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ABSTRACT

Neural paralysis due to stroke is a common disease, and clinical symptoms are often
characterized by insufficient muscle strength, muscle spasms and inability to control joint
activity. Long-term repetitive rehabilitation treatment can effectively help patients to
restore their original motor function and can prevent the secondary complications. Robot-
assisted upper limb rehabilitation can provide patients better rehabilitative treatment
while reducing the burden on the therapist. In this study, the inertial measurement unit is
used to estimate arm dynamics and is combined with muscle electromyography to train
deep learning model for human arm joint angles prediction. This model can be applied to
the active control and guide control of the robot arm.

In the relevant literature, the use of force/torque sensors or myoelectric signals based
control has a higher difficulty in establishing a human-robot interaction model for active
rehabilitation. In this thesis, a learning model is proposed. Compared with the traditional
model and other architecture of deep learning model, the proposed model in this study
has a higher accuracy rate and has less impact on different subjects. This model can be
fine-tuned to adapt special patients through a small amount of data to achieve better
results.

The method proposed in this study was online tested by three healthy subjects and
implemented on the upper limb rehabilitation exoskeleton robot NTUH-II. The
experimental results show that it outperforms than relevant research works. In addition,

the method can be simply extended to various rehabilitation therapies.

Keywords: rehabilitation robotics, arm dynamics, EMG sensing, machine learning,

active control, guide control, NTUH-II
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Chapter 1  Introduction

In this chapter, first, we will introduce the motivation of this research. It contains the
background of upper limb rehabilitation therapies and rehabilitation exoskeleton robot.
Then, we will discuss the related state-of-the-art studies in rehabilitation robotics in the
section of literature survey, which is followed by the contribution of this research. The

last section so this chapter shows the organization of this thesis.
1.1 Motivation

In some research, statistics show that stroke is one of the common causes of severing
disability and may cause total paralysis or half paralysis of the upper limb [1]. In the
United State, from 2003 to 2013, each year about 795,000 people continue to experience
a new or recurrent stroke (ischemic or hemorrhagic). Approximately 610,000 of these are
first events and 185,000 are recurrent stroke events [2]. Disability of the upper limb
caused by neurological or orthopedic clinically show characteristics of inadequate
muscular strength, altered muscle group firing pattern or inability to voluntarily control
the joint which may lead to worse conditions such as pain, stiffness or shoulder
impingement syndrome [3]. Clinical studies have shown that long-term repetitive
rehabilitation can help these patients regain their motor function and prevent the
occurrence of complications.

Traditionally, rehabilitation programs require therapists to help the patient perform
repetitive and time-consuming movements [4]. However, with the trend of population
aging, current medical service system is unable to meet the needs of every patient who
needs it because of lack of human resources. Since each assistance requires a considerable
amount of time and effort from the therapist, it is not possible to provide high quality and
stable remedial exercises support by the therapy anytime, anywhere.

1
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In order to overcome these problems in the medical service system, a feasible
method is to involve robot-assisted devices to help the therapists with less effort in the
rehabilitation program. With the intervention of robot-assisted rehabilitation, the
requirement of offering high quality and stable training for every patient can be achieved
because of the stability and accuracy of the robot system. The robotic device can not only
provide the passive and active range of motion (ROM) exercise but also can record the
biomedical and kinetic measurements online through bio-electrical signals, inertial
measurement unit and kinetic measurements sensors in the rehabilitation program. These
measurements can be used to further assess the improvement of the patient’s motor
function by the therapists or doctors. In addition, in order to motivate patients to more
enthusiastically carry out rehabilitation programs, robotic systems can be combined with
virtual reality (VR) technology, which can transform the dull exercise into amusement
games and simultaneously display the patient’s movement performance on the screen,
which can speed up the process of functional recovery. Moreover, the performance of the
patient in the VR game can also be used as another index for assessing the patient’s motor
function.

The robot-assisted rehabilitation therapeutic exercises basically can be divided into
4 types: passive, active, active-assistive, and active-resistive. Depending on the condition
of motor impairment, therapists or doctors will recommend the appropriate type of
rehabilitation exercise to the patient. In the passive exercise, the patient’s affected side of
the arm is guided by the robot arm to move, the common practice is doing repetitive
motions along a predetermined trajectory. In clinical practice, another common treatment
is bilateral rehabilitation, which can categorize as a special passive exercise. The patient's
impaired arm is driven by the machine to do the same exercise as the healthy side arm.

Specifically, voluntary movements of the intact limb may facilitate voluntary movements

2
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in the paretic limb. Activating the primary motor cortex and supplementary motor area
for the intact limb increases the likelihood of voluntary muscle contractions (i.e., motor
synergies) in the impaired limb when symmetrical movements are executed [5]. Moreover,
bilateral training is proven to be more effective in the rehabilitation of the early stages of
stroke [6]. The other 3 types of exercise require the exoskeleton robot to follow the
patient’s movement and then provide suitable human-robot cognitive interaction. In order
to achieve that, the robot system needs to get the motion intention of the impaired arm or
contralateral arm and then follow the corresponding movement. However, the extraction
of motion intention is a tricky and time-consuming problem in the related research of
exoskeleton robot.

As we live in a big data era, transforming big data into valuable knowledge becomes
much more important than ever [7]. Machine learning has been one of the most widely
used methods in order to extract knowledge from a large amount of data in bioinformatics.
The machine learning algorithm uses training data to reveal the underlying pattern, builds
the model, and then make predictions on the new data based on the model. Conventional
machine learning algorithms have limitations in dealing with raw data forms. So
researchers have spent a lot of efforts to translate the original form into a suitable high
abstract level feature with considerable field expertise [8]. On the other hand, deep
learning is a new machine learning algorithm, which recently appeared in the capacity of
big data and has overcome the former limitations, parallel and distributed computing, and
sophisticated algorithms. But deep learning algorithms also shows that hard to converge
and easy overfitting problems. In this thesis, we propose a new deep learning structure to
decode human bio-signals to identify motion intentions. The proposed model can predict
angles of the human arm, which can be used as a reference trajectory for any robotic arm

to achieve human-machine synchronous movement.

3
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1.2  Literature Survey

According to the clinical and research findings, a current prominent rehabilitation
technique is bilateral movement training. This protocol applies sound neurological
interlimb coordination postulates in activating motor synergies between limbs [9].
Training patients with two-handed tasks improve the efficiency of arm movements on the
impaired side [10] with changes accompanied by a reorganization of brain mappings on
the affected hemisphere. Bilateral tasks require to operate the two arms together so that
they cooperate to accomplish the aimed function. Evidences indicate that the
simultaneous movement of both limbs helps the neuro-muscular system to regain some
stability and improve usage of the impaired limb [11].

Robot-assisted therapy is able to provide high intensive and accurate movement and
can lower the demand for therapists. In order to track the subject’s movement in the real
world, the rehabilitation robot system is equipped with sensors to measure the user’s
motion intention data from which we can extract human motion intention. There are
several kinds of rehabilitation upper limb robot have been developed [12]. To date, in the
field of rehabilitation robotics, the representative types of the subject’s movement intent
on the upper limb include force/torque sensor (F/T sensor), inertial motion unit (IMU)
and electromyography (EMQG).

F/T sensor is a mechanical technique mounted on exoskeleton robot. It is used to
measure the interactive force and torque between the user and the robot. This type of
control strategy requires a dynamic model to compute the joint force or kinematics that
represents the human motion intention. The model is formed as a combination of inertia,
gravitation, Coriolis and centrifugal effects. Here are some related works such as [13],

[14], [15] which address active control for upper limb rehabilitation robotics using F/T
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Sensor.

ETS-MARSE [13] map human intention by measured value from F/T sensor, but
human joint torque is highly nonlinear and is controlled based on mathematical model,
which causes the system to slightly vibrate. Artificial neural network (ANN) based on
radial basis function (RBF) to solve the mapping problem has been used in [14], but it
needs a long time training. In our previous work [15], a mathematical model based on
active control along with a three-stage gravity compensation and reactive motion
rescheduling model were proposed to improve the intention mapping problem and
implement on NTUH-IL

It is unreasonable to measure the force at a specific position of the arm using an F/T
sensor, because human arms has multiple degrees of freedom, and the force point is
multiple. Also, the interactive force and torque value of users are different, which results
in that the patterns exerted by different subjects in the same task are not the same. Hence,
active control based on the dynamic model is more difficult to establish when we want to
extract motion intention information from the measured interaction force and torque.
Moreover, if the user’s muscle strength is insufficient to exert the interactive force and
torque, the F/T sensor cannot obtain the intention information.

Another sensor that can be used to detect the motion intention of a human arm is the
EMG sensor which detects the bioelectrical signal directly. There are some works use
EMG to measure the contralateral hand's motion intention to achieve single joint bilateral
rehabilitation [16], [17], or to measure the patient impaired arm EMG signal to achieve
the single joint active rehabilitation task [ 18], for example, detect biceps and triceps EMG
pattern for elbow rehabilitation task. Besides, other works [19], [20] use multi-channel
EMG signals to estimate user’s arm position or joint angle with different types of model.

Bravo [16] is a hand exoskeleton which can measure the EMG signals in extensor

5
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digitorum, flexor digitorum and adductor pollicis to control the grasp force, achieving
hand bilateral rehabilitation task. WEP [17] control wrist flex./ext. using Support Vector
Machine (SVM) to classify different force intensity from the EMG signals. Active Cast
[18] use frequency analysis of EMG signals to control elbow flex./ext.. The results show
that the classifier is better than the regression model to classify the force into different
value categories.

Support Vector Regression (SVR) has been used to detect human arm motion
position [19] and implement on teleoperate DLR Light-Weight Robot III. The same
technique can also be used in the bilateral task. A musculoskeletal model has been used
on BOTAS [20] that can estimate the joint angles of elbow and wrist. Their model
assumes that each muscle is modeled as a property of a linear spring. Then, the joint angle
is estimated under the assumption that the interaction force is zero.

Although EMG can represent the pure intentions of humans, there are some
limitations due to the complexity of the musculoskeletal system. When the motion pattern
is only slightly different, it might cause a huge change in EMG signals. In order to more
accurately decode human multi-joint intention, the inertial measurement unit (IMU)
sensor is also used. There are some works [21], [22] only using IMU or combine IMU
and EMG to decode human arm movement intention.

In our previous work [21], NTUH-ARM uses IMU sensor to get human arm joint
angle as a desired control input. The robot can achieve mirror therapy and can be
controlled over a larger range of motion. Another work [22] combines EMG and IMU
signals through ANN to predict elbow and forearm angles and implement on VR
environment. The result shows that if only estimating current joint angles, we can get
stable results. But there will be a large error in predicting.

