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摘要

本論文包含兩部分，第一部分有關 class-agnostic tracking。本論文提出兩個

演算法，希望透過深度學習對於時序和影像資料的豐富特徵，解決目前 class-

agnostic tracking領域的問題。第二部分是將電腦視覺技術應用在環境保育領域，

針對海豚資料的偵測及辨識。

在 trakcing上，本論文中提出 FasterMDNet和 RDisp。FasterMDNet將MD-Net

中時間複雜度極高的 online training 以根據 RNN 為基礎的模型更新策略取代，

並以重複的 online training和 back-propagation through time (BPTT)來訓練。Faster-

MDNet比起 MDNet，時間節省大約十倍左右。RDisp將已訓練好的物件偵測模

型，加上 ConvRNN，建立追蹤模型。此外，由於 BPTT在訓練 RDisp的缺陷，本

論文提出以兩階段片段訓練取代 BPTT來訓練 RDisp。RDisp在 GPU上的執行速

度大約是 25 fps，並能夠克服多種常見的影像變化。

在海豚偵測與辨識上，主要的兩個演算法是 Faster-RCNN和 DenseNet。此外，

在海豚名稱辨識上，單純的海浪背景讓訓練好的模型無法著重在海豚本身的細節

特徵上。本論文提出結合基於深度學習和基於規則的 saliency領域的演算法，來

偵測海豚的區域，並把海面部分刪除，除去海面的影響。

關鍵字：物件追蹤，卷積遞歸神經網路，物件偵測，圖像分類，細粒度圖像分

類，DenseNet，媽祖魚。
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Abstract

The first topic is class-agnostic visual tracking. The proposed algorithms attempt to

tackle this problem via strong representative ability of temporal-spatial information in

deep-learning techniques. The second topic is dolphin detection and identification.

The FasterMDNet and theRDisp are proposed. The FasterMDNet replaces computation-

costly online training by an RNN model adaptation and trains RNN model adaptation by

repeated online training via back-propagation through time (BPTT). The temporal cost is

reduced to around 10 times faster than MD-Net with little sacrificed on accuracy. The

RDisp incorporates pretrained detection model with ConvRNN cells. A two-stage clip

training is proposed to replace BPTT in training to solve some defects of BPTT. The

RDisp runs at 25 frames per second with consistency under multiple circumstances.

In the dolphin detection and identification, the trunks are the Faster-RCNN and the

Densenet. In classification of dolphin names, interference of sea surfaces distracts the

model from details of dolphins. The ensemble of deep-learning based and rule-based

saliency detection algorithms with a soft gaussian threshold is proposed to create the dol-

phin mask to remove the pixels of sea surfaces.

Keywords: visual tracking, convolutional recurrent neural network, detection, classi-

fication, Taiwanese Humpback Dolphin, DenseNet, saliency.
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Chapter 1 Introduction

Two topics are included in this thesis. The first topic is about class-agnostic visual

tracking. The proposed algorithms attempt to tackle problems in visual tracking via strong

representative ability of temporal-spatial information in deep-learning techniques. The

second topic is an integrated application on dolphin detection, segmentation, and recog-

nition for marine conservation purposes.

Class-agnostic visual tracking is a fundamental and challenging topic in computer vi-

sion. First, the class-agnostic property leads to that class visual priors cannot be learned

from the training dataset. This increases the difficulty and the system should adopt a ver-

satile, complete, and robust visual features to represent all possible tracked objects and, in

the meantime, reject all possible backgrounds. Second, there are a variety of changes for

the tracked object among different video frames, including object motion, camera motion,

occlusion, object deformation, illumination change, etc. Moreover, these changes are un-

predictable in the long term. Therefore, the class-agnostic and long-term-change-agnostic

properties of visual tracking magnify the difficulty in extracting or learning robust spatial-

temporal features. In addition, the temporal cost is a vital component in the performance

of a tracking algorithm. Hence, a good tracking algorithm should perform well on both

accuracy and time-complexity. In the field of class-agnostic visual tracking, the two-stage

system including a feature extraction block and a feature processing block is still the main-

stream. Well-known deep-learning based tracking models, including the MDNet [1], the

1
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TCNN [2], etc, utilizes online training to process temporal changes which has a high com-

putation cost. Other algorithms benefit from the versatile visual features extracted from

the pre-trained CNN in different tasks.

Two tracking algorithms are proposed: the FasterMDNet and the RDisp. The proposed

algorithms take theMDNet as the baseline. The FasterMDNet is trying to replace the high-

computation-cost of the online training model by an RNN model adaptation. The simple

idea behind is that the process of updating the model based on the current model, previous

input frames, and predictions in repeated online training can be represented by a learnable

function modeled as the RNN. The FasterMDNet is based on this concept. It replaces the

online training with an RNN model and trains the RNN by repeated online training. The

RDisp is based on the philosophy behind the first work but utilizes a more complicated

model and state-of-the-art structures of object detection such as region proposal network,

pre-trained one-stage detection model, and convolutional recurrent neural network. In

addition, a two-stage clip training is proposed to replace back-propagation in training the

RDisp due to some defects in back-propagation leading to a failure in training.

The second part of this thesis is about dolphin detection, dolphin identification, and

dolphin image foreground extraction. Different from well-known detection and semantic

segmentation datasets like VOC [3], COCO [4], etc where complete annotations are avail-

able, our dolphin dataset contains only parts of annotations, which makes the work even

challenging.

Here, a system to process our dolphin dataset including detection, foreground extrac-

tion, and identification is proposed. First, to train the system of detection and recognition,

the Faster-RCNN [5] is utilized. The Faster-RCNN works well on detection under large

number annotations and satisfactorily on identification in the beginning. Yet, when the

same model is tested on recently taken images, the results demonstrates a much poorer

performance than the performance on the testing dataset. With the analysis of the model

2
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and the split of the dataset using gradient-based saliency maps [6], the results shows the

sea surface background distracts the model. A further experiment on dataset split by dates

approves the argument. Therefore, a saliency block is inserted into the pipeline and the

system turns to 3 blocks: the detection block, the saliency block, and the classification

block.

In the detection block, the base algorithm is the Faster-RCNN. Several preprocess-

ing methods are utilized to enhance the dolphin information and remove irrelevant noisy

background. In the saliency block, due to the lack of segmentation annotations, it is im-

plausible to train a data-driven model based on dolphin mask groundtruths. Due to the

simple background of the sea, we utilize saliency detection algorithms to segment the dol-

phin parts. Yet, in direct use of algorithms such as [7, 8, 9, 10] on the cropped patch,

problems arise that the saliency lie on only parts of the dolphin since the whole dolphin

accounts for most pixels in the cropped patch. A solution is to use twice the bounding box

for crop and the results demonstrate qualitative results. In addition, an ensemble on four

utilized algorithms is induced to increase the robustness of the produced saliency maps.

In the classification block, the DenseNet121 [11] is utilized on the masked dolphin images

for classification of names and on the original dolphin images for classification of angles

and stages. In classification of stages, histogram of pixels and histograms of color chan-

nels as features and neural networks as classifiers are also attempted. In classification,

the DenseNet121 demonstrates the highest accuracy among classification of three anno-

tation types. Finally, an desktop application of the proposed system is built upon Python

Tkinter.

3
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Chapter 2 Reviews of TrackingTechniques

In this chapter, basic knowledge of visual tracking is introduced. This chapter is orga-

nized as follows. Section 2.1 introduces background knowledge of visual tracking. Sec-

tion 2.2 introduces the model formulation of visual tracking. Section 2.2.1 and 2.2.2 in-

cludes different settings of visual tracking. Section 2.3 introduces the specific tracking

setting, class-agnostic RGB tracking, in this thesis. Section 2.4 introduces three well-

known class-agnostic RGB tracking datasets.

2.1 Introduction

Visual Tracking is a fundamental, significant and challenging task in the field of com-

puter vision. When human observes the world, certain objects are focused by human eyes

and being kept in the line of sight. Tracking is similar to this process to focus on a certain

object. In technologies nowadays, cameras act as human eyes for themachines and capture

information as videos composed of frames sampled at a fixed time rate. In standard video

analysis [12]. There are three primary steps: detection of interesting objects, tracking of

these objects, and analysis of object tracks for higher semantic informations. The tracking

algorithm correlates interesting objects in different frames for temporal consistency and

combines informations in 2D static image domain into 3D temporal-spatio domain. Thus,

tracking algorithms are pertinent in the video-related tasks [12].

The task of visual tracking can be basically interpreted as following steps: choosing
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the tracked target in the beginning and determining the location and size of the target

in the following consecutive video frames. Visual tracking plays an important role in

applications like robotic vision, surveillance, military monitoring, etc. In the applications

of visual tracking, the trajectory, the appearance change or the motion of the target can be

further analyzed to extract in-depth knowledge of the video.

2.2 Problem Formulation

In the scenario of object tracking, the interesting objects and the video frames are

assumed to be given. The goal of object tracking is to search the location of the interesting

objects in videos frames. Normally, the locations of the interesting objects are given for

the first frame or the first few frames, and tracking algorithms will produce a location of

each interesting object in each following frame.

Mathematically, suppose there are a set of videos framesF = {f1, f2, ..., fN} and a set

of interesting objectsX = {x1, x2, ..., xK}with ground-truth locationsY = {Y1, Y2, ..., YM},

M < N where Yt = {y0,t, y1,t, ..., yK,t} are the ground-truth locations of all interest-

ing objects for frame ft. The goal of a tracking algorithm is to predict the locations of

interesting objects in frame {fM+1, fM+2, ..., fN}. The predictions are notated as Ŷ =

{ŶM+1, ŶM+2, ..., ŶN}, where Ŷt = {ŷ0,t, y1,t, ..., yK,t} are the ground-truth locations of

all interesting objects for frame fi. Thus, a tracking algorithm can be generally modelled

as a function g such that

Ŷ = g(F,X, Y ). (2.1)

Assume that interesting objects are independent. The problem can be simplified into

the scenario of a single tracked object. The problem formulation is simplified as that

given input video frames F = {f1, f2, ..., fN} and a interesting object x with ground-

truth locations {y1, y2, ..., yM} in frame {f1, f2, ..., fM}, a tracking algorithm searches

5
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predictions Ŷ = {ŷM+1, ŷM+2, ..., ŷN} in frame{fM+1, fM+2, ..., fM+K}. Equation 2.1 is

simplified as,

{ŷM+1, ŷM+2, ..., ŷN} = g(f1, f2, ..., fN , x, y1, y2, ..., yM). (2.2)

In addition, most applications require a real-time tracking system for shorter latency

in relative response. For example, a short latency is required for a surveillance system

when a suspicious person or a suspicious activity is captured to faster response to po-

tential dangers. Hence, a tracking algorithm is normally assumed to be causal since

a requirement for future frames will fundamentally increase the latency. Based on this,

equation 2.2 can be simplified as,

ŷt = g(f1, f2, ..., fM , ..., ft, x, y1, y2, ..., yM),M < t ≤ N. (2.3)

In most scenarios, the computational cost of processing all previous frames and the

current frame in every time-step is very high. Most algorithms will store the informa-

tion extracted from ground-truths, previous frames, and previous predictions in a set of

information represented in different forms. The information can be previous t frames,

object candidates, state variables, appearance models, etc. In the beginning of tracking,

the initial information is extracted from initial frames and ground-truths. In the following

time-step, the algorithm includes two steps: prediction based on previous information and

current frame, and information update. Suppose the information from {y1, y2, ..., yM} and

{f1, f2, ..., fM , ..., ft} is notated as St. The algorithm formulation can be represented as

6
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follows,

SM = o(f1, f2, ..., fM , x, y1, y2, ..., yM) (initial information). (2.4)

ŷt = g(ft, St−1) (prediction). (2.5)

St = h(ft, St−1) (update). (2.6)

In equation 2.4, function o(·), function g(·), function h(·), and the representation of S

are unknown. Thus, tracking algorithms differ from the following questions: how is the

information S represented, how to extract initial information (function o), how to generate

prediction (function g), and how to update information (function h).

2.2.1 Video Frame Channels: RGB, D, and RGB-D

For a video in our daily lives, the video frames are composed of color informations,

or RGB channels, thanks to the cheap price and small volume of CMOS image sensors.

In early years before 2010, due to the high price of RGB-D camera like the Swiss Ranger

SR4000 and PMD Tech products which costed around USD$10000, it’s rarely considered

to use RGB-D channels in video applications. In November 2010, Microsoft introduced

Kinect for Xbox 360 at a price around USD$150 which provides color information and

depth information for every pixel using structured light technique, which largely decreased

the price of RGB-D sensor in order of magnitude and aroused the interests in utilization

of RGB-D channels in different fields [13]. In Feburary 2016, the LeapMotion introduced

Orion on their Leap sensor which is available to track every articulations of hand in first-

person view using only depth information at a price at aroundUSD$20with amuch smaller

volume than Kinect.

