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Abstract

Although deep neural network has achieved great success in computer
vision recently, the problem of determining repetitions of arbitrary periodic
human actions is still challenging. The difficulties lay in varying frame length
of repetitions, temporal localization of human beings and different features
corresponding to different motions. Moreover, the demand of human action
repetition counting is rising in medical rehabilitation and sport events, etc.
To address this problem, we construct a human action dataset and propose
a brand new framework, Human Action Repetition Counter (HARC), which
could work on arbitrary human actions with a single architecture. Our HARC
learns to count repetitions of human action in the time-frequency domain de-
termined after few pilot studies. The experiments show that HARC outper-
forms previous counting methods on benchmarks. Additionally, we design
novel learning strategies by generating effective synthetic data to pretrain our
network, which can further boost the performance and reach more accurate
results. We also demonstrate that our HARC is also capable of counting the
periodic object motions. Our dataset, Y7 Human_Segments dataset, will be
publicly available which will benefit future researches.

Keywords: periodic motion, repetition counter
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1.1 Intuition. We stack up a series of frames to observe the trajectory of a
certain joint. The vertical trajectory of the center of a bounced ball through
a period of time is shown in (a). In (b), the horizontal trajectory of the
center of a swinging pendulum is observed from a low angle view. From
(a) and (b), the repetition count can be clearly inferred. More details are
showninSec. 3.1.. . . . . . ... 2

1.2 Feature extraction. (a) When a woman is performing single-leg toe-
touch crunch, she will bring her left leg toward her chest and touch her
big toe with her right hand in the first repetition and then she will alter-
nate sides in the following repetitions. (b) The trajectories of her body
joints in the horizontal direction. According to (b), some body joints are
at wave crests while others are at wave troughs when abrupt changes hap-
pen. (¢) By summing up these trajectories, we can enhance the wave crests
at the moment when abrupt changes happen. More discussions are shown

I Sec. 3.1. . . 3

2.1 The YT Human Segments dataset contains 100 human action video clips
with more than 20 categories. Part of categories are shown as above. More

details are shownin Sec. 2.1. . . . . . . . . . . ... . 7

Vi d0i:10.6342/NTU201803126



3.1

3.2
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4.1

Framework. We define the output of video clip from frame; to frame;
as output,. Due to the limit of our feature extraction method, we start pro-
ducing outputs after 4 frames in the input video clip, which means output;
will be the first output. When the length of input video is 7" frames, the
detector will judge the accurate repetition count from output; and outputs
in the past, e.g. output;_1, output, o, output,_s3, etc. And we denote the
detector’s output at frame; as prediction,. More discussions are shown
inSec. 3.2and Sec. 3.4. . . . ...
Label Rule. Due to the fact that features would look similar when they
are at the very end of rep.n and the very beginning of rep.n + 1, we only
take the features of the first consecutive 10 frames at the beginning of each
repetition as our training data. More details are shown in Sec. 3.1.
L2CNN. Our human repetition counter consists of two parts, one is a core
system, L2CNN, and the other one is a outer system which integrates out-
puts of L2ZCNN in a period of time, predicting an accurate repetition count.
The L2CNN mainly consists of FC layers, some of which are followed by
a batch normalization layer while the others of which are not. Two streams
are used to reduce the dimension of inputs in the beginning, and then the
outputs of these two streams are concatenated, fed into two sub-networks.
After that we will concatenate the outputs of sub-networks and vote for a
final output of the entire L2ZCNN by using a FC layer with one node. More

details are shownin Sec. 3.2. . . . . . . . ... .

