate

the results themselves by tracing and repeating transactions in order. This approach

shifts the burden from every node to a constant number of nodes.

doi: 10.6342/NTU201704114

1.2. RESEARCH MOTIVATION 3

1.2 Research motivation

Smart contract validator architecture in Gcoin Blockchain improves efficiency and

privacy by

• having only designated validators execute the smart contract and

• running the execution off-chain

Inspired by this design, we hope it can be implemented on Ethereum as well to

increase processing speed of transactions, reduce on-chain computation and in the

end have a overall faster and more stable platform for smart contract services.

Once we move computation off the blockchain, computation cost will drop and

transaction fee cost will also decrease. In the benefit of this, we either save the

cost or we can lift the transaction fee up to have our transaction committed into

blockchain faster.

And that’s what we propose to do - move the computation off the blockchain.

But instead of using EVM to execute smart contracts like what Gcoin smart contract

architecture does, We propose to use Docker to execute our smart contract. We

do this for three reasons. First, in Ethereum there are only two programming

languages to write a smart contract which are Solidity and Serpent. Solidity is

under full development and is often updated in a rather fast pace. Serpent on the

other hand has not been updated for a long time. Using Docker to execute smart

contract, users get to choose which programming language they prefer to design their

smart contract. This introduces a whole new space for smart contract development.

doi: 10.6342/NTU201704114

4 CHAPTER 1. INTRODUCTION

Not only can smart contract now be designed by a more mature and battle-tested

programming language but also be developed in a more friendly environment where

a great deal of SDK and IDE are provided. Second, Docker container provides

an isolated environment for arbitrary smart contract execution. And third, it’s

conveniency for cross-platform development and tremendously lightweight virtual

machine makes executing transactions a lot faster compared with a typical virtual

machine.

doi: 10.6342/NTU201704114

Chapter 2

Background

2.1 Blockchain

Blockchain the word itself basically explains the essence which lies with in - blocks

and chain. A blockchain is a series of records arranged in batches called blocks

that use cryptographic method to link one to another. Each block references and

identifies the previous block by a hash value created from hashing function. One

after another, forms a chain, hence the name.

There are two important characteristics of blockchain: decentralization and im-

mutability.

• Decentralization: Unlike most existing transactional systems, which require

a centralized system run by a trusted authority, blockchain distributes the

system of record (typically referred to as a distributed ledger. This ledger is

not stored in a master location or managed by any particular entity. Instead,

5

doi: 10.6342/NTU201704114

6 CHAPTER 2. BACKGROUND

it exists on thousands of computers across the world at the same time in such a

way that anybody with an interest can maintain a copy of it. Decentralization

makes it so that no single entity can tamper the record, commit a fraud without

getting detected.

• Immutability: With the aid of hashing function, Blockchain can preserve the

integrity of its record. Instead of altering a single data entity like traditional

centralized database, old transactions are preserved forever and new transac-

tions are added to the ledger irreversibly. Anyone on the network can check

that ledger and see the same transaction history as everyone else.

Distributed ledgers hold the potential of streamlining many financial institution

payment mechanisms. A blockchain would require a single payment to be sent from

one institution to another, with no need for intermediary institutions that vouch

for preceding institution. Compared with traditional payment system where user

needs to pay every intermediary institution for its vouching service, employing a

blockchain can significantly reduce the cost. It would, as another benefit, reduce

the time required for an international payment from days to minutes.

2.2 Bitcoin

Introduced by whose true identity is still unknown - Satoshi Nakamoto, Bitcoin[5]

is the world’s first cryptocurrency whose value is not endorsed by any central

bank, but is based on the perception of its users. It was introduced as a peer-

to-peer electronic cash system that does not rely on a central authority to issue

doi: 10.6342/NTU201704114

2.3. ETHEREUM 7

currency or authorize transactions. A decentralized network of peers can provide

the infrastructure to maintain an immutable, censorship-resistant and public ledger

that stores value on the network. It’s also the stepping-stone of the Blockchain

technology.

