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中文摘要 

對於建立自動音樂情緒辨識系統而言，收集音樂給人的情緒感受標記是必須

的。迄今，大部分的音樂情緒資料集都是以西洋歌曲為主。若音樂情緒辨識系統是

以西洋曲風的資料集建立的，此系統可能沒辦法適用於非西洋曲風的歌曲，因這兩

個曲風受文化背景的影響，在音樂特徵上以及標記者的情緒感受上皆有不同之處。

即使這樣的問題已在跨文化以及跨資料集的研究中被發現，但很少有研究探討如

何將用收集到的曲風資料集訓練的模型重新訓練以適應於我們感興趣的曲風上。

在本篇論文中，我們提出以非監督式對抗式域適應之方法來解決這個問題。此方法

應用了類神經網路之模型使兩曲風學到的表徵無法被區分。又情緒感受本身包含

了許多面向，因此我們考慮了與音色、音高、以及節奏性相關之三種輸入特徵來評

估模型之成效。結果顯示以西洋流行歌曲訓練的模型透過我們提出的方法可大幅

改善用中文歌曲預測情緒正負向的準確率。 

 

關鍵字：跨文化、音樂情緒辨識、音樂資訊檢索、域適應、對抗式判別之域適應 
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ABSTRACT 

Annotation of the perceived emotion of a music piece is needed for an automatic 

music emotion recognition system. To date, the majority of music emotion datasets are 

for Western pop songs. A music emotion recognizer trained on such datasets may not 

work well for non-Western pop songs due to the differences in acoustic characteristics 

and emotion perception that are inherent to cultural background. Although the problem 

was also found in cross-cultural and cross-dataset studies, little has been done to learn 

how to adapt a model pre-trained on a source music genre to a target music genre of 

interest. In this paper, we propose to address the problem by an unsupervised adversarial 

domain adaptation method. It employs neural network models to make the target music 

indistinguishable from the source music in a learned feature representation space. 

Because emotion perception is multifaceted, three types of input features related to timbre, 

pitch, and rhythm are considered for performance evaluation. The results show that the 

proposed method effectively improves the prediction of the valence of Chinese pop songs 

from a model trained for Western pop songs. 

 

Keywords – Cross-cultural, music emotion recognition, music information retrieval, 

domain adaptation, adversarial discriminative domain adaptation. 
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Chapter 1 INTRODUCTION 

With the popularity of on-line music services, a large amount of music pieces created 

from different corners of the world can be accessed by global audiences. Automatic music 

emotion recognition (MER) techniques have been developed [1], [2] to facilitate such 

global music information retrieval [3] by exploiting the appealing feature of music 

listening that music evokes human mood or emotion. 

However, existing MER datasets are mostly created for Western pop songs [3], [4]. 

Using an MER model trained on such songs to predict the emotion of non-Western music 

pieces does not yield the best performance [5], [6] due to the cultural differences in 

acoustic characteristics and emotion perception. Although some efforts have been made 

to enrich non-Western datasets, the size of such datasets is much smaller than that of 

Western datasets [4]. To deal with the deficiency, cross-dataset transferring or 

generalization seems a feasible approach. 

Hu and Yang [7] studied the cross-cultural and cross-dataset generalizability of MER 

models trained on different music features for predicting valence and arousal values, the 

two principal dimensions of emotions [1]. They found that arousal can be better predicted 

across datasets than valence.  
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The issue that a machine learning model pre-trained on a source dataset may not 

perform well for a target dataset is not specific to MER. It is known as a domain shift 

issue resulting from the data distribution biases between the source dataset and the target 

dataset [8], [9]. There are two typical machine learning solutions. The first solution is to 

fine tune the model using the target dataset [10]. However, as the size of the target dataset 

is usually small, the model may easily overfit. The second solution, referred to as domain 

adaptation, is to learn a cross-domain invariant feature representation by minimizing the 

discrepancy between the target data and source data [14]–[18]. It is usually achieved by 

unsupervised learning. Neither solution has been employed in prior work for MER, to our 

best knowledge. 

In this paper, we study whether and how an unsupervised adversarial domain 

adaptation method can improve cross-cultural MER. Moreover, as the perception of 

music emotion is multifaceted, three types of acoustic features related to timbre, pitch, 

and rhythm are considered for the investigation of cross-cultural generalizability. We 

conduct experiments on AMG1608 (a Western pop music dataset) and CH818 (a Chinese 

pop music dataset) used in a similar study [7].  

In what follows, we first discuss related work on MER and domain adaptation. Then, 

we describe the proposed adversarial discriminative domain adaptation method, our 
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network architecture, and experimental settings. Finally, we discuss the experimental 

results and draw some concluding remarks.
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Chapter 2 RELATED WORK 

2.1 Music Emotion Recognition 

Music emotion is often represented using either the categorical model or the 

dimensional model developed in music psychology. The categorical model uses a set of 

discrete mood labels, such as sad and happy, to describe music emotion. Each song is 

assigned at least one label. The dimensional model represents music emotion in a low-

dimensional space, such as valence and arousal [1], by continuous values. The class of 

MER techniques for predicting the emotion categories of music pieces is referred to as 

music emotion classification, and the class of MER techniques for predicting the 

numerical emotion values of music pieces is referred to as music emotion regression. 

