B 3L 2 KL EME AL T TR
%8 13 T

Department of Electrical Engineering

College of Electrical Engineering and Computer Science
National Taiwan University

Master Thesis

A R BT IR 5 B R WAL A 25 94
AT AL A B F PR
Cross-View Action Recognition Using View-Invariant Pose Feature

Learned from Synthetic Data with Domain Adaptation

Bith %

Yu-Huan Yang

FEEHIR s L
Advisor: Li-Chen Fu, Ph.D.

&R ER 107 4 8 A
August, 2018

do0i:10.6342/NTU201802626

B 3L & KRR L 2% X
DREBTELE
ERERBEHBRAABREREE LHAALZTHH
BATE R A E1F P18

Cross-View Action Recognition Using View-Invariant Pose Feature
Learned from Synthetic Data with Domain Adaptation

Xtk BHEE E (23 R05921001) AR EEALTHT
BE2ALR ﬁkzzﬁa:ﬂw E Wéa 107 %07 B 31 B A ATF &K%
BEBLEBE IRXEM 0 45 L3R EH

oREE /lqs 3 Zx\((#2)

) (35 %34%)

/VW% ’LD/ CJ/Y\/ R‘Z’-t’} \
T &R %%m@

.f/? 7 e
v 27
% x4z % X é . (£2)

Wl
T

HEBAN AT ARG ERER AT RENEY - BARRRBRI T L
H RO A R RS B BRSO IR AIA S T —F e R - Lk
%K TEREBYFEY -

B R AR RO TR G R HAL RREN BRI R - kA
FRAPIRM RN H T RS sk 0 260 7P BT 09 4F 37 O SUR B AF R R AT
QA H R TRb I RERPFE AR FXE LB REET o A o A
EMARBIHGREA RS AN TR B AT BT —EBTHS

RFE By 0 £ T BER meeting 0 LS F BT~ 0HF 5 B ACL H AR FAE

HE B BRI FE-XE-BE » Vicente ~ Cesar * #8 3£ &) iy
RA RIS KR —ARIE - 2F > Ak RS2 A 0 BPAEBERA TR
WERABBEICEF M St 0 BT Bk Ee o RAHR L RE

AINHHRE R KRBT KM TH S F BT R G me) &% ERMT
UEZECERAR LT BARHERD GANELTFTH ERREEZT ooyipz =
ERRMEE RN E R R R L — %@ b PB AB 1S IR T SAE R 4 R &
BB B oy R R T R o

BARRGEHOER ATHRHACH AL WHAMGEE S US> BB
FRAOUHHBRT FLARNBHAAZ AL FTAHBOBA ARG DY
B AT B9 PLEK o

#%E July 8, 2018

do0i:10.6342/NTU201802626

HE

HFRRBE TR TRAMEEGBMTEATRRARS BE B ARLAF R R
ERF B RAME) HERE REBRBUARER A% -EREEZRAYREA
N B R SN B IR R) 383 R T AR B B AR A AT S R A AR R BBk B o

ERWmXF BALE T —EEMAANEFFBAETERADEHR 7
— @ A RE A E AR R E TR AL RRAREBEE RN
RO o R B eI HHMRBUE A E R R E S AT QEBE R A RRAA A
MES BB T OHEMEMT AINREEOFEBVNEERANELAAY
BER ABREMREEHRNENE THE R D G RAREN T Bt b s
BT REET —BESRAGESTHE AEBRE P RATHE AR 38 &K AT

ARSI AT HH R AN LE B A EBRBIREEIT S RANREDRIH -

-

BAIREBEROTRXEMA LY EREHE LETEMAALLHBNET
o B TG EREHBIET BN Loy A BN RAVRA TARBGEE 091
R AR SL AR E B —EEHETURA L SR EF 7 Han #Fhk
SR S AT T A A AR e B AR AL o F BRI RV ATIR ey ok
FEERENHG S RASERRE LEARLRT REKXKLBRA - 3 B F) o

AT H 5 ERIFO T % -

BisEF - Pl BARA -~ SREN AABREE

II

do0i:10.6342/NTU201802626

ABSTRACT

Human action understanding from videos has raised lots of attention in computer
vision recently because of its wide applications, such as human-robot interaction, smart
home, health care, and surveillance systems. Recognizing human activities from different
viewpoints is still a challenging problem since human shapes appear quite differently
from different viewpoints.

In this thesis, we learn a View-Invariant Pose (VIP) feature representation for cross-
view action recognition. Besides, considering privacy issue, we adopt depth video rather
than RGB video as input to our system. The proposed VIP feature encoder is a deep
Convolutional Neural Network (CNN) that transfers human poses from different
viewpoints to a shared high-level feature space. Learning such a deep model requires a
large corpus of multi-view data which is very expensive to collect and label. Therefore,
we synthesize a Multi-View Pose (MVP) dataset by fitting human physical models with
real motion capture data in the simulators and then render depth images from multiple
viewpoints.

The VIP feature is learned from the synthetic MVP dataset in an unsupervised way.
Moreover, domain adaptation is employed to ensure the transferability from synthetic
data to real data such that the domain difference is minimized. An action can be
considered as a sequence of poses and the temporal progress is learned and modeled by
Long Short-Term Memory (LSTM). In the experimental parts, our method is applied on
two benchmark datasets of multi-view 3D human action and achieves superior
performance when compared with baseline models as well as promising results when
compared with several state-of-the-arts.

Keywords: action recognition, cross-view, synthetic data, domain adaptation

III

do0i:10.6342/NTU201802626

TABLE OF CONTENTS

R B B B e et e #
5 OO OO UTUOUURUURPR . S I
BB et b et a ettt b sttt sttt e bt et et ns s ese e I
ABSTRACT ...ttt sttt ettt ettt ettt et e e eaee bt et e saeenneenees 111
TABLE OF CONTENTS ..ottt st v
LIST OF FIGURES ...ttt s VI
LIST OF TABLES ...ttt sttt ettt et aeeneesneenae s X
Chapter 1 INtrodUCtiONccceeeceveressseressnrcssnrcsserssssnssssssssssssssssssssssssssssssssssasssssassses 1
Ll MOTIVATION .ttt ettt ettt e 1

1.2 Literature REeVIEW.........cooiiiiiiiiiiiiiiiieieeeceee e 3
1.2.1 Action Recognition with Deep Neural Networks..........c.ccceveenieeienne 3

1.2.2 Cross-View Action ReCOGNItIONeeevvvieerivieeieiieeiieeeiieeeiieeeiee e 4

1.2.3 Domain Adaptation..........ccceceeeeiiieeriiieeiiieerieeereeeeiree e e eraeesveeeeneees 7

1.3 CONIIDULIONS. ..cuetiiiiieiieeiiete ettt 8

1.4 ThesiS OTganiZatiOnccceeerueeeriieerieeenieeerieeesreessereeesreesseeesseeesseeennnes 8
Chapter 2 Preliminaries......ceccccverccisencsssercssersssnnsssssssssssssssssssssssssssssssssasssssasssssases 10
2.1 Cluster Analysis and HDBSCANcccociiiiiiiiieeieeeeeeeeee e 10

2.2 Convolutional Neural NetWork...........cccceeiiiniiiiiiniiiiiiccicceeeeeen 14
2.2.1 Convolutional Layer.........cccvuveeiiiieeiiieciieeciee et 16

2.2.2 Xception NetWOTrKooeviiieiiieiiiieeieecite et 17

2.3 Recurrent Neural Network and Long Short-Term Memory...........ccccceuueeee. 19

2.4 Generative Adversarial Network.........cccccooviiiiiiiiiniiiiicceeee, 21

2.5 Domain Adaptationc.cceccueeeiiieeiieieeiieerieeesieeesieeestee e e eereesraeesaee e 22

v

do0i:10.6342/NTU201802626

Chapter 3~ MethodolOZYccceeevveriniveicnsnrcssnicssnrcsssessssssssssssssssasssssasssssssssssasssssasss 25

3.1 Synthesize a Multi-View Pose Datasetcccoevevveeriieeniieciiieertecsiieene 25
3.1.1 Build a POSe DIiCtiONaryc.ccevvieeriieeiiieeieeeieeeiee e 26

3.1.2 Create 3D Human Modelscccooiiiniiniiiiiiiiiiicnicceceeeee, 29

3.1.3 Render Depth Imagesccceeviiieiiieeiiiecieeeeeeeeee e 31

3.2 Learn a View-Invariant Pose Feature..........c.cccoceiiiniiniiniiniinee 34
3.2.1 Unsupervised Learning........c.cceecveeevieeeriieiiiieeieeeieeeieeesveeesnee e 35

3.2.2 Adversarial Domain Adaptation..........ccceeevveeevieeniieeniieeeie e 38

3.3 Model Temporal INformation...........cccccueeeviieriieerciieeiie e 43
Chapter 4 EXPEIiMEeNtScccveeecrveressrercsssnrcssnrossssssssssssssssssssssssssasssssasssssasssssasssssases 45
4.1 Action Datasetscovueiiiiiiiiiieiiiee e e 45
4.1.1 NTU RGB+D Action Recognition Datasetcccceeevveereveenneennee. 45

4.1.2 UWA 3D Multi-View Activity Il Datasetcccceevvveevveencieenireenne. 47

4.2 Implementation Details.........ccceeiiiieiiiiieiiiiieiieeee e 48
4.2.1 Synthesize a Multi-View Pose Dataset...........ccccceeevvieeriieniieenineenne, 49

4.2.2 Architecture DeSi@N.......cceeeiieeriiiieiiieeriie ettt et 50

4.2.3 Training Detailscceeeiiiiiiiieeiiieeeece e 51

4.3 Cross-View Pose Classificationcocueerierieinieniieenieiiceieeieeeeeeeen 53

4.4 Action Recognition Resultscccccuiieriiieniiiiniiieeecee e 55
4.4.1 Action Recognition Pipeline.........ccccoeeriiiiniiiieniiiiiiieeeeeeeeeee 57

4.42 The Result of NTU RGB+D Action Recognition Dataset.................. 58

4.43 The Result of UWA 3D Multi-View Activity Il Dataset 59
Chapter S Conclusion and Future WOrKScociceceicnceicssnicssanscssanssssassssasssssanes 62
REFERENCE ...ttt ettt sttt ettt et st e saeeneas 63

\%

do0i:10.6342/NTU201802626

LIST OF FIGURES

Figure 1-1 Viewpoint variations in NTU RGB+D action recognition dataset [15]. Note
that (b) and (c) show the difference between camera settings. 2
Figure 1-2 Long-term recurrent convolutional network proposed in [10]..........cccceeneeen. 4
Figure 1-3 Transferring source view and target view into a predefined canonical view
through non-linear transformations [26].........ccccueerviieeriieerieeeiee e 6

Figure 1-4 The framework of Robust Non-linear Knowledge Transfer Model (R-NKTM)

PIOPOSEA 1N [25]. ceerieeiiieeiiee ettt et e et e e e e e e enreeenbaeeenneeenes 6
Figure 1-5 Domain adaptation using gradient reversal layer [35].ccccevvieeviieeniieennnnn. 7
Figure 2-1 A clustering example containing 2D data points from 3 clusters.................. 10
Figure 2-2 Core distance and mutual reachability distance where mpts = 5............... 11

Figure 2-3 Minimum spanning tree and cluster hierarchy constructed by HDBCSAN [38].

Figure 2-4 A condensed tree from the cluster hierarchy and the clustering result. The
widths of lines represent the number of points in each cluster. 13
Figure 2-5 A comparison of clustering results between k-means and HDBSCAN. The
gray points in (b) are considered as NOISE.cccveeereveeerieeeiieeeieeriieenieeenns 14
Figure 2-6 A common CNN architecture comprised of several convolutional layers. Every
layer transforms the 3D input volume to a 3D output volume of neurons... 15
Figure 2-7 Forward pass of a 3X3 convolutional operation with stride equal to 1...... 16
Figure 2-8 The family of Inception modules.cocooiiiriiiiiiniiiiieceecee, 17
Figure 2-9 The difference between traditional and depth-wise convolution using 3X3
convolution Kernels.ooc.ooiiiiiiiiiiiiiie 18

Figure 2-10 The Xception network architecture [41].cccccoviiriiiiiiniiiiiniceeenceee, 19
VI

do0i:10.6342/NTU201802626

Figure 2-11 Structures of the neurons in Recurrent Neural Networks (RNNs).............. 19
Figure 2-12 The goal of the generator in GAN [22]. The generator tries to produce images
with the similar distribution to real ones.........cc.ccooeeviiiiniiiiiiiiisinee 22
Figure 2-13 Adversarial training process in GAN [22]. GAN is trained by simultaneously
updating the discriminative function (blue, dashed line) to make it tell the
difference between real data distribution (black, dotted line) and the
generative distribution (green, solid 1iN€).cccoeevveviiieniiieniiieeieeeiee 22
Figure 2-14 Domain adaptation attempts to minimize the domain shift. 23
Figure 2-15 The general framework for adversarial domain adaptation proposed in
1R PSPPSR 23
Figure 3-1 Proposed pipeline for synthesizing a Multi-View Pose (MVP) dataset........ 25
Figure 3-2 The setting of body markers in CMU motion capture database [20]............ 26
Figure 3-3 Some representative poses in the pose dictionary. Left column: Skeleton data
from CMU motion capture database [20]; Center column: Human models
fitted with poses; Right column: Rendered depth images...........ccceeeneeee 29
Figure 3-4 The GUI of MakeHUmManN [44]......cccveeriieeiiieeieeeee e 30

Figure 3-5 3D human models with different combinations of gender, body shape, hair

style, and clothes created by MakeHuman [44].......ccccceeviieeiiieniieeeeeeee, 31
Figure 3-6 The GUI of Blender [45]......ooooiiieiiieeie e 32
Figure 3-7 Multiple virtual cameras are uniformly placed around the subject............... 33

Figure 3-8 Some depth images in the synthetic Multi-View Pose (MVP) dataset. Note that
the pixel value indicates the distance. The darker the pixel, the closer it is. 34
Figure 3-9 Unsupervised training architecture for learning View-Invariant Pose (VIP)
feature from synthetic data..........ccecovveeriieeriiiiriieeeeeeeee e 35

Figure 3-10 2D t-SNE visualization of View-Invariant Pose (VIP) features extracted from

VII

do0i:10.6342/NTU201802626

synthetic MVP dataset. Each cluster represents the same pose from various

views. Due to the limit of palettes, the same color might appear multiple times.