Evaluation rule. When it comes to evaluation, we take a look at the NV
frames before the end of rep. n and the N frames after the end of rep.
n, seeing if any prediction of these 2V frames is exactly n. Even if only
one of these 2V predictions is n, we still say that we predict the correct

answer. More details are showninSec. 4.1 . . . ... ... ... ....
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4.2 Robustness of our method. The mean absolute error of Y7Segments
benchmark and our Y7 Human Segments benchmark for our method with
randomly dropping body joints. (a) to (d) are Full YTSegments, Full YT Human Segments,
YTSegments with Rep.# < 12 and YT Human_Segments with Rep.# < 12

recursively. More details are shownin Sec. 4.4. . . . . . ... ... ... 16
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Chapter 1

Introduction

1.1 Motivation

Over the past few years, there have been significant advances in the field of video
understanding. However, there are very few works discussing how the machine learns
to count, especially in human action repetition. Human action repetition counting is cru-
cial for various applications such as physical therapy and workout. For instance, with
human action repetition counting, the therapists and the patients do not have to count the
repetitions by themselves during the rehabilitation. Please see the demo videos in the sup-
plemental. Unlike the depth camera such as Kinect receiving extra depth information, our
goal is to leverage a human action repetition counter which takes a simple RGB video
instead of a depth video as input, so we can easily utilize only a camera beside us to count
without memorizing how many repetitions we have done so far.

Counting the number can be difficult to model with video-related methods, and prior
works in counting still remains few. Recently, [1] tried to solve this problem by using con-
volutional neural network. This work samples 20 frames as the input of the convolutional
neural network and predicts cycle length ranging from 1 to 10. An outer system con-
cept is utilized to integrate the cycle length predicted in every moment and judge the final
repetition count. Although this method has demonstrated significant improvements over
counting problem and has reached the state-of-the-art performance, there are still some
limitation of their strategy. Due to the upper bound of the sampling rate, the maximum

1 d0i:10.6342/NTU201803126



(@) (b)

Figure 1.1: Intuition. We stack up a series of frames to observe the trajectory of a certain
joint. The vertical trajectory of the center of a bounced ball through a period of time is
shown in (a). In (b), the horizontal trajectory of the center of a swinging pendulum is
observed from a low angle view. From (a) and (b), the repetition count can be clearly
inferred. More details are shown in Sec. 3.1.

frame length of repetition is limited by this constraint. Besides, on human action repeti-
tion scenario such as workout, their method did not perform as well as other real-world
tasks, see Table. 4.1. The poor performance is attributed to the complexity and low speed
of the action, because the limitation constrains that one action needs to be done within the
maximum frame length. However, workout movements are often slow and complicated.
Our intuition comes from the regularity of the action. Consider the examples in Fig.
(1.1). Given a video with several action repetitions, we can easily count the number of
repetition by observing both the horizontal trajectory and the vertical trajectory of the
target object. Take Fig. 1.1(a) for example, when a ball is bounced, we can easily get
the repetition count only by observing how many times the ball moves up and down.
More specifically, we judge the repetition number from the vertical trajectory of the ball.
Likewise, in Fig. 1.1(b), we can effortlessly tell how many times a pendulum swings by
analyzing the back and forth frequency of the movement. In other words, we count the
repetitions by observing the horizontal trajectory of the pendulum. Inspired by the two
examples mentioned above, we address the human action repetition counting problem by

observing both the horizontal trajectory and the vertical trajectory of human’s body joints.

1.2 Related Work

Periodic motion detection has been a well-known issue for a long time, and many peo-

ple have achieved great success on it. Previous works mostly address this problem by

2 d0i:10.6342/NTU201803126



N1 0 N Y S

a

“Tracks of body joints in horizontal direction

“Time (frame)

(b) (©)

Figure 1.2: Feature extraction. (a) When a woman is performing single-leg toe-touch
crunch, she will bring her left leg toward her chest and touch her big toe with her right
hand in the first repetition and then she will alternate sides in the following repetitions. (b)
The trajectories of her body joints in the horizontal direction. According to (b), some body
joints are at wave crests while others are at wave troughs when abrupt changes happen. (c)
By summing up these trajectories, we can enhance the wave crests at the moment when
abrupt changes happen. More discussions are shown in Sec. 3.1.

