國立臺灣大學電機資訊學院資訊工程學系碩士論文

Department of Computer Science and Information Engineering College of Electrical Engineering and Computer Science National Taiwan University Master Thesis點對點檔案傳輸之賽局分析 A Game－Theoretic Analysis of P2P File－Sharing Systems

蔡瑋倫
Wei－Lun Tsai

指導教授：陳健輝博士
 Advisor：Gen－Huey Chen，Ph．D．
 共同指導教授：陳和麟博士
 Co－Advisor：Ho－Lin Chen，Ph．D．

> 中華民國 108 年 7 月
> July, 2019

國立臺灣大學碩士學位論文口試委員會審定書

點對點檔案傳輸之赛局分析

A Game－Theoretic Analysis of P2P File－Sharing Systems

本論文係蔡瑋倫君（學號 R06922082）在國立臺灣大學資訊工程學系完成之碩士學位論文，於民國108年7月22日承下列考試委員審查通過及口試及格，特此證明

口試委員：

系 主 任

摘要

點對點式網路架構常用於使用者之間的檔案傳輸與分享，藉以改善傳統主從式架構伺服器負擔過重以及易受攻擊等問題。然而，實驗結果發現點對點網路架構容易造成搭便車問題，於是我們必須借助賽局理論以設計良好的獎勵機制督促使用者貢獻自己的資源，以維持系統運作［16］。

我們的研究從 Chiranjeeb Buragohain 等人在2003年所提出的模型［2］延伸而來。原論文根據每位使用者的貢獻來決定他／她是否能從社群獲得資源的機率函數，貢獻與機率成正相關，而效益函數則是所獲得資源去扣除自己開放頻寬給其他使用者下載的成本，在兩個人的環境下恰有雨個不崩潰的均質納許均衡，促使社群高貢獻的均衡點是穏定的。在我們的論文額外考慮了使用者對其他人所擁有資源的需求有所節制以及多重使用者的情況。在此情形下，我們發現當需求幾乎沒有節制的時候不影響原本的納許均衡；當需求有些節制的時候會壓低原本促使社群高貢獻的均衡點的貢獻量，同時該均衡點轉為不穏定，可能收敛到其他均衡點；當使用者的需求極低（資源同質性高）的時候整個系統反而會崩潰（使用者均不貢獻）。此外，我們也觀察了不同條件之下納許均衡的效率隨著模型參數（單位資源所產生之效益，需求的節制，社群人數）的變化。

關鍵字：賽局理論，納許均衡，點對點，檔案分享，獎勵機制

Abstract

A peer-to-peer (P2P) network is commonly used for file-sharing among different users. This kind of structure can solve some common problems of centralized networks. However, experiments show that free-riding is a major problem for the P2P networks, so we have to design a good incentive mechanism with the help of game theory in order to encourage users to contribute to the community and maintain the network [16].

We use the model proposed by Buragohain et al. [2] in 2003. In the original paper, the author determines the probability function, from the contribution of each user, which controls the probability that a user can retrieve resources from the community. The probability increases with the contribution. The utility function is determined by the retrieved resources with the contribution cost subtracted. In a two-player file-sharing game, there are two non-collapsing Nash equilibria, one of which with a greater contribution is stable. In our thesis, we further consider a multi-player file-sharing game where the need for resources of each user is limited. In this game, we've discovered that when the limitation is not obvious, the original Nash equilibria are not affected. When the limitation is a little influential, the contribution of the Nash equilibrium with a greater contribution will be lowered and it will become unstable. When the limitation is drastic, the system will collapse. Besides, we've also observed how the efficiency of Nash equilibria changes with system parameters under different conditions. The parameters include the benefit drawn by one unit of resources, the limitation of need for
resources, and the number of users in the network which will be defined later.

Keywords: Game Theory, Nash Equilibrium, Peer-to-Peer, File-Sharing, Incentive Mechanism

Contents

口試委員會審定書 ii
摘要 iii
Abstract iv
1 Introduction 1
2 Model 5
2．1 Useful Properties 7
3 Nash Equilibrium Analysis for Two－Player File－Sharing Games 11
3．1 Maximum Total Utility 11
3.2 Nash Equilibria 17
3．3 The PoA and PoS 30
4 Nash Equilibrium Analysis for Three－Player File－Sharing Games 37
4．1 Maximum Total Utility 37
4.2 Nash Equilibria 42
4.3 The PoA and PoS 51
5 Nash Equilibrium Analysis for Multi－Player File－Sharing Games 58
5．1 Maximum Total Utility 58
5．2 Nash Equilibria 62
5.3 The Symmetric PoA and PoS 64

6 Conclusion and Future Work 71

Bibliography

List of Figures

2.1 A geometric illustration of Lemma 2.1 7
2.2 A geometric solution of d_{d} 8
3.1 A simple diagram of Definition 3.1. The symbols $R_{2 b_{1}}$ and $R_{2 b_{2}}$ will be defined later. 12
3.2 A simple diagram of the remaining regions after the first stage of the elim- ination procedure 14
3.3 A simple diagram of the remaining regions after the second stage of the elimination procedure 16
3.4 A geometric perspective of the condition $d_{o}<K$ such that $u\left(d_{o}\right)>0$ 16
3.5 A geometric solution of d_{ℓ} and d_{h} in Definition 3.3 18
3.6 A simple diagram of $N_{\text {side } 1}$ and $N_{\text {side } 2}$ in Theorem 3.10 and its corollary 19
3.7 A simple diagram of N_{ℓ} and N_{h} in Theorem 3.12 20
3.8 A simple diagram of N_{o} in Theorem 3.13 21
3.9 A geometric illustration of Theorem 3.14 22
3.10 A geometric illustration of Lemma 3.15 22
3.11 A geometric illustration of Theorem 3.16 23
3.12 A geometric illustration of Lemma 3.17 24
3.13 A geometric illustration of Lemma 3.18 25
3.14 A geometric illustration of Theorem 3.19 26
3.15 A geometric illustration of the case $d_{\ell}<d_{o}<d_{h}$ 28
3.16 A geometric illustration of the case $d_{\ell}<d_{o}=d_{h}$ 30
4.1 A geometric illustration of Lemma 4.7 41
4.2 A geometric illustration of Definition 4.2 47

List of Tables

3.1 The maximum total utility of two-player file-sharing games 17
3.2 Summary of Nash equilibria of two-player file-sharing games in ascending order of their total utility 30
3.3 Summary of the PoS and PoA with K as the only varying parameter. We assume d_{o} starts at d_{ℓ} and keeps increasing. 35
3.4 Summary of the PoS and PoA with b as the only varying parameter. We
assume b starts at its valid minimum value (i.e. $b x p^{\prime}(x)=1$ has exactly one solution.) and keeps increasing. 36
4.1 The maximum total utility of three-player games. 42
4.2 Condition matching for each Nash equilibrium. 44
4.3 Summary of the PoS and PoA with K as the only varying parameter. We
assume d_{o} starts at $d_{\ell \ell}$ and keeps increasing. 56
4.4 Summary of the PoS and PoA with b as the only varying parameter. We assume b starts at its valid minimum value (i.e. $b x p^{\prime}(x)=\frac{1}{2}$ has exactly
one solution.) and keeps increasing. 57
5.1 The maximum total utility of multi-player games. 62
5.2 Summary of the PoS and PoA with K as the only varying parameter. We assume d_{o} starts at d_{L} and keeps increasing. 69
5.3 Summary of the PoS and PoA with b as the only varying parameter. We assume b starts at its valid minimum value (i.e. $b x p^{\prime}(x)=\frac{1}{n-1}$ has exactly one solution.) and keeps increasing. 70
5.4 Summary of the PoS and PoA with n as the only varying parameter. We assume n starts at its valid minimum value (i.e. $b x p^{\prime}(x)=\frac{1}{n-1}$ has exactly one solution.) and keeps increasing.

70

Chapter 1

Introduction

A peer-to-peer (P2P) network is a distributed system that consists of many users which are often directly connected to each other, and they can be both providers and consumers of resources at the same time in the network. In constrast to P2P networks, a centralized network also consists of many users, but only servers provide all the resources and are connected to clients. The clients can only consume the resources and they are not necessarily connected to each other.

The most significant advantages of P2P networks over centralized networks are scalability and robustness. When a new user joins a P2P network, he/she not only increases the network load but also provides some resources to the system (as a small server), so the network load is usually balanced and the P2P network is scalable. When a node is attacked or fails to work for some reason, the other parts of the network can still work as usual because only a very small part of the system is affected. In a centralized network, an attack against one of the main servers can severely reduce the performance since the resources are completely on the servers. Therefore P2P networks are more robust than centralized networks.

However, a major problem for the P2P networks is "free-riding." Free-riding means that most users only consume the resources but forget to provide enough resources to maintain the network. Since making contribution definitely takes some cost, it is intuitive that free-riding is a dominant strategy. Unfortunately, if everyone chooses this dominant strategy, there will be no resources in the network and therefore the system will collapse.

Experiments in [9] showed this phenomenon. Hence, some incentive mechanisms are needed to overcome this free-riding problem.

Incentive mechanisms incorporated by the P2P file-sharing networks in the past were mainly based on monetary payment schemes or reciprocity-based schemes [5]. In monetary payment schemes, users must pay money before consuming resources and can get paid when providing resources to others. Mojonation and Karma [12], and some studies such as [6, 10, 14, 17] used this kind of schemes. The implementation is not easy in practice since it requires infrastructure for accounting and micropayments. Contrary to monetary payment schemes, we can also use reciprocity-based schemes. They include direct reciprocity and indirect reciprocity. In direct reciprocity schemes, the quality of resources user A wants to provide to user B is based on the quality of resources A retrieved from B in the past. BitTorrent [3] uses this kind of schemes based on the tit-for-tat strategy. In indirect reciprocity schemes, also called reputation based schemes, the quality of resources a user deserves to obtain highly depends on his/her "overall" generosity. The word "overall" here means that as long as user A's reputation is high, it is not necessary for A to provide good quality resources to user B even if A wants to retrieve good quality resources from B. Some studies such as [2, 7] used this kind of schemes. We should note that this is an advantage when a user is not interested in anything the other one can offer. It is the only difference between direct reciprocity and indirect reciprocity. Nowadays, the incentive mechanisms are further enhanced. For example, Hu et al. [8] combined monetary payment schemes and indirect reciprocity schemes. Zhang et al. [18] used a Blockchainbased mechanism to resolve the difficulty of finding a trusted third party (TTP) in a real P2P system.
[2] is a representative paper about reputation based schemes. In [2] the authors proposed a differential service-based incentive scheme to improve the system's performance (i.e., reduce free-riding). First, they considered the case of a "homogeneous" system where the value of resources is independent of users who own them and users who retrieve them. In this case, there exists two non-collapsing Nash equilibria with different contribution levels. Only the one resulting in the better overall performance is stable (i.e., easily real-
ized). Second, they studied the case of a "heterogenous" system through simulation, since no closed form solution is possible. In this case, the numerical experiments showed that the system also converges to the desirable Nash equilibrium if a good initial condition is given, and that the average contribution is almost independent of the number of users. Finally, they gave some suggestions on how to modify current P2P systems to implement the proposed incentive scheme. We need a function of the contribution level of user A to control the probability that A can retrieve resources from another user B. Also, the probability function should be a part of the system's architecture. It means that the setting should be exactly the same for all users and cannot be modified by them. In order to prevent users from reporting their contribution levels incorrectly, a neighbour audit scheme in which users can verify the information of their neighbors is required. In order to encourage new users to join the system, they can be given a default contribution level at the beginning.

Our research is continued from [2]. In the original paper, the resources a player possesses are not limited. To our best knowledge, there are almost no research papers discussing the case of limited resources, so we will consider this environment in our thesis. We only study the case of a homogeneous system of two players, three players, and multiple players, but with a fixed maximum benefit of resources from each player, and the probability function satisfying some "good" assumptions that we will introduce in the next chapter. Our main contribution is to find some important Nash equilibria under different parameter settings, analyze their stability and efficiency including the price of anarchy (PoA) and price of stability (PoS), and observe how they vary with related parameters. We define the PoA to be the ratio of the maximum total utility among all possibilities to that of the "worst" Nash equilibrium, and define the PoS to be the ratio of the maximum total utility among all possibilities to that of the "best" Nash equilibrium.

The rest of the thesis is organized as follows. In Chapter 2, we explain the meaning of our newly proposed model and introduce the related parameters. In Chapter 3, we analyze a homogeneous system of two players. In Chapter 4, we analyze a homogeneous system of three players, but without considering the stability of Nash equilibria. In Chapter 5, we analyze a homogeneous system of multiple players, but only considering symmetric Nash
equilibria. That is, all players have the same strategy. Finally in Chapter 6, we conclude our analysis, describe additional possibly extended models, and discuss some aspects that can be improved in the future.

Chapter 2

Model

In this chapter, we're going to introduce the system parameters inherited from [2] that will be used in this thesis. Assume that there are N players (users) $P_{1}, P_{2}, \ldots, P_{N}$ in the system. All parameters, as in the original paper, are dimensionless.

Definition 2.1 (Contribution). Let d_{i} be the contribution of P_{i} which is a nonnegative number. The meaning of the contribution can be very widespread. For example, [2] says we may think of d_{i} as the disk space contribution integrated over a fixed period of time, or the number of downloads served by this peer to other peers. In this thesis, we usually see d_{i} as the amount of downloadable resources owned by P_{i}. Since this parameter is also a strategy one player can decide, the term "strategy" and "contribution" have the same meaning in this thesis.

Definition 2.2 (Benefit). The value of resources owned by a player may vary depending mainly on other users who retrieve them. For example, if Alice has lots of music, whereas Bob has lots of Japanese animation, I may prefer Bob's resources to Alice's. Hence we let b denote how much the "unit" contribution made by one player is worth to another player in a homogeneous system. That is, if a player P_{i} retrieves one unit of contribution from another player P_{j}, then P_{i} 's utility will increase by b. Details of the utility function will be introduced later.

Definition 2.3 (Probability as Service Differentiator). In a differential service, the probability that a player P_{i} can retrieve resources from other players should increase with
his/her contribution d_{i}. This mechanism encourages the players to share their file resources. In this thesis, a player P_{i} can retrieve resources from other players with probability $p\left(d_{i}\right)$, and is rejected with probability $1-p\left(d_{i}\right)$.

Proposition 2.1. To achieve the goal of a service differentiator, the probability function $p(d)$ must be non-decreasing (i.e., $p^{\prime}(d) \geq 0$ for $d \geq 0$). To meet the definition of "probability," p should satisfy $p(0)=0$ and $\lim _{d \rightarrow \infty} p(d)=1$. To ensure each player has only one best strategy in each iteration, we assume $p^{\prime}(d)$ to be decreasing (i.e., $p^{\prime \prime}(d)<0$ when $0 \leq p(d)<1$). To ensure $b d p^{\prime}(d)=C$ has at most two solutions for every constant $C>0$, we also assume $\left.d p^{\prime}(d)\right|_{d=0}=\lim _{d \rightarrow \infty} d p^{\prime}(d)=0$, and there exists a threshold d_{0} such that $\left(d p^{\prime}(d)\right)^{\prime}>0$ for $d<d_{0}$ and $\left(d p^{\prime}(d)\right)^{\prime}<0$ for $d>d_{0}$. We assume all probability functions $p(d)$ satisfy all our assumptions in this proposition unless otherwise specified.

Definition 2.4 (Utility). Let the total utility u_{i} that P_{i} will derive in the homogeneous system be $u_{i}=-d_{i}+\sum_{j \neq i} \min \left\{K, b d_{j} p\left(d_{i}\right)\right\}$. The term $-d_{i}$ is the cost of P_{i} to join the system, which is proportional to his/her contribution. The other term $\sum_{j \neq i} \min \left\{K, b d_{j} p\left(d_{i}\right)\right\}$ is the total expected benefit of P_{i}. It is obvious that $\min \left\{K, b d_{j} p\left(d_{i}\right)\right\}$ for some j is the expected benefit gained from some player P_{j}. In this term, d_{j} is the amount of resources P_{j} can provide, so multiplying it by $p\left(d_{i}\right)$ gives the expected amount of resources P_{i} can acquire. Multiplying it by b again obtains the expected "benefit." In that term K denotes the maximum benefit one player can derive from another player. Normally K is greater than 0 .

Proposition 2.2. Suppose all d_{i} 's have the same value of d. If $b \leq \frac{1}{n-1}$, the utility function u_{i} is therefore not greater than $(n-1) b d p(d)-d=d((n-1) b p(d)-1) \leq$ $d((n-1) b-1) \leq d(1-1)=0$. This means that any homogeneous solution is not better than the origin. It may cause the system to collapse. To avoid this problem, we should assume $b>\frac{1}{n-1}$ in this thesis.

After the definitions and propositions, here is one important lemma about Proposition 2.1 that will commonly be referred to when the parameter b varies.

Lemma 2.1. Assume the two equations $b_{1} x p^{\prime}(x)=C$ and $b_{2} x p^{\prime}(x)=C$, where $0<b_{1}<$ b_{2}, have solutions. Let the solutions to $b_{1} x p^{\prime}(x)=C$ be $d_{1 \ell}$ and $d_{1 h}$, where $d_{1 \ell} \leq d_{1 h}$. Let the solutions to $b_{2} x p^{\prime}(x)=C$ be $d_{2 \ell}$ and $d_{2 h}$, where $d_{2 \ell} \leq d_{2 h}$. Then $d_{2 \ell}<d_{1 \ell}$ and $d_{2 h}>d_{1 h}$.

Proof. Since $\left.x p^{\prime}(x)\right|_{x=0}=0$ and $\left.x p^{\prime}(x)\right|_{x=d_{1 \ell}}=C / b_{1}$, by the intermediate value theorem there must exist at least one $x_{\ell}<d_{1 \ell}$ such that $\left.x p^{\prime}(x)\right|_{x=x_{\ell}}=C / b_{2}\left(\because b_{2}>b_{1}\right)$. Since $\left.x p^{\prime}(x)\right|_{x=d_{1 h}}=C / b_{1}$ and $\lim _{x \rightarrow \infty} x p^{\prime}(x)=0$, by the intermediate value theorem there must exist at least one $x_{h}>d_{1 h}$ such that $\left.x p^{\prime}(x)\right|_{x=x_{h}}=C / b_{2}\left(\because b_{2}>b_{1}\right)$. Therefore $x_{\ell}<$ $d_{1 \ell} \leq d_{1 h}<x_{h}$. Since $b_{2} x p^{\prime}(x)=C$ has at most two solutions, we can simply say $x_{\ell}=d_{2 \ell}$ and $x_{h}=d_{2 h} . \quad \therefore d_{2 \ell}<d_{1 \ell}$ and $d_{2 h}>d_{1 h}$.

Figure 2.1: A geometric illustration of Lemma 2.1

After introducing the system parameters, we're going to derive some important lemmas related to the probability function that will be heavily used in the later chapters.

2.1 Useful Properties

Before the lemmas, we also define two symbols that will be used in the whole thesis.
Definition 2.5. Let $u_{o p t}$ be the maximum total utility in an n-player file-sharing game.
That is, $u_{\text {opt }}=\max _{\substack{d_{i} \geq 0 \\ \text { for } 1 \leq i \leq n}} u\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
Definition 2.6. Let d_{o} be the unique solution to the equation $b x p(x)=K$. Since $K>0$, d_{o} cannot be 0 and we can see it as the intersection of $p(x)$ and $\frac{K}{b x}$.

Figure 2.2: A geometric solution of d_{o}

Lemma 2.2. If $0<d_{1}<d_{2}$, then $d_{1} p\left(d_{2}\right)<d_{2} p\left(d_{1}\right)$.

Proof. We're going to prove this lemma with the technique of "change of variables" covered in the calculus course. Write the probability function in an integral form,

$$
p\left(d_{2}\right)=\int_{0}^{d_{2}} p^{\prime}(x) d x \xlongequal{x=\left(d_{2} / d_{1}\right) u} \int_{0 \cdot \frac{d_{1}}{d_{2}}}^{d_{2} \cdot \frac{d_{1}}{d_{2}}} p^{\prime}\left(\frac{d_{2}}{d_{1}} u\right) d\left(\frac{d_{2}}{d_{1}} u\right)=\frac{d_{2}}{d_{1}} \int_{0}^{d_{1}} p^{\prime}\left(\frac{d_{2}}{d_{1}} u\right) d u
$$

and it can be rearranged into $\frac{d_{1}}{d_{2}} p\left(d_{2}\right)=\int_{0}^{d_{1}} p^{\prime}\left(\frac{d_{2}}{d_{1}} u\right) d u$. Compare it with

$$
p\left(d_{1}\right)=\int_{0}^{d_{1}} p^{\prime}(u) d u
$$

Since $d_{2}>d_{1}$ (which implies $\frac{d_{2}}{d_{1}} u>u$ for $u>0$) and $p^{\prime}(x)$ is decreasing if greater than zero, we can always pick some $d_{0} \in\left(0, d_{1}\right)$ such that $p^{\prime}(u)>0\left(\right.$ i.e., $\left.p^{\prime}(u)>p^{\prime}\left(\frac{d_{2}}{d_{1}} u\right)\right)$ for all $u \in\left(0, d_{0}\right)$ and $p^{\prime}(u)=0\left(\right.$ i.e., $\left.p^{\prime}\left(\frac{d_{2}}{d_{1}} u\right)=0\right)$ for all $u \in\left(d_{0}, d_{1}\right)$. Hence

$$
\begin{aligned}
\frac{d_{1}}{d_{2}} p\left(d_{2}\right)=\int_{0}^{d_{1}} p^{\prime}\left(\frac{d_{2}}{d_{1}} u\right) d u & =\int_{0}^{d_{0}} p^{\prime}\left(\frac{d_{2}}{d_{1}} u\right) d u+\int_{d_{0}}^{d_{1}} p^{\prime}\left(\frac{d_{2}}{d_{1}} u\right) d u \\
& <\int_{0}^{d_{0}} p^{\prime}(u) d u+\int_{d_{0}}^{d_{1}} p^{\prime}\left(\frac{d_{2}}{d_{1}} u\right) d u \\
& =\int_{0}^{d_{0}} p^{\prime}(u) d u+\int_{d_{0}}^{d_{1}} p^{\prime}(u) d u \\
& =\int_{0}^{d_{1}} p^{\prime}(u) d u=p\left(d_{1}\right)
\end{aligned}
$$

We can obtain the result by multiplying both sides of the above inequality by d_{2}.

Corollary 2.3. If $d_{1} p\left(d_{2}\right)>d_{2} p\left(d_{1}\right)>0$, then $d_{1}>d_{2}>0$. If $d_{1} p\left(d_{2}\right)=d_{2} p\left(d_{1}\right)>0$, then $d_{1}=d_{2}>0$. If $0<d_{1} p\left(d_{2}\right)<d_{2} p\left(d_{1}\right)$, then $0<d_{1}<d_{2}$.

Proof. By the law of trichotomy, exactly one of the three conditions $d_{1}<d_{2}, d_{1}=d_{2}$, or $d_{1}>d_{2}$ is true. Consider the first statement in our corollary. If $0<d_{1}<d_{2}$, by Lemma 2.2 we can deduce $d_{1} p\left(d_{2}\right)<d_{2} p\left(d_{1}\right)$. If $0<d_{1}=d_{2}$, then $d_{1} p\left(d_{2}\right)=d_{2} p\left(d_{1}\right)$. Both of the above assumptions violate the statement, so only $d_{1}>d_{2}>0$ can be the conclusion of it. The reader can use the same method to prove the remaining two statements.

Lemma 2.4. If $d_{1} p^{\prime}\left(d_{2}\right)=d_{2} p^{\prime}\left(d_{1}\right)>0$, then $d_{1}=d_{2}$.

Proof. The structure of this proof is very similar to Corollary 2.3. If $0<d_{1}<d_{2}$ and $p^{\prime}\left(d_{2}\right)>0$, then $p^{\prime}\left(d_{1}\right)>p^{\prime}\left(d_{2}\right)$ and $d_{2} p^{\prime}\left(d_{1}\right)>d_{1} p^{\prime}\left(d_{2}\right)$ since $p^{\prime}(x)$ is decreasing. Similarly if $0<d_{2}<d_{1}$ and $p^{\prime}\left(d_{1}\right)>0$, then $p^{\prime}\left(d_{2}\right)>p^{\prime}\left(d_{1}\right)$ and $d_{1} p^{\prime}\left(d_{2}\right)>d_{2} p^{\prime}\left(d_{1}\right)$. The above two cases both violate the lemma assumption. From the above, only $d_{1}=d_{2}>$ 0 can satisfy the assumption, so it is our conclusion.

Lemma 2.5. If $p\left(d_{1}\right)=p\left(d_{2}\right)$ for some $d_{1}<d_{2}$, then $p(x)=1$ and $p^{\prime}(x)=0$ for all $x \geq d_{1}$.

Proof. Write the probability function $p(x)$ in an integral form.

$$
\begin{align*}
p\left(d_{2}\right)-p\left(d_{1}\right) & =\int_{0}^{d_{2}} p^{\prime}(x) d x-\int_{0}^{d_{1}} p^{\prime}(x) d x \\
& =\int_{d_{1}}^{d_{2}} p^{\prime}(x) d x=0 \tag{2.1}
\end{align*}
$$

Suppose for contradiction that $p^{\prime}\left(d_{1}\right)>0$. Then we can definitely find a $d_{\text {mid }} \in\left(d_{1}, d_{2}\right)$ such that $p^{\prime}(x)>0$ for all $x \in\left(d_{1}, d_{\text {mid }}\right)$, and

$$
\int_{d_{1}}^{d_{2}} p^{\prime}(x) d x=\int_{d_{1}}^{d_{m i d}} p^{\prime}(x) d x+\int_{d_{m i d}}^{d_{2}} p^{\prime}(x) d x>\int_{d_{m i d}}^{d_{2}} p^{\prime}(x) d x \geq 0
$$

which violates Equation (2.1). Hence $p^{\prime}\left(d_{1}\right)=0$ and $p^{\prime}(x)=0$ for all $x \geq d_{1}$ since $p^{\prime}(x)$ is decreasing. In addition $p^{\prime}(x)=0$ implies $p(x)=1$, so $p(x)=1$ for all $x \geq d_{1}$.

Corollary 2.6. If $p\left(d_{1}\right)=p\left(d_{2}\right), p^{\prime}\left(d_{1}\right)>0$ and $p^{\prime}\left(d_{2}\right)>0$, then $d_{1}=d_{2}$.

Proof. W.L.O.G., assume $d_{1} \leq d_{2}$. If $d_{1}<d_{2}$, then by Lemma $2.5 p^{\prime}\left(d_{1}\right)=p^{\prime}\left(d_{2}\right)=0$ causes a contradiction. Therefore, $d_{1}=d_{2}$.