Both classes of techniques have been adopted in many studies, using music of the same 

genre or cultural background for training and testing [1]–[3]. 

While previous studies focused on training MER models with Western music datasets, 

some recent work started to investigate whether such models can be directly applied to 

non-Western music [7], [11]–[13]. For example, Hu and Yang [12] explored six music 

related features for music emotion classification of English and Chinese songs and found 

that arousal prediction works generally well across datasets, but valence prediction is 

culture-dependent. Similarly, the study reported by Eerola [13] shows that arousal 
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prediction is generalizable across different musical genres, whereas valence prediction is 

not. 

As acoustic features account for different music characteristics, Hu and Yang [7] 

further investigated the generalizability of different feature sets for music emotion 

regression. They found that features related to loudness and timbre have better 

generalizability for both valence and arousal, but rhythm-related features are only 

effective for valence and pitch-related features are only effective for arousal. However, 

transferring useful information from Western music to non-Western music is not explored 

in these studies. 

2.2 Domain Adaptation 

Recent domain adaptation methods can be categorized into two approaches. The first 

approach aims to reweight a model pre-trained on the source domain to make the learned 

feature representation general enough for the target domain as well. The learning is 

performed by minimizing a domain distance metric, such as maximum mean discrepancy 

[14], [15] or correlation distance [16], [17]. Alternatively, one can also simultaneously 

train a common representation for classification and reconstruction [18].  

Instead of using pre-defined distance metrics, the second approach trains a model to 

measure the discrepancy between source and target domains, in a data-driven way. 

Adversarial adaptation methods belong to this approach and have gained popularity 
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recently, after the success of generative adversarial network (GAN) [19]. The goal of a 

GAN is to estimate a generative model via an adversarial process that simultaneously 

trains two models: a generative model G that tries to generate artificial data with 

distribution similar to the training data, and a discriminative model D that aims to 

distinguish (through binary classification) between the real data and the data created by 

G. The process is adversarial, because the objective of D is to maximize the classification 

accuracy, whereas the objective of G is to minimize the classification accuracy. D and G 

are trained iteratively, in a hope that by the end of the process the output of G looks similar 

to the real data. In the same vein, adversarial domain adaptation aims to train a generative 

model G that transforms data from the target domain in such a way that makes D, which 

is a domain classifier, believe that the output of G are data from the source domain. 

Among various adversarial adaptation methods, we choose the adversarial 

discriminative domain adaptation (ADDA) method [8] in this work, because it has been 

proven successful for various transfer learning tasks. There are several extensions [20]–

[22], but ADDA is one of the earliest methods of its kind and does not require a generative 

model.
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Chapter 3 METHODOLOGY 

In this section, we discuss how to apply ADDA to cross-cultural MER. We assume 

that we are given the source data XS (i.e. input audio features), the source labels YS (i.e. 

emotion labels), and the target data XT, but not the target labels YT. The training process 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.1. System flow, where XS are the source data, YS are the source emotion labels, 

and XT are the target data. (a) The system flow of pre-training an MER model. (b) The 

system flow of adversarial discriminative domain adaptation. (c) The system flow of 

testing a dataset without adaptation. (d) The system flow of testing a dataset with 

adaptation. and the testing system flow of the model without and with adaptation. 
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of the proposed method is illustrated in Figs. 3.1(a) and 3.1(b) and the test process in Fig. 

3.1(d). 

3.1 Pre-training 

As shown in Fig. 3.1(a), the training process starts with a pre-training phase, using 

data from the source domain only. Given source data XS and source labels YS, we train a 

deep neural network for emotion prediction. The task of the first few layers (which can 

be convolutional layers) of the deep neural network is to perform feature extraction. It 

projects the input feature representation XS into a learned feature space. The task of the 

last few layers (which can be fully connected layers) is to predict the emotion values 

based on the learned features. Therefore, we call the first few layers as a source encoder, 

and denote it by 𝑀𝜃𝑆
, and the last few layers as a source regressor and denote it by 𝑅𝜑𝑆

. 

The source encoder and the source regressor are trained jointly by minimizing the mean 

squared error Lr between YS and the predicted emotion values, 

                                  𝐿𝑟 =
1

𝑁
∑ (𝑦𝑆

(𝑛) − 𝑅𝜑𝑆
(𝑀𝜃𝑆

(𝑥𝑆
(𝑛))))

2

,                                          (1)

𝑁

𝑛=1

 

where N denotes the batch size of source data and {𝑥𝑆
(𝑛), 𝑦𝑆

(𝑛)}
𝑛=1

𝑁
 denotes a batch of 

{XS, YS}. A pseudo code of the pre-training MER model is described in Table 3.1. 



doi:10.6342/NTU201802248

 

9 

 

As shown in Fig. 3.1(c), we can feed target data XT as the input to the source encoder 

and the source regressor for emotion prediction. But, due to the domain shift issue, the 

source regressor may not perform well for the target data. 