Since depth information is illumination-invariant, the algorithm with the alleviation of

depth can be more robust to changes in color domain. Due to affordable prices of RGB-D
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sensors and the illumination change immune property of depth information, utilization of

depth information increased in computer vision fields including tracking. According to

the channels of input video frames, tracking algorithms can be split into 3 genres: RGB

tracking [14], Depth tracking [15, 16, 17, 18] and RGB-Depth tracking [19, 20, 21, 22,

23, 24, 25].

However, even though RGB-D cameras reach affordable prices after the release of

Kinect, they are still hundred times of RGB cameras. Furthermore, RGB sensors are built-

in devices in a wide range of commercial electronic products nowadays such as smart

phones, notebooks. Hence, for applications toward public people, algorithms based on

RGB channels require more inexpensive hardware and can reach more people compared

with RGB-D cameras.

2.2.2 Class-Aware and Class-Agnostic Tracking

According the prior knowledge of the tracked objects, tracking can be split into two

genres: class aware and class agnostic. If tracking algorithms track only interesting ob-

jects of specific classes, it’s class-aware tracking since the algorithm is aware the class

prior before tracking. For example, pedestrian tracking, face tracking, animal tracking,

or football tracking are class-aware tracking. On the other hand, if tracked objects can be

of any class, it’s class-agnostic tracking. The tracked object in class-agnostic tracking are

given by the location in the frame such as a bounding-box in the first frame of a video.

Due to the absence of prior knowledge of tracked objects and potentially various classes

of objects, class-agnostic tracking is much more challenging.

For simplification, tracking and visual tracking mentioned in following chapters refers

to RGB class-agnostic tracking. Plus, existence of interesting objects inside video frames

are assumed. The multi-object tracking requiring detection of appearance and disappear-
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ance of interesting objects [26, 27, 28, 29] is not in the range of this thesis.

2.3 Class-Agnostic RGB Tracking

Class-agnostic rgb tracking is a challenging task in computer vision due to versatile

factors of changes of the aimed target and the quality of the video including illumina-

tion variations, scale changes, occlusions, motion blur, target deformations, background

clutters, coexistence of similar objects, etc.

In the task of class-agnostic tracking, the target is provided by a bounding box in the

first frame of the video and the tracker predicts the location and the size of the target in

the following frames. The difficulties of visual tracking includes online target acquisition,

limited time for adaptation, versatile video quality, etc. For example, in VOT 2016, each

video was labeled with six different visual attributes: 1. occlusion, 2. illumination change,

3. motion change, 4. size change, 5. camera motion, and 6. unassigned.

To design a tracking algorithm, three major problems should be considered:

I. Target Acquisition

Target Acquisition means the tracking algorithm has to recognize the tracked target

chosen by the user in order to track the same object in the following frames. Normally,

the chosen target is provided as a rectangle or a quadrilateral enclosing the target in the

first frame.

In KCF, the target is represented directly by RGB pixel values inside the rectangle. In

C-COT, multiple features extracted from the patch including HoG, CNN features, etc are

utilized. InMDNet and T-CNN, the target acquisition is done by training the convolutional

neural network with multiple positive and negative patches, where whether a patch is

positive or not is determined by IoU with the ground-truth rectangle.
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II. Target and Environment Change

Multiple changes of the target and environment will occur in different videos. The

target changes includes (1) the relative motion of the target: changes of location or veloc-

ity of the target in consecutive video frames (2) change of the appearance: illumination

change, size change, deformation like a person turning around or a diving person, color

changes, etc. The environment changes can be more complicated like occlusion, motion

of camera, coexistence of similar objects, etc. A robust tracking algorithm requires a good

model update strategy to deal with versatile changes in a video.

III. Computation Cost

In addition, for a practical tracking algorithm, time resources are limited. For example,

a surveillance system that detects potential dangerous activities requires a short latency

for quick response. Hence, a good model update strategy and a good target acquisition

strategy require small time complexity for real-time tracking.

2.4 Datasets

In this section, three notable datasets of class-agnostic rgb tracking are introduced.

The qualities of sequences, annotation formats, annotations of visual attributes, evaluation

metrics, and evaluation protocols are covered and summarized as a table for comparison.

2.4.1 AmsterdamLibrary of Oridnary Videos fo tracking (ALOV++)

ALOV++ [30] is a milestone dataset in the field of visual tracking which covers ver-

satile scenarios with an enormous number of annotated videos.

For qualities of sequences, ALOV++ gathers 315 video sequences covering diverse

circumstances involving illumination changes, occlusion, clutter, cameramotion, low con-
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trast, specularities. Among 315 video fragments, 65 sequences are from PETS workshop

[31], 250 sequences are newly collected from real-life videos on YouTube with 64 dif-

ferent types of targets. The sequences are divided into 13 aspects of difficulties. For the

length of the videos, most videos are short videos with an average of 9.2 seconds and a

maximum of 35 seconds. Ten videos have long durations between one and two minutes.

For annotation format, each video has a single target and is annotated by rectangular

bounding-boxes along the main axes of flexible sizes every fifth frame. The ground truths

of intermediate frames are acquired by interpolation. No visual attributes such as occlusion

label are given for sequences or frames.

For evaluation protocol, ALOV++ utilizes one-pass evaluation (OPE). The first frame

and the ground truth in the frist frame are given for initialization. Trackers produce bound-

ing boxes for prediction in every following frames until the last frame of a video. When

the target is lost by the tracker, no re-initialization is provided.

For evaluationmetrics, ALOV++ summarizesmetrics in previous literatures and presents

sevenmetrics as Table 2.1. The notations follow [30]. SinceALOV++ is not adopted in the

proposed algorithms in this thesis due to lack of evaluation toolkit, lack of re-initialization

mechanism, and inconsideration of robustness, the details remain for interested readers to

refer to section 2.3 in the original paper [30].

2.4.2 Object Tracking Benchmarks (OTB50/OTB100)

In CVPR 2013, OTB [32] is released with 50 fully annotated sequences. In 2015, OTB

[33] is augmented with additional 50 sequences and summed as 100 sequences in total. In

literatures, the dataset released in 2013 is called OTB50 or OTB2013 and the one released

in 2015 is notated as OTB100 or OTB2015.

For qualities of sequences, the lengths of videos range from short term with dozens of
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Table 2.1: Evaluation Metrics of ALOV++ [30].

Name Equation Aim Measure

F-score 2 · precision·recall
precision+recall

Accuracy Threholded precision and recall

F1-score 1
Nframes

∑
i 2 ·

pi·ri
pi·ri Accuracy Precision and recall

OTA 1−
∑

i(n
i
fn+ni

fp)∑
i g

i Accuracy False positive and false negative

OTP 1
|Ms|

∑
i∈Ms

T i∩GT i

T i∪GT i Accuracy Average overlap over matched frames

ATA 1
Nframes

∑
i |

T i∩GT i

T i∪GT i | Accuracy Average overlap

Deviation 1−
∑

i∈Ms
d(T i,GT i)

|Ms| Location Centroid normalized distance

PBM 1
Nframes

∑
i

[
1− Distance(i)

Th(i)

]
Location Centroid L1-distance

frames to long term with thousands of frames. The targets of the videos include human

body for 36 sequence, face or head for 26 sequences, and other versatile objects for re-

maining 38 sequences. Among 100 videos, 74 sequences are color videos, 26 sequences

are gray-scale videos.

For annotation format, each video fragment has a single target and is annotated by

rectangular bounding boxes along main axes for every frame. To be noticed, sequences

Jogging and Skating2 has two annotated targets for each sequence. Yet, in each run, only

the initial bounding box of a single target is provided. In addition, every sequences are

labeled for eleven different visual attributes as Table 2.2. A sequence can have two or

more labels. For example, sequence Girl has labels SV, OCC, IPR, OPR.

For evaluation protocol, OTB adopts three types of evaluations involving one-pass

evaluation (OPE), temporal robustness evaluation (TRE), and spatial robustness evalua-

tion (SRE). In OPE, a tracker is fed with the initial bounding box in the first frame and

predict bounding boxes for every following frames until the end of a video. In TRE, the

temporal robustness means how an initialization of a tracker performs in different time-
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steps. A video sequence is divided into 20 segments and a tracker is evaluated on each

segment using OPE and the overall statistics of segments of the same video are tallied.

In SRE, the spatial robustness means how an initialization of a tracker performs in noisy

initial bounding box. In each evaluation in SRE, the initial bounding box is perturbed by

either one of 4 center shifts, 4 corner shifts and 4 scale shifts. The shift amount is one of

±10% of target size along two main axes. The scale ratios include 0.8, 0.9, 1.1, 1.2 to the

ground truth. In SRE, each tracker is evaluated 12 times where each run adopts a single

perturbation method. In OTB2013, no re-initialization is provided when the target is lost.

In OTB2015, re-initialization is provided directly on the next frame of the failed frame.

The failure is defined when the overlap of the prediction and the ground-truth dropped

to a threshold θ. When re-initialization is considered, two new protocols are proposed in

OTB2015 as follows 1. One Pass Evaluation with Restart (OPER) 2. Spatially Robustness

Evaluation with Restart (SRER).

In addition, in evaluation of OTB, a tracker should be on-line/causal, indicating that the

current prediction should only depend on the initial bounding box, previous predictions,

and current and previous frames. For the parameters, sequence-specific parameters tuned

manually are not allowed. All parameters should be fixed or generated automatically for

all sequences.

For evaluation metrics, OTB adopts success plot and precision plot. Figure 2.1 is

an example of the results in OTB2013 [32]. For precision plot, x-axis is center location

error in units of pixels, y-axis is precision denoting the percentage of frames with center

location errors smaller than a specific threshold in x-axis. A representative precision score

for each tracker is the precision value in threshold = 20 pixels. For success plot, x-axis

is overlap score and y-axis is success rate. Overlap score is denoted as S = |rt∩ra|
|rt∪ra| where

rt is set of pixels inside the ground truth bounding box, ra is the set of pixels inside the

prediction bounding box, and | · | denotes the number of elements inside a set. Success rate

13



doi:10.6342/NTU201801036

Table 2.2: List of Visual Attributes in OTB [32].

Attr Description
IV Illumination Variation - the illumination in the target region

is significantly changed.
SV Scale Variation - the ratio of the bounding boxes of the first

frame and the current frame is out of the range [1/ts, ts], ts >
1 (ts=2).

OCC Occlusion - the target is partially or fully occluded.
DEF Deformation - non-rigid object deformation.
MB Motion Blur - the target region is blurred due to the motion

of target or camera.
FM Fast Motion - the motion of the ground truth is larger than

tm pixels (tm=20).
IPR In-Plane Rotation - the target rotates in the image plane.
OPR Out-of-Plane Rotation - the target rotates out of the image

plane.
OV Out-of-View - some portion of the target leaves the view.
BC Background Clutters - the background near the target has the

similar color or texture as the target.
LR Low Resolution - the number of pixels inside the ground-

truth bounding box is less than tr (tr=400).

is the percentage of frames with overlap score larger than the specific threshold in x-axis.

For the case in considering restart, a new metric is the number of restart w.r.t the failure

threshold.

For evaluation tool-kit, a code library for evaluation and a set of codes including most

publicly available trackers in 2013 in total of 29 trackers is released. To add a new tracker,

only the code with an interface under specification to produce bounding box output and

fps is required.

2.4.3 Visual Object Tracking (VOT)

In 2013, the Visual Object Tracking (VOT) workshop [34] was organized in conjunc-

tion with ICCV2013. The goal of the dataset aims to collect a small number of videos

with various real-life visual phenomena. A large pool of video sequences were collected

and clustered based on their visual attributes. A subset of 16 sample videos were selected
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Figure 2.1: The success plot and precision plot of OTB2013 in evaluation of OPE, SRE, TRE [32].

such that different circumstances are still well represented under selection. In every year

after 2013, VOT is organized in conjunction with ECCV or ICCV. Every year, the dataset

or the evaluation tool-kit are updated to follow the development in tracking field.

For qualities of videos, the lengths of videos from VOT2013 to VOT2018 are short

in an order of hundreds frames between 2 to 20 seconds. In 2018, a new long-term sub-

challenge of VOT, VOT-LT2018, is organized. In this sub-challenge, videos are long-

term in an order of thousands frames above one minute. Most targets of the videos in

VOT-LT2018 are vehicles or pedestrians. For the number of videos, 16 videos are in

VOT2013, 25 in VOT2014, 60 in VOT2015, 60 in VOT2016, 60 in VOT2017, and 35 in

VOT-LT2018. VOT2016 dataset has the same sequences as VOT2015 yet annotations re-

labeled. The sequences and annotations in VOT2017 dataset is the same as in VOT2016.