Chapter 3

Nash Equilibrium Analysis for

Two-Player File-Sharing Games

In the previous chapter, we've introduced some basic elements of our model. For simplicity, we consider a homogeneous system of two players first. It's easy to see that the model can be simplified to the following.

$$
\left\{\begin{array}{l}
u_{1}\left(d_{1}\right)=-d_{1}+\min \left\{K, b d_{2} p\left(d_{1}\right)\right\} \\
u_{2}\left(d_{2}\right)=-d_{2}+\min \left\{K, b d_{1} p\left(d_{2}\right)\right\} \\
u\left(d_{1}, d_{2}\right)=u_{1}\left(d_{1}\right)+u_{2}\left(d_{2}\right)
\end{array}\right.
$$

We also use the notation $u(d)=u(d, d)$ if both d_{1} and d_{2} have the same value of d.
In this chapter, we are going to find all Nash equilibria under different parameter settings, analyze their stability and efficiency (PoA and PoS), and observe how they vary with system parameters b and K. Before calculating the PoA and PoS, we should find the points where the maximum total utility occurs.

3.1 Maximum Total Utility

In this section, we hope to find the maximum total utility in different parameter settings. The method used in this chapter is to calculate the gradient with respect to d_{1} or d_{2} at each point in the domain of $u\left(d_{1}, d_{2}\right)$. Since u is bounded above ($u \leq 2 K$), we can guarantee
the existence of a maximum, and it cannot occur at the points where $\left(\frac{\partial u}{\partial d_{1}}\right)^{+}=\left(\frac{\partial u}{\partial d_{1}}\right)^{-} \neq 0$ or $\left(\frac{\partial u}{\partial d_{2}}\right)^{+}=\left(\frac{\partial u}{\partial d_{2}}\right)^{-} \neq 0$. Based on this observation, we can exclude these points first (called an elimination procedure), then compare the values of the remaining points, and then finally choose the optimal points from them.

Observing the formula in this model, the reader may guess that $u_{\text {opt }}$ occurs when $b d_{2} p\left(d_{1}\right)=K$ and $b d_{1} p\left(d_{2}\right)=K$. In fact this is true under some "good" parameter settings. In this section, we will introduce these "good" conditions, and explain why $u_{\text {opt }}$ occurs at such places.

By symmetry, it suffices to consider only the upper left part of the domain of $u\left(d_{1}, d_{2}\right)$ in the following analysis. It can be partitioned into three regions with respect to the two equations $b p\left(d_{2}\right)=1$ and $b d_{1} p\left(d_{2}\right)=K$. These regions can be defined formally.

Figure 3.1: A simple diagram of Definition 3.1. The symbols $R_{2 b_{1}}$ and $R_{2 b_{2}}$ will be defined later.

Definition 3.1. Let region 1 be $R_{1}=\left\{\left(d_{1}, d_{2}\right) \mid 0 \leq d_{1} \leq d_{2} \wedge b p\left(d_{2}\right) \leq 1\right\}$. Let region 2 be $R_{2}=\left\{\left(d_{1}, d_{2}\right) \mid 0 \leq d_{1} \leq d_{2} \wedge b p\left(d_{2}\right)>1 \wedge b d_{1} p\left(d_{2}\right) \leq K\right\}$. Let region 3 be $R_{3}=\left\{\left(d_{1}, d_{2}\right) \mid 0 \leq d_{1} \leq d_{2} \wedge b p\left(d_{2}\right)>1 \wedge b d_{1} p\left(d_{2}\right) \geq K\right\}$. Let $R_{2 b}$ be the rightmost boundary of R_{2}. That is, $R_{2 b}=R_{2} \cap\left\{\left(d_{1}, d_{2}\right) \mid d_{1}=d_{2} \vee b d_{1} p\left(d_{2}\right)=K\right\}$. Let $R_{3 b}$ be the leftmost boundary of R_{3}. That is, $R_{3 b}=R_{3} \cap\left\{\left(d_{1}, d_{2}\right) \mid b d_{1} p\left(d_{2}\right)=K\right\} \subseteq R_{2 b}$. Let P be the point (d, d) where $b d p(d)=K$. The letter " b " here means "boundary."

The reason why we want to partition the domain is explained as follows. Utilities in R_{1} are always nonpositive (which will be proven later), which is obviously not better than the origin $(0,0)$, so this region will be excluded eventually if we hope that the model has a positive $u_{\text {opt }}$. We also note that the term $\min \left\{K, b d_{1} p\left(d_{2}\right)\right\}$ causes the gradient of $u\left(d_{1}, d_{2}\right)$ to be discontinuous at the curve $b d_{1} p\left(d_{2}\right)=K$, so the values should be calculated in R_{2} and R_{3} separately.

In the following several pages we're going to perform our elimination procedure. The procedure can be divided into three stages. The first stage is to remove the points where $u_{\text {opt }}$ cannot occur in R_{2} and R_{3}. By Lemma $3.1 R_{2}$ can be minimized to $R_{2 b}$, and by Lemma $3.2 R_{3}$ can be minimized to $R_{3 b}$. Since $R_{2 b}$ contains $R_{3 b}$, we only consider the points where $u_{o p t}$ cannot occur in $R_{2 b}$ and remove them in the second stage. By Lemma 3.3 and Lemma $3.4 R_{2 b}$ can be minimized to the point P or completely eliminated. Finally, we'll show that the maximum total utility within R_{1} is exactly 0 and find out circumstances in which P will be better than R_{1}.

Now we perform the first stage of the elimination procedure.

Lemma 3.1. After we remove these points where $u_{\text {opt }}$ cannot occur in R_{2}, the region R_{2} should be minimized to $R_{2 b}$.

Proof. One property of R_{2} is the inequality $b d_{1} p\left(d_{2}\right) \leq K$. According to this, the utility $u=-d_{1}+\min \left\{K, b d_{1} p\left(d_{2}\right)\right\}-d_{2}+\min \left\{K, b d_{2} p\left(d_{1}\right)\right\}$ can be simplified to $u=-d_{1}+$ $b d_{1} p\left(d_{2}\right)-d_{2}+\min \left\{K, b d_{2} p\left(d_{1}\right)\right\}$. Since the "min" term may cause the partial derivatives to be discontinuous, for simplicity we use the notation of partial derivatives as usual to represent the less of the left derivative and right derivative.

$$
\begin{gathered}
\because \frac{\partial}{\partial d_{1}} K=0 \quad \text { and } \quad \frac{\partial}{\partial d_{1}} b d_{2} p\left(d_{1}\right)=b d_{2} p^{\prime}\left(d_{1}\right) \geq 0 . \quad \therefore \frac{\partial}{\partial d_{1}} \min \left\{K, b d_{2} p\left(d_{1}\right)\right\} \geq 0 . \\
\therefore \quad \frac{\partial u}{\partial d_{1}}=-1+b p\left(d_{2}\right)+0+\frac{\partial}{\partial d_{1}} \min \left\{K, b d_{2} p\left(d_{1}\right)\right\} \geq-1+b p\left(d_{2}\right)>0 .
\end{gathered}
$$

According to this derivative, we can say for each pair of points $\left(\ell, d_{2}\right)$ and $\left(r, d_{2}\right)$ in R_{2}, $u\left(\ell, d_{2}\right)<u\left(r, d_{2}\right)$ if $\ell<r$. Hence the result follows.

Lemma 3.2. After we remove these points where $u_{\text {opt }}$ cannot occur in R_{3}, the region R_{3} should be minimized to $R_{3 b}$.

Proof. One property of R_{3} is the inequality $b d_{1} p\left(d_{2}\right) \geq K$. According to this, we can further deduce $b d_{2} p\left(d_{1}\right) \geq b d_{1} p\left(d_{2}\right) \geq K$ by Lemma 2.2. The utility $u=-d_{1}-d_{2}+$ $\min \left\{K, b d_{2} p\left(d_{1}\right)\right\}+\min \left\{K, b d_{1} p\left(d_{2}\right)\right\}$ is then simplified to $u=-d_{1}-d_{2}+2 K$, and therefore $\frac{\partial u}{\partial d_{1}}=-1$ in this region. According to this derivative, we say for each pair of points $\left(\ell, d_{2}\right)$ and $\left(r, d_{2}\right)$ in $R_{3}, u\left(\ell, d_{2}\right)>u\left(r, d_{2}\right)$ if $\ell<r$. Hence the result follows.

Figure 3.2: A simple diagram of the remaining regions after the first stage of the elimination procedure

Now we perform the second stage of the elimination procedure.
Definition 3.2. Let $R_{2 b_{1}}=R_{2 b} \cap\left\{\left(d_{1}, d_{2}\right) \mid d_{1}=d_{2}\right\}$, and let $R_{2 b_{2}}=R_{2 b} \cap\left\{\left(d_{1}, d_{2}\right) \mid\right.$ $b d_{1} p\left(d_{2}\right)=K$. Then $R_{3 b}=R_{2 b_{2}}$ and $R_{2 b}=R_{2 b_{1}} \cup R_{2 b_{2}}$.

Lemma 3.3. If $R_{2 b_{1}}$ exists, it should be minimized to the single point P after we remove these points where $u_{\text {opt }}$ cannot occur in $R_{2 b_{1}}$.

Proof. In $R_{2 b_{1}}$ there is a condition $d_{1}=d_{2}$, so $b d_{2} p\left(d_{1}\right)=b d_{1} p\left(d_{2}\right) \leq K$. If we let $d=d_{1}=d_{2}$, then the utility can be simplified to $u=-d_{1}+b d_{1} p\left(d_{2}\right)-d_{2}+b d_{2} p\left(d_{1}\right)=$ $2(b d p(d)-d)$, and the derivative is

$$
\frac{\partial u}{\partial d}=2 \frac{\partial}{\partial d}(b d p(d)-d)=2\left(b p(d)+b d p^{\prime}(d)-1\right) \geq 2(b p(d)-1)>0
$$

by the condition $b p(d)>1$ stated in R_{2}. Hence the result follows.

Lemma 3.4. After we remove these points where $u_{\text {opt }}$ cannot occur in $R_{2 b_{2}}$, the region $R_{2 b_{2}}$ should be minimized to the point P or completely eliminated.

Proof. According to the constraint $d_{1} p\left(d_{2}\right)=K / b$ stated in $R_{2 b_{2}}$, we first differentiate both sides of the equation with respect to d_{2}, in order to obtain $\partial d_{1} / \partial d_{2}$.

$$
\frac{\partial}{\partial d_{2}}\left(d_{1} p\left(d_{2}\right)\right)=\frac{\partial}{\partial d_{2}}\left(\frac{K}{b}\right) \quad \Longrightarrow \quad \frac{\partial d_{1}}{\partial d_{2}} p\left(d_{2}\right)+d_{1} p^{\prime}\left(d_{2}\right)=0
$$

According to the property $b d_{1} p\left(d_{2}\right)=K$ in $R_{2 b_{2}}$, we can further deduce $b d_{2} p\left(d_{1}\right) \geq$ $b d_{1} p\left(d_{2}\right)=K$ by Lemma 2.2, so the utility is then simplified to $u=-d_{1}-d_{2}+2 K$. Differentiate u with respect to d_{2}.

$$
\begin{aligned}
\frac{\partial u}{\partial d_{2}} & =\frac{\partial}{\partial d_{2}}\left(-d_{1}-d_{2}+2 K\right)=-\frac{\partial d_{1}}{\partial d_{2}}-1=\frac{d_{1} p^{\prime}\left(d_{2}\right)}{p\left(d_{2}\right)}-1=\frac{d_{1} p^{\prime}\left(d_{2}\right)-p\left(d_{2}\right)}{p\left(d_{2}\right)} \\
& =\frac{d_{1} p^{\prime}\left(d_{2}\right)-\int_{0}^{d_{2}} p^{\prime}(t) d t}{p\left(d_{2}\right)}<\frac{d_{1} p^{\prime}\left(d_{2}\right)-d_{2} p^{\prime}\left(d_{2}\right)}{p\left(d_{2}\right)}=\frac{p^{\prime}\left(d_{2}\right)}{p\left(d_{2}\right)}\left(d_{1}-d_{2}\right) .
\end{aligned}
$$

Therefore $\frac{\partial u}{\partial d_{2}}<0$ since $p^{\prime}\left(d_{2}\right) \geq 0, p\left(d_{2}\right)>0$, and $d_{1} \leq d_{2}$. According to this derivative, we can increase u only by decreasing d_{2}. As $\frac{\partial d_{1}}{\partial d_{2}} \leq 0$, only the condition $d_{1}=d_{2}$ can stop our traversal. If this condition is reached, then we arrive the point P. If this condition can never be reached (i.e., $d_{1}=d_{2}$ can only happen when $b p\left(d_{2}\right) \leq 1$), then the whole region $R_{2 b_{2}}$ should be eliminated. In this case $P \in R_{1}$. Hence the result follows.

Lemma 3.5. The maximum total utility achieved in R_{1} is 0 .

Proof. We first observe that $b p\left(d_{1}\right) \leq b p\left(d_{2}\right) \leq 1$ because of our assumption $d_{1} \leq d_{2}$. Multiplying d_{2} on both sides of $b p\left(d_{1}\right) \leq 1$ gives $b d_{2} p\left(d_{1}\right) \leq d_{2}$. Multiplying d_{1} on both sides of $b p\left(d_{2}\right) \leq 1$ gives $b d_{1} p\left(d_{2}\right) \leq d_{1}$. Then they can be applied to the following.

$$
\begin{aligned}
& u_{1}\left(d_{1}\right)=-d_{1}+\min \left\{K, b d_{2} p\left(d_{1}\right)\right\} \leq-d_{1}+b d_{2} p\left(d_{1}\right) \leq-d_{1}+d_{2} \\
& u_{2}\left(d_{2}\right)=-d_{2}+\min \left\{K, b d_{1} p\left(d_{2}\right)\right\} \leq-d_{2}+b d_{1} p\left(d_{2}\right) \leq-d_{2}+d_{1} .
\end{aligned}
$$

Adding these two inequalities together, we'll discover that

$$
u_{1}\left(d_{1}\right)+u_{2}\left(d_{2}\right) \leq\left(-d_{1}+d_{2}\right)+\left(-d_{2}+d_{1}\right)=0 .
$$

Hence the result follows.

Figure 3.3: A simple diagram of the remaining regions after the second stage of the elimination procedure

The comparison between R_{1} and P in the final stage is illustrated in the following theorem.

Theorem 3.6. If $d_{o} \geq K$, then $u_{o p t}=0$. If $d_{o}<K$, then $u_{\text {opt }}=2\left(K-d_{o}\right)>0$.

Proof. By Lemma 3.5, the maximum achieved in R_{1} is 0 . If $d_{o} \geq K$, then the total utility at the point P is $u\left(d_{o}, d_{o}\right)=-d_{o}+b d_{o} p\left(d_{o}\right)-d_{o}+b d_{o} p\left(d_{o}\right)=2\left(K-d_{o}\right) \leq 0$. $\therefore u_{\text {opt }}=0$ in this case. If $d_{o}<K$, then $u\left(d_{o}, d_{o}\right)=2\left(K-d_{o}\right)>0$, which is better than $R_{1} . \quad \therefore u_{o p t}=2\left(K-d_{o}\right)>0$ in this case.

Figure 3.4: A geometric perspective of the condition $d_{o}<K$ such that $u\left(d_{o}\right)>0$

Corollary 3.7. Let d_{ℓ} be the less solution to $b x p^{\prime}(x)=1$. If $d_{o} \geq d_{\ell}$, then $u_{o p t}=u\left(d_{o}\right)$.
Proof. $\because b p\left(d_{o}\right) \geq b p\left(d_{\ell}\right)>b d_{\ell} p^{\prime}\left(d_{\ell}\right)=1 \quad \therefore d_{o}<K$ by Definition 2.6. In this case $u_{\text {opt }}>0$ by Theorem 3.6. However the maximum total utility within R_{1} is not greater than 0 , so $u_{\text {opt }}$ can only occur at the point $P=\left(d_{o}, d_{o}\right)$.

We close this section with the following conclusive table.
Table 3.1: The maximum total utility of two-player file-sharing games

Condition	Utility
$d_{o} \geq K$	0
$d_{o}<K$	$2\left(K-d_{o}\right)$

3.2 Nash Equilibria

After analyzing the maximum total utility, we still have to find Nash equilibria in order to analyze the PoA and PoS.

Lemma 3.8. The player P_{i} does not want to change his/her strategy d_{i} if and only if one of the following cases occurs.
Case I. $\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{-}$does not exist (i.e., $d_{i}=0$) and $\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{+} \leq 0$.
Case II. $\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{-} \geq 0$ and $\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{+} \leq 0:\left\{\begin{array}{l}\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{-}=\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{+}=0 \ldots \ldots \\ \left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{-} \geq 0 \text { and }\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{+}=-1\end{array}\right.$
In case I, $d_{i}=0$ and $b d_{j} p^{\prime}(0) \leq 1$. In case II- $(A), 0<b d_{j} p\left(d_{i}\right)<K$ and $b d_{j} p^{\prime}\left(d_{i}\right)=1$. In case $I I-(B), b d_{j} p\left(d_{i}\right)=K$ and $b d_{j} p^{\prime}\left(d_{i}\right) \geq 1$.

Proof. Recall the utility function $u_{i}=-d_{i}+\min \left\{K, b d_{j} p\left(d_{i}\right)\right\}$. Differentiate it with respect to d_{i}.

$$
\frac{\partial u_{i}}{\partial d_{i}}= \begin{cases}\frac{\partial}{\partial d_{i}}\left(-d_{i}+b d_{j} p\left(d_{i}\right)\right)=b d_{j} p^{\prime}\left(d_{i}\right)-1 \geq-1 & \text { if } b d_{j} p\left(d_{i}\right) \leq K \\ \frac{\partial}{\partial d_{i}}\left(-d_{i}+K\right)=-1 & \text { if } b d_{j} p\left(d_{i}\right) \geq K\end{cases}
$$

Since $b d_{j}$ is a fixed nonnegative number, and $p^{\prime}(x)$ is a nonnegative non-increasing function, $\frac{\partial u_{i}}{\partial d_{i}}$ is non-increasing for all $d_{i} \geq 0$. Hence the result follows.

Now we are going to discuss the places where these Nash equilibria occur by cases in the following theorems.

Lemma 3.9. In a Nash equilibrium $\left(d_{1}, d_{2}\right)$, if a player P_{i} 's strategy d_{i} satisfies case I, then the other player P_{j} 's strategy d_{j} must also satisfy case I. That is, $d_{1}=d_{2}=0$.

Proof. If $d_{i}=0$, then $u_{j}=-d_{j}+\min \left\{K, b \cdot 0 \cdot p\left(d_{j}\right)\right\}=-d_{j}$ for all $d_{j} \geq 0$, and $\frac{\partial u_{j}}{\partial d_{j}}=-1$. According to Lemma 3.8, the player P_{j} can make an optimal strategy only by letting $d_{j}=0$. In this case $\frac{\partial u_{i}}{\partial d_{i}}$ is also -1 , so the Nash equilibrium can only be $(0,0)$.

Definition 3.3. If $b x p^{\prime}(x)=1$ has two different solutions, let d_{ℓ} be the less one, and let d_{h} be the greater one. If the equation has only one solution, let d_{ℓ} and d_{h} both denote it.

Figure 3.5: A geometric solution of d_{ℓ} and d_{h} in Definition 3.3

Theorem 3.10. There exists a Nash equilibrium $\left(d_{1}, d_{2}\right)$ such that d_{1} satisfies case II-(A) and d_{2} satisfies case II-(B), if and only if d_{1} and d_{2} both satisfy

$$
\left\{\begin{array}{lll}
b d_{2} p^{\prime}\left(d_{1}\right)=1 & \text { and } & b d_{2} p\left(d_{1}\right)<K \\
b d_{1} p^{\prime}\left(d_{2}\right) \geq 1 & \text { and } & b d_{1} p\left(d_{2}\right)=K
\end{array}\right.
$$

In addition, the Nash equilibrium $N_{\text {side1 }}=\left(d_{1}, d_{2}\right)$ is unique and exists if and only if d_{ℓ} and d_{h} both exist and $d_{\ell}<d_{o}<d_{h}$.

Proof. First, we prove necessity by contradiction. Assume neither d_{ℓ} nor d_{h} exists, or both d_{ℓ} and d_{h} exist but $d_{\ell}=d_{h}$, or both d_{ℓ} and d_{h} exist, $d_{\ell}<d_{h}$ but $d_{o} \notin\left(d_{\ell}, d_{h}\right)$. Each condition implies $b d_{o} p^{\prime}\left(d_{o}\right) \leq 1$. Now we're going to explain why $b d_{2} p^{\prime}\left(d_{1}\right)<1$ in this assumption. By Definition 2.6 the point $\left(d_{o}, d_{o}\right)$ must lie on the curve $b x p(y)=K$, and
by Corollary 2.3 the constraint $b d_{1} p\left(d_{2}\right)=K>b d_{2} p\left(d_{1}\right)$ tells us $d_{1}>d_{2}$. We start from $(x, y)=\left(d_{o}, d_{o}\right)$ and move along that curve in the correct direction $\left(x \geq d_{o}>y\right)$. If $p^{\prime}\left(d_{o}\right)=0$, then $p^{\prime}(x)=0$ and byp $(x)=0$. If $p^{\prime}\left(d_{o}\right)>0$, then byp $(x) \leq$ byp $\left(d_{o}\right)<$ $b d_{o} p^{\prime}\left(d_{o}\right) \leq 1 . \therefore$ byp $^{\prime}(x)<1$. If $(x, y)=\left(d_{1}, d_{2}\right)$, then $b d_{2} p^{\prime}\left(d_{1}\right)<1$ is a contradiction. Nash equilibria cannot exist in this case.

Second, we prove sufficiency. Assume both d_{ℓ} and d_{h} exist, and $d_{o} \in\left(d_{\ell}, d_{h}\right)$. This condition implies $b d_{o} p^{\prime}\left(d_{o}\right)>1$ instead. By Corollary 2.3, we should move from $\left(d_{o}, d_{o}\right)$ in the same direction $\left(x \geq d_{o}>y\right)$ again, so that $\operatorname{byp}(x)<K$ and $b x p(y)=K$ always hold. Besides, we know $b x p^{\prime}(y) \geq b d_{o} p^{\prime}\left(d_{o}\right)$, and $b y p^{\prime}(x)$ is decreasing, as the point (x, y) goes far away from $\left(d_{o}, d_{o}\right)$. Since there is a point at infinity $\lim _{\substack{x_{o} \rightarrow \infty \\ y_{o} \rightarrow 0}}\left(x_{o}, y_{o}\right)$ on the curve such that $\lim _{\substack{x_{o} \rightarrow \infty \\ y_{o} \rightarrow 0}} b y_{o} p^{\prime}\left(x_{o}\right)=0$, by the intermediate value theorem there must exist one point (x, y) in this direction such that byp $^{\prime}(x)=1$. In this case if $(x, y)=\left(d_{1}, d_{2}\right)$, the Nash equilibrium $N_{\text {side1 }}$ exists. If $(x, y) \neq\left(d_{1}, d_{2}\right)$, then either $\left(x \geq d_{1}\right.$ and $\left.y<d_{2}\right)$ or $\left(x \leq d_{1}\right.$ and $\left.y>d_{2}\right)$ happens. If the former happens and $p^{\prime}(x)>0$, then byp $^{\prime}(x) \leq$ byp $^{\prime}\left(d_{1}\right)<b d_{2} p^{\prime}\left(d_{1}\right)=1$. If the former happens and $p^{\prime}(x)=0$, then $b y p^{\prime}(x)=0$. If the latter happens, then $\operatorname{byp}^{\prime}(x) \geq b y p^{\prime}\left(d_{1}\right)>b d_{2} p^{\prime}\left(d_{1}\right)=1$. The reader may discover that byp $^{\prime}(x) \neq b d_{2} p^{\prime}\left(d_{1}\right)=1$ in both cases, so the point is unique.

Figure 3.6: A simple diagram of $N_{\text {side } 1}$ and $N_{\text {side } 2}$ in Theorem 3.10 and its corollary

Corollary 3.11. The Nash equilibrium $N_{\text {side } 2}=\left(d_{2}, d_{1}\right)$ exists if and only if $N_{\text {side } 1}=$ $\left(d_{1}, d_{2}\right)$ exists.

Theorem 3.12. There exists a Nash equilibrium $\left(d_{1}, d_{2}\right)$ such that the strategies of both players satisfy case II-(A), if and only if d_{1} and d_{2} both satisfy

$$
\begin{cases}b d_{2} p^{\prime}\left(d_{1}\right)=1 & \text { and } \quad b d_{2} p\left(d_{1}\right)<K \\ b d_{1} p^{\prime}\left(d_{2}\right)=1 & \text { and } \quad b d_{1} p\left(d_{2}\right)<K\end{cases}
$$

In addition, the Nash equilibrium $N_{\ell}=\left(d_{\ell}, d_{\ell}\right)$ exists if and only if d_{ℓ} exists and $d_{\ell}<d_{o}$. The Nash equilibrium $N_{h}=\left(d_{h}, d_{h}\right)$ exists if and only if d_{h} exists and $d_{h}<d_{o}$.

Proof. According to the constraints $b d_{2} p^{\prime}\left(d_{1}\right)=b d_{1} p^{\prime}\left(d_{2}\right)>0$, we can deduce $d_{1}=d_{2}>$ 0 by Lemma 2.4. Thus, these d_{i} 's are in fact the solutions of $b x p^{\prime}(x)=1$, by Definition 3.3 one of which is d_{ℓ} and the other d_{h}. Since $b d_{\ell} p\left(d_{\ell}\right)<K=b d_{o} p\left(d_{o}\right) \Longleftrightarrow d_{\ell}<d_{o}$, and $b d_{h} p\left(d_{h}\right)<K=b d_{o} p\left(d_{o}\right) \Longleftrightarrow d_{h}<d_{o}$, the result follows.

Figure 3.7: A simple diagram of N_{ℓ} and N_{h} in Theorem 3.12

Theorem 3.13. There exists a Nash equilibrium $\left(d_{1}, d_{2}\right)$ such that the strategies of both players satisfy case II-(B), if and only if d_{1} and d_{2} both satisfy

$$
\begin{cases}b d_{2} p^{\prime}\left(d_{1}\right) \geq 1 & \text { and } \quad b d_{2} p\left(d_{1}\right)=K \\ b d_{1} p^{\prime}\left(d_{2}\right) \geq 1 & \text { and } \quad b d_{1} p\left(d_{2}\right)=K\end{cases}
$$

In addition, the Nash equilibrium $N_{o}=\left(d_{o}, d_{o}\right)$ is unique and exists if and only if d_{ℓ} and d_{h} both exist and $d_{\ell} \leq d_{o} \leq d_{h}$.

Proof. According to the constraints $b d_{2} p\left(d_{1}\right)=b d_{1} p\left(d_{2}\right)>0$, we can deduce $d_{1}=d_{2}>0$. by Corollary 2.3. In this case, these d_{i} 's can only be the solution of $\operatorname{bxp}(x)=K$, and by Definition 2.6 it is d_{o}. Since $b d_{o} p^{\prime}\left(d_{o}\right) \geq 1 \Longleftrightarrow d_{\ell} \leq d_{o} \leq d_{h}$, the result follows.

Figure 3.8: A simple diagram of N_{o} in Theorem 3.13

After discussing conditions for the existence of Nash equilibria, we subsequently want to discuss their stability.