using spatial correlation and applying time-frequency analysis [2—6]. Inspired by them,
we question whether we can further extract repetition counts by employing time-frequency
analysis. Previous works mentioned above assume that there will exactly be a discernible
peak in trajectories when abrupt changes happen, but referring to Fig. 2 in [7], clear peaks
are unnecessarily displayed in spatial correlation features of periodic motions. Time-
frequency feature extracted from these unclear peaks will be more complicated and more
difficult to analyze. Another issue is that traditional frequency analysis needs parameter
tuning such as time scale selection in different scenarios, which is inconvenient for human
action repetition counting since there exists a huge variance in the frame length of each
human periodic motion.

The state-of-the-art work [1] first employs deep learning method to solve this prob-
lem by using convolutional neural network to predict cycle length. This work samples
20 frames as the input of the convolutional neural network and predicts the cycle length
ranging from 1 to 10. A concept of outer system is utilized to integrate the cycle length

predicted in every moment and judge the final repetition count. The network also produces
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entropy of the predictions, which is employed to determine the start time and the end time
of periodic motions. The upper bound of the sampling rate is set to 8, which means only
the repetition whose frame length is within 80 can be detected. This work provides two
datasets, Y7 dataset and Y7Segments dataset, both of which contain 100 videos. Results
are evaluated on these two datasets and other benchmarks by using mean absolute errors
(MAE). Inspired by [1] and the existing approaches [2—6] using time-frequency analysis,
we leverage deep neural networks to accomplish the time-frequency analysis rather than
addressing them manually. Additionally, we utilize a feature extraction method in order

to generate trajectories with more discernible peaks.

1.3 Contribution

Toward this end, we present a brand new framework, Learning to Count Neural Net-
works (L2CNN), which is a single detector for arbitrary actions. By leveraging human
pose detection, our framework learns to count repetitions of human action in the time-
domain frequency. Our work is applicable on various human action repetitions without
being limited by those constraints mentioned above. In addition, we will release a new
challenging dataset called Y7 Human Segments, which consists of 100 videos related to
workout, and we manually label the the number of repetitions frame by frame. To the best
of our knowledge, this is the first work of modeling a single detector network to count the

repetitions, specifically on arbitrary human actions. Our contributions are as follows.

1. We propose a single detector network with deep neural network for counting arbi-

trary action repetitions, which leverages the time-domain information.

2. We will release a brand new dataset called Y7 Human Segments for counting action
repetitions. For the richness of the dataset, we create the synthetic data to enhance

the variations.

3. Our proposed method has greater generalization than other methods, and is beyond

the limitation of the frame length.
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. We evaluate our method on the Y7 Human Segments dataset, and our method achieves

significant improvements over other state-of-the-art methods.

. We demonstrate that our approach can be easily used to count the periodic object

motions, such as ball bouncing, without fine-tuning the network on additional data.
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Chapter 2

Dataset

2.1 YT Human_Segments Dataset

Due to the fact that our repetition counter is not able to detect the start of a motion, we
have to segment the collected YouTube videos to make them display the motion part only.
We collect 100 periodic human motion videos from YouTube with more than 20 categories
to create our own Y7 Human_Segments Dataset (Fig. 2.1). Using our feature extraction
method, features extracted at the end of rep.n might be similar to the features extracted
at the beginning of rep.n + 1. As a result, we only take the consecutive 10 frames at the
beginning at rep.n and label them as n — 1 (Fig. 3.2), e.g. for a push-up video clips which
contains 10 repetitions, we would label the 10 consecutive frames at the beginning of rep.
2 as 1, the 10 consecutive frames at the beginning of rep. 3 as 2, etc. We also use the same

method to label the Y7 Segments dataset which is used to evaluate our results.