2.3 Ethereum

Ethereum is one of the world’s most popular cryptocurrency. It was created by

Vitalik Buterin, formalized by Gavin Wood and crowdfunded to kick-start develop-

ment. Their vision was to introduce a global computer that can store and execute

programs. Some of these programs are called smart contracts[7] as the conditions

of an agreement between two or more parties are enforced using the same consen-

sus that secures the blockchain. Similarly to Bitcoin, it relies upon a decentral-

ized network of peers and permissionless governance to provide an immutable and

censorship-resistant blockchain.

2.3.1 Public key, Private key and Address

Public key and private key come in pairs. With private key, one can sign a message

and others can check the message signed against signer’s public key to see if the

signature is valid. Public key can be seen as one’s pseudo identity, but usually

it’s encoded as an address which is much shorter and human-readable.

doi: 10.6342/NTU201704114

8 CHAPTER 2. BACKGROUND

2.3.2 Gas, Gas Price and Gas Limit

As a consequence of Turing-completeness, one can not know how long it would

take to run the program. It may be running forever in a for-loop. So in order to

prevent users from running a program forever, each operation in Ethereum Virtual

Machine is priced base on how many CPU cycles it takes and denominated in Gas.

For example, writing to a storage slot costs you 20000 gas. And how fast your

transaction will be part of the history depends on the gas price you choose, namely

how much you pay for per unit of gas. Finally there’s the gas limit which prevents

somebody rich from clogging the network by running a contract with mega for-loop.

2.3.3 Smart contract

This concept[7] was first envisioned by Nick Szabo back in 1994 and he provides the

following definition:

“A smart contract is a computerized transaction protocol that executes the

terms of a contract. The general objectives are to satisfy common contractual con-

ditions (such as payment terms, liens, confidentiality, and even enforcement), min-

imize exceptions both malicious and accidental, and minimize the need for trusted

intermediaries. Related economic goals include lowering fraud loss, arbitrations and

enforcement costs, and other transaction costs.”

Smart contract is one of the important features in Ethereum. Effectively, all net-

work nodes deterministically perform the contract’s computation using their copy

of the Ethereum Virtual Machine in order to reach the same final state. This repe-

doi: 10.6342/NTU201704114

2.4. GCOIN 9

tition of computation permits the network to directly enforce the correct execution

of a contract and results in publicly verifiable contracts. The smart contract code

is compiled into byte code and is composed of Ethereum-specific operation-codes

before it is stored in the Blockchain. Contracts are stateful and their constructor is

called upon creation to set its initial state. A persistent memory area called stor-

age is available to store the contract’s data and maintain its state. Furthermore,

contracts are event-driven and changing its state requires a user to invoke one of its

functions.

2.4 Gcoin

Gcoin adopts permissioned blockchains and a multi-role structure that allows it to

closely model real-world systems. Through the implementation of the Gcoin system,

traditional financial instruments can be integrated without introducing centralized

intermediary risk, so the multi-role structure can meet a variety of business needs and

be used for major national public projects. Powered by blockchain technology, Gcoin

system can support high frequency trading and contract versatility. Gcoin system is

capable of supporting sophisticated financial market and e-commerce applications

within a decentralized structure. Gcoin provides smart contract capability that is

optionally extensible for the customer need. Most Bitcoin miners will accept only

standard transactions while Gcoin creates more flexibility for its customers.

doi: 10.6342/NTU201704114

10 CHAPTER 2. BACKGROUND

2.5 Hyperledger

Hyperledger is an open source project hosted by Linux Foundation. Built on Open-

blockchain developed by IBM, it now has several branches in full swing. Instead of

building a blockchain for all kinds of use cases, Hyperledger cooperates with leading

companies in different industries to bring innovation and adequate architecture best

suited for the underlying industry.

2.6 Docker

In essence, the Docker eliminates “works on my machine” problems when collab-

orating on code with co-workers. Using containers, everything required to make a

piece of software run is packaged into isolated containers. Unlike VMs, containers

do not bundle a full operating system - only libraries and settings required to make

the software work are needed. This makes for efficient, lightweight, self-contained

systems and guarantees that software will always run the same, regardless of where

it’s deployed. Each docker image or docker container has it’s own identifier which

is computed by hashing the whole image or the whole container.

doi: 10.6342/NTU201704114

Chapter 3

Approach

There are two pieces of code. One serves as a verifiable public record and is exe-

cuted on-chain. The other implements the execution logic of user’s contract and

is executed off-chain. We will use the term ”off-chain smart contract” to refer to

the smart contract program being executed off-chain and the term ”on-chain smart

contract” to refer to the smart contract deployed and executed on Ethereum. An

off-chain smart contract is executed in a docker container while an on-chain smart

contract is executed in Ethereum Virtual Machine. Figure 3.1 illustrate a basic work

flow.

