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ABSTRACT

Annotation of the perceived emotion of a music piece is needed for an automatic
music emotion recognition system. To date, the majority of music emotion datasets are
for Western pop songs. A music emotion recognizer trained on such datasets may not
work well for non-Western pop songs due to the differences in acoustic characteristics
and emotion perception that are inherent to cultural background. Although the problem
was also found in cross-cultural and cross-dataset studies, little has been done to learn
how to adapt a model pre-trained on a source music genre to a target music genre of
interest. In this paper, we propose to address the problem by an unsupervised adversarial
domain adaptation method. It employs neural network models to make the target music
indistinguishable from the source music in a learned feature representation space.
Because emotion perception is multifaceted, three types of input features related to timbre,
pitch, and rhythm are considered for performance evaluation. The results show that the
proposed method effectively improves the prediction of the valence of Chinese pop songs

from a model trained for Western pop songs.

Keywords — Cross-cultural, music emotion recognition, music information retrieval,

domain adaptation, adversarial discriminative domain adaptation.
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Chapter 1 INTRODUCTION

With the popularity of on-line music services, a large amount of music pieces created
from different corners of the world can be accessed by global audiences. Automatic music
emotion recognition (MER) techniques have been developed [1], [2] to facilitate such
global music information retrieval [3] by exploiting the appealing feature of music
listening that music evokes human mood or emotion.

However, existing MER datasets are mostly created for Western pop songs [3], [4].
Using an MER model trained on such songs to predict the emotion of non-Western music
pieces does not yield the best performance [5], [6] due to the cultural differences in
acoustic characteristics and emotion perception. Although some efforts have been made
to enrich non-Western datasets, the size of such datasets is much smaller than that of
Western datasets [4]. To deal with the deficiency, cross-dataset transferring or
generalization seems a feasible approach.

Hu and Yang [7] studied the cross-cultural and cross-dataset generalizability of MER
models trained on different music features for predicting valence and arousal values, the
two principal dimensions of emotions [1]. They found that arousal can be better predicted

across datasets than valence.
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The issue that a machine learning model pre-trained on a source dataset may not

perform well for a target dataset is not specific to MER. It is known as a domain shift

Issue resulting from the data distribution biases between the source dataset and the target

dataset [8], [9]. There are two typical machine learning solutions. The first solution is to

fine tune the model using the target dataset [10]. However, as the size of the target dataset

is usually small, the model may easily overfit. The second solution, referred to as domain

adaptation, is to learn a cross-domain invariant feature representation by minimizing the

discrepancy between the target data and source data [14]-[18]. It is usually achieved by

unsupervised learning. Neither solution has been employed in prior work for MER, to our

best knowledge.

In this paper, we study whether and how an unsupervised adversarial domain

adaptation method can improve cross-cultural MER. Moreover, as the perception of

music emotion is multifaceted, three types of acoustic features related to timbre, pitch,

and rhythm are considered for the investigation of cross-cultural generalizability. We

conduct experiments on AMG1608 (a Western pop music dataset) and CH818 (a Chinese

pop music dataset) used in a similar study [7].

In what follows, we first discuss related work on MER and domain adaptation. Then,

we describe the proposed adversarial discriminative domain adaptation method, our

doi:10.6342/NTU201802248



network architecture, and experimental settings. Finally, we discuss the experimental

results and draw some concluding remarks.
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Chapter 2 RELATED WORK

2.1 Music Emotion Recognition

Music emotion is often represented using either the categorical model or the
dimensional model developed in music psychology. The categorical model uses a set of
discrete mood labels, such as sad and happy, to describe music emotion. Each song is
assigned at least one label. The dimensional model represents music emotion in a low-
dimensional space, such as valence and arousal [1], by continuous values. The class of
MER techniques for predicting the emotion categories of music pieces is referred to as
music emotion classification, and the class of MER techniques for predicting the
numerical emotion values of music pieces is referred to as music emotion regression.
Both classes of techniques have been adopted in many studies, using music of the same
genre or cultural background for training and testing [1]—[3].