Figure 3-11 The visual difference between real and synthetic depth images. Note that real
images contain blurred contours caused by N0OISe.ccceeevveercureerciieeninenns 38
Figure 3-12 2D t-SNE visualization of the domain shift between View-Invariant Pose
(VIP) features extracted from synthetic and real images. Orange points
represent VIP features from synthetic data while blue points denote the VIP
features from real data...........ccooviiiiiiiiii 38
Figure 3-13 Unsupervised training architecture for learning View-Invariant Pose (VIP)
feature with domain adaptation.............cceeeeveeeiiieeiiieeciee e 39
Figure 3-14 The process of learning View-Invariant Pose (VIP) feature with domain
adaptation by Algorithm 1. Orange points represent VIP features from
synthetic data while blue points denote the VIP features from real data. Note
that the domain shift is minimized during the learning process. 42
Figure 3-15 Modeling temporal information in an action sequence using LSTM. 43
Figure 4-1 Multi-view RGB and depth images of drinking water from NTU RGB+D
action recognition dataset [15]......cccveeriieeriiieeiiie e 47
Figure 4-2 Multi-view RGB and depth images of one-hand waving from UWA 3D multi-
view activity II dataset [27]. Note that some body parts might not be fully
captured by the CAMETa.cevviieiiiieiiecee e 48
Figure 4-3 The training stages in our proposed method. DA is an abbreviation for domain
FYaE2Y o121 5 0] 4 BRSSPSR 51
Figure 4-4 Qualitative visualization of view-invariant property. Each image represents a

pose in the synthetic MVP dataset. Each row in an image denotes a VIP

VIII

do0i:10.6342/NTU201802626

feature fY'P € R25¢ extracted from a specific view. The 180 rows

correspond to 180 viewpoints of the same pose.ccccevevvveiviieeeniiinsinnnn. 55
Figure 4-5 The pipeline of action recognition from input video.ccccciveiiiieniennnee. 57
IX

do0i:10.6342/NTU201802626

LIST OF TABLES

Table 4-1 The camera settings of NTU RGB+D action recognition dataset [15]........... 46
Table 4-2 Pose classification accuracy on the synthetic MVP dataset..........cccc.coovinn.. 53
Table 4-3 Comparison of action recognition accuracy (%) on the NTU RGB+D Action
Recognition Dataset [15]. Our proposed method is denoted as VIP w/ DA.
Our defined baseline models are Xception + LSTM and VIP w/o DA. 59
Table 4-4 Comparison of action recognition accuracy (%) on the UWA 3D multi-view
activity Il dataset [27]. Each column represents a different cross-view setting.
For example, V123 means the model is trained on view 1 and view 2 while
tested on view 3. Our proposed method is denoted as VIP w/ DA. Our

defined baseline models are Xception + LSTM and VIP w/o DA............... 60

do0i:10.6342/NTU201802626

Chapter 1 Introduction

In this chapter, we first describe our motivation in Section 1.1. A complete literature
review is presented in Section 1.2. In Section 1.3, we highlight our contributions, and in

the last, we give the organization of this thesis in Section 1.4.
1.1 Motivation

Recently, human action recognition [1] from videos has raised lots of attention in
computer vision because of its wide applications. The objective of action recognition is
to automatically identify human activities from a given video. Many applications can
benefit from such algorithms in real-world scenarios, such as human-robot interaction,
smart home, health care, and surveillance systems. Over the last decade, action analysis
evolved from earlier hand-crafted schemes which were limited to controlled environment
settings to nowadays advanced algorithms that are learned from large-scale data and can
be applied to complexed daily activities. Encouraged by the huge success of deep learning
for image recognition problems [2-6], several works also tried to employ deep neural
networks to tackle the problem of color-based action recognition [7-10].

As for the indoor surveillance systems applied to smart home and health care
environments, there are other issues needed to be concerned. Among them, privacy issue
attracts more and more attention recently. Hsu et al. [11] proposed a privacy free indoor
action detection system using only depth videos which are less privacy sensitive.
Moreover, compared with color sensors, depth cameras offer several advantages such as
working under varying illumination conditions and being invariant to different colors and
textures. Given such considerations, in this thesis we only adopt depth sensors to deal
with the action analysis problem.

With the high popularity of depth sensors, several methods [12-14] had been

1

do0i:10.6342/NTU201802626

(b) Side-view (¢) Surveillance-view
camera setting camera setting

(a) Human orientations

Figure 1-1 Viewpoint variations in NTU RGB+D action recognition dataset [15]. Note
that (b) and (c) show the difference between camera settings.

proposed to address depth-based action recognition in the last few years. Among different
types of feature representations, silhouettes and spatio-temporal interest points are the
most commonly used ones. However, despite the impressive results achieved by these
approaches, their performances drop sharply when the viewpoint changes. This is because
these features are view-dependent and human shapes significantly vary due to different
human orientations or camera settings (including height and distance). Figure 1-1
illustrates some scenarios. The same action may look quite different when observed from
different viewpoints, which limits the applicability of these methods when the recognition
is performed from unseen views. Designing robust feature representations for video
sequences is an important task. In this thesis, we propose a View-Invariant Pose (VIP)
feature representation which is robust to viewpoint variations.

Besides, we have noticed a coming trend, that instead of manually collecting large-
scale datasets, training on synthetic data could also bring competitive results while
evaluating on real data [16-19]. This can bring lots of benefits in many cases. For instance,
depth estimation based on color images usually requires a large quantity of accurately
labeled data which however is impractical to be annotated manually. Varol et al. [18]
automatically synthesized training images with ground truth depth maps by integrating

human models with CMU motion capture data [20] and rendering with simulators. In this

do0i:10.6342/NTU201802626

thesis, we synthesize a large-scale depth image dataset containing human poses shot from
multiple viewpoints to help us subsequently learn the VIP feature, which reduces a
significant amount of effort in collecting and annotating real data.

However, there is an inevitable visual gap between the synthetic data and real data.
The learned features from two different datasets reside in different domains. Thus, the so-
called domain adaptation [21] plays a crucial role to bridge the gap by mapping two
domains into a common space. In this thesis, we develop a strategy to learn a domain-
invariant feature representation by the idea of adversarial training [22].

Recurrent Neural Network (RNN) has demonstrated its superior capability of
modeling complex temporal dynamics in sequence-learning problems [23]. Given that an
action can be seen as a sequence of poses, we adopt Long Short-Term Memory (LSTM)
[24] to describe the temporal dependencies by feeding pose-related features sequentially.

In summary, we propose a learning-based action recognition system which takes
depth videos as input to identify human activities from different viewpoints. The cross-
view knowledge is learned from synthetic data in an unsupervised way and is also

transferred to real data through adversarial domain adaptation.

1.2 Literature Review

We first give an introduction to action recognition using deep neural networks in
Section 1.2.1, followed by several works tackling cross-view action recognition problem
in Section 1.2.2. In Section 1.2.3, we introduce the domain adaptation and some related
works.

1.2.1 Action Recognition with Deep Neural Networks
Due to the impressive results achieved by deep learning on image classification [2,

3], image segmentation [5], object detection [4, 6], etc., so far there have been several

do0i:10.6342/NTU201802626

Figure 1-2 Long-term recurrent convolutional network proposed in [10].

works which adopted deep neural networks to learn spatial and temporal information for
action recognition [7-10].

Ji et al. [7] extended the traditional 2D Convolutional Neural Networks (CNNs) to
3D CNNs where the temporal dimension is involved in convolutions. Tran et al. [8]
designed a Convolutional 3D (C3D) architecture and found 3x3x3 the best kernel size to
extract spatio-temporal feature. On the other hand, instead of extracting features with a
single CNN, Simonyan and Zisserman [9] trained two CNNs, one for RGB image and the
other one for optical flow, and combined the learned information with late fusion.
Donahue et al. [10] proposed an end-to-end recurrent convolutional network which
processes the input video frame with a CNN and learns the temporal information with a
Recurrent Neural Network (RNN) by feeding in the CNN features sequentially (see
Figure 1-2). However, these methods are not designed for cross-view action recognition

as they cannot be generalized to different viewpoints.
1.2.2 Cross-View Action Recognition

Most existing action recognition methods have mainly focused on videos captured

from a fixed viewpoint. However, the same human action may appear quite differently

4

do0i:10.6342/NTU201802626

when observed from different viewpoints. A practical system should be capable of
recognizing human activities from different or unseen viewpoints. In order to recognize
actions across various views, a direct solution is to collect data from all possible views
and train a separate model for each view. This approach does not scale well as it needs a
large amount of labeled data for each view and this is infeasible as the number of action
types increases.

To address this issue, knowledge-transfer based methods [16, 25-33] become
popular recently. They tried to find a view-invariant latent space where the learned
features could be compatible among all different views. Rahmani et al. [27] designed a
hand-crafted feature called Histogram of Oriented Principal Components (HOPC), which
is robust to viewpoint variations, to detect and describe spatio-temporal interest points.
Zheng and Jiang [31] built a transferable dictionary pair by forcing the videos of the same
action from different views to have similar sparse representations. This method needs
video-level feature-to-feature correspondence across different views, thereby limiting the
scalability. Zhang ef al. [30] assumed that there exists a smooth virtual path between two
viewpoints and connected cross-view action descriptors by applying an infinite sequence
of linear transformations on view-dependent features. Although this method can operate
in the absence of paired features between source and target views, they still require some
samples from target view for training. Wang et al. [28] proposed a cross-view action
representation by expressing the appearance and motion variations with a hierarchical
compositional tree structure. They learned a separate linear transformation for each body
part and used samples from training views to interpolate unseen views. Even though this
method can recognize actions from unseen views, it requires 3D skeleton data while

training which is not always available.

do0i:10.6342/NTU201802626

Source View Target View

Canonical View

Figure 1-3 Transferring source view and target view into a predefined canonical view

through non-linear transformations [26].

mocap sequence

]
—

Z@oooocoo00000cy
Input
1
g .
o g

Generate sequence
descriptors

Apply k-means
clustering

| K s
Learning samples N

Output

10
Label <

A

Robust Non-linear Knowledge Transfer

0000000

6
— >

General codebook

PRAGFT -

Figure 1-4 The framework of Robust Non-linear Knowledge Transfer Model (R-
NKTM) proposed in [25].

|QOQOOOOOOOOOOOO|

Some methods relied on motion capture data to learn cross-view features. For
example, Gupta et al. [29] used non-linear Circulant Temporal Encoding (nCTE) to find
the best match for each training video in a large mocap database and synthesized multi-
view data for augmentation. Rahmani and Mian [26] proposed an Non-linear Knowledge
Transfer Model (NKTM) such that knowledge from multiple views is transferred to a
single predefined canonical view (see Figure 1-3). Rahmani et al. [25] further extended
NKTM to Robust Non-linear Knowledge Transfer Model (R-NKTM) as shown in Figure
1-4 that removes the need for pre-defining a canonical view which is actually action-
dependent. However, these methods cannot be applied to depth videos as they depend on

dense trajectories which are not reliable in depth maps.

do0i:10.6342/NTU201802626

a I oL,
50 r/ a0, Closs LD

a>®:> swele ook

- Y
= label predictor G, (-;0,)

OL
/\(. win classifier G-
()(}j & g domain classifier G4(+:04)

Y I
feature extractor Gf(-;07) 4, % %
(505 U, 5, .
2 @ domain label d

D o7
a0, OLg4 Closs Ly
forwardprop backprop (and produced derivatives) 9] 9(1

Figure 1-5 Domain adaptation using gradient reversal layer [35].

1.2.3 Domain Adaptation

Several works [16, 18, 19, 25, 26] synthesized data for training and applied the
learned knowledge to real data. However, there may exist a domain shift as the synthetic
data are generated or sampled within a different distribution from real data. As a result,
domain adaptation [21] plays an essential role as it bridges the gap by moving two
domains toward a shared space. Most previous methods worked on a fixed feature
representation. Recently, there is a trend to combine feature learning and domain
adaptation into a unified training process [34].

In addition to the main task, Ganin and Lempitsky [35] added a domain classifier as
shown in Figure 1-5 to tell the domain from which the data came. They further proposed
a gradient reversal layer to jointly learn the feature representation and align two domains
by backpropagation. Other methods have integrated the adversarial training [22] and
chosen an adversarial loss to minimize the domain shift by learning a feature
representation that is not distinguishable between domains while discriminative of source
labels. Tzeng et al. [36] designed a domain confusion loss to encourage the prediction of
domain classifier to be a uniform distribution over domain labels. Chen et al. [19]

synthesized training images for 3D human pose estimation based on 2D color images.

7

do0i:10.6342/NTU201802626

They added a domain mixer along with a pose regressor and showed that such a domain

adaptation technique could significantly improve the main task on target data.

1.3 Contributions

In this thesis, we propose a learning-based action recognition system which takes
depth video as input to identify human activities from different viewpoints. To our best
knowledge, the presented work is the earliest one incorporating domain adaptation to
address action recognition problem by learning from synthetic data. The contributions of
this work are listed as follows:

I. We propose a simple but efficient pipeline to synthesize a large-scale Multi-
View Pose (MVP) dataset. It consists of paired depth images containing human
poses captured from multiple viewpoints.