3.2 Adversarial Discriminative Domain Adaptation 

As shown in Fig. 3.1(d), ADDA attempts to address the domain shift issue by learning 

a target encoder 𝑀𝜃𝑇
 for the target data. It is assumed that the output 𝑀𝜃𝑇

(𝑋𝑇) of the 

target encoder for the target data would have similar distribution as the output 𝑀𝜃𝑆
(𝑋𝑆) 

of the source encoder. If this is achieved, we consider that the domain shift issue is 

mitigated and that we can use the source regressor to predict the emotion for the target 

data without the need of training a target regressor. 

Table 3.1. The pseudo code of the pre-training MER algorithm 

Require：α, the learning rate. N, the batch size. 

Require：𝜃𝑆0
, weights of the initial source encoder. φ𝑆0

, weights of the initial source 

regressor. 

1: while 𝜃𝑆 and φ𝑆 have not converged do 

2:       Sample {𝑥𝑆
(n), 𝑦𝑆

(𝑛)}
𝑛=1

𝑁
 a batch of the {XS, YS}. 

4:       𝑔𝜃𝑆
← 𝛻𝜃𝑆

 [
1

𝑁
∑ (𝑦𝑆

(𝑛) − 𝑅𝜑𝑆
(𝑀𝜃𝑆

(𝑥𝑆
(𝑛))))

2
𝑁
𝑛=1 ] 

5:       𝑔𝜑𝑆
← 𝛻𝜑𝑆

 [
1

𝑁
∑ (𝑦𝑆

(𝑛) − 𝑅𝜑𝑆
(𝑀𝜃𝑆

(𝑥𝑆
(𝑛))))

2
𝑁
𝑛=1 ] 

6:       𝜃𝑆 ←𝜃𝑆 － α･Adam(𝜃𝑆; 𝑔𝜃𝑆
) 

7:       φ𝑆 ←φ𝑆 － α･Adam(φ𝑆; 𝑔φ𝑆
) 

8: end while 

 

 

Table 3.2. The pseudo code of the adversarial discriminative domain adaptation 

algorithmg rate. N, the batch size. 

Require：𝜃𝑆0
, weights of the initial source encoder. φ𝑆0

, weights of the initial source 

regressor. 

1: while 𝜃𝑆 and φ𝑆 have not converged do 

2:       Sample {𝑥𝑆
(n), 𝑦𝑆

(𝑛)}
𝑛=1

𝑁
 a batch of the {XS, YS}. 

4:       𝑔𝜃𝑆
← 𝛻𝜃𝑆

 [
1

𝑁
∑ (𝑦𝑆

(𝑛) − 𝑅𝜑𝑆
(𝑀𝜃𝑆

(𝑥𝑆
(𝑛))))

2
𝑁
𝑛=1 ] 

5:       𝑔𝜑𝑆
← 𝛻𝜑𝑆

 [
1

𝑁
∑ (𝑦𝑆

(𝑛) − 𝑅𝜑𝑆
(𝑀𝜃𝑆

(𝑥𝑆
(𝑛))))

2
𝑁
𝑛=1 ] 

6:       𝜃𝑆 ←𝜃𝑆 － α･Adam(𝜃𝑆; 𝑔𝜃𝑆
) 

7:       φ𝑆 ←φ𝑆 － α･Adam(φ𝑆; 𝑔φ𝑆
) 

8: end while 

 

 

Table 3.1. The pseudo code of the pre-training MER algorithm 

Require：α, the learning rate. N, the batch size. 

Require：𝜃𝑆0
, weights of the initial source encoder. φ𝑆0

, weights of the initial source 

regressor. 

1: while 𝜃𝑆 and φ𝑆 have not converged do 

2:       Sample {𝑥𝑆
(n), 𝑦𝑆

(𝑛)}
𝑛=1

𝑁
 a batch of the {XS, YS}. 

4:       𝑔𝜃𝑆
← 𝛻𝜃𝑆

 [
1

𝑁
∑ (𝑦𝑆

(𝑛) − 𝑅𝜑𝑆
(𝑀𝜃𝑆

(𝑥𝑆
(𝑛))))

2
𝑁
𝑛=1 ] 

5:       𝑔𝜑𝑆
← 𝛻𝜑𝑆

 [
1

𝑁
∑ (𝑦𝑆

(𝑛) − 𝑅𝜑𝑆
(𝑀𝜃𝑆

(𝑥𝑆
(𝑛))))

2
𝑁
𝑛=1 ] 
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The key of ADDA is to learn the target encoder. This is achieved by using a 

discriminator 𝐷𝜔, which takes either the source feature representation 𝑀𝜃𝑆
(𝑋𝑆) or the 

target feature representation 𝑀𝜃𝑇
(𝑋𝑇) as input and decides whether the input is from the 

source domain or the target domain, as shown in Fig. 3.1(b). In other words, 𝐷𝜔 is a 

binary domain classifier. If the accuracy of 𝐷𝜔  is low, we consider 𝑀𝜃𝑆
(𝑋𝑆)  and 

𝑀𝜃𝑇
(𝑋𝑇) indistinguishable.  