While previous studies focused on training MER models with Western music datasets,
some recent work started to investigate whether such models can be directly applied to
non-Western music [7], [11]-[13]. For example, Hu and Yang [12] explored six music
related features for music emotion classification of English and Chinese songs and found
that arousal prediction works generally well across datasets, but valence prediction is

culture-dependent. Similarly, the study reported by Eerola [13] shows that arousal

doi:10.6342/NTU201802248



prediction is generalizable across different musical genres, whereas valence prediction is
not.

As acoustic features account for different music characteristics, Hu and Yang [7]
further investigated the generalizability of different feature sets for music emotion
regression. They found that features related to loudness and timbre have better
generalizability for both valence and arousal, but rhythm-related features are only
effective for valence and pitch-related features are only effective for arousal. However,
transferring useful information from Western music to non-Western music is not explored
in these studies.

2.2  Domain Adaptation

Recent domain adaptation methods can be categorized into two approaches. The first
approach aims to reweight a model pre-trained on the source domain to make the learned
feature representation general enough for the target domain as well. The learning is
performed by minimizing a domain distance metric, such as maximum mean discrepancy
[14], [15] or correlation distance [16], [17]. Alternatively, one can also simultaneously
train a common representation for classification and reconstruction [18].

Instead of using pre-defined distance metrics, the second approach trains a model to
measure the discrepancy between source and target domains, in a data-driven way.

Adversarial adaptation methods belong to this approach and have gained popularity

5
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recently, after the success of generative adversarial network (GAN) [19]. The goal of a

GAN is to estimate a generative model via an adversarial process that simultaneously

trains two models: a generative model G that tries to generate artificial data with

distribution similar to the training data, and a discriminative model D that aims to

distinguish (through binary classification) between the real data and the data created by

G. The process is adversarial, because the objective of D is to maximize the classification

accuracy, whereas the objective of G is to minimize the classification accuracy. D and G

are trained iteratively, in a hope that by the end of the process the output of G looks similar

to the real data. In the same vein, adversarial domain adaptation aims to train a generative

model G that transforms data from the target domain in such a way that makes D, which

is a domain classifier, believe that the output of G are data from the source domain.

Among various adversarial adaptation methods, we choose the adversarial

discriminative domain adaptation (ADDA) method [8] in this work, because it has been

proven successful for various transfer learning tasks. There are several extensions [20]—

[22], but ADDA is one of the earliest methods of its kind and does not require a generative

model.

doi:10.6342/NTU201802248



Chapter 3 METHODOLOGY

In this section, we discuss how to apply ADDA to cross-cultural MER. We assume

that we are given the source data Xs (i.e. input audio features), the source labels Ys (i.e.

emotion labels), and the target data X, but not the target labels Y1. The training process

Source encoder

X +Y. —
S S (Mﬁs)

Source regressor

(R,,)

—> Emotion label

Source encoder
(M)

(@)

Target encoder
(M)

Discriminator (D)

— Domain label

S

(b)

Source encoder

X.or X, —»
S T (Mﬂs)

Source regressor

(R,,)

— Emotion label

(©)

Target encoder

(M, )

Source regressor

(R,,)

—> Emotion label

(d)

Figure 3.1. System flow, where Xs are the source data, Ys are the source emotion labels,
and Xr are the target data. (a) The system flow of pre-training an MER model. (b) The
system flow of adversarial discriminative domain adaptation. (c) The system flow of
testing a dataset without adaptation. (d) The system flow of testing a dataset with
adaptation. and the testing system flow of the model without and with adaptation.

7
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of the proposed method is illustrated in Figs. 3.1(a) and 3.1(b) and the test process in Fig.
3.1(d).
3.1 Pre-training

As shown in Fig. 3.1(a), the training process starts with a pre-training phase, using
data from the source domain only. Given source data Xs and source labels Ys, we train a
deep neural network for emotion prediction. The task of the first few layers (which can
be convolutional layers) of the deep neural network is to perform feature extraction. It
projects the input feature representation Xs into a learned feature space. The task of the
last few layers (which can be fully connected layers) is to predict the emotion values
based on the learned features. Therefore, we call the first few layers as a source encoder,
and denote ithy My, and the last few layers as a source regressor and denote itby R,,..
The source encoder and the source regressor are trained jointly by minimizing the mean

squared error Lr between Ys and the predicted emotion values,

L, =

i (35 = Ry (M 55))) (1)

n=1

=]~

where N denotes the batch size of source data and {xs™, ys(”)}:= | denotes a batch of

{Xs, Ys}. A pseudo code of the pre-training MER model is described in Table 3.1.

doi:10.6342/NTU201802248



Table 3.1. The pseudo code of the pre-training MER algorithm

Require : «, the learning rate. N, the batch size.
Require : 65, weights of the initial source encoder. g, , weights of the initial source

regressor.