II. We design a framework to learn a View-Invariant Pose (VIP) feature
representation from the synthetic MVP dataset in an unsupervised way. The VIP
feature encodes human poses observed from different views into a shared view-
invariant feature space, thus benefits recognizing human activities from
different views.

III. We transfer the learned VIP knowledge from synthetic data to real data through
adversarial domain adaptation.

IV. We demonstrate that the proposed method can efficiently tackle the problem of
cross-view action recognition while significantly reducing the amount of

manual effort in collecting and annotating multi-view real data.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, we build up some prerequisite

knowledge related to this work. In Chapter 3, we firstly describe how to synthesize a

do0i:10.6342/NTU201802626

dataset using simulators. Then, we present the framework of unsupervised learning for a
pose feature, which is invariant to viewpoint variations, from the synthetic dataset. In
addition, we describe how to transfer the learned knowledge from synthetic data to real
data. Modeling temporal information is included in the end. In Chapter 4, the
experimental results consolidate the effectiveness of our proposed method. This thesis is

concluded in Chapter 5 with some future works.

do0i:10.6342/NTU201802626

Chapter 2 Preliminaries

In this chapter, some prerequisite knowledge is introduced. Firstly, we describe about
cluster analysis. Secondly, we briefly give the background of deep neural networks which
includes the convolutional neural network and the recurrent neural network. Thirdly,

concepts about generative adversarial network and domain adaptation are presented.

2.1 Cluster Analysis and HDBSCAN

Cluster analysis is the task of grouping a set of data in such a way that data belong
to the same group (or called cluster) are more similar to each other while distinct to those
in other groups (or clusters). In most cases, the data points live in a high-dimension space,
and the similarity is defined by different distance measurements.

There is a diversity of clustering algorithms including hierarchical clustering,
centroid-based clustering, distribution-based clustering, and density-based clustering.
Choosing an appropriate algorithm and parameter settings like which distance function to
use or the expected number of clusters depends on the individual dataset. Usually we
cluster data in an unsupervised way such that we do not use any label information. Figure
2-1 shows a clustering example.

The most popular clustering algorithm is k-means because of its simplicity and

intuitiveness. However, k-means does not always find the best result due to the fact that

Gere Gl . Seraf L.
R M 0 AN
cirmaghe.
‘ '.‘T::‘...." :
(a) 2D data points without labels (b) Clustering result

Figure 2-1 A clustering example containing 2D data points from 3 clusters.
10

do0i:10.6342/NTU201802626

/

\
[.
| coredistance a |

(a) Core distance of a point (b) Mutual reachability distance between two points

Figure 2-2 Core distance and mutual reachability distance where my;; = 5.

it is extremely sensitive to the k value which means the number of clusters, and it is also
affected by noisy data and the initialization.

In density-based clustering, clusters are defined as areas of higher density separated
by areas of lower density. Those sparse areas are usually considered as noise or border
points. The most popular algorithm is Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [37]. The found clusters can be any shape, as opposed to k-means
which assumes that clusters are convex shaped.

Moreover, Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) [38] is extended from DBSCAN by transforming into a hierarchical
clustering algorithm, and it integrates the clustering results over the varying threshold
value €. HDBSCAN algorithm consists of the following steps.

First, it identifies the dense and sparse regions. It estimates density by defining

dcore,mp ..(@) as core distance meaning the distance to the mys-th nearest neighbor of
a data point a. Then it further defines mutual reachability distance dreach,mpts(a, b)

between data points a and b as follows:

dreach,mpts (a: b) = max {dcore,mpts (a), dcore,mpts (b): d(a: b)} (2- 1)

11

do0i:10.6342/NTU201802626

o

0.40 0.4 4

distance
©
w
s
£y w

o
N

w
log(Number of points)

o
N
w
Mutual reachability distance
N

=]

=

v
o
=

-

| S MHWHMWMM

(a) Minimum spanning tree (b) Cluster hierarchy

Figure 2-3 Minimum spanning tree and cluster hierarchy constructed by HDBCSAN
[38].

where d(a,b) is the original distance metric between a and b. Under this mutual
reachability distance, the dense points (with low core distance) remain the same distance
from each other while those sparser (or noisy) points are pushed away to be at least their
core distance from any other point. Figure 2-2 illustrates an example.

Secondly, it considers the whole dataset as a weighted graph described by points as
vertices and edges between any two points with weight equal to the mutual reachability
distance. To speed up the algorithm, it builds a minimum spanning tree (MST) via Prim’s
algorithm, resulting a minimal set of edges such that dropping any edge causes a
disconnection of components, as shown in Figure 2-3 (a).

Thirdly, it converts the MST into a hierarchy of connected components. It starts to
drop edges with weights higher than a threshold ¢ to split the graph into connected
components. By varying the threshold & from high value to low value, it discovers a
hierarchy of connected components (from completely connected to completely

disconnected). Figure 2-3 (b) shows an example of hierarchical result.

12

do0i:10.6342/NTU201802626

100 04 100

40 40
8 - 8
10 4 B 10 4 20
12 A o 124

(a) Condensed tree (b) Clustering result from condensed tree

A value
o
Number of points
A value
o
Number of points

Figure 2-4 A condensed tree from the cluster hierarchy and the clustering result. The
widths of lines represent the number of points in each cluster.

The next step is to condense down the large and complicated cluster hierarchy into
a smaller tree with more data attached to each node. Let us denote m,;,. as the
minimum cluster size. Walk through the hierarchy and check at each split if one of the
new clusters created by the split has fewer points than m_g;,.. If it does, discard those
points as noisy data. Figure 2-4 (a) shows an example of a condensed tree with a small
number of nodes.

The last step is to extract the flat clustering result. HDBSCAN combines all possible

results from DBSCAN with respect to a given value of m,,; and all density levels A =
1/¢in [0,). Gradually increasing A (decreasing &) and assume cluster C; appears at

level A,,;,(C;). It defines the stability of a cluster C; as:

S(C;) = Z (Amax (@, €;) = Anin (C;)) (2.2)

aec;
where A,,,,(a, C;) is the density level beyond which data point a no longer belongs
to cluster C;.Let {C,, ...,C,,} be the collection of all clusters except the root C; in the
condensed tree as shown in Figure 2-4 (a). The final clustering result can be seen as a flat
and non-overlapping partition by solving the following optimization problem of
maximizing the sum of stabilities of the selected clusters.

13

do0i:10.6342/NTU201802626

o 3 Ao .. . ‘.;“—,‘_. -)
i)
(a) k-means (b) HDBSCAN

Figure 2-5 A comparison of clustering results between k-means and HDBSCAN. The
gray points in (b) are considered as noise.

m
5g?§m] = z §;5(C;)
i=2
(2.3)

subject to z 5 =1, vieL

where §; indicates whether cluster C; 1is selected in the solution, L =
{l|C, is leaf cluster} denotes the indexes of leaf clusters, and J;, = {j lj #
1and C; is ascendant of C z} is the set of indexes of all clusters on the path from the
root to C;. Figure 2-4 (b) illustrates an example of the optimization result. Besides, as a
comparison between k-means and HDBSCAN shown in Figure 2-5, HDBSCAN can
discard the noise from clustering result while k-means assigns each point including noise
to a cluster.

As a density-based clustering algorithm with few assumptions about data
distribution and a small number of intuitive parameters, HDBSCAN is ideally suitable
for exploratory data analysis. We utilize HDBSCAN to build a pose dictionary as

described in Section 3.1.1.

2.2 Convolutional Neural Network

In recent years, Convolutional Neural Networks (CNNs) have brought an

14

do0i:10.6342/NTU201802626

/ Depth
(O)©®) @) .
O OO0 Height
-OOOOO O =)
- OO0O0O0 K @
/ QOOOOY g

Figure 2-6 A common CNN architecture comprised of several convolutional layers.
Every layer transforms the 3D input volume to a 3D output volume of neurons.

overwhelming success in the computer vision field, including image classification [2, 3],
image semantic segmentation [5], object detection [4, 6], etc.

Take the classification task for example, traditional frameworks consist of hand-
crafted feature extractors like HOG feature, and learnable classifiers such as Support
Vector Machine (SVM). While the classifiers can learn by themselves to solve the
optimization problems, usually we need to predefine the parameters of the feature
extractors and it requires some domain knowledge and several trial and error for tuning.
On the other hand, CNN-based frameworks are comprised of learnable feature extractors
and learnable classifiers. Not only classifiers but also feature extractors can automatically
tune their parameters by backpropagation in an end-to-end way, which increases the
learning ability of the feature representations.

CNNs are similar to traditional neural networks, where the convolution kernels are
made up of learnable weights and biases, just like neurons. Each kernel receives some
inputs, performs a dot product and is optionally followed by a non-linearity activation
function. Figure 2-6 shows a common CNN architecture. In general, earlier layers extract
low-level features, such as edge and corner, while following layers are responsible for

high-level features, such as meaningful structures like objects, animals, human faces, etc.

15

do0i:10.6342/NTU201802626

Convolution kernel Input image Output

Figure 2-7 Forward pass of a 3X3 convolutional operation with stride equal to 1.

2.2.1 Convolutional Layer

Each convolutional layer has multiple convolution kernels which perform a dot
product with a specific input patch called receptive field. Each layer can have different
number of kernels, which makes layers’ outputs differ in depth (or channel) dimension.
Sometimes zero-padding around the border of the input makes the size of output feature
map consistent with the input. During the forward pass, the convolution is conducted
along the height and width dimensions with a pre-specified stride as illustrated in Figure
2-7. The weights of each convolution kernel can be randomly initialized when trained
from scratch. During training, the weights are updated through backpropagation with

gradients of loss function.

16

do0i:10.6342/NTU201802626

Concat Concat

3x3 Conv

3%3 Conv 5X5 Conv 1x1 Conv 3x3 Conv 3x3 Conv

| | | | I |

1x1 Conv 1x1 Conv 1x1 Conv 3x3 Max Pool 1x1 Conv 1x1 Conv Avg Pool 1x1 Conv
Input Input
(a) Inception module V1 [39] (b) Inception module V3 [40]

Figure 2-8 The family of Inception modules.

Difterent CNNs may end up with different number of layers, different kernel size,
and different connectivity configurations. In the beginning, people tried to make the
structure deeper with more powerful representations. However, considering the fact that
models are hard to trained as going deeper, recent researchers focus on how to efficiently
expand the model capacity while maintaining or reducing the number of parameters. As
depicted in Figure 2-8, Google designed a family of “Inception module” [39, 40] which
not only deeper the structure but also makes it wider. In the following, we will introduce

one of them used in this thesis called Xception network.
2.2.2 Xception Network

To expand the capacity of Inception modules, Chollet [41] proposed a novel CNN
structure called Xception which stands for “Extreme Inception” by replacing Inception

modules with depth-wise separable convolutions.

17

do0i:10.6342/NTU201802626

N\

777 %
— /"“">
(a) Traditional convolution (b) Depth-wise convolution

Figure 2-9 The difference between traditional and depth-wise convolution using 3X3
convolution kernels.

A traditional convolution kernel is tasked with simultaneously mapping spatial and
cross-depth correlations. On the other hand, the depth-wise separable convolution,
commonly called “separable convolution”, tries to decouple these two correlations by
independently performing spatial convolution over each channel of input followed by a
pointwise (1x1) convolution. Figure 2-9 illustrates the difference between the traditional
and depth-wise convolution.

The Xception network, as shown in Figure 2-10, has 36 convolutional layers formed
into 14 modules, all of which are equipped with residual connections [3]. Such a design
slightly outperforms Inception V3 [40] on the ImageNet dataset and significantly
outperforms Inception V3 on JFT dataset while having roughly the same number of
parameters. In this thesis, we use Xception network as pose feature extractor as described

in Section 3.2.1.

18

do0i:10.6342/NTU201802626

299x299x3 images 19x19x728 feature maps 19x19x728 feature maps

|
[ReLU

|SeparableConv 728, 3x3
I

1

[Conv 32, 3x3, stride=2x2 |
|ReLU | [ReLU

I

|

1
[Conv 67, 353 ISeparabLeConlv 728, 3x3

[ReLU

[ReLU

Conv 1x1 [ReLU
[SeparableConv 728, 3x3
I

stride=2x2 | SeparableConv 1024, 3x3

|SeparableConv 128, 3x3

1
I ReLU IMaxPooLing 3x3, stride=2x2

| SeparableConv 728, 3x3

Conv 1x1 [ReLU |
stride=2x2| [SeparableConv 128, 3x3 |
T | SeparableConv 1536, 3x3 |
[MaxPooling 3x3, stride=2x2 | | ReLU]
19x19x728 feature maps T
[SeparableConv 2048, 3x3 |
[ReLU [ReLu : |
[SeparableConv 256, 3x3 Repeated 8 times [GlobaLAveragePooling I
Conv 1x1

stride=2x2

2048-dimensional vectors

Optional fully-connected
layer(s)

Logistic regression

| SeparableConv 256, 3x3
I

]
I
[ReLU] |
J
|

IMaxPooling 3x3, stride=2x2

[ReLU
| SeparableConv 728, 3x3

I
Conv 1x1 [ReLU
stride=2x2 | SeparableConv 728, 3x3

T
[MaxPooling 3x3, stride=2x2

19x19x728 feature maps

(a) Entry flow (b) Middle flow (c) Exit flow

Figure 2-10 The Xception network architecture [41].

Input gate i,

Recurrent connection Output gate o,

——— -

]
|
|
(—_——— - | Cell state c;
1 Zt | h
A I -t
Zt " 7] : ht Input | Hidden state
Input N — — _ _ Hidden state [
|
\
\ a Forget gate f; ,
~ -

(a) ARNN cell (b) ALSTM cell
Figure 2-11 Structures of the neurons in Recurrent Neural Networks (RNNs).

2.3 Recurrent Neural Network and Long Short-Term

Memory

In this section, we briefly introduce the concept about Recurrent Neural Network
(RNN) to make this thesis self-contained.