In short, there is a user who wants to set up a contract and there are valida-

tors who will execute the contract and provide result. We use the on-chain smart

contract to record some basic and related information of the contract. If validators

agree to participate, they will send a transaction to the on-chain smart contract to

confirm. After it’s all set, user submits his request and validator execute the con-

11

doi: 10.6342/NTU201704114

12 CHAPTER 3. APPROACH

tract according to the request. A period in which all validators execute according

to a request is called one round. In each round, user will first send a transaction to

the on-chain smart contract to submit his request. Then validators will fetch the

request and execute the off-chain smart contract using Docker container. After that,

validators submit the result back to the on-chain smart contract. Finally, after all

results are submitted or after a predefined amount of time had passed, final result

is determined by majority of the results and signify the end of this round. In each

following section, we will have a walkthrough on each step along with an example.

Figure 3.1: Basic work flow

doi: 10.6342/NTU201704114

3.1. INITIATING CONTRACT 13

3.1 Initiating Contract

We can begin with an example of a user trying to make a will using smart contract.

He first looks for related entities like friends, banks or representatives from Gov-

ernment and ask them to be the executors of his will. And of course user himself

can be an executor as well. After the deal is made, together user and executors

come up with one off-chain smart contract and one on-chain smart contract. The

on-chain smart contract is deployed onto Ethereum blockchain with their public

keys included in the contract. We also record a hash value as the identifier of docker

image of the off-chain smart contract. We will be calling the executors using the

term “validators”. See line No.2 to line No.4 in Fig. 3.2.

And we need to record every request from user and every execution result from

validators. See line No.6 to line No.12 in Fig. 3.2. The variable “currentRound”

is used to keep track of which round of execution are we at.

3.2 Executing contract using Docker and submit-

ting result

Validators should have their blockchain client software watching for events triggered

by the on-chain smart contract. Every time user submits a request, validators will be

notified. Then they fetch the request and start the docker image up with the request

as input. There are two different approaches to execute the off-chain smart contract.

First one is saving the whole docker container as a new image after execution and

doi: 10.6342/NTU201704114

14 CHAPTER 3. APPROACH

Figure 3.2: Essential information stored in on-chain contract

submits the image identifier as result. Second one is updating the storage of the

off-chain contract, hashing the storage and submits the hash value as result.

3.2.1 Save whole and submit

From the on-chain contract, validator fetches the new request and the final result

from last round. Then uses the final result as an identifier to retrieve the docker

image from remote repository. Then he executes the off-chain smart contract along

with the request as input, saves the whole container as a new image and submits

the identifier of the new image as result. This approach has the advantage of easy

implementation, but at the cost of creating new image on every request.

doi: 10.6342/NTU201704114

3.3. GATHERING RESULTS AND DERIVING FINAL RESULT 15

3.2.2 Save storage and submit

From the on-chain contract, validator first fetches the imageHash value and the

final result from last round. Then he respectively retrieves the docker image using

imageHash value and the storage using final result as an identifier from remote

repository. In this case, we need to store the hash of storage in on-chain smart

contract. See Fig. 3.3

Then validator executes the off-chain smart contract along with the request as

input. After the execution, he saves the storage and submits the hash of the stor-

age as result. This approach has the advantage of a reusable image which could

potentially spare every participants enormous amount of space.

Figure 3.3: Recording hash of the storage

3.3 Gathering results and deriving final result

After validators have submitted their result respectively, the final result is decided by

majority result. This approach is rather intuitive and simple, but problem will rise

if there’s a disagreement on the final result. One way to handle the disagreement

is that we make the contract open to public and allow anybody to run the off-chain

doi: 10.6342/NTU201704114

16 CHAPTER 3. APPROACH

contract and verify the result. This way, the outsiders can serve as judges. Next is

to provide with right incentives so that the judicial system won’t be abused.