Theorem 3.14. $(0,0)$ is always a stable Nash.
Proof. Consider an extremely small rectangular area whose bottom-left corner is $(0,0)$. Assume its height is h and its width is w. We want to show that in this area both $\frac{\partial u_{1}}{\partial d_{1}}$ and $\frac{\partial u_{2}}{\partial d_{2}}$ are negative if h and w are small enough, and neither of these derivatives converges to 0 . If this is true, then any point in this area must have a tendency to converge to $(0,0)$ and we are done. Since this area is extremely small, we assume $b d_{1} p\left(d_{2}\right)<K$ and $b d_{2} p\left(d_{1}\right)<K$. Then

$$
\frac{\partial u_{1}}{\partial d_{1}}=b d_{2} p^{\prime}\left(d_{1}\right)-1 \quad \text { and } \quad \frac{\partial u_{2}}{\partial d_{2}}=b d_{1} p^{\prime}\left(d_{2}\right)-1
$$

Observing the formula, we discover that the maximum value of $\frac{\partial u_{1}}{\partial d_{1}}$ occurs at the top-left corner, and the maximum value of $\frac{\partial u_{2}}{\partial d_{2}}$ occurs at the bottom-right corner. To achieve our goal, we can take h such that $b h p^{\prime}(0)-1<0$ and take w such that $b w p^{\prime}(0)-1<0$. Therefore both $\frac{\partial u_{1}}{\partial d_{1}} \leq b h p^{\prime}(0)-1$ and $\frac{\partial u_{2}}{\partial d_{2}} \leq b w p^{\prime}(0)-1$ in the whole area, and neither of them converges to 0 . We can say $(0,0)$ is a stable Nash.

Figure 3.9: A geometric illustration of Theorem 3.14

Figure 3.10: A geometric illustration of Lemma 3.15

Lemma 3.15. Suppose there are two nonnegative strategies $d_{1}<d_{2} \leq d_{\ell}$ and the initial condition $b d_{1} p^{\prime}\left(d_{2}\right)<1$. If we can find two positive numbers $\epsilon, \epsilon_{0}>0$ such that $b\left(d_{1}-\right.$ $\left.\epsilon_{0}\right) p^{\prime}\left(d_{2}-\epsilon\right)=1$, then $\epsilon>\epsilon_{0}>0$.

Proof. Since $d_{1}-\epsilon_{0}<d_{\ell}$, we deduce $b\left(d_{1}-\epsilon_{0}\right) p^{\prime}\left(d_{1}-\epsilon_{0}\right)<b d_{\ell} p^{\prime}\left(d_{\ell}\right)=1$. Compare it with $b\left(d_{1}-\epsilon_{0}\right) p^{\prime}\left(d_{2}-\epsilon\right)=1$, we also deduce $p^{\prime}\left(d_{1}-\epsilon_{0}\right)<p^{\prime}\left(d_{2}-\epsilon\right)$ and therefore $d_{1}-\epsilon_{0}>d_{2}-\epsilon$. This inequality implies $\epsilon-\epsilon_{0}>d_{2}-d_{1}>0$, so $\epsilon>\epsilon_{0}$.

Figure 3.11: A geometric illustration of Theorem 3.16

Theorem 3.16. N_{ℓ}, if exists, must be an unstable Nash.

Proof. Consider the starting point $\left(d_{\ell}^{-}, d_{\ell}^{-}\right)$where $d_{\ell}^{-}=d_{\ell}-\epsilon$ for an arbitrarily small $\epsilon>0$. If N_{ℓ} exists, by Theorem $3.12 b d_{\ell}^{-} p\left(d_{\ell}^{-}\right)<b d_{o} p\left(d_{o}\right)=K$. Therefore if d_{1} and d_{2} are non-increasing during the iterative process, then $b d_{1} p\left(d_{2}\right)<K, b d_{2} p\left(d_{1}\right)<K$, and

$$
\frac{\partial u_{1}}{\partial d_{1}}=b d_{2} p^{\prime}\left(d_{1}\right)-1 \quad \text { and } \quad \frac{\partial u_{2}}{\partial d_{2}}=b d_{1} p^{\prime}\left(d_{2}\right)-1
$$

At the starting point we have $\frac{\partial u_{1}}{\partial d_{1}}=\frac{\partial u_{2}}{\partial d_{2}} \leq b d_{\ell}^{-} p^{\prime}\left(d_{\ell}^{-}\right)-1<0$. Without loss of generality, assume d_{1} decreases first. It should decrease to 0 or the value such that $\frac{\partial u_{1}}{\partial d_{1}}=0$. If d_{1} becomes 0 , then $\frac{\partial u_{2}}{\partial d_{2}}=b \cdot 0 \cdot p^{\prime}\left(d_{2}\right)-1=-1$ and therefore the system converges to $(0,0)$. If d_{1} is adjusted to achieve $\frac{\partial u_{1}}{\partial d_{1}}=b d_{2} p^{\prime}\left(d_{1}\right)-1=0$, then $d_{1}<d_{2}$ and $\frac{\partial u_{2}}{\partial d_{2}}=$
$b d_{1} p^{\prime}\left(d_{2}\right)-1<0$. It's d_{2} 's turn to decrease. Since $\frac{\partial u_{2}}{\partial d_{2}}<0$, we should decrease d_{2} to 0 or the value such that $\frac{\partial u_{2}}{\partial d_{2}}=b d_{1} p^{\prime}\left(d_{2}\right)-1=0$. By Lemma 3.15, if d_{2} is not decreased to 0 , the decrement of d_{2} should be greater than that of d_{1} in the previous round. Hence the decrement of d_{i} in each round cannot converge to 0 . Based on this fact, the system must finally converge to $(0,0)$ in finitely many rounds. Since $(0,0)$ is a Nash equilibrium, it's impossible for the system to go back to N_{ℓ} again. Therefore N_{ℓ} is unstable.

Figure 3.12: A geometric illustration of Lemma 3.17
Lemma 3.17. If $d_{h} \leq d_{o}$ and the starting point (x, y) satisfies byp $(x) \geq 1, b x p^{\prime}(y) \geq 1$, $x>d_{\ell}$, and $y>d_{\ell}$, then it must converge to $\left(d_{h}, d_{h}\right)$.

Proof. First, we want to show by contradiction that $d_{1}, d_{2} \leq d_{h}$ if $b d_{2} p^{\prime}\left(d_{1}\right) \geq 1$ and $b d_{1} p^{\prime}\left(d_{2}\right) \geq 1$. If $d_{1}>d_{h}$ and $d_{1} \geq d_{2}$, then $b d_{2} p^{\prime}\left(d_{1}\right) \leq b d_{1} p^{\prime}\left(d_{1}\right)<b d_{h} p^{\prime}\left(d_{h}\right)=1$ is a contradiction. If $d_{2}>d_{h}$ and $d_{2} \geq d_{1}$, then $b d_{1} p^{\prime}\left(d_{2}\right) \leq b d_{2} p^{\prime}\left(d_{2}\right)<b d_{h} p^{\prime}\left(d_{h}\right)=1$ is a contradiction. Hence neither d_{1} nor d_{2} can be greater than d_{h}.

Second, since $x \leq d_{h} \leq d_{o}$ and $y \leq d_{h} \leq d_{o}$, we deduce $\operatorname{bxp}(y) \leq K$ and $\operatorname{byp}(x) \leq$ K, and

$$
\frac{\partial u_{1}}{\partial d_{1}}=b d_{2} p^{\prime}\left(d_{1}\right)-1 \quad \text { and } \quad \frac{\partial u_{2}}{\partial d_{2}}=b d_{1} p^{\prime}\left(d_{2}\right)-1
$$

Without loss of generality, assume d_{1} increases first. This move should let $\frac{\partial u_{1}}{\partial d_{1}}=0$ and $\frac{\partial u_{2}}{\partial d_{2}}>0$. The reader may discover that the move doesn't leave the area $\frac{\partial u_{1}}{\partial d_{1}} \geq 0$ and $\frac{\partial u_{2}}{\partial d_{2}} \geq 0$ and therefore $d_{1}, d_{2} \leq d_{h} \leq d_{o}$ and the derivatives are not affected by the bound K. It's d_{2} 's turn to increase. The two players will take turn increasing their contributions.

Finally, since d_{1} and d_{2} are both monotonic (increasing) and bounded above (not greater than d_{h}), by the monotone convergence theorem they must converge eventually. The system converges only if $\frac{\partial u_{1}}{\partial d_{1}}=\frac{\partial u_{2}}{\partial d_{2}}=0$. By Lemma 2.4 both d_{1} and d_{2} can only be d_{ℓ} or d_{h} at the same time. Since $x>d_{\ell}$ and $y>d_{\ell}$, according to monotonicity the system must converge to $\left(d_{h}, d_{h}\right)$.

Figure 3.13: A geometric illustration of Lemma 3.18

Lemma 3.18. If $d_{h}<d_{o}$ and the starting point (x, y) which is arbitrarily close to $\left(d_{h}, d_{h}\right)$ satisfies byp $(x) \leq 1, \operatorname{bxp}^{\prime}(y) \leq 1$, and $x, y \geq d_{h}$, then it must converge to $\left(d_{h}, d_{h}\right)$.

Proof. The proof is very similar to Lemma 3.17. Since (x, y) is arbitrarily close to $\left(d_{h}, d_{h}\right)$, we deduce $b x p(y)<K$ and $\operatorname{byp}(x)<K$, and

$$
\frac{\partial u_{1}}{\partial d_{1}}=b d_{2} p^{\prime}\left(d_{1}\right)-1 \quad \text { and } \quad \frac{\partial u_{2}}{\partial d_{2}}=b d_{1} p^{\prime}\left(d_{2}\right)-1
$$

Without loss of generality, assume d_{2} decreases first. This move should let $\frac{\partial u_{2}}{\partial d_{2}}=0$ and $\frac{\partial u_{1}}{\partial d_{1}}<0$. After that it's d_{1} 's turn to decrease to let $\frac{\partial u_{1}}{\partial d_{1}}=0$ and $\frac{\partial u_{2}}{\partial d_{2}}<0$. The two players will take turn decreasing their contributions (strategies). The reader may discover that none of the moves leaves the area $\frac{\partial u_{1}}{\partial d_{1}} \leq 0$ and $\frac{\partial u_{2}}{\partial d_{2}} \leq 0$. Based on this fact, we want to show by contradiction that $d_{1}, d_{2} \geq d_{h}$ during the iterative process.

If it's d_{2} 's turn to decrease and after that $d_{1} \geq d_{h}>d_{2}$, then $\frac{\partial u_{2}}{\partial d_{2}}=b d_{1} p^{\prime}\left(d_{2}\right)-1 \geq$ $b d_{h} p^{\prime}\left(d_{2}\right)-1>b d_{h} p^{\prime}\left(d_{h}\right)-1=0$ which leaves the area $\frac{\partial u_{2}}{\partial d_{2}} \leq 0$. Therefore d_{2} should be greater than or equal to d_{h}. This argument can also be applied to the case when it's d_{1} 's turn to decrease.

Finally, since d_{1} and d_{2} are both monotonic (decreasing) and bounded below (not less than d_{h}), by the monotone convergence theorem they must converge eventually. The system converges only if $\frac{\partial u_{1}}{\partial d_{1}}=\frac{\partial u_{2}}{\partial d_{2}}=0$. By Lemma 2.4 both d_{1} and d_{2} can only be d_{ℓ} or d_{h} at the same time. Since $d_{1} \geq d_{h}$ and $d_{2} \geq d_{h}$, the system must converge to $\left(d_{h}, d_{h}\right)$.

Figure 3.14: A geometric illustration of Theorem 3.19

Theorem 3.19. N_{h}, if exists, must be a stable Nash equilibrium if $d_{\ell}<d_{h}$, and be unstable if $d_{\ell}=d_{h}$.

Proof. If $d_{\ell}=d_{h}$, then N_{h} and N_{ℓ} are the same. By Theorem $3.16 N_{h}$ is unstable. If $d_{\ell}<d_{h}$, we can consider an extremely small region centered at $\left(d_{h}, d_{h}\right)$. By Theorem $3.12 d_{h}<d_{o}$, we deduce $b d_{1} p\left(d_{2}\right)<K$ and $b d_{2} p\left(d_{1}\right)<K$, and

$$
\frac{\partial u_{1}}{\partial d_{1}}=b d_{2} p^{\prime}\left(d_{1}\right)-1 \quad \text { and } \quad \frac{\partial u_{2}}{\partial d_{2}}=b d_{1} p^{\prime}\left(d_{2}\right)-1 .
$$

Consider an arbitrary starting point (x, y) in the area. If (x, y) satisfies $\frac{\partial u_{1}}{\partial d_{1}} \geq 0 \wedge \frac{\partial u_{2}}{\partial d_{2}} \leq 0$,
then (a) $\frac{\partial u_{1}}{\partial d_{1}}=0 \wedge \frac{\partial u_{2}}{\partial d_{2}} \leq 0$ or (b) $\frac{\partial u_{1}}{\partial d_{1}}=0 \wedge \frac{\partial u_{2}}{\partial d_{2}} \geq 0$ happens after we increase d_{1} a little, or (c) $\frac{\partial u_{2}}{\partial d_{2}}=0 \wedge \frac{\partial u_{1}}{\partial d_{1}} \leq 0$ or (d) $\frac{\partial u_{2}}{\partial d_{2}}=0 \wedge \frac{\partial u_{1}}{\partial d_{1}} \geq 0$ happens after we decrease d_{2} a little. If (a) happens, then $b d_{2} p^{\prime}\left(d_{1}\right)=1$ and $b d_{1} p^{\prime}\left(d_{2}\right) \leq 1$. The constraint gives $d_{2} \geq d_{1}$. Suppose for contradiction that $d_{\ell}<d_{1}<d_{h}$. Then $b d_{2} p^{\prime}\left(d_{1}\right) \geq b d_{1} p^{\prime}\left(d_{1}\right)>b d_{h} p^{\prime}\left(d_{h}\right)=1$ contradicts $b d_{2} p^{\prime}\left(d_{1}\right)=1$. Hence $d_{2} \geq d_{1} \geq d_{h}$, and by Lemma 3.18 the system converges to N_{h}. By symmetry, the same conclusion holds for (c). If (b) happens, we can simply use Lemma 3.17 to show that the system converges to N_{h}. By symmetry, the same conclusion holds for (d). To sum up, the system converges to N_{h} if (x, y) satisfies $\frac{\partial u_{1}}{\partial d_{1}} \geq 0 \wedge \frac{\partial u_{2}}{\partial d_{2}} \leq 0$.

By symmetry, we can also say the system converges to N_{h} if (x, y) satisfies $\frac{\partial u_{1}}{\partial d_{1}} \leq$ $0 \wedge \frac{\partial u_{2}}{\partial d_{2}} \geq 0$. According to Lemma 3.17, the same conclusion also holds if (x, y) satisfies $\frac{\partial u_{1}}{\partial d_{1}} \geq 0 \wedge \frac{\partial u_{2}}{\partial d_{2}} \geq 0$. Now we consider the last case when $\frac{\partial u_{1}}{\partial d_{1}} \leq 0 \wedge \frac{\partial u_{2}}{\partial d_{2}} \leq 0$. Suppose for contradiction that $d_{\ell}<d_{1}<d_{h}$ and $d_{1} \leq d_{2}$. Then $b d_{2} p^{\prime}\left(d_{1}\right) \geq b d_{1} p^{\prime}\left(d_{1}\right)>b d_{h} p^{\prime}\left(d_{h}\right)=$ 1 contradicts $b d_{2} p^{\prime}\left(d_{1}\right) \leq 1$. Hence $d_{1}, d_{2} \geq d_{h}$ in this case. By Lemma 3.18 the system also converges to N_{h}. Therefore all points very close to $\left(d_{h}, d_{h}\right)$ will converge to N_{h}. It is stable.

Theorem 3.20. N_{o}, if exists, is unstable when $d_{\ell} \leq d_{o}<d_{h}$ or $d_{\ell}=d_{o}=d_{h}$, and is stable when $d_{\ell}<d_{o}=d_{h}$.

Proof. If $d_{\ell}=d_{o}$, then we can repeat the proof in Theorem 3.16 to say N_{o} is unstable. If $d_{\ell}<d_{o}<d_{h}$, we want to show that in any arbitrarily small region centered at N_{o}, there must exist at least one point which will converge to $N_{\text {side1 }}$ (or $N_{\text {side } 2}$). Consider the iterative process in the reverse direction (starting from $N_{\text {side1 }}$). We want to construct a path from $N_{\text {side1 }}$ to N_{o} with the following procedure. Recall the constraint of $N_{\text {sidel } 1}$: $\left(b d_{2} p\left(d_{1}\right)<K\right) \wedge\left(b d_{1} p\left(d_{2}\right)=K\right)$. Let d_{2} increase first such that $\left(b d_{2} p\left(d_{1}\right)=\right.$ $K) \wedge\left(b d_{1} p\left(d_{2}\right) \geq K\right)$ and we say the system arrives at the point P_{1}. Then d_{1} decreases such that $\left(b d_{2} p\left(d_{1}\right) \leq K\right) \wedge\left(b d_{1} p\left(d_{2}\right)=K\right)$ and the system arrives at the point P_{2}. The two players will take turn making an ultimate adjustment of their strategies under the constraint $\left(b d_{2} p\left(d_{1}\right) \leq K\right) \wedge\left(b d_{1} p\left(d_{2}\right) \geq K\right)$ and obtain the subsequent points P_{3}, P_{4}, P_{5}, and so on. In the following paragraphs we want to show this procedure will converge to $\left(d_{o}, d_{o}\right)$ eventually.

First, we show the boundedness. Consider the constraint $b d_{1} p\left(d_{2}\right) \geq K \geq b d_{2} p\left(d_{1}\right)$. By Corollary 2.3, we deduce $d_{1} \geq d_{2}$. Then we want to prove $d_{1} \geq d_{o} \geq d_{2}$ by contradiction. If $d_{o}>d_{1} \geq d_{2}$, then $b d_{1} p\left(d_{2}\right)<b d_{o} p\left(d_{o}\right)=K$ contradicts $b d_{1} p\left(d_{2}\right) \geq K$. If $d_{1} \geq d_{2}>d_{o}$, then $b d_{2} p\left(d_{1}\right)>b d_{o} p\left(d_{o}\right)=K$ contradicts $b d_{2} p\left(d_{1}\right) \leq K$. Hence d_{1} is bounded below by d_{o}, and d_{2} is bounded above by d_{o}.

Second, we show the monotonicity. Recall the inequality $b d_{2} p^{\prime}\left(d_{1}\right) \geq 1$ of the constraint of $N_{\text {sidel }}$. Since in our iterative process d_{1} is non-increasing and d_{2} is non-decreasing, $b d_{2} p^{\prime}\left(d_{1}\right) \geq 1$ is always true. Since $d_{1} \geq d_{o} \geq d_{2}$, we have $b d_{1} p^{\prime}\left(d_{2}\right) \geq b d_{o} p^{\prime}\left(d_{o}\right)>1$. Therefore $p^{\prime}\left(d_{1}\right)>0$ and $p^{\prime}\left(d_{2}\right)>0$. It means that neither of $p\left(d_{1}\right)$ and $p\left(d_{2}\right)$ reaches 1 during the iterative process, and either $\left(b d_{2} p\left(d_{1}\right)=K\right) \wedge\left(b d_{1} p\left(d_{2}\right)>K\right)$ or $\left(b d_{2} p\left(d_{1}\right)<K\right) \wedge\left(b d_{1} p\left(d_{2}\right)=K\right)$ happens in each move. In fact it also implies that d_{1} is "strictly decreasing" and d_{2} is "strictly increasing." The monotonicity is proven.

By the monotone convergence theorem, the procedure must eventually converge to some point. If it converges, then solving the equation $b d_{1} p\left(d_{2}\right)=K=b d_{2} p\left(d_{1}\right)$ by Corollary 2.3 gives us $d_{1}=d_{2}=d_{o}$ and we can say the procedure finally converges to $\left(d_{o}, d_{o}\right)$. It means that in any arbitrarily small region centered at N_{o}, we can always find some point P_{N} for a sufficiently large N. Since $b d_{2} p\left(d_{1}\right) \leq K$ and $b d_{2} p^{\prime}\left(d_{1}\right) \geq 1$ in this area, we deduce $\frac{\partial u_{1}}{\partial d_{1}} \geq 0$. Since $b d_{1} p\left(d_{2}\right) \geq K$ in this area, we deduce $\frac{\partial u_{2}}{\partial d_{2}}=-1$. We can guarantee that the system naturally goes from P_{N} to P_{N-1}, and goes from P_{N-1} to P_{N-2}, and so on. Finally it reaches $N_{\text {side } 1}$ and can never go back to $N_{o} . N_{o}$ is unstable.

Figure 3.15: A geometric illustration of the case $d_{\ell}<d_{o}<d_{h}$

If $d_{\ell}<d_{o}=d_{h}$, then there must be some point around N_{h} that causes $b d_{1} p\left(d_{2}\right)>K$ or $b d_{2} p\left(d_{1}\right)>K$. If one of these inequalities holds, the corresponding player should decrease his/her contribution (strategy) such that $b d_{1} p\left(d_{2}\right) \leq K$ and $b d_{2} p\left(d_{1}\right) \leq K$. In this case one of $d_{1} \leq d_{h}$ and $d_{2} \leq d_{h}$ must hold. Otherwise, both d_{1} and d_{2} are larger than d_{h} which causes $b d_{1} p\left(d_{2}\right)$ and $b d_{2} p\left(d_{1}\right)$ to be larger than K. This is a contradiction. Without loss of generality, we only assume $d_{1} \leq d_{h}$ in our proof. Since the points are arbitrarily close to N_{h}, we should always keep in mind that $d_{1}, d_{2}>d_{\ell}$. This section can be split into two cases $d_{1} \geq d_{2}$ and $d_{1}<d_{2}$.

If $d_{1} \geq d_{2}$, then we deduce $b d_{1} p^{\prime}\left(d_{2}\right) \geq b d_{1} p^{\prime}\left(d_{1}\right) \geq 1$. Since $b d_{1} p^{\prime}\left(d_{2}\right) \geq b d_{2} p^{\prime}\left(d_{1}\right)$ must hold when $d_{1} \geq d_{2}$, either $b d_{1} p^{\prime}\left(d_{2}\right) \geq b d_{2} p^{\prime}\left(d_{1}\right) \geq 1$ or $b d_{1} p^{\prime}\left(d_{2}\right)>1 \geq b d_{2} p^{\prime}\left(d_{1}\right)$ happens. If the former happens, the system will automatically converge to N_{h} by Lemma 3.17. If the latter happens, we can either decrease d_{1} to reach $b d_{2} p^{\prime}\left(d_{1}\right)=1$ or increase d_{2} to reach $b d_{1} p^{\prime}\left(d_{2}\right)=1$. If we can decrease d_{1} to x, then x must be larger than d_{2}. Otherwise, $b d_{2} p^{\prime}(x) \geq b d_{2} p^{\prime}\left(d_{2}\right)>1$ is a contradiction. Since $x>d_{2}$, we deduce $b x p^{\prime}\left(d_{2}\right)>b d_{2} p^{\prime}\left(d_{2}\right) \geq 1$. By Lemma 3.17 the system will automatically converge to N_{h}. If we can increase d_{2} to x, then x must be larger than or equal to d_{1}. Otherwise, $b d_{1} p^{\prime}(x)>b d_{1} p^{\prime}\left(d_{1}\right) \geq 1$ is a contradiction. Additionally, $x \leq d_{h}$. Otherwise, $b d_{1} p^{\prime}(x)<b d_{1} p^{\prime}\left(d_{h}\right) \leq b d_{h} p^{\prime}\left(d_{h}\right)=1$ is a contradiction. Since $d_{1} \leq x\left(\right.$ new $\left.d_{2}\right) \leq d_{h}$, neither $b d_{1} p(x)$ nor $b x p\left(d_{1}\right)$ exceeds $K, \frac{\partial u_{2}}{\partial d_{2}}$ is not affected by K, and therefore increasing d_{2} is possible. We reach $b x p^{\prime}\left(d_{1}\right) \geq b d_{1} p^{\prime}(x)=1$ and by Lemma 3.17 the system will automatically converge to N_{h}.

If $d_{1}<d_{2}$, then we deduce $b d_{2} p^{\prime}\left(d_{1}\right)>b d_{1} p^{\prime}\left(d_{1}\right)>1$. Since $b d_{2} p^{\prime}\left(d_{1}\right)>b d_{1} p^{\prime}\left(d_{2}\right)$ must hold when $d_{1}<d_{2}$, either $b d_{2} p^{\prime}\left(d_{1}\right)>b d_{1} p^{\prime}\left(d_{2}\right)>1$ or $b d_{2} p^{\prime}\left(d_{1}\right)>1 \geq b d_{1} p^{\prime}\left(d_{2}\right)$ happens. If $b d_{2} p^{\prime}\left(d_{1}\right)>b d_{1} p^{\prime}\left(d_{2}\right) \geq 1$ happens, the system will automatically converge to N_{h} by Lemma 3.17. If $b d_{2} p^{\prime}\left(d_{1}\right)>1>b d_{1} p^{\prime}\left(d_{2}\right)$ happens, we can either decrease d_{2} to reach $b d_{1} p^{\prime}\left(d_{2}\right)=1$ or increase d_{1} to reach $b d_{2} p^{\prime}\left(d_{1}\right)=1$. If we want to decrease d_{2} now, the argument of the case to decrease d_{1} in the previous paragraph can also be used to show the convergence. If we want to increase d_{1} instead, then either (a) $b d_{2} p\left(d_{1}\right)=K$ or (b) $b d_{2} p^{\prime}\left(d_{1}\right)=1$ happens first. If(a) happens first, then this step fails to satisfy $b d_{2} p^{\prime}\left(d_{1}\right)=1$.

It implies $b d_{2} p^{\prime}\left(d_{1}\right)>1$ still remains. In this case if $b d_{1} p^{\prime}\left(d_{2}\right) \geq 1$, we simply use Lemma 3.17 to show that the system will finally converge to N_{h}. If $b d_{1} p^{\prime}\left(d_{2}\right)<1$, we can decrease d_{2} again and use the previous argument of the case $b d_{2} p^{\prime}\left(d_{1}\right)>1>b d_{1} p^{\prime}\left(d_{2}\right)$ to show the convergence. If (b) happens first, then we can also use the argument of the case to increase d_{2} in the previous paragraph to show the convergence. Hence we are done.

Figure 3.16: A geometric illustration of the case $d_{\ell}<d_{o}=d_{h}$

We close this section with the following conclusive table.
Table 3.2: Summary of Nash equilibria of two-player file-sharing games in ascending order of their total utility

Point	Stability	Condition
$(0,0)$	YES	-
N_{ℓ}	NO	$d_{\ell}<d_{o}$
$N_{\text {side } 1}, N_{\text {side } 2}$	unknown	$d_{\ell}<d_{o}<d_{h}$
N_{o}	(almost) NO	$d_{\ell} \leq d_{o} \leq d_{h}$
N_{h}	(almost) YES	$d_{h}<d_{o}$

3.3 The PoA and PoS

Finally, we're going to calculate the PoS and PoA and observe their properties. Our analysis is split into three different cases depending on the value of d_{o}. Before the analysis, we give two definitions to show that we don't care about the origin.

Definition 3.4. A Nash equilibrium not on the origin is a non-collapsing Nash equilibrium.

Definition 3.5. If we only consider these non-collapsing Nash equilibria when calculating a PoA, the result is a non-collapsing PoA. In this section we only care about the noncollapsing PoA.