1: while 65 and s have not converged do

2: Sample {xs™, ys(n)}:=1 a batch of the {Xs, Ys}.
1 2

4. Jog < Vg [;271\1’:1 (J’s(") — Ry, (Mes(xs(n)))) ]
1 2

5: g(ps < V(ps [ﬁzg=1 (yS(n) - R(ps (Mgs(xs(")))> ]

6: 95' <_95 - 'Adam(es, ggs)

7 Ps <@s — aAdam(@s; gos)

8: end while

As shown in Fig. 3.1(c), we can feed target data Xt as the input to the source encoder

and the source regressor for emotion prediction. But, due to the domain shift issue, the

source regressor may not perform well for the target data.

3.2

Adversarial Discriminative Domain Adaptation

As shown in Fig. 3.1(d), ADDA attempts to address the domain shift issue by learning

a target encoder M, for the target data. It is assumed that the output M, .(X7) of the

target encoder for the target data would have similar distribution as the output My (Xs)

of the source encoder. If this is achieved, we consider that the domain shift issue is

mitigated and that we can use the source regressor to predict the emotion for the target

data without the need of training a target regressor.

doi:10.6342/NTU201802248



The key of ADDA is to learn the target encoder. This is achieved by using a
discriminator D,,, which takes either the source feature representation Mg (Xs) or the
target feature representation M. .(Xr) as input and decides whether the input is from the
source domain or the target domain, as shown in Fig. 3.1(b). In other words, D, is a
binary domain classifier. If the accuracy of D, is low, we consider My (Xs) and
My..(Xr) indistinguishable.

The ADDA method alternately trains the target encoder and the discriminator in two
steps. First, the source feature representations with a source domain label (say, —1; note
that domain labels are not emotion labels) and target feature representations with a target
domain label (say, +1) are taken as the input to the discriminator, and weights of the
discriminator are updated to minimize a discriminator loss Lq that aims to promote the
accuracy of domain classification. In our approach, the Wasserstein metric [23] is chosen
as the loss function to avoid adversarial training from gradient vanishing. Accordingly,

the discriminator loss Lq is described by

N D, (MHT(xT(n))) - D, (Mes(xs(n))): 2)

h
Q
Il
|
=
||M2
[y

where, as defined in (1), N denotes the batch size of source data and target data,

{xs(")}:=1 denotes a batch of Xs, and, similarly, {x;™ }:zl denotes a batch of Xs.

10
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Second, the target feature representations with a flipped domain label (e.g. source
domain label becomes +1 and target domain label becomes —1) are taken as input to the
discriminator, and weights of the target encoder are updated to maximize the discriminator
loss. Note that weights of the discriminator are fixed in this step to keep the classification
ability of the discriminator. In this way, the target encoder can be trained to fool the
discriminator. As the learning objective of the target encoder is at odds with the learning
objective of the discriminator, we consider the loss function of the target encoder as

adversarial loss and denote it by La,

N

L_1
a2~ N

n=

Dy (Mo, (xr™)) + Dy, (Mo (xs™)). (3)

Note that the gradient of the second term with respect to ¢r on the right hand side of (3)
becomes zero. Therefore, only the target representations in the first term are input to the
discriminator in this step.

We repeat the above two steps until the target encoder model is converged. Besides,
as Wasserstein loss is applied under a K-Lipschitz constraint, weights of the discriminator
are clipped into a compact space with absolute supremum C (so w ranges from —C to C)

[23].

11

doi:10.6342/NTU201802248



Table 3.2. The pseudo code of the adversarial discriminative domain adaptation
algorithm

Require : a, the learning rate. C, the clipping parameter. N, the batch size. I, the
number of iterations of the discriminator per generator iteration.