Consequently, most of the works related to EMG or EMG combined with IMU need
6
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to train the model when a user starts to perform the task. This is time-consuming and takes
a lot of effort due to the time for collecting data and training model is long. Although only
one joint motion is considered, there is still a large estimation error in the estimated force

or angle.
1.3 Contribution

This research will review the National Taiwan University Hospital-1I (NTUH-II), a
7 DOF exoskeleton upper arm rehabilitation robot, which has been approved clinical
testing by the Department of Health IRB and National Taiwan University Hospital IRB.
NTUH-II can individually control elbow and shoulder or simultaneously. First, a
complementary filter is designed to accurately and stably estimate human arm joint angles
and angular velocities. Second, we found that the muscular deformation of the arm causes
the measurement error at large angles, so we design muscle compensation method to get
more accurate and stable results. Third, a deep learning method based Multi-stream
LSTM Dueling (MS-LSTM Dueling) model is proposed to predict the human arm
trajectory. The mode inputs are filtered IMU signals and EMG features we extracted from
pre-processed EMG signal using time-frequency analysis. Compared to the traditional
regression model or other architecture of the deep learning model, MS-LSTM Dueling
model can more accurately predict the human arm trajectory. Fourth, we design a fine-
tune method to let pre-trained model get a better result by using a small training data from
a special user. Fifth, by using the predicted trajectory, the robotic arm can be coordinated
with the human arm. Thus, the rehabilitation robot can implement the treatment exercises
of active rehabilitation and guide rehabilitation. For the active rehabilitation, robot will
follow subject’s volitional movement. The guide rehabilitation can be divided into two

parts, one is bilateral rehabilitation, and the other is lead rehabilitation. During bilateral
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rehabilitation, patient’s health arm will guide his/her impaired arm to do exercise. On the
contrary, therapist's arm will guide patient’s impaired arm to move in the lead
rehabilitation. The MS-LSTM Dueling model will guarantee robot arms move
simultaneously with no delay in guide mode, so the patient feels comfortable. In active
rehabilitation, the reference trajectory generated by MS-LSTM Dueling mode can make

robot follow the user arm motion.
1.4  Thesis Organization

In this thesis, we will concentrate on the development of active therapies on upper
limb exoskeleton rehabilitation robot, NTUH-II. The organization of this thesis is listed
as follows.

Chapter 1 has introduced the motivation, contribution of this research, and a general
description of state-of-the-art studies in human motion intention extraction by both F/T
sensor and EMG.

In Chapter 2, a detailed description of the mechanical structure of the upper limb
rehabilitation exoskeleton robot, NTUH-II, IMU, EMG and related devices will be given.
Next, we will give an overview of some preliminary theories behind this research and
categories of robot stroke rehabilitation exercise.

Chapter 3 is the core of this research, where we elaborate the details of theory step
by step. First, the sensor device and signal pre-processing of IMU and EMG are
introduced. The architecture of the motion prediction regression model and the control
strategy are also addressed in this chapter.

Chapter 4 shows the experimental results implemented on NTUH-II based on the
proposed theory. The effectiveness of the proposed method is verified in the experiments.

Finally, the conclusions of this research are shown in Chapter 5.
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Chapter 2  System Overview and Preliminaries

This chapter introduces the hardware and software of the rehabilitation robot system.
And then, the external sensor of IMU and EMG and the general categories of robot-
assisted rehabilitation exercise will be introduced. The last part of this chapter will show

traditional regression algorithm and the state-of-the-art deep learning method.
2.1  Upper Limb Rehabilitation Robot NTUH-II

In this section, an overview of the newly developed upper limb exoskeleton
rehabilitation robot NTUH-II is presented.

Compared with our previous designed rehabilitation robot NTUH-ARM and other
rehabilitation robots Hocoma, NTUH-II [23] contains more intuitive human-robot
structure with 8 degrees of freedom (DOF) and also possesses larger ROM which
approaches human-like ROM. Thus, all kinds of the training program can be implemented
for a patient with orthopedic or neurologic motor function disorders on either left or right
side of the upper limb. Two F/T sensors install on NTUH-II and external IMU and EMG
devices allow this robot system to assist patient with not only active mode but also guide

mode of rehabilitation exercise.
2.1.1 Mechanical Structure

In order to provide more rehabilitation treatment for upper limb dyskinesia patients,
NTUH-II developed more subtly by combining the previous experience of NTUH-ARM.
The main upgrade of NTUH-II contains the following points 1). Shoulder joint have
larger ROM and sufticient DOF to fit the human activity angle, 2). Intuitive human-robot
joint mapping relationship, and 3). easy to switch the left and right arm setting (i.e., it can

provide therapy for either left or right arm).
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Fig. 2.1 The mechanical structure of NTUH-IIL.

NTUH-II is an 8-DOF exoskeleton-type robot arm which contains 8 electrical

actuators and 2 ATI 6-axis F/T sensors. The mechanical structure of NTUH-II is shown

in Fig. 2.1, where the variables X; and Z; (i=0,1..,V,...,7) describe the coordinate

ofjoint i,additionally, the joint V is a virtual joint for the purpose of building Denavit—

Hartenberg (D-H) model, the variables 6, ,,6, 5,6, 4,6, , and 6, o represent the 5 active
revolute joints, and the rest of variables a ,,d, ; and a , represent the 3 active

prismatic joints on robot NTUH-II. The above subscript  means robot arm. This figure
also illustrated the locations of two F/T sensors mounted on NTUH-II, the first is placed
at the upper arm and the second is at the hand grip. The detailed D-H symbolic parameters

of the robot kinematics are list in TABLE 2.1

10
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TABLE 2.1 Denavit-Hartenberg parameters of NTUH-II.

Axis 0, ; d,; a; a, Home
i 0 d,, a, 0 0
2 0., 0 a,, 0 0
3 0 d, s CHp ~7/2 /2
4 0 d , 0 0 0
5 0, s 0 0 —/2 —7/2
6 O, 6 d 0 /2 0
14 6, 0 0 —1/2 0
7 0 d,; 0 0 0
8 O s d g 0 0 0

Among these 8 active DOFs, there are 2 prismatic DOFs utilized to adjust the
position of robot’s shoulder joint to match human’s glenohumeral (GH) joint, which

causes a critical issue during shoulder motion [24-26]. Moreover, @, , corresponds to
horizontal direction and d, ; corresponds to vertical direction. There are 4 DOFs related
to shoulder movements, which are 6, ,, for horizontal abduction/adduction, 6, 5, for
shoulder flexion/extension (or abduction/adduction if it is used with 6,,), 6, ¢, for
external/internal rotation, and @, 5, for traction. The remaining 2 DOFs for elbow and
wrist motion include 6, ; corresponding to elbow flexion/extension, and @, g, related to

wrist pronation/supination.
Two ATT force/torque sensors, installed on the upper arm and hand grip, respectively,

are used to measure the applied forces from the subjects. The function specification,

11
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ROMs of NTUH-II and of human[27], and maximum allowable torque in continuous

operation of respective joints are shown in TABLE 2.2.

TABLE 2.2 Introduction and purpose for each joint of NTUH-II.

Max
. . NTUH-II Human
Joint | DOF Function ROM ROM Torque
(Nm)
1 a Left and Right Adjustment 66 (cm) - 127.79
Horizontal
0 ° o
2 | % AbtusrenAdie o Lpiaee Buies 9ren
3 d, Up and Down Adjustment 52 (cm) - 40.91
Forward and Backward
a -
g s Adjustment ( or Traction) (e, g
Shoulder Flexion/Extension 180/0° 180/60° 108.64
5 0r,5
Shoulder Abduction/Adduction ~ 180/0° 180/ 45° 108.64
6 0, Shoulder Interpal/Extemal 20/90° 70/90° 5799
Rotation
7 0, , Elbow Flexion/Extension 120/0° 150/0° 103.04
8 0, 5 Wrist Pronation/Supination 90/90° 80/80° 15.36

2.1.2 Software

The control strategy and graphical user interface (GUI) of this machine are

developed using LabVIEW 2011 on the PC side. The flowchart showed in Fig. 2.2 is used

in the rehabilitation process

12
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Fig. 2.2 The flowchart of the human-machine interface.

At the beginning of the treatment, when the welcome page is ready for the user to
log in to therapist’s or engineer’s account, the login page will pop up. The next page
allows the therapist to select the patient from the patient database. In this step, the system
also provides a rich interface, such as creating/modifying a patient's information,
searching for information, or recording data for a certain subject. After selecting the
subject, the therapist can adjust the robot configuration so that the robot shoulder rotation
center is aligned with the patient's GH joint, and the initial shoulder flexion angle is set
to make the patient feel comfortable. Once the above settings are complete, the therapist
can choose a different mode of treatment for the patient.

2.1.3 Safety Issue

Safety is one of the most important problems to be concerned in the process of
rehabilitation. In robot-assisted rehabilitation, the patient's limb is supported by a robot
rather than therapists, so it is important to establish a system to ensure safe operation

13
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during the entire movement, including emergency human intervention

During the robot movement, the emergency stop button on the power cabinet and
the convenient handy emergency stop button as shown in Fig. 2.3(a) are available for the
therapist to design for emergency use. The two emergency stop buttons are connected to
the power supply, and when one of the buttons is pressed, the motor closes immediately,
then triggers the permanent magnet brakes to stop each movement, including a natural
descent caused by gravity. When any danger or discomfort occurs, the therapist can use
the emergency stop button to stop the action. In addition, a convenient handy pause button
as shown in Fig. 2.3(b) is prepared for the patient. If the patient feels uncomfortable, it

can be pressed to pause all movements at any time

(a) (b)

Fig. 2.3 The emergency stop buttons and a convenient handy pause button.

In addition to the safety of the hardware design, we also embed a variety of security
mechanisms and virtual stop/pause buttons in the control strategy and GUI. The safety
system will always monitor the joint position, angular velocity and current of each motor
during the movement. Once an anomaly occurs or any of the above measurements exceed
its security threshold, the movement will stop immediately and the robot configuration
will be automatically locked by the motor brakes. There is also a virtual button in the GUI
that commands the motor to move along the direction so that the robot's joints move down

14
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the position immediately, rather than pause the motor. When the patient feels
uncomfortable, the function helps to release the patient's arm. All of these hardware and

software safeguards provide a more secure rehabilitation exercise.
2.2 IMU and EMG Instrument

In order to measure the kinematics and muscles activation of human upper limb, we
use 2 Myo armbands to acquire IMU and EMG signals. The details of the device
introduction will be presented below.

Myo armband (Fig. 2.4 left) is a wireless sensor including 8 EMG channels and 9-
axis IMU sensor (3-axis gyroscopes, 3-axis accelerometers, and 3-axis magnetometers)
which is manufactured by Thalmic Labs. The data measured by Myo armbands will be
transmitted to the computer via Bluetooth or USB receiver (Fig. 2.4 right). The sampling
rates of the Myo armband are 50 Hz for IMU and 200 Hz for EMG. Myo armbands can
be worn on the human upper arm and forearm to measure the arm position, velocity,
acceleration, and muscles activity. With this device, we can reduce plenty of cables that
have the possibility of dragging and inconvenient when performing exercises in the
exoskeleton robot. Thalmic Labs also provides software development toolkits (SDK) for
C++ language. We reused it implement on python language and made a GUI for easy to
use. The data communicating between Myo armband (python) and NTUH-II control

program (LabVIEW) is through web socket (UPD or TCP).

15
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Fig. 2.4 Myo armband (left) and USB receiver (right).