RNN is a popular method for extracting features and modeling sequential or
19

do0i:10.6342/NTU201802626

temporal data. The main difference between a RNN and a standard feedforward network
is the feedback loop, which makes a recurrent connection in an unfolded network. With a
self-connected cell as shown in Figure 2-11 (a), RNN is capable of modeling the
contextual information from a sequence of length T by the following equation:
hy = 0(Wlhi—y, 2] + b) (2.4)

where z; and h; denote the input and hidden state at time step t respectively, W and
b represent learnable weights and bias, and 6 is the non-linear activation function. Each
hidden state h; is determined by the current input z, and the previous hidden state
h;_;. Theoretically, the last hidden state h; contains the information about the whole
sequence.

However, it is hard to train RNNs due to vanishing gradient and error blowing up
problems, especially when the sequential data becomes longer. Long Short-Term Memory
(LSTM) [24] remedies this issue by introducing gating mechanism to determine when the
input is significant enough to remember, when it should forget information, and when it
should output the value. It works tremendously well on a large variety of problems.

As shown in Figure 2-11 (b), a LSTM cell has three gates, including forget gate,
input gate, and output gate. In addition, different from the standard RNN, LSTM
maintains a cell state ¢; along with the hidden state h; for each time step t. With such

a design, it can capture long-term information through the following equations:

fe = o(Wslhe_y, z:] + by) (2.5)
i, = o(Wilhe_1, 2] + b)) (2.6)
o = c(W,lhe—q, 2] + by,) (2.7

¢t = fr @ ci—1 + iy ® tanh(W,[h,_4, 2] + b.) (2.8)

h; = o; ® tanh(c;) (2.9)
where f, i, o correspond to forget gate, input gate, and output gate, respectively, all W
20

do0i:10.6342/NTU201802626

and b are learnable weights and biases, and & denotes the element-wise product.
In this thesis, we utilize LSTM to capture the temporal progress within actions as

described in Section 3.3.

2.4 Generative Adversarial Network

In this part, we briefly describe the Generative Adversarial Network (GAN) [22] to
make the completeness of this thesis. Aiming at recovering or synthesizing signals with
the similar distribution to the real data, GAN utilize two components, one is generator
G(2): RP » R™*1*3 and the other one is discriminator D(x): R™*"*3 — R to optimize

a two-player minimax game with the following objective function:

minmax V (D, 6) = Ex_p,,,,[108D()] + E,p, |log (1 - D(G(2))| (2.10)

where x € RP>wx3

is an image sampled from the real data, z € RP is a randomly
sampled vector from a prior distribution P,, and D(x) represents the probability that
image x comes from real data.

Generator G is responsible for generating images from a random vector while
discriminator D is tasked with distinguishing real images from those generated by G.

Note that generator G implicitly defines a generative distribution P, behind the

9

samples G(z) obtained from z~F,.

21

do0i:10.6342/NTU201802626

Generative distribution True data distribution
Prior distribution

Rg Pdata

O | sene R
7 enerator Similar

Image space Image space

Figure 2-12 The goal of the generator in GAN [22]. The generator tries to produce
images with the similar distribution to real ones.

/I N/

Figure 2-13 Adversarial training process in GAN [22]. GAN is trained by
simultaneously updating the discriminative function (blue, dashed line) to make it tell
the difference between real data distribution (black, dotted line) and the generative
distribution (green, solid line).

As shown in Figure 2-12, with Eqn. (2.10) optimized, generator G learns how to
produce images in R"W*3 lying with the same distribution of real data. Besides, Figure
2-13 illustrates the adversarial training process. From left to right, the generative

distribution gradually fits on real data distribution and the discriminator D 1is unable to

differentiate between the two distributions, i.e. D(x) = %

2.5 Domain Adaptation

Due to the phenomenon called “domain shift”, machine learning models trained on
some representations from one dataset do not generalize well to other datasets. In other
words, models learned from the training domain (or source domain) cannot perform
equally well on the testing domain (or target domain). The simplest solution is to fine-
tune the learned models on the task-specific domains. However, it is hardly to obtain
enough labeled data to properly fine-tune especially when the models are deep multi-layer

networks with a large number of parameters.
22

do0i:10.6342/NTU201802626

/ Classifier learned

Source /’ from source data

Target & | Target

Minimize -~
domain shift

Figure 2-14 Domain adaptation attempts to minimize the domain shift.

source . source
. > source mapping >]
input pping discriminator

:

Generative or | Weights L Which

discriminative tied or ! adversarial
model? I unti'ed‘? ™| objective?

'
L L

target
input

. R target
target mapping "| discriminator

Y

classifier

Figure 2-15 The general framework for adversarial domain adaptation proposed in [34].

Domain adaptation is a technique that tackles this problem by adapting data from

the source domain into the target domain while the main task such as classification is

preserved in the target domain. Among all the methods, a popular way is to reconstruct a

new representation space where the data from two domains are projected. It attempts to

find a domain-invariant representation which is indistinguishable from domain to domain.

Additionally, it learns main-task models with projected data from the source domain. As

shown in Figure 2-14, when distributions of representations from two domains become

closer, the learned models from source domain perform satisfactorily on the target domain.

Moreover, recent works have focused on transferring deep neural network features

from one labeled source domain to another target domain where the labeled data is sparse

or non-existent, resulting semi-supervised or unsupervised domain adaptation problems.

23

do0i:10.6342/NTU201802626

Based on the development of GAN [22], several approaches employ adversarial training
between the feature encoder (i.e. generator) and the domain discriminator so as to find
feature space which is not only uninformative about domain but also discriminative to
main task. Tzeng et al. [34] proposed a universal framework for adversarial domain
adaptation as shown in Figure 2-15. In this thesis, we use adversarial domain adaptation
to align the features extracted from real data and synthetic data as described in Section

3.2.2.

24

do0i:10.6342/NTU201802626

Chapter 3 Methodology

In this thesis, we propose a depth-based cross-view action recognition system
consisting of three parts: (1) collecting a synthetic Multi-View Pose (MVP) dataset (2)
learning a View-Invariant Pose (VIP) feature representation from synthetic dataset and
transferring the knowledge to real data through domain adaptation, and (3) modeling the

temporal information with LSTM.
3.1 Synthesize a Multi-View Pose Dataset

Training deep networks is an optimization problem with respect to millions of
parameters, which requires large amounts of labelled data to achieve acceptable
performance. In our case, however, learning a deep View-Invariant Pose (VIP) feature
representation requires a large corpus of multi-view data which is very hard and expensive
to manually collect and label.

Moreover, we have noticed a coming trend that training on synthetic data [16-19]
could also bring competitive results while evaluating on real data, which reduces the
amount of manual effort in collecting large-scale dataset. Inspired by [16], we design a
simple but efficient pipeline to synthesize a Multi-View Pose (MVP) dataset which
contains human poses captured from multiple viewpoints. The proposed pipeline can

generate an infinite number of possible combinations of human poses, human geometries,

/ Pose Human Models Simulator Multi-view Depth Images

(Skeleton Data) . .
Dic't’i(:::ary - -
l

Figure 3-1 Proposed pipeline for synthesizing a Multi-View Pose (MVP) dataset.

25

do0i:10.6342/NTU201802626

and viewpoints. Figure 3-1 gives an overview of the involved steps in collecting the
synthetic MVP dataset. Firstly, we build a pose dictionary consisting of finite different
poses. Secondly, we fit several human models with each pose in the dictionary. Thirdly,
we use a simulator to render depth images from numerous viewpoints. The details are

described in the following.
3.1.1 Build a Pose Dictionary

Given the fact that an action can be viewed as a sequence of poses, the possible pose
space is much smaller than the possible action space. In addition, several bag-of-word
based action recognition methods [42, 43] have discriminated actions by the occurrence
of each pose-related codeword in an action. Based on these observations, learning a pose-
related feature could generalize well to action space with different kinds of sequence
combinations.

As we need to fit 3D human models with predefined poses in the simulator, we must
rely on highly accurate skeleton data such as motion capture database. We choose CMU
motion capture database [20] which contains more than 2500 motion sequences (over 4

million poses) covering a variety of actions. It is captured with high-precision camera

26

do0i:10.6342/NTU201802626

array and body markers (see Figure 3-2), resulting in quite accurate 3D skeletal joint
positions. This database is treated as the pose space from which we sample poses.

In order to efficiently learn pose-related features from the pose space, we firstly build
a dictionary containing the most representative poses. Unsupervised clustering algorithm
is applied to the skeletons sampled from this pose space. Different from [16], HDBSCAN
algorithm [38] rather than k-means is used for two reasons. First, the result from k-means
is sensitive to the £ value which indicates the number of clusters. Actually, we cannot
determine in advance how many clusters could well represent the pose space. Second, k-
means is a hard-clustering algorithm which means that it assigns each data with a cluster
including the noise. HDBSCAN copes with these issues as it can automatically find the &
value by tuning two intuitive parameters and discard noisy data from the result by soft
clustering.

Besides, we design an orientation-based skeletal feature rather than a displacement-
based skeletal feature used in [16] to compare the similarity between two poses. We
calculate rotation angles between body limbs. For example, we use 3 degrees of freedoms
(DOFs) to represent a shoulder’s movement and 1 DOF to describe elbow’s. As a result,
we use 19 DOFs in total (4 for left arm, 4 for right arm, 4 for left leg, 4 for right leg, 1 for
head, and 2 for torso) to describe a skeleton (or pose) and use Euclidean distance to
calculate the similarity. Unlike displacement-based feature, the designed feature is not
only location-invariant but also scale-invariant and it brings more physical meaning with
fewer parameters.

By setting two parameters, minimum cluster size and minimum samples, we get K
clusters from HDBSCAN algorithm. The pose with the highest score in each cluster is
chosen as representative, thus forming a dictionary containing K representative poses as

shown in Figure 3-3 (left column).

27

do0i:10.6342/NTU201802626

Skeleton data

Human model

Rendered depth image

Pose 1

Pose 2

Pose 3

Pose 4

Pose 5

28

do0i:10.6342/NTU201802626

200

Pose 6

Pose 7

10

Pose §

5

0
#‘*ég
6 31 Y

—27.525.07; 5.
220017.515.05 5.
X 10.0

Figure 3-3 Some representative poses in the pose dictionary. Left column: Skeleton
data from CMU motion capture database [20]; Center column: Human models fitted
with poses; Right column: Rendered depth images.

3.1.2 Create 3D Human Models

There are different ways to create 3D human models. In order to cover the variation
in subjects, we utilize the open source MakeHuman software [44] to create different 3D
human models provided with meta data. The created human models are able to be fit with
predefined poses. With the graphical user interface (GUI) of MakeHuman shown in
Figure 3-4, we could adjust the gender as well as the body figure such as height, weight,

and muscle portion of human models. As depicted in Figure 3-5, we synthesize several

29

do0i:10.6342/NTU201802626

realistic human models with different combinations of gender, body shape, hair style, and

clothes.

MakeHuman 1.1.1 - [Untitled]*

e0® NG DM &

©AALDL QOQPON

Files Modelling ‘ Geometries | Materials Pose/Animate Rendering Settings Utilities Help

‘Clothes ‘ Eyes Hair Teeth Topologies Eyebrows Eyelashes Tongue

@ ?

Clothes

O Male
[shoes

(a) Choosing clothing style

MakeHuman 1.1.1 - [Untitled]
- N L \(2
Files | Modelling | Geometries

‘ Main ‘ Gender Face

A SOGOON

Materials Pose/Animate Rendering Settings Utilities Help

Torso Armsandlegs Random Custom Measure

Macro

a
Gender
~
Muscle
L —
Weight
T —
Height

m—]
Proportions

—]

African

[r—

Asian

fr—

Caucasian

e ——]

Gender: 94.70% female, 5.30% male Age: 25 Muscle: 50.00% Weight: 100.00% Height: 159.71 cm

(b) Choosing gender and body figure

Figure 3-4 The GUI of MakeHuman [44].

30

2 4
7 N\
1

Fedora

Options o
‘ B Hide faces under clothes
Tagfiltker
[Hats Fed ked
[Casual 4 ‘ edora cocke
O Female L]
[J Elegant /4 N\
O Sport
B

Female
casualsuit01

Female
casualsuito2

Female
* elegantsuito1

Female
sportsuit01

Male
* casualsuito1

Male
* casualsuito2

Male
® casualsuito3

@ ?

Category

do0i:10.6342/NTU201802626

Figure 3-5 3D human models with different combinations of gender, body shape, hair
style, and clothes created by MakeHuman [44].

3.1.3 Render Depth Images

Our goal is to collect synthetic depth images of human poses captured from various
viewpoints. We use the Blender software [45] which is an open source package so as to
fit 3D human models into mocap data. As shown in Figure 3-6, a simulation environment
is created.

Blender normalizes the mocap skeletal data with respect to the size of human models.
For each 3D human model, we re-target its rigs to fit all the poses in the pose dictionary.
Figure 3-6 (b) illustrates an example of a 3D human model fitted with a pose.

31

do0i:10.6342/NTU201802626

Moreover, in the Blender simulator, we uniformly place numerous virtual cameras
with distinct latitudes and longitudes on a hemisphere surrounding the subject (see Figure
3-7) and render depth images with normalized pixel value in [0,255]. This process
results in synthetic but realistic depth images. Different from [16], our pipeline does not
include hidden point removal and surface fitting. Thus, we synthesize a large-scale MVP
dataset containing paired depth images of human poses captured from multiple

viewpoints as depicted in Figure 3-8.

Blender

@ B

D AR Nosyn

CIE)(* ser end FRIEDRE) oy

(b) Re-targeting 1nt0 a predeﬁned human pose

Figure 3-6 The GUI of Blender [45].