2.2 Synthetic Data

Originally, we copy and concatenate an arbitrary number of a video clip which con-
tains only one action repetition because it is hard to collect periodic motion video clips
with various repetitions. Due to the fact that both segmenting video clips and extracting
data from the segmented video clips are time-consuming, we propose novel strategies for

synthesizing the training data. Firstly, we choose different frequencies to produce varied
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Figure 2.1: The YT Human Segments dataset contains 100 human action video clips with
more than 20 categories. Part of categories are shown as above. More details are shown

in Sec. 2.1.

sin signals and apply Hann Window on the produced signals to increase diversity. Then,

we simulate signals of different repetitions by randomly sampling part of the generated

signals and repeating them within a range from 1 to 10 times. To increase more variations

on our synthesizing data, we also add different waveforms with the same repetitions to

make a brand new waveform. To simulate the vertical and the horizontal trajectories, a

single data will contain two different curves with the same repetition count. We generate

180,000 data in total, and we also extend, normalize and obtain DFT features from the x

and y trajectory curve in data respectively by using method mentioned in 3.1.
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Chapter 3

Human Action Repetition Counter

The Human Action Repetition Counter consists of a core system, Learning to Count
Neural Networks (Sec. 3.2), which is based on a feed-forward network that produces a
count number of the target video clip, followed by a outer system (Sec. 3.4) which is used
to decide whether a repetition is finished or not. In the core system, the early network
layers are based on a two-stream architecture used for compressing data, one for data on
x-axis while the other one on y-axis (see Sec. 3.1). The entire core system is pretrained
by using synthetic data and finetuned on our Y7 Human Segments dataset (Sec. 3.3).
We then concatenate the outputs from the mentioned two-stream network and feed those
outputs to some FC layers. In the end, a simple mechanism is implemented in the outer

system to smooth the outputs from each time step into final prediction.

3.1 Feature Extraction

Applying CMU pose estimation detection [8] on the input video shot, we get locations
of 18 body joints of the target human object in each frame. Firstly, we link the X coor-
dinate of the same joints together and the Y coordinate of the same joints together and
then generate 36 curves. In the second step, we extend each curve to a fixed length by
using linear interpolation method and normalize these curves to 0-1 range. Finally, we
obtain the features in time domain after combining these curves by using mean pooling

method. And then we extract Discrete Fourier Transform (DFT) features from the above
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Figure 3.1: Framework. We define the output of video clip from frame; to frame; as
output;. Due to the limit of our feature extraction method, we start producing outputs
after 4 frames in the input video clip, which means outputs; will be the first output. When
the length of input video is 7" frames, the detector will judge the accurate repetition count
from output, and outputs in the past, e.g. output, 1, output, o, output,_s3, etc. And we
denote the detector’s output at frame; as prediction;. More discussions are shown in
Sec. 3.2 and Sec. 3.4.
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Figure 3.2: Label Rule. Due to the fact that features would look similar when they are at
the very end of rep.n and the very beginning of rep.n + 1, we only take the features of the
first consecutive 10 frames at the beginning of each repetition as our training data. More
details are shown in Sec. 3.1.

time domain features. Furthermore, frequency domain features are generated by applying
0-1 normalization on the extracted DFT features. We extend our curves to the same length
and extract DFT features because repetition count would be proportional to the frequency

in this scenario.

DFT Features. Given a 1-D array feature of which the length is 5000, we extract its
amplitude by using Discrete Fourier Transform. Also sample frequencies are generated
with time_step = 1/5000. After sorting the amplitude according to its sample frequen-
cies, we will get a symmetric amplitude. We only take the right part with positive sample

frequencies of which the length is 2499 to be our DFT features.
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3.2 Learning to Count Neural Networks (L2CNN)