2.3  Therapeutic Exercises

Basically, the therapeutic exercises of robot-assisted rehabilitation can be
categorized into 4 types, namely, passive mode, active mode, active-assistive mode, and
active-resistive mode of treatment. All these modes of treatment are designed with
patterns similar to those conventional rehabilitation programs for both neurologic and
orthopedic motor impairments. The doctor or physical therapist can suggest a suitable
mode of therapeutic exercise for a patient according to different condition or stage of
motor impairment. Inspired by the bilateral model of traditional rehabilitation therapy, we
set up a new robot-assisted mode named guided control. The detail of the guide mode will

show below.
2.3.1 Active Mode

Patients with mild disability (Brunnstrom stage in high motor level) and enough
muscle strength in the affected arm (Manual Muscle Testing = grade 3) are suitable for
active mode. In active mode therapy, patients perform a full range of exercise exercises
by voluntarily moving the injured limb without extra help from the exoskeleton robot. In
other words, the patient moves freely and the robot is placed to follow the patient’s
movements. The main purpose of active therapy is to enhance motor learning (through a

series of processes related to repetitive exercise leading to long-term changes in motor
16
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ability) and further induce brain lesions to rearrange and improve muscle strength as well
as impaired arm flexibility. Furthermore, during active exercise, the motion and biological
data of patients’ impaired arm can be measured and recorded by sensors. We can further

use this data to evaluate and analysis of motor function improvements.
2.3.2 Guide Mode

The guide mode exercise is suitable for the patient with lower motor stages
(Brunnstrom stage), resulting in limited limb or restricted limb. During exercise, patients’
impaired limb will be fully supported by the rehabilitation robot to complete the exercise.
This mode can be used as bilateral exercise or lead excercise. The difference between
bilateral excercise and lead excercise is that bilateral training is suitable for patients with
semi-paralysis, the robotic arm will do the same mirror action as the healthy arm, while
lead training is suitable for patients both arms are impaired, the robotic arm will do the
motion as same as therapist’s health arm motion. The goal of this mode is to prevent
secondary complications due to fixation (such as joint degeneration, joint contracture,
muscle atrophy, etc.) caused by stroke. In addition, rehabilitation robot training is
performed in this guide mode to induce neural facilitation or cortical activation, and to

contribute to a higher level of recovery.
2.4  Complementary Filter

In order to get accuracy and stable kinematics signal, we need a good filter to filter
signals. A simple estimating technique that is often used in the flight control industry to
combine measurements is the complementary filter [28]. This filter is usually designed
without mentioning the Wiener or Kalman filter, although it is related to them. Fig. 2.5
shows the basic complementary filter where x and y are noise measurements of some

signal z and 2 is the estimate of z produced by the filter. Assume that the noise in x is
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mostly low frequency and the noise in y is mostly high frequency. Then G(s) can be
made a high-pass filter to filter out the low frequency noise in x. If G(s) is high-pass,
then [1 — G(s)] is the complement, i.e., a low=pass filter which filter out the low-
frequency noise in y. No detailed description of the noise processes is considered in

complementary filtering.

X—) G(s) A
Z

y

—> 1-G(s)

Fig. 2.5 Basic complementary filter.

2.5 Traditional Regression Model

2.5.1 Support Vector Regression

Support Vector Machine (SVM) [29] can be used to deal with classification problems
in addition to regression problems. The so-called regression refers to each entity
corresponding to the instance’s label is a continuous real number, rather than discrete
different categories (in SVM is often represented by integers). SVM, which deals with
regression problems, is called Support Vector Regression (SVR).

Similar to SVM, the goal of SVR is to find the optimum hyperplane in space. Unlike
SVM looking for a hyperplane that divides data into one, while the SVR is looking for a
hyperplane that can accurately predict the distribution of data. Suppose the training data
is represented as (x1, V1), ..., (X, ¥,,) € R% x R, where x is input attributes, y is the target
value, R% denotes the space of the input patterns. In € — SV regression, the goal has
been to find a function f(x) that has at most € deviation from the actually obtained

targets y; for all the training data and meanwhile as flat as possible. The case of linear
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function f'has been described in the form as
f(x)=(w x)+b (2.1

For this, it is required to minimize the Euclidean norm i.e. ||w||?. Formally this can be

written as a convex optimization problem by requiring

o1y e I x
minimize E||a)|| +Ciz_1:((§i +&)

yi —(@,%)-b<e+§ (2.2)
subjectto < (@, x)+b-y, <&
§.5 20

where §;,&; are slack variables to cope with otherwise infeasible constraints of the

optimization problem. The constant C > 0 determines the tradeoff between the flatness

of fand the amount up to which deviations larger than ¢ are tolerated.
2.5.2 K-Nearest Neighbor Regression

Nonparametric regression is a collection of techniques for fitting curves with little
prior knowledge of their shape. The simplest algorithm to implement it is the k-nearest
neighbor (k-NN) [30].

The k-NN regression is commonly based on the distance between a sample and the
training dataset. Assume x is input with d features (xy, x5, ..., x4) and training set D with
n samples. Normally we choose Euclidean distance as distance function, is defined as

K
dist(x,D,) = [> (% -D; )’ 2.3)
i=1
The predicted value of x is decided by the great number of the value among k nearest
sample in D.
Since K-NN is an instance-based learning method, given the stored training sets, the

new samples’ value is got only to find the most similar records in a training set. Therefore,

when the training set grows, the memory space and computation time should be
19
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considered.
2.6  Deep Learning Model

We will briefly introduce some important deep learning architecture used in this

thesis. More detail about each model can be found in the reference.
2.6.1 Convolutional Neural Network

Convolutional neural networks (CNN) [31], which has successfully been applied to
analyzing the image, is a class of deep feed-forward artificial neural networks that can
explore the relationship between adjacent positions. CNN is proposed to reduce the
number of parameters and extract feature pattern better than fully-connected layer. They
are also known as shift invariant or spatially invariant artificial neural networks, based on
their shared weight structure and translational invariance characteristics.

The convolutional layer is the core component of the CNN, which completes most
of the computational heavy work. When we dealing with high-dimensional inputs such
as images, it is impractical to connect neurons to all neurons in the previous layers. Instead,
we will connect each neuron to only a local region of the input volume. The connections
are local in space (along in width and high) but always fill along the entire depth of the
input volume. Convolutional layer uses a weighting matrix called a filter (or feature) to
handle the image, which detects specific properties such as diagonal edges, vertical edges
and so on. Moreover, as the image progresses through each layer, the filters are able to
recognize more complex attributes. Compared with other image classification algorithms,
CNN uses relatively few preprocessing. This means that the filters in the traditional
algorithms of network learning are designed by hand. This feature, independent of prior
knowledge and human design, is a major advantage. Fig. 2.6 (A) shows an example in

convolutional layer. Each neuron in the convolutional layer is connected only to a local
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region in the input volume spatially. (B) shows the whole computation in one neuron,

same as neuron networks.

X0 wQ

’

>’oo---o

(A) (B)

Fig. 2.6 (A) An example input volume in red and example volume of neurons in the
first convolutional layer. (B) computation process in one neural.

2.6.2 Recurrent Neural Network

Recurrent neural network (RNN) not only takes the current input samples but also
takes their previously perceived content as their input, normal neural network doesn’t
have this characteristic. RNN can be considered multiple copies of the same network, and
each copy sends a message to a successor. As shown in Fig. 2.7, this kind of chain-like
property revels that RNN are closely related to sequences and lists. One of the attractions
of RNN is that they may be able to connect the previous information to the current task,
such as using previous video frames might inform the understanding of the present frame.
It is often said that RNN has memory, in other words, RNN shares weights over time. The

basic structure is described by the following set of equations [32]:

h =h(W,,x +Wh_,) 2.4)

y. =h(w,h) 2.5)
where h, € R™ is the state vector, x, € RP is the input, and y, € R™ is the output.

The function h(-) apply to vector pointwise and commonly set to tanh(:). For the
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coefficient matrices, we have W,, € R™*?, W, € R™™ W, € R™™,

(v) (yo) (y1) () (v¢)

fe ft i
110 11]_ hg h, -1
cell I ‘ cell cell » cell —» ----. . cell

b 6 b

Fig. 2.7 Basic RNN architecture and unfold like.
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Fig. 2.8 LSTM cell contains four interacting layers.

In theory, RNN is absolutely capable of handling case of “long-term dependencies”,
but in practice, RNN doesn’t seem to be able to learn them. In fact, the basic RNN usually
facing gradient vanishing and gradient exploding problem which make RNN get bad
results. This is partly because the information flowing passes many stages of
multiplication. To address this problem, a variation of RNN with so-called Long Short-
Term Memory units (LSTM) was proposed [33] and is largely used in sequences
generation [34]. LSTM contain information outside the normal flow of the recurrent
network in a gated cell. Cells decide what to store and when to allow reads, writes, and
erasures by gates that open and close. LSTM single cell shown in Fig. 2.8, architecture is

defined by the following set of equations
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I, = O-(Wxixt +Wih,; +Wc, , +b ) (2.6)

f, =0 (W, X +Wysh, W, ¢, +by ) @.7)
¢, = fc, +i; tanh (W, x, +W, h_, +b;) (2.8)
0, = 0 (WX +Woh_, +W,c +h,) (2.9)
h, =0, tanh(c,) (2.10)

where o is the logistic sigmoid function, and i, f, 0 and C are respectively the
input gate, forget gate, output gate, cell and input activation vectors, all of which are the
same size as the hidden vector h. The weight matrix subscripts have the obvious

meaning, for example, W,; is the hidden-input gate matrix, W, is the input-output gate
matrix etc. The weight matrices from the cell to gate vectors (e.g. W, ) are diagonal, so

element M in each gate vector only receives input from element m of the cell vector.
The bias terms (which are addedto i, f, ¢ and 0) have been omitted for clarity.

During training stage, we use backpropagation through time algorithm [35] to update
network parameters. One difficulty when training LSTM with the full gradient is that the
derivatives sometimes become excessively large, leading to numerical problems. To
prevent this, all the experiments should clip the derivative of the loss with respect to the
network inputs to the LSTM layers (before the sigmoid and fanh functions are applied)
to lie within a predefined range.

2.6.3 Convolutional LSTM

The medical data like EMG signals with a lot of channels record continuously. The
signal of the same channel at a different time is related, the signal between different
channels also has the mutual influence. The fully connected LSTM (FC-LSTM)

framework shown in the previous section provides a general framework for sequence
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learning problems. However, the FC-LSTM does not take spatial correlation into
consideration. Convolutional LSTM (ConvLSTM) network [36] have been proposed to
overcome this difficulty. In order to model well the spatiotemporal relationships, they
extend the idea of FC-LSTM to ConvLSTM which has convolutional structures in both
the input-to-state and state-to-state transitions.

The main disadvantage of FC-LSTM in processing spatiotemporal data is that it must

expand the input into a one-dimensional vector before processing, result in the loss of all

spatial information in the process. To overcome this problem, all inputs X,..., X, cell
outputs C,,..., C,, hidden states H,,..., H,, and gates i, f,, 0, of the ConvLSTM are 3D

tensors whose last two dimensions are spatial dimensions (rows and columns). The
ConvLSTM determines the future state of a certain cell in the grid by the inputs and past
states of its local neighbors. This can easily be achieved by using a convolution operator
in the state-to-state and input-to-state transitions as shown in Fig. 2.9. The key equations
of ConvLSTM are shown below

i, =0 (W, * X, +W,H,_, +W; oC_, +b,)

fo=0 (W, * X, + Wy #H,_; + W, oC_, +b; )

C, = f,oCpy +i otanh (W, * X, +W, *H_, +b,) (2.11)
0, =0 (W, * X, +W,, *H,_, +W_ oC, +b,)

H, =0, o tanh(C,)

2

where ‘*’ denotes the convolution operator and ‘o ’, as before, denotes the Hadamard
product. If we view the states as the hidden representations of moving objects, a
ConvLSTM with a larger transitional kernel should be able to capture faster motions
while one with a smaller kernel can captures slower motions.