The ADDA method alternately trains the target encoder and the discriminator in two 

steps. First, the source feature representations with a source domain label (say, ‒1; note 

that domain labels are not emotion labels) and target feature representations with a target 

domain label (say, +1) are taken as the input to the discriminator, and weights of the 

discriminator are updated to minimize a discriminator loss Ld that aims to promote the 

accuracy of domain classification. In our approach, the Wasserstein metric [23] is chosen 

as the loss function to avoid adversarial training from gradient vanishing. Accordingly, 

the discriminator loss Ld is described by 

                                  𝐿𝑑 =
1

𝑁
∑ 𝐷𝜔 (𝑀𝜃𝑇(𝑥𝑇

(𝑛))) −

𝑁

𝑛=1

𝐷𝜔 (𝑀𝜃𝑆(𝑥𝑆
(𝑛))),                           (2) 

where, as defined in (1), N denotes the batch size of source data and target data, 

{𝑥𝑆
(𝑛)}

𝑛=1

𝑁
 denotes a batch of XS, and, similarly, {𝑥𝑇

(𝑛) }
𝑛=1

𝑁
 denotes a batch of XS. 
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Second, the target feature representations with a flipped domain label (e.g. source 

domain label becomes +1 and target domain label becomes ‒1) are taken as input to the 

discriminator, and weights of the target encoder are updated to maximize the discriminator 

loss. Note that weights of the discriminator are fixed in this step to keep the classification 

ability of the discriminator. In this way, the target encoder can be trained to fool the 

discriminator. As the learning objective of the target encoder is at odds with the learning 

objective of the discriminator, we consider the loss function of the target encoder as 

adversarial loss and denote it by La, 

                                   𝐿𝑎 = −
1

𝑁
∑ 𝐷𝜔 (𝑀𝜃𝑇

(𝑥𝑇
(𝑛))) +

𝑁

𝑛=1

𝐷𝜔 (𝑀𝜃𝑆
(𝑥𝑆

(𝑛))).                      (3) 

Note that the gradient of the second term with respect to θT on the right hand side of (3) 

becomes zero. Therefore, only the target representations in the first term are input to the 

discriminator in this step. 

We repeat the above two steps until the target encoder model is converged. Besides, 

as Wasserstein loss is applied under a K-Lipschitz constraint, weights of the discriminator 

are clipped into a compact space with absolute supremum C (so ω ranges from –C to C) 

[23].  
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A pseudo code of the adversarial discriminative domain adaptation algorithm is 

described in Table 3.2. To take advantage of the pre-trained source encoder, we use the 

source encoder as the initial target encoder. 

Table 3.2. The pseudo code of the adversarial discriminative domain adaptation 

algorithm 

Require：α, the learning rate. C, the clipping parameter. N, the batch size. I, the 

number of iterations of the discriminator per generator iteration. 

Require：ω0, weights of an initial discriminator. 𝜃𝑇0
, weights of an initial target 

encoder. 𝜃𝑆, weights of the source encoder. 

1: while 𝜃𝑇 has not converged do 

2:   for i = 0, …, I do 

3:      Sample {𝑥𝑆
(𝑛)}

𝑛=1

𝑁
 a batch of the XS. 

4:      Sample {𝑥𝑇
(𝑛)}

𝑛=1

𝑁
 a batch of the XT. 

5:       𝑔𝜔  ←  𝛻𝜔 [
1

𝑁
∑ 𝐷𝜔 (𝑀𝜃𝑇(𝑥𝑇

(𝑛))) −𝑁
𝑛=1 𝐷𝜔 (𝑀𝜃𝑆(𝑥𝑆

(𝑛)))] 

6:       ω ← ω － α･RMSProp(ω; 𝑔𝜔) 

7:       ω ← clip(ω, -C, C) 

8:   end for 

9:   Sample {𝑥𝑇
(𝑖)}

𝑖=1

𝑚
 a batch of the XT. 

10:   𝑔𝜃𝑇
 ←  𝛻𝜃𝑇

 [−
1

𝑁
∑ 𝐷𝜔 (𝑀𝜃𝑇(𝑥𝑇

(𝑛))) +𝑁
𝑛=1 𝐷𝜔 (𝑀𝜃𝑆(𝑥𝑆

(𝑛)))] 

11:   𝜃𝑇 ←𝜃𝑇 － α･RMSProp(𝜃𝑇; 𝑔𝜃𝑇
) 

12: end while 

 

 

Table 3.2. The pTable 6.1. Comparison of the regression performance (in R2) for 

valence prediction between our method and Hu and Yang [7] using different 

features.size. I, the number of iterations of the discriminator per generator iteration. 

Require：ω0, weights of an initial discriminator. 𝜃𝑇0
, weights of an initial target 

encoder. 𝜃𝑆, weights of the source encoder. 

1: while 𝜃𝑇 has not converged do 

2:   for i = 0, …, I do 

3:      Sample {𝑥𝑆
(𝑛)}

𝑛=1

𝑁
 a batch of the XS. 

Table 6.2. Comparison of the regression performance (in RMSE) for valence 

prediction between our method without adaptation and our method with 

adaptation using different features𝑆(𝑛)] 

6:       ω ← ω － α･RMSProp(ω; 𝑔𝜔) 

7:       ω ← clip(ω, -C, C) 

8:   end for 

9:   Sample {𝑥𝑇
(𝑖)}

𝑖=1

𝑚
 a batch of the XT. 
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Chapter 4 NETWORK ARCHITECTURE 

The network architecture for pre-training and adaptation is shown in Fig. 4.1. In this 

section, we first describe the details of the source encoder, the source regressor, and the 

discriminator. Then, we describe a simple feature fusion method to improve emotion 

prediction. 