VOT2018 removes sequences succeeded by most trackers in VOT2017 challenge and fills

another more difficult sequences.

For annotation formats, each sequence has a single target and is annotated by quadri-

laterals. To be noticed, the quadrilateral is not necessarily a rectangular bounding box
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except that in VOT2013 the annotations are rectangular bounding boxes along main axes.

For visual attribute labels, all sequences are labelled per-frame by five visual attributes as

follows 1. occlusion 2. illumination change 3. motion change 4. size change 5. camera

motion. For each visual attribute in each frame, a zero/one is given to indicate whether

the frame under a certain circumstance. The annotation rule is that more than 60% of the

pixels of the target should be inside the quadrilateral.

For evaluation protocol, provided with the initial bounding box in the first frame,

a tracker predicts bounding boxes in every following frames. When a tracker fails on

frame t meaning the overlap of the ground truth and the prediction drops to zero, a re-

initialization is conducted five frames later at frame t+5. In addition, the re-initialization

is a complete re-initialization, indicating the information from previous frames, ground-

truths, and predictions should be discarded. The reason of five frame gap after the failure

in re-initialization is to provide a burn-in period to render the tracker unbiased by the ini-

tialization polluted by an influential failure factor in the failed frame. For example, when

a failure occurs on an occluded frame, a direct re-initialization in the next frame may be

incorrect since the object enclosed by the ground-truth may be the object in front of the

target instead of the target.

VOT includes three different experiment setting as follows:

• Experiment 1: The experiment tests a tracker initialized by ground-truths on color

videos.

• Experiment 2: The experiment is the same as the first experiment excluding that

a tracker is initialized by noisy bounding-boxes. The noisy bounding boxes are

created by inducing a perturbation on the size and location of the ground-truth by a

randomness sampled uniformly from ±10% interval of the ground truth size.

• Experiment 3: The experiment is the same as the first experiment with the color
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videos changed to grayscale videos.

All the experiments are executed by the evaluation code and each experiment is executed

15 times. The performance metric of a single experiment is averaged by the number of

the repeat of the experiment, e.g. 15.

For evaluation metrics, VOT chose tow orthogonal measures: accuracy and robust-

ness. For accuracy, the overlap of the ground truth and the prediction is adopted. The

accuracy of a tracker on a sequence in an experiment is summed and averaged per frame

and then over the number of repeated times of an experiment. For robustness, the number

of failure is adopted. The robustness of a tracker of a sequence in an experiment is summed

and averaged over the number of repeated times of an experiment. To evaluate all trackers

proposed to the challenge, M. Kristan et al. [34] proposed a ranking-based methodology.

After evaluating the accuracy and robustness of a tracker on a sequence, the rank of a

measure of a tracker on a sequence is derived. After averaged over sequences, the ranking

with respect to a measure metric is obtained. Given all measures the same weight, the

ranking of a tracker on an experiments is acquired. Given all three experiments the same

weights, the final ranking score is obtained. Since this methodology is based on ranking,

it’s a relative score with respect to all trackers proposed in that year.

For evaluation tool-kit, M. Kristan et al. [34] proposed a library written in MATLAB

and supports trackers of different languages. In addition, the code or the code archive of

the trackers are included in the released packages with setup interfaces.
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Chapter 3 Proposed Faster-MDNet

In this chapter, the proposed tracking algorithm Faster-MDNet is introduced. This

chapter is organized as follows. In section 3.1, a brief introduction to the proposed Faster-

MDNet is included. In section 3.2, related works are presented. In section 3.3, MD-

Net is introduced. In section 3.4, the proposed model Faster-MDNet including model

architecture, three-phase training, and prediction method is introduced. In section 3.5, the

experiment results are presented. In section 3.6, this chapter ends up with a conclusion.

3.1 Introduction

Among tracking-by-detection trackers with convolutional neural network as the binary

classifier, online learning is a common method to update the model. These trackers will

online collect appropriate positive and negative samples and finetune the network when-

ever the model adaptation is required, e.g. prediction confidence is too low or a fixed time

duration is passed. Yet, since neural network is designed to spend most time on training to

learn the data distribution and predict relatively in a short time, the online learning procss

will create a bottleneck on time complexity and render the tracking algorithm away from

applications.

For example, one long-term update in MDNet [1] takes around 10-15 times the time of

prediction in one frame. Even though the long-term update occurs every ten frames in the

settings of MDNet, this finetuning process has at least doubled the overall temporal cost
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without consideration of the time of short-term update and collecting training samples.

In addition, the power of RNN has not been well developed in the area of visual track-

ing due to the two reasons mentioned above. Hence, we develop a model adaptation algo-

rithm that utilizes recurrent neural network to learn how to update the model from online

learning. Proposed RNN-based algorithm can be finetuned in testing to acquire the tracked

target.

Furthermore, we reuse the candidate bounding-boxes for predictions to update the

model, which removes the time and the memory of collecting extra finetuning samples.

Our RNN-basedmethod predicts and updates themodel at the same time, thus reducing the

temporal cost of model adaptation to nearly the same as prediction time. Proposed algo-

rithm is a general idea that can be applied onto any trackers based on tracking-by-detection

with neural network classifier. The overall algorithm can be treated as an addition of the

RNN branch to the original tracker. The RNN branch can be designed individually without

changing the prediction branch of the tracker.

3.2 Related Works

I. Visual Tracking Algorithms

Most class-agnostic rgb tracking algorithms can be divided into two major genres:

the generative model and the discriminative model. The generative model attempts to

describe the appearance of the targets and search for the best-fitting regions in frames [35,

36]. The discriminative model aims to transfer visual tracking into a problem of separation

of foreground and background where the foreground is the target model.

In 2016, correlation filters [37] and CNNs [1, 37, 38] have gained a large attention in

the field of visual tracking. Among the top-10 trackers of VOT2016, 4 trackers were de-

rived from CNNs, 4 trackers were variations of correlation filters. Rank-1 tracker C-COT
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[37] is based on correlation filter and utilizes CNN features for strong representations. In

CVPR2017, M. Danelljan et al. [37] proposed another correlation-filter-based trackers:

ECO, which runs faster and more accurate than C-COT.

II. Tracking by Detection

In the field of object detection, the core idea behind some well performed detection

algorithms is to predict the result by classification and regression of candidate bounding

boxes. Tracking by detection adopts the idea and predict the tracking result by proposing

candidate bounding-boxes and evaluating each candidate. The major difference between

detection and tracking-by-detection [1, 37, 38] is that tracking by detection requires to

update the model to adapt to the change of target appearance.

III. Recurrent Neural Network on Visual Tracking

RNN is a neural network modeling designed to process temporal-spatial information

and has gained huge attentions in language processing field like language understanding,

language generation, captioning, etc. Recently, [39, 40, 41] has used RNN to address

temporal-spatial information in visual tracking. However, they focus on artificially gen-

erated sequences and synthesized data. [42] is a tracker which uses deep convolutional

neural network and object detection framework [43] to extract image features and feed

them into LSTM to predict the target. However, [42] does not finetune the network for

the target object in the first frame of the video, which restricts the tracker to track only

the saliency or pre-trained objects in one video rather than the object enclosed by the

bounding-box of the first frame. Strictly speaking, [42] does not belong to visual tracking

algorithms. In cases like tracking a ball when a group of people are playing basketball,

[42] may not be appropriate.

The challenges of RNN on visual tracking lies primarily on two aspects:
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Target Acquisition

In visual tracking, the tracker requires the target acquisition step to obtain the tracked

target. In most applications of CNN, one image has only one ground-truth information.

However, in visual tracking, given a video frame, the prediction still depends on the

ground-truth rectangle. Hence, a good data acquisition strategy is required to enable the

RNN-based tracking algorithm to realize the tracking target.

Number of Training Videos and training time

The abundant amount of training data is a vital factor for a successful supervised learn-

ing algorithm. For visual tracking, to train an RNN-based algorithm to learn multiple vi-

sual variances of unexpected objects, videos of different visual attributes are necessarily

required.

Yet, the storage requirements and the cost to collect abundant videos are challenge

to conquered. In addition, even if such dataset is built, a tremendous amount of training

time is required to train with such abundant videos. A model that can be trained more

efficiently is important.

3.3 MDNet

MDNet is a tracker based on tracking-by-detection and VGG-M network [44]. InMD-

Net, VGG-M is first pre-trained on ImageNet dataset [45]. Then, the network is transferred

to video domain bymulti-domain learning. Before tracking, the last layer will be randomly

initialized and finetuned on the first frame. In tracking, positive and negative samples are

collected from frames with confident predictions. A short-term update is executed when

the prediction score is too low, which takes around half the time of prediction in one frame.

A long-term update is executed every ten frame, which is around 10-15 times the time of
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Figure 3.1: The architecture of Multi-Domain Network [1] consisting of shared layers of each
domain branch and domain-specific layers. Yellow box and blue boxes are postive and negative
samples for each domain.

prediction in one frame. The details can be referred to the paper of MDNet [1].

The overall temporal cost of MDNet in prediction including the time of (1) prediction

(2) collecting finetuning samples (3) short-term finetuning (4) long-term finetuning. (1)(2)

occur nearly in every frame. (3) occurs only when the confidence is two low. (4) occurs

in every 10 frames. (1), (2), and (3) can be executed in a very short time, while (4) can be

10-15 times longer than others. The proposed algorithm completely replaces (4) and (2)

and the additional temporal cost is smaller than that of (1).

3.4 Proposed Faster-MDNet

In this section, we explain by example of MDNet how we can aggregate a tracker with

proposed RNN-based model adaptation.

As in Figure 3.2, the original MDNet has one branch to predict score for each proposal.

The originalMDNet is aggregatedwith a new branchwhich is a copy of the fully connected

layers. The new branch and the original branch are notated as prediction branch and

model adaptation branch respectively.
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Figure 3.2: Aggregation of RNN model adaptation onto MDNet. The original
MDNet has only one branch for prediction. Proposed Faster-MDNet has two
branches: the prediction branch and the model adaptation branch. The model
adaptation branch predicts the model adaptation states.

For each proposal, the prediction branch produces a score and the model adaptation

branch produces a model adaptation state. The model adaptation state is the outputs of all

fc layers in model adaptation branch.

As in Figure 3.3, since there are a bunch of proposals, a number of model adaptation

states and scores will be produced. To emphasize the higher-scored proposals, the model

adaptation states are weighted by their scores and taken the mean to produce the final

model adaptation state.

Si(t) =
1

N

N∑
n=1

wnSn,i(t). (3.1)

At timestep t, wn is the score of nth proposal, Sn,i(t) is the output of nth proposal at fci

layer, Si(t) is the final model adaptation state at fci layer.

In prediction at timestep t+1, the model adaptation state is treated as the hidden state
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Figure 3.3: Generation of the final state from state of each proposal. Xi is the
ith proposal, Si(t) is the model adaptation state generated by ith proposal at
timestep t, S(t) is the final model adaptation state at timestep t.

of RNN and added directly onto fc4, fc5, and fc6 in prediction branch. That is,

Xn,4(t) = σ(W3,predXn,3(t) + S4(t− 1)). (3.2)

Xn,5(t) = σ(W4,predXn,4(t) + S5(t− 1)). (3.3)

Xn,6(t) = σ(W5,predXn,5(t) + S6(t− 1)). (3.4)

where Xn,i(t) is the features of proposal n at fci layer in prediction branch at timestep t,

Wi,pred is the weights at fci layer in prediction branch, σ is the nonlinearity.

In this paper, we treat the final model adaptation state as the mean of score-weighted

model adaptation state of all proposals. Yet, the relation among the final state, the score

and the state of each proposal can be more complicated as a function, e.g. a model of
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neural network. That is,

Si(t) = f(Si,1(t), Si,2(t), ..., Si,N(t), w1, w2, ..., wN). (3.5)

Plus, the RNN state can have more complicated relations with the prediction branch in the

next step. For example, we can use LSTM cells to handle those states rather than direct

summation. That is,

Xn,i(t) = g(Si(t− 1), Xn,i−1(t)). (3.6)

However, the number of training videos would be an issue when we proceed toward more

complicated model.

3.4.1 Three-Phase Training

With this aggregation, we can train the prediction branch and the model adaptation

branch at the same time in the following way. We divide the overall training into three

phases:

I. Pre-Training on ImageNet

In this phase, we pretrain the VGG-M network on multi-label classification of Ima-

geNet dataset. This phase is to train the network by millions of images to empower the

network the ability to extract high-order informations.

II. Multi-Domain Learning on Frames

In this phase, we train the VGG-M network by multi-domain learning as in MDNet.