To ensure that the state has the same number of rows as the input and the same

number of columns, padding is needed before applying the convolution operation. Here,
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the padding of the hidden state on the boundary point can be considered as using the state
of the outside world for calculation. Usually, before the first input comes, we initialize all
the states of LSTM to zero which corresponds to “total ignorance” of the future. Similarly,
if we perform zero-padding on the hidden states, we are actually setting the state of the
outside world to zero and assume no prior knowledge about the outside. By padding states,

we can handle boundary points in different ways, which is useful in many cases.

Hit1,Coipr
[
Hh Ct
[
Ht—l ’ Ct—l

Fig. 2.9 Inner structure of ConvLSTM.
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Chapter 3 Design Motion Prediction based Control

System

The hardest part to control an exoskeleton robot is human-robot synergy. Usually,
the movement of the machine has a delay relative to the movement of the human arm,
which can make the user feel more resistance or be restrained. If we can predict the motion
of the arm and let the machine move along with the human intent, it is an effective way
to reduce the delay, so that users feel smooth in the motion. Traditionally, researchers use
F/T sensors to get human arm movement intention or EMG signal to recognize movement
intention direction. Those methods are hard to decode multi-joint movement, and it
remains a problem with the delay which makes subjects feel uncomfortable and difficult
to control the exoskeleton robot.

For the purpose of decoding multi-joint arm intention and reducing control delay
time, we use human arm dynamics and EMG signals which can reflect movement
intention as model input. We have proposed Multi-stream LSTM Dueling (MS-LSTM
Dueling) model which can accurately predict joint angles of the human arm. After that,
the predicted human joint angle becomes the input of the robot controller that can control
the robot arms to move synchronously with the human arm.

In order to train our deep learning model, we need to collect the arm movement data
from different subjects. Because of the huge differences between individuals, the
researchers traditionally trained a model for each participant in a specific rehabilitation
task. This is bound to require a large amount of data to be collected in each task and each
participant, and it will take a lot of time in experimental setup and data collection. In fact,
our data collection process does not require human arm to perform motions with the robot

arm, unlike [37] which needs subjects to perform motion on the robot arm, in our case
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subjects can perform motions in free space and do the motion whatever they want. The
whole process here is compared with the traditional collection methods are more flexible
and easier, and collection time is also greatly reduced. Moreover, subjects can also collect
their data at home using the method we have designed. Through the proposed data
collection method, we can collect the angles of the arm joints, the movement speed and

the EMG signal of the subject.

3.1 Estimate Human Arm Dynamics and Muscle Activity

3.1.1 IMU subsystem and signal pre-processing

In this work, we use two Myo armbands, each with 3-axis magnetometer, 3-axis
gyroscope, and 3-axis accelerometer, which altogether are called IMU. IMU signals
sampling rate is 50 Hz and is located on the channel 4 of the Myo armband. One Myo
armband is placed in the upper arm such that it is at 5 cm above the middle of lateral and
medial epicondyle with channel 3 being located on biceps brachii, whereas the other
armband is placed in the forearm such that it is at 6 cm below the middle of lateral and
medial epicondyle with channel 3 being located on supinator. Both Myo armband’s
channel 4 will be on the top of the arm. The placement of both Myo armbands is as shown
in Fig. 3.1. We obtain the stable rotation angle and angular velocity of each armband by
using the complementary filter from IMU data. Finally, the angle of the human arm joint
is obtained from the rotation angle of the two Myo armbands.

The 3-axis accelerometer allows us to obtain the rotation angles w.r.t X- and Y-axis,
but the accelerometer is only suitable for measuring the angle in the stationary state, and
the measurement accuracy under movement is poor. Similarly, the 3-axis magnetometer
can obtain the angles between X-, Y- and Z-axis and the geomagnetic field repetitively,

whereby they can also be converted to the rotation angles, however subject to
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measurement of turbulence due to motion and vulnerability to the surrounding magnetic
field interference. On the contrary, the gyroscope can measure the angular velocity of the
object with sufficient accuracy, so that the angle of rotation through integration of the
velocity can be obtained, despite the error of the angle may accumulate over time. This
shows that magnetometer and accelerometers have high-frequency noise, gyroscope has
low-frequency noise, and such a situation is very suitable for the use of complementary

filters. The design of the filter is shown in the Fig. 3.2.

Channel 4 Channel 3 Channel 4

"

Forearm ©cm Sem  Upper arm

Fig. 3.1 Placement of two Myo armbands (left arm).

Accelerometer/
Magnetometer
¥
Low-Pass
x TP Fie @; > Angle
High-Pass

Mumeric / Filter

Integration
Q —)f[ > » Angular Velocity
Gyroscope

Fig. 3.2 The architecture of complementary filter which can complement each one of
the shortcomings of the signal. Through the complementary filter, we can get the
accuracy of the object’s rotation angle and angular velocity.
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What is shown below are equations for the digital complementary filter.

B,y = X (eyawytfl + vtgymAt) +(1-a)x O, (3.1)
mag acc
Oy =ax (ex -1 "‘VtgymAt)+ (1_ a)x(ext—;HXtJ (3.2)
= 33
T+ At (33)

where 6,,,. 1s the current filtered angle of yaw-axis, 6,,,,, is the angle of previous

time, Oy, is the current filtered angle of roll-axis and pitch-axis v*®" is the angular
velocity measurement of current time from the gyroscope, 655 is the current

measurement angle from accelerometer, 6% is the current measurement angle from

magnetometer, and a is determined from time constant 7. The time constant of a filter is
the relative duration of signal it will act on. For a low-pass filter, signals much longer than
the time constant pass through unaltered while signals shorter than the time constant is
filtered out. The opposite is true for a high-pass filter. So, when the desired time constant
and the sample rate are decided, the filter coefticient a will be determined.

Fig. 3.3 shows each Myo armband’s coordinate system on which the rotation angle

6,

we obtained is based. After we get each axis’s rotation angle, namely, 6 b pitch »

0,roll »

6,

0,yaw »

6,

Lroll »

4911 pitch and &

) yaw» Where 6 represent forearm coordinate system, 6

represent upper arm coordinate system, and we can use these as arm joint rotation angles.

The transformation equation is shown below

shoulder flex./ext. = 0, pircn
horizontal abd./add. = O, yaw
! _ : (3.4)
ext./int. rotation = O, ron
elbow flex./ext. = 6, jin — O piten

29

doi:10.6342/NTU201802164



Fig. 3.3 Two Myo armbands’ principal axes.

3.1.2 Human Arm Angle Calibration

Because the Myo armband is a ring-mounted sensor attached to the human epidermis,
and human arm is not a homogeneous cylinder, the position of the sensor changes when
the arm is moving, it causes the wrong calculation of the angles. Fig. 3.4 shows an
example of doing elbow flexion causes sensor measurement inaccuracy. It’s easy to find

that when the elbow join reaches 90°, the IMU sensor only reaches about 75°.

(A) (B)

Fig. 3.4 Example of an inaccurate sensor measurement caused by muscle deformation.

In order to counteract the muscle-shape variation of each individual (there's a lot of
difference in muscle deformation for everyone), a calibration measurement is needed to
obtain the compensation value for muscle deformation before the experiment begins. We

use four basic motions which are shoulder flex./ext. from 90° to 170°, horizontal
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abd./add. from 0 to 80°, ext./int. rotation from —30° to 30°, and elbow flex./ext.
from 0" to 85" to get the value of the compensation. This process needs to be done
when the human arm sits on the exoskeleton because the robotic arm can provide an
accurate angle of measurement and we will use it as ground truth. The robot arm will
passively move while we record both the robot joint angle and estimated joint angle of

the human arm.

0..—6
k= real h 35
Hreal ( )
6, =6, (1+k) (3.6)

where 6

1 ground truth joint angle, 6, is human joint angle, k£ is muscle

compensation value, and éh is our final estimated human joint angle.

Fig. 3.5 shows the result of doing muscle calibration. The black line represents robot
arm angle which means ground truth angle, the red line represents the measured angle
after muscle compensation, and the green dash line represents the measured angle without
muscle compensation. It’s clear to see that if no muscle compensation, there is always a
bias between our measured angles and the ground truth. Because of the design of the
special mechanism, our robot arm produces a certain amount of deformation when it is
horizontally moving, which will result in a small amount of error in our final
measurements as shows in Fig. 3.5 (A) during 3s to 5s. Fig. 3.5 (C) shows that ext./int.
rotation angle will be influenced by muscle deformation. After testing on 5 subjects, the
measured mean absolute error with muscle compensation is shown in TABLE 3.1, which
reveals that our method can accurately measure the joint angle of the human arm. For the
sake of comparison, the measurement mean absolute error without muscle compensation

is also shown in TABLE 3.2.
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Fig. 3.5 Result of muscle calibration (A) shoulder flex./ext., (B) horizontal abd./add.,
(C) ext./int. rotation, (D) elbow flex./ext.

TABLE 3.1 Measurement error test on five subjects with muscle compensate.

Motion t Horizontal Shoulder Ext./int. Elbow
otion type abd./add. flex./ext. rotation flex./ext.
Mean absolute 1.23° 1.2° 1.19° 1.63°
error (degrees)

TABLE 3.2 Measurement error test on five subjects without muscle compensate.

Motion t Horizontal Shoulder Ext./int. Elbow
otiontype abd./add. flex./ext. rotation flex./ext.
Mean absolute 2.53° 3.720 1.19° 3.78°
error (degrees)
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3.1.3 EMG Subsystem and Signal Pre-processing

In previous work, Two Myo armbands were used to get arm dynamics. Each device
can also get 8 EMG channel signals to record the status of muscle activation of upper arm
and forearm at the same time. The EMG sampling rate of Myo armband is 200 Hz.

The signals we measure are mixed with various noises [38]. Moreover, because the
Myo armband is a ring-shaped sensor, there will be a very serious crosstalk problem [39]
on the obtained signals. As a result, the actual EMG signal from the muscles is reduced.
Therefore, the original signal needs to be pre-processed by a series of signals processing
to increase the signal-to-noise ratio.

In addition to the problem of crosstalk, there are two main noises in the EMG signal.
The first is artifact noise, which occurs when motion comes up and where electrodes, skin,
and muscle shift with respect to one another. The frequency of artifact noise is low-
frequency noise and is in the range of 1-10Hz. The other kind of noise is electromagnetic
noise which is also called power line noise. The human body can be regarded as a
conductor and is constantly receiving electrical as well as electromagnetic radiation,
especially from the power line. The magnitude of electromagnetic noise is usually greater
than that of the EMG signal.