 Each song is clipped into 29 seconds to fit the smallest song size and resampled to 

22,050 Hz. The input data are three types of acoustic features extracted from these song 

clips. We use a different 2D convolutional neural network (2D-ConvNet) to encode each 

type of acoustic feature. The first dimension of the filter in the first convolutional layer is 

 

(a)                                 (b) 

Figure 4.1. Two different network architectures used in our experiments. (a) The 

network architecture of pre-training MER model. (b) The network architecture of 

adversarial discriminative domain adaptation. 

 

 

(a)                                 (b) 

Figure 4.1. Two different network architectures used in our experiments. (a) The 

network architecture of pre-training MER model. (b) The network architecture of 
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equal to the number of frequency bins of the input feature, because different frequency 

bins may carry different information of music emotion. Also, we apply three types of 

pooling (max pooling, average pooling, and standard deviation pooling) to aggregate the 

output feature maps of these 2D-ConvNets. Because 2D-ConvNets for the three feature 

inputs use the same number (128) of filters for each layer, the dimensions (128×3) of the 

concatenated pooling outputs are the same. The concatenation of the pooling outputs is 

the input to the source regressor and the discriminator. 

4.1 Log-mel-spectrogram Encoder 

We compute the log-mel-spectrogram to extract timbre-related features of the songs, 

as is the case in many previous works. The spectrogram is first computed with a Hanning 

window of 1024 samples and a 512-sample stride size and then transformed into a 96-bin 

log-mel-spectrogram. As a result, the dimensions of the log-mel-spectrogram are 

96×1249. 

The 2D-ConvNet of the log-mel-spectrogram encoder consists of five convolutional 

layers. The dimensions of the filters are 96×4, 1×4, 1×3, 1×3, and 1×2, and the filter stride 

sizes are 1×3, 1×2, 1×3, 1×3, and 1×2 for the five layers. Each convolutional layer is 

followed by a batch normalization and an ELU activation function. 
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4.2 Pitch Encoder 

We apply the pre-trained deep convolutional network proposed by Bitter et al. [24] 

to extract the pitch salience representation. The goal is to learn the perceived spectral 

amplitude over time of polyphonic music. Specifically, the harmonic contents are 

emphasized and the un-pitched or noise contents are de-emphasized to generate the pitch 

salience representation. Since harmonic summation is usually used to extract pitch 

content, the network takes harmony-related features extracted by the harmonic constant-

Q transform (HCQT) as input. The HCQT generates a time-frequency feature map for 

each harmonic. The network output has the same size as any harmonic feature map (time-

frequency representation). 

The frequency dimension of HCQT is partitioned into 360 bins (60 bins per octave 

for 6 octaves), and the HCQT is computed for 6 harmonic bins using a 512-sample stride 

size. The resulting 6×360×1249 HCQT feature map is input to the network to generate a 

360×1249 pitch salience representation.  

Because log-mel-spectrogram and pitch salience representation have the same length 

in time, we simply change the first dimension of the first filter from 96 to 360 for the 2D-

ConvNet and use the same setting for the other filters. 
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4.3 Autocorrelation-Based Tempogram Encoder 

We use the autocorrelation-based tempogram through the tempogram toolbox [25] 

to extract rhythm-related features. Inspired by chromagram, the toolbox applies the 

concept of tempogram, which is a time-tempo representation for a given time-dependent 

signal. We adopt an autocorrelation based method with a 0.2-second stride size to extract 

a 571-bin tempogram, and the resulting dimensions are 571×142, where the first 

dimension represents the tempo and the second one represents time. 

Because the resulting tempogram feature is relatively small, the 2D-ConvNet of the 

autocorrelation-based tempogram encoder consists of only three convolutional layers. 

The dimensions of the filters are 571×4, 1×3, and 1×3, and the filter stride sizes are 1×3, 

1×2, and 1×2. 

4.4 Regressor and Discriminator 

As described earlier, the pooling outputs of the source encoder are concatenated into 

a 128×3 source representation so that the subsequent network can assign individual 

weights to the three pooling outputs. The resulting representation is input to a regressor 

consisting of a three-layer 1D convolutional neural network (1D-ConvNet) to recognize 

the emotion values. The 1D ConvNet of the regressor has 64, 128, and 256 filters for the 

three layers, the corresponding dimension of filters are 8, 4, and 2, and the corresponding 
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filter stride sizes are 4, 2, and 1. The 1D ConvNet is activated by an ELU at each layer. 

The output feature maps are flattened to 1D and activated by a tanh neuron to predict 

emotion values ranging from ‒1 to 1. The same 1D-ConvNet is used for the discriminator 

except that the last tanh activation neuron is replaced by a linear activation neuron for 

computing the Wasserstein loss. 