This phase is to transfer the model from multi-label classification to the domain of visual

tracking.
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III. Model Adaptation Learning on Videos

In this phase, we first create the model adaptation branch by copying both the stru-

ture and the weights from fc layers of the network pretrained in phase 1 and phase 2 as

mentioned in section III.B. Second, for each video, we randomly initialized the fc6 layer

in prediction branch and prepare a zero state as our initial model adaptation state. Third,

we finetune the prediction branch by extracting positive and negative samples from the

first frame. Finally, we unroll our RNN by max-numstepM (M = 40 in our experiment),

and in each training batch, we extracts positive and negative proposals from consecutive

M frames as our training data to train the unrolled RNN. The final model adaptation state

will be fed into next training batch as the initial state adaptation state.

3.4.2 Prediction

In predictoin, we randomly initialize the last layer in prediction branch and prepare

a zero-state as the initial model adaptation state. Then we finetune the prediction branch

on the first frame. In the following frames, the model adaptation is completed primarily

by the model adaptation branch. Thus, the time complexity can be largely decreased to

nearly the prediction time.

3.5 Experiments

3.5.1 Implementation Details

The experiment is implemented in Python2.7 and TensorFlow r1.0.0 on Ubuntu 14.04

LTS, Intel Core i7-6700K @ 4.00GHzx8, NVIDIA GeForce GTX TITAN X.

The ImageNet-pretrained VGG-M network is downloaded from caffe-model zoo. We

trained the network on VOT 2013, 2014 and 2015 and tested on OTB-30 dataset [32]. All
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Algorithm 1Model Adaptation Learning in Faster-MDNet
Require:

Pretrained CNN filters {w1, w2, ..., w5}.
M : {Mconv,Mpred,Madapt}, the overall model which consists of shared convolution
layers, fc layers in prediction branch, and fc layers in model adaptation branch.
V : the set of videos.
Lc: the maximum length of a training clip.

1: Mconv ← {w1, w2, w3} ▷ set filters in conv layers by pretrained weights
2: Mpred ← {w4, w5} ▷ set filters in prediction branch by pretrained weights
3: Madapt ← {w4, w5} ▷ set filters in model adaptation branch by pretrained weights
4: for all v ∈ V do
5: Lv ← number of frames in v
6: {xt, yt|0 ≤ t < Lv − 1} ← v ▷ x: frame image, y: groundtruth
7: i← 0
8: S ← {0} ▷ RNN state
9:
10: Randomly initialize w6 in prediction branch
11: FinetuneMpred by {x0, y0}
12: Munrolled ← unrollM for Lc steps
13: while i+ Lc ≤ Lv do
14: Xi,Lc ← {xt|i ≤ t < i+ Lc}
15: Yi,Lc ← {yt|i ≤ t < i+ Lc}
16: Snext, gradients← forward_backward(Munrolled, S,Xi,Lc , Yi,Lc)
17: updateMadapt by gradients
18: S ← Snext

19: i← i+ Lc

20: end while
21: end for

Algorithm 2 Prediction in Faster-MDNet
Require:

M : the overall model with shared convolution layers, prediction branch, and model
adaptation branch
{x0, x1, x2, ..., xN−1}: a sequence of frames
y: the groundtruth of the first frame

1: Randomly initialize w6 in prediction branch
2: Finetune prediction branch by {x0, y}
3: S, ŷ ← forward(M,x0, ∅) ▷ initial state
4: Y = {}
5: for all t = 1, 2, ..., N − 1 do
6: Snext, ŷ ← forward(M,xt, S)
7: Y ← Y ∪ {ŷ}
8: S ← Snext

9: end for
10: return Y
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the settings of phase2 training are the same as in MDNet. In phase3 training, we trained

for 10 epochs. To prevent gradient explosion, we clipped the gradient by 1. The overall

training takes around one week.

3.5.2 short-term finetuning

Due to the limitation of training data, we preserve the short-term finetuning of MDNet

which takes only half the time of prediction. The additional time of short-term finetuning

is negligible compared with the time of the replaced long-term finetuning.

3.5.3 Results

Elapsed Time

Table 3.1: The average elapsed time on Faster-MDNet and MDNet.

Task at one frame elapsed time (second)
Faster-MDNet: predict scores of all proposals and generate the final
model adaptation state

∼0.8

Faster-MDNet: predict scores of all proposals and generate the final
model adaptation state + short-term finetuning

∼1.3

MDNet (prediction and long-term finetuning) ∼11.9

We compared MDNet and Faster-MDNet. To reduce the influence of implementation

language, we re-implement MDNet on python and tensorflow. Table 3.1 shows the result

of elapsed time.

Accuracy

Table 3.2 shows the average overlap scores on OTB-30 dataset [32] with one recent

tracker ROLO [42], the basis of ROLO: YOLO [43], MDNet [1] and proposed Faster-

MDNet. The average overlap score of a sequence is the intersection over overlap between
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prediction and groundtruth averaged by frames. Suppose that for a sequene with frames

{f1, f2, ..., fN} and groundtruths y1, y2, ..., yN , a tracker create predictions ŷ2, ŷ3, ..., ŷN .

The average overlap score S is defined as follows.

S =
1

N − 1

N∑
n=2

yn ∩ ŷn
yn ∪ ŷn

. (3.7)

Table 3.2: Summary of Average Overlap Scores (AOS) results.

Sequence ROLO YOLO+SORT MDNet Faster-MDNet
Human2 0.545 0.636 0.728 0.680
Human9 0.352 0.193 0.383 0.095
Gym 0.599 0.460 0.563 0.500

Human8 0.364 0.416 0.638 0.407
Skater 0.618 0.283 0.651 0.553
SUV 0.627 0.455 0.684 0.781

BlurBody 0.519 0.337 0.690 0.041
CarScale 0.565 0.627 0.498 0.380
Dancer2 0.627 0.201 0.746 0.614
BlurCar1 0.537 0.082 0.738 0.02
Dog 0.429 0.241 0.457 0.359
Jump 0.547 0.208 0.082 0.270
Singer2 0.588 0.400 0.676 0.562
Woman 0.649 0.358 0.781 0.643
David3 0.622 0.224 0.708 0.590
Dancer 0.755 0.551 0.725 0.683
Human7 0.456 0.291 0.596 0.701
Bird1 0.362 0.048 0.403 0.333
Car4 0.768 0.690 0.708 0.028

CarDark 0.674 0.211 0.825 0.790
Couple 0.464 0.204 0.477 0.565
Diving 0.659 0.166 0.363 0.194
Human3 0.568 0.386 0.551 0.038
Skating1 0.572 0.443 0.551 0.485
Human6 0.532 0.376 0.497 0.380
Singer1 0.653 0.332 0.404 0.794
Skater2 0.652 0.532 0.585 0.122
Walking2 0.595 0.362 0.702 0.222
BlurCar3 0.539 0.191 0.801 0.787
Girl2 0.517 0.337 0.708 0.706
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3.6 Conclusions

Anmodel adaptationmethod based on recurrent neural network on tracking-by-detection

tracker with neural network classifiers is proposed to extremely decrease the time of on-

line finetuning and deliver real-time computational cost with little sacrifice of perfor-

mance. The method can be generalized to any tracker based on tracking-by-detection

with neural network classifier and can be further developed with more complicated re-

current network architectures or more complicated proposal state merging policy. An ex-

periment on MDNet and simple recurrent network settings, Faster-MDNet, is conducted

and shows a huge decrease of computational cost on prediction time with small drop on

performance.
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Chapter 4 Proposed RDisp: Recurrent

Detection is Powerful

A visual tracking algorithm RDISP based on detection models pretrained on large

datasets and convolutional recurrent neural network (ConvRNN) cells is proposed. Our

model is composed of two branches. The initial state extraction branch is responsible for

extracting the initial state of ConvRNN cells and the prediction branch is responsible for

predicting bounding-boxes based on the current image and previous states. The structure

of proposed model is modified from detection model with insertion of ConvRNN cells,

thus benefiting from the low computational cost of region proposal networks and reaching

a extremely fast speed. In training the proposed model, conventional back-propagation

through time does not work due to inefficient utilization of video data. A two stage clip

training is proposed to replace back-propagation through time. The experiment shows the

proposed tracker can handle multiple circumstances and reduces the time complexity to

around 25 fps.

4.1 Introduction

Class-agnostic visual tracking is a fundamental and challenging task in the field of

computer vision. The challenges include versatile visual changes in video frames such as

illumination change, occlusion, deformation and lack of learnable prior knowledge from
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Figure 4.1: The structure of the proposedmodel including the initial state extraction branch and the prediction
branch. The initial state extraction branch is fed with the masked image to generate the initial state. The
prediction branch predicts bounding boxes based on the image and previous states. (The frame images are
from OTB100 FaceOcc1 sequence).

large datasets in class-agnostic settings.

Based on tracking-by-detection technique and a pre-trained image classification net-

work on ImageNet dataset as the classifier, the MD-Net [1] has presented impressive ac-

curacy on class-agnostic tracking dataset. Yet, the problem of high time complexity of

online training to adapt the classifier to the time-varying appearance model of the target

has long been an obstacle toward real-world applications.

Recently, convolutional recurrent neural network cells have been widely adopted in

video-related tasks. The advantage of ConvRNN cells are that the input and the state are

blobs preserved as three dimensional size which are more representative for image-related

information. Thus, ConvRNN cells are suitable choices for temporal-spatial information

representation in video frames.

In addition, even though the idea behind tracking-by-detection is adopted from detec-

tion field, trackers based on tracking-by-detection techniques only adopt the idea of taking
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proposals and classifying proposals but not yet attempted to transfer pre-trained detection

model to tracking field to benefit from fast speed due to sharing features of region proposal

networks and abundant information from detection datasets.

A method incorporating ConvRNN cells into pretrained one-stage detection models to

form an end-to-end trainable trackingmodel with pretrained parameters is proposed. In de-

tection fields. To train such end-to-end tracking model, a training using back-propagation

through time, it has failed in decreasing training loss due to several reasons. To over-

come these obstacles, a two stage clip training is proposed to replace the original back-

propagation through time. The two stage clip training split the overall training into two

stages. The first stage focus on how to extract appropriate recurrent neural network states

and predict based on these states. The second stage focus on how to update the states given

new video frames and predictions.

4.2 Related Works

The Faster-MDNet [46] endeavoured to decrease the time complexity of the MDNet

by aggregating the original classifier with a model adaptation branch and predicting based

on the model adaptation state collected and merged by a function fed with all model adap-

tation states generated by each proposal. Yet, the proposals in the Faster-MDNet are gen-

erated by selective search, thus propagating the error of selective search through time. In

addition, each proposal is cropped and resized into the input size of the classifier, so the

recurrent neural network state contains only the appearance model of the target. The tra-

jectory of the predicted bounding-boxes is not encoded in the state for rejection of similar

objects in different locations.

Other works based on the MD-Net focus on the classifier model structure and does not

handle the problem of time complexity of online training.
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For detection model, there are primarily two categories, one-stage structure and two-

stage structure. The representation of two stage structure is Faster-RCNN [5]. In two

stage structure, the input image is fed into a region proposal network to generate region

proposals. Then these region proposals are fed into a convolutional neural network to

classify the class label, the bounding-box regression terms, and additional information

(e.g. mask). The representations of one stage structure are SSD [47], YOLO [43], and

YOLO9000 [48]. In one stage structure, the image is fed into a region proposal network

directly and predicts everything (e.g. object score, regression terms, and class labels) in

the output of the network.

Since the model based on tracking-by-detection classify the proposals into target or

non-target, one-stage detection model is adopted for the pretrained detection model in this

work.

4.3 Methods

4.3.1 Transfer Learning from Detection

In recent years of detection field, the computational cost has reached an impressive

milestone thanks to the sharing features in fully convolutional network and the problem

settings by anchor boxes.

Compared with detection, the major difference of the information in tracking is the in-

formation involving similar object rejection and the detailed appearance model of the tar-

get, both derived temporally and on-line. If this two temporal information can be properly

merged into detection model, tracking algorithms can benefit from pretrained detection

models to tremendously decrease the computational complexity by the network structure

and learn the prior knowledge of detection dataset encoded in pretrained detection models.
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The idea behind the proposed end-to-end trainable model is that the detailed appear-

ance model and the similar object rejection information in tracking can be modelled as

residual to the appearance model in detection. Based on the prior knowledge learned from

large datasets of static images, the structure and sharing features, the tracking algorithms

can focus on temporal information for similar object rejection and detailed appearance

models.