In order to eliminate the artifact noise, the raw EMG signal is filtered by a high-pass
filter (fourth-order Butterworth filter) with cut-off frequency 10 Hz. For the
electromagnetic noise, we apply a 60 Hz notch filter to remove it. After filter the signal,
we have two methods to extract time domain features and frequency domain features. In
the time domain, for the purpose of obtaining the smooth signal, we use full wave
rectification and then processed through moving average with triangular sample window
(Iength 100ms) to quantify muscle activities over a time period. The moving average

method can be expressed as
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— k+1

MA[n] = ZT EMG,[n-k] (3.7)
MA

MA= M:AZ (3.8)
MA,

where N is length (samples) of window function, EMG, is the i -th channel of

filtered EMG signal, MA is the i-th channel of EMG signal after moving average,

MA is the vector form of signals after moving average, and m is the number of
channels (m =16 in this work).

In the frequency domain, we use Short-time Fourier Transform (STFT) to transform
signals to the frequency domain, and the window function we choose hamming window
has 19 samples as shown in Fig. 3.6 (B). Fig. 3.6 (A) shows the window function of Myo
armband which has 19 samples (N =19) and the total weight of all samples are triangle.

Due to our system is digital we use discrete-time STFT, the equation shown below

STFT {x[n]}(m,0)= i x[nw[n—m]e " (3.9)

N=—c

where x[n] is input signal and w[n] is window function, m is discrete and @ is

continuous, but the STFT is performed on a computer using the Fast Fourier Transform
(FFT), so both variables are discrete and quantized. The number of frequency band is
selected 10, so the dimension of EMG features are 10 X 16, where 16 is number of

channels.
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Fig. 3.6 (A) Example of a triangular window for moving average. (B) Example of the
Hamming window.

Full-wave - Moving Processed
Rectification Average EMG

Raw EMG High-pass Notch Filter
> Filter(10Hz) (60Hz)

STFT —3 Features

Fig. 3.7 Flow of signal processing.

The full signal processing is shown in Fig. 3.7. Note that, after applying STFT, which
means time-frequency analysis, on a segmented window. The frequency domain features
we get which are complex values, but we only use its magnitude as our model input
features. Meanwhile, the processed EMG in one hand can also be input features. On the
other hand, it can also serve as an important information for future assessment of patients’
rehabilitation status.

3.1.4 Data Acquisition
Before training our designed model, we need to collect training data. Training data
are collected on both the health side of the subject which can make basic motions. Unlike
our previous work [37], not only use Myo armband but also use BioRadio which is also
35
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an EMG data collections devices through bipolar electrodes. Setup BioRadio device
needs a lot of time and subjects also need to take off their clothes which is very
inconvenient. Moreover, subjects have to perform 1). relax arm 2). follow robot make
interactive force as small as possible (mimicking isometric contraction) 3). exert weak
force on robot 4). exert strong force on exoskeleton robot actively. More irritating things
is that each action needs to be repeated three times and requires at least 10 minutes, and
for each different rehabilitation therapy need to repeat the same collection process. For
example, if we have four rehabilitation therapies the total time we need at least 160
minutes. This collection method needs to be performed on every subject before
experiments.

In our work, we have simplified the whole process, and we just need to get the
subjects to move their arms in the free space after wear Myo armbands and no need to be
on the robot arm. We ask subjects to move their arm in air arbitrary in one-minute and
then after one-minute rest perform next session. For each subject, we need to collect eight
sessions and the total time are less than 30 minutes. During movement, we record subjects’
arm dynamics which include four arm joint angles, all sensors’ angular velocities and all
sensors’ accelerometer reading (total 16-dimensional). Also, processed EMG signals (16-
dimensional) and EMG features (160-dimensional) are recorded simultaneously. Since
the period of software control loop in our exoskeleton robot, NTUH-II is 50ms (20Hz),
the arm dynamics (IMU signals) and pre-processed EMG signals sampling rate are also
downsampled at 20Hz. Additionally, we design a Graphical User Interface (GUI) for
convenience. With this application, for those who are not professionals such as physical
therapists or doctors can also easily use to collection patients’ data or use for joints
estimate. Fig. 3.8 shows our designed interface. (A) shows our main operating interface

and can also be used to connect Myo armbands to transmit measurement data via UDP or
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TCP to any other application, also user can set the sampling rate for a special case. (B)
shows our advance setting page. The default value is the best value we choose for easy
use; the user can modify to other values they want. Our data collection method only needs
to collect data before training model or when need to fine-tune a special subject. More
often, when new participants come in, they can use our existing models directly.
Compared to the previous approach, the method we propose has little time for new

participants to spend on data acquisition.

& Myo App by RRLAB - | X € Myo App by RRLAB - | x
Mo Control Advance Setting Calibration Mo Cotrol Advance Setting Calibration
Sacket Lddress: 127.0.0.1:5555 | (@ Listen Mode () Feed Mode
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@® Public Mode (O Request Mode Filter Oder: [ 4 3]
Send Freguency{Hz): | 20 = | HFF cutoff fs: | 2 = |
File Name: | default | M Length | 19 a3
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‘A‘ Calibration s Complementary a; | 0oa |
= Muscle Deformation C te
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Fig. 3.8 GUI for our application.
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3.2 Motion Prediction Regression Model

In this section, we use deep learning model to fuse two cross-domain data. By
discovering common patterns in a large number of data, the use of different subjects can
also show good generalization. We also design the corresponding fine-tune method for

our deep learning model to be better adapted to new subjects.
3.2.1 One Stream LSTM Model

Since we have cross-domain features, it is important to make the most of this features
rather than just using a single domain usually can get better results. There are many ways
to fuse data, the simplest of which is to concatenate all the features before input to the
deep learning model. This approach can often get good results; the neural network can
learn to assign different weights to different domain features. Thus, based on the model
structure used in the [40], we change the input part to the fusion of the arm dynamic data
and the EMG signals. In order to facilitate the comparison of the latter, we name it LSTM
model (one stream LSTM). Compared with the traditional regression model, the deep
learning model can do end-to-end training, which means we can directly get all arm joint
angle in one model, not four models. This approach can reduce both the number of models
and the global optimization since the optimization of each small part of the model does
not guarantee global optimization.

Fig. 3.9 shows the whole model architecture. First, we concatenate the arm dynamics
and EMG frequency domain features, where D; represent arm dynamics which include
human arm joint angles, angular velocities, and acceleration read from IMU sensor at the
current time, E; represent EMG features extract through STFT at the current time.
Second, we input consecutive data to linear LSTM layers (basic LSTM). Thus, the model

not only inputs current data but also inputs previous # time steps data (we set n = 20).
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The dependency on consecutive data is a significant issue. Quite a few models use sliding
context windows to process partial data of interest [41], which precludes the dependent
data outside the context window. LSTM have the ability to selectively contain and pass
information across time steps with hidden states. Third, the LSTM layer’s output will

input to fully connected layer and finally generate future time arm joint angles.

D,
tn Shoulder
Dt a1 Flexion/Extension
Horizontal
Dy Abduction/Adduction
N LSTM LSTM b LSTM
E External/Internal
tn Rotation
Ein+
tatl D @ @ puT IfuflT T t T Elbow
Flexion/Extension
E; Max Convlution2D Fully Connected

Convlution2Dp Pooling

Fig. 3.9 One Stream LSTM model.

3.2.2 Multi-stream LSTM Dueling Model

In general, when initializing a neural network, each weight is with the same random
distribution, which for example, can be a normal distribution with zero mean and standard
deviation equal 0.05. The scope of parameter initialization is critical for the mode update,
and their parameter updates tend to be in different directions and values for cross-domain
features. Obviously, the data that come out of the arm dynamics, keep a strong linear
relationship, whereas the EMG signals hold a non-linear relationship. As a result of these
differences, the use of different architectures to handle data of different characteristics
can be better. The idea of using multiple information sources in neural network language
modeling and video action recognition modeling has been implemented before and it was
shown that the neural network models benefitted from the extra information provided. In
[42], the author proposed two stream LSTM language model which leads to a lower word
error rate (WER). Similarly, Multi-Stream Bi-Directional Recurrent Neural Network was
proposed in [43] to predict an action label. Those model have two common properties: 1)
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multiple input sequences are fed to the network as parallel streams, and inputs from each
stream are propagated to parallel hidden layers; 2) Multiple parallel hidden layers are then
connected to the same output layer. Usually, the two stream outputs are concatenated and
sent to one or two fully-connected layers and are then output as final results.

Fig. 3.10 shows our first design Multi-stream LSTM model. The first stream network
we use FC-LSTM to decode arm dynamics because it is good for solving linear relational
data. The design of architecture in the second stream network is inspired by [40], but we
change FC-LSTM to ConvLSTM [36]. The EMG features will go through two
convolutional layers, pooling layers, and another two convolutional layers and pooling
layer, and then the final pooling layer before they reach ConvLSTM layer. Finally, we
concatenate the outputs of FC-LSTM and ConvLSTM together through three fully-
connected layers to generate our results. For the hyper-parameters of our model here we
set, the first two convolutional layers have 16 filters, each with size 3 X 1, and last two
convolutional layers have 32 filters, each with size 3 X 1, wheres max pooling is used in
our pooling layers, and relu is used as the activation function for convolutional layers.
The FC-LSTM layer, hidden size is 64 and ConvLSTM layer has 64 filters in total, each
with size 3 X 1. The two fully-connected layers have 64 units and the output layer has 4

units. The activation function of fully-connected layers are all linear function.
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Fig. 3.10 Multi-stream LSTM model.

However, simply concatenating multiple streams may not be a good way. Inspired

by Dueling Network [44] which has gained success in deep reinforcement learning, it lets

the final layer separate value and advantage, and then add them elementwise to get final

results. So, we let first stream output as the value and the second stream output as the

stimulation, and add them elementwise in the final output to obtain four arm joint angles.

Fig. 3.11 shows our new designed Multi-stream LSTM Dueling (MS-LSTM Dueling)

model. The model’s hyper-parameters are the same as those of previously designed model,

but the difference is that the value layer has 4 units and the stimulation layer also have 4

units. The total number of parameters is less than that of the previous model but can get

higher accuracy and more robust results.
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Fig. 3.11 Multi-stream LSTM dueling model.

3.3  Fine Tune of the Model

In practice, deep neural networks like CNN or LSTM has a huge number of
parameters, often in the range of millions. Training a deep learning model on a small
dataset greatly affects the neural network’s ability to generalize, often result in overfitting.
As a result, it is more common in practice to fine-tune the existing networks, which are
trained on large datasets, by continuing to train the smaller datasets we own. Assuming
that our dataset is not quite different from the context of the original dataset, the pre-
trained model will have learned the characteristics associated with our own problem. For
instance, the pre-trained network on a large and diverse dataset like the ImageNet captures
universal features like curves and edges in its early layers, that are relevant and useful to
most of the classification problems. However, not all situations can be fine-tuned, but

there are some common rules of thumb own the 4 major scenarios. 1). New dataset is
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large and similar to the original dataset. As we have more data and not significantly
different from the context of dataset which the pre-trained model is trained on, if we try
to fine-tune the entire network, we can be confident that we will not overfit. 2). New
dataset is small and similar to original dataset. Because of the small amount of data, it is
not a good idea to fine-tune the entire neural network due to the overfitting problem. Since
the data is similar to the origin data, we expect that the higher-level features in neural
network are also relevant to this dataset as well. Hence, the best idea might be fixed low-
level layers of the neural network and tune the high-level layers’ parameters. 3). New
dataset is large and very different from the original dataset. Since the dataset is very large,
we may expect that we are able to train the neural network from scratch. However, in
practice, initialization from the weight of the pre-trained model is usually still beneficial.
In this case, we would have enough data and confidence to fine-tune the entire network.
4). New dataset is small but very different from the original dataset. Since dataset is small,
it is likely best to only train a linear classifier or regressor. Furthermore, since the dataset
is very different, it may not be the best to train the classifier or regressor at the top of the
neural network, which might contain more dataset-specific features. Instead, it might
better train a traditional classifier or regressor, like SVM/SVR, to be activated somewhere
in the early part of the network.