3.3.1 Random judge

First user must provide an amount of money as bounty for outsiders to verify the

results. And outsiders also have to pay a certain amount of money as a stake in

order to join and verify. The stake paid by outsiders will be confiscated if they

misbehave or present with wrong results. And if no other results are submitted

after a given amount of time the bounty goes to the judge. But the trade-off here

is that no privacy is preserved for user’s contract.

3.4 Overall architecture

Figure 3.4 shows the overall architecture of our design. First, there are on-chain

execution and off-chain execution and two types of role, user and validator. Second,

validator will be watching for updates from their server. Every time user submits

a new request validator will be notified. Then validator will fetch the request and

execute the off-chain contract with input from request. Finally, validators submit

their result back to on-chain contract and derive a final result.

doi: 10.6342/NTU201704114

3.4. OVERALL ARCHITECTURE 17

Figure 3.4: Overall architecture

doi: 10.6342/NTU201704114

Chapter 4

Analysis

4.1 Gas cost

One of the key features that makes our design advantageous is the gas cost saving.

The most expensive operation in Ethereum Virtual Machine is the storage operation.

And most operations in our on-chain contract is exactly storage operation and this

is inevitable because we need to record essential informations on-chain.

As shown in Table 4.1, gas cost for user to submit his request is around 60000

and gas cost for validators to submit their result is around 80000. Note that there

could be a slight improvement on gas cost of result submitting as shown below.

4.1.1 Batching transactions

Note that this technique is not related to gas cost saving by the off-chain execution.

It’s simply a way to reduce gas cost regarding on-chain transactions.

18

doi: 10.6342/NTU201704114

4.2. GAS LIMIT 19

Table 4.1: Gas cost of different operation in on-chain contract.

Operation avg. gas cost

Deploy contract 1019197

Submit request 63691

Submit result 82307

Table 4.2: Gas cost of basic operation.

Operation avg. gas cost

basic cost/tx 21000

SSTORE 20000

ecrecover 5176

The idea is that we can batch these results along with validators’ signatures

together out-of-band and send in a single transaction and have these signatures

verified on-chain.

In Table 4.2, we can see that gas cost of verifying elliptic signature using a

library is around 5000, and basic gas cost of launching one transaction is around

21000, hence we can save about 16000 gas per validator. See Figure 4.1.

4.2 Gas limit

Besides the gas cost saving, there is another key advantage in our design - no gas

limit. Total off-chain computation is not bounded by block gas limit of the un-

doi: 10.6342/NTU201704114

20 CHAPTER 4. ANALYSIS

derlying blockchain. This is useful when execution of your contract require huge

computation resource. For example, frequently updating a bunch of storage data

when you are a token issuer. You either exceed the gas limit or divide the routine

into sub-routine and pay a significant amount of money in extra. Another example

is expensive computation like RSA verification, zero knowledge proof computation

or any state-of-the-art cryptographic technologies. See Table 4.3.

But there’s a potential problem hiding behind this advantage. Once the block

gas limit is removed, validators will be facing the unsolvable ”halting problem”. Ei-

ther caused by a naive mistake in a loosely verified program or maliciously fabricated

program. Validators will be wasting possibly infinite amount of computation and

time on a never-ending execution of the off-chain contract.

This could be mitigated in two way.

• One quick and easy solution is to put a cap on time used in each execution,

but then it would be just another synonym of block gas limit.

• A better solution is to statically analyze the code of the off-chain smart con-

tract beforehand.

This would of course requires the help of the still developing technology. Some-

thing worth noting is that Hyperledger is confronted with the same problem and they

try to work it out in another way in which they introduce a role called‘endorser’

to endorse user’s transaction. The solution somewhat relies on trusting the en-

dorsers and hence further increases the potential centralization risk.

doi: 10.6342/NTU201704114

4.2. GAS LIMIT 21

Table 4.3: Gas cost of expensive computation.