Require : w,, weights of an initial discriminator. 67, weights of an initial target

encoder. 6, weights of the source encoder.
1: while 64 has not converged do
2. fori=0,...,1do

3: Sample {xs(”)}::1 a batch of the Xs.
4: Sample {xT(")}:=1 a batch of the Xr.
S: Jo < Vw [% 11)[=1Da) (MHT(xT(n))) _Da) (MOS(xS(n)))]

®w<—w» — a*RMSProp(®; g,)
o «— clip(w, -C, C)
end for

9:  Sample {xT(i)}:il a batch of the Xr.

10:  go, < Vo [—7ZN=1 Do (Mer(xr(”))) +D,, (Mgs(xs(m))]

11: 6y «6r — a-RMSProp(6r; ge,)
12: end while

A pseudo code of the adversarial discriminative domain adaptation algorithm is
described in Table 3.2. To take advantage of the pre-trained source encoder, we use the

source encoder as the initial target encoder.

12
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Chapter 4 NETWORK ARCHITECTURE

The network architecture for pre-training and adaptation is shown in Fig. 4.1. In this
section, we first describe the details of the source encoder, the source regressor, and the
discriminator. Then, we describe a simple feature fusion method to improve emotion
prediction.

Each song is clipped into 29 seconds to fit the smallest song size and resampled to
22,050 Hz. The input data are three types of acoustic features extracted from these song
clips. We use a different 2D convolutional neural network (2D-ConvNet) to encode each

type of acoustic feature. The first dimension of the filter in the first convolutional layer is

Emotion label Domain label
1D - ConvNet 1D - ConvNet
Regressor /N, Discriminator
| concar |
MAX AVG STD
Pooling Pooling Pooling Source Encoder Target Encoder
2D - ConvNet
T Encoder
| Source Target
Input feature input feature input feature
(@) (b)

Figure 4.1. Two different network architectures used in our experiments. (a) The
network architecture of pre-training MER model. (b) The network architecture of

adversarial discriminative domain adaptation.
13
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equal to the number of frequency bins of the input feature, because different frequency
bins may carry different information of music emotion. Also, we apply three types of
pooling (max pooling, average pooling, and standard deviation pooling) to aggregate the
output feature maps of these 2D-ConvNets. Because 2D-ConvNets for the three feature
inputs use the same number (128) of filters for each layer, the dimensions (128x3) of the
concatenated pooling outputs are the same. The concatenation of the pooling outputs is

the input to the source regressor and the discriminator.

4.1 Log-mel-spectrogram Encoder

We compute the log-mel-spectrogram to extract timbre-related features of the songs,
as is the case in many previous works. The spectrogram is first computed with a Hanning
window of 1024 samples and a 512-sample stride size and then transformed into a 96-bin
log-mel-spectrogram. As a result, the dimensions of the log-mel-spectrogram are
96x1249.

The 2D-ConvNet of the log-mel-spectrogram encoder consists of five convolutional
layers. The dimensions of the filters are 96x4, 1x4, 1x3, 1x3, and 1x2, and the filter stride
sizes are 1x3, 1x2, 1x3, 1x3, and 1x2 for the five layers. Each convolutional layer is

followed by a batch normalization and an ELU activation function.

14
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4.2 Pitch Encoder

We apply the pre-trained deep convolutional network proposed by Bitter et al. [24]

to extract the pitch salience representation. The goal is to learn the perceived spectral

amplitude over time of polyphonic music. Specifically, the harmonic contents are

emphasized and the un-pitched or noise contents are de-emphasized to generate the pitch

salience representation. Since harmonic summation is usually used to extract pitch

content, the network takes harmony-related features extracted by the harmonic constant-

Q transform (HCQT) as input. The HCQT generates a time-frequency feature map for

each harmonic. The network output has the same size as any harmonic feature map (time-

frequency representation).

The frequency dimension of HCQT is partitioned into 360 bins (60 bins per octave

for 6 octaves), and the HCQT is computed for 6 harmonic bins using a 512-sample stride

size. The resulting 6x360x1249 HCQT feature map is input to the network to generate a

360x1249 pitch salience representation.

Because log-mel-spectrogram and pitch salience representation have the same length

in time, we simply change the first dimension of the first filter from 96 to 360 for the 2D-

ConvNet and use the same setting for the other filters.