32

do0i:10.6342/NTU201802626

Figure 3-7 Multiple virtual cameras are uniformly placed around the subject.

Pose 1

Pose 2

Pose 4

View 1

View 2

View 3

View 4

33

do0i:10.6342/NTU201802626

" 4
B]
R
>
L
.
N |)
=
L ‘
>
- : \.‘“ ; 1 N
- \
2
> . .
o ,
= ‘
2)
>
. A
=
2
>
Figure 3-8 Some depth images in the synthetic Multi-View Pose (MVP) dataset. Note
that the pixel value indicates the distance. The darker the pixel, the closer it is.

3.2 Learn a View-Invariant Pose Feature

In this section, we describe how to learn the View-Invariant Pose (VIP)
representation that transfers human poses from any view to a shared high-level feature

space. Moreover, the VIP knowledge is distilled from the MVP dataset and the
34

do0i:10.6342/NTU201802626

VIP Feature f;/'F

5---»I->

Figure 3-9 Unsupervised training architecture for learning View-Invariant Pose (VIP)
feature from synthetic data.

Synthetic
Data

information of viewpoint is not required during the learning process.
3.2.1 Unsupervised Learning

As depicted in Figure 3-9, the proposed architecture for learning VIP feature
consists of two parts, one being an encoder E and the other one being a pose classifier
Cp. Here, an underlying assumption is that the same human pose observed from different
viewpoints share the same high-level feature representation, which we believe should be
quite reasonable. Convolutional Neural Networks (CNNs) have demonstrated their
powerful capacities of extracting visual features over several image recognition problems
[2-6]. We design the encoder E as a CNN-based structure which extracts pose-related
feature from different views into a universal feature space and we refer the extracted
feature of image x as VIP feature f,/’F. Then the pose classifier Cp aims to tell which
pose appears in the image x based on fV'F.

While training such a framework, the input images x come from the synthetic MVP
dataset. Besides, we do not use any action label from mocap data but only the dummy
pose label, making the training process unsupervised. For each pose k = 1,2, ...,K in
the pose dictionary, the corresponding synthetic depth images rendered from all
viewpoints are assigned the same dummy pose label k. The label contains no physical
meaning but the dictionary index.

For the encoder E, we utilize the “Xception network™ [41] which is comprised of

depth-wise separable convolutions. The last fully-connected layer is replaced with a n-
35

do0i:10.6342/NTU201802626

neuron layer as a bottleneck layer, resulting VIP feature fV'F as a n-dimension vector.

As for the pose classifier Cp, we design a simple one-layer fully-connected network
followed by a softmax activation, consisting of K neurons corresponding to each
dummy pose label.

The inputs to our training architecture are synthetic depth images x € synthetic
sampled from synthetic MVP dataset with the corresponding ground truth dummy pose
labels y,,se. With the goal of achieving view-invariant, the VIP feature f'* is enforced
to encode only the pose information regardless of viewpoints. We consider VIP loss Ly;p

as the standard cross-entropy of pose classification as listed below. Here, syn is an

abbreviation for synthetic.

K
Ly;p = — Z Z[[ypose = k]] log(px,k) (3.1)

xesyn k=1
px = Cp(f'") (3.2)
Y =E(x) (3.3)

where x € RPW*3 is the input image, f/'F € R™ refers to the encoded VIP feature of
image x, p, € RX indicates the softmax activations of the pose classifier, p, € R is
the k-th element of p,, meaning the probability of image x being pose k, and [-]
denotes Iverson bracket. Note that for a particular pose k, we sample the input images
from multiple views during training. We use this architecture to find a high-level feature
space shared by all possible views. To be more specific, regardless of the input view, we
encourage the VIP features to be as similar as possible for all views of the same pose. The
detailed architecture design and training process are presented in Section 4.2.2 and

Section 4.2.3.

36

do0i:10.6342/NTU201802626

Figure 3-10 2D t-SNE visualization of View-Invariant Pose (VIP) features extracted
from synthetic MVP dataset. Each cluster represents the same pose from various views.
Due to the limit of palettes, the same color might appear multiple times.

To qualitatively visualize the view-invariant property, we project the learned high-
dimension VIP features fY/¥ extracted from synthetic MVP dataset to a 2D space by t-
SNE [46]. As we can see in Figure 3-10, each cluster represents VIP features of the same
pose from different views. That is to say, the VIP features look quite similar across

different viewpoints in the high-dimension space, which demonstrates that the encoder

E do extract the pose information excluding viewpoints as we expect.

37

do0i:10.6342/NTU201802626

| Tadl]

(a) Real depth images from UWA 3D (b) Synthetic depth images from synthetic
multi-view activity II dataset [27]. MVP dataset.

Figure 3-11 The visual difference between real and synthetic depth images. Note that
real images contain blurred contours caused by noise.

- - .
N e - "8 oy,
s -&.-_ < 2 . A . . .
- ..;’q’d'- - . - Vop .
- - - -
Woa ek g DL ¥)
Fedatm et Ty Ty, R . y
LTIE DA TS S . c
o lal e - P - - -
Tes T mrg T S s T e L
e : -5‘-. - « > - -
. Y e memc, " @ . ° .- -
it T i S 3 .
. '~&':- :.“.'.v. s % :: - - -
NS o TR ¥ o g . T .
- o-}; - -
L X eds, £ .- . . .
- ~'=°...—M R . . L) . .
5.- - = e . - -
- g < LT L L ’
.f . - -,
L4 - - - - -

Figure 3-12 2D t-SNE visualization of the domain shift between View-Invariant Pose
(VIP) features extracted from synthetic and real images. Orange points represent VIP
features from synthetic data while blue points denote the VIP features from real data.

3.2.2 Adversarial Domain Adaptation

After we obtained the VIP feature encoder E learned from the synthetic MVP
dataset, here comes a concern about whether we directly adopt it on the real data. In other
words, do VIP features of a pose from synthetic MVP dataset and those of a similar pose
from real dataset appear similar? Ideally, training and testing data should live in the same
domain, such that the model learned from training data can be applied to testing data with
no degradations. However, there is a visual gap between the synthetic and real depth

images (see Figure 3-11) as well as their corresponding VIP features (see Figure 3-12),

38

do0i:10.6342/NTU201802626

Input Image x

R VIP Feature f/'F

Synthetic ! i
:Shared
:’ Input Image x ° ' 5
Real ! i Domain Domain
: : ifi Label
Data i ' -y =) Classifier |) A
i i CD Ydomain

Figure 3-13 Unsupervised training architecture for learning View-Invariant Pose (VIP)
feature with domain adaptation.

causing the phenomenon called “domain shift”.

It has been shown that a trained CNN model can be adapted to a new domain through
fine-tuning. However, in our case, there is no such a large multi-view real dataset with
pose labels, it is not suitable to directly fine-tune the encoder E. As a result, we utilize
domain adaptation technique where source (or training) data and target (or testing) data
come from similar but different distributions. Inspired by [35], we add a domain classifier
Cp along with the existing encoder E and pose classifier Cp, combining domain
adaptation and VIP feature learning into a unified training process (see Figure 3-13). The
encoded VIP feature f,/'F is sent to the pose classifier Cp for dummy pose prediction,
as well as to domain classifier Cp for domain prediction.

We consider a VIP feature fY'F to be domain-invariant if a strong domain classifier
Cp cannot distinguish from two domains. In our case, we refer the source domain to
synthetic data and target domain to real data. The adversarial training technique [22] is
utilized to jointly align the distributions of VIP features across two domains and transfer
the view-invariant property to target domain.

Now the inputs to our training architecture are not only synthetic depth images x €

39

do0i:10.6342/NTU201802626

syn with dummy pose labels y,,,s. but also real depth images x € real without pose

labels. It is an unsupervised domain adaptation with the absence of target pose labels. We

design two loss functions Lgomgin and Lcons for adversarial domain adaptation as

follows:
Laomain = — Z log(d,) — Z log(1—d,) (3.4)
x€real XESyn
Leons = —Z[o.s log(d,) + 0.5 log(1 — d.)] (3.5)
dy = Cp (') (3.6)

where d, € R denotes the probability of image x coming from real domain, Lg,main
is the domain loss, and L,y is the confusion loss. Note that during domain adaptation,
all training data are unpaired, which means that there are no one-to-one corresponding
images across domains.

Our proposed framework has two major differences from [35]. First, instead of using
a gradient reverse layer that encourages a common domain by reversing the gradients, we
confuse the domain classifier Cp, by enforcing it to output a uniform distribution over
domain labels with Eqn. (3.5) for all synthetic and real images. This advantage is also
reported in [36]. Second, an adversarial scheme i1s used to update the networks. The
process of learning VIP feature with domain adaptation is summarized in Algorithm 1.
We train the networks in three stages. Such a training scheme 1s observed more stable and
less sensitive to the optimization parameters [47]. The architecture design of the domain

classifier and training details are described in Section 4.2.2 and Section 4.2.3.

40

do0i:10.6342/NTU201802626

Algorithm 1: Learning VIP feature with domain adaptation

Data : Synthetic depth images x € syn and corresponding dummy pose labels ypose;
Real depth images x € real without labels

Result: VIP feature encoder E for real domain

1 for Iters. of VIP feature with domain adaptation do

2 for Iters. of VIP feature do

3] Update encoder E and pose classifier Cp to minimize Eqn. (3.1) on x € syn and ypose

4 end

5 for Iters. of domain classifier do

6 | Update domain classifier Cp to minimize Eqn. (3.4) on z € syn and x € real

7 end

8 for Iters. of encoder do

9 | Update encoder E to minimize Eqn. (3.5) on = € syn and x € real

10 end

Figure 3-14 shows the qualitative process of domain adaptation observed from
TensorBoard. Each figure illustrates the projected VIP features by t-SNE [46]. Note that
the two domains gradually align to each other. Specifically, the domain shift is minimized

during the learning process.

41

do0i:10.6342/NTU201802626

(d) Iteration 3

(e) Iteration 4

Figure 3-14 The process of learning View-Invariant Pose (VIP) feature with domain
adaptation by Algorithm 1. Orange points represent VIP features from synthetic data
while blue points denote the VIP features from real data. Note that the domain shift is
minimized during the learning process.

42

do0i:10.6342/NTU201802626

VIP Features Fy'?

Action
- =) '-SCT'V' =) Label
4 yaction

Figure 3-15 Modeling temporal information in an action sequence using LSTM.

Real
Data

e —

3.3 Model Temporal Information

So far we have learned a VIP feature encoder E which maps human pose observed
from any arbitrary view into a view-invariant space. However, the encoded VIP feature
VTP only contains static and spatial information, the temporal information has to be
further combined to describe actions. In this section, we introduce how to model the
temporal progress in actions using LSTM [24].

With the temporal variations in each action, Recurrent Neural Networks (RNNs) are
appealing in that they can directly map varying-length inputs. Although RNNs have
demonstrated superior capabilities of modeling complex temporal dynamics in an input
sequence, traditional RNNs are limited to learning long-term temporal dependencies
because of the vanishing and exploding gradient problems. LSTM overcomes these
challenges by introducing the gating mechanism and demonstrates its power on a large
variety of problems.

Figure 3-15 illustrates an overview of the proposed pipeline for recognizing actions
in videos captured from different viewpoints. Given an input video of length T, X =

{x:|t =1,2,..., T}, we consider an action as a sequence of poses and use the trained

encoder E to extract the VIP feature f/'" from each input frame. Thus, we transform

the input video X into a sequence of VIP features, Fy'? = {fY/F|t = 1,2,...,T}. The

LSTM module acts as an action classifier C, running through the sequence of the
43

do0i:10.6342/NTU201802626

extracted VIP features to model the temporal dependency.

The LSTM module learns the long-term dynamic which is discriminative to the
action recognition task. The input to the LSTM module is a sequence of VIP features
FY'"P ={fl""|t=1,2,..,T} with f/'"P =E(x,) and the output is a probability

distribution ay € R¢ over all action classes. The objective of the LSTM module is to

minimize the action loss L,tion as the following:

C
Laction = _ZZ[[yaction = C]]IOg(aX,c) (3.7)
X c=1

ay = C4(F{"™) (3.8)

where ay. € R is the c-th element of ay, which indicates the probability of video X
belonging to c-th action class, C is the number of action types, and y,tion denotes the
ground truth action label. The action labels from training data are now required to train
the LSTM module, which makes the training process supervised.

As the LSTM module is learned based on view-invariant features, we can generalize
to different views with the same LSTM module even if the training data come from
specific views. The architecture design of the LSTM module and training details are

presented in Section 4.2.2 and Section 4.2.3.

44

do0i:10.6342/NTU201802626

Chapter 4 Experiments

In this chapter, we introduce the experiments which validates our proposed method.
Before the experimental demonstrations, we give brief summaries of the used public
action datasets. Then, the implementation details are presented. To quantify the view-
invariant property of the proposed VIP feature, cross-view pose classification is also
conducted on the synthetic MVP dataset.

As for cross-view action recognition, we compare our method with various state-of-
the-arts on two public datasets, including NTU RGB+D action recognition dataset [15]
and UWA 3D multi-view activity II dataset [27]. In order to show the effectiveness of the
proposed VIP feature and domain adaptation, we also compare it with some alternative
features. The quantitative experimental results confirm the advantages of our proposed

method.

4.1 Action Datasets

To verify the performance of the proposed method, it is evaluated on two public
benchmark datasets which are NTU RGB+D action recognition dataset [15] and UWA
3D multi-view activity II dataset [27]. Both of them are challenging datasets which have
cross-view setting where the training data and testing data come from different viewpoints,

thus they are suitable for validating cross-view action recognition methods.
4.1.1 NTU RGB+D Action Recognition Dataset

This dataset [15] is currently the largest publicly available dataset for 3D human
action recognition, which contains more than 56,000 videos and 4 million frames. It is
collected by Microsoft Kinect v2 and labeled with 60 action classes including daily,
health-related, and interactive actions: drink water, eat meal/snack, brushing teeth,

brushing hair, drop, pickup, throw, sitting down, standing up, clapping, reading, writing,
45

do0i:10.6342/NTU201802626

Table 4-1 The camera settings of NTU RGB+D action recognition dataset [15].