We train our L2ZCNN to analyze the input DFT features and get an action count pre-
diction of a video clip. The entire architecture is shown in Fig. 3.3. We get used to
calculating human action repetitions by observing the horizontal trajectory and the verti-
cal trajectory of the target human at the same time, e.g. while a person is doing squat, we
can induce squat count by observing how many times a person moves up and down, which
is denoted as the vertical trajectory; while a person is doing cable chest fly, we can induce
the repetition count by observing how many times a person moves his/her arms back and
forth, which is denoted as the horizontal trajectory. Accordingly, we design our L2ZCNN
by using a two-stream structure in the beginning to reduce dimensions of the input DFT
features. One stream is for DFT from x trajectory while the other one is for DFT from y
trajectory. Each stream consists of three FC layers with 5000, 1200, 400 nodes respec-
tively and the Rectified Linear Unit (ReLU) is applied afterwards. These FC layers are all
followed by batch normalization and dropout. After these two streams, we concatenate
the outputs and get an aggregated feature of which the dimension is 800. Additionally,
we feed this feature into two-subnetworks (SN1 and SN2) with different structures. SN1
consists of six FC layers with 700, 560, 450, 300, 150, 1 nodes, respectively. The top five
FC layers are with relu activation function and are followed by batch normalization and
dropout; SN2 consists of two FC layers with 50 and 1 nodes, respectively. The first layer
is with relu activation function and are followed by batch normalization and dropout. In
the end, we concatenate the outputs of SN1 and SN2 and feed them into the last FC layer

which has one node and output the final prediction.

3.3 Training

Due to the constraint of our label method, only 7736 training data reach our criteria;
however, the amount is too small to train a model. Consequently, we first use the syn-
thesizing data to pretrain our LZCNN and then finetune it on our training data. Since we

define our problem as a regression problem, we use mean-squared-error as our loss func-
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Figure 3.3: L2CNN. Our human repetition counter consists of two parts, one is a core
system, L2ZCNN, and the other one is a outer system which integrates outputs of L2ZCNN
in a period of time, predicting an accurate repetition count. The L2ZCNN mainly consists of
FC layers, some of which are followed by a batch normalization layer while the others of
which are not. Two streams are used to reduce the dimension of inputs in the beginning,
and then the outputs of these two streams are concatenated, fed into two sub-networks.
After that we will concatenate the outputs of sub-networks and vote for a final output of
the entire L2ZCNN by using a FC layer with one node. More details are shown in Sec. 3.2.

tion during model training and pretraining. We set the dropout ratio of all dropout layers to
0.5 during pretraining and finetuning stage. When we pretrain our L2ZCNN with synthetic
data, we employ keras adam optimizer with learning rate = 0.0001, beta; = 0.9, betas =
0.999, epsilon = 10~® and decay = 0.0. After 300 epochs, the error of the pretrained
model has converged to 0.0867. We finetune our L2ZCNN on our Y7 Human Segments
dataset by using the same keras adam optimizer with learning rate = 0.00008, beta; =
0.9, betas = 0.999, epsilon = 1078 and decay = 0.0. After 350 epochs, the model has

reached the convergence and its error is 0.2723.

3.4 Detector: Smoothing Outputs

Since we only use the first 10 frames at the beginning of a repetition to train our model,
our core system would be more sensitive to the start of a repetition. After referring to the
detector design in [1], we also has a counter R which stores the current repetition count
and holds the estimated repetition count from the beginning of the target video clip. A
simple mechanism is employed to integrate the outputs over time. When a number M
consecutively appears for NV times and M is larger than the value of the current repetition

count R, then we update R’s value as M, e.g. the current repetition count stored in R is

11 d0i:10.6342/NTU201803126



5,and N is set to 8. Now a sequence of outputs 3, 4, 1, 2, 6, 6, 6, 6, 6, 6, 6, 6 is generated
by our core system and it is apparently that 6 consecutively appears for 8 times. Thus we

update R’s value to 6.
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Chapter 4