15
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4.3  Autocorrelation-Based Tempogram Encoder

We use the autocorrelation-based tempogram through the tempogram toolbox [25]
to extract rhythm-related features. Inspired by chromagram, the toolbox applies the
concept of tempogram, which is a time-tempo representation for a given time-dependent
signal. We adopt an autocorrelation based method with a 0.2-second stride size to extract
a 571-bin tempogram, and the resulting dimensions are 571x142, where the first
dimension represents the tempo and the second one represents time.

Because the resulting tempogram feature is relatively small, the 2D-ConvNet of the
autocorrelation-based tempogram encoder consists of only three convolutional layers.
The dimensions of the filters are 571x4, 1x3, and 1x3, and the filter stride sizes are 1x3,

1x2, and 1x2.

4.4 Regressor and Discriminator

As described earlier, the pooling outputs of the source encoder are concatenated into
a 128x3 source representation so that the subsequent network can assign individual
weights to the three pooling outputs. The resulting representation is input to a regressor
consisting of a three-layer 1D convolutional neural network (1D-ConvNet) to recognize
the emotion values. The 1D ConvNet of the regressor has 64, 128, and 256 filters for the

three layers, the corresponding dimension of filters are 8, 4, and 2, and the corresponding
16
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filter stride sizes are 4, 2, and 1. The 1D ConvNet is activated by an ELU at each layer.

The output feature maps are flattened to 1D and activated by a tanh neuron to predict

emotion values ranging from —1 to 1. The same 1D-ConvNet is used for the discriminator

except that the last tanh activation neuron is replaced by a linear activation neuron for

computing the Wasserstein loss.

4.5 Fusion

Because each predicted emotion label is a single value, our fusion method simply

takes the average of the predicted emotion values for MER models that use different input

features.

17
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Chapter 5 EXPERIMENTS SETTING

For evaluating the pre-trained MER models, performances were averaged across 10-
fold cross validation. As only one dataset was used for training and testing, we called the
experiment within-dataset experiment. To test if our adaptation method can reduce the
domain shift effect, we compared performances between the pre-trained models and the
adapted models by averaging performances across 10 segmentations of the target dataset.
As datasets used for training and testing were different, we called the experiment cross-

dataset experiment.

5.1 Datasets

We chose AMG1608 as our source English dataset and CH818 as our target Chinese
dataset. The AMG1608 dataset was created by Chen et al. [26]. It consists of 1,608
Western song clips of 30 seconds available on 7digital, a popular music stream service.
The valence and arousal emotion were annotated by Americans using Amazon Mechanic
Turk (MTurk), which is a crowdsourcing platform, on a two-dimensional space with
coordinates ranging from —1 to 1. To ensure the annotation quality, duplicated clips were
applied to guarantee the reliability of the annotator. Each clip was annotated by 15-32

annotators.
18
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The CHB818 dataset contains 818 Chinese pop song clips released in Taiwan, Hong
Kong, and Mainland China. Specifically, each song was clipped into several 30-second
segments and predicted emotion values through a pre-trained regression model to choose
the most emotional part as stimuli [12]. Each clip was annotated by three Chinese music
experts with two independent sliding bars ranging from —10 to 10 for valence and arousal.
An annotation instruction and a training session were given before the subjective test to
ensure that the annotators fully understand the annotation task. Though the number of
annotators is smaller than the AMG1608, the annotations are more consistent. We

normalized the emotion annotations so that they are in [-1, 1].

5.2  Training Parameters

The regression model was trained by using the Adam optimizer with « = 0.001, g1 =
0.9, 2 =0.999. The ADDA was trained by using the RMSProp optimizer with o= 0.001,
2000 epochs, clipping value 0.01, and five iterations of discriminator. The batch size is

set to 16 for both trainings.

53 Baseline

The method proposed by Hu and Yang [7] that explored cross-dataset

generalizability was adopted as the baseline. Three types of single feature input (including
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features related to timbre, pitch, and rhythm) and multiple feature inputs were used for

comparison. For timbre-related feature, our method using log-mel-spectrogram was

compared with the baseline method using dissonance. For pitch-related feature, our

method using pitch salience representation feature was compared with the baseline

method using log-chromagram. For rhythm-related feature, our method using

autocorrelation-based tempogram was compared with the baseline method using

autocorrelation-based cyclic tempogram. For multiple-feature inputs, our fusion method

using combinations of different feature-predictions was compared with the baseline

method using the combined feature set.
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Chapter 6 RESULTS AND DISCUSSION