The objective of Lemma 3.21, Lemma 3.22, and Theorem 3.23 is to sort all the Nash equilibria by the total utility function.

Lemma 3.21. Given two Nash equilibria $N_{x}=\left(d_{x_{1}}, d_{x_{2}}\right)$ and $N_{y}=\left(d_{y_{1}}, d_{y_{2}}\right)$, if $d_{x_{1}} \geq$ $d_{y_{1}} \geq d_{\ell}$ and $d_{x_{2}} \geq d_{y_{2}} \geq d_{\ell}$, then $u\left(N_{x}\right) \geq u\left(N_{y}\right)$.

Proof. Since $b p\left(d_{\ell}\right) \geq b d_{\ell} p^{\prime}\left(d_{\ell}\right)=1$, we ensure that $b p\left(d_{x_{i}}\right)-1 \geq 0$ and $b p\left(d_{y_{i}}\right)-1 \geq 0$ are always true for all parameters not less than d_{ℓ}. In addition, $b d_{x_{i}} p\left(d_{x_{j}}\right) \leq K$ and $b d_{y_{i}} p\left(d_{y_{j}}\right) \leq K$ are always true for all parameters because N_{x} and N_{y} are Nash equilibria. We can write

$$
\begin{aligned}
& u\left(N_{x}\right)=d_{x_{1}}\left(b p\left(d_{x_{2}}\right)-1\right)+d_{x_{2}}\left(b p\left(d_{x_{1}}\right)-1\right), \text { and } \\
& u\left(N_{y}\right)=d_{y_{1}}\left(b p\left(d_{y_{2}}\right)-1\right)+d_{y_{2}}\left(b p\left(d_{y_{1}}\right)-1\right) .
\end{aligned}
$$

It is clear to see that $b p\left(d_{x_{2}}\right)-1 \geq b p\left(d_{y_{2}}\right)-1 \geq 0$ and $b p\left(d_{x_{1}}\right)-1 \geq b p\left(d_{y_{1}}\right)-1 \geq 0$, so $u\left(N_{x}\right) \geq u\left(N_{y}\right)$.

Lemma 3.22. If $N_{\text {side } 1}=\left(d_{1}, d_{2}\right)$ exists, then the order of the parameters should be the following: $d_{\ell}<d_{2}<d_{o}<d_{1}<d_{h}$.

Proof. Recall the constraint of $N_{\text {side1 }}$:

$$
\begin{cases}b d_{2} p^{\prime}\left(d_{1}\right)=1 & \text { and } \quad b d_{2} p\left(d_{1}\right)<K \\ b d_{1} p^{\prime}\left(d_{2}\right) \geq 1 & \text { and } \quad b d_{1} p\left(d_{2}\right)=K\end{cases}
$$

Since $b d_{1} p\left(d_{2}\right)=b d_{o} p\left(d_{o}\right)>b d_{2} p\left(d_{1}\right)$, by Theorem 2.3 we deduce $d_{2}<d_{o}<d_{1}$. Compare $b d_{2} p^{\prime}\left(d_{1}\right)=1$ with $b d_{h} p^{\prime}\left(d_{h}\right)=1$. If $d_{1} \geq d_{h}$, then $p^{\prime}\left(d_{1}\right) \leq p^{\prime}\left(d_{h}\right)$. The inequality along with $d_{2}<d_{o}<d_{h}$ together implies $b d_{2} p^{\prime}\left(d_{1}\right)<1$ which is a contradiction. Therefore $d_{1}<d_{h}$. Compare $b d_{2} p^{\prime}\left(d_{1}\right)=1$ with $b d_{\ell} p^{\prime}\left(d_{\ell}\right)=1$. If $d_{2} \leq d_{\ell}$, then $d_{\ell}<d_{o}<d_{1}$ implies $p^{\prime}\left(d_{1}\right)<p^{\prime}\left(d_{\ell}\right)$ and therefore $b d_{2} p^{\prime}\left(d_{1}\right)<1$ which is
a contradiction. Therefore $d_{\ell}<d_{2}$. Combining $d_{\ell}<d_{2}, d_{2}<d_{o}<d_{1}$, and $d_{1}<d_{h}$, we obtain our final result.

Theorem 3.23. If $d_{o}=d_{\ell}$, then the order of existing Nash equilibria should be $u(O)<$ $u\left(N_{o}\right)$. If $d_{\ell}<d_{o}<d_{h}$, then the order of existing Nash equilibria should be $u(O)<$ $u\left(N_{\ell}\right)<u\left(N_{\text {side1 }}\right)=u\left(N_{\text {side2 }}\right) \leq u\left(N_{o}\right)$. If $d_{o}=d_{h}$, then $u(O)<u\left(N_{\ell}\right) \leq u\left(N_{o}\right)$. If $d_{o}>d_{h}$, then $u(O)<u\left(N_{\ell}\right) \leq u\left(N_{h}\right)$.

Proof. Since $d_{\ell}>0$ and $b p\left(d_{\ell}\right)>b d_{\ell} p^{\prime}\left(d_{\ell}\right)=1$, we deduce $u(0,0)=0<2 d_{\ell}\left(b p\left(d_{\ell}\right)-\right.$ 1) $=u\left(N_{\ell}\right)$. If $N_{\text {side1 }}=\left(d_{1}, d_{2}\right)$ exists, then $d_{\ell}<d_{2}<d_{o}<d_{1}<d_{h}$ by Lemma 3.22. We can deduce $u\left(N_{\text {side } 1}\right)=2 d_{2}\left[b p\left(d_{1}\right)-1\right]>2 d_{\ell}\left(b p\left(d_{\ell}\right)-1\right)=u\left(N_{\ell}\right)$ by Lemma 3.21. Besides, $u\left(N_{\text {side } 1}\right)=u\left(N_{\text {side } 2}\right)$ by symmetry. N_{o} exists only if $d_{\ell} \leq d_{o}$. According to this inequality, we deduce $b p\left(d_{o}\right) \geq b p\left(d_{\ell}\right)>1$ and therefore $d_{o}<K$. By Theorem 3.6, N_{o} has the maximum total utility if it exists. Since $N_{\text {side } 1}$ exists only if N_{o} exists, we can say $u\left(N_{\text {side1 }}\right) \leq u\left(N_{o}\right)$. If $d_{o} \geq d_{h}$, the result also follows from Lemma 3.21.

Theorem 3.24 states the conclusion when neither d_{ℓ} nor d_{h} exists, or both exist but $d_{o}<d_{\ell}$.

Theorem 3.24. If neither d_{ℓ} nor d_{h} exists, or both exist but $d_{o}<d_{\ell}$, then the maximum total utility of all existing Nash equilibria must be 0 .

Proof. Since in this case the only existing Nash equilibrium is $(0,0)$ and $u(0,0)=0$, the result follows.

Lemma 3.25 is an auxiliary proposition helping us in observing how the PoA, PoS vary with the parameters b.

Lemma 3.25. If K and $p(x)$ remain fixed, and b is the only varying parameter, then:
(a) $\frac{\partial d_{o}}{\partial b}<0$, (b) $\frac{\partial d_{\ell}\left(b p\left(d_{\ell}\right)-1\right)}{\partial b}<0$, and (c) $\frac{\partial d_{\ell}}{\partial b}<\frac{\partial d_{o}}{\partial b}$ when $d_{\ell}=d_{o}$.

Proof. Part (a) can be directly deduced from the definition $b d_{o} p\left(d_{o}\right)=K$. For part (b), recall the definition $b d_{\ell} p^{\prime}\left(d_{\ell}\right)=1$ first. Since d_{ℓ} is the less solution to $b d_{\ell} p^{\prime}\left(d_{\ell}\right)=1$, by Lemma 2.1 we have $\partial d_{\ell} / \partial b<0$. It means that when b increases, d_{ℓ} decreases, $p^{\prime}\left(d_{\ell}\right)$
increases, $\frac{1}{p^{\prime}\left(d_{\ell}\right)}$ decreases, and therefore $\frac{\partial}{\partial b}\left(\frac{1}{p^{\prime}\left(d_{\ell}\right)}\right)<0$. Also write $\frac{\partial}{\partial b}\left(\frac{1}{p^{\prime}\left(d_{\ell}\right)}\right)=$ $\frac{\partial\left(b d_{\ell}\right)}{\partial b}=d_{\ell}+b \frac{\partial d_{\ell}}{\partial b}$, so $d_{\ell}+b \frac{\partial d_{\ell}}{\partial b}<0$.

$$
\begin{aligned}
\frac{\partial\left(b d_{\ell} p\left(d_{\ell}\right)-d_{\ell}\right)}{\partial b} & =d_{\ell} p\left(d_{\ell}\right)+b \frac{\partial d_{\ell}}{\partial b} p\left(d_{\ell}\right)+b d_{\ell} p^{\prime}\left(d_{\ell}\right) \frac{\partial d_{\ell}}{\partial b}-\frac{\partial d_{\ell}}{\partial b} \\
& =d_{\ell} p\left(d_{\ell}\right)+b \frac{\partial d_{\ell}}{\partial b} p\left(d_{\ell}\right) \\
& =p\left(d_{\ell}\right)\left(d_{\ell}+b \frac{\partial d_{\ell}}{\partial b}\right)<0 .
\end{aligned}
$$

For part (c), we go back to $b d_{o} p\left(d_{o}\right)=K$. According to this equality, $\frac{\partial}{\partial b}\left(\frac{K}{p\left(d_{o}\right)}\right)=$ $\frac{\partial\left(b d_{o}\right)}{\partial b}=d_{o}+b \frac{\partial d_{o}}{\partial b}>0$. Comparing with $d_{\ell}+b \frac{\partial d_{\ell}}{\partial b}<0$ from (b), we obtain (c).

Theorem 3.26 states the relationship between the PoA, PoS and the parameters b, K when $d_{\ell} \leq d_{o} \leq d_{h}$.

Theorem 3.26. If both d_{ℓ} and d_{h} exist, and $d_{\ell} \leq d_{o} \leq d_{h}$, then the $P o S=1$ and the $\operatorname{Po} A=\frac{u_{\text {opt }}}{u\left(d_{\ell}\right)}=\frac{u\left(N_{o}\right)}{u\left(d_{\ell}\right)}=\frac{d_{o}\left(b p\left(d_{o}\right)-1\right)}{d_{\ell}\left(b p\left(d_{\ell}\right)-1\right)}$. Furthermore, when b and $p(x)$ are fixed, and K is the only varying parameter, the PoA approaches 1 as K decreases such that d_{o} approaches d_{ℓ}, and the PoA approaches its maximum $\frac{d_{h}\left(b p\left(d_{h}\right)-1\right)}{d_{\ell}\left(b p\left(d_{\ell}\right)-1\right)}$ as K increases such that d_{o} approaches d_{h}. When K and $p(x)$ are fixed, and b is the only varying parameter, the PoA approaches infinity as b keeps increasing, and the Po A approaches its minimum as b decreases such that d_{o} approaches d_{h}.

Proof. By Corollary $3.7 u_{o p t}=u\left(N_{o}\right)$, so the $P o S=1$. By Theorem 3.23, the worst noncollapsing Nash equilibrium is the point $\left(d_{\ell}, d_{\ell}\right)$. Hence the $P o A=\frac{u\left(d_{o}\right)}{u\left(d_{\ell}\right)}$. If $b, p(x)$ are fixed and only K varies, then only d_{o} varies with it and the denominator doesn't change. Since $b p\left(d_{o}\right) \geq b p\left(d_{\ell}\right)>1$, the $P o A$ increases with $d_{o}($ and $K)$.

Consider the case when b is the only varying parameter. We should also note that the Po A can be written as $\frac{K-d_{o}}{d_{\ell}\left(b p\left(d_{\ell}\right)-1\right)}$. By Lemma $3.25 \frac{\partial d_{o}}{\partial b}<0$ and $\frac{\partial d_{\ell}\left(b p\left(d_{\ell}\right)-1\right)}{\partial b}<$ 0 , so the numerator increases, the denominator decreases, and the $P o A$ increases with b. If $K, p(x)$ are fixed and b is the only increasing parameter, by part (c) of Lemma 3.25 the
inequality $d_{\ell} \leq d_{o} \leq d_{h}$ always remains, so the $P o A$ increases unboundedly. If $K, p(x)$ are fixed and b is the only decreasing parameter, by part (c) of Lemma 3.25 the inequality $d_{\ell} \leq d_{o}$ remains, but d_{o} may exceed d_{h}. Therefore the $P o A$ achieves its minimum as d_{o} achieves its maximum $\left(d_{h}\right)$.

Theorem 3.27 states how the side Nash equilibria affect the "stable" $P o S$ and $P o A$.

Theorem 3.27. If $N_{\text {side1 }}$ and $N_{\text {side2 }}$ both exist and are stable Nash equilibria, then the "stable" PoS and PoA are $\frac{u_{\text {opt }}}{u\left(N_{\text {side } 1}\right)}=\frac{u\left(d_{o}\right)}{u\left(N_{\text {side } 1}\right)}<2$.

Proof. The side Nash equilibria exist only if $d_{\ell}<d_{o}<d_{h}$, in this case other existing noncollapsing Nash equilibria are unstable. Hence if these side Nash equilibria are stable, the "stable" PoS and PoA should be $\frac{u_{o p t}}{u\left(N_{\text {side } 1}\right)}=\frac{u\left(d_{o}\right)}{u\left(N_{\text {side } 1}\right)}$. Let $N_{\text {side } 1}=\left(d_{1}, d_{2}\right)$. Recall the constraint of $N_{\text {side1 }}:\left\{\begin{array}{l}b d_{1} p\left(d_{2}\right)=K \\ b d_{2} p^{\prime}\left(d_{1}\right)=1 .\end{array}\right.$ Then the ratio can also be written as $\frac{d_{o}\left(b p\left(d_{o}\right)-1\right)+d_{o}\left(b p\left(d_{o}\right)-1\right)}{d_{1}\left(b p\left(d_{2}\right)-1\right)+d_{2}\left(b p\left(d_{1}\right)-1\right)}=\frac{2\left(K-d_{o}\right)}{K-d_{1}+\frac{p\left(d_{1}\right)}{p^{\prime}\left(d_{1}\right)}-d_{2}}$. As long as we can prove $K-d_{1}+\frac{p\left(d_{1}\right)}{p^{\prime}\left(d_{1}\right)}-d_{2}>K-d_{o}$, then we are done. Since $p\left(d_{1}\right)>d_{1} p^{\prime}\left(d_{1}\right)$, we first deduce $K-d_{1}+\frac{p\left(d_{1}\right)}{p^{\prime}\left(d_{1}\right)}-d_{2}>K-d_{2}$. Since $d_{1} \geq d_{2}$, we also deduce $d_{1} \geq d_{o} \geq d_{2}$ from the definition $b d_{o} p\left(d_{o}\right)=K$, and therefore $K-d_{2} \geq K-d_{o}$. Hence we are done.

Theorem 3.28 states the relationship between the PoA, PoS and the parameters b, K when $d_{h}<d_{o}$.
Theorem 3.28. If both d_{ℓ} and d_{h} exist, and $d_{h}<d_{o}$, the $P o S=\frac{u_{\text {opt }}}{u\left(N_{h}\right)}=\frac{d_{o}\left(b p\left(d_{o}\right)-1\right)}{d_{h}\left(b p\left(d_{h}\right)-1\right)}$ and the PoA $=\frac{u_{o p t}}{u\left(N_{\ell}\right)}=\frac{d_{o}\left(b p\left(d_{o}\right)-1\right)}{d_{\ell}\left(b p\left(d_{\ell}\right)-1\right)}$. If we only consider the non-collapsing stable Nash equilibria, then the "stable" PoA becomes $\frac{u_{\text {opt }}}{u\left(N_{h}\right)}$. Furthermore, when b and $p(x)$ are fixed, and K is the only varying parameter, the PoS approaches 1 and the PoA approaches its greatest lower bound $\frac{d_{h}\left(b p\left(d_{h}\right)-1\right)}{d_{\ell}\left(b p\left(d_{\ell}\right)-1\right)}$ as K decreases such that d_{o} approaches d_{h}, and both the $\operatorname{PoS}=\Theta(K)$ and $P o A=\Theta(K)$ approach infinity as K
keeps increasing. When K and $p(x)$ are fixed, and b is the only varying parameter, the PoS approaches 1 and the PoA approaches its least upper bound as b increases such that d_{o} approaches d_{h}, and the PoS approaches its maximum and the Po A approaches its minimum as b keeps decreasing until d_{h} does not exist.

Proof. By Corollary 3.7, $u_{o p t}$ occurs at $u\left(d_{o}\right)$. By Theorem 3.23, N_{h} has the maximum total utility, and N_{ℓ} has the minimum total utility among all existing non-collapsing Nash equilibria. Hence the $P o S$ and $P o A$ in our theorem follow. If we only consider the noncollapsing stable Nash equilibria, then N_{h} is the only one. Hence the "stable" Po A in our theorem follows.

According to the proof in Theorem 3.26, the $P o S$ and $P o A$ both increase with d_{o} (and $K)$. We should also note that the numerator can be expressed as $K-d_{o}$. When K is very large, $p\left(d_{o}\right)$ approaches 1 and therefore $d_{o}=\frac{K}{b p\left(d_{o}\right)} \approx \frac{K}{b}$, so $K-d_{o} \approx K-\frac{K}{b}=$ $K\left(1-\frac{1}{b}\right)=\Theta(K)$.

According to the proof in Theorem 3.26, the $P o A$ increases with b. We should also note that the $P o S$ can be written as $\frac{d_{o}}{d_{h}} \cdot \frac{p\left(d_{o}\right)-1 / b}{p\left(d_{h}\right)-1 / b}$. If $K, p(x)$ are fixed and b is the only increasing parameter, then d_{o} and $p\left(d_{o}\right)$ decrease, and d_{h} and $p\left(d_{h}\right)$ increase. In addition, adding the same quantity to both the numerator and denominator of an improper fraction decreases its value. Therefore we can deduce the $P o S$ decreases with b instead.

We close this chapter with the following tables concluding Theorem 3.24, Theorem 3.26, and Theorem 3.28.

Table 3.3: Summary of the PoS and PoA with K as the only varying parameter. We assume d_{o} starts at d_{ℓ} and keeps increasing.

Condition	$d_{\ell} \leq d_{o} \leq d_{h}$ (Phase 1)	$d_{h}<d_{o}$ (Phase 2)
PoS	1	$u\left(d_{o}\right) / u\left(d_{h}\right)$ (stable PoA) increasing
Monotonicity	-	Yes
Starting at 1	-	Y($\left.d_{o}\right) / u\left(d_{\ell}\right)$
PoA	$u\left(d_{0}\right.$	
Monotonicity	increasing	
Starting at 1	Yes	

Table 3.4: Summary of the PoS and PoA with b as the only varying parameter. We assume b starts at its valid minimum value (i.e. $b x p^{\prime}(x)=1$ has exactly one solution.) and keeps increasing.

Condition	$d_{o}>d_{h}$ (Phase 1)	$d_{h} \geq d_{o} \geq d_{\ell}$ (Phase 2)
PoS	$u\left(d_{o}\right) / u\left(d_{h}\right)$ (stable PoA) decreasing	1
Monotonicity	-	
Terminating at 1	YES	-
PoA	$u\left(d_{o}\right) / u\left(d_{\ell}\right)$	
Monotonicity	increasing	
Starting at 1	No	

Chapter 4

Nash Equilibrium Analysis for

Three-Player File-Sharing Games

After the analysis of two-player file-sharing games, we want to consider a three-player file-sharing game. Like Chapter 3, the model can be simplified to the following again.

$$
\left\{\begin{array}{l}
u_{1}\left(d_{1}\right)=-d_{1}+\min \left\{K, b d_{2} p\left(d_{1}\right)\right\}+\min \left\{K, b d_{3} p\left(d_{1}\right)\right\} \\
u_{2}\left(d_{2}\right)=-d_{2}+\min \left\{K, b d_{1} p\left(d_{2}\right)\right\}+\min \left\{K, b d_{3} p\left(d_{2}\right)\right\} \\
u_{3}\left(d_{3}\right)=-d_{3}+\min \left\{K, b d_{1} p\left(d_{3}\right)\right\}+\min \left\{K, b d_{2} p\left(d_{3}\right)\right\} \\
u=u_{1}\left(d_{1}\right)+u_{2}\left(d_{2}\right)+u_{3}\left(d_{3}\right)
\end{array}\right.
$$

We also use the notation $u(d)=u(d, d, d)$ if d_{1}, d_{2}, and d_{3} have the same value of d.
In this chapter, we do almost the same thing as in Chapter 3, including finding all Nash equilibria under different parameter settings, analyzing their efficiency (PoA and PoS), and observing how they vary with system parameters b and K. The only exception is that we don't care about their stability here. Similarly, we begin with the section which aims to find the maximum total utility.

4.1 Maximum Total Utility

Although for two-player games we detailedly analyzed gradients of almost all points in the domain, the technique is too complicated to apply to the three-player games. In the
light of this, we use another way in this chapter to prove that the point where $u_{\text {opt }}$ occurs can still be (d, d, d) where $b d p(d)=K$ under some particular parameter settings.

The structure of our proof is illustrated below. Observing the formula of our model, we can split u into two parts.

$$
u=\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} \min \left\{K, b d_{i} p\left(d_{j}\right)\right\}-\left(d_{1}+d_{2}+d_{3}\right)
$$

After that, we want to show for each surface $\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} b d_{i} p\left(d_{j}\right)=C$ decided by a constant C, the point where both the (part 1) $\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} \min \left\{K, b d_{i} p\left(d_{j}\right)\right\}$ and (part 2) $d_{1}+d_{2}+d_{3}$ attain their "own" maximum and minimum value respectively is (d, d, d) where $6 b d p(d)=$ C. Hence the maximum u "within that surface" occurs on the diagonal. According to this conclusion, we also partition the whole domain (the positive first octant of \mathbb{R}^{3}) into infinitely many surfaces of the same type (corresponding to different C), apply Lemma 4.1 and Lemma 4.7, and then obtain the same conclusion for each surface. Therefore $u_{\text {opt }}$ must occur (at least) at some point on the diagonal.

The following are some lemmas and theorems related to the proof.
Lemma 4.1. In any surface $\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} b d_{i} p\left(d_{j}\right)=C \geq 0, \sum_{\substack{1 \leq i, j \leq 3, i \neq j}} \min \left\{K, b d_{i} p\left(d_{j}\right)\right\}$ attains its maximum value on (but not limited to) the diagonal.

Proof. Consider the point (d, d, d) on the diagonal. This point makes all $b d_{i} p\left(d_{j}\right)$ have the same value of $C / 6$. If $C / 6 \leq K$, then

$$
\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} \min \left\{K, b d_{i} p\left(d_{j}\right)\right\}=\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} C / 6=C .
$$

Since $\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} \min \left\{K, b d_{i} p\left(d_{j}\right)\right\} \leq \sum_{\substack{1 \leq i, j \leq 3, i \neq j}} b d_{i} p\left(d_{j}\right)=C$, it attains its maximum. If $C / 6>K$, then $\min \left\{K, b d_{i} p\left(d_{j}\right)\right\}=K$. By definition, it also attains its maximum. Hence the result follows.

Lemma 4.2. In any straight line $d_{1}+d_{2}=C>0$, the value of $p\left(d_{1}\right)+p\left(d_{2}\right)$ is (nonstrictly) decreasing with d_{1} when $d_{1}>d_{2}$, and is (non-strictly) increasing with d_{1} when $d_{1}<d_{2}$.

Proof. Differentiate the value with respect to d_{1}.

$$
\frac{\partial}{\partial d_{1}}\left(p\left(d_{1}\right)+p\left(d_{2}\right)\right)=p^{\prime}\left(d_{1}\right)+p^{\prime}\left(d_{2}\right) \frac{\partial d_{2}}{\partial d_{1}}=p^{\prime}\left(d_{1}\right)-p^{\prime}\left(d_{2}\right) .
$$

If $d_{1}>d_{2}$, then $p^{\prime}\left(d_{1}\right) \leq p^{\prime}\left(d_{2}\right)$. If $d_{1}<d_{2}$, then $p^{\prime}\left(d_{1}\right) \geq p^{\prime}\left(d_{2}\right)$. Hence the result follows.

Lemma 4.3. In any straight line $d_{1}+d_{2}=C>0$, the value of $d_{1} p\left(d_{2}\right)+d_{2} p\left(d_{1}\right)$ is (non-strictly) decreasing with d_{1} when $d_{1}>d_{2}$, and is (non-strictly) increasing with d_{1} when $d_{1}<d_{2}$.

Proof. Differentiate the value with respect to d_{1}.

$$
\begin{aligned}
\frac{\partial}{\partial d_{1}}\left(d_{1} p\left(d_{2}\right)+d_{2} p\left(d_{1}\right)\right) & =p\left(d_{2}\right)+d_{1} p^{\prime}\left(d_{2}\right) \frac{\partial d_{2}}{\partial d_{1}}+\frac{\partial d_{2}}{\partial d_{1}} p\left(d_{1}\right)+d_{2} p^{\prime}\left(d_{1}\right) \\
& =p\left(d_{2}\right)-p\left(d_{1}\right)+d_{2} p^{\prime}\left(d_{1}\right)-d_{1} p^{\prime}\left(d_{2}\right)
\end{aligned}
$$

If $d_{1}>d_{2}$, then $p\left(d_{2}\right) \leq p\left(d_{1}\right)$ and $d_{2} p^{\prime}\left(d_{1}\right) \leq d_{1} p^{\prime}\left(d_{2}\right) . \therefore p\left(d_{2}\right)-p\left(d_{1}\right)+d_{2} p^{\prime}\left(d_{1}\right)-$ $d_{1} p^{\prime}\left(d_{2}\right) \leq 0$. If $d_{1}<d_{2}$, then $p\left(d_{2}\right) \geq p\left(d_{1}\right)$ and $d_{2} p^{\prime}\left(d_{1}\right) \geq d_{1} p^{\prime}\left(d_{2}\right) . \therefore p\left(d_{2}\right)-p\left(d_{1}\right)+$ $d_{2} p^{\prime}\left(d_{1}\right)-d_{1} p^{\prime}\left(d_{2}\right) \geq 0$. Hence the result follows.

Lemma 4.4. In any plane $d_{1}+d_{2}+d_{3}=C>0$, if $d_{x} \geq d_{y}$ for some players P_{x} and P_{y} at a point, it always has a value of $\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} d_{i} p\left(d_{j}\right)$ greater than or equal to another point where d_{x} is increased by δ and d_{y} is decreased by δ, for any $\delta>0$.

Proof. W.L.O.G., take $x=1$ and $y=2$. We can expand the formula as the following.

$$
\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} d_{i} p\left(d_{j}\right)=p\left(d_{3}\right) \cdot\left(d_{1}+d_{2}\right)+\left(d_{1} p\left(d_{2}\right)+d_{2} p\left(d_{1}\right)\right)+d_{3} \cdot\left(p\left(d_{1}\right)+p\left(d_{2}\right)\right) .
$$

By Lemma 4.3, $\left(d_{1}, d_{2}, d_{3}\right)$ has a value of $d_{1} p\left(d_{2}\right)+d_{2} p\left(d_{1}\right)$ greater than or equal to $\left(d_{1}+\delta, d_{2}-\delta, d_{3}\right)$. By Lemma 4.2, $\left(d_{1}, d_{2}, d_{3}\right)$ has a value of $p\left(d_{1}\right)+p\left(d_{2}\right)$ greater than or equal to ($d_{1}+\delta, d_{2}-\delta, d_{3}$). Since the other terms don't change, we are done.