4.5 Fusion 

Because each predicted emotion label is a single value, our fusion method simply 

takes the average of the predicted emotion values for MER models that use different input 

features. 
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Chapter 5 EXPERIMENTS SETTING 

For evaluating the pre-trained MER models, performances were averaged across 10-

fold cross validation. As only one dataset was used for training and testing, we called the 

experiment within-dataset experiment. To test if our adaptation method can reduce the 

domain shift effect, we compared performances between the pre-trained models and the 

adapted models by averaging performances across 10 segmentations of the target dataset. 

As datasets used for training and testing were different, we called the experiment cross-

dataset experiment. 

5.1 Datasets 

We chose AMG1608 as our source English dataset and CH818 as our target Chinese 

dataset. The AMG1608 dataset was created by Chen et al. [26]. It consists of 1,608 

Western song clips of 30 seconds available on 7digital, a popular music stream service. 

The valence and arousal emotion were annotated by Americans using Amazon Mechanic 

Turk (MTurk), which is a crowdsourcing platform, on a two-dimensional space with 

coordinates ranging from ‒1 to 1. To ensure the annotation quality, duplicated clips were 

applied to guarantee the reliability of the annotator. Each clip was annotated by 15‒32 

annotators. 
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The CH818 dataset contains 818 Chinese pop song clips released in Taiwan, Hong 

Kong, and Mainland China. Specifically, each song was clipped into several 30-second 

segments and predicted emotion values through a pre-trained regression model to choose 

the most emotional part as stimuli [12]. Each clip was annotated by three Chinese music 

experts with two independent sliding bars ranging from ‒10 to 10 for valence and arousal. 

An annotation instruction and a training session were given before the subjective test to 

ensure that the annotators fully understand the annotation task. Though the number of 

annotators is smaller than the AMG1608, the annotations are more consistent. We 

normalized the emotion annotations so that they are in [‒1, 1]. 

5.2 Training Parameters 

The regression model was trained by using the Adam optimizer with α = 0.001, β1 = 

0.9, β2 = 0.999. The ADDA was trained by using the RMSProp optimizer with α = 0.001, 

2000 epochs, clipping value 0.01, and five iterations of discriminator. The batch size is 

set to 16 for both trainings. 

5.3 Baseline 

The method proposed by Hu and Yang [7] that explored cross-dataset 

generalizability was adopted as the baseline. Three types of single feature input (including 
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features related to timbre, pitch, and rhythm) and multiple feature inputs were used for 

comparison. For timbre-related feature, our method using log-mel-spectrogram was 

compared with the baseline method using dissonance. For pitch-related feature, our 

method using pitch salience representation feature was compared with the baseline 

method using log-chromagram. For rhythm-related feature, our method using 

autocorrelation-based tempogram was compared with the baseline method using 

autocorrelation-based cyclic tempogram. For multiple-feature inputs, our fusion method 

using combinations of different feature-predictions was compared with the baseline 

method using the combined feature set.
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Chapter 6 RESULTS AND DISCUSSION 

For the within-dataset experiment, the model was trained and tested on AMG1608 

by 10-fold cross validation. Our method without adaptation was compared with the 

baseline method [7] for the within-dataset experiment to evaluate performances of MER 

models using different features. For the cross-dataset experiment, the model was trained 

on AMG1608 and tested on 10 segmented subsets of CH818. Our method with adaptation 

was compared with our method without adaptation and the baseline method for the cross-

dataset experiment to examine if the adaptation phase of our method can reduce the effect 

of domain shift. Also, two metrics were used for the regression performance evaluation. 

The first metric R2, which is the square of correlations between predicted values and 

ground truth values, is a correlation measure. The second metric RMSE, which is the root 

of mean squared error between predicted values and ground truth values, is an absolute-

distance measure. Note that performances measured by RMSE were showed only for our 

method because Hu and Yang [7] did not use the metric for evaluation. 

6.1 Analysis of Training ADDA 

In order to better realize the training process of ADDA, we first showed the 

performance (measured by R2) of our method with adaptation during training. Fig. 6.1 
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shows the comparison of the training regression performance (in R2) for valence 

prediction using different features by our method. The model performances are sampled 

once per 100 epochs for the training curve. For our method with adaptation using different 

features, the log-mel-spectrogram and pitch salience representation performed better than 

the autocorrelation-based tempogram in average. Also, the log-mel-spectrogram 

performed the best in average. Besides, our method with adaptation can perform better 

than our method without adaptation except the case that the input feature is the 

autocorrelation-based tempogram. 

 

Figure 6.1. Comparison of the training regression performance (measured by R2) for 

valence prediction using different features by our method. 
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Fig. 6.2 shows the comparison of the training regression performance (in R2) for 

arousal prediction using different features by our methd. For our method with adaptation 

using different features, results similar to valence prediction were obtained. Our method 

with adaptation performed the best for the log-mel-spactrogram and the worst for the 

autocorrelation-based tempogram. However, we found the arousal prediction did not 

improve by our adaptation method. 

6.2 Within-Dataset Experiment 

a) Valence 

 

Figure 6.2. Comparison of the training regression performance (measured by R2) for 

arousal prediction using different features by our method. 
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Table 6.1 shows the comparison of the within-dataset regression performance 

(measured by R2) for valence prediction using single feature. Our method without 

adaptation performed better than the baseline except the case where the input feature is 

the rhythm-related feature (autocorrelation-based tempogram). Among the three types of 

input features, our method without adaptation performed the best for the timbre-related 

feature (log-mel-spectrogram). The result is reasonable as the log-mel-spectrogram has 

been shown to be an effectiveness-feature in many music related tasks [27]. 