For the within-dataset experiment, the model was trained and tested on AMG1608
by 10-fold cross validation. Our method without adaptation was compared with the
baseline method [7] for the within-dataset experiment to evaluate performances of MER
models using different features. For the cross-dataset experiment, the model was trained
on AMG1608 and tested on 10 segmented subsets of CH818. Our method with adaptation
was compared with our method without adaptation and the baseline method for the cross-
dataset experiment to examine if the adaptation phase of our method can reduce the effect
of domain shift. Also, two metrics were used for the regression performance evaluation.
The first metric R?, which is the square of correlations between predicted values and
ground truth values, is a correlation measure. The second metric RMSE, which is the root
of mean squared error between predicted values and ground truth values, is an absolute-
distance measure. Note that performances measured by RMSE were showed only for our

method because Hu and Yang [7] did not use the metric for evaluation.

6.1  Analysis of Training ADDA

In order to better realize the training process of ADDA, we first showed the

performance (measured by R?) of our method with adaptation during training. Fig. 6.1
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shows the comparison of the training regression performance (in R?) for valence

prediction using different features by our method. The model performances are sampled

once per 100 epochs for the training curve. For our method with adaptation using different

features, the log-mel-spectrogram and pitch salience representation performed better than

the autocorrelation-based tempogram in average. Also, the log-mel-spectrogram

performed the best in average. Besides, our method with adaptation can perform better

than our method without adaptation except the case that the input feature is the

autocorrelation-based tempogram.

R square

0.175 4

0.150 ~

0.125 ~

0.100 ~

0.075 ~

0.050 ~

0.025 4

0.000 +

timbre_without adaptation
timbre_with adaptation
pitch_without adaptation
pitch_with adaptation
rhythm_without adaptation
rhythm_with adaptation

T T T T T
250 500 750 1000 1250
epoch

Figure 6.1. Comparison of the training regression performance (measured by R?) for

valence prediction using different features by our method.
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Fig. 6.2 shows the comparison of the training regression performance (in R?) for

arousal prediction using different features by our methd. For our method with adaptation

using different features, results similar to valence prediction were obtained. Our method

with adaptation performed the best for the log-mel-spactrogram and the worst for the

autocorrelation-based tempogram. However, we found the arousal prediction did not

improve by our adaptation method.

T
1750

T
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074 "7 timbre_without adaptation -—————=—==============
" | — timbre_with adaptation
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i
= 0.4 1 -
=
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uw
o= 0.3 A
0.2 1
0.1 1 ‘
0.0 +
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Figure 6.2. Comparison of the training regression performance (measured by R?) for

arousal prediction using different features by our method.
6.2  Within-Dataset Experiment

a) Valence
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Table 6.1. Comparison of the within-dataset regression performance (measured by
R?) for valence prediction using single feature.

Features
Methods - :
Timbre Pitch Rhythm
Hu and Yang [7] 0.10 0.07 0.07
Our method without adaptation 0.24 0.22 0.05

The best performance is expressed in bold.

Table 6.2. The within-dataset regression performance (measured by R?) for arousal
prediction using multiple features.

Features
Method Timbre+ | Timbre+ | Rhythm+ | Timbre+
pitch rhythm pitch  |pitch+rhythm
Our method without adaptation 0.32 0.22 0.21 0.31

The best performance is expressed in bold.

Table 6.1 shows the comparison of the within-dataset regression performance
(measured by R?) for valence prediction using single feature. Our method without
adaptation performed better than the baseline except the case where the input feature is
the rhythm-related feature (autocorrelation-based tempogram). Among the three types of
input features, our method without adaptation performed the best for the timbre-related
feature (log-mel-spectrogram). The result is reasonable as the log-mel-spectrogram has
been shown to be an effectiveness-feature in many music related tasks [27].

Table 6.2 shows the within-dataset regression performance (measured by R?) for
valence prediction using multiple features. Our fusion method can perform even better
than our method using single feature. Among all the combinations for different feature

predictions, fusing predictions for the log-mel-spectrogram and the pitch salience
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Table 6.3. Comparison of the within-dataset regression performance (measured by
R?) for arousal prediction using single feature.