Setup No. | Height (m) | Distance (m) | Setup No. | Height (m) | Distance (m)

1 1.7 3.5 10 1.8 3.0
2 1.7 2.5 11 1.9 3.0
3 1.4 2.5 12 2.0 3.0
4 1.2 3.0 13 2.1 3.0
5 1.2 3.0 14 2.2 3.0
6 0.8 3.5 15 23 3.5
7 0.5 4.5 16 2.7 3.5
8 1.4 3.5 17 2.5 3.0
9 0.8 2.0

tear up paper, wear jacket, take off jacket, wear a shoe, take off a shoe, wear on glasses,
take off glasses, put on a hat/cap, take off a hat/cap, cheer up, hand waving, kicking
something, put something inside pocket / take out something from pocket, hopping, jump
up, make a phone call/answer phone, playing with phone/tablet, typing on a keyboard,
pointing to something with finger, taking a selfie, check time, rub two hands together, nod
head/bow, shake head, wipe face, salute, put the palms together, cross hands in front,
sneeze/cough, staggering, falling, touch head (headache), touch chest (stomachache),
touch back (backache), touch neck (neckache), nausea or vomiting condition, use a fan
(with hand or paper)/feeling warm, punching/slapping other person, kicking other person,
pushing other person, pat on back of other person, point finger at the other person,
hugging other person, giving something to other person, touch other person's pocket,
handshaking, walking towards each other, and walking apart from each other.

The actions are performed by 40 subjects with different scales. Three cameras are
used to capture action videos simultaneously from three horizontal angles: —45°, 0°, and
45°. Every subject performs each action twice while facing the left and right camera
respectively.

46

do0i:10.6342/NTU201802626

sl e rone

ges of drinking water from NTU RGB+D

Figure 4-1 Multi-view RGB and depth ima
action recognition dataset [15].

Moreover, 17 camera settings listed in Table 4-1 are adopted to get more viewpoint
variations. Combined with different human orientations, the dataset is collected from 80
distinct viewpoints. Therefore, it is suitable for validating cross-view action recognition
methods. In addition to depth videos, RGB videos, infrared videos, and 3D coordinates
of 25 body joints are also provided in this dataset. Figure 4-1 shows some sample frames
of drinking water from different views. The viewpoint and large intra-class variations
make this dataset very challenging. This dataset is highly suitable for data-hungry

algorithm for the task of depth-based or skeleton-based human activity analysis.
4.1.2 UWA 3D Multi-View Activity II Dataset

This dataset [27] is comprised of 30 daily-life human actions performed by 10
subjects with different scales: one-hand waving, one-hand punching, two-hand waving,
two-hand punching, sitting down on floor, standing up, vibrating, falling down, holding
chest, holding head, holding back, walking, irregular walking, lying down, turning

47

do0i:10.6342/NTU201802626

(a) View! (b) View 2 (c) View 3 (d) View 4

Figure 4-2 Multi-view RGB and depth images of one-hand waving from UWA 3D
multi-view activity Il dataset [27]. Note that some body parts might not be fully
captured by the camera.

around, drinking, phone answering, bending, jumping jack, running, picking up, putting
down, kicking, jumping, dancing, moping floor, sneezing, sitting down on chair, squatting,
and coughing.

Each subject performs all 30 actions in a continuous manner for 4 times. Each time
it is captured from a specific viewpoint (front, left, right, and top) using the Microsoft
Kinect v1, thus the video acquisition from 4 views is nonsynchronous. Besides, the videos
are preprocessed by cropping the continuous sequences of each action.

This dataset is challenging since the videos are recorded at different times from
varying viewpoints and the data contains high similarity across action classes. For
instance, phone answering and drinking have very similar arm movements. Moreover, in
the top-view setting, the lower body parts are not properly captured due to self-occlusion.

Figure 4-2 shows some sample frames of one-hand waving from different views.
4.2 Implementation Details

In this section, we describe the implementation details in the experiments including

synthesizing a Multi-View Pose (MVP) dataset, architecture designs, training details, and

48

do0i:10.6342/NTU201802626

the pipeline of action recognition.
4.2.1 Synthesize a Multi-View Pose Dataset

In order to efficiently learn the View-Invariant Pose (VIP) feature, we synthesize a
Multi-View Pose (MVP) dataset. It contains synthetic depth images of human poses
captured from multiple viewpoints.

We sample 100,000 poses out of 4 million poses from CMU motion capture database
[20] so as to find representative poses in the pose space. Using HDBSCAN clustering
algorithm [38], we get K = 195 clusters from by setting the minimum cluster size to 20
and minimum samples to 25. Thus, we build a dictionary consisting of 195 poses with
each treated as a different pose and given a unique dummy pose label.

Considering the variation of subjects in action datasets, we utilize an open source
package, MakeHuman simulator [44], to create 12 human models with different
combinations of gender, body shape, hair style, and clothes as shown in Figure 3-5.
Moreover, we utilize another open source package, Blender [45], to simulate a virtual
environment and re-target each human model with all different poses in the pose
dictionary as shown in Figure 3-6 (b).

To render depth images from multiple viewpoints, 180 virtual cameras with distinct
polar angles @05, € {0°,10°,20°,30°,40°,50°,607,70,80°,90°} and azimuthal
angles @,,im € {0°,20°,40°,60°,80°,100°,120°,140°,160°,180°,200°, 220", 240°,
260°,280°,300°,320°,340°,360°} are uniformly placed on a hemisphere around the
subject as depicted in Figure 3-7. To sum up, we synthesize a MVP dataset containing
depth images of 195 poses with 12 human models captured from 180 viewpoints.
Therefore, the dataset includes 421200 (195x12x180) depth images. Figure 3-8

illustrates some samples. We utilize the same synthetic MVP dataset to generalize the VIP

49

do0i:10.6342/NTU201802626

feature representation for both NTU RGB+D action recognition dataset [15] and UWA
3D multi-view activity Il dataset [27].

4.2.2 Architecture Design

In this part, we describe the detailed design of our proposed architecture, including
the encoder, pose classifier, and domain classifier as shown in Figure 3-13 and the LSTM
module as depicted in Figure 3-15.

For the encoder E, we use the “Xception network™ [41] which consists of depth-
wise separable convolutions and the last fully-connected layer is replaced with a 256-
neuron layer followed by a tanh activation. Thus, the extracted VIP feature fY'F € R256
is a 256-dimension vector and each neuron in fY!* is activated in (—1,1).

As for the pose classifier Cp, since we build a pose dictionary containing 195 poses
in the synthetic MVP dataset, we design a simple one-layer fully-connected neural
network with 195 neurons followed by a softmax activation, corresponding to each pose
in the dictionary.

On the other hand, for the domain classifier Cp, a 3-layer neural network is designed.
The first two layers are both comprised of 64 neurons followed by a leaky ReLLU [48]
with slope equal to 0.3 and the last layer aims at binary classification using one neuron
with sigmoid activation.

For the LSTM module, we design a 2-layer stacked LSTM with 256 hidden units
and aggregate the outputs from all layers with residual connection [3]. Namely, we sum
the outputs of all LSTM layers instead of using only the last one. A fully-connected layer
with 128 neurons followed by a ReLU activation [49] and a dropout layer [50] are further

added on the top of the stacked LSTM. In the last, we add a fully-connected layer with C

neurons followed by a softmax activation where C denotes the number of action types.

50

do0i:10.6342/NTU201802626

4.2.3 Training Details

As shown in Figure 4-3, it is a three-stage training process in our framework. The
first two stages are used for learning VIP feature encoder for real data and the last one is
for learning action information.

In order to have a good initialization for the VIP feature encoder E while learning
with domain adaptation as described in Algorithm 1, the encoder is firstly pre-trained
without domain adaptation as the framework shown in Figure 3-9. The 180 virtual
viewpoints in the synthetic MVP dataset are randomly split into training and testing set
which cover 162 and 18 views respectively. The encoder is initialized as the ImageNet
pre-trained Xception model [41] and fine-tuned on the synthetic MVP dataset. Given x €

syn and y,,s., We update the encoder and pose classifier by using stochastic gradient

descent with mini-batch of 32 samples to minimize VIP loss Ly;p, Eqn. (3.1), through
backpropagation. The network is updated by Adam optimizer [51] with initial learning
rate equal to 1x1073 and the training process is monitored with early stopping.

The original input to Xception network is a three-channel RGB image. In our case,

Stage 1.
Pre-train VIP feature
encoder without DA on the
synthetic MVP dataset.
(unsupervised)

|
Stage 2.

Retrain VIP feature encoder
with DA on synthetic data
and real data.
(unsupervised)
|
Stage 3.

Learn temporal information
on real action videos.
(supervised)

Figure 4-3 The training stages in our proposed method. DA is an abbreviation for
domain adaptation.
51

do0i:10.6342/NTU201802626

we duplicate the depth image to fit three channels, making the input dimension consistent.
Besides, the input images are augmented by random flipping horizontally and random
zooming during training.

Then the VIP knowledge is further adapted to NTU RGB+D action recognition
dataset [15] and to UWA 3D multi-view activity II dataset [27] respectively. Note that all
training data for learning VIP feature with domain adaptation are unpaired, which means
that there are no one-to-one corresponding images across domains. As summarized in
Algorithm 1, we set Iters. of VIP feature with domain adaptation to 4, Iters. of VIP feature
to 1, Iters. of domain classifier to 2, and Iters. of encoder to 1. Stochastic gradient descent
with mini-batch of 32 samples is utilized and the learning process is optimized by Adam
optimizer with initial learning rate equal to 5x107°. Each batch contains half of real data
and half of synthetic data.

The last step is to learn the temporal information. The input sequence is down-
sampled with ratio equal to 5 and each sampled point is randomly shifted along time
domain for data augmentation. We use stochastic gradient descent with mini-batch of 8
samples and update the LSTM by backpropagation through time using Adam optimizer
with initial learning rate equal to 1x1073. The encoder E is fixed while training on
UWA 3D multi-view activity II dataset. However, since the NTU RGB+D action
recognition dataset contains several actions involving object interactions like drink water,
eat meal/snack, brushing teeth, brushing hair, drop, pickup, reading, writing, tear up
paper, wear jacket, take off jacket, wear a shoe, take off a shoe, wear on glasses, take off
glasses, put on a hat/cap, take off a hat/cap, put something inside pocket /take out
something from pocket, make a phone call/answer phone, playing with phone/tablet,
typing on a keyboard, taking a selfie, and use a fan. We jointly fine-tune the encoder with

learning rate equal to 5X107° while updating LSTM on NTU RGB+D dataset. The
52

do0i:10.6342/NTU201802626

Table 4-2 Pose classification accuracy on the synthetic MVP dataset.

Validation data Testing data

97.4 % 95.5 %

encoder is expected to further extract object interaction while maintaining view-invariant
property. The learning process is also monitored with early stopping.

In an addition, NTU RGB+D action recognition dataset has both one-person actions
and two-person interactions. For those samples with two peoples, we predict the action
type for each person and average the result.

As for the platform, we utilize Keras, which is a high-level API running on top of
TensorFlow, CNTK, and Theano, as the deep learning platform. The whole algorithm is
implemented with Python 3.6. For computation resource, we use a personal computer
with Intel 4-core 17-6700 3.4 GHz CPU and a single GPU of GTX 1080Ti for all the

training processes.

4.3 Cross-View Pose Classification

To quantify the view-invariant property of the proposed VIP feature, we design an
experiment for cross-view pose classification. Due to the fact that we only have multi-
view data with pose labels on the synthetic MVP dataset. We conduct on synthetic MVP
dataset.

All 180 viewpoints are split into 162 training views and 18 testing views. 20
percentage of the data in training views further serve as validation data. Thus, we have
303264 training samples, 75816 validation samples, and 42120 testing samples. Each data
is associated with a dummy pose label. Note that training data and validation data share
the same viewpoints while testing data have distinct views. We use the same trained VIP

feature encoder and pose classifier and report the accuracy.
53

do0i:10.6342/NTU201802626

The result is listed in Table 4-2. Even if the pose is observed from novel viewpoints
(testing data), we can still achieve high accuracy by 95.5 %, which demonstrates the
robustness of VIP feature to viewpoint variations.

In addition, Figure 4-4 qualitatively visualize the view-invariant property by

VIP € R256

concatenating the extracted f of the same pose observed from 180 views as

an 180x256 image. Eachelementin f;Fis normalized into [0, 255]. As expected, the

VIP features appear very similarly across all 180 viewpoints for each pose.