4.3.2 Injection of Temporal Information by Convolutional Recurrent

Neural Network Cells

The proposed end-to-end trainable model is an incorporation of convolutional recur-

rent neural network cells (ConvRNN) into one-stage detection model. ConvRNN is the

modification of RNN cell such that the input and the state are three dimensional blobs

which are more representative for image-related information. In ConvRNN, the multipli-

cation with parameter matrix is replaced by convolution layer. For example, LSTM cells

can be described as follows.

it = σ(Wi ∗ [Xtht−1] + bi). (4.1)

ot = σ(Wo ∗ [Xtht−1] + bo). (4.2)

ft = σ(Wf ∗ [Xtht−1] + bf ). (4.3)

ct = ft ⊙ ct−1 + it ⊙ σ(Wg ∗ [Xtht−1] + bg). (4.4)

ht = ot ⊙ tanh(ct). (4.5)

where σ is the activation function (e.g. ReLU),Xt, ht, ct, it, ot, ft are the input, the hidden

state, the cell state, the input gate, the output gate, the forget gate of timestep t respectively,
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W and b are corresponding weight and bias of each gate, and ⊙ is the Hadamard product.

For ConvLSTM [49], the only difference is to replace multiplication with matrix with

convolution with filters. Thus the equations of ConvLSTM are as follows.

it = σ(convi([Xtht−1])). (4.6)

ot = σ(convh([Xtht−1])). (4.7)

ft = σ(convf ([Xtht−1])). (4.8)

ct = ft ⊙ ct−1 + it ⊙ σ(convg([Xtht−1])). (4.9)

ht = ot ⊙ tanh(ct). (4.10)

In this work, ConvRNN cells are adopted to inject temporal information into detection

models. Suppose that there is a one-stage detectionmodel with N layers and that the output

of nth layer is directly the input of n+1th layer where 0<=n<N. The injection of temporal

information is implemented as that instead of directly feeding output of nth layer into

n+ 1th layer, it is extracted as an input to an ConvRNN cell together as well as a state to

ConvRNN cell as the temporal information and the output of ConvRNN cell is then fed

into n+ 1th layer.

4.3.3 Proposed Model

Inspired by [50], The proposed end-to-end trainablemodel can be split into two branches

as Figure 1. The initial image and groundtruth bounding box is fed into an initial state ex-

traction branch to extract information as the initial state to ConvRNN cells. In each of

following timesteps, the frame image and previous states are fed into a modified detection

model stacked with ConvRNN cells to produce outputs and states.
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In the beginning, when the initial image I1 and the target bounding boxB1 is provided,

an emphasis function f (e.g. a mask function) is applied on I1 to emphasize the pixels

inside target area B1. The output of emphasis function is notated asMI1 as follows.

MI1(x) = f(x; I1, B1) =


I1(x), if x ∈ B1.

0, if x /∈ B1.

(4.11)

ThenMI1 is fed into an initial state extraction branch to extract the ith layer output as the

initial state S1 for ConvRNN cells.

In time-step t, the current image It and the previous state St−1 are fed into a prediction

branch. The prediction branch is a modified detection model with stacks of ConvRNN

cells as metioned in III.B. The input of the ConvRNN cell is the output of ith layer in the

original original detection structure. Suppose the original detection has the structure


outi = Fi(input).

inputi+1 = outi.

(4.12)

where Fi, inputi, outi are the function, the input and the output of ith layer. After the

insertion of ConvRNN cell at the ith layer, the structure becomes as follows.


outi = Fi(input)

cout = ConvRNN(outi, Si,t−1).

inputi+1 = couti.

(4.13)

The output features of the overall model are decoded for regression terms and passed

through non-maximum suppression to produce the predicted bounding-box of the target

in timestep t. If there are more than one detected bounding-boxes, the one with the highest

score is selected as the prediction. If there are no detected bounding-boxes, the proposal

with the highest score is selected as prediction.
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The initial state extraction branch and the prediction branch has the same structure as

the adopted detection model except that the prediction branch has insertions of ConvRNN

cells. The initial states are extracted from the output of nth layer in the initial state ex-

traction branch where a ConvRNN cell is inserted after nth layer and before n+ 1th layer

in the prediction branch. In addition, the initial state extraction branch and the prediction

branch do not share parameters.

4.3.4 Multi Layer Injection

ConvRNN cells can be inserted into a detection model in multiple layers. Since deeper

layer contains more semantic information and shallower layer contains more location in-

formation, multi-layer insertion of ConvRNN cells can inject abundant information into

detection model. Yet, when ConvRNN cells are inserted in too many layers, the train-

ing would take more time to complete and the computational cost in evaluation would

increaes.

In our experiments, ConvRNN cells are inserted into one layer, three layers, and four

layers. The insertion of more layers are limited by memory requirements. The perfor-

mances show that the insertion of three layers has the best performance under a trade-off

between the degree of difficulty in training and performance.

4.3.5 Two Stage Clip Training

In the beginning, back-propagation through time was utilized as an attemption to train

the unrolled network. For a video sequence of N frames, the first frame and the initial

bounding box are fed into the initial state extraction branch to extract the initial state.

Then in each next run, the prediction branch is unrolled for m (m>1) frames. m video

frames together with a state is fed into the unrolled network for training.
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Yet, when back-propagation through time was utilized, the loss did not drop down

through around a week of training on GPU. These failures can be attributed to three rea-

sons.

First, the initial state extraction branch is trained only once in the first clip batch of a

sequence. However, a sequence contains dozens or even hundreds of clip batches. Thus,

the initial state extract branch is not properly trained, leading to effortless training on pre-

diction branch. Second, prediction at time-step t requires temporal information generated

from previous frames and correct predictions. In the beginning of training, branches at

lower time-steps make incorrect predictions and noisy states, causing noisy and vain gra-

dients in higher time-steps. The noisy gradient may destroy the training in lower time-step,

summing to zero training in prediction branch.

Due to these reasons, two stage clip training is proposed to replace back-propagation

through time. In the first stage, each video is split into clips with only two frames I1 and I2

with B1 as the groundtruth bounding-box in I1. I1 and B1 are fed into the initial state ex-

traction branch to produce the initial stateS1. S1 and I2 are fed into the prediction branch to

produce predictions. The loss is computed and the gradients are back-propagated through

both branches. In the second stage, each video is split into clips of random lengths in range

[a, b] (e.g., a=2, b=20). For each clip, the first image and the groundtruth bounding box

in the first frame are fed into the initial state extraction branch to produce the initial state.

Then the initial state and the remaining video frames are fed into the unrolled model. The

loss is computed and the loss is back-propagated through only prediction branches. The

parameters of the initial state extraction br anch are fixed in the second stage.

The goal of the first stage is to train the initial state extraction branch to extract infor-

mation from the first frame and to train the prediction branch to predict based on extracted

state. The goal of the second stage is to train the prediction branch to update the state

given the new frames and adapt to the updated states.
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Algorithm 3 The First Stage of Two Stage Clip Training
Require:

M : the unrolledmodel of initial state extraction branch and one time step of prediction
branch.
V : the set of training videos including video frames and groundtruths

1: Cb ← {}
2: for all v ∈ V do
3: xi: the ith frame
4: yi: the groundtruth of the ith frame
5: Lv: the number of frames in v
6:
7: C ← {(xt, yt, xt+1, yt+1)|t = 2n, n ∈ [0, ⌊Lv

2
⌋])}

8: Cb ← Cb ∪ C
9: end for
10: Cb ← shuffle(Cb)
11:
12: for all batch ∈ Cb do
13: train(M, batch)
14: end for

4.4 Experiments

4.4.1 Implementation Details

The experiment is implemented in Python3.5 and Tensorflow r1.3.0 on Ubuntu 14.04

LTS, CPU Intel Core i7-6700K and a single GPU NVIDIA GeForce GTX TITAN X.

Since the unrolled model cannot fit entirely into a single GPU, the training is imple-

mented as follows. In the forward propagation, in each run only a branch model (either

initial state extraction branch or prediction branch of a specific time step) is allocated on

GPU. After given the input and previous state, the network computes all the variables.

These generated variables are moved from GPU memory to main memory. (The move

of variables from GPU memory to main memory can be implemented simply by putting

the tensors in the first parameter of Session.run in Tensorflow.) In next run, the previous

state, the input and the model are again allocated on GPU. In back propagation, for the
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Algorithm 4 The Second Stage of Two Stage Clip Training
Require:

Minit: the initial state extraction branch
Mpred: the prediction branch
V : the set of training videos including video frames and groundtruths

1: C ← {}
2: for all v ∈ V do
3: xi: the ith frame
4: yi: the groundtruth of the ith frame
5: Lv: the number of frames in v
6:
7: i← 0
8: while i < Lv − 1 do
9: Lc ← draw a random integer from [2, 20]
10: if i+ Lc ≤ Lv then
11: Lc ← Lv − i
12: end if
13: C ← C ∪ {(xt, yt)|i ≤ t < i+ Lc}
14: i← i+ Lc

15: end while
16: end for
17:
18: Cb ← {}
19: for n ∈ [2, 20] do
20: Cn ← {c|length(c) = n, c ∈ C}
21: Cb ← Cb ∪ create_batches(Cn)
22: end for
23: Cb ← shuffle(Cb)
24:
25: for all batch ∈ Cb do
26: Lb: the length of batch
27: Mpred,Lb

: the unrolled version ofMpred for length Lb

28:
29: Xt, Yt, Xt+1, Yt+1, ..., Xt+Lb−1, Yt+Lb−1 ← batch
30:
31: Sinit ← extract_initial_state(Minit, Xt, Yt)
32: train(Mpred,Lb

; Sinit, batch− {Xt, Yt})
33: end for
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final timestep, the loss can be directly computed together with forward propagation on a

single GPU run. For each next run of back propagation, the branch is allocated on GPU

and the previous stored variables are loaded into GPU. Given the gradient of states of

higher steps, GPU calculated the gradients correspondingly. After the calculation of gra-

dients in a timestep is completed, the variables are dropped and the gradients of parameters

are moved from GPU memory to main memory. After the gradients of all time-steps are

calculated, the gradients with respect to the same parameter are averaged and applied onto

parameters by an optimizer.

The pretrained detection model is the YOLO9000 [48]. The ConvRNN cells are the

ConvLSTM [49]. The insertion of ConvLSTMcells occurs in the 8th, the 16th and the 28th

layer which are all the last two layers before pooling layers. The experiments metioned

in III.D has the insertion of one ConvLSTM cell at the 28th layer, the insertion of four

ConvLSTM cells at the 2nd, the 8th, the 16th and the 28th layer. In experiments, an

insertion into the 8th and the 2nd layer has been attempted. Yet, since the lower layer has

larger blob size, insertion into the 8th and the 2nd layer requires too large memory for

state blobs, resulting in out-of-memory error in a batch size of only two.

For the training time, the training of the first stage and the second stage in two stage

clip training takes around one week respectively. For training dataset, the network is

trained on OTB2015 [32, 33] and tested on VOT2016 [51]. The proposed algorithm is

compared with the MDNet [1], the SRDCF [52], the C-COT [53], the KCF [54], and the

DSST [DSST].

4.4.2 Results

Figure 2 and Figure 3 are the prediction results on a girl sequence and a basketball

player sequence respectively. From the figure, the proposed tracker can successfully track
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the targets under versatile situations involving occlusion, image blurring, existence of

similar objects and target deformation.

Table 4.1: The comparance of computational cost of the RDisp and other algorithms.

Tasks Elapsed Time
one frame prediction of the MD-Net [1] ∼ 1 second
long-term finetuning of the MD-Net [1] ∼10 seconds
short-term finetuning of the MD-Net [1] ∼0.5 second
one frame prediction of the Faster-MDNet [46] ∼0.8 second
one frame prediction of the C-COT [53] ∼1 second
one frame prediction of the SRDCF [52] ∼1 second
one frame prediction of the DSST [DSST] ∼0.15 second
one frame prediction of the KCF [54] ∼0.09 second
one frame prediction of the RDisp ∼0.04 second

Table 1 is the comparance of prediction time with the MD-Net, the Faster-MDNet,

C-COT, SRDCF, KCF, DSST, and the proposed model. The testing time in one timestep

in the proposed model is around 20 times faster than one testing time step in the Faster-

MDNet, 25 times faster than prediction in MD-Net, 12 times faster than short-term fine-

tuning in MD-Net, 250 times faster than long-term finetuning in MD-Net.

Figure 4 is the comparison of the proposed model with other tracking algorithms on

expected overlap with respect to different sequence length. From the figure, it leaves room

for the proposed trackers to improve in accuracy and robustness.