Features
Methods - :
Timbre Pitch Rhythm
Hu and Yang [4] 0.68 0.57 0.31
Our method without adaptation 0.82 0.68 0.26

The best performance is expressed in bold.

Table 6.4. The within-dataset regression performance (measured by R?) for arousal
prediction using multiple features.

Features
Method Timbre+ | Timbre+ | Rhythm+ Timbre+
pitch rhythm pitch pitch+rhythm
Our method without adaptation 0.82 0.73 0.65 0.79

The best performance is expressed in bold.

representation (the two best-performing features) led to the best performance (R? = 0.32)

and outperformed the baseline using the combined feature sets (R? = 0.14) [7], including

features related to loudness, harmony, and timbre.

b) Arousal

Table 6.3 shows the comparison of the within-dataset regression performance

(measured by R?) for valence prediction using single feature. Similar to valence prediction,

our method without adaptation performed better than the baseline except the case where

the input feature is the autocorrelation-based tempogram. Among all the features, the

autocorrelation-based tempogram performed the worst. Although we know rhythm is

much related to arousal in music psychology (e.g. faster songs with higher arousal values),

previous studies also found similar results that using rhythm-related feature as input
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feature rarely performed well for arousal prediction [6], [7], [28].

Table 6.4 shows the within-dataset regression performance (measured by R?) for
arousal prediction using multiple features. The combination of the log-mel-spectrogram
and the pitch salience representation performed the best for our fusion method (R? = 0.82)
among all the other combinations, just the same as the performance of our method using
the log-mel-spectrogram alone, and outperformed the baseline using the combined feature
sets (R? = 0.73) [7], including features related to timbre and rhythm. Because using the
autocorrelation-based tempogram alone did not performed well, any combination with
the autocorrelation-based tempogram for our fusion method degraded the prediction
accuracy.

For the within-dataset experiments, our method without adaptation can achieve
better performance than the baseline for both valence and arousal prediction. The reason
may be the convolutional neural networks used for our method have ability to learn the

appropriate feature representation for MER.

6.3  Cross-Dataset Experiment

a) Valence
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Table 6.5. Comparison of the cross-dataset regression performance (measured by R?)
for valence prediction using single feature.

Features
Methods - :
Timbre Pitch Rhythm
Hu and Yang [4] 0.11 0.07 0.18
Our method without adaptation 0.03 0.08 0.04
Our method with adaptation 0.21 0.18 0.06

The best performance is expressed in bold.

Table 6.6. Comparison of the cross-dataset regression performance (measured by R?)
for valence prediction using multiple features by our method.

Features
Methods Timbre+ | Timbre+ | Rhythm+ Timbre+
pitch rhythm pitch pitch+rhythm
Without adaptation 0.08 0.05 0.08 0.09
With adaptation 0.22 0.22 0.17 0.23

The best performance is expressed in bold.

Table 6.5 shows the comparison of the cross-dataset regression performance

(measured by R?) for valence prediction using single feature. Though our method without

adaptation performed well for the within-dataset valence prediction, performances

degraded for cross-dataset valence prediction due to the domain shift effect. Our method

with adaptation did improve cross-dataset valence prediction for all the features and

performed better than the baselines for the log-mel-spectrogram (R? = 0.21) and the pitch

salience representation (R? = 0.18).

Fable 6.6 shows the comparison of the cross-dataset regression performance

(measured by R?) for valence prediction using multiple features. All the combinations of

our fusion method with adaptation (R? >= 0.22) were much better than our method with
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Table 6.7. Comparison of the cross-dataset regression performance (measured by
RMSE) for valence prediction using different features by our method.
Features
Methods |_. . Timbre+|Timbre+|Rhythm+| Timbre+
Timbre|Pitch[Rhythm| i i
pitch | rhythm | pitch |pitch+rhythm

without

: 0.39 |0.38| 0.40 | 0.38 0.39 0.38 0.38
adaptation
with

: 0.12 |0.38| 0.38 | 0.35 0.35 0.36 0.35
adaptation

The best performance is expressed in bold.

adaptation using the best-performing single feature (R?> = 0.21) and were better than the
baseline using the combined feature sets (R? = 0.21) [7] except the combination of pitch
salience representation and autocorrelation-based tempogram. Among these
combinations, combined with all the three features (R? = 0.23) performed the best. Note
that the autocorrelation-based tempogram was helpful for our fusion method, although
our method using the feature alone did not perform well.