54

do0i:10.6342/NTU201802626

1 Ty TR (T 1 17250 1 I ’ il i Wy 720
2 iR ! | , 2 WilHnE I; A I l]
o3 :":: | | A | F200 £ 3 li:’{l: o i i 200
<4l aftd il it © 4 | 1: it e [
g O 150 o ‘ U I g | 1o
[| | i ; 1l ¥ [Il 0
% AL I |] ! I *: i N
S177 . b LT 100 > 177 (IR B (01 1O 100
178] I | . 178 il ’; AL R Ot 1 1 b ;
| | b il 50
179 IR AL A I 179 ; ’i' B {1 A
180 JHHIRGI LA THEF G DRIDRIAL Il ago NIRRT LRIE G
256-dimension 256-dimension
(a) Pose 1 (b) Pose 2
T s 111 1 | i =
2 i M 1 2 L ! '
23 . 200 2 3 :. I l | | I : 5 i 200
S 4 | S 4 i | (1WA (A el
Q j I il | 150 Q | il (] I 150
3 | 1l : | Wil HH
— I A | i 100 O_J i | l [100
=177 I v i it ‘ > 177 Al i It e ';
178 Wi ‘ 5 178 | i i W0
179 | :i I 179 | l; |' \ 3 .
180 AN AL 0 RV DRI I | U B
256-dimension 256-d|men5|on
(c) Pose 3 (d) Pose 4
L] U ‘ 250 v 1 R 0 ;ii 250
o3 RIHA i 0 g AT (e | >
Soa B R 1 S 4 i A1Vt it - |
g B R { 150 o 01 1 ; f 150
= B | 3 180 AU R
[W L — i {
S177 } {1 e l ? 100 > 177 ' : i ' " 100
178§ {0 AR 178 : L
179 ii ' ? ' >0 179 ’ (LR 20
180 § {ill ! , o 180 0 LT DRI I
256- dlmen5|on 256-dimension
(e) Pose 5 (f) Pose 6
1 |k ‘ ‘ ; T 250 1 \H | I |:‘ LTS 250
2 il I :‘ | 2l | i 11t ;
= 3 [‘ 200 23 i ! 1 ; 200
| L
S i ‘ 150 S , ; ; 150
2 i | i [; ‘ @ i e | '
=177 |if{ Ak | AU {1 1 200 S 177 1 :1 {il i1 1 i 100
178 TV | 178 ||| l | \ !
179 i 179 AR (HE g ; %0
256-dimension 256-dimension

(g) Pose 7 (h) Pose 8

Figure 4-4 Qualitative visualization of view-invariant property. Each image represents
a pose in the synthetic MVP dataset. Each row in an image denotes a VIP feature
V1P € R25¢ extracted from a specific view. The 180 rows correspond to 180
viewpoints of the same pose.

4.4 Action Recognition Results

To validate the effectiveness of our proposed method for action recognition, we

compare the performance with several state-of-the-arts. According to the input modalities,

55

do0i:10.6342/NTU201802626

they can be categorized into the following types:

L RGB-based methods: Action Tube [52], AND-OR Graph (AOG) [28], Dense
Trajectories (DT) [53], Long-term Recurrent Convolutional Network (LRCN)
[10], Hankelets [54], Two-stream CNN (Two-Stream) [9], 3D convolution
(3D Conv) [7], non-linear Circulant Temporal Encoding (nCTE) [29], Non-
linear Knowledge Transfer Model (NKTM) [26], and Robust Non-linear
Knowledge Transfer Model (R-NKTM) [25]

II. Depth-based methods: Histogram of Oriented 4D Normals (HON4D) [12],
Super Normal Vector (SNV) [13], 2D Histogram of Oriented Gradients
(HOG?) [14], Long-Term Motion Dynamics (LTMD) [55], Comparative
Coding Descriptor (CCD) [56], Discriminative Virtual Views (DVV) [32],
Continuous Virtual Path (CVP) [30], Histogram of Oriented 3D Point Cloud
(HOPC) [27], and Human Pose Model with Temporal Modeling (HPM+TM)
[16]

I1I. Skeleton-based methods: Skeletal Quads [57], Lie Group [58], Deep RNN,
Deep LSTM, Part-aware LSTM [15], Hierarchically Bidirectional RNN
(HBRNN) [59], Deep Learning on Lie Group (LieNet) [60], Spatio-
Temporal LSTM with Trust Gates (ST-LSTM+TG) [61], Spatio-Temporal
Attention LSTM (STA-LSTM) [62], Histograms of 3D joint locations
(HOJ3D) [63], and Actionlet Ensemble (AE) [64]

IV. Multi-modality methods: Deep Shared-Specific Component Analysis and
Structure Sparsity Learning Machine (DSSCA-SSLM) [65] and Depth+
Skeleton with Rank Pool (D+S-RP) [66]

The quantitative results of these state-of-the-arts are reported from their original

papers and [15, 25, 27, 61]. Our proposed method is denoted as VIP w/ DA (View-
56

do0i:10.6342/NTU201802626

Invariant Pose with Domain Adaptation). In addition to other compared methods, we also

report the performance of some baseline models defined by ourselves, including:

L Xception + LSTM: We use Xception network [41] as encoder to extract

spatial feature and use LSTM module to capture temporal features in actions.

We initialize the Xception from the ImageNet pre-trained model. The

Xception and LSTM module are jointly trained end-to-end only under the

supervision of action labels provided by action datasets. Note that the

encoder does not learn the VIP knowledge in advance.

II. VIP w/o DA: We firstly train the encoder to learn VIP knowledge from the

synthetic MVP dataset as the framework depicted in Figure 3-9. No more

domain adaptation is conducted. Then we model the temporal information

under the supervision of action labels provided by action datasets.

4.4.1 Action Recognition Pipeline

The proposed system pipeline for action recognition is summarized in Figure 4-5.

Depth sensors such as Kinect and Xtion PRO are able to segment the human bodies from

the input depth video in real-time.

We firstly crop the boundary of human segmentation and resize to a 128x128

Step 1.
Crop the human from the
input video and resize

each frame into 128x128.

|

Step 2.
Normalize depth pixel
values into [—1, 1].

|

Step 3.
Extract VIP feature for
each frame.

I

1

Step 4.
Feed the LSTM with the
sequence of VIP features.

!

Step 5.
Get the action label with
maximum probability.

Figure 4-5 The pipeline of action recognition from input video.

57

do0i:10.6342/NTU201802626

image for each input frame. The depth values are further normalized into [—1,1]. To
represent an action as a sequence of poses, we feed forward the resized images x through
the encoder E and temporally align the extracted VIP features f,Y'F. Thus we transform
the input video X to a sequence of VIP features Fy'F. Then the LSTM module runs
through the VIP features and we take the action label with maximum probability as the

predicted output.
4.4.2 The Result of NTU RGB+D Action Recognition Dataset

We follow the cross-subject and cross-view evaluations suggested by [15] and report
the classification accuracy in percentage. For the cross-subject protocol, all 40 subjects
are split into training and testing sets with each containing 20 subjects. On the other hand,
for the cross-view protocol, all the samples recorded by camera 1 and camera 2 are used
for training while the samples captured by camera 3 are for testing.

Table 4-3 shows the performance of several methods. Since there are few RGB-
based methods implemented on this dataset, we choose skeleton-based methods as
alternatives to compare with. Our method (VIP w/ DA) outperforms all existing methods
on both cross-subject and cross-view evaluations. Although skeleton data are somewhat
immune to viewpoint variations, they cannot include interactions with environmental
objects. Our method achieves 86.5 % in cross-view evaluation, which is about 3.4% better
than the nearest competitor, D+S-RP [66]. It is worthy to note that our method only
depends on depth information that is less privacy sensitive. Besides, while the training
and testing data share the viewpoints (cross-subject setting), our proposed method reaches

a superior performance by 86.1 %.

58

do0i:10.6342/NTU201802626

Table 4-3 Comparison of action recognition accuracy (%) on the NTU RGB+D Action
Recognition Dataset [15]. Our proposed method is denoted as VIP w/ DA. Our defined
baseline models are Xception + LSTM and VIP w/o DA.

Methods Data type Cross-subject Cross-view
HON4D [12] Depth 30.6 7.3
SNV [13] Depth 31.8 13.6
HOG? [14] Depth 32.2 22.3
Skeletal Quads [57] Skeleton 38.6 41.4
Lie Group [58] Skeleton 50.1 52.8
Deep RNN [15] Skeleton 56.3 64.1
HBRNN [59] Skeleton 59.1 64.0
Deep LSTM [15] Skeleton 60.7 67.3
LieNet [60] Skeleton 61.4 67.0
Part-aware LSTM [15] Skeleton 62.9 70.3
LTMD [55] Depth 66.2 -
ST-LSTM+TG [61] Skeleton 69.2 77.7
STA-LSTM [62] Skeleton 73.4 81.2
DSSCA-SSLM [65] RGB + Depth 74.9 -
Depth+
D+S-RP [66] Skelfe o 75.2 83.1
Xception + LSTM Depth 69.8 70.0
VIP w/o DA Depth 84.3 82.7
VIP w/ DA Depth 86.1 86.5

From the results of baseline models, pre-learning VIP information (VIP w/o DA) can

significantly benefit the results compared with Xception + LSTM by 14.5% higher in

cross-subject setting and 12.7% higher in cross-view setting. It also leads to a faster

convergence. In addition, domain adaptation can further boost the performance by 1.8%

higher in cross-subject setting and 3.8% higher in cross-view setting. Hence, the result

shows the effectiveness and applicability of our proposed method.

4.4.3 The Result of UWA 3D Multi-View Activity II Dataset

We follow the cross-view evaluation provided in [27] where videos from two views

are used for training and videos from the remaining views are used for testing respectively.

It leads to 12 different cross-view combinations in this evaluation protocol.

do0i:10.6342/NTU201802626

Table 4-4 Comparison of action recognition accuracy (%) on the UWA 3D multi-view
activity II dataset [27]. Each column represents a different cross-view setting. For
example, V3, means the model is trained on view 1 and view 2 while tested on view 3.
Our proposed method is denoted as VIP w/ DA. Our defined baseline models are
Xception + LSTM and VIP w/o DA.

Data
Methods type V132 V142 V123 V143 V124 V134 V213 V243 V214 V234 V314 V324 Avg

CCD [56] Depth | 10.5 | 13.6 | 103 | 12.8 | 11.1 83 100 | 7.7 13.1 | 13.0 | 129 | 10.8 | 11.2

HOJ3D [63] |Skeleton| 153 | 28.2 | 17.3 | 27.0 | 14.6 | 13.4 | 15.0 | 12.9 | 22.1 | 13.5 | 203 | 12.7 | 17.7

DVV [32] Depth | 23.5 | 259 | 23.6 | 269 | 22.3 | 202 | 22.1 | 245 | 249 | 23.1 | 283 | 23.8 | 24.1

AOG [28] Depth | 293 | 31.1 | 253 | 29.9 | 22.7 | 21.9 | 25.0 | 20.2 | 30.5 | 27.9 | 30.0 | 26.8 | 26.7

HON4D [12] Depth | 31.1 | 23.0 | 21.9 | 10.0 | 36.6 | 32.6 | 47.0 | 22.7 | 36.6 | 16.5 | 41.4 | 26.8 | 28.9

SNV [13] Depth | 31.9 | 257 | 23.0 | 13.1 | 384 | 34.0 | 433 | 242 | 369 | 203 | 38.6 | 29.0 | 29.9

Action Tube [52]| RGB | 49.1 | 182 | 39.6 | 17.8 | 35.1 | 39.0 | 52.0 | 152 | 47.2 | 44.6 | 49.1 | 36.9 | 37.0

CVP [30] Depth | 36.0 | 34.7 | 35.0 | 43.5 | 33.9 | 352 | 40.4 | 363 | 36.3 | 38.0 | 40.6 | 37.7 | 373

AE [64] Skeleton| 45.0 | 40.4 | 35.1 | 36.9 | 34.7 | 36.0 | 49.5 | 293 | 57.1 | 354 | 49.0 | 293 | 39.8

AOG [28] RGB | 473 | 39.7 | 43.0 | 30.5 | 35.0 | 42.2 | 50.7 | 28.6 | 51.0 | 43.2 | 51.6 | 442 | 423

LRCN [10] RGB | 539 | 206 | 43.6 | 18.6 | 37.2 | 43.6 | 56.0 | 20.0 | 50.5 | 44.8 | 53.3 | 41.6 | 40.3

Lie Group [58] |Skeleton| 49.4 | 42.8 | 34.6 | 39.7 | 38.1 | 448 | 533 | 335 | 53.6 | 41.2 | 56.7 | 32.6 | 434

Hankelets [54] RGB | 46.0 | 51.5 | 50.2 | 59.8 | 41.9 | 48.1 | 66.6 | 51.3 | 61.3 | 384 | 57.8 | 489 | 51.8

HOPC [27] Depth | 52.7 | S1.8 | 59.0 | 57.5 | 42.8 | 442 | 58.1 | 384 | 63.2 | 43.8 | 663 | 48.0 | 52.2

Two-Stream [9] | RGB | 63.0 | 47.1 | 55.8 | 60.6 | 53.4 | 542 | 66.0 | 50.9 | 653 | 555 | 68.0 | 51.9 | 57.6

DT [53] RGB | 57.1 | 599 | 54.1 | 60.6 | 61.2 | 60.8 | 71.0 | 59.5 | 68.4 | 51.1 | 69.5 | 51.5 | 60.4

3D Conv [7] RGB | 59.5 | 59.6 | 56.6 | 64.0 | 59.5 | 60.8 | 71.7 | 60.0 | 69.5 | 53.5 | 67.1 | 50.4 | 61.0

nCTE [29] RGB | 556 | 60.6 | 56.7 | 62.5 | 61.9 | 60.4 | 69.9 | 56.1 | 70.3 | 54.9 | 71.7 | 54.1 | 61.2

NKTM [26] RGB | 60.1 | 61.3 | 57.1 | 65.1 | 61.6 | 66.8 | 70.6 | 59.5 | 73.2 | 593 | 725 | 545 | 63.5

R-NKTM [25] RGB | 649 | 67.7 | 61.2 | 684 | 649 | 70.1 | 73.6 | 66.5 | 73.6 | 60.8 | 75.5 | 61.2 | 67.4

HPM+TM [16] | Depth | 80.6 | 80.5 | 75.2 | 82.0 | 654 | 72.0 | 77.3 | 67.0 | 83.6 | 81.0 | 83.6 | 74.1 | 76.9

Depth +

D+S-RP [66] P 86.8 | 87.0 | 80.7 | 89.1 | 78.1 | 80.9 | 86.5 | 79.3 | 85.1 | 86.9 | 89.4 | 80.0 | 84.2
Skeleton

Xception +

LSTM Depth | 429 | 438 | 47.7 | 48.7 | 32.0 | 30.2 | 68.0 | 39.7 | 63.6 | 28.3 | 61.0 | 36.1 | 45.2

VIP w/o DA Depth | 76.1 | 79.8 | 73.7 | 80.5 | 71.4 | 72.8 | 747 | 73.0 | 74.7 | 75.0 | 77.3 | 744 | 753

VIP w/ DA Depth | 858 | 86.5 | 85.7 | 87.3 | 80.5 | 81.0 | 859 | 86.1 | 85.1 | 83.2 | 88.8 | 82.7 | 84.9

The quantitative results are summarized in Table 4-4. Our proposed method (VIP w/
DA) outperforms most state-of-the-arts and performs equally well when compared with
D+S-RP [66] by achieving 84.9 % average accuracy. D+S-RP depends on not only depth
data but also skeleton data which may not always be accurately acquired in real
applications due to self-occlusion. Take a skeleton-based method such as Lie group [58]
for example, Lie group performs badly on V3, V&, V%, and V2, which means the
skeleton data are not reliable. However, VIP w/ DA outperforms D+S-RP on these

60

do0i:10.6342/NTU201802626

evaluation settings, which demonstrates our robustness. Besides, domain adaptation gives
a significant improvement by 9.6 % in average compared with VIP w/o DA.