4.4.3 Conclusions

A visual tracking algorithm based on the ConvLSTM and the YOLO9000 and a two-

stage clip training to replace backpropagation through time to train the proposed model

are proposed. An experiment with training in OTB2015 and testing in VOT2016 shows

consistence of tracker under different circumstances such as existence of similar objects,

occlusions, inside-object deformation and shows a low computational cost of around 25
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Figure 4.2: Comparances of expected overalp with respect to sequence length of RDisp with other
algorithms on VOT2016 dataset.

fps benefiting from shared features and anchor boxes in one-stage detection model.

t = 3 t = 13 t = 19

t = 25 t = 31 t = 37
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t = 43 t = 49 t = 55

t = 61 t = 67 t = 73

t = 79 t = 85 t = 91

t = 61 t = 67 t = 73
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t = 96 t = 103 t = 109

t = 115 t = 121 t = 127

t = 133 t = 139 t = 145

t = 151 t = 157

Table 4.2: Results of RDisp on OTB2015 girl. (green box: groundtruth, red box: prediction).
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t = 1 t = 4 t = 7

t = 10 t = 13 t = 16

t = 19 t = 22 t = 25

t = 28 t = 31 t = 34
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t = 37 t = 41 t = 43

t = 46 t = 50 t = 53

t = 56 t = 58 t = 59

Table 4.3: Results of RDisp on VOT2016 basketball. (green box: groundtruth, red box: predic-
tion).
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Chapter 5 ProposedDolphin Detection

In this chapter, works on dolphin detection are introduce. This chapter is organized

as follows. In section 5.1, the motivations on dolphin detection and identification are

presented. In section 5.2, the provided dolphin datasets on detection and identification

are introduced. In section 5.3, the overall system architecture of dolphin detection and

identification is presented. In section 5.4, the works on dolphin detection are introduced.

5.1 Motivations

In the field of marine conservation, dolphin images are rare, precious, and vital re-

sources. To obtain an image of dolphin, a group of team stays on the sea for weeks, hand-

holds heavy and huge high-resolution cameras, and wait for appearance of dolphins to

take shots to capture images of dolphins. After the raw data is obtained, it further requires

tremendous human resources to post-process the images such as cropping dolphin patches,

identifying information of individual dolphins to form a database for future research.

In recent years in the fields of computer vision, many detection and classification algo-

rithms with high accuracy under the setting of general classes have been proposed, which

benefits from release large image dataset such as MS COCO [4], ImageNet [45] and deep

convolutional neural networks.

This works aims to alleviate dearly-won post-processing of dolphin images by auto-

matic detection and identification based on recent developments in computer vision, which

49



doi:10.6342/NTU201801036

amends inefficient devotion into repeated works and helps the researchers focus on more

innovative contributions.

5.2 Dolphin Datasets

The original dolphin dataset includes a set of original raw images captured by cameras

and a set of cropped dolphin patches. Each type of annotations is given for a subset of the

dolphin patch set. The annotation types consist of the names, the stages, and the angles of

the dolphin relative to the photographer. For example, let the set of patches be S. Then,

the set of patches annotated with the angle Sangle is a subset of S. That is, Sangle ⊂ S.

The details of the classes in each type of annotations are listed in Table 5.1. The details

of the names of dolphins are sealed due to confidentiality.

Table 5.1: The classes in each dolphin annotation type.

Annotation Type Classes
stage Moltted Stage(少年), Speckled Stage (青年), Spotted Adult Stage

(壯年), Unspotted Adult Stage (老年)
angle +x, -x, +y, -y
name -

In addition, the detection datasets includes two datasets. The first dataset includes

raw images with at most one dolphin patch in each image. The second dataset includes

raw images with all dolphin patches in each image. To be simplified, the first dataset

and the second dataset are called ”single-dolphin-detection-dataset” and ”multi-dolphins-

detection-dataset” respectively in the following sections.
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5.3 System Architecture

This project aims to utilize automatic detection and classification algorithms to alle-

viate the heavy burden of post-processing on dolphin images to help researchers focus on

innovative works. The overall system architecture includes a detection block followed

by a classification block. The dolphin block is responsible for the detection of each dol-

phin patch. The classification block is responsible for classifying each dolphin patch for

different annotation types.

There are two reasons for this architecture. First, in the future there may be additional

annotation types in classification. Using two block architecture, the detection model does

not require fine-tuning and the performance will not be altered due to the addition of

new annotation types. Second, the provided dataset contains patches with incomplete

annotations. The meaning of ”incomplete” is that a patch may be annotated with no labels,

only part of labels, or all labels. Suppose S is the set of all patches, Sname, Sstage, and

Sangle are the subsets of patches annotated with name labels, stage labels, and angle labels

respectively, then

S − Sstage − Sname − Sangle ̸= ∅. (5.1)

Sa ∪ Sb − Sa ∩ Sb ̸= ∅, Sa, Sb ∈ [Sstage, Sname, Sangle]. (5.2)

Due to the incompleteness of the annotation, if the system model incorporates both de-

tection and classification (e.g. a yolo9000 model [48] with multiple branches in the last

layers for multiple annotation types), in back-propagation of the classification model, the

branches related to the lost annotations would not be updated, thus creating an imbalance

on the classification model among annotation types. If the annotations are complete for

every patches, the model may learn versatile features to represent all annotation types.
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However, since the annotations are incomplete, an imbalance among datasets would po-

tentially render the model preferable toward a specific dataset and downgrades the per-

formances of detection or classification of unpreferable annotation types. Therefore, due

to the reasons mentioned above, the overall architecture is chosen as a detection block

followed by a classification block.

Figure 5.1: The two block system architecture.

5.4 Detection

5.4.1 Patch Matching

The detection dataset includes raw images and cropped dolphin patches. To train a

detection model, the bounding-box with respect to each dolphin patch on the raw image

is required. Hence, the dolphin patch should be matched on the original image to search

the corresponding bounding-box.

OpenCV [55] is a cross-platform, open-source computer vision library under BSD

license including a bunch of computer vision algorithms. OpenCV provides a set of tem-

plate matching algorithms which are adopted in this work to match a dolphin patch on

a raw image. The template matching function in OpenCV is fed with the patch and the

image. The output of the function is a score map with the same size as the input image.

The value at pixel (x, y) in the score map is the match score between the input patch and

the patch starting at the pixel with the same of the input patch. Suppose the input patch is
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S with size (hw, ws) and the input image is I with size (h,w). The function is as follows.

O = match(S, I). (5.3)

O(r, c) = match_score(S, I_p(r, c)). (5.4)

Ip(r, c) = I(r : r + hs, c : c+ ws), 0 ≤ r < h, 0 ≤ c < w. (5.5)

OpenCV provides six methods to calculate the match score of two patch of the same

size. The follows introduces the mathematical formulation of these six methods. R is the

match score of the input patch T and the input image I .

1. TM_SQDIFF

R(x, y) =
∑
x′,y′

(T (x′, y′)− I(x+ x′, y + y′))2. (5.6)

2. TM_SQDIFF_NORMED

R(x, y) =

∑
x′,y′(T (x

′, y′)− I(x+ x′, y + y′))2√∑
x′,y′ T (x

′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2
. (5.7)

3. TM_CCORR

R(x, y) =
∑
x′,y′

(T (x′, y′) · I(x+ x′, y + y′))2. (5.8)

4. TM_CCORR_NORMED

R(x, y) =

∑
x′,y′(T (x

′, y′) · I(x+ x′, y + y′))2√∑
x′,y′ T (x

′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2
. (5.9)
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5. TM_CCOEFF

R(x, y) =
∑
x′,y′

(T ′(x′, y′) · I ′(x+ x′, y + y′))2. (5.10)


T ′(x, y) = T (x, y)− 1

wh

∑
x′′,y′′ T (x

′′, y′′).

I ′(x+ x′, y + y′) = I(x+ x′, y + y′)− 1
wh

∑
x′′,y′′ I(x+ x′′, y + y′′).

(5.11)

6. TM_CCOEFF_NORMED

R(x, y) =

∑
x′,y′(T

′(x′, y′) · I ′(x+ x′, y + y′))2√∑
x′,y′ T

′(x′, y′)2 ·
∑

x′,y′ I
′(x+ x′, y + y′)2

. (5.12)

TM_SQDIFF is the sum of square difference of pixels. TM_CCORR is the correlation

of pixels. TM_CCOEFF is the correlation of unbiased pixels. TM_SQDIFF_NORMED,

TM_CCORR_NORMED, and TM_CCOEFF_NORMED are corresponding normalized

versions.

Since the image and the cropped patch are both encoded by JPEG and JPEG is a lossy

compression, errors would be introduced on encoded images. Due to the error caused by

JPEG, difference based methods are not considered. To alleviate the effects of potential

bias and illumination variation caused by lossy compression, TM_COEFF_NORMED is

adopted.

In the single-dolphin-detection-dataset, the resulting groundtruth bounding-box is given

as the one starting at the pixel with the highest match score with the same size of the patch.

That is, suppose the input patch size is (ws, hs), the output match score map is R, and the
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output bounding-box is B = (x1, y1, x2, y2), 0 ≤ x1, x2 < ws, 0 ≤ y1, y2, < hs. Then,

B = (x̂, ŷ, x̂+ ws, ŷ + hs). (5.13)

x̂, ŷ = argmaxx,yR(x, y). (5.14)

In the multi-dolphins-detection-dataset, to ensure the property of the groundtruth, a policy

based on the match score is set to drop images including potentially incorrect or damaged

patches. Suppose an image I contains several dolphin patches {S1, S2, ..., SN}. In tem-

plate match of a patch Si, i ∈ [1, N ] with the image, if the score map contains more than

one pixels or no pixel with score > 0.999, the image is dropped. In our experiments, less

than one percent of images in the dataset are dropped.

5.4.2 Detection

After the patch matching is completed, the datasets contains images and bounding-

boxes of dolphin patches. In detection, two stage model is chosen for two reasons. The

first reason is that the detection accuracy of two stage model has relatively better perfor-

mances than one-stage model due to the second stage refinement. The second reason is

that in the future the detection model and the classification model would be merged into

a single end-to-end model for accuracy and complexity considerations. In addition, there

may be additional annotation types in classification. Under two stage model, it is simpler

to only fine-tune the second stage to add new annotation types instead of re-training the

whole model in one stage model. Two stage model would be easier to add more labels for

future research. The second reason is the primary reason of the choice of two stage model.

To be concrete, FRCN [5] is adopted as the detection model.

In the beginning, single-dolphin-detection-dataset is utilized to train a FRCN model.

The final model performs with man average precision 0.883 on testing dataset. The pre-
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cision and recall curve is as Figure 5.2.

In single-dolphin-detection-dataset, some dolphin are not enclosed by groundtruth

boxes and treated as background. In the setting of training FRCN, there would be prob-

lems in training region proposal network in single-dolphin-detection-dataset. Since the

negative samples are sampled from anchor boxes whose IoU with the groundtruth boxes

is smaller than a threshold (e.g. 0.3), it’s possible to sample the anchor boxes on dolphins

without groundtruth bounding-box as the negative samples. As for training the second

stage classifier, since the negative samples are sampled from anchor boxes surrounding

the groundtruth bounding boxes with IoU in a range [a, b] (i.e. a = 0.1, b=0.5), it has less

probability to sample other dolphin patches as negative samples.

Figure 5.2: The precision and recall curve of models trained on single-dolphin-detection-dataset with itera-
tion 20000, 40000, and 70000.

Due to these reasons, the multi-dolphins-detection-dataset is utilized to train another

FRCNmodel. On the testing dataset ofmulti-dolphins-detection-dataset, themodel trained

on single-dolphin-detection-dataset and the model trained on multi-dolphins-detection-

dataset has mean average precision 0.71.0 and 0.888 respectively. The precision and re-
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call curve of both models on testing dataset of multi-dolphin-detection-dataset is as Figure

5.3. From the figure, it can be shown that with additions with complete dolphin patches

on all images, the precision and recall both increase evidently with a large gap.

Figure 5.3: The precision and recall curve of models trained on single-dolphin-detection-dataset and multi-
dolphins-detection-dataset.
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Chapter 6 ProposedDolphin Identifica-

tion

In this chapter, the works on dolphin identification is introduced. This chapter is or-

ganized as follows. In section 6.1, the outline of proposed dolphin identification is illus-

trated. In section 6.2, the based classification model in the dolphin identification work,

the DenseNet121, is introduced. In section 6.3, the works on classification of angles and

stages are presented. In section 6.4, the works on classification of names are presented. In

section 6.5, the results of classification of names on masked images is presented. Finally

in section 6.6, the desktop application on our proposed dolphin detection and identification

system is introduced.

6.1 Introduction

In this section, the outline of the proposed dolphin identification is illustrated. In this

work, dolphin identification involves three classification tasks: classification of stages,

angles and names.

In the classification of stages, since the judgement of growing stages is based on colors

of dolphin skin and the cropped patch has a tight bounding-box on the dolphin, methods

based histogram of colors are utilized. In addition, convolutional neural network based

on low-level and high-level features, the DenseNeTt121 [11], is also utilized. In total,
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neural network with histogram of pixels, neural network with three histograms of each

RGB channel, and the DenseNet121 are utilized. With simple histogram features with

neural network, testing accuracy can reach higher than 91%. The DenseNet121 reaches

the highest testing accuracy around 98%. For the classification of angles, theDenseNet121

is adopted and the testing accuracy reaches around 96%.