Obviously, there must be a difference in the amount of muscle activity in each person,
so the second stream is the most influential in our MS-LSTM Dueling model. If we want
to improve the performance of the model for the new subjects, we need to collect some
data from the subjects before the experiment begins. We will use new collected data to
fine-tune the pre-trained model, which is in line with the second scenario mentioned
above. Fig. 3.12 shows our designed fine-tuning method, where gray dash line represents

the fixed layer, which means we won’t change its weights during fine-tuning stage. This
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is because the first few layers capture common features related to our new problems, such
as curves and edges. We want to keep these weights unchanged. Instead, we let the
network focus on learning the dataset-specific features of subsequent layers. Besides, we
use a smaller learning rate to train the network. Since our pre-trained weights are pretty
good already as compared to the random initialization weights, we don't want to distort
them too quickly and too much. We make the initial learning rate 5 times smaller than the

initial learning rate for initial training.

Convolution2?D Conv & pooling shoulder horizontal ext./int. elbow

-3, Max. _ flex./ext. abd./add. rotation flex./ext.
' Pooling Convolution2D Max.
PRI - Y Pooling

[ :—yli > >

- -y -1

! I ! ! 1

: I : ! |:| 1

' ' : : \ : Conv Conv Comnx

LSTM—>LSTM=—> > LST™, LSTM LSTM LSTM

' : | : | :

-t et e et T T T T
,Conv & ! Conv&! |Conv&, [Convé&,|
' pooling ! :pooling 1 'pooling' !'pooling!
(S T I P -__T_:.

D Dy e T T T
tn t-n+l Dy Ei, Eing E;

Fig. 3.12 Two Stream LSTM model fine-tune architecture.

3.4  Control of Robot System

We test the real-time performance of the proposed mode on the upper limb
rehabilitation exoskeleton robot NTUH-II which we have introduced in Chapter 2.1. The
PID controller we use is EPOS which is built in the motor already. Each joint has a

standard PID controller. The output joint angles of our model will be set as controller’s
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reference trajectory and the velocity is the first order difference of the angle trajectories.
We adjust the parameters of the controller so that it can track the reference trajectory as
quickly as possible. Fig. 3.13 shows our whole control diagram where s, GS,t are
angles and angular velocities calculated by complementary filter regarded in the sensors’

coordinate system, @y, 8y, are angles and angular velocities regarded in human arm’s

joint coordinate system, @H,t,éH,t are angles and angular velocities estimated after

muscle compensation, @H,Hk is the model outputs of human arm joint angles at k time

steps ahead latent treated as reference trajectory to the controller, and 0 Ht+k 1s the first
derivative of @H,Hk represent human arm joint angular velocities. Note that 7y is the

controller’s output torque to control motor motion and @, @5 are robot joint angles and
angular velocities that will be feed back to the controller. The motion prediction

regression model (MPRM) is our best designed MS-LSTM dueling model.
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Fig. 3.13 Control diagram for guide mode and active mode.

3.41 Guide Mode

The guide model can be divided into bilateral mode and lead mode. In lead mode,
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the therapist will wear two Myo armbands on the same side as the patient's impaired arm
and perform standard treatment movement, whereby the robot arm will do the same to
drive the patient's impaired arm to do rehabilitation as shown in Fig. 3.14 (A). This mode
is suitable for the patient whose both limbs are affected and under low-level motor. The
therapist who leads patients to do rehabilitation can let the patient quickly familiarize
himself/herself with the process and strengthen his/her confidence.

Bilateral mode is suitable for patients with semi-paralysis. Two Myo armbands are
worn in the patient's healthy arm which performs the specified rehabilitation movement,
and the impaired arm which sits on the robot arm will be moved through mirroring motion
by the robot arm as shown in Fig. 3.14 (B). With our motion perdition regression model,
the robot arm will move synchronously with the therapist arm or the patient’s healthy arm.
Note that, we have to reverse the direction of horizontal abd./add. and ext./int. rotation

angles in this mode.

Myo armbands Myo armbands

(A)
Fig. 3.14 (A) In lead mode, two Myo armbands are worn on the therapist’s arm with
the same side of patients impaired arm. (B) In bilateral mode, two Myo armbands are
worn on the patient’s healthy arm.
As a comparison, we will remove our designed model, directly using the estimate

human arm’s joint angles from IMU as reference trajectory to the controller. The control

diagram is shown in Fig. 3.15.
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Fig. 3.15 Control diagram without MPRM for guide mode.

3.4.2 Active Mode

The patients after reveiving full rehabilitation about their ROM could then undertake
active mode therapy. In this therapy, two Myo armbands are worn in patients impaired
arm and then the patient actively move their arm as shown in Fig. 3.16. The motion
prediction regression model generates future joint angles and angular velocities to the
controller making the exoskeleton robot follow the human arm’s motion. The control

diagram is shown in Fig. 3.13.

Myo armbands

Fig. 3.16 In active mode, two Myo armbands are worn on the patient’s impaired arm.
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Chapter 4 Experimental and Results

In this chapter, the training detail of motion prediction regression model and the
result of comparison with different models as well as different training data will be shown.
Next, the experiment protocol includes single joint task, multi-joint task, and evaluation
index are introduced. In guide mode, the proposed method is compared with that only
using IMU sensor based control system. In active mode, the proposed method is compared
with EMG based motion intention recognition model [37]. After the experiment setup,

the results are shown and discussed.
4.1 Model Training

We collect 8 health subject’s left and right arm data. To test our designed model’s
ability, we select 5 sessions data out of 3 subjects as training data, the remaining 3 sessions
data out of the 3 subjects and 8 sessions data out of other 5 subjects are all set as testing
data. Note that, we use EMG features in training all deep learning model, but use
processed EMG in traditional machine learning model because high dimensional features
will cause curse of dimensionality [45]. To test the impact of different training data
volume on the model, we train 4 different models, where one with 1 subject as training
data (means his 5 session data for training, remaining as testing), one with 3 subjects as
training data, one with 5 subjects as training data, and one with 7 subjects as training data.
Before training models, we need to test our controller’s ability to obtain the time for the
future prediction of the proposed model. A predefined trajectory is given to the controller
to calculate average delay time and set it as look-ahead time for model prediction. After
test, our controller has 4-time steps delay. The controller sampling rate is 20Hz. All deep
learning models are trained in 200 epochs with Adam [46] optimizer. The learning rates
we set 0.001. Since our model is doing the regression task, we select mean squared error
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as the loss function shown below

14 o
loss ZWZZ(H” = (4.1).

i=1 j=1
where 6 isthe ground truth value, 6; isthe model output value, N is the total number
of samples in one batch, j represents joint numbers.

4.2  Offline Evaluation Indexes and Result

In order to verify the performance and generalization ability of proposed model, we
use mean absolute error (MAE) and standard deviations to evaluate the results. The

equation is shown below:

1 K N J _
MAE =——=> > > [y~ i (42)

k=L 4.3)

where K is the number of subjects, N is the number of sample from the
corresponding subject and J is the number of joints. MAE, represent k-th subject

mean absolute error. In order to demonstrate the ability of our models to be used on new
users, we define validation MAE is MAE calculate from remained 3 sessions’ data of
training subject, test MAE is MAE calculate from test subjects’ all sessions data.

Fig. 4.1 ~ Fig. 4.2 shows the comparison between offline predict trajectory
performed on two different models. Fig. 4.1 shows the predict human joint angle based
on MS-LSTM Dueling model. To contrast the traditional machine learning model with
the deep learning model, the results of SVR model is shown in Fig. 4.2. One subject’s

results are selected in the following figures for both models.
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Fig. 4.1 Predict trajectory of four joint angle based on MS-LSTM Dueling model.
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(A) SVR model (B) MS-LSTM Dueling model
Fig. 4.3 Compare hand position is 3D space reconstruct from arm joint angles of the
different model.

The y-axis of Fig. 4.1 ~ Fig. 4.2 is joint angle (degrees) and the x-axis is time
(second). The green line is the current arm joint angles, the black line is joint angles 4-
time steps ahead which we can see horizontal translation between the green line and black
line. The red dashed line represents joint angles of model output. The closer the red line
to the black line, the higher the accuracy of the model. MS-LSTM Dueling model shows
good performance to predict joint angles, whereas SVR model output has large bias and
variation in each joint. In addition, the most important point is that the SVR model cannot
learn to predict the start point. For instance, SVR model cannot predict when the arm
starts to move in shoulder flex./ext. at 6s but MS-LSTM Dueling model can achieve that.

Fig. 4.3 shows hand position reconstructed from four joint angles for both model
outputs. The green line is current position and blue time is the future position both in
space, and these two lines will overlap together. Due to each joint angle output from SVR
model has a bias, the predicted hand position shows large bias.

The result of different models’ performance is shown in TABLE 4.1 and the MAE
of single-joint for different models are shown in TABLE 4.2. The lower standard
deviation, the smaller difference in the performance of different people, the better

generalization ability of the model. The lower MEA, the more accuracy of the model
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outputs. We can see from the table that the proposed model has the best performance and

the performance improved in testing data after fine-tuning the model.

TABLE 4.1 Performance of different models.

Model type o Total MAE Vall\i/l‘fzgon Test MAE
SVR 0.52° 3.16° 2.69° 3.43°
KNR 0.60° 4.84° 4.18° 5240
LSTM 0.82° 417° 3.48° 4.58°
MS-LSTM 0.30° 1.44° 1.04° 1.55°
MS-LSTM Dueling 0.25° 0.97° 0.74° RIG
MS-LSTM Dueling 0.20° 0.90° / 0.90°

Fine-tune

TABLE 4.2 Total mean absolute error (degrees) of different models in single-joint.

Model type Horizontal Shoulder Ext./.int. Elbow
abd./add. flex./ext. rotation flex./ext.

SVR 3.69° 2.84° 2.35° 3.74°

KNR 5.91° 4.27° 5.01° 4.19°

LST™M 5.24° 3.04° 3.47° 4.95°

MS-LSTM 1.22° 0.86° 2.05° 1.61°

MS-LSTM Dueling 0.80° 0.73° 1.06° 1.33°

MS-LSTM Dueling 0.78° 0.63° 1.04° 1.17°

Fine-tune

The performance of models which is trained on different training data volumes are

shown in TABLE 4.3 and the MAE of single-joint are shown in TABLE 4.4. The results

show that the more training data, the better performance of the model. But except for the

first one, the difference between the other performance is very small.
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TABLE 4.3 Performance of MS-LSTM Dueling model trained on different training data

volumes.