Experiment

4.1 Evaluation Method

We evaluate our human action repetition counter on both Y7Segments dataset [1] and
our YT Human_Segments testing dataset. Due to the limit of human action video, only 61
out of 100 video clips of the YTSegmens dataset are used to evaluate our proposed method.
The frame length of a single action repetition in these 61 video clips is around 80 while
that in our YT _Human_Segments testing dataset is ranging from 90 to 400. Accordingly,
YTSegments dataset can be used to evaluate the performance of our repetition counter on
repetitions with shorter frame length and the other one can be used to evaluate repetitions
with longer frame length, respectively. Each video clip contains n repetitions, and we
evaluate our counter by detecting whether any output of our repetition counter is corre-
sponding to the ground truth within a margin N of the end of a repetition (see Fig. 4.1),
e.g. if repetitiong ends at frameggo, then we will see if any output in predictionygp_ N,
predictionipgo—n+1, predictionigpo—n-re, -..predicitonygos y corresponds to 8. Ifit does,
then we will say the repetition counter hits in repetitiong, and vice versa. Mean abso-

lute error (MAE) is also used for evaluation. Noticeably, [1] define absolute error as

|GT — Prediction|

T while we define absolute error in our paper as |GT — Prediction| because

we think penalty on wrong prediction with smaller ground truth is unfair. Both kinds of
MAE are utilized for evaluation. When we evaluate our model using MAE [1], there is

no extra annotated labels for the YT Segments dataset. Besides, we pick 4 video clips from
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Figure 4.1: Evaluation rule. When it comes to evaluation, we take a look at the NV frames
before the end of rep. n and the N frames after the end of rep. n, seeing if any prediction
of these 2N frames is exactly n. Even if only one of these 2V predictions is n, we still
say that we predict the correct answer. More details are shown in Sec. 4.1

our training dataset with repetition average frame length shorter than 80 but contain much
more complex repetitions such as switch-foot kicks, lunge jumps to test if [1] can handle
them, and the MAE [1] turns out to be 34%. We can infer from the result that [1] can not

deal with complicated periodic motions perfectly.

4.2 Comparison with Benchmarks

We evaluate our HARC on two benchmarks and compare the result with the baseline
method Live Rep. [1] and Segment Rep. [1]. Live Rep. [1] can detect when periodic
motions begin and stop while Segment Rep. [1] can not. The two benchmarks mentioned
above are the Y7TSegments dataset and the Y7 _Human Segments dataset. Since the first
dataset containing repetitions of which the frame length is shorter, we adjust the parameter
N mentioned in Sec. 3.4 to 7. Whereas we adjust the parameter to 20 when we evaluate
performance on the second dataset. Due to the fact that our training data having labels
mostly ranging from 1 to 11, we also evaluation on video clips containing less than 12
repetitions. Significantly, our HARC performs better than the state-of-the-art method.
We not only have smaller mean absolute error but also obtain double hit rate compared to

baseline’s performance on both datasets, see Table. 4.1.
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Table 4.1: Comparison between our method and the baseline method. The hit rate
and mean absolute error (MAE) of YTSegments benchmark and our Y7' Human Segments
benchmark for our method and Live Repetition Count method [1]. More details are shown
in Sec. 4.2.

Full Rep.# < 12
YTSegments | YT Human Segments | YTSegments | YT Human Segments
. Live Rep. [1] 31% 5.3% 29% 5.6%
Hit Rate HARC 68% 65% 7% 70%
MAE Live Rep. [1] 1.74 4.50 1.74 4.49
HARC 1.32 1.30 0.67 1.19
Segment Rep. [1] 6.5 213.8
MAE 1] HARC 294 17.0

Table 4.2: Comparison between the finetuned model and the unfinetuned model.
The hit rate and mean absolute error (MAE) of Y7Segments benchmark and our
YT Human_Segments benchmark for our finetuned model and unfinetuned model. More
discussions are shown in Sec. 4.3 and Sec. 4.1.