Lemma 4.5. In any plane $d_{1}+d_{2}+d_{3}=C>0$, the maximum value of $\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} d_{i} p\left(d_{j}\right)$ can occur at the point where $d_{1}=d_{2}=d_{3}=C / 3$.

Proof. Define the function $f\left(d_{1}, d_{2}, d_{3}\right)=\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} b d_{i} p\left(d_{j}\right)$ first for simplicity. In this proof, we want to compare $\left(\frac{C}{3}, \frac{C}{3}, \frac{C}{3}\right)$ with another arbitrary point $\left(\frac{C}{3}+\delta_{1}, \frac{C}{3}+\delta_{2}, \frac{C}{3}-\right.$ $\left.\left(\delta_{1}+\delta_{2}\right)\right)$ on the same plane, and deduce $f\left(\frac{C}{3}, \frac{C}{3}, \frac{C}{3}\right) \geq f\left(\frac{C}{3}+\delta_{1}, \frac{C}{3}+\delta_{2}, \frac{C}{3}-\left(\delta_{1}+\delta_{2}\right)\right)$. Without loss of generality, we can consider only two cases.

Case 1. $\delta_{1} \geq \delta_{2} \geq 0$
By Lemma 4.4, $f\left(\frac{C}{3}, \frac{C}{3}+\delta_{2}, \frac{C}{3}-\delta_{2}\right) \geq f\left(\frac{C}{3}+\delta_{1}, \frac{C}{3}+\delta_{2}, \frac{C}{3}-\left(\delta_{1}+\delta_{2}\right)\right)$. By applying the same lemma again we deduce $f\left(\frac{C}{3}, \frac{C}{3}, \frac{C}{3}\right) \geq f\left(\frac{C}{3}, \frac{C}{3}+\delta_{2}, \frac{C}{3}-\delta_{2}\right)$.

$$
\therefore f\left(\frac{C}{3}, \frac{C}{3}, \frac{C}{3}\right) \geq f\left(\frac{C}{3}+\delta_{1}, \frac{C}{3}+\delta_{2}, \frac{C}{3}-\left(\delta_{1}+\delta_{2}\right)\right) .
$$

Case 2. $\delta_{1} \geq 0 \geq \delta_{2} \geq-\delta_{1}$
By Lemma 4.4, $f\left(\frac{C}{3}+\delta_{1}+\delta_{2}, \frac{C}{3}, \frac{C}{3}-\left(\delta_{1}+\delta_{2}\right)\right) \geq f\left(\frac{C}{3}+\delta_{1}, \frac{C}{3}+\delta_{2}, \frac{C}{3}-\left(\delta_{1}+\delta_{2}\right)\right)$. By applying the same lemma again we deduce $f\left(\frac{C}{3}, \frac{C}{3}, \frac{C}{3}\right) \geq f\left(\frac{C}{3}+\delta_{1}+\delta_{2}, \frac{C}{3}, \frac{C}{3}-\right.$ $\left.\left(\delta_{1}+\delta_{2}\right)\right) . \quad \therefore f\left(\frac{C}{3}, \frac{C}{3}, \frac{C}{3}\right) \geq f\left(\frac{C}{3}+\delta_{1}, \frac{C}{3}+\delta_{2}, \frac{C}{3}-\left(\delta_{1}+\delta_{2}\right)\right)$.

Since the inequality holds for both cases, the result follows.

Lemma 4.6. If $x>y \geq 0$ and the values of d_{1} and d_{2} are not both $0,\left(d_{1}, d_{2}, x\right)$ always has a value of $\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} d_{i} p\left(d_{j}\right)$ greater than $\left(d_{1}, d_{2}, y\right)$.

Proof. Expand $\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} d_{i} p\left(d_{j}\right)$ again to observe which terms are affected by d_{3}.

$$
\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} d_{i} p\left(d_{j}\right)=p\left(d_{3}\right) \cdot\left(d_{1}+d_{2}\right)+\left(d_{1} p\left(d_{2}\right)+d_{2} p\left(d_{1}\right)\right)+d_{3} \cdot\left(p\left(d_{1}\right)+p\left(d_{2}\right)\right) .
$$

Focus on the first term. $\because d_{1}+d_{2}>0 . \quad \therefore p(x) \cdot\left(d_{1}+d_{2}\right) \geq p(y) \cdot\left(d_{1}+d_{2}\right)$.
Focus on the last term. $\because p\left(d_{1}\right)+p\left(d_{2}\right)>0 . \quad \therefore x \cdot\left(p\left(d_{1}\right)+p\left(d_{2}\right)\right)>y \cdot\left(p\left(d_{1}\right)+p\left(d_{2}\right)\right)$. Hence the result follows.

Lemma 4.7. In any surface $\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} b d_{i} p\left(d_{j}\right)=C>0, d_{1}+d_{2}+d_{3}$ attains its minimum value on (but not limited to) the diagonal.

Proof. Define two functions $f\left(d_{1}, d_{2}, d_{3}\right)=\sum_{\substack{1 \leq i, j \leq 3, i \neq j}} b d_{i} p\left(d_{j}\right)$ and $g\left(d_{1}, d_{2}, d_{3}\right)=d_{1}+$ $d_{2}+d_{3}$. Pick one point (d, d, d) and another arbitrary point $\left(d+\delta_{1}, d+\delta_{2}, d+\delta_{3}\right)$ on the same surface. If we can prove $g(d, d, d) \leq g\left(d+\delta_{1}, d+\delta_{2}, d+\delta_{3}\right)$, then we are done.

We first introduce an auxiliary point $\left(d+\delta_{1}, d+\delta_{2}, d-\left(\delta_{1}+\delta_{2}\right)\right)$ which lies on the same plane as (d, d, d). By Lemma 4.5, $f(d, d, d) \geq f\left(d+\delta_{1}, d+\delta_{2}, d-\left(\delta_{1}+\delta_{2}\right)\right)$. $\because(d, d, d)$ and $\left(d+\delta_{1}, d+\delta_{2}, d+\delta_{3}\right)$ lie on the same surface. $\quad \therefore f(d, d, d)=f\left(d+\delta_{1}, d+\right.$ $\left.\delta_{2}, d+\delta_{3}\right)$. That is, $f\left(d+\delta_{1}, d+\delta_{2}, d+\delta_{3}\right) \geq f\left(d+\delta_{1}, d+\delta_{2}, d-\left(\delta_{1}+\delta_{2}\right)\right)$. According to this inequality, we can deduce $d+\delta_{3} \geq d-\left(\delta_{1}+\delta_{2}\right)$ by Lemma 4.6. Since $d+\delta_{3} \geq d-\left(\delta_{1}+\delta_{2}\right)$, it is obvious that $g\left(d+\delta_{1}, d+\delta_{2}, d+\delta_{3}\right) \geq g\left(d+\delta_{1}, d+\delta_{2}, d-\left(\delta_{1}+\delta_{2}\right)\right)=g(d, d, d)$. This inequality is our goal. Hence the result follows.

Figure 4.1: A geometric illustration of Lemma 4.7

By Lemma 4.1 and Lemma 4.7, there must be a point on the diagonal where $u_{\text {opt }}$ occurs under some parameter settings. The following theorem tells us what the settings are.

Theorem 4.8. If $d_{o} \geq 2 K$, then $u_{o p t}=0$. If $d_{o}<2 K$, then $u_{o p t}=3\left(2 K-d_{o}\right)>0$.
Proof. Recall the utility formula of the point (d, d, d) on the diagonal. We should note that $d \leq d_{o} \Longleftrightarrow b d p(d) \leq K$, and $d \geq d_{o} \Longleftrightarrow b d p(d) \geq K$.

$$
u=3 \cdot(-d+2 \cdot \min \{K, b d p(d)\})= \begin{cases}3 d(2 b p(d)-1) & \text { if } d \leq d_{o} \\ 3(2 K-d) & \text { if } d \geq d_{o}\end{cases}
$$

If $d_{o} \geq 2 K$, then $2 b p\left(d_{o}\right) \leq 1$. In this case $u\left(d_{o}\right) \leq 0$. When $d<d_{o}, 2 b p(d) \leq$ $2 b p\left(d_{o}\right) \leq 1$ and therefore $u(d) \leq 0$. When $d>d_{o}, 2 K-d<2 K-d_{o}$ and therefore $u(d)<u\left(d_{o}\right) \leq 0$. Hence $u_{o p t}=0$. If $d_{o}<2 K$, then $2 b p\left(d_{o}\right)>1$. In this case $u\left(d_{o}\right)>0$. When $d<d_{o}, 2 b p(d) \leq 2 b p\left(d_{o}\right)$ and therefore $u(d) \leq u\left(d_{o}\right)$. When $d>d_{o}$, $2 K-d<2 K-d_{o}$ and therefore $u(d)<u\left(d_{o}\right)$. Hence $u_{o p t}=u\left(d_{o}\right)>0$.

Corollary 4.9. Let $d_{\ell \ell}$ be the less solution to $b x p^{\prime}(x)=\frac{1}{2}$. If $d_{o} \geq d_{\ell \ell}$, then $u_{o p t}=u\left(d_{o}\right)$. Proof. $\because b p\left(d_{o}\right) \geq b p\left(d_{\ell \ell}\right)>b d_{\ell \ell} p^{\prime}\left(d_{\ell \ell}\right)=\frac{1}{2} \quad \therefore d_{o}<2 K$ by Definition 2.6. In this case $u_{\text {opt }}=u\left(d_{o}\right)>0$ by Theorem 4.8.

We close this section with the following conclusive table.
Table 4.1: The maximum total utility of three-player games.

Condition	Utility
$d_{o} \geq 2 K$	0
$d_{o}<2 K$	$3\left(2 K-d_{o}\right)$

4.2 Nash Equilibria

As in the previous chapter, we are going to find Nash equilibria in order to calculate the PoA and PoS in the next section.

Lemma 4.10. The player P_{i} does not want to change his/her strategy d_{i} if and only if one of the following cases occurs.

Case I. $\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{-}$does not exist (i.e., $d_{i}=0$) and $\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{+} \leq 0$.
Case II. $\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{-} \geq 0$ and $\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{+} \leq 0$.

Proof. Assume the other two players are P_{j} and P_{k} whose strategies are d_{j} and d_{k}, respectively. Recall the utility function $u_{i}=-d_{i}+\min \left\{K, b d_{j} p\left(d_{i}\right)\right\}+\min \left\{K, b d_{k} p\left(d_{i}\right)\right\}$. Differentiate it with respect to d_{i}. W.L.O.G., we let $d_{j} \geq d_{k}$.

$$
\frac{\partial u_{i}}{\partial d_{i}}= \begin{cases}\frac{\partial}{\partial d_{i}}\left(-d_{i}+b d_{j} p\left(d_{i}\right)+b d_{k} p\left(d_{i}\right)\right)=b\left(d_{j}+d_{k}\right) p^{\prime}\left(d_{i}\right)-1 & \text { if } b d_{j} p\left(d_{i}\right) \leq K \\ \frac{\partial}{\partial d_{i}}\left(-d_{i}+K+b d_{k} p\left(d_{i}\right)\right)=b d_{k} p^{\prime}\left(d_{i}\right)-1 & \text { if } b d_{j} p\left(d_{i}\right) \geq K \\ \frac{\partial}{\partial d_{i}}\left(-d_{i}+K+K\right)=-1 & \text { and } b d_{k} p\left(d_{i}\right) \leq K \\ \text { if } b d_{k} p\left(d_{i}\right) \geq K\end{cases}
$$

Since $b d_{j}$ and $b d_{k}$ are fixed nonnegative numbers, and $p^{\prime}(x)$ is a nonnegative non-increasing function, $\frac{\partial u_{i}}{\partial d_{i}}$ is non-increasing for all $d_{i} \geq 0$. Hence the result follows.

Lemma 4.11. In a Nash equilibrium $\left(d_{1}, d_{2}, d_{3}\right)$, if a player P_{i} 's strategy d_{i} satisfies case I, then so do such strategies d_{j} and d_{k} of the other players P_{j} and P_{k}. That is, $d_{1}=d_{2}=$ $d_{3}=0$.

Proof. If $d_{i}=0$, then the other players P_{j} and P_{k} fall into the case discussed in the previous chapter. In this case $b d_{j} p\left(d_{i}\right)=b d_{k} p\left(d_{i}\right)=0$, so $\frac{\partial u_{i}}{\partial d_{i}}=b\left(d_{j}+d_{k}\right) p^{\prime}(0)-1$. To ensure P_{i} is in case I, we must guarantee $\frac{\partial u_{i}}{\partial d_{i}} \leq 0$. Now we want to collect all Nash equilibria in the two-player file-sharing game and find those which can make $\frac{\partial u_{i}}{\partial d_{i}} \leq 0$. Consider any Nash equilibrium $\left(d_{j}, d_{k}\right)$ except $(0,0)$. By the theorems related to Nash equilibria in Chapter 3, the strategies $d_{j}, d_{k} \in\left[d_{\ell}, d_{h}\right]$. It implies $b d_{j} p^{\prime}\left(d_{j}\right) \geq 1$ and $b d_{k} p^{\prime}\left(d_{k}\right) \geq 1$, and therefore $b d_{j} p^{\prime}(0) \geq 1$ and $b d_{k} p^{\prime}(0) \geq 1$. The inequality $b\left(d_{j}+\right.$ $\left.d_{k}\right) p^{\prime}(0) \geq 2$ implies $\frac{\partial u_{i}}{\partial d_{i}} \geq 2-1=1>0$ which is a contradiction. If $\left(d_{j}, d_{k}\right)=(0,0)$, then $\frac{\partial u_{i}}{\partial d_{i}}=-1 \leq 0$ which is what we need. Therefore, only $d_{i}=d_{j}=d_{k}=0$ satisfies our conclusion.

Corollary 4.12. In a Nash equilibrium $\left(d_{1}, d_{2}, d_{3}\right)$, if a player P_{i} 's strategy d_{i} satisfies case II, then so do such strategies d_{j} and d_{k} of the other players P_{j} and P_{k}. That is, $d_{1}, d_{2}, d_{3}>0$.

In the remaining of this section we are going to discuss the Nash equilibria mentioned in Corollary 4.12. W.L.O.G., assume $d_{1} \geq d_{2} \geq d_{3}$. According to the derivative stated
in Lemma 4.10, all conditions of possible Nash equilibria are listed below. Take P_{1} for example.

Case 1. $b d_{2} p\left(d_{1}\right)<K \quad \Longrightarrow \quad b d_{2} p^{\prime}\left(d_{1}\right)+b d_{3} p^{\prime}\left(d_{1}\right)=1$.
Case 2. $b d_{2} p\left(d_{1}\right)=K$ and $b d_{3} p\left(d_{1}\right)<K \quad \Longrightarrow \quad\left\{\begin{array}{l}b d_{2} p^{\prime}\left(d_{1}\right)+b d_{3} p^{\prime}\left(d_{1}\right) \geq 1 \\ b d_{3} p^{\prime}\left(d_{1}\right) \leq 1 .\end{array}\right.$
Case 3. $b d_{2} p\left(d_{1}\right)=K$ and $b d_{3} p\left(d_{1}\right)=K \quad \Longrightarrow \quad b d_{2} p^{\prime}\left(d_{1}\right)+b d_{3} p^{\prime}\left(d_{1}\right) \geq 1$.

Case 4. $b d_{2} p\left(d_{1}\right)>K$ and $b d_{3} p\left(d_{1}\right)<K \quad \Longrightarrow \quad b d_{3} p^{\prime}\left(d_{1}\right)=1$.

Case 5. $b d_{2} p\left(d_{1}\right)>K$ and $b d_{3} p\left(d_{1}\right)=K \quad \Longrightarrow \quad b d_{3} p^{\prime}\left(d_{1}\right) \geq 1$.
Case 6. $b d_{2} p\left(d_{1}\right)>K$ and $b d_{3} p\left(d_{1}\right)>K \quad \Longrightarrow \quad \frac{\partial u_{1}}{\partial d_{1}}=-1$ (impossible).
We can write down the conditions for all players and arrange them into the following table. In this table, two adjacent cells are connected together if they do not contradict each other, but the validity of a whole combination (from column A to column C) still remains to be verified.

Table 4.2: Condition matching for each Nash equilibrium.

	First Player (Column A)	Second Player (Column B)	Third Player (Column C)
1	$\begin{aligned} & * b d_{2} p\left(d_{1}\right)<K \\ & \Longrightarrow \quad b d_{2} p^{\prime}\left(d_{1}\right)+b d_{3} p^{\prime}\left(d_{1}\right)=1 \end{aligned}$	$\begin{aligned} & * b d_{1} p\left(d_{2}\right)<K \\ & \Longrightarrow \quad b d_{1} p^{\prime}\left(d_{2}\right)+b d_{3} p^{\prime}\left(d_{2}\right)=1 \end{aligned} \begin{aligned} & * b d_{1} p\left(d_{2}\right)=K \text { and } b d_{3} p\left(d_{2}\right)<K \\ & \Longrightarrow\left\{\begin{array}{r} b d_{1} p^{\prime}\left(d_{2}\right)+b d_{3} p^{\prime}\left(d_{2}\right) \geq 1 \\ b d_{3} p^{\prime}\left(d_{2}\right) \leq 1 \end{array}\right. \end{aligned}$	$\begin{aligned} & * b d_{1} p\left(d_{3}\right)<K \\ & \Longrightarrow \quad b d_{1} p^{\prime}\left(d_{3}\right)+b d_{2} p^{\prime}\left(d_{3}\right)=1 \end{aligned}$
2	$\begin{aligned} & * b d_{2} p\left(d_{1}\right)=K \text { and } b d_{3} p\left(d_{1}\right)<K \\ & \Longrightarrow\left\{\begin{array}{r} b d_{2} p^{\prime}\left(d_{1}\right)+b d_{3} p^{\prime}\left(d_{1}\right) \geq 1 \\ b d_{3} p^{\prime}\left(d_{1}\right) \leq 1 \end{array}\right. \end{aligned}$		$\begin{aligned} & * b d_{1} p\left(d_{3}\right)=K \text { and } b d_{2} p\left(d_{3}\right)<K \\ & \Longrightarrow\left\{\begin{array}{r} b d_{1} p^{\prime}\left(d_{3}\right)+b d_{2} p^{\prime}\left(d_{3}\right) \geq 1 \\ b d_{2} p^{\prime}\left(d_{3}\right) \leq 1 \end{array}\right. \end{aligned}$
3	$\begin{aligned} & * b d_{2} p\left(d_{1}\right)=K \text { and } b d_{3} p\left(d_{1}\right)=K \\ & \Longrightarrow \quad b d_{2} p^{\prime}\left(d_{1}\right)+b d_{3} p^{\prime}\left(d_{1}\right) \geq 1 \end{aligned}$	$\begin{aligned} & * b d_{1} p\left(d_{2}\right)=K \text { and } b d_{3} p\left(d_{2}\right)=K \\ & \Longrightarrow \quad b d_{1} p^{\prime}\left(d_{2}\right)+b d_{3} p^{\prime}\left(d_{2}\right) \geq 1 \end{aligned}$	$\begin{aligned} & * b d_{1} p\left(d_{3}\right)=K \text { and } b d_{2} p\left(d_{3}\right)=K \\ & \Longrightarrow \quad b d_{1} p^{\prime}\left(d_{3}\right)+b d_{2} p^{\prime}\left(d_{3}\right) \geq 1 \end{aligned}$
4	$\begin{aligned} & * b d_{2} p\left(d_{1}\right)>K \text { and } b d_{3} p\left(d_{1}\right)<K \\ & \Longrightarrow \quad b d_{3} p^{\prime}\left(d_{1}\right)=1 \end{aligned}$		$\begin{aligned} & * b d_{1} p\left(d_{3}\right)>K \text { and } b d_{2} p\left(d_{3}\right)<K \\ & \Longrightarrow \quad b d_{2} p^{\prime}\left(d_{3}\right)=1 \end{aligned}$
5	$\begin{aligned} & * b d_{2} p\left(d_{1}\right)>K \text { and } b d_{3} p\left(d_{1}\right)=K \\ & \Longrightarrow \quad b d_{3} p^{\prime}\left(d_{1}\right) \geq 1 \end{aligned}$	$\begin{aligned} & * b d_{1} p\left(d_{2}\right)>K \text { and } b d_{3} p\left(d_{2}\right)=K \\ & \Longrightarrow \quad b d_{3} p^{\prime}\left(d_{2}\right) \geq 1 \end{aligned}$	$\begin{aligned} & * b d_{1} p\left(d_{3}\right)>K \text { and } b d_{2} p\left(d_{3}\right)=K \\ & \Longrightarrow \quad b d_{2} p^{\prime}\left(d_{3}\right) \geq 1 \end{aligned}$

Definition 4.1. Let $(A x, B y, C z)$ denote a combination in Table 4.2 which contains the x-th row of column A, the y-th row of column B, and the z-th row of column C. If some specific entry is dropped, it means that the corresponding column is not important (don't care).

The following lemma shows that the matchings not shown in the table are invalid.

Lemma 4.13. $\left(A_{1}, B_{1}, C_{1}\right),\left(A_{1}, B_{2}, C_{2}\right),\left(A_{1}, B_{4}, C_{4}\right),\left(A_{3}, B_{3}, C_{3}\right),\left(A_{3}, B_{4}, C_{4}\right),\left(A_{4}\right.$, B_{4}, C_{3}) are the only valid combinations in Table 4.2.

Proof. In this proof, we first investigate the valid matchings between column A and column B, then column B and column C, and finally between A and column C or the validity of the whole combinations.

Let's see the first part. A_{1} says $b d_{2} p\left(d_{1}\right)<K$, and B_{3} and B_{5} both say $b d_{3} p\left(d_{2}\right)=K$. Connecting these cells together will result in a contradiction $b d_{2} p\left(d_{1}\right)<b d_{3} p\left(d_{2}\right)$ because our assumption $d_{1} \geq d_{2} \geq d_{3}$ should imply $b d_{2} p\left(d_{1}\right) \geq b d_{3} p\left(d_{2}\right) . \quad \therefore\left(A_{1}, B_{3}\right)$ and $\left(A_{1}, B_{5}\right)$ are invalid. Both A_{2} and A_{3} say $b d_{2} p\left(d_{1}\right)=K$, and B_{1} says $b d_{1} p\left(d_{2}\right)<K$. Connecting these cells together will result in a contradiction $b d_{1} p\left(d_{2}\right)<b d_{2} p\left(d_{1}\right)$ because our assumption $d_{1} \geq d_{2}$ should imply $b d_{1} p\left(d_{2}\right) \geq b d_{2} p\left(d_{1}\right)$ by Lemma 2.2. \therefore $\left(A_{2}, B_{1}\right)$ and $\left(A_{3}, B_{1}\right)$ are invalid. Both A_{2} and A_{4} say $b d_{3} p\left(d_{1}\right)<K$, and both B_{3} and B_{5} say $b d_{3} p\left(d_{2}\right)=K$. Connecting these cells together will result in a contradiction $b d_{3} p\left(d_{1}\right)<b d_{3} p\left(d_{2}\right)$ because our assumption $d_{1} \geq d_{2}$ should imply $b d_{3} p\left(d_{1}\right) \geq$ $b d_{3} p\left(d_{2}\right) . \therefore\left(A_{2}, B_{3}\right),\left(A_{2}, B_{5}\right),\left(A_{4}, B_{3}\right)$, and $\left(A_{4}, B_{5}\right)$ are invalid. If we connect A_{3} to B_{2}, then the constraints $b d_{2} p\left(d_{1}\right)=K$ and $b d_{1} p\left(d_{2}\right)=K$ will result in $d_{1}=d_{2}$, and the constraints $b d_{3} p\left(d_{1}\right)=K$ and $b d_{3} p\left(d_{2}\right)<K$ will result in $d_{1}>d_{2}$. They contradict each other. $\therefore\left(A_{3}, B_{2}\right)$ is invalid. If we connect A_{3} to B_{5}, then the constraints $b d_{2} p\left(d_{1}\right)=K$ and $b d_{1} p\left(d_{2}\right)>K$ will result in $d_{1}>d_{2}$ by Corollary 2.3, and the constraints $b d_{3} p\left(d_{1}\right)=$ K and $b d_{3} p\left(d_{2}\right)=K$ along with $p^{\prime}\left(d_{1}\right)>0$ and $p^{\prime}\left(d_{2}\right)>0$ will result in $d_{1}=d_{2}$ by Corollary 2.6. The two constraints contradict each other. $\therefore\left(A_{3}, B_{5}\right)$ is invalid. Both A_{4} and A_{5} say $b d_{2} p\left(d_{1}\right)>K$, and B_{1}, B_{2}, and B_{3} says $b d_{1} p\left(d_{2}\right) \leq K$. Connecting these cells together will result in a contradiction $b d_{2} p\left(d_{1}\right)>b d_{1} p\left(d_{2}\right)$ because our assumption $d_{1} \geq d_{2}$ should imply $b d_{1} p\left(d_{2}\right) \geq b d_{2} p\left(d_{1}\right) . \quad \therefore\left(A_{4}, B_{1}\right),\left(A_{4}, B_{2}\right),\left(A_{4}, B_{3}\right),\left(A_{5}, B_{1}\right),\left(A_{5}, B_{2}\right)$, and $\left(A_{5}, B_{3}\right)$ are invalid.