We can see that the deep learning-based methods such as Action Tubes [52] and
LRCN [10] achieve low accuracies as they were proposed for recognizing actions from a
specific view. DT [53] has a relatively high performance because the dense trajectories of
videos obtained from side views are similar.

The overall performances of depth-based methods such as CCD [56], HON4D [12],
SNV [13], and HOPC [27] are low because depth appearances of several actions look
quite different across views. The performance of skeleton-based methods is worse on this
dataset since the skeleton data is not well provided for some actions such as phone
answering, drinking, sneezing or is not available for some actions like lying down and
falling down.

The result demonstrates that the proposed VIP feature is capable of mapping view-
dependent pose information into a view-invariant space. Besides, it also demonstrates that
the learned VIP knowledge from synthetic data can be transferred to real data through
adversarial domain adaptation.

It is interesting to note that for several actions in this dataset such as holding back,
holding head, coughing, and sneezing, there are no similar actions included in the CMU
motion capture database [20]. However, we can still achieve high performance for these

activities, which demonstrates the generalization ability of our proposed VIP feature.

61

do0i:10.6342/NTU201802626

Chapter 5 Conclusion and Future Works

In this thesis, we propose a cross-view action recognition system which takes depth
video as input to recognize human activities from different viewpoints. We use a deep
Convolutional Neural Network (CNN) to extract View-Invariant Pose (VIP) feature by
mapping human poses observed from different viewpoints into a shared view-invariant
feature space.

In order to train such a deep network, we design a simple but efficient pipeline to
synthesize a Multi-View Pose (MVP) dataset which contains depth images of human
poses captured from multiple views. The VIP knowledge is distilled from the synthetic
MVP dataset in an unsupervised way and further transferred to real data through
adversarial domain adaptation. As for recognizing actions from input video, we adopt
Long Short-Term Memory (LSTM) to mine the temporal dependencies. Experimental
results show that the proposed method achieves promising performance over state-of-the-
arts on two benchmark multi-view 3D human action datasets.

Regarding future works, analyzing the relations between action labels and pose
labels in real data will benefit domain adaptation, making it semi-supervised. In addition,
we notice that action detection system is more practical in real applications where the
input is an untrimmed video sequence. Different from action recognition system, not only
the action categories but also the temporal locations are analyzed. We expect that the VIP

feature will also be applicable for cross-view action detection.

62

do0i:10.6342/NTU201802626

REFERENCE

[1] S. Herath, M. Harandi, and F. Porikli, "Going deeper into action recognition: A
survey," Image and vision computing, vol. 60, pp. 4-21, 2017.

[2] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-
scale image recognition," in Proceedings of the International Conference on
Learning Representations, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image
recognition," in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770-778.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified,
real-time object detection," in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 779-788.

[5] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic
segmentation," in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 3431-3440.

[6] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object
detection with region proposal networks," in Advances in neural information
processing systems, 2015, pp. 91-99.

[7] S. Ji, W. Xu, M. Yang, and K. Yu, "3D convolutional neural networks for human
action recognition," [EEE transactions on pattern analysis and machine
intelligence, vol. 35, pp. 221-231, 2013.

[8] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, "Learning
spatiotemporal features with 3d convolutional networks," in /IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 4489-4497.

[9] K. Simonyan and A. Zisserman, "Two-stream convolutional networks for action
recognition in videos," in Advances in neural information processing systems,
2014, pp. 568-576.

[10] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell, "Long-term recurrent convolutional networks for visual
recognition and description," in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 2625-2634.

[11] T.-W. Hsu, Y.-H. Yang, T.-H. Yeh, A.-S. Liu, L.-C. Fu, and Y.-C. Zeng, "Privacy
free indoor action detection system using top-view depth camera based on key-
poses," in [EEE International Conference on Systems, Man, and Cybernetics
(SMC), 2016, pp. 4058-4063.

[12] O. Oreifej and Z. Liu, "Hon4d: Histogram of oriented 4d normals for activity
recognition from depth sequences," in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2013, pp. 716-723.

[13] X. Yang and Y. Tian, "Super normal vector for activity recognition using depth
sequences," in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2014, pp. 804-811.

[14] E. Ohn-Bar and M. M. Trivedi, "Joint angles similarities and HOG2 for action
recognition," in /EEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2013, pp. 465-470.

[15] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, "NTU RGB+D: A Large Scale
Dataset for 3D Human Activity Analysis," in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

63

do0i:10.6342/NTU201802626

[16] H. Rahmani and A. Mian, "3d action recognition from novel viewpoints," in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 1506-1515.

[17] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
"Learning from simulated and unsupervised images through adversarial training,"
in [EEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
p. 6.

[18] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev, and C.
Schmid, "Learning from synthetic humans," in /EEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[19] W. Chen, H. Wang, Y. Li, H. Su, Z. Wang, C. Tu, D. Lischinski, D. Cohen-Or, and
B. Chen, "Synthesizing training images for boosting human 3d pose estimation,"
in International Conference on 3D Vision (3DV), 2016, pp. 479-488.

[20] . CMU graphics lab motion capture database. Available:
http://mocap.cs.cmu.edu/

[21] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan,
"A theory of learning from different domains," Machine learning, vol. 79, pp. 151-
175,2010.

[22] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, "Generative adversarial nets," in Advances in neural
information processing systems, 2014, pp. 2672-2680.

[23] I Sutskever, O. Vinyals, and Q. V. Le, "Sequence to sequence learning with neural
networks," in Advances in neural information processing systems, 2014, pp. 3104-
3112.

[24] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural
computation, vol. 9, pp. 1735-1780, 1997.

[25] H. Rahmani, A. Mian, and M. Shah, "Learning a deep model for human action
recognition from novel viewpoints," [EEE transactions on pattern analysis and
machine intelligence, vol. 40, pp. 667-681, 2018.

[26] H. Rahmani and A. Mian, "Learning a non-linear knowledge transfer model for
cross-view action recognition," in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 2458-2466.

[27] H. Rahmani, A. Mahmood, D. Huynh, and A. Mian, "Histogram of oriented
principal components for cross-view action recognition," /EEE transactions on
pattern analysis and machine intelligence, vol. 38, pp. 2430-2443, 2016.

[28] J. Wang, X. Nie, Y. Xia, Y. Wu, and S.-C. Zhu, "Cross-view action modeling,
learning and recognition," in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2014, pp. 2649-2656.

[29] A. Gupta, J. Martinez, J. J. Little, and R. J. Woodham, "3D pose from motion for
cross-view action recognition via non-linear circulant temporal encoding," in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp.
2601-2608.

[30] Z. Zhang, C. Wang, B. Xiao, W. Zhou, S. Liu, and C. Shi, "Cross-view action
recognition via a continuous virtual path," in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2013, pp. 2690-2697.

[31] J. Zheng and Z. Jiang, "Learning view-invariant sparse representations for cross-
view action recognition," in IEEE International Conference on Computer Vision
(ICCV), 2013, pp. 3176-3183.

[32] R. Li and T. Zickler, "Discriminative virtual views for cross-view action

64

do0i:10.6342/NTU201802626

recognition," in /EEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2012, pp. 2855-2862.

[33] J. Liu, M. Shah, B. Kuipers, and S. Savarese, "Cross-view action recognition via
view knowledge transfer," in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011, pp. 3209-3216.

[34] E. Tzeng, J. Hoftfman, K. Saenko, and T. Darrell, "Adversarial discriminative
domain adaptation," in /[EEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, p. 4.

[35] Y. Ganin and V. Lempitsky, "Unsupervised domain adaptation by
backpropagation," in Proceedings of the International Conference on Machine
Learning, 2015.

[36] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, "Simultaneous deep transfer
across domains and tasks," in IEEE International Conference on Computer Vision
(ICCV), 2015, pp. 4068-4076.

[37] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for
discovering clusters in large spatial databases with noise," in Kdd, 1996, pp. 226-
231.

[38] R.J. Campello, D. Moulavi, and J. Sander, "Density-based clustering based on
hierarchical density estimates," in Pacific-Asia conference on knowledge
discovery and data mining, 2013, pp. 160-172.

[39] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich, "Going Deeper With Convolutions," in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2015.

[40] C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, and Z. Wojna, "Rethinking the
inception architecture for computer vision," in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2818-2826.

[41] F. Chollet, "Xception: Deep learning with depthwise separable convolutions," in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2017.

[42] C. Wang, Y. Wang, and A. L. Yuille, "An approach to pose-based action
recognition," in /[EEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2013, pp. 915-922.

[43] L. Seidenari, V. Varano, S. Berretti, A. Del Bimbo, and P. Pala, "Recognizing
actions from depth cameras as weakly aligned multi-part bag-of-poses," in /EEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
2013, pp. 479-485.

[44] . MakeHuman: open source tool for making 3D characters. Available:
http://www.makehuman.org/
[45] . Blender: a 3D modelling and rendering package. Available:

http://www.blender.org/

[46] L.v.d.Maaten and G. Hinton, "Visualizing data using t-SNE," Journal of machine
learning research, vol. 9, pp. 2579-2605, 2008.

[47] Y.-C. Liu, W.-C. Chiu, S.-D. Wang, and Y.-C. F. Wang, "Domain-Adaptive
generative adversarial networks for sketch-to-photo inversion," in [EEE
International Workshop on Machine Learning for Signal Processing (MLSP),
2017, pp. 1-6.

[48] A.L.Maas, A.Y. Hannun, and A. Y. Ng, "Rectifier nonlinearities improve neural
network acoustic models," in Proceedings of the International Conference on

65

do0i:10.6342/NTU201802626

Machine Learning, 2013, p. 3.

[49] V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann
machines," in Proceedings of the International Conference on Machine Learning,
2010, pp. 807-814.

[50] N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and R. Salakhutdinov,
"Dropout: A simple way to prevent neural networks from overfitting," The
Journal of Machine Learning Research, vol. 15, pp. 1929-1958, 2014.

[51] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in
Proceedings of the International Conference on Learning Representations, 2015.

[52] G. Gkioxari and J. Malik, "Finding action tubes," in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 759-768.

[53] H. Wang, A. Kldser, C. Schmid, and C.-L. Liu, "Action recognition by dense
trajectories," in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011, pp. 3169-3176.

[54] B. Li, O. I. Camps, and M. Sznaier, "Cross-view activity recognition using
hankelets," in /IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2012, pp. 1362-1369.

[55] Z. Luo, B. Peng, D.-A. Huang, A. Alahi, and L. Fei-Fei, "Unsupervised learning
of long-term motion dynamics for videos," in /IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[56] Z. Cheng, L. Qin, Y. Ye, Q. Huang, and Q. Tian, "Human daily action analysis
with multi-view and color-depth data," in European Conference on Computer
Vision (ECCV), 2012, pp. 52-61.

[57] G. Evangelidis, G. Singh, and R. Horaud, "Skeletal quads: Human action
recognition using joint quadruples," in International Conference on Pattern
Recognition (ICPR), 2014, pp. 4513-4518.

[58] R. Vemulapalli, F. Arrate, and R. Chellappa, "Human action recognition by
representing 3d skeletons as points in a lie group," in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 588-595.

[59] Y.Du, W. Wang, and L. Wang, "Hierarchical recurrent neural network for skeleton
based action recognition," in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1110-1118.

[60] Z.Huang, C. Wan, T. Probst, and L. Van Gool, "Deep learning on lie groups for
skeleton-based action recognition," in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 6099-6108.

[61] J. Liu, A. Shahroudy, D. Xu, A. K. Chichung, and G. Wang, "Skeleton-based
action recognition using spatio-temporal Istm network with trust gates," IEEE
transactions on pattern analysis and machine intelligence, 2017.

[62] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, "An End-to-End Spatio-Temporal
Attention Model for Human Action Recognition from Skeleton Data," in
Association for the Advancement of Artificial Intelligence (AAAI), 2017, p. 7.

[63] L. Xia, C.-C. Chen, and J. Aggarwal, "View invariant human action recognition
using histograms of 3d joints," in /EEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2012, pp. 20-27.

[64] J. Wang, Z. Liu, and Y. Wu, "Learning actionlet ensemble for 3D human action
recognition," in Human Action Recognition with Depth Cameras, ed: Springer,
2014, pp. 11-40.

[65] A. Shahroudy, T.-T. Ng, Y. Gong, and G. Wang, "Deep multimodal feature
analysis for action recognition in rgb+ d videos," IEEE transactions on pattern

66

do0i:10.6342/NTU201802626

analysis and machine intelligence, 2017.

[66] H.Rahmani and M. Bennamoun, "Learning action recognition model from depth
and skeleton videos," in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 5832-5841.

67

do0i:10.6342/NTU201802626