Full Rep.# < 12
YTSegments | YT Human Segments | Y7Segments | YT Human Segments
Hit Rate Finetuned 68% 65% 77% 70%
No Finetuned 30% 53% 29% 56%
MAE Finetuned 1.32 1.30 0.67 1.19
No Finetuned 1.85 1.22 1.01 1.09

4.3 Pretrained Model

Since our training dataset is not enough to cover all kinds of curve patterns, syn-
thetic data is employed to pretrain our LZCNN. Fine-tuning on the pretrained model using
our YT Human Segments dataset achieves better performance than simply training our
L2CNN with the YT Human Segments dataset. To better understand the role of fine-
tuning on the pretrained model, we evaluate on two models to compare the difference,
one is with fine-tuning procedure while the other one is not. As shown in Table 4.2, the
removal of fine-tuning procedure produces a large drop in performance. The hit rate of

YTSegments dataset even drop from about 70% to less than 30%.

4.4 Robustness

In order to test the robustness of our HARC, we randomly drop n joints’ locations

of every input frame while testing our model on both the Y7Segments dataset and our
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Figure 4.2: Robustness of our method. The mean absolute error of Y7Segments bench-
mark and our Y7 Human_ Segments benchmark for our method with randomly dropping
body joints. (a) to (d) are Full YTSegments, Full YT Human_Segments, YTSegments with
Rep.# < 12 and YT Human_Segments with Rep.# < 12 recursively. More details are
shown in Sec. 4.4.

YT Human_ Segments testing dataset, e.g. if we set n to 3, we may drop locations of
neck, left eye and right wrist at frame;, and those of left shoulder, nose and right knee at
frame; 1. We address these missing locations issue by using the previous location of that
joint. If the location of a joint is lost at the very beginning of a video clip, then we will set
the location of that joint to (0, 0). In the example we mentioned above, we set the locations
of neck, left eye and right wrist to where they are at frame;_1, and set the locations of left
shoulder, nose and right knee to where they are at frame;. With the increase of dropped
body joint number, the mean absolute error is still robust and lower than which of Live

Repetition Count method (referring to Table. 4.1), see Fig. 4.2.

4.5 Action Repetition Counting on Objects

HARC could also be employed on object action repetition counting as long as we are
able to track the location of the target object in video clips. We use object tracking tools
to draw bounding box on our target object to obtain its locations of every frame in video
clips. We utilize two object action video clips to test our repetition counter. The first video,
Bounced Ball, shows that a ball is bounced for 14 times (repetitions), and the second one,
Swinging Pendulum, shows a pendulum swings back and forth for 10 times (repetitions).
Both of them have repetitions which have a shorter frame length within 10. Therefore, we
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adjust the parameter N mentioned in Sec. 3.4 to 3. We aim at counting how many times
the ball has been bounced and how many times the pendulum has been swung. According
to our experimental result, the mean absolute error of bounced ball repetition counting and
swinging pendulum repetition counting is 0.72 and 0.66, respectively. Therefore we also
achieve great success on object action repetition counting with the same L2CNN, which

means additional training procedure is unnecessary in this scenario.
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Chapter 5

Conclusion

In this paper, we propose a new approach for human action repetition counting. To
deal with time-frequency features extracted from complicate trajectories, we leverage deep
neural network to analyze them. Our main contribution is that, we present a novel frame-
work, HARC, which is the first framework that could use a single detector for arbitrary
actions. In addition to this, we provide a new benchmark covers periodic motions con-
taining repetitions with longer frame length. This dataset, Y7 Human_Segments dataset,
will be publicly available to benefit future researches. Furthermore, we demonstrate that
our HARC could count other repeating actions, rather than human actions, without addi-
tional training procedure and labeled data. As for future work, we would like to enable
our repetition counter to precisely count periodic motions with more than 11 repetitions

as well as to detect the start point and the end point of a repetition.
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