Now we consider the second part. B_{1} says $b d_{1} p\left(d_{2}\right)<K$, and C_{2}, C_{3}, C_{4}, and C_{5} say $b d_{1} p\left(d_{3}\right) \geq K$. Connecting these cells together will result in a contradiction $b d_{1} p\left(d_{3}\right)>b d_{1} p\left(d_{2}\right)$ because our assumption $d_{2} \geq d_{3}$ should imply $b d_{1} p\left(d_{2}\right) \geq b d_{1} p\left(d_{3}\right)$.
$\therefore\left(B_{1}, C_{2}\right),\left(B_{1}, C_{3}\right),\left(B_{1}, C_{4}\right)$, and $\left(B_{1}, C_{5}\right)$ are invalid. If we connect B_{2} and B_{3} to C_{1}, then the constraints $b d_{1} p^{\prime}\left(d_{2}\right)+b d_{3} p^{\prime}\left(d_{2}\right) \geq 1$ and $b d_{1} p^{\prime}\left(d_{3}\right)+b d_{2} p^{\prime}\left(d_{3}\right)=1$ will result in $b d_{1} p^{\prime}\left(d_{2}\right)=b d_{1} p^{\prime}\left(d_{3}\right)$ and $b d_{3} p^{\prime}\left(d_{2}\right)=b d_{2} p^{\prime}\left(d_{3}\right)$ since $b d_{1} p^{\prime}\left(d_{2}\right) \leq b d_{1} p^{\prime}\left(d_{3}\right)$ and $b d_{3} p^{\prime}\left(d_{2}\right) \leq b d_{2} p^{\prime}\left(d_{3}\right)$. According to $b d_{1} p^{\prime}\left(d_{2}\right)=b d_{1} p^{\prime}\left(d_{3}\right), d_{1}>0, p^{\prime}\left(d_{2}\right)>0$, and $p^{\prime}\left(d_{3}\right)>0$, we can deduce $p^{\prime}\left(d_{2}\right)=p^{\prime}\left(d_{3}\right)>0$ and therefore $d_{2}=d_{3}$. If $b d_{1} p\left(d_{2}\right)=K$ (in B_{2} and B_{3}), then $b d_{1} p\left(d_{3}\right)=K$ which contradicts $b d_{1} p\left(d_{3}\right)<K$ in $C_{1} . \quad \therefore\left(B_{2}, C_{1}\right)$ and $\left(B_{3}, C_{1}\right)$ are invalid. Both B_{4} and B_{5} say $b d_{3} p^{\prime}\left(d_{2}\right) \geq 1$, and C_{1} says $0 \leq b d_{1} p^{\prime}\left(d_{3}\right)=$ $1-b d_{2} p^{\prime}\left(d_{3}\right) \leq 1-b d_{3} p^{\prime}\left(d_{2}\right)$. If we connect B_{4} and B_{5} to C_{1}, then $b d_{3} p^{\prime}\left(d_{2}\right)=1$ and $b d_{1} p^{\prime}\left(d_{3}\right)=0$. The latter implies $d_{1}=0$ or $p^{\prime}\left(d_{3}\right)=0$. However, $d_{1}=0$ contradicts $b d_{1} p\left(d_{2}\right)>K$, and $p^{\prime}\left(d_{3}\right)=0$ contradicts $b\left(d_{1}+d_{2}\right) p^{\prime}\left(d_{3}\right)=1 . \quad \therefore\left(B_{4}, C_{1}\right)$ and $\left(B_{5}, C_{1}\right)$ are invalid. B_{2} says $b d_{1} p\left(d_{2}\right)=K$ and $p^{\prime}\left(d_{2}\right)>0$, and C_{3} says $b d_{1} p\left(d_{3}\right)=K$ and $p^{\prime}\left(d_{3}\right)>0$. By Corollary 2.6, we deduce $d_{2}=d_{3}$, but this contradicts $b d_{3} p\left(d_{2}\right)<$ $K=b d_{2} p\left(d_{3}\right) . \quad \therefore\left(B_{2}, C_{3}\right)$ is invalid. Both B_{3} and B_{5} say $b d_{3} p\left(d_{2}\right)=K$, and both C_{2} and C_{4} say $b d_{2} p\left(d_{3}\right)<K$. Connecting these cells together will result in a contradiction $b d_{2} p\left(d_{3}\right)<b d_{3} p\left(d_{2}\right)$ because our assumption $d_{2} \geq d_{3}$ should imply $b d_{2} p\left(d_{3}\right) \geq b d_{3} p\left(d_{2}\right)$ by Lemma 2.2. $\therefore\left(B_{3}, C_{2}\right),\left(B_{3}, C_{4}\right),\left(B_{5}, C_{2}\right)$ and $\left(B_{5}, C_{4}\right)$ are invalid. Both B_{2} and B_{3} say $b d_{1} p\left(d_{2}\right)=K$, and both C_{4} and C_{5} say $b d_{1} p\left(d_{3}\right)>K$. Connecting these cells together will result in a contradiction $b d_{1} p\left(d_{2}\right)<b d_{1} p\left(d_{3}\right)$ because our assumption $d_{2} \geq d_{3}$ should imply $b d_{1} p\left(d_{2}\right) \geq b d_{1} p\left(d_{3}\right)$ by Lemma 2.2. $\therefore\left(B_{2}, C_{4}\right),\left(B_{2}, C_{5}\right),\left(B_{3}, C_{4}\right)$ and $\left(B_{3}, C_{5}\right)$ are invalid. If we connect B_{4} to C_{2}, then $1=b d_{3} p^{\prime}\left(d_{2}\right) \leq b d_{2} p^{\prime}\left(d_{3}\right) \leq 1$ and it implies $d_{2}=d_{3}$ by Lemma 2.4. However it contradicts $b d_{1} p\left(d_{2}\right)>K=b d_{1} p\left(d_{3}\right) . \quad \therefore$ $\left(B_{4}, C_{2}\right)$ is invalid.

Finally we check the validity between column B and column C or the whole combination. A_{1} says $b d_{2} p\left(d_{1}\right)<K$, and C_{3} and C_{5} say $b d_{2} p\left(d_{3}\right)=K$. Connecting these cells together will result in a contradiction $b d_{2} p\left(d_{1}\right)<b d_{2} p\left(d_{3}\right)$ because our assumption $d_{1} \geq d_{3}$ should imply $b d_{2} p\left(d_{1}\right) \geq b d_{2} p\left(d_{3}\right)$ by Lemma 2.2. $\therefore\left(A_{1}, C_{3}\right)$ and $\left(A_{1}, C_{5}\right)$ are invalid. If we connect B_{2} to C_{2}, then the argument in the connection $\left(B_{2}, C_{3}\right)$ mentioned in the previous paragraph can be used to deduce $d_{2}=d_{3}$. This contradicts $b d_{2} p\left(d_{1}\right)=K>b d_{3} p\left(d_{1}\right)$ in $A_{2} . \quad \therefore\left(A_{2}, B_{2}, C_{2}\right)$ is invalid. In C_{3}, the con-
straint $b d_{1} p\left(d_{3}\right)=b d_{2} p\left(d_{3}\right)=K$ implies $d_{1}=d_{2}$. If we connect A_{2} and A_{3} to B_{4}, then $b d_{1} p\left(d_{2}\right)>K=b d_{2} p\left(d_{1}\right)$ contradicts $d_{1}=d_{2} . \quad \therefore\left(A_{2}, B_{4}, C_{3}\right)$ and $\left(A_{3}, B_{4}, C_{3}\right)$ are invalid. A_{2} says $b d_{2} p\left(d_{1}\right)=K$ and $p^{\prime}\left(d_{1}\right)>0$, and C_{5} says $b d_{2} p\left(d_{3}\right)=K$ and $p^{\prime}\left(d_{3}\right)>0$. If we connect A_{2} to C_{5}, by Corollary 2.6 we deduce $d_{1}=d_{3}$. However this contradicts $b d_{1} p\left(d_{3}\right)>K>b d_{3} p\left(d_{1}\right) . \quad \therefore\left(A_{2}, C_{5}\right)$ is invalid. In $A_{3}, b d_{2} p\left(d_{1}\right)=K=b d_{3} p\left(d_{1}\right)$ implies $d_{2}=d_{3}$. If we connect B_{4} and C_{5}, then $b d_{3} p\left(d_{2}\right)<K=b d_{2} p\left(d_{3}\right)$ contradicts $d_{2}=d_{3} . \therefore\left(A_{3}, B_{4}, C_{5}\right)$ is invalid. If we connect B_{4} to C_{4}, then by Lemma $2.4 b d_{3} p^{\prime}\left(d_{2}\right)=b d_{2} p^{\prime}\left(d_{3}\right)=1$ implies $d_{2}=d_{3}$. However this contradicts $b d_{2} p\left(d_{1}\right) \geq$ $K>b d_{3} p\left(d_{1}\right)$ in A_{2} and $A_{4} . \therefore\left(A_{2}, B_{4}, C_{4}\right)$ and $\left(A_{4}, B_{4}, C_{4}\right)$ are invalid. If we connect A_{4} to B_{4}, then $b d_{3} p^{\prime}\left(d_{1}\right)=b d_{3} p^{\prime}\left(d_{2}\right)=1$ implies $d_{1}=d_{2}$. However this contradicts $b d_{1} p\left(d_{3}\right)>K=b d_{2} p\left(d_{3}\right)$ in $C_{5} . \quad \therefore\left(A_{4}, B_{4}, C_{5}\right)$ is invalid. If we connect B_{5} to C_{5}, then $b d_{3} p\left(d_{2}\right)=K=b d_{2} p\left(d_{3}\right)$ implies $d_{2}=d_{3}$ by Corollary 2.3. However this contradicts $b d_{2} p\left(d_{1}\right)>K=b d_{3} p\left(d_{1}\right)$ in $A_{5} . \quad \therefore\left(A_{5}, B_{5}, C_{5}\right)$ is invalid.

After checking all combinations, we can deduce that the remaining valid ones are $\left(A_{1}, B_{1}, C_{1}\right),\left(A_{1}, B_{2}, C_{2}\right),\left(A_{1}, B_{4}, C_{4}\right),\left(A_{3}, B_{3}, C_{3}\right),\left(A_{3}, B_{4}, C_{4}\right),\left(A_{4}, B_{4}, C_{3}\right)$.

Figure 4.2: A geometric illustration of Definition 4.2

Before finding all Nash equilibria according to these combinations, we must define some variables beforehand.

Definition 4.2. If $b x p^{\prime}(x)=\frac{1}{2}$ has two different solutions, let $d_{\ell \ell}$ be the less one, and let $d_{h h}$ be the greater one. If the equation has only one solution, let $d_{\ell \ell}$ and $d_{h \hbar}$ both denote it. If $b x p^{\prime}(x)=1$ has two different solutions, let $d_{\ell h}$ be the less one, and let $d_{h e}$ be the greater one. If the equation has only one solution, let $d_{\ell h}$ and $d_{h \ell}$ both denote it. Let d_{o} be the unique solution to the equation $b x p(x)=K$. Let $d_{\ell h}^{+}$be the unique solution to $b d_{\ell h} p^{\prime}(x)=\frac{1}{2}$. Let $d_{h \ell}^{+}$be the unique solution to $b d_{h \ell} p^{\prime}(x)=\frac{1}{2}$. Let $d_{144 \ell \ell}$ be the unique solution to $\operatorname{bxp}(x)=b d_{\ell h} p\left(d_{\ell h}^{+}\right)$. Let $d_{144 e h}$ be the unique solution to $\operatorname{bxp}(x)=b d_{\ell h}^{+} p\left(d_{\ell h}\right)$. Let $d_{144 h \ell}$ be the unique solution to $\operatorname{bxp}(x)=b d_{h \ell} p\left(d_{h \ell}^{+}\right)$. Let $d_{144 h h}$ be the unique solution to $\operatorname{bxp}(x)=b d_{h \ell}^{+} p\left(d_{h \ell}\right)$.

Lemma 4.14. The parameters in Definition 4.2, if exist, have the partial order shown in the following directed acyclic graph, where $A \rightarrow B$ means $A<B$.

Proof. We first focus on the parameters related to $b d p^{\prime}(d)$. By the property of $d p^{\prime}(d), d_{\ell \ell}<$ $d_{\ell h}<d_{h \ell}<d_{h h}$. Besides, $\frac{p^{\prime}\left(d_{\ell h}\right)}{p^{\prime}\left(d_{\ell h}^{+}\right)}=\frac{b d_{\ell h} p^{\prime}\left(d_{\ell h}\right)}{b d_{\ell h} p^{\prime}\left(d_{\ell h}^{+}\right)}=\frac{1}{1 / 2}=2 . \quad \therefore p^{\prime}\left(d_{\ell h}\right)>p^{\prime}\left(d_{\ell h}^{+}\right)$and $d_{\ell h}<d_{\ell h}^{+}$. By a similar argument, $d_{h \ell}<d_{h \ell}^{+}$. If $d_{144 \ell \ell} \leq d_{\ell h}$, then $b d_{144 \ell \ell} p\left(d_{144 \ell \ell}\right)$
$\leq b d_{\ell h} p\left(d_{\ell h}\right)<b d_{\ell h} p\left(d_{\ell h}^{+}\right)$, with the latter inequality coming from $p^{\prime}\left(d_{\ell h}^{+}\right)>0$, is a contradiction. If $d_{144 \ell \ell} \geq d_{\ell h}^{+}$, then $b d_{144 \ell \ell} p\left(d_{144 \ell \ell}\right) \geq b d_{\ell h}^{+} p\left(d_{\ell h}^{+}\right)>b d_{\ell h} p\left(d_{\ell h}^{+}\right)$is also a contradiction. Hence $d_{\ell h}<d_{144 \ell \ell}<d_{\ell h}^{+}$. By a similar argument, we can deduce $d_{\ell h}<$ $d_{144 \ell h}<d_{\ell h}^{+}, d_{h \ell}<d_{144 h \ell}<d_{h \ell}^{+}$, and $d_{h \ell}<d_{144 h h}<d_{h \ell}^{+}$. By definition $b d_{\ell h} p^{\prime}\left(d_{\ell h}^{+}\right)=$ $\frac{1}{2}=b d_{h h} p^{\prime}\left(d_{h h}\right)$, and $\frac{p^{\prime}\left(d_{\ell h}^{+}\right)}{p^{\prime}\left(d_{h h}\right)}=\frac{d_{h h}}{d_{\ell h}}>1$ implies $d_{\ell h}^{+}<d_{h h}$. By a similar argument, $d_{h \ell}^{+}<d_{h h}$.

After variable definitions, we can formally define all Nash equilibria and discuss the ranges of these parameters.

Theorem 4.15. The Nash equilibria corresponding to the combination $\left(A_{1}, B_{1}, C_{1}\right)$ can only be $N_{111 \ell}=\left(d_{\ell \ell}, d_{\ell \ell}, d_{\ell \ell}\right)$ and $N_{111 h}=\left(d_{h h}, d_{h h}, d_{h h}\right) . N_{111 \ell}$ exists if and only if $d_{\ell \ell}<d_{o}$, and $N_{111 h}$ exists if and only if $d_{h h}<d_{o}$.

Proof. The "derivatives" in $\left(A_{1}, B_{1}, C_{1}\right)$ can be organized as

$$
b\left(d_{2}+d_{3}\right) p^{\prime}\left(d_{1}\right)=1, b\left(d_{1}+d_{3}\right) p^{\prime}\left(d_{2}\right)=1, \text { and } b\left(d_{1}+d_{2}\right) p^{\prime}\left(d_{3}\right)=1
$$

From the first two equations, since $d_{2}+d_{3} \leq d_{1}+d_{3}$ and $p^{\prime}\left(d_{1}\right) \leq p^{\prime}\left(d_{2}\right)$, then $p^{\prime}\left(d_{1}\right)=$ $p^{\prime}\left(d_{2}\right)>0$ and $d_{1}=d_{2}$. From the last two equations, we also deduce $d_{2}=d_{3}$ by a similar argument. Therefore $d_{1}=d_{2}=d_{3}=d$ and the equality becomes $b(2 d) p^{\prime}(d)=1$. The utilities in $\left(A_{1}, B_{1}, C_{1}\right)$ become $b d p(d)<K$.

The solutions to $b d p^{\prime}(d)=\frac{1}{2}$ are only $d_{\ell \ell}$ and $d_{h h}$. It's obvious that $b d_{\ell \ell} p\left(d_{\ell \ell}\right)<K=$ $b d_{o} p\left(d_{o}\right) \Longleftrightarrow d_{\ell \ell}<d_{o}$, and $b d_{h h} p\left(d_{h h}\right)<K=b d_{o} p\left(d_{o}\right) \Longleftrightarrow d_{h h}<d_{o}$. Hence the result follows.

Theorem 4.16. The Nash equilibria corresponding to the combination $\left(A_{1}, B_{2}, C_{2}\right)$ can only be $N_{122 \ell}=\left(d_{122 \ell x}, d_{122 \ell y}, d_{122 \ell y}\right)$ and $N_{122 h}=\left(d_{122 h x}, d_{122 h y}, d_{122 h y}\right)$. If $N_{122 \ell}$ exists, then $d_{\ell \ell}<d_{122 \ell x} \leq d_{\ell h}^{+}$and $d_{\ell \ell}<d_{122 \ell y} \leq d_{\ell h}$. If $N_{122 h}$ exists, then $d_{h \ell}^{+} \leq d_{122 h x}<d_{h h}$ and $d_{h e} \leq d_{122 h y}<d_{h h}$.

Proof. Since $b\left(d_{2}+d_{3}\right) p^{\prime}\left(d_{1}\right) \leq b\left(d_{1}+d_{3}\right) p^{\prime}\left(d_{2}\right) \leq b\left(d_{1}+d_{2}\right) p^{\prime}\left(d_{3}\right)$ and $b d_{2} p^{\prime}\left(d_{3}\right) \geq$ $b d_{3} p^{\prime}\left(d_{2}\right)$, the derivatives in $\left(A_{1}, B_{2}, C_{2}\right)$ can be simplified to $b\left(d_{2}+d_{3}\right) p^{\prime}\left(d_{1}\right)=1$ and $b d_{2} p^{\prime}\left(d_{3}\right) \leq 1$. Observe the utility constraints. $b d_{1} p\left(d_{2}\right)=K=b d_{1} p\left(d_{3}\right)$ along with $p^{\prime}\left(d_{2}\right)>0$ and $p^{\prime}\left(d_{3}\right)>0$ gives $d_{2}=d_{3}$ by Corollary 2.6. Besides, $b d_{1} p\left(d_{2}\right)=K>$ $b d_{2} p\left(d_{1}\right)$ implies $d_{1}>d_{2}$ by Corollary 2.3. Therefore $d_{1}>d_{2}=d_{3}$ and $b\left(d_{2}+d_{3}\right) p^{\prime}\left(d_{1}\right)=$ 1 becomes $b d_{2} p^{\prime}\left(d_{1}\right)=\frac{1}{2}$. In addition, we deduce $b d_{2} p^{\prime}\left(d_{1}\right)<b d_{2} p^{\prime}\left(d_{3}\right)$ because $d_{1}>d_{3}$ and $p^{\prime}\left(d_{1}\right)>0$, so the constraint $b d_{2} p^{\prime}\left(d_{3}\right) \leq 1$ can be extended to $\frac{1}{2}<b d_{2} p^{\prime}\left(d_{3}\right) \leq 1$.

Let $d_{2}=d_{3}=d_{y}$. Then $\frac{1}{2}<b d_{y} p^{\prime}\left(d_{y}\right) \leq 1$ implies $d_{\ell \ell}<d_{y} \leq d_{\ell h} \vee d_{h \ell} \leq d_{y}<d_{h h}$ by the property of $d p^{\prime}(d)$. If the less solution is $d_{122 \ell y}$, then $d_{\ell \ell}<d_{122 \ell y} \leq d_{\ell h}$ is proven. If the greater solution is $d_{122 h y}$, then $d_{h \ell} \leq d_{122 h y}<d_{h h}$ is proven.

The constraint $b d_{2} p^{\prime}\left(d_{1}\right)=\frac{1}{2}$, according to our setting, becomes $b d_{122 \ell y} p^{\prime}\left(d_{122 \ell x}\right)=\frac{1}{2}$ and $b d_{122 h y} p^{\prime}\left(d_{122 h x}\right)=\frac{1}{2}$. Since $p^{\prime}(x)$ is decreasing when it is greater than $0, d_{122 \ell y}$ and
$d_{122 \ell x}$ both increase or decrease together, and so do $d_{122 h y}$ and $d_{122 h x}$. Observing the ranges of $d_{122 \ell y}$ and $d_{122 h y}$ and their corresponding solutions, we finally deduce $d_{\ell \ell}<d_{122 \ell x} \leq$ $d_{\ell h}^{+}$and $d_{h \ell}^{+} \leq d_{122 h x}<d_{h h}$.

Theorem 4.17. The Nash equilibria corresponding to the combination $\left(A_{1}, B_{4}, C_{4}\right)$ can only be $N_{144 \ell}=\left(d_{\ell h}^{+}, d_{\ell h}, d_{\ell h}\right)$ and $N_{144 h}=\left(d_{h \ell}^{+}, d_{h \ell}, d_{h \ell}\right)$.

Proof. The equalities $b d_{3} p^{\prime}\left(d_{2}\right)=1$ and $b d_{2} p^{\prime}\left(d_{3}\right)=1$ together implies $d_{2}=d_{3}$ by Lemma 2.4. By Definition 4.2, $d_{2}\left(=d_{3}\right)$ can only be $d_{\ell h}$ or $d_{h \ell}$. Substituting it into $b d_{2} p^{\prime}\left(d_{1}\right)+b d_{3} p^{\prime}\left(d_{1}\right)=1$ gives $b d_{2} p^{\prime}\left(d_{1}\right)=b d_{3} p^{\prime}\left(d_{1}\right)=\frac{1}{2}$. If $b d_{\ell h} p^{\prime}\left(d_{1}\right)=\frac{1}{2}$, then $d_{1}=d_{\ell h}^{+}$. If $b d_{h \ell} p^{\prime}\left(d_{1}\right)=\frac{1}{2}$, then $d_{1}=d_{h \ell}^{+}$. Therefore $N_{144 \ell}$ and $N_{144 h}$ are our results.

Theorem 4.18. The Nash equilibria corresponding to the combination $\left(A_{3}, B_{3}, C_{3}\right)$ can only be $N_{333}=\left(d_{o}, d_{o}, d_{o}\right) . N_{333}$ exists if and only if $d_{\ell \ell} \leq d_{o} \leq d_{h h}$.

Proof. From the utility equalities, it's clear to conclude that $d_{1}=d_{2}=d_{3}$ by Corollary 2.3, and it is also equal to d_{o} by Definition 2.6. We can deduce $b d_{o} p^{\prime}\left(d_{o}\right) \geq \frac{1}{2}$ from the derivative inequalities. By the property of $d p^{\prime}(d)$, the inequality is equivalent to $d_{\ell \ell} \leq$ $d_{o} \leq d_{h h}$.

Theorem 4.19. The Nash equilibria corresponding to the combination $\left(A_{3}, B_{4}, C_{4}\right)$ can only be $N_{344 \ell}=\left(d_{344 \ell x}, d_{344 \ell y}, d_{344 \ell}\right)$ and $N_{344 h}=\left(d_{344 h x}, d_{344 h y}, d_{344 h y}\right)$. If $N_{344 \ell}$ exists, then $d_{\ell h}<d_{344 \ell x} \leq d_{\ell h}^{+}$and $d_{344 \ell y}=d_{\ell h}$. If $N_{344 h}$ exists, then $d_{h \ell}<d_{344 h x} \leq d_{h \ell}^{+}$and $d_{344 h y}=d_{h \ell}$.

Proof. The equalities $b d_{3} p^{\prime}\left(d_{2}\right)=1$ and $b d_{2} p^{\prime}\left(d_{3}\right)=1$ together implies $d_{2}=d_{3}$ by Lemma 2.4, and the utility constraint $b d_{1} p\left(d_{2}\right)>K=b d_{2} p\left(d_{1}\right)$ gives $d_{1}>d_{2}$ by Corollary 2.3. Therefore $d_{1}>d_{2}=d_{3}$, and $b\left(d_{2}+d_{3}\right) p^{\prime}\left(d_{1}\right) \geq 1$ becomes $b d_{2} p^{\prime}\left(d_{1}\right) \geq \frac{1}{2}$. Since $d_{1}>d_{2}$ and $p^{\prime}\left(d_{2}\right)>0$ together implies $p^{\prime}\left(d_{1}\right)<p^{\prime}\left(d_{2}\right), 1=b d_{2} p^{\prime}\left(d_{2}\right)>b d_{2} p^{\prime}\left(d_{1}\right)$. If we let $d_{x}=d_{1}$ and $d_{y}=d_{2}=d_{3}$, then the constraints become $\frac{1}{2} \leq b d_{y} p^{\prime}\left(d_{x}\right)<1$ and $b d_{y} p^{\prime}\left(d_{y}\right)=1$. By Definition 4.2, d_{y} can only be $d_{\ell h}$ and $d_{h \ell}$. If $\frac{1}{2} \leq b d_{\ell h} p^{\prime}\left(d_{x}\right)<1$, then $d_{\ell h}<d_{x} \leq d_{\ell h}^{+}$. If $\frac{1}{2} \leq b d_{h \ell} p^{\prime}\left(d_{x}\right)<1$, then $d_{h \ell}<d_{x} \leq d_{h \ell}^{+}$. Hence the result follows.

Theorem 4.20. The Nash equilibria corresponding to the combination $\left(A_{4}, B_{4}, C_{3}\right)$ can only be $N_{443}=\left(d_{443 x}, d_{443 x}, d_{443 y}\right)$. If N_{443} exists, then $d_{\ell h} \leq d_{443 x} \leq d_{h e}$ and $d_{\ell h} \leq$ $d_{443 y} \leq d_{h \ell}$.

Proof. From C_{3} 's derivative constraint $b d_{3} p^{\prime}\left(d_{1}\right)=1=b d_{3} p^{\prime}\left(d_{2}\right)$, we know $d_{1}=d_{2}$. Let it be $d_{443 x}$ and let d_{3} be $d_{443 y}$. Then the equality becomes $b d_{443 y} p^{\prime}\left(d_{443 x}\right)=1$. Since $p^{\prime}(x)$ is decreasing when it is greater than $0, d_{443 y}$ and $d_{443 x}$ both increase or decrease together. By the property of $d p^{\prime}(d)$, their minimum is $d_{\ell h}$ and their maximum is $d_{h \ell}$. Hence the result follows.

4.3 The PoA and PoS

Now we similarly want to calculate the PoA and PoS. The analysis in this section is still split into three different cases depending on the value of d_{o}, and we still ignore the collapsing Nash equilibrium $(0,0,0)$.

The objective of Lemma 4.21 and Theorem 4.22 is to sort all the Nash equilibria by the total utility function.

Lemma 4.21 (Generalized Lemma 3.21). Given two points $X=\left(d_{x_{1}}, d_{x_{2}}, d_{x_{3}}\right)$ and $Y=$ $\left(d_{y_{1}}, d_{y_{2}}, d_{y_{3}}\right)$, if $d_{x_{i}} \geq d_{y_{i}} \geq d_{\ell \ell}$ for $1 \leq i \leq 3$, all terms in the form of bd $d_{x_{i}} p\left(d_{x_{j}}\right) \leq K$ for $i \neq j$ in $u(X)$, and all terms in the form of $b d_{y_{i}} p\left(d_{y_{j}}\right) \leq K$ for $i \neq j$ in $u(Y)$, then $u(X) \geq u(Y)$.

Proof. Since $b p\left(d_{\ell \ell}\right) \geq b d_{\ell \ell} p^{\prime}\left(d_{\ell \ell}\right)=\frac{1}{2}$, then $b p\left(d_{x_{i}}\right)+b p\left(d_{x_{j}}\right)-1 \geq 0$ and $b p\left(d_{y_{i}}\right)+$ $b p\left(d_{y_{j}}\right)-1 \geq 0$ are always true for all parameters not less than $d_{\ell \ell}$. We can write
$u(X)=d_{x_{1}}\left(b p\left(d_{x_{2}}\right)+b p\left(d_{x_{3}}\right)-1\right)+d_{x_{2}}\left(b p\left(d_{x_{1}}\right)+b p\left(d_{x_{3}}\right)-1\right)+d_{x_{3}}\left(b p\left(d_{x_{1}}\right)+b p\left(d_{x_{2}}\right)-1\right)$, and
$u(Y)=d_{y_{1}}\left(b p\left(d_{y_{2}}\right)+b p\left(d_{y_{3}}\right)-1\right)+d_{y_{2}}\left(b p\left(d_{y_{1}}\right)+b p\left(d_{y_{3}}\right)-1\right)+d_{y_{3}}\left(b p\left(d_{y_{1}}\right)+b p\left(d_{y_{2}}\right)-1\right)$.
It is clear to see that $b p\left(d_{x_{2}}\right)+b p\left(d_{x_{3}}\right)-1 \geq b p\left(d_{y_{2}}\right)+b p\left(d_{y_{3}}\right)-1 \geq 0, b p\left(d_{x_{1}}\right)+b p\left(d_{x_{3}}\right)-$ $1 \geq b p\left(d_{y_{1}}\right)+b p\left(d_{y_{3}}\right)-1 \geq 0$, and $b p\left(d_{x_{1}}\right)+b p\left(d_{x_{2}}\right)-1 \geq b p\left(d_{y_{1}}\right)+b p\left(d_{y_{2}}\right)-1 \geq 0$, so $u(X) \geq u(Y)$.