For classification of names, in the beginning, the DenseNet121 is utilized and the

accuracy on testing dataset can reach around 80%. However, when the photographs newly

captured with the same hardwares are tested on this model, it performs poorly close to

accuracy with random predictions. To observe why the model performs outstandingly on

testing dataset yet poorly on captured images, a technique in [6] is utilized. This method

calculate the saliency of an image based on the gradient of the ground-truth score with

respect to image pixels. The result shows that the image has saliency not only on the

dolphin but also on the sea surface. It’s deduced that the model may classify based on the

simple rough color of the sea background instead of the details of dolphins since many

images under the same name are taken at the same date in consecutive frames. A direct

split of training and testing data by ratio would create similar distribution on training and

testing for the sea surface but not details of dolphins.

To verify the deduction, an experiment on splitting training and testing data by differ-

ent dates is executed and demonstrates overfitting with training accuracy above 95% and

testing accuracy close to random predictions under the same settings of training model

and optimizer. Hence, to solve the problem, a new block to detect the dolphin mask to

remove the pixels of sea surface is proposed.

Due to the lack of the dolphin mask and the simplicity of sea background, the saliency

detection algorithms are utilized to detect the mask. In direct implementation of existing

saliency detection algorithms on our dolphin patches, problems are found that the detec-

tion results lie on only parts of the dolphin instead of the whole dolphin. With further
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experiments, it shows that the reasons are the mismatches of the settings of the saliency

detection and our goals. With this insight, a simple solution of enlarging the cropping

bounding-box demonstrates an extreme result. In addition, to complement the drawbacks

of different saliency algorithms, it’s proposed to use the ensemble of different saliency

algorithms with different bases to produce the final saliency mask. [TODO: Quantitative

and qualitative results of saliency detection are included.] [TODO: Different ensemble

methods]

Finally, the masked image are utilized to training the DenseNet121 model and per-

forms around 85.53% testing accuracy. The overall structure is as Figure 6.2. In addtion,

an GUI application based on our proposed system architecture is built upon Python Tkin-

ter.

Figure 6.1: The block system architecture with details of classification block.

6.2 DenseNet

In 2016, Kaiming He et al. proposed the ResNet [56]. In the ResNet, it’s demonstrated

that by adding the input of a convolution layer to the output, the gradient vanishment

problem, an obstacle of building deep neural networks, would be solved since the gradient

can flow through skip connections.
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Figure 6.2: The skip connection in ResNet [56] .

Akin to the ResNet, Gao Huang et al. [11] proposed to replace summation with con-

catenation. Suppose the feature in the lth convolutional layer is xl, then in ResNet, the

output feature is the summation as follows.

xl = Conv(xl−1) + xl−1. (6.1)

In the Densenet, the output feature is the concatenation as follows.

xl = [Conv(xl−1), xl−1]. (6.2)

Thus, not only the gradient vanishment problem can be solved, the data flow is also not

impeded by the summation. In the ResNet, convolutional layers finds the residual of the

input features and update the input features; in theDenseNet, convolutional layers explores

new features and concatenates both features. The output features of the DenseNet contains

both low-level and locational features and high-level and semantic features. One problem

of concatenation is that the number of channels will always increase, creating redundant

channels and high spatial cost. Gao Huang et al. [11] proposed to use transition layer, a

1x1 convolution layer, to reduce the channel number and render a more compact model.

For the performance results of the DenseNet in [11], it reports lower error rates with

less parameters on multiple dataset compared with several state-of-the-art algorithms in-
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cluding ResNet. In addition, Gao Huang et al. [11] proposed four model structures,

DenseNet-121, DenseNet-169, Densenet-201, and DenseNet264 with different depths.

Yet, due to the classes in our classification not as many as 1000 classes in the ImageNet

[45], the prevention of overfitting, and the cosidieration of memory efficiency, the model

with the least depth DenseNet121 is adopted in our classification block.

6.3 Classification of stages and angles

6.3.1 Observations

According to expert knowledge, the growing stages are judged by the color of dolphin

skins. For the dolphin in our dataset, in the birth, the color of the dolphin will be purely

black. When the dolphin grows from child to the elder, the dolphin skin would turn from

black to pink white and then purely white. Since the dolphin comprise most pixels in

the cropped patch, the color of the dolphin skin can be represented by the probability

distribution of colors of pixels in the cropped patch.

6.3.2 Methods and experiments

Two features are utilized to calculate the probability distribution of colors of pixels in

the cropped patch to represent the color of dolphin skin. The first feature is the histogram

of pixels. The second features are three histogram of each RGB channel.

Figure 6.3: The example of the color histogram of a moltted-stage dolphin.
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Figure 6.4: The example of the color histogram of a spotted-stage dolphin.

Histogram of pixels

Suppose I(x, y) = [R(x, y), G(x, y), B(x, y)] is the pixel of image I at location (x, y)

composed of three channels R(x, y), G(x, y), and B(x, y) and the values in R(x, y),

G(x, y), and B(x, y) are integers in [0, 255]. Then the histogram of pixel is as equation

6.3.

Hpixel(r, g, b; I) =
card({p = (r, g, b) ∈ I})

card(I)
(6.3)

where I is the set of image pixels and card(·) is the cardinality of a set.

Yet, since the value of each red, blue and green channel is an integer in [0, 255],

histogram values have 2563 ≈ 2× 107 possibilities which requires too large spatial com-

plexity. Thus, the pixel value is further quantized by 16 as equation 6.4. The histogram

values of quantized pixel are reduced to (256
3
)3 = 4096 possibilities.

Hquantized,pixel(qr, qg, qb; I) =
card({p|p = (r, g, b) ∈ I, (⌊ r

16
⌋, ⌊ g

16
⌋, ⌊ b

16
⌋) = (qr, qg, qb)})

card(I)

(6.4)

Histograms of color channels

For the histograms of color channels, RGB color channel is utilized. For each of red,

green, and blue channel, an histogram is calculated. The concatenation of three histograms
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are the final output feature as equation 6.5.

Hred(r; I) =
card(R(p) = r, p ∈ I)

card(I)
(6.5)

Hgreen(g; I) =
card(G(p) = g, p ∈ I)

card(I)
(6.6)

Hblue(b; I) =
card(B(p) = b, p ∈ I)

card(I)
(6.7)

Hcolor(I) = [Hred(I), Hgreen(I), Hblue(I)] (6.8)

where R(·), G(·), and B(·) are the red, green and blue channel of a pixel.

Experiments

In experiments, three methods are utilized. First, histogram of pixel feature followed

by neural network is carried out. Second, histograms of color channels followed by neural

network is carried out. Third, the raw patch input with DenseNet121 is carried out. The

structure of the neural network is as Table 6.2 and 6.1. As in Table 6.3, DenseNet121

demonstrates the best performance around 98.15%.

Table 6.1: The structure of neural network with histograms of colors input.

Layers Output Size
Input Feature 768

Dense, 768 x 256 | BatchNorm | LeakyReLU 256
Dense, 256 x 56 | BatchNorm | LeakyReLU 56
Dense, 56 x 16 | BatchNorm | LeakyReLU 16
Dense, 16 x 56 | BatchNorm | LeakyReLU 56
Dense, 56 x 16 | BatchNorm | LeakyReLU 16
Dense, 16 x 4 | BatchNorm | LeakyReLU 4

Softmax 4
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Table 6.2: The structure of neural network with histogram of pixel input.

Layers Output Size
Input Feature 4096

Dense, 4096 x 1024 | BatchNorm | LeakyReLU 1024
Dense, 1024 x 256 | BatchNorm | LeakyReLU 256
Dense, 256 x 56 | BatchNorm | LeakyReLU 56
Dense, 56 x 16 | BatchNorm | LeakyReLU 16
Dense, 16 x 56 | BatchNorm | LeakyReLU 56
Dense, 56 x 16 | BatchNorm | LeakyReLU 16
Dense, 16 x 4 | BatchNorm | LeakyReLU 4

Softmax 4

Table 6.3: The results of the classification of stages.

Methods Accuracy
Histograms of colors + Neural Network 0.8209
Histogram of pixels + Neural Network 0.9129

Image Input + DenseNet121 0.9815

6.3.3 Classification of angles

For the classification of angles, there are four types of angles, +x, -x, +y, and -y ac-

cording to the direction of the head as in Figure 6.6 and 6.5. Following the experiences

in classification of stages, DenseNet121 is again adopted for classification of angles. The

results shows an extreme testing accuracy 95.73%.

Figure 6.5: The examples of dolphin patches in +x and -x angles.
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Figure 6.6: The examples of dolphin patches in +y and -y angles.

6.4 Classification of names

6.4.1 DenseNet121

In classification of names, in the beginning, DenseNet121 is utilized. The dolphin

patches in the dataset are randomly split into training and testing dataset with training

data ratio 0.85. With data augmentation of rotations and color jittering, DenseNet121 is

trained with 45 epochs under Adam optimizer with learning rate 1e-3. The performance

on testing dataset shows 79.8% accuracy.

After the training on training dataset and the evaluation on testing dataset is completed,

the model is further tested on recently captured patches. However, the performance is near

that of random predictions. The reason may be a mismatch of the distribution of the tested

dataset and the dataset for training and evaluation.

6.4.2 Gradient-based saliency map

To further explore the reason why the model performs differently on newly captured

patched and testing dataset , a technique in a technique in [6] is utilized. This method

calculates the saliency of an image based on the gradient of the ground-truth score with

respect to image pixels.

Suppose I(i, j) is the pixel of an input image I composed of three RGB channels

R(i, j), G(i, j), and B(i, j), the output score of DenseNet121 is S and the groundtruth of
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the input image is y. Then this method produce the gradients of the output score with re-

spect to all image pixels as the maximum of the gradient of output score of the groundtruth

with respect to the three channels as equation 6.9.

G(i, j) = max(
∣∣∣∣ ∂S(y)

∂R(i, j)

∣∣∣∣ , ∣∣∣∣ ∂S(y)

∂G(i, j)

∣∣∣∣ , ∣∣∣∣ ∂S(y)

∂B(i, j)

∣∣∣∣) (6.9)

The output G is the gradient-based saliency map. If a pixel has a higher value in G, the

variation of this pixel value creates larger variation to the score of the ground-truth. Thus,

this pixel has larger influence to the output score and comprise the saliency of the image

focused by the trained neural network.

Figure 6.7 is gradient-based saliency map of the patches in the dataset on the trained

model. In the gradient-based saliency map, the image has saliency not only on the dolphin

but also on the sea surfaces. Hence, the model may focus on the simple background of sea

surfaces instead of the dolphin. It’s deduced that the model may classify based on the sim-

ple rough color of the sea background instead of the details of dolphins since many images

under the same name are taken at the same date in consecutive frames. A direct split of

training and testing data by ratio would create similar distribution on training and testing

dataset for the sea surface co-occuring with details of dolphins. Since the sea surfaces are

much easier to be fit than subtle details of dolphins, the model fit the sea surfaces for pre-

dictions of classification instead of details of dolphins. Therefore, when newly captured

images are tested, the model focus on the difference of sea surfaces, leading to a poor

performance in comparison with groundtruth dolphin labels annotated by dolphin experts

focusing on dolphin details.

To verify this argument, a further experiment is carried out. We intend to split the

dataset such that the training dataset and the testing dataset has similar distributions of

dolphin details but different distributions of sea surfaces. If the model trained using this
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Figure 6.7: The gradient-based saliency map of the dolphin patches on the initial name-
classification model. The whiter the pixel, the higher value of the gradient.

Table 6.4: The results of the experiments on dataset split by dates.

Dataset Training Accuracy Testing Accuracy
Random split dataset with train, test ratio 85:15 97.6% 79.8%

Split dataset by dates 98.0% 4.6%
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training dataset has similar performance on the testing dataset as the previous randomly

split dataset. It means the model trained under randomly split dataset does not focus on

the sea surfaces for the classification since the model performs equivalently whether the

distribution of the sea surfaces in the training dataset is similar to the distribution of sea

surfaces in the testing dataset. On the other hand, if the trained model overfits much more

severely when the distributions of sea surfaces are different in training and testing dataset

than when the distributions of sea surfaces are similar in training and testing dataset, it

means the model fits the sea surfaces for classification so that the performance on the

testing dataset with different distributions of sea surfaces is poor. Since the sea surfaces of

images taken at different dates have explicitly different appearance, if images of the same

labels have different dates in training and testing dataset, the distribution of sea surfaces

are different in training and testing dataset. Thus, the dataset is split into to training and

testing dataset on the rule that all the patches taken at the same date will be put in only one

of the training dataset or the testing dataset. The date of every patch in the training dataset

was different from the date of any patch in the testing dataset. Thus, the distributions of

the sea surfaces are different in the training dataset and the testing dataset.