Table 6.7 shows the comparison of the regression performances (measured by RMSE)
for valence prediction using different features. Our method with adpatation performed
better than our method without adaptation for all the features in general. Among all the
features used for our method with adaptation, the log-mel-spectrogram led to the best
performance (RMSE = 0.12).

For the cross-dataset valence prediction, our method with adaptation performed

better than our method without adaptation measured by R? in general. Among all the
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Table 6.8. Comparison of the cross-dataset regression performance (measured by R?)
for arousal prediction using single feature.

Features
Methods - -
Timbre Pitch Rhythm
Hu and Yang [4] 0.66 0.71 0.55
Our method without adaptation 0.72 0.69 0.39
Our method with adaptation 0.73 0.65 0.28

The best performance is expressed in bold.

Table 6.9. Comparison of the cross-dataset regression performance (measured by R?)
for arousal prediction using multiple features by our method.

Features
Methods Timbre+ Timbre+ Rhythm+ Timbre+
pitch rhythm pitch pitch+rhythm
without adaptation 0.74 0.68 0.67 0.74
with adaptation 0.76 0.65 0.49 0.71

The best performance is expressed in bold.

features used for our method with adaption, fusing predictions for the three features
performed the best measured by R? and performed comparable with other combinations
measured by RMSE. As a result, we chose all the three features as our model input for
valence prediction.
b) Arousal

Table 6.8 shows the comparison of the cross-dataset regression performance
(measured by R?) for arousal prediction using single feature. Our method with adaptation
using the log-mel-spectrogram (R? = 0.73) performed better than our method without
adaptation using the same feature (R? = 0.72) and performed better than the baseline using
the same feature (R = 0.66). However, our method with adaptation did not perform better

29

doi:10.6342/NTU201802248



Table 6.10. Comparison of the cross-dataset regression performance (measured by
RMSE) for arousal prediction using different features by our method.
Features
Methods | _ . Timbre+|Timbre+|Rhythm+| Timbre+
Timbre | Pitch | Rhythm i i )
pitch | rhythm | pitch |pitch+rhythm

without
. 0.44 0.43 0.39 0.43 0.39 0.39 0.40
adaptation
with
. 0.18 0.42 0.36 0.40 0.31 0.34 0.33
adaptation

The best performance is expressed in bold.

than our method without adaptation for the pitch salience representation and the
autocorrelation-based tempogram. The reason may be that arousal is relatively more
generalizable across datasets as previous studies shown [12], [13]. Therefore,

unsupervised adaptation could not improve the result.

Table 6.9 shows the comparison of the cross-dataset regression performance
(measured by R?) for arousal prediction using multiple features. Our fusion method with
adaptation fusing predictions for the log-mel-spectrogram and the pitch salience
representation performed the best (R? = 0.76) and performed better than the baseline using
the combined feature sets (R? = 0.68) [7].

Table 6.10 shows the comparison of the regression performances (measured by
RMSE) for arousal prediction using different features. Similar to valence prediction, our
method with adpatation performed better than our method without adaptation for all the
features in general. Among all the features used for our method with adaptation, the log-
mel-spectrogram led to the best performance (RMSE = 0.18).

For the cross-dataset arousal prediction, the combination for the log-mel-
spectrogram and the pitch salience representation performed the best measured by R? and

performed the second-best measured by RMSE. As a result, we chose the log-mel-
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spectrogram and the pitch salience representation as our model input for arousal

prediction.
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Chapter 7 CONCLUSION

This study has explored cross-dataset adaptation of music emotion recognition by
adversarial discriminative domain adaptation (ADDA\). For cross-dataset experiment, the
results show that our method perform better than Hu and Yang [7] for both valence
prediction and arousal prediction. Also, our adaptation method do improve our pre-
training method for valence prediction but not for arousal prediction, possibly because
arousal prediction is more easily generalizable across datasets. For future work, we want
to experiment on a small number of labeled target data for few-shot learning [29], [30],
to analyze what are the musical features that are actually adapted by ADDA, and to
experiment with other domain adaptation methods. Moreover, the present method only
accounts for the cultural differences in music features, but not for the cultural differences

in emotion perception. This is a subject of future work as well.
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