Table 6.2 shows the within-dataset regression performance (measured by R2) for 

valence prediction using multiple features. Our fusion method can perform even better 

than our method using single feature. Among all the combinations for different feature 

predictions, fusing predictions for the log-mel-spectrogram and the pitch salience 

Table 6.1. Comparison of the within-dataset regression performance (measured by 

R2) for valence prediction using single feature. 

Methods 
Features 

Timbre Pitch Rhythm 

Hu and Yang [7] 0.10 0.07 0.07 

Our method without adaptation 0.24 0.22 0.05 

The best performance is expressed in bold. 

Table 6.2. The within-dataset regression performance (measured by R2) for arousal 

prediction using multiple features. 

Method 

Features 

Timbre+ 

pitch 

Timbre+ 

rhythm 

Rhythm+ 

pitch 

Timbre+ 

pitch+rhythm 

Our method without adaptation 0.32 0.22 0.21 0.31 

The best performance is expressed in bold. 
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representation (the two best-performing features) led to the best performance (R2 = 0.32) 

and outperformed the baseline using the combined feature sets (R2 = 0.14) [7], including 

features related to loudness, harmony, and timbre.  

b) Arousal 

Table 6.3 shows the comparison of the within-dataset regression performance 

(measured by R2) for valence prediction using single feature. Similar to valence prediction, 

our method without adaptation performed better than the baseline except the case where 

the input feature is the autocorrelation-based tempogram. Among all the features, the 

autocorrelation-based tempogram performed the worst. Although we know rhythm is 

much related to arousal in music psychology (e.g. faster songs with higher arousal values), 

previous studies also found similar results that using rhythm-related feature as input 

Table 6.3. Comparison of the within-dataset regression performance (measured by 

R2) for arousal prediction using single feature. 

Methods 
Features 

Timbre Pitch Rhythm 

Hu and Yang [4] 0.68 0.57 0.31 

Our method without adaptation 0.82 0.68 0.26 

The best performance is expressed in bold. 

Table 6.4. The within-dataset regression performance (measured by R2) for arousal 

prediction using multiple features. 

Method 

Features 

Timbre+ 

pitch 

Timbre+ 

rhythm 

Rhythm+ 

pitch 

Timbre+ 

pitch+rhythm 

Our method without adaptation 0.82 0.73 0.65 0.79 

The best performance is expressed in bold. 
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feature rarely performed well for arousal prediction [6], [7], [28]. 

Table 6.4 shows the within-dataset regression performance (measured by R2) for 

arousal prediction using multiple features. The combination of the log-mel-spectrogram 

and the pitch salience representation performed the best for our fusion method (R2 = 0.82) 

among all the other combinations, just the same as the performance of our method using 

the log-mel-spectrogram alone, and outperformed the baseline using the combined feature 

sets (R2 = 0.73) [7], including features related to timbre and rhythm. Because using the 

autocorrelation-based tempogram alone did not performed well, any combination with 

the autocorrelation-based tempogram for our fusion method degraded the prediction 

accuracy. 

For the within-dataset experiments, our method without adaptation can achieve 

better performance than the baseline for both valence and arousal prediction. The reason 

may be the convolutional neural networks used for our method have ability to learn the 

appropriate feature representation for MER. 

6.3 Cross-Dataset Experiment 

a) Valence 
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Table 6.5 shows the comparison of the cross-dataset regression performance 

(measured by R2) for valence prediction using single feature. Though our method without 

adaptation performed well for the within-dataset valence prediction, performances 

degraded for cross-dataset valence prediction due to the domain shift effect. Our method 

with adaptation did improve cross-dataset valence prediction for all the features and 

performed better than the baselines for the log-mel-spectrogram (R2 = 0.21) and the pitch 

salience representation (R2 = 0.18). 

Fable 6.6 shows the comparison of the cross-dataset regression performance 

(measured by R2) for valence prediction using multiple features. All the combinations of 

our fusion method with adaptation (R2 >= 0.22) were much better than our method with 

Table 6.5. Comparison of the cross-dataset regression performance (measured by R2) 

for valence prediction using single feature. 

Methods 
Features 

Timbre Pitch Rhythm 

Hu and Yang [4] 0.11 0.07 0.18 

Our method without adaptation 0.03 0.08 0.04 

Our method with adaptation 0.21 0.18 0.06 

The best performance is expressed in bold. 

Table 6.6. Comparison of the cross-dataset regression performance (measured by R2) 

for valence prediction using multiple features by our method. 

Methods 

Features 

Timbre+ 

pitch 

Timbre+ 

rhythm 

Rhythm+ 

pitch 

Timbre+ 

pitch+rhythm 

Without adaptation 0.08 0.05 0.08 0.09 

With adaptation 0.22 0.22 0.17 0.23 

The best performance is expressed in bold. 
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adaptation using the best-performing single feature (R2 = 0.21) and were better than the 

baseline using the combined feature sets (R2 = 0.21) [7] except the combination of pitch 

salience representation and autocorrelation-based tempogram. Among these 

combinations, combined with all the three features (R2 = 0.23) performed the best. Note 

that the autocorrelation-based tempogram was helpful for our fusion method, although 

our method using the feature alone did not perform well. 