Under the same settings of training, if the trained model has comparative testing accu-

racy to the training accuracy, the model does not focus on the sea surface for classification

but the details of the dolphin itself. On the contrary, if the trained model has extremely

poor performance, the model focus on the sea surfaces since the model fits on the distribu-

tion of sea surfaces in training and fails on testing dataset which has different distribution

of sea surface from the training dataset but the same distribution of dolphins as the train-

ing dataset. The result is as Table 6.4. The testing accuracy is 4.6%. Hence, the initially

trained model actually classifies based on the explicit appearance of sea surfaces instead

of the details of dolphins.
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6.4.3 Saliency mask on dolphin

To overcome the interference of sea surfaces, an intuitive solution is to multiply the

image with a mask on the dolphin to remove the pixels of the sea surfaces. Based on the

idea, first related works on semantic segmentation are surveyed. However, most general

class semantic segmentation algorithms requires a set of images with mask groundtruths

for training. Yet, in the beginning, the provided dataset does not include dolphin masks.

In addition, annotations of groundtruth masks are labor-intensive and cannot be produced

in a short time. Therefore, semantic segmentation algorithms are not considered.

With further observations into the dataset, an interesting characteristic of our dolphin

patches invoke a new idea for the solution. Since the dolphin always appears on the sea,

most of the background of the dolphin patch are simple sea surfaces. Thus, based on the

simple background assumption, the dolphins in cropped patches are the saliency. Hence,

saliency detection algorithms are resorted to mask out the dolphin.

In the beginning, four saliency detection algorithms the NLDF [7], the SODM [8], the

GBVS [9], and the Saliency-HDCT [10] are utilized. The first two algorithms [7, 8] are

proposed in CVPR 2017 and are based on deep-learning models. The last two algorithms

[9, 10] are well-known rule-based algorithms. Figure 6.9, 6.10, 6.11, and 6.12 demon-

strate the saliency maps computed by these four algorithms on the patches in Figure 6.8.

From the figure, the deep-learning based algorithms can predict results with sharp edges

and high confidences, yet lose some parts of dolphins. The rule-based algorithms predict

more blurred edges and sometimes lose some parts of dolphins, too. Either of the four

algorithms can produces saliency on all cases. A common failure among four algorithms

is that in some cases the results contain only parts of the dolphins. This common failure on

four algorithms based on different mathematical methods invokes an idea toward the in-

appropriateness of the data or a mismatch of our goal with the setting of saliency detection
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instead of an interior problem of these saliency algorithms.

Figure 6.8: The original example dolphin patches on saliency algorithms.

Figure 6.9: The saliency maps of example dolphin patches computed by the NLDF.

Since the cropped patch has a tight bounding-box on the dolphin, the dolphin itself

comprise most pixels in a patch. Thus, in some cases, the saliency in the patch lies on

parts of dolphin instead of the whole dolphin. Addition of more sea background can solve

the problem. Hence, the solution is that in calculation of saliency, the patch is first cropped

by twice the original bounding box to include more sea surface pixels. Suppose the orig-

inal patch is cropped from (x1, y1, x2, y2) from an image with size (w, h). The enlarged
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Figure 6.10: The saliency maps of example dolphin patches computed by the SODM.

Figure 6.11: The saliency maps of example dolphin patches computed by the GBVS.

Figure 6.12: The saliency maps of example dolphin patches computed by the Saliency-HDCT.
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bounding box (x1,twice, y1,twice, x2,twice, y2,twice)is computed as equations below.

wp = x2 − x1. (6.10)

hp = y2 − y1. (6.11)

x1,twice = max(0, x1 −
⌊wp

2

⌋
). (6.12)

y1,twice = max(0, y1 −
⌊
hp

2

⌋
). (6.13)

x2,twice = min(w − 1, x2 +
⌊wp

2

⌋
). (6.14)

y2,twice = min(h− 1, y2 +

⌊
hp

2

⌋
). (6.15)

After the saliency map of the patch of the enlarged bounding box is computed, the mask is

produced by cropping the area corresponding to the original bounding box. Figure 6.14,

6.15, 6.16, and 6.17 are example results of saliency maps of patches in Figure 6.13 com-

puted under twice enlarged bounding box in four algorithms. It demonstrates satisfactory

qualitative results.

Figure 6.13: The original example dolphin patches of enlarged bounding boxes on saliency algo-
rithms.

In addition, an ensemble on these four algorithms produce the final saliency map. An
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Figure 6.14: The saliency maps of example dolphin patches of enlarged bounding boxes computed
by the NLDF.

Figure 6.15: The saliency maps of example dolphin patches of enlarged bounding boxes computed
by the SODM.
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Figure 6.16: The saliency maps of example dolphin patches of enlarged bounding boxes computed
by the GBVS.

Figure 6.17: The saliency maps of example dolphin patches of enlarged bounding boxes computed
by the Saliency-HDCT.
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Figure 6.18: The ensemble of saliency maps of example dolphin patches of enlarged bounding
boxes.

average of saliency maps of all algorithms is utilized as the ensemble method. After the

saliency is produce, an soft threshold method as equation 6.16 is adopted to produce a

sharper mask with floating value in [0, 1]. Suppose the computed saliency s have values

in range [0, 1] and the mask ism. The soft threshold method is as follows.

m(i, j) =


s(i, j), if s(i, j) > 0.3

(s(i, j) + 0.5)e−10(s(i,j)−0.3)2 , if 0.1 < s(i, j) ≤ 0.3

0, if s(i, j) ≤ 0.1

(6.16)

Finally, the original patch is multiplied with mask to produce the masked patch. Then,

these masked patches form a dataset to train classification models. Figure 6.18 and 6.19

are the example results of the ensemble saliency maps and the masked images. Figure

6.20 is the details of the architecture of the saliency block.
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Figure 6.19: The masked images of example dolphin patches.

Figure 6.20: The details of the architecture of the saliency block.
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6.4.4 Saliency results

Around two thousand additional patches are requested for evaluation. Table 6.5 is

the comparison of each algorithm with the ground-truth. The method ”ensemble” is the

saliency after ensemble of four algorithms [7, 8, 9, 10]. The method ”mask” is the saliency

after ensemble and soft-threshold. The recall, precision and F1-score are defined as fol-

lows. Suppose an algorithm produces a saliency map S for an input patch I and the

groundtruth of I is y. The value of S is a floating number in [0, 1] and the value of y

is a binary integer in {0,1}. First, a binary mask Sb of S is calculated by a threshold τ (i.e.

τ = 0.8). Then Sb is compared with y for recall, precision, and F1-score.

Sb(x; I) =


1, if S(x; I) > 0.8

0, if S(x; I) ≤ 0.8

(6.17)

TP (I) = card({x|Sb(x; I) = 1, y(x; I) = 1}) (6.18)

FP (I) = card({x|Sb(x; I) = 1, y(x; I) = 0}) (6.19)

FN(I) = card({x|Sb(x; I) = 0, y(x; I) = 1}) (6.20)

recall =

∑
I TP (I)∑

I TP (I) + FN(I)
(6.21)

precision =

∑
I TP (I)∑

I TP (I) + FP (I)
(6.22)

F1 = 2 · recall · precision
recall + precision

(6.23)

6.5 Results on masked images

TheDenseNet121model trained on themasked dolphin dataset has performance around

85.53% testing accuracy. Figure 6.21 are examples of gradient-based saliency maps of
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Figure 6.21: The gradient-based saliency map of the dolphin patches on the DenseNet121 trained
on masked dolphin dataset. The whiter the pixel, the higher value of the gradient.
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Table 6.5: The statistics of saliency results. The method ”ensemble” is the saliency after ensemble
of four algorithms [7, 8, 9, 10]. The method ”mask” is the saliency after ensemble and soft-
threshold.

Bounding-box size Methods Recall Precision F1-score
original NLDF [7] 0.662283 0.660265 0.661273
original SODM [8] 0.997361 0.382603 0.553049
original GBVS [9] 0.999694 0.385531 0.556463
original Saliency-HDCT [10] 0.997758 0.384238 0.554816
original ensemble 0.999992 0.382886 0.553748
original mask 0.739775 0.850178 0.791143
twice size NLDF [7] 0.962076 0.683463 0.799183
twice size SODM [8] 0.998800 0.383006 0.553691
twice size GBVS [9] 1.000000 0.382877 0.553740
twice size Saliency-HDCT [10] 0.998016 0.385311 0.555974
twice size ensemble 1.000000 0.382876 0.553739
twice size mask 0.979391 0.689390 0.809192

masked images on the DenseNet121 trained on the masked dolphin dataset. From Figure

6.21, the gradient-based saliency lie on the dolphin and especially on the fins. Hence,

the model trained on the masked dolphin dataset concentrates on details of dolphins for

classification rather than on irrelevant information to dolphins such as sea surfaces.

6.6 Demo Application

In addition, a desktop application is built upon Python Tkinter package. The GUI of

the application is as Figure 6.22. It includes a section displaying the input image, a list

showing the classification results of the detected dolphins, and a section displaying the

patch, the saliency and the masked patch of the selected dolphin.
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Figure 6.22: The GUI of the dolphin application. Section 1 is the input image. Section 2 is the list
of detected dolphins and classification results. Section 3 is the patch, the saliency and the masked
patch of the selected dolphin.
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Chapter 7 Conclusions andFutureWorks

7.1 Conclusions

A class-agnostic visual tracking algorithm Faster-MDNet [46] is proposed to replace

the on-line training in MD-Net [1] which is a bottleneck of the computational cost in pre-

diction with a RNN based model adaptation strategy. In the MD-Net, the information of

the targets are raw patches and corresponding labels and the model update is executed

through back-propagation training on the convolutional neural network model. In the

Faster-MDNet, the information of the targets are encoded as a feature and the model up-

date is excuted through injection of the feature into the prediction branch in convolutional

neural network. The experimental results demonstrates the proposed Faster-MDNet runs

around 10 times faster than the MD-Net with little sacrifice on accuracy.

A class-agnostic visual tracking algorithm RDisp is proposed. The RDisp transfer

pretrained detection model into tracking field and incorporate pretrained detection model

with convolustional LSTM cells to build the tracking model. In addition, a two-stage

clip training is proposed to train the RDisp to solve the problem of memory limit and

loss decreasing in utilization of back-propagation through time on training the RDisp.

The experimental results demonstrates the RDisp runs at 25 frames per second higher

than the prediction time of state-of-the-art algorithms. Qualitative results demonstrates

consistency of the algorithm under versatile circumstances of target appearance changes.
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A system of dolphin detection and identification is proposed to alleviate the tremen-

dous human resources on dolphin image capturing and post-processing. The dolphin de-

tection is based on the Faster-RCNN detection model [5]. The dolphin identification is

based on the DenseNet classification model [11]. In addition, a hybrid saliency method

based on four saliency algorithms [7, 8, 9, 10] is proposed to remove the interference

of sea surfaces in classification of dolphin names. A desktop application of the overall

dolphin detection and identification system is built upon python TKinter for user-friendly

utilization of our system.

7.2 Future Works

In the proposed Faster-MDNet, the recurrent neural network model state is generated

by a direct copy of the fully connected layers and the model update is by a direct summan-

tion of the features with the state. A more complicated model that considers long-term

information and more detailed appearance representations such as LSTM or skip connec-

tions can be attempted for higher accuracy and shorter computational time. Furthermore,

in the Faster-MDNet, the ensemble of states of different patches are a score-weighted

summation average. A smarter ensemble method can be attempted for better utilization

of the information in states of different patches. In addition, the region proposal strategy

in the Faster-MDNet is the selective search [57]. A smarter region proposal method such

as region proposal network [5] can be attempted for faster execution and more compact

enclosure of the proposals with the targets.

In the proposed RDisp, the initial state extraction method is to input a masked im-

age on the target to the pretrained detection model and extract output features of specific

layers as initial states. The masking method is to multiply the frame with a mask where

the pixels inside the groundtruth bounding-box have value 1 and the pixels outside the
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groundtruth bounding-box have value 0. A more complicated masking method can be at-

tempted to leave more background knowledge for better exclusion of background objects.

Futhermore, the memory limit problem is solved by two-stage clip training and commu-

nications of model features between CPU and GPU memory during training in the RDisp.

A more memory-efficient model can be attempted to solve the problem of memory limit

fundamentally.

In the proposed dolphin detection and identification model, an end-to-end model com-

bining detection and classification model can be attempted, which requires a training strat-

egy under incompletely annotated data. Futhermore, the saliency detection and the clas-

sification can be combined for higher accuracy. Finally, a faster model which can run

without GPU can be beneficial for marine conservationists who are not familiar with the

setup of environments on GPU. Hence, a faster model that can run real-time on CPU is

also a direction of future works in dolphin detection and identification.
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