Theorem 4.22. $N_{111 \ell}$, if exists, has the minimum total utility, and $N_{111 h}$, if exists, has the maximum total utility among all existing Nash equilibria discussed above.

Proof. Recall all previous theorems about Nash equilibria from Theorem 4.15 to Theorem 4.20. None of the strategies of these points are less than $d_{\ell \ell}$. If $N_{111 h}$ exists, then by Theorem $4.15 d_{h h}<d_{o}$ and none of these strategies are greater than d_{o}. That is, $b d_{i} p\left(d_{j}\right) \leq$ K for these strategies. Since $N_{111 h}$ has the greatest contributions (strategies) of each player among all possible Nash equilibria, by Lemma $4.21 N_{111 h}$ has the maximum total utility.

Now we're going to show $N_{111 \ell}$ has the minimum total utility. If some Nash equilibrium other than $(0,0,0)$ exists, it implies $b d_{i} p\left(d_{j}\right) \leq K$ for some $d_{i}, d_{j} \geq d_{\ell \ell}$. Therefore $b d_{\ell \ell} p\left(d_{\ell \ell}\right) \leq K$ and $d_{\ell \ell} \leq d_{o}$. $N_{111 \ell}$ must also exist. For Nash equilibria corresponding to the combinations $\left(A_{1}, B_{1}, C_{1}\right),\left(A_{1}, B_{2}, C_{2}\right)$, and $\left(A_{3}, B_{3}, C_{3}\right)$, they all have the property $b d_{i} p\left(d_{j}\right) \leq K$ for all parameters d_{i} and d_{j}. We can simply use Lemma 4.21 to show that the total utilities of these Nash equilibria are greater than that of $N_{111 \ell}$. For other combinations $\left(A_{1}, B_{4}, C_{4}\right),\left(A_{3}, B_{4}, C_{4}\right)$, and $\left(A_{4}, B_{4}, C_{3}\right)$, we discuss them by cases. Consider $N_{144 \ell}=\left(d_{\ell h}^{+}, d_{\ell h}, d_{\ell h}\right)$ of $\left(A_{1}, B_{4}, C_{4}\right)$ first. This combination implies $b d_{\ell h}^{+} p\left(d_{\ell h}\right) \geq K$ and $b d_{\ell h} p\left(d_{\ell h}^{+}\right) \leq K$. Therefore we can say

$$
\begin{aligned}
u\left(N_{144 \ell}\right) & =2 K-d_{\ell h}^{+}+2 b d_{\ell h} p\left(d_{\ell h}^{+}\right)+2 b d_{\ell h} p\left(d_{\ell h}\right)-2 d_{\ell h} \\
& \geq 2 b d_{\ell h} p\left(d_{\ell h}^{+}\right)-d_{\ell h}^{+}+2 b d_{\ell h} p\left(d_{\ell h}^{+}\right)+2 b d_{\ell h} p\left(d_{\ell h}\right)-2 d_{\ell h} \\
& =4 b d_{\ell h} p(x)-x+2 b d_{\ell h} p\left(d_{\ell h}\right)-\left.2 d_{\ell h}\right|_{x=d_{\ell h}^{+}} .
\end{aligned}
$$

Consider the auxiliary function $f(x)=4 b d_{\ell h} p(x)-x+2 b d_{\ell h} p\left(d_{\ell h}\right)-2 d_{\ell h}$ and its derivative $f^{\prime}(x)=4 b d_{\ell h} p^{\prime}(x)-1$. By definition $f^{\prime}\left(d_{\ell h}^{+}\right)=4 b d_{\ell h} p^{\prime}\left(d_{\ell h}^{+}\right)-1=4 \cdot \frac{1}{2}-1=1$ and therefore $f^{\prime}(x) \geq 1$ for all $0 \leq x \leq d_{\ell h}^{+}$. We deduce $u\left(N_{144 \ell}\right) \geq u\left(d_{\ell h}, d_{\ell h}, d_{\ell h}\right)$ from this and deduce $u\left(d_{\ell h}, d_{\ell h}, d_{\ell h}\right) \geq u\left(N_{111 \ell}\right)$ from Lemma 4.21. Similarly, we can say $u\left(N_{144 h}\right) \geq u\left(N_{111 \ell}\right)$ if replacing $d_{\ell h}^{+}$with $d_{h \ell}^{+}$and replacing $d_{\ell h}$ with $d_{h \ell}$ in the above argument. Also, this argument can be used to explain why $u\left(N_{344 \ell}\right) \geq u\left(N_{111 \ell}\right)$ and $u\left(N_{344 h}\right) \geq u\left(N_{111 \ell}\right)$. Finally we consider $N_{443}=\left(d_{443 x}, d_{443 x}, d_{443 y}\right)$ of $\left(A_{4}, B_{4}, C_{3}\right)$. This combination implies $b d_{443 x} p\left(d_{443 x}\right) \geq K$ and $b d_{443 x} p\left(d_{443 y}\right) \leq K$, so we can say

$$
\begin{aligned}
u\left(N_{443}\right) & =2\left(K-d_{443 x}\right)+2 b d_{443 x} p\left(b d_{443 y}\right)+2 b d_{443 y} p\left(b d_{443 x}\right)-d_{443 y} \\
& \geq 2\left(b d_{443 x} p\left(d_{443 y}\right)-d_{443 x}\right)+2 b d_{443 x} p\left(b d_{443 y}\right)+2 b d_{443 y} p\left(b d_{443 x}\right)-d_{443 y} \\
& =2 d_{443 x}\left(2 b p\left(d_{443 y}\right)-1\right)+d_{443 y}\left(2 b p\left(b d_{443 x}\right)-1\right) \\
& \geq 2 d_{443 y}\left(2 b p\left(d_{443 y}\right)-1\right)+d_{443 y}\left(2 b p\left(b d_{443 y}\right)-1\right) \quad\left(\because b p\left(d_{443 y}\right) \geq b p\left(d_{\ell h}\right) \geq 1\right) \\
& =u\left(d_{443 y}, d_{443 y}, d_{443 y}\right) .
\end{aligned}
$$

Since $b d_{443 y} p\left(d_{443 y}\right) \leq K$, we also deduce $u\left(d_{443 y}, d_{443 y}, d_{443 y}\right) \geq u\left(N_{111 \ell}\right)$ by Lemma 4.21. In the end, we can say $N_{111 \ell}$, if exists, has the minimum total utility.

After clearly comparing the total utilities of all possible Nash equilibria, we can discuss the PoS and the non-collapsing PoA in the following three cases.

Lemma 4.23 and Theorem 4.24 together states the conclusion when neither $d_{\ell \ell}$ nor $d_{h h}$ exists, or both exist but $d_{o}<d_{\ell \ell}$.

Lemma 4.23. When $d_{o}<d_{\ell \ell}$, there are no non-collapsing Nash equilibria. When $d_{o}=$ $d_{\ell \ell}$, the only non-collapsing Nash equilibrium is N_{333}.

Proof. We go through all Nash equilibria mentioned in several previous theorems here. By Theorem 4.15, $N_{111 \ell}$ and $N_{111 h}$ cannot exist since $d_{o} \ngtr d_{\ell \ell}$ and $d_{o} \ngtr d_{h h}$. By Theorem 4.16, all the strategies $d_{122 \ell x}, d_{122 \ell \ell}, d_{122 h x}$ and $d_{122 h y}$ are greater than $d_{\ell \ell}\left(\right.$ and $\left.d_{o}\right)$. Therefore $b d_{122 \ell x} p\left(d_{122 \ell y}\right)=b d_{122 h x} p\left(d_{122 h y}\right)>b d_{\ell \ell} p\left(d_{\ell \ell}\right) \geq b d_{o} p\left(d_{o}\right)=K$ and the constraint $b d_{1} p\left(d_{2}\right)=K$ cannot be satisfied. $N_{122 \ell}$ and $N_{122 h}$ cannot exist. We also figure out that the least contribution (strategy) in Theorem 4.17 is $d_{\ell h}$ which is greater than d_{o}, so $b d_{2} p\left(d_{1}\right)>b d_{o} p\left(d_{o}\right)=K$ and the constraint $b d_{2} p\left(d_{1}\right)<K$ cannot be satisfied. $N_{144 \ell}$ and $N_{144 h}$ cannot exist. Similarly, all strategies in Theorem 4.19 and Theorem 4.20 are not less than $d_{\ell h}$, so $b d_{2} p\left(d_{1}\right)>b d_{o} p\left(d_{o}\right)=K$ violates the constraint $b d_{2} p\left(d_{1}\right)=K$ in $\left(A_{3}, B_{4}, C_{4}\right)$, and $b d_{1} p\left(d_{3}\right)>b d_{o} p\left(d_{o}\right)=K$ violates the constraint $b d_{1} p\left(d_{3}\right)=K$ in $\left(A_{4}, B_{4}, C_{3}\right) . N_{344 \ell}, N_{344 h}$, and N_{443} cannot exist. Finally, Theorem 4.18 says N_{333} exists if and only if $d_{\ell \ell} \leq d_{o} \leq d_{h h}$, so we are done.

Theorem 4.24. If neither $d_{\ell \ell}$ nor $d_{h h}$ exists, or both exist but $d_{o}<d_{\ell \ell}$, then the maximum total utility of all existing Nash equilibria must be 0 .

Proof. By Lemma 4.11 and Lemma 4.23, the only existing Nash equilibrium in this case is $(0,0,0)$ and $u(0,0,0)=0$. The result follows.

Lemma 4.25 is an auxiliary proposition helping us in observing how the PoA, PoS vary with the parameters b.

Lemma 4.25 (Generalized Lemma 3.25). If K and $p(x)$ remain fixed, and b is the only varying parameter, then (a) $\frac{\partial d_{o}}{\partial b}<0$, (b) $\frac{\partial d_{\ell \ell}\left(2 b p\left(d_{\ell \ell}\right)-1\right)}{\partial b}<0$, and (c) $\frac{\partial d_{\ell \ell}}{\partial b}<\frac{\partial d_{o}}{\partial b}$ when $d_{\ell \ell}=d_{o}$.

Proof. Part (a) can be directly deduced from the definition $b d_{o} p\left(d_{o}\right)=K$. For part (b), recall the definition $b d_{\ell \ell} p^{\prime}\left(d_{\ell \ell}\right)=\frac{1}{2}$ first. Since $d_{\ell \ell}$ is the less solution to $b d_{\ell \ell} p^{\prime}\left(d_{\ell \ell}\right)=\frac{1}{2}$, by Lemma 2.1 we have $\partial d_{\ell \ell} / \partial b<0$. It means that when b increases, $d_{\ell \ell}$ decreases, $p^{\prime}\left(d_{\ell \ell}\right)$ increases, $\frac{1 / 2}{p^{\prime}\left(d_{\ell \ell}\right)}$ decreases, and therefore $\frac{\partial}{\partial b}\left(\frac{1 / 2}{p^{\prime}\left(d_{\ell \ell}\right)}\right)<0$. Also write $\frac{\partial}{\partial b}\left(\frac{1 / 2}{p^{\prime}\left(d_{\ell \ell}\right)}\right)=$ $\frac{\partial\left(b d_{\ell \ell}\right)}{\partial b}=d_{\ell \ell}+b \frac{\partial d_{\ell \ell}}{\partial b}$, so $d_{\ell \ell}+b \frac{\partial d_{\ell \ell}}{\partial b}<0$.

$$
\begin{aligned}
\frac{\partial\left(2 b d_{\ell \ell} p\left(d_{\ell \ell}\right)-d_{\ell \ell}\right)}{\partial b} & =2 d_{\ell \ell} p\left(d_{\ell \ell}\right)+2 b \frac{\partial d_{\ell \ell}}{\partial b} p\left(d_{\ell \ell}\right)+2 b d_{\ell \ell} p^{\prime}\left(d_{\ell \ell}\right) \frac{\partial d_{\ell \ell}}{\partial b}-\frac{\partial d_{\ell \ell}}{\partial b} \\
& =2 d_{\ell \ell} p\left(d_{\ell \ell}\right)+2 b \frac{\partial d_{\ell \ell}}{\partial b} p\left(d_{\ell \ell}\right) \\
& =2 p\left(d_{\ell \ell}\right)\left(d_{\ell \ell}+b \frac{\partial d_{\ell \ell}}{\partial b}\right)<0 .
\end{aligned}
$$

For part (c), we go back to $b d_{o} p\left(d_{o}\right)=K$. According to this equality, $\frac{\partial}{\partial b}\left(\frac{K}{p\left(d_{o}\right)}\right)=$ $\frac{\partial\left(b d_{o}\right)}{\partial b}=d_{o}+b \frac{\partial d_{o}}{\partial b}>0$. Comparing with $d_{\ell \ell}+b \frac{\partial d_{\ell \ell}}{\partial b}<0$ deduced above, we obtain part (c).

Theorem 4.26 states the relationship between the PoA, PoS and the parameters b, K when $d_{\ell \ell} \leq d_{o} \leq d_{h h}$.

Theorem 4.26 (Generalized Theorem 3.26). If both $d_{\ell \ell}$ and $d_{h h}$ exist, and $d_{\ell \ell} \leq d_{o} \leq$ $d_{h h}$, then the PoS $=1$ and the Po $A=\frac{u_{o p t}}{u\left(d_{\ell \ell}\right)}=\frac{u\left(N_{333}\right)}{u\left(d_{\ell \ell}\right)}=\frac{d_{o}\left(2 b p\left(d_{o}\right)-1\right)}{d_{\ell \ell}\left(2 b p\left(d_{\ell \ell}\right)-1\right)}$. Furthermore, when $b, p(x)$ are fixed, and K is the only varying parameter, the PoA approaches 1 as K decreases such that d_{o} approaches $d_{\ell \ell}$, and the PoA approaches its maximum
$\frac{d_{h h}\left(b p\left(d_{h h}\right)-1\right)}{d_{\ell \ell}\left(b p\left(d_{\ell \ell}\right)-1\right)}$ as K increases such that d_{o} approaches $d_{h h}$. When $K, p(x)$ are fixed, and b is the only varying parameter, the PoA approaches infinity as b keeps increasing, and the PoA approaches its minimum as b decreases such that d_{o} approaches $d_{h h}$.

Proof. By Corollary $4.9 u_{\text {opt }}=u\left(N_{333}\right)$, so the $P o S=1$. By Theorem 4.22, the worst non-collapsing Nash equilibrium is the point $\left(d_{\ell \ell}, d_{\ell \ell}, d_{\ell \ell}\right)$. Hence the $P o A=\frac{u\left(d_{o}\right)}{u\left(d_{\ell \ell}\right)}$. If b, $p(x)$ are fixed and only K varies, then only d_{o} varies with it and the denominator doesn't change. Since $2 b p\left(d_{o}\right) \geq 2 b p\left(d_{\ell \ell}\right)>2 b d_{\ell \ell} p^{\prime}\left(d_{\ell \ell}\right)=1$, the $P o A$ increases with $d_{o}(K)$.

Consider the case when b is the only varying parameter. We should also note that the $P o A$ can be written as $\frac{2 K-d_{o}}{d_{\ell \ell}\left(2 b p\left(d_{\ell \ell}\right)-1\right)}$. By Lemma $4.25 \frac{\partial d_{o}}{\partial b}<0$ and $\frac{\partial d_{\ell \ell}\left(2 b p\left(d_{\ell \ell}\right)-1\right)}{\partial b}$ <0, so the numerator increases, the denominator decreases, and the $P o A$ increases with b. If $K, p(x)$ are fixed and b is the only increasing parameter, by part (c) of Lemma 4.25 the inequality $d_{\ell \ell} \leq d_{o} \leq d_{h h}$ always remains, so the $P o A$ increases unboundedly. If $K, p(x)$ are fixed and b is the only decreasing parameter, by part (c) of Lemma 4.25 the inequality $d_{\ell \ell} \leq d_{o}$ remains, but d_{o} may exceed $d_{h h}$. Therefore the $P o A$ achieves its minimum as d_{o} achieves its maximum $\left(d_{h h}\right)$.

Theorem 4.27 states the relationship between the PoA, PoS and the parameters b, K when $d_{h h}<d_{o}$.

Theorem 4.27 (Generalized Theorem 3.28). If both $d_{\ell \ell}$ and $d_{h h}$ exist, and $d_{h h}<d_{o}$, then the PoS $=\frac{u_{\text {opt }}}{u\left(N_{111 h}\right)}=\frac{d_{o}\left(2 b p\left(d_{o}\right)-1\right)}{d_{h h}\left(2 b p\left(d_{h h}\right)-1\right)}$ and the PoA $=\frac{u_{o p t}}{u\left(N_{111 \ell}\right)}=\frac{d_{o}\left(2 b p\left(d_{o}\right)-1\right)}{d_{\ell \ell}\left(2 b p\left(d_{\ell \ell}\right)-1\right)}$. If we only consider the non-collapsing stable Nash equilibria, then the "stable" PoA becomes $\frac{u_{\text {opt }}}{u\left(N_{111 h}\right)}$. Furthermore, when b and $p(x)$ are fixed, and K is the only varying parameter, the PoS approaches 1 and the PoA approaches its greatest lower bound $\frac{d_{h h}\left(b p\left(d_{h h}\right)-1\right)}{d_{\ell \ell}\left(b p\left(d_{\ell \ell}\right)-1\right)}$ as K decreases such that d_{o} approaches $d_{h h}$, and both the PoS $=$ $\Theta(K)$ and $P o A=\Theta(K)$ approach infinity as K keeps increasing. When K and $p(x)$ are fixed, and b is the only varying parameter, the PoS approaches 1 and the Po A approaches its least upper bound as bincreases such that d_{o} approaches $d_{h h}$, and the PoS approaches
its maximum and the PoA approaches its minimum as beeps decreasing until $d_{h h}$ does not exist.

Proof. By Corollary 4.9, $u_{o p t}$ occurs at $u\left(d_{o}\right)$. By Theorem 4.22, $N_{111 h}$ has the maximum total utility, and $N_{111 \ell}$ has the minimum total utility among all existing non-collapsing Nash equilibria. Hence the $P o S$ and $P o A$ in our theorem follow. If we only consider the non-collapsing stable Nash equilibria, then $N_{111 h}$ is the only one. Hence the "stable" Po A in our theorem follows.

According to the proof in Theorem 4.26, the $P o S$ and $P o A$ both increase with d_{o} (and $K)$. We should also note that the numerator can be expressed as $2 K-d_{o}$. When K is very large, $p\left(d_{o}\right)$ approaches 1 and therefore $d_{o}=\frac{K}{b p\left(d_{o}\right)} \approx \frac{K}{b}$, so $2 K-d_{o} \approx 2 K-\frac{K}{b}=$ $K\left(2-\frac{1}{b}\right)=\Theta(K)$.

According to the proof in Theorem 4.26, the PoA increases with b. We should also note that the $P o S$ can be written as $\frac{d_{o}}{d_{h h}} \cdot \frac{2 p\left(d_{o}\right)-1 / b}{2 p\left(d_{h h}\right)-1 / b}$. If $K, p(x)$ are fixed and b is the only increasing parameter, then d_{o} and $2 p\left(d_{o}\right)$ decrease, and $d_{h h}$ and $2 p\left(d_{h h}\right)$ increase. In addition, adding the same quantity to both the numerator and denominator of an improper fraction decreases its value. Therefore we can deduce the $P o S$ decreases with b instead.

We close this chapter with the following tables concluding Theorem 4.24, Theorem 4.26, and Theorem 4.27.

Table 4.3: Summary of the PoS and PoA with K as the only varying parameter. We assume d_{o} starts at $d_{\ell \ell}$ and keeps increasing.

Condition	$d_{\ell \ell} \leq d_{o} \leq d_{h h}$ (Phase 1)	$d_{h h}<d_{o}$ (Phase 2)	
PoS	1	$u\left(d_{o}\right) / u\left(d_{h h}\right)$ (stable PoA) increasing	
Monotonicity	-	Yes	
Starting at 1	-	$u\left(d_{o}\right) / u\left(d_{\ell \ell}\right)$	
PoA	Monotonicity	increasing	
Starting at 1	Yes		

Table 4.4: Summary of the PoS and PoA with b as the only varying parameter. We assume b starts at its valid minimum value (i.e. $b x p^{\prime}(x)=\frac{1}{2}$ has exactly one solution.) and keeps increasing.

| Condition | $d_{o}>d_{h h}$
 (Phase 1) | $d_{h h} \geq d_{o} \geq d_{\ell \ell}$
 (Phase 2) |
| :---: | :---: | :---: | :---: |
| PoS | $u\left(d_{o}\right) / u\left(d_{h h}\right)$
 (stable PoA)
 decreasing
 Monotonicity | 1 |
| Terminating at 1 | YES | - |
| PoA | $u\left(d_{o}\right) / u\left(d_{\ell \ell}\right)$ | |
| Monotonicity | increasing | |
| Starting at 1 | No | |
| No | | |

Chapter 5

Nash Equilibrium Analysis for

Multi-Player File-Sharing Games

After the analysis of three-player file-sharing games, we eventually want to generalize the result to n-player file-sharing games. In this chapter the model is exactly in the form of what we've described in Chapter 2, and n denotes the number of players.

$$
\left\{\begin{array}{l}
u_{i}\left(d_{i}\right)=-d_{i}+\sum_{k \neq i} \min \left\{K, b d_{k} p\left(d_{i}\right)\right\}, \text { for } 1 \leq i \leq n \\
u\left(d_{1}, d_{2}, \ldots, d_{n}\right)=\sum_{i=1}^{n} u_{i}\left(d_{i}\right) .
\end{array}\right.
$$

We also use the notation $u(d)=u(d, d, \ldots, d)$ if all the d_{i} 's have the same value of d.
In this chapter, we still do almost the same thing as in Chapter 4. The difference is that we only consider the "symmetric" Nash equilibria (i.e., the same contribution for all players) here, and we don't care about their stability either.

5.1 Maximum Total Utility

The structure of the proof is exactly the same as that in Chapter 4 . The following are some related lemmas and theorems.

Lemma 5.1 (Generalized Lemma 4.1). In any surface $\sum_{\substack{1 \leq i, j \leq n, i \neq j}} b d_{i} p\left(d_{j}\right)=C \geq 0$, $\sum_{\substack{1 \leq i, j \leq n, i \neq j}} \min \left\{K, b d_{i} p\left(d_{j}\right)\right\}$ attains its maximum value on (but not limited to) the diagonal.

Proof. Consider the case when all d_{i} 's are the same. This case makes all $b d_{i} p\left(d_{j}\right)$ have the same value of $C /(n(n-1))$. If $C /(n(n-1)) \leq K$, then

$$
\sum_{\substack{1 \leq i, j \leq n, i \neq j}} \min \left\{K, b d_{i} p\left(d_{j}\right)\right\}=\sum_{\substack{1 \leq i, j \leq n, i \neq j}} C /(n(n-1))=C .
$$

Since $\sum_{\substack{1 \leq i, j \leq n, i \neq j}} \min \left\{K, b d_{i} p\left(d_{j}\right)\right\} \leq \sum_{\substack{1 \leq i, j \leq n, i \neq j}} b d_{i} p\left(d_{j}\right)=C$, it attains its maximum. If $C /(n(n-1))>K$, then $\min \left\{K, b d_{i} p\left(d_{j}\right)\right\}=K$. By definition, it also attains its maximum. Hence the result follows.

Lemma 5.2 (Generalized Lemma 4.4). In any plane $\sum_{i=1}^{n} d_{i}=C>0$, if $d_{x} \geq d_{y}$ for some players P_{x} and P_{y} at a point, it always has a value of $\sum_{\substack{1 \leq i, j \leq n, i \neq j}} d_{i} p\left(d_{j}\right)$ greater than or equal to another point where d_{x} is increased by δ and d_{y} is decreased by δ, for any $\delta>0$.

Proof. W.L.O.G., take $x=1$ and $y=2$. We can expand the formula as the following.

$$
\begin{aligned}
\sum_{\substack{1 \leq i, j \leq n, i \neq j}} d_{i} p\left(d_{j}\right) & =\left(d_{1}+d_{2}\right) \cdot \sum_{i=3}^{n} p\left(d_{i}\right)+\sum_{\substack{3 \leq i, j \leq n, i \neq j}} d_{i} p\left(d_{j}\right) \\
& +\left(d_{1} p\left(d_{2}\right)+d_{2} p\left(d_{1}\right)\right)+\left(p\left(d_{1}\right)+p\left(d_{2}\right)\right) \cdot \sum_{i=3}^{n} d_{i} .
\end{aligned}
$$

By Lemma 4.3, $d_{1} p\left(d_{2}\right)+d_{2} p\left(d_{1}\right) \geq\left(d_{1}+\delta\right) p\left(d_{2}-\delta\right)+\left(d_{2}-\delta\right) p\left(d_{1}+\delta\right)$. By Lemma 4.2, $p\left(d_{1}\right)+p\left(d_{2}\right) \geq p\left(d_{1}+\delta\right)+p\left(d_{2}-\delta\right)$. Since the other terms don't change, then we are done.

Lemma 5.3 (Generalized Lemma 4.5). In any plane $\sum_{i=1}^{n} d_{i}=C>0$, the maximum value of $\sum_{\substack{1 \leq i, j \leq n, i \neq j}} d_{i} p\left(d_{j}\right)$ can occur at the point where $d_{i}=C / n$ for all $1 \leq i \leq n$.

Proof. Define the function $f\left(d_{1}, d_{2}, \ldots, d_{n}\right)=\sum_{\substack{1 \leq i, j \leq n, i \neq j}} b d_{i} p\left(d_{j}\right)$ first for simplicity. In this proof, we want to compare $\left(\frac{C}{n}, \frac{C}{n}, \ldots, \frac{C}{n}\right)$ with another arbitrary point $\left(\frac{C}{n}+\delta_{1}, \frac{C}{n}+\delta_{2}, \ldots, \frac{C}{n}+\right.$ $\left.\delta_{n-1}, \frac{C}{n}-\sum_{i=1}^{n-1} \delta_{i}\right)$ on the same plane, and deduce $f\left(\frac{C}{n}, \frac{C}{n}, \ldots, \frac{C}{n}\right) \geq f\left(\frac{C}{n}+\delta_{1}, \frac{C}{n}+\delta_{2}, \ldots, \frac{C}{n}+\right.$ $\left.\delta_{n-1}, \frac{C}{n}-\sum_{i=1}^{n-1} \delta_{i}\right)$. Consider the following argument. If a point $P\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ on the same plane is not $\left(\frac{C}{n}, \frac{C}{n}, \ldots, \frac{C}{n}\right)$, there must be some $d_{i}>\frac{C}{n}$ and some $d_{j}<\frac{C}{n}$. If $\left|d_{i}-\frac{C}{n}\right| \geq$ $\left|d_{j}-\frac{C}{n}\right|$, then we can adjust the point to a new one Q where d_{i} becomes $d_{i}-\left(\frac{C}{n}-d_{j}\right) \geq \frac{C}{n}$ and d_{j} becomes $\frac{C}{n}$. In this case $f(P) \leq f(Q)$. If $\left|d_{i}-\frac{C}{n}\right| \leq\left|d_{j}-\frac{C}{n}\right|$, then we can adjust the point to another one R where d_{i} becomes $\frac{C}{n}$ and d_{j} becomes $d_{j}+\left(d_{i}-\frac{C}{n}\right) \leq \frac{C}{n}$. In this case $f(P) \leq f(R)$. Then we can repeat the above procedure until the point becomes $\left(\frac{C}{n}, \frac{C}{n}, \ldots, \frac{C}{n}\right)$. The procedure will be executed only at most n times since in each iteration there must exist at least one d_{i} which becomes $\frac{C}{n}$. Hence $f\left(\frac{C}{n}, \frac{C}{n}, \ldots, \frac{C}{n}\right)$ is the maximum value on the plane.