Data volume o Total MAE Vall\i/[dAatéon Test MAE
Itrain-7test 0.77° 2.33° 0.76° 2.55°
3train-Stest 0.25° 0.97° 0.74° 1.11°
Strain-3test 0.21° 0.96° 0.74° 1.10°
Ttrain-1test 0.18° 0.84° 0.73° 0.99°

TABLE 4.4 Total mean absolute error (degrees) in single-joint.

Horizontal Shoulder Ext./int. Elbow
Data volume

abd./add. flex./ext. rotation flex./ext.
1train-7test 1.80° 1.59° 2.16° 3.78°
3train-5Stest 0.80° 0.73° 1.06° 1.33°
Strain-3test 0.79° 0.69° 1.08° 1.27°
Ttrain-1test 0.69° 0.60° 0.95° 1.10°

All subjects’ result distribution of different models and different training data

volumes are shown in Fig. 4.4. From (A) we can see that after fine-tune stage, MS-LSTM

Dueling model can get minimum variance. From (B) it shows that similar distribution if

the model is trained on data from multiple subjects.
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Fig. 4.4 Boxplot of (A) different models and (B) different training data volumes for all
subjects’ result distribution.
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4.3  Real-time Experiment Protocol

In order to evaluate our system, we design two kinds of experiment, which are
single-joint exercises and multi-joint exercises in each of two modes (guide mode and
active mode) to verify the effectiveness of the proposed model. We select the model which
trained with 5 sessions data out of 3 subjects. There are 3 healthy subjects invited for
these real-time experiments. Their ages range from 22 to 25 and the gender of this group
contains two males (one subject’s data used as training data, another is new subject) and
one female (new subject). Additionally, they don’t have any upper limb impairment, to
imitate the patient, the subject’s left arm is set as the impaired arm and right arm is set as
the healthy arm.

The experiments are designed to evaluate the single-joint and multi-joint
performance of the proposed system. We choose horizontal abd./add., shoulder flex./ext.,
ext./int. rotation, elbow flex./ext., exercises for the single-joint evaluation, and select
feeding (two joint) and greeting (four joint) exercise for multi-joint evaluation. The
desired trajectories are shown in Fig. 4.5 and corresponding joint angles detail are listed
in TABLE 4.5. The first four exercises in single-joint are common upper limb
rehabilitation exercises for regaining motor functions in elbow and shoulder joints and
the rest of two task-oriented exercises are used for improving motor control. Moreover,
feeding exercise is composed of elbow flex./ext. and horizontal abd./add. in specific upper
limb configuration, which can be achieved by controlling NTUH-II with the predefined
pose (shoulder flexion at 65 degrees and shoulder external rotation at 20 degrees).
Greeting exercise is composed of four joint with free motion. During the experiments, a
monitor in front of the subject shows the current joint angles as the visual feedback to the

subjects. Each task should be performed for 3 repetitions.
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TABLE 4.5 Experiment protocol of single-joint and multi-joint tasks

Task Protocol

1. Horizontal abd./add. : S: 0" > P: 60" > E: 0
2. Shoulder flex./ext. :S:90"° — P: 150" — E: 90°

Single joint . . ] 2
3. Ext./int. rotation :S:0 »>P: =30 »>P:30 »>E: 0
4. Elbow flex./ext. :S:0° > P:60 ->E: 0
5. Feeding (two joint) :
Horizontal abd./add. : free
o Shoulder flex./ext.  : 65
Multi-joint

Ext./int. rotation - 20°
Elbow flex./ext. : free
6. Greeting (four joint) : all joint free

P | Hold 2s

@ S | Hold 2s E | Hold 2s

Fig. 4.5 Desired trajectory for subjects

The performance of evaluation will be separated into two parts according to
rehabilitation mode. For guide mode, mean absolute error MAE and average delay time
DT are used to evaluate the motion prediction regression model accuracy and
effectiveness. when the MAE and DT time is small, which means the robot can meet the
human arm current motion simultaneous. The MAE of tracking error is shown in (4.2)

and average delay time can be calculated as

Ng
:iz all , When w, #0 (4.4)
N = g

where 6, is human arm joint angle, 6 is robot joint angle and @ is robot angular

velocity. Delay time only be calculated during motion stage since there is no delay when

the robot remains stationary. To evaluate motion smoothness, another index
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“dimensionless-squared-jerk” (DLJ) which evaluates the square jerk magnitude with

normalized unit in each joint is used. The expression is shown below:

3
—n,)-At] 2
DLJ:[(nZ 21) ]i@R(t)z-At (4.5)
wpeak m

where N, and n, are start time and end time, @ is peak value of robot angular

peak
velocity, At is sampling time.

In active mode, there are two indexes to evaluate the performance during static
period and moving period. First, the average interactive force during moving period

avg|F,,| is defined as

ZTmo Fmo |
T

mo

avg (|F,|) = (4.6)

where F is the interactive force on the direction of task recorded by the F/T sensor
placed on the end-point and T, is the time during the moving period. This evaluation
indicator shows whether the model makes robot arm to coordinate with users.

Another index is the standard deviation of joint angle during static period o,
which represents the performance when the subject tries to halt at some place. o, can

be computed as

ST (s ucs)

¢ Tse

o bZTst,c

C

(o}

(4.7)

where T . is the time during C-th static period, b is the number of joint in the task

and 6.

... 18 the mean value of joint angle in the C-th static period.
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4.4  Real-time Experiment Result

441 Performance for Bilateral Mode Exercise

Fig. 4.6-Fig. 4.8 shows the joint angle comparison between experiments performed
by IMU based control in left column and MS-LSTM Dueling model based control in right
column. The y-axis of the figure is joint angle (degrees) and the x-axis is time (second).
Specific in Fig. 4.7(C), the trajectories of feeding (two joint) task are displayed in 2-
dimensional joint space where the x-axis and y-axis are both joint angles (degrees). One
subject’s results are selected in the following figures for every task. TABLE 4.6-TABLE
4.8 shows average evaluation results of all subjects for each task.

In IMU based control, the current human arm angle is used as a reference trajectory,
allowing the robotic arm to track the trajectory. As shown in the figure of left column
where the reference trajectory (red solid lines) overlap the human arm trajectory (green
dashed line). In MS-LSTM Dueling model based control, the predict human arm angle is
used as a reference trajectory. This allows the robot arm to start in advance to achieve a
synchronized movement with the human arm as shown in the figure of right column
where the human arm trajectory (green dashed line) is very close to the robot arm

trajectory (black solid lines).
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Fig. 4.6 Real arm angle (green dashed line), predict joint angle as reference trajectory
(red solid line) joint angle and robot joint angle (black solid line) of IMU control (left
column) and MS-LSTM Dueling model control (right column) for single-joint tasks in
bilateral rehabilitation.

TABLE 4.6 shows average results of all subjects for single-joint tasks in bilateral

mode where Normalized index represent value of Proposed index value divided by IMU

index value. The smaller of normalized value, the better of our proposed method. Both

MAE and DT are very small in our proposed method, reflecting the high synchronism
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between the robot and the human arm. Since the output of the model has a slight
oscillation, the smoothness of the movement of the robot arm is not as good as that of the
IMU based control as shown in DLJ index, but the difference is small. It is difficult to
feel that the smoothness of using MS-LSTM Dueling mode control is worse than using
IMU signal directly control.

TABLE 4.6 Evaluation results of single-joint tasks in bilateral mode.

Single Joint Index IMU Proposed | Normalized(1)
MAE (degrees) 3.15° 0.91° 0.29
Horizontal abd./add DT (sec) 0.44 0.075 0.17
DLJ (107) 5.61 6.98 1.24
MAE (degrees) 2.8° 1.33° 0.48
Shoulder flex./ext. DT (sec) 0.344 0.161 0.47
DLJ (107) 11.57 14.94 1.29
MAE (degrees) 2.63° 1.44° 0.55
Ext./int. rotation DT (sec) 3.182 0.414 0.13
DLJ (107) 27.99 25.50 0.91
MAE (degrees) 3.2° 0.62° 0.19
Elbow flex./ext. DT (sec) 0.325 0.016 0.05
DLJ (107) 3.26 4.16 1.27

Fig. 4.7 (A) and (B) illustrate each joint trajectory in feeding task. (C) shows the
joint trajectories in 2D-space which can better reflect the coordination of the two-axis
movement. We don’t expect horizontal or vertical lines in 2D-space diagram, which
means that the two joints cannot coordinate motion. Compare left column figures with
right column figures, the results are basically the same as the single joint task. It can be

said that the feeding (two joint) experiment is as good as the single joint tasks
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performance. Both methods embody good two-joint coordination performance but IMU

control shows a high delay time which makes the subject feel more difficult to control.

TABLE 4.7 shows average experiment results of all subjects for feeding task in

bilateral mode. The results are as good as the single-joint tasks performance.
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Fig. 4.7 Real arm angle (green dashed line), predict joint angle as reference trajectory
(red solid line) joint angle and robot joint angle (black solid line) of IMU control (left
column) and MS-LSTM Dueling model control (right column) for feeding (two-joint)

task in bilateral mode.
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TABLE 4.7 Evaluation results of feeding task in bilateral mode.

Feeding Index IMU Proposed || Normalized(1)
MAE (degrees) 1.91° 1.28° 0.67
Horizontal abd./add. DT (sec) 0.376 0.033 0.09
DLJ (107) 9.64 11.18 1.16
MAE (degrees) 3.33° 1.35° 0.41
Elbow flex./ext. DT (sec) 0.338 0.049 0.14
DLJ (107) 9.19 11.30 1.23
MAE (degrees) 2.62° 1.32° 0.50
Average DT (sec) 0.357 0.041 0.11
DLJ (107) 9.42 11.24 1.19

Fig. 4.8 (A)-(B) illustrate each joint trajectory in greeting task. Because we allow
the subjects to move completely free, there are some deviations in the trajectory. We can
see that both IMU based control and the proposed method have a slight concussion on the
trajectory because there's a little bit of shake in the arm when subjects are completely free

to move.
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Fig. 4.8 Real arm angle (green dashed line), predict joint angle as reference trajectory
(red solid line) joint angle and robot joint angle (black solid line) of IMU control (left
column) and MS-LSTM Dueling model control (right column) for greeting (four-joint)

task in bilateral mode.

TABLE 4.8 shows the average evaluation results of all subjects for greeting (four-

joint) task. When all the joints are moving together, the model also shows a better output

stability. This is because, in the model training stage, we do the global optimization for

the four outputs at the same time. So in the real-time experiment, four joint movements
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can also have a better performance.

TABLE 4.8 Evaluation results of greeting task in bilateral mode.