Table 6.7 shows the comparison of the regression performances (measured by RMSE) 

for valence prediction using different features. Our method with adpatation performed 

better than our method without adaptation for all the features in general. Among all the 

features used for our method with adaptation, the log-mel-spectrogram led to the best 

performance (RMSE = 0.12). 

For the cross-dataset valence prediction, our method with adaptation performed 

better than our method without adaptation measured by R2 in general. Among all the 

Table 6.7. Comparison of the cross-dataset regression performance (measured by 

RMSE) for valence prediction using different features by our method. 

Methods 

Features 

Timbre Pitch Rhythm 
Timbre+ 

pitch 

Timbre+ 

rhythm 

Rhythm+ 

pitch 

Timbre+ 

pitch+rhythm 

without 

adaptation 
0.39 0.38 0.40 0.38 0.39 0.38 0.38 

with 

adaptation 
0.12 0.38 0.38 0.35 0.35 0.36 0.35 

The best performance is expressed in bold. 
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features used for our method with adaption, fusing predictions for the three features 

performed the best measured by R2 and performed comparable with other combinations 

measured by RMSE. As a result, we chose all the three features as our model input for 

valence prediction. 

b) Arousal 

Table 6.8 shows the comparison of the cross-dataset regression performance 

(measured by R2) for arousal prediction using single feature. Our method with adaptation 

using the log-mel-spectrogram (R2 = 0.73) performed better than our method without 

adaptation using the same feature (R2 = 0.72) and performed better than the baseline using 

the same feature (R2 = 0.66). However, our method with adaptation did not perform better 

Table 6.8. Comparison of the cross-dataset regression performance (measured by R2) 

for arousal prediction using single feature. 

Methods 
Features 

Timbre Pitch Rhythm 

Hu and Yang [4] 0.66 0.71 0.55 

Our method without adaptation 0.72 0.69 0.39 

Our method with adaptation 0.73 0.65 0.28 

The best performance is expressed in bold. 

Table 6.9. Comparison of the cross-dataset regression performance (measured by R2) 

for arousal prediction using multiple features by our method. 

Methods 

Features 

Timbre+ 

pitch 

Timbre+ 

rhythm 

Rhythm+ 

pitch 

Timbre+ 

pitch+rhythm 

without adaptation 0.74 0.68 0.67 0.74 

with adaptation 0.76 0.65 0.49 0.71 

The best performance is expressed in bold. 
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than our method without adaptation for the pitch salience representation and the 

autocorrelation-based tempogram. The reason may be that arousal is relatively more 

generalizable across datasets as previous studies shown [12], [13]. Therefore, 

unsupervised adaptation could not improve the result. 

Table 6.9 shows the comparison of the cross-dataset regression performance 

(measured by R2) for arousal prediction using multiple features. Our fusion method with 

adaptation fusing predictions for the log-mel-spectrogram and the pitch salience 

representation performed the best (R2 = 0.76) and performed better than the baseline using 

the combined feature sets (R2 = 0.68) [7]. 

Table 6.10 shows the comparison of the regression performances (measured by 

RMSE) for arousal prediction using different features. Similar to valence prediction, our 

method with adpatation performed better than our method without adaptation for all the 

features in general. Among all the features used for our method with adaptation, the log-

mel-spectrogram led to the best performance (RMSE = 0.18). 

For the cross-dataset arousal prediction, the combination for the log-mel-

spectrogram and the pitch salience representation performed the best measured by R2 and 

performed the second-best measured by RMSE. As a result, we chose the log-mel-

Table 6.10. Comparison of the cross-dataset regression performance (measured by 

RMSE) for arousal prediction using different features by our method. 

Methods 

Features 

Timbre Pitch Rhythm 
Timbre+ 

pitch 

Timbre+ 

rhythm 

Rhythm+ 

pitch 

Timbre+ 

pitch+rhythm 

without 

adaptation 
0.44 0.43 0.39 0.43 0.39 0.39 0.40 

with 

adaptation 
0.18 0.42 0.36 0.40 0.31 0.34 0.33 

The best performance is expressed in bold. 
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spectrogram and the pitch salience representation as our model input for arousal 

prediction. 
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Chapter 7 CONCLUSION 

This study has explored cross-dataset adaptation of music emotion recognition by 

adversarial discriminative domain adaptation (ADDA). For cross-dataset experiment, the 

results show that our method perform better than Hu and Yang [7] for both valence 

prediction and arousal prediction. Also, our adaptation method do improve our pre-

training method for valence prediction but not for arousal prediction, possibly because 

arousal prediction is more easily generalizable across datasets. For future work, we want 

to experiment on a small number of labeled target data for few-shot learning [29], [30], 

to analyze what are the musical features that are actually adapted by ADDA, and to 

experiment with other domain adaptation methods. Moreover, the present method only 

accounts for the cultural differences in music features, but not for the cultural differences 

in emotion perception. This is a subject of future work as well.
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