Lemma 5.4 (Generalized Lemma 4.6). If the strategies d_{i} 's of all players P_{i} 's (except for $P_{k} ' s d_{k}$) are not all 0 , then the value of $\sum_{\substack{1 \leq i, j \leq n, i \neq j}} d_{i} p\left(d_{j}\right)$ increases with d_{k}.

Proof. Expand $\sum_{\substack{1 \leq i, j \leq n, i \neq j}} d_{i} p\left(d_{j}\right)$ again to observe which terms are affected by d_{k}.

$$
\sum_{\substack{1 \leq i, j \leq n, i \neq j}} d_{i} p\left(d_{j}\right)=p\left(d_{k}\right) \cdot\left(\sum_{i \neq k} d_{i}\right)+\left(\sum_{\substack{1 \leq i, j \leq n, i \neq j, i \neq k, j \neq k}} d_{i} p\left(d_{j}\right)\right)+d_{k} \cdot\left(\sum_{i \neq k} p\left(d_{i}\right)\right) .
$$

Focus on the first term.

$$
\because \sum_{i \neq k} d_{i}>0 . \quad \therefore p\left(d_{k}+\delta\right) \cdot\left(\sum_{i \neq k} d_{i}\right) \geq p\left(d_{k}\right) \cdot\left(\sum_{i \neq k} d_{i}\right) \text { for } \delta>0 .
$$

Focus on the last term.

$$
\because \sum_{i \neq k} p\left(d_{i}\right)>0 . \quad \therefore\left(d_{k}+\delta\right) \cdot\left(\sum_{i \neq k} p\left(d_{i}\right)\right)>d_{k} \cdot\left(\sum_{i \neq k} p\left(d_{i}\right)\right) \text { for } \delta>0 \text {. }
$$

Hence the result follows.
Lemma 5.5 (Generalized Lemma 4.7). In any surface $\sum_{\substack{1 \leq i, j \leq n, i \neq j}} b d_{i} p\left(d_{j}\right)=C>0, \sum_{i=1}^{n} d_{i}$ attains its minimum value on (but not limited to) the diagonal.

Proof. Define two functions $f\left(d_{1}, d_{2}, \ldots, d_{n}\right)=\sum_{\substack{1 \leq i, j \leq n, i \neq j}} b d_{i} p\left(d_{j}\right)$ and $g\left(d_{1}, d_{2}, \ldots, d_{n}\right)=$ $\sum_{i=1}^{n} d_{i}$. Pick one point (d, d, \ldots, d) and another arbitrary point $\left(d+\delta_{1}, d+\delta_{2}, \ldots, d+\delta_{n}\right)$ on the same surface. If we can prove $g(d, d, \ldots, d) \leq g\left(d+\delta_{1}, d+\delta_{2}, \ldots, d+\delta_{n}\right)$, then we are done.

We first introduce an auxiliary point $\left(d+\delta_{1}, d+\delta_{2}, \ldots, d+\delta_{n-1}, d-\sum_{i=1}^{n-1} \delta_{i}\right)$ which lies on the same plane as (d, d, d). By Lemma 5.3, $f(d, d, \ldots, d) \geq f\left(d+\delta_{1}, d+\delta_{2}, \ldots, d+\right.$ $\left.\delta_{n-1}, d-\sum_{i=1}^{n-1} \delta_{i}\right) . \because(d, d, \ldots, d)$ and $\left(d+\delta_{1}, d+\delta_{2}, \ldots, d+\delta_{n}\right)$ lie on the same surface. $\therefore f(d, d, \ldots, d)=f\left(d+\delta_{1}, d+\delta_{2}, \ldots, d+\delta_{n}\right)$. That is, $f\left(d+\delta_{1}, d+\delta_{2}, \ldots, d+\delta_{n}\right) \geq$ $f\left(d+\delta_{1}, d+\delta_{2}, \ldots, d+\delta_{n-1}, d-\sum_{i=1}^{n-1} \delta_{i}\right)$. According to this inequality, we can deduce $d+\delta_{n} \geq d-\sum_{i=1}^{n-1} \delta_{i}$ by Lemma 5.4. Since $d+\delta_{n} \geq d-\sum_{i=1}^{n-1} \delta_{i}$, it is obvious that $g\left(d+\delta_{1}, d+\delta_{2}, \ldots, d+\delta_{n}\right) \geq g\left(d+\delta_{1}, \ldots, d+\delta_{n-1}, d-\sum_{i=1}^{n-1} \delta_{i}\right)=g(d, d, \ldots, d)$. This inequality is our goal. Hence the result follows.

By Lemma 5.5, there must be a point on the diagonal where $u_{o p t}$ occurs under some parameter settings. The following theorem tells us what the settings are.

Theorem 5.6 (Generalized Theorem 4.8). If $d_{o} \geq(n-1) K$, then $u_{\text {opt }}=0$. If $d_{o}<$ $(n-1) K$, then $u_{o p t}=n\left((n-1) K-d_{o}\right)>0$.

Proof. Recall the utility formula of the point (d, d, \ldots, d) on the diagonal. We should note that $d \leq d_{o} \Longleftrightarrow b d p(d) \leq K$, and $d \geq d_{o} \Longleftrightarrow b d p(d) \geq K$.
$u=n \cdot(-d+(n-1) \cdot \min \{K, b d p(d)\})= \begin{cases}n d((n-1) b p(d)-1) & \text { if } d \leq d_{o} \\ n((n-1) K-d) & \text { if } d \geq d_{o} .\end{cases}$
If $d_{o} \geq(n-1) K$, then $(n-1) b p\left(d_{o}\right) \leq 1$. In this case $u\left(d_{o}\right) \leq 0$. When $d<d_{o}$, $(n-1) b p(d) \leq(n-1) b p\left(d_{o}\right) \leq 1$ and therefore $u(d) \leq 0$. When $d>d_{o},(n-1) K-d<$ $(n-1) K-d_{o}$ and therefore $u(d)<u\left(d_{o}\right) \leq 0$. Hence $u_{o p t}=0$. If $d_{o}<(n-1) K$, then $(n-1) b p\left(d_{o}\right)>1$. In this case $u\left(d_{o}\right)>0$. When $d<d_{o},(n-1) b p(d) \leq(n-1) b p\left(d_{o}\right)$ and therefore $u(d) \leq u\left(d_{o}\right)$. When $d>d_{o},(n-1) K-d<(n-1) K-d_{o}$ and therefore $u(d)<u\left(d_{o}\right)$. Hence $u_{o p t}=u\left(d_{o}\right)>0$.

Corollary 5.7 (Generalized Corollary 4.9). Let d_{L} be the less solution to $b x p^{\prime}(x)=$ $\frac{1}{n-1}$. If $d_{o} \geq d_{L}$, then $u_{o p t}=u\left(d_{o}\right)$.

Proof. $\because b p\left(d_{o}\right) \geq b p\left(d_{L}\right)>b d_{L} p^{\prime}\left(d_{L}\right)=\frac{1}{n-1} \quad \therefore d_{o}<(n-1) K$ by Definition 2.6. In this case $u_{o p t}=u\left(d_{o}\right)>0$ by Theorem 5.6.

We close this section with the following conclusive table.
Table 5.1: The maximum total utility of multi-player games.

Condition	Utility
$d_{o} \geq(n-1) K$	0
$d_{o}<(n-1) K$	$n\left((n-1) K-d_{o}\right)$

5.2 Nash Equilibria

Before calculating the PoA and PoS, it is necessary to generalize some theorems in the previous chapter first.

Lemma 5.8 (Generalized Lemma 4.10). The player P_{i} does not want to change his/her strategy d_{i} if and only if one of the following cases occurs.

Case I. $\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{-}$does not exist (i.e., $d_{i}=0$) and $\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{+} \leq 0$.
Case II. $\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{-} \geq 0$ and $\left(\frac{\partial u_{i}}{\partial d_{i}}\right)^{+} \leq 0$.

Proof. Assume there are n players P_{1} to P_{n} whose strategies are d_{1} to d_{n}. Recall the utility function $u_{i}=-d_{i}+\sum_{k \neq i} \min \left\{K, b d_{k} p\left(d_{i}\right)\right\}$. Differentiate it with respect to d_{i}. W.L.O.G., we assume the strategies d_{1} to d_{n} (except for d_{i}) are in ascending order. If there exists some $1 \leq j \leq n$ such that $b d_{k} p\left(d_{i}\right) \leq K$ for all $1 \leq k \leq j($ but $k \neq i)$ and $b d_{k} p\left(d_{i}\right) \geq K$ for all $j+1 \leq k \leq n$ (but $k \neq i$), then

$$
\frac{\partial u_{i}}{\partial d_{i}}=\frac{\partial}{\partial d_{i}}\left(-d_{i}+\sum_{\substack{1 \leq k \leq j \\ k \neq i}} b d_{k} p\left(d_{i}\right)+(n-j) K\right)=-1+\sum_{\substack{1 \leq k \leq j \\ k \neq i}} b d_{k} p^{\prime}\left(d_{i}\right)
$$

If $b d_{k} p\left(d_{i}\right) \geq K$ for all $k \neq i$, then

$$
\frac{\partial u_{i}}{\partial d_{i}}=\frac{\partial}{\partial d_{i}}\left(-d_{i}+(n-1) K\right)=-1 .
$$

Since $b d_{k}$'s (for all $k \neq i$) are fixed nonnegative numbers, $p^{\prime}(x)$ is a nonnegative nonincreasing function, and j cannot be incremented as d_{i} goes up, $\frac{\partial u_{i}}{\partial d_{i}}$ is non-increasing for all $d_{i} \geq 0$. Hence the result follows.

However, since the Nash equilibria in which at least two players have different strategies are too difficult to analyze, we simply assume strategies of players are all the same in this section. The derivative of utility is shown below.

$$
\frac{\partial u_{i}}{\partial d_{i}}=\left\{\begin{array}{rlrl}
\frac{\partial}{\partial d_{i}}\left(-d_{i}+\sum_{k \neq i} b d_{k} p\left(d_{i}\right)\right) & =b\left(\sum_{k \neq i} d_{k}\right) p^{\prime}\left(d_{i}\right)-1 & \\
& =(n-1) b d_{i} p^{\prime}\left(d_{i}\right)-1 & & \text { if } b d_{i} p\left(d_{i}\right) \leq K \\
\frac{\partial}{\partial d_{i}}\left(-d_{i}+(n-1) K\right) & =-1 & & \text { if } b d_{i} p\left(d_{i}\right) \geq K
\end{array}\right.
$$

According to the above conclusion, all possible Nash equilibria we care about in this section can only be O (the origin), N_{L}, N_{o}, and N_{H} stated in the following theorems.

Definition 5.1. If $b x p^{\prime}(x)=\frac{1}{n-1}$ has two different solutions, let d_{L} be the less one, and let d_{H} be the greater one. If it has only one solution, let d_{L} and d_{H} both denote it.

Theorem 5.9. The Nash equilibrium N_{L}, where all players have the same strategy d_{L}, exists if and only if $d_{L}<d_{o}$. The Nash equilibrium N_{H}, where all players have the same strategy d_{H}, exists if and only if $d_{H}<d_{o}$.

Proof. The two points correspond to the case when $(n-1) b d_{i} p^{\prime}\left(d_{i}\right)-1=0$ and $b d_{i} p\left(d_{i}\right)<$ K. Since $b d_{i} p\left(d_{i}\right)<K=b d_{o} p\left(d_{o}\right)$ if and only if $d_{i}<d_{o}$, the result follows.

Theorem 5.10. N_{o} exists if and only if $d_{L} \leq d_{o} \leq d_{H}$.
Proof. The point corresponds to the case when $(n-1) b d_{i} p^{\prime}\left(d_{i}\right)-1 \geq 0$ and $b d_{i} p\left(d_{i}\right)=K$. Since $b d_{o} p^{\prime}\left(d_{o}\right) \geq \frac{1}{n-1}$ if and only if $d_{L} \leq d_{o} \leq d_{H}$, the result follows.

5.3 The Symmetric PoA and PoS

We can eventually discuss the PoS and non-collapsing PoA. Since we assume all players have the same strategy, the definitions of the PoS and non-collapsing PoA should be modified a little.

Definition 5.2. We say a Nash equilibrium is "symmetric" if all players have the same contribution on that point.

Definition 5.3. Let the symmetric $\operatorname{PoS}=\frac{u_{\text {opt }}}{u(\text { the best symmetric Nash equilibrium })}$.
Definition 5.4. Let the non-collapsing symmetric PoA

$$
=\frac{u_{\text {opt }}}{u(\text { the worst symmetric Nash equilibrium except for the origin })} .
$$

Lemma 5.11 is convenient for us to compare the values of total utility of two different symmetric Nash equilibria.

Lemma 5.11 (Generalized Lemma 4.21). Given two points $X=\left(d_{x_{1}}, d_{x_{2}}, \ldots, d_{x_{n}}\right)$ and $Y=\left(d_{y_{1}}, d_{y_{2}}, \ldots, d_{y_{n}}\right)$, we can deduce $u(X) \geq u(Y)$ if $d_{o} \geq d_{x_{i}} \geq d_{y_{i}} \geq d_{L}$ for $1 \leq i \leq n$.

Proof. Since $b p\left(d_{L}\right) \geq b d_{L} p^{\prime}\left(d_{L}\right)=\frac{1}{n-1}$, then $\sum_{i \neq \text { some fixed } k} b p\left(d_{x_{i}}\right)-1 \geq 0$ and
$\sum_{i \neq \text { some fixed } k} b p\left(d_{y_{i}}\right)-1 \geq 0$ are always true for all parameters not less than d_{L}. In addition,
$b d_{x_{i}} p\left(d_{x_{j}}\right) \leq K$ and $b d_{y_{i}} p\left(d_{y_{j}}\right) \leq K$ are always true for all parameters not greater than d_{o}. We can write

$$
\begin{aligned}
& u(X)=\sum_{k=1}^{n} d_{x_{k}} \cdot\left(\sum_{i \neq k} b p\left(d_{x_{i}}\right)-1\right), \text { and } \\
& u(Y)=\sum_{k=1}^{n} d_{y_{k}} \cdot\left(\sum_{i \neq k} b p\left(d_{y_{i}}\right)-1\right) .
\end{aligned}
$$

It is clear to see that $\sum_{i \neq k} b p\left(d_{x_{i}}\right)-1 \geq \sum_{i \neq k} b p\left(d_{y_{i}}\right)-1 \geq 0$ for all $1 \leq k \leq n$, so $u(X) \geq u(Y)$.

Theorem 5.12 states the conclusion when neither d_{L} nor d_{H} exists, or both exist but $d_{o}<d_{L}$.

Theorem 5.12. If neither d_{L} nor d_{H} exists, or both exist but $d_{o}<d_{L}$, then the maximum total utility of all existing Nash equilibria must be 0 .

Proof. Since in this case the only existing symmetric Nash equilibrium is the origin O and $u(O)=0$, the result follows.

Lemma 5.13 is an auxiliary proposition helping us in observing how the PoA, PoS vary with the parameters b.

Lemma 5.13 (Generalized Lemma 4.25). If b is the only varying parameter and all the other parameters are fixed, then (a) $\frac{\partial d_{o}}{\partial b}<0$, (b) $\frac{\partial d_{L}\left((n-1) b p\left(d_{L}\right)-1\right)}{\partial b}<0$, and (c) $\frac{\partial d_{L}}{\partial b}<\frac{\partial d_{o}}{\partial b}$ when $d_{L}=d_{o}$.

Proof. Part (a) can be directly deduced from the definition $b d_{o} p\left(d_{o}\right)=K$. For part (b), recall the definition $b d_{L} p^{\prime}\left(d_{L}\right)=\frac{1}{n-1}$ first. Since d_{L} is the less solution to $b d_{L} p^{\prime}\left(d_{L}\right)=$ $\frac{1}{n-1}$, by Lemma 2.1 we have $\partial d_{L} / \partial b<0$. It means that when b increases, d_{L} decreases, $p^{\prime}\left(d_{L}\right)$ increases, $\frac{1 /(n-1)}{p^{\prime}\left(d_{L}\right)}$ decreases, and therefore $\frac{\partial}{\partial b}\left(\frac{1 /(n-1)}{p^{\prime}\left(d_{L}\right)}\right)<0$. Also write $\frac{\partial}{\partial b}\left(\frac{1 /(n-1)}{p^{\prime}\left(d_{L}\right)}\right)=\frac{\partial\left(b d_{L}\right)}{\partial b}=d_{L}+b \frac{\partial d_{L}}{\partial b}$, so $d_{L}+b \frac{\partial d_{L}}{\partial b}<0$.

$$
\begin{aligned}
\frac{\partial\left((n-1) b d_{L} p\left(d_{L}\right)-d_{L}\right)}{\partial b} & =(n-1) d_{L} p\left(d_{L}\right)+(n-1) b \frac{\partial d_{L}}{\partial b} p\left(d_{L}\right) \\
& +(n-1) b d_{L} p^{\prime}\left(d_{L}\right) \frac{\partial d_{L}}{\partial b}-\frac{\partial d_{L}}{\partial b} \\
= & (n-1) d_{L} p\left(d_{L}\right)+(n-1) b \frac{\partial d_{L}}{\partial b} p\left(d_{L}\right) \\
= & (n-1) p\left(d_{L}\right)\left(d_{L}+b \frac{\partial d_{L}}{\partial b}\right)<0 .
\end{aligned}
$$

For part (c), we go back to $b d_{o} p\left(d_{o}\right)=K$. According to this equality, $\frac{\partial}{\partial b}\left(\frac{K}{p\left(d_{o}\right)}\right)=$ $\frac{\partial\left(b d_{o}\right)}{\partial b}=d_{o}+b \frac{\partial d_{o}}{\partial b}>0$. Comparing with $d_{L}+b \frac{\partial d_{L}}{\partial b}<0$ deduced above, we obtain part (c).

Lemma 5.14 is an auxiliary proposition helping us in observing how the PoA, PoS vary with the parameters n.
Lemma 5.14. If n is the only varying parameter and all the other parameters are fixed, then $\frac{\partial d_{L}\left((n-1) b p\left(d_{L}\right)-1\right)}{\partial n}<0$.
Proof. Recall the definition $(n-1) d_{L} p^{\prime}\left(d_{L}\right)=\frac{1}{b}$ first. Since d_{L} is the less solution to $(n-1) d_{L} p^{\prime}\left(d_{L}\right)=\frac{1}{b}$, by Lemma 2.1 we have $\partial d_{L} / \partial n<0$. Differentiating both sides of the equation with respect to n gives

$$
\begin{aligned}
& d_{L} p^{\prime}\left(d_{L}\right)+(n-1) \frac{\partial d_{L}}{\partial n} p^{\prime}\left(d_{L}\right)+(n-1) d_{L} p^{\prime \prime}\left(d_{L}\right) \frac{\partial d_{L}}{\partial n}=0 \\
& p^{\prime}\left(d_{L}\right) \cdot\left(d_{L}+(n-1) \frac{\partial d_{L}}{\partial n}\right)=-(n-1) d_{L} p^{\prime \prime}\left(d_{L}\right) \frac{\partial d_{L}}{\partial n}<0
\end{aligned}
$$

Since $p^{\prime}\left(d_{L}\right)>0$, we deduce $d_{L}+(n-1) \frac{\partial d_{L}}{\partial n}<0$.

$$
\begin{aligned}
\frac{\partial\left((n-1) b d_{L} p\left(d_{L}\right)-d_{L}\right)}{\partial n} & =b d_{L} p\left(d_{L}\right)+b(n-1) \frac{\partial d_{L}}{\partial n} p\left(d_{L}\right) \\
& +(n-1) b d_{L} p^{\prime}\left(d_{L}\right) \frac{\partial d_{L}}{\partial n}-\frac{\partial d_{L}}{\partial n} \\
& =b d_{L} p\left(d_{L}\right)+b(n-1) \frac{\partial d_{L}}{\partial n} p\left(d_{L}\right) \\
& =b p\left(d_{L}\right)\left(d_{L}+(n-1) \frac{\partial d_{L}}{\partial n}\right)<0
\end{aligned}
$$

Theorem 5.15 states the relationship between the PoA, PoS and the parameters b, K, n when $d_{L} \leq d_{o} \leq d_{H}$.

Theorem 5.15 (Generalized Theorem 4.26). If both d_{L} and d_{H} exist, and $d_{L} \leq d_{o} \leq$ d_{H}, then the PoS $=1$ and the Po $A=\frac{u_{o p t}}{u\left(d_{L}\right)}=\frac{u\left(N_{o}\right)}{u\left(d_{L}\right)}=\frac{d_{o}\left((n-1) b p\left(d_{o}\right)-1\right)}{d_{L}\left((n-1) b p\left(d_{\dot{L}}\right)-1\right)}$. Furthermore, when K is the only varying parameter and all the other parameters are fixed, the PoA approaches 1 as K decreases such that d_{o} approaches d_{L}, and the PoA approaches its maximum $\frac{d_{H}\left(b p\left(d_{H}\right)-1\right)}{d_{L}\left(b p\left(d_{L}\right)-1\right)}$ as K increases such that d_{o} approaches d_{H}. When b is the only varying parameter and all the other parameters are fixed, the PoA approaches infinity as beeps increasing, and the PoA approaches its minimum as b decreases such that d_{o} approaches d_{H}. When n is the only varying parameter and all the other parameters are fixed, the PoA approaches infinity as n keeps increasing, and the PoA approaches its minimum as n decreases such that d_{H} approaches d_{o}.

Proof. By Corollary $5.7 u_{\text {opt }}=u\left(N_{o}\right)$, so the $P o S=1$. By Lemma 5.11, the worst non-collapsing Nash equilibrium is the point $\left(d_{L}, d_{L}, \ldots, d_{L}\right)$. Hence the $\operatorname{Po} A=\frac{u\left(d_{o}\right)}{u\left(d_{L}\right)}$. If only K varies and all the other parameters are fixed, then only d_{o} varies with it and the denominator doesn't change. Since $(n-1) b p\left(d_{o}\right) \geq(n-1) b p\left(d_{L}\right)>(n-1) b d_{L} p^{\prime}\left(d_{L}\right)=$ 1, the $P o A$ increases with d_{o} (and K).

Consider the case when b is the only varying parameter. We should also note that the $P o A$ can be written as $\frac{(n-1) K-d_{o}}{d_{L}\left((n-1) b p\left(d_{L}\right)-1\right)}$. By Lemma $5.13 \frac{\partial d_{o}}{\partial b}<0$ and $\frac{\partial d_{L}\left((n-1) b p\left(d_{L}\right)-1\right)}{\partial b}<0$, so the numerator increases, the denominator decreases, and the $P o A$ increases with b. If b is the only increasing parameter and all the other parameters are fixed, by part (c) of Lemma 5.13 the inequality $d_{L} \leq d_{o} \leq d_{H}$ always remains, so the $P o A$ increases unboundedly. If b is the only decreasing parameter and all the other parameters are fixed, by part (c) of Lemma 5.13 the inequality $d_{L} \leq d_{o}$ remains, but d_{o} may exceed d_{H}. Therefore the $P o A$ achieves its minimum as d_{o} achieves its maximum $\left(d_{H}\right)$.

Consider the case when n is the only varying parameter. The $P o A$ can be written as
$\frac{(n-1) K-d_{o}}{d_{L}\left((n-1) b p\left(d_{L}\right)-1\right)}$. By Lemma $5.14 \frac{\partial d_{L}\left((n-1) b p\left(d_{L}\right)-1\right)}{\partial n}<0$, so the numerator increases, the denominator decreases, and the $P o A$ increases with n. If n is the only increasing parameter and all the other parameters are fixed, it is obvious that the inequality $d_{L} \leq d_{o} \leq d_{H}$ always remains, so the PoA increases unboundedly. If n is the only decreasing parameter and all the other parameters are fixed, then d_{L} may exceed d_{o} or d_{H} may fall below d_{o}. Therefore the $P o A$ achieves its minimum as d_{L} achieves its maximum (d_{o}) first or d_{H} achieves its minimum (d_{o}) first.

Theorem 5.16 states the relationship between the PoA, PoS and the parameters b, K, n when $d_{H}<d_{o}$.

Theorem 5.16 (Generalized Theorem 4.27). If both d_{L} and d_{H} exist, and $d_{H}<d_{o}$, then the PoS $=\frac{u_{\text {opt }}}{u\left(N_{H}\right)}=\frac{d_{o}\left((n-1) b p\left(d_{o}\right)-1\right)}{d_{H}\left((n-1) b p\left(d_{H}\right)-1\right)}$ and the PoA $=\frac{u_{\text {opt }}}{u\left(N_{L}\right)}=\frac{d_{o}\left((n-1) b p\left(d_{o}\right)-1\right)}{d_{L}\left((n-1) b p\left(d_{L}\right)-1\right)}$. If we only consider the non-collapsing stable Nash equilibria, then the "stable" PoA becomes $\frac{u_{\text {opt }}}{u\left(N_{H}\right)}$. Furthermore, when K is the only varying parameter and all the other parameters are fixed, the PoS approaches 1 and the PoA approaches its greatest lower bound $\frac{d_{H}\left(b p\left(d_{H}\right)-1\right)}{d_{L}\left(b p\left(d_{L}\right)-1\right)}$ as K decreases such that d_{o} approaches d_{H}, and both the $P o S=$ $\Theta(K)$ and Po $A=\Theta(K)$ approach infinity as K keeps increasing. When b is the only varying parameter and all the other parameters are fixed, the PoS approaches 1 and the Po A approaches its least upper bound as bincreases such that d_{o} approaches d_{H}, and the PoS approaches its maximum and the PoA approaches its minimum as b keeps decreasing until d_{H} does not exist. When n is the only varying parameter and all the other parameters are fixed, the PoS approaches 1 and the PoA approaches its least upper bound as n increases such that d_{H} approaches d_{o}, and the PoS approaches its maximum and the Po A approaches its minimum as n keeps decreasing until d_{H} does not exist.

Proof. By Corollary 5.7, $u_{\text {opt }}$ occurs at $u\left(d_{o}\right)$. By Lemma 5.11, N_{H} has the maximum total utility, and N_{L} has the minimum total utility among all existing non-collapsing Nash equilibria. Hence the $P o S$ and $P o A$ in our theorem follow. If we only consider the noncollapsing stable Nash equilibria