Greeting Index IMU Proposed Normalized(1)
MAE (degrees) 3.26° 1.17° 0.36
Horizontal abd./add. DT (sec) 0.473° 0.132° 0.28
DLJ (107) 15.60 2291 1.47
MAE (degrees) 0.8° 0.66° 0.83
Shoulder flex./ext. DT (sec) 0.274 0.041 0.15
DLJ (107) 23.04 26.44 1.15
MAE (degrees) 0.44° 0.42° 0.95
Ext./int. rotation DT (sec) 2.27 0.801 0.35
DLJ (107) 24.40 27.96 1.15
MAE (degrees) 1.54° 0.98° 0.64
Elbow flex./ext. DT (sec) 0.325 0.04 0.12
DLJ (107) 8.06 9.03 1.12
MAE (degrees) L.51° 0.8075° 0.53
Average DT (sec) 0.8355 0.2535 0.30
DLJ (107) 17.69 21.59 1.22

4.4.2 Performance for Lead Mode Exercise
Fig. 4.9-Fig. 4.11 shows the joint angle comparison between experiments performed

by IMU based control and MS-LSTM Dueling model based control in lead mode. The
layout of the figures is the same as the previous bilateral mode. In lead mode, we want to
verify that MS-LSTM Dueling model can also be applied to the same side arm (left arm)
of the therapist, driving the robot arm movement. The movement pattern shown in the

figures are very similar to bilateral mode. The detail of evaluation index values is shown
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in TABLE 4.9-TABLE 4.10. It is clear that the performance in lead mode is almost the
same as in bilateral mode, which proves that the method we propose can be used both on

the patient's contralateral arm and on the same side arm of the therapist.
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Fig. 4.9 Real arm angle (green dashed line), predict joint angle as reference trajectory
(red solid line) joint angle and robot joint angle (black solid line) of IMU control (left
column) and MS-LSTM Dueling model control (right column) for single-joint tasks in
lead mode.

TABLE 4.9 shows the detail of average evaluation results of all subjects for single-

joint tasks. The results are close to bilateral mode.

TABLE 4.9 Evaluation results of single-joint tasks in lead mode.

Single Joint Index MU Proposed | Normalized(1)
MAE (degrees) 2.95 1.13 0.38
Horizontal abd./add. DT (sec) 0.446 0.169 0.38
DLJ (107) 6.04 6.73 1.11
MAE (degrees) 2.45 1.08 0.44
Shoulder flex./ext. DT (sec) 0.351 0.149 0.42
DLJ (107) 19.09 19.81 1.04
MAE (degrees) 2.2 0.83 0.38
Ext./int. rotation DT (sec) 3.355 0.354 0.11
DLJ (107) 22.88 24.13 1.05
MAE (degrees) 3.2 1.09 0.34
Elbow flex./ext. DT (sec) 0.323 0.179 0.55
DLJ (107) 2.84 3.26 1.15
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Fig. 4.10 (A) - (B) illustrate each joint trajectory in feeding task and (C) shows two-

joint trajectory in 2D-space. TABLE 4.10 shows the average evaluation results of all

subjects for feeding task in lead mod.
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task in lead mode.

67

doi:10.6342/NTU201802164



TABLE 4.10 Evaluation results of feeding task in lead mode.

Feeding Index IMU Proposed || Normalized(1)
MAE (degrees) 2.37 1.91 0.81
Horizontal abd./add. DT (sec) 0.416 0.068 0.16
DLJ (107) 14.24 15.86 1.11
MAE (degrees) 3.88 1.74 0.45
Elbow flex./ext. DT (sec) 0.355 0.042 0.12
DLJ (107) 13.44 16.28 1.21
MAE (degrees) 3.12 1.83 0.59
Average DT (sec) 0.385 0.055 0.14
DLJ (107) 13.84 16.07 1.16

Fig. 4.11 shows each joint trajectory in greeting task. By comparing IMU based

control (left column) with MS-LSTM Dueling model based control (right column), we

can see that the output of the proposed model has some turbulence. As in bilateral mode,

the arm itself has a little shock when it's doing completely free motion, and it's also not

easy to stabilize in lead mode with a non-habitual hand. Moreover, the model has a little

turbulence itself, as shown in the offline result.
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Fig. 4.11 Real arm angle (green dashed line), predict joint angle as reference trajectory
(red solid line) joint angle and robot joint angle (black solid line) of IMU control (left
column) and MS-LSTM Dueling model control (right column) for greeting (four-joint)
task in lead mode.
TABLE 4.11 shows detailed result of average evaluation index values for greeting
task. The MAE of the proposed method reduces at least 50% compare with IMU based

control and DT of the proposed model reduces at least 70% compare with IMU based

control. Additionally, the DLJ index of IMU control is only higher 24%, which is hard to
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feel the difference for the subject.

TABLE 4.11 Evaluation results of greeting task in lead mode.

Greeting Index MU Proposed || Normalized(1)
MAE (degrees) 3.31 1.43 0.43
Horizontal abd./add. DT (sec) 0.473 0.161 0.34
DLJ (107) 13.37 15.16 1.13
MAE (degrees) 0.725 0.345 0.48
Shoulder flex./ext. DT (sec) 0.271 0.02 0.07
DLJ (107) 16.68 17.82 1.07
MAE (degrees) 0.74 0.56 0.76
Ext./int. rotation DT (sec) 2.218 0.947 0.43
DLJ (107) 15.11 19.34 1.28
MAE (degrees) 1.48 0.63 0.42
Elbow flex./ext. DT (sec) 0.303 0.009 0.03
DLJ (107) 77.59 100.24 1.29
MAE (degrees) 1.56 0.74 0.47
Average DT (sec) 0.82 0.28 0.35
DLJ (107) 30.68 38.14 1.24

From the bilateral and lead experiment above, we can conclude that using the MS-
LSTM Dueling model to control the robotic arm in guide mode can achieve higher

synchronization with the human arm, and have strong stability.
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4.4.3 Performance for Active Mode Exercise
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The result of single-joint and multi-joint tasks in active mode are shown in Fig. 4.12-
Fig. 4.13. The y-axis is interactive force (Newton) and the x-axis is the time (second). In
the single-joint task, except ext./int. rotation, the other three tasks need to exert a little
force at start to make the model output future position let the robot arm to move. The
force is very small during motion stage. At the end-point, the subject still needs to exert
force to hold arm stop in the air, so in the figures, there is no zero force except for the
greeting task. In the greeting task, the F/T sensor will be perpendicular to the hand at the
end point, and will not receive the force exerted by the hand. It has shown in Fig. 4.13 (B)
at time 10.5s — 12.5s. The force exerted in the multi-joint task is larger than that in the
single-joint task, due to we have to exert force to multi-directions.

The average evaluation results of all subjects in active mode are shown in TABLE
4.12 and TABLE 4.13. The average interactive force during moving period has
signification improvement in both single-joint and multi-joint tasks. Our proposed
method reduces 40% interative force compare with MIRM based control and reduces 60%
interactive force compare with F/T sensor based control. The performance of proposed
active control method outperforms the F/T sensor based active control method in either
moving or static period. The standard deviation of joint angle during static period of the
proposed method is a little higher than that of MIRM control. Because our method
considers IMU singles which is very sensitive to small activities and there's a small
amount of vibration in the arm when human moving their arm. Moreover, MIRM model
only considers EMG signals, it only gives human arm moving directions. Those cause
our method not as good as MIRM but the values are still in the acceptable range.

In the greeting task, the F/T control and MIMR can only control two-joint at the
same time, the subject cannot control each joint independently. Our proposed method can

control four-joint independently which is more fitting human's normal movement and
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experiment results are even better.

TABLE 4.12 Evaluation results of single-joint tasks in active mode.

F/T sensor MIRM Proposed
Single jOint avg (lFmo D Ost avg (IFmo D Ost avg (lFmo D Ost
Horizontal
abd./add. 3.52 1.46 3.83 0.36 1.89 0.31
Shoulder 1275 | 141 6.90 0.23 2.86 0.56
flex./ext.
Ext/int. - - - - 186 | 0.78
rotation
Elbow 12.71 2.82 10.98 0.64 6.79 0.63
flex./ext.
Average 9.66 1.89 7.24 0.41 3.85 0.50
Normalized 0.40 0.26 0.53 1.22 1 1
TABLE 4.13 Evaluation results of multi-joint tasks in active mode.
F/T sensor (two-joint) MIRM (two-joint) Proposed
avg(IFmol) Ost avg(lFmoD Ost avy(IFmol) Ost
Feeding 6.87 2.62 12.03 0.40 7.85 0.50
Normalized 1.14 0.19 0.65 1.25 1 1
Greeting 14.61 1.78 8.89 0.46 5.54 0.65
Normalized 0.38 0.37 0.62 1.41 1 1
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Chapter 5 Conclusion

In this thesis, motion prediction based on Multi-Stream LSTM Dueling model for
control of upper limb exoskeleton robot is proposed. The MS-LSTM Dueling model
predicts the joint angles of the human arm to be moving, and then input the angles to the
controller such that the moving of the robotic arm is synchronized with the arm. To
achieve accurate predictions, our model requires two inputs, human arm dynamics and
EMG features. In particular, we have designed the internal architecture of the model to
deal with the different characteristics of the input signal. In order to get accurate angles
of the current human arm joints, we design a complementary filter and the compensation
for muscle deformation. EMG features are obtained by short-time Fourier transform and
the preprocessed EMG signals are recorded, which can be used for subsequent evaluation
and analysis. We provide active mode and guide mode which include bilateral and lead
mode control on exoskeleton robot.

In the related work, the EMG based control methods have large estimation errors,
long setup time and is only available for single-joint or coupled multi-joint (two joints
moves dependently) movement. Besides, the F/T sensor based control methods have
disadvantages that the user should exert the interactive force on the location of the sensor
and it is difficult to model the mapping from sensor values to human intention. The
proposed model can predict the user’s intended motion position. Because we use
convolutional layer to extract higher EMG patterns, LSTM layer to extract time-sequence
features and do end-to-end global optimization, our model can predict the four joint
angles of the human arm at the same time and can conquer some changes in EMG patterns.
We use a large number of data from different subjects to train the model. So, even when

a new subject came in, they could still directly do the rehabilitation therapy. As a result,
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the setup time before the therapy can be reduced to less than 5 minutes.

The results of offline experiments show that the MS-LSTM Dueling model has the
better accuracy than other deep learning models and traditional regression models. The
more different subjects’ data in training data, the better result we get. But after more than
3 different subjects’ data, the accuracy only improves a little. In the real-time experiment,
the subjects were asked to perform the single- and multi-joint tasks in both guide mode
and active mode. In the guide mode which contains bilateral and lead mode, we compare
IMU control with MS-LSTM Dueling mode control. The results show that the proposed
method reduces 50% of mean average error of joint angle between human arm and robot
arm, and reduces 70% of delay time to allow users to feel better human-robot coordination.
The performance of standard deviation of joint angle during static period has slightly
decreased but still in the acceptable range. In active mode, compared to the MIRM based
control, the proposed method 40% of interactive force is decreased. We improve 60% of
stability during static period compared with F/T sensor based control but slightly
decreased compare with MIRM based control. Nevertheless, it is still in an acceptable
range and subjects rarely to feel the difference.

This work allows patients to take voluntary exercises in either bilateral mode or
active mode rehabilitation therapy. It also allows therapists to assist in training patients in
lead mode. In addition, it is easy to extend to different types of rehabilitation tasks in the
future. The proposed method can be integrated not only in NTUH-II but also in any robot

arm that achieves multi-joint movement independently.
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