Operation avg. cost

SHA-512 200000gas

EC addition 30000 CPU cycles

EC multiply 940000 CPU cycles

EC pairing(k points) 60000*k + 4000 gas

Figure 4.1: Batching requests to save gas cost.

doi: 10.6342/NTU201704114

Chapter 5

Conclusion

It’s not cheap to execute smart contract on a public blockchain like Ethereum

and doing so is also met with the problem of low throughput because executions per

second are bounded by block gas limit. Despite the problems mentioned, community

has long been yearning for using the existing programming language like JAVA, C

or GO to develop their smart contract.

Hence we propose the idea of moving smart contract execution away from blockchain

and into a Docker container. We can benefit from the many great features Docker

provided which includes portability and fast deployment across different host ma-

chines. Also we don’t have to write our smart contract using limited tools provided

by the underlying blockchain ecosystem, but with other more well developed pro-

gramming languages.

In our design, the on-chain smart contract only stores user requests and the hash

of docker images or the hash of storage depending on which approach in chapter

22

doi: 10.6342/NTU201704114

23

3 you implement. The hash value is used as an identifier of docker image and an

integrity check of the image in case of incomplete transmission or tampering.

These gains do not come free, however, but at the cost of

• potential threat of non-stoping execution by not carefully designed or ill-

intended program

• centralization risk

Blockchain technology starts from Bitcoin as a digital currency with scripts lim-

ited in capability, to all kinds of altcoins such as Gcoin which stands out with its

innovation such as multi-color-currency, to Ethereum as a platform capable of run-

ning Turing-complete program.

People start with some simple contracts like Lottery or Casino. Further there’s

insurance or prediction market built as a smart contract and even a Decentralized

Automated Organization (DAO) which took away all the attention in June 2016.

As people build bigger and fancier smart contracts, size and complexity of the

code also grows significantly. In spite of many innovations and works done on

scalability and privacy issues, there’s no sign of any perfect solution in the short

term. We envision eventually these issues will be solved. But still what we propose

is, with some tradeoff, one can get rid off these shackles and focus on building more

complex platform and contract at the moment.

doi: 10.6342/NTU201704114

Chapter 6

Future Work

There are a few challenges to the current implementation. First one is the privacy of

smart contract. Since it’s fair to assume that what’s put on the blockchain is no

secret at all, we should not assume the hash of docker images or the hash of storages

recorded in the on-chain smart contract will not lead outsiders to the actual image

or storage. One circumvention is to restrict the access to these resources.

However, restricting the access to docker images or storages means keeping these

resources private and therefore pose a centralization risk of losing these resources

due to datacenter or connection failure.

Next is the big challenge of verifying correctness of the off-chain contract. There

are several ways to improve the verification process. For example, designing off-chain

smart contract in functional programming languages like OCaml to make it more

suitable for doing a formal verification on the program. Static analysis of program

code helps making sure that the program executes as intended and searching for

24

doi: 10.6342/NTU201704114

25

potential loop hole like reentrancy problem.

There is also the need for light client friendliness. If no light client techniques

implemented, every participant will need to become a full node and retrieve the

docker images and the storage in order to verify the results. Thus enabling clients

with light-weight device to engage with smart contract and expand the coverage of

users in our design.

doi: 10.6342/NTU201704114

Bibliography

[1] J. S. CERMEO. Blockchain in financial services: Regulatory landscape and future

challenges for its commercial application, 2016. [Online; accessed 20-July-2017].

[2] Diqi. Gcoin white paper, 2016. [Online; accessed 22-July-2017].

[3] A. T. Don Tapscott. Realizing the potential of blockchain - a multistakeholder ap-

proach to the stewardship of blockchain and cryptocurrencies, 2017. [Online; accessed

20-July-2017].

[4] M. Hearn. Corda: A distributed ledger, 2016. [Online; accessed 20-July-2017].

[5] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. [Online; accessed

22-July-2017].

[6] B. Software. Basic attention token (bat) - blockchain based digital advertising, 2017.

[Online; accessed 20-July-2017].

[7] N. J. Szabo. Smart contracts, 1994. [Online; accessed 22-July-2017].

[8] G. Wood. Ethereum: A secure decentralised generalised transaction ledger, 2015.

[Online; accessed 20-July-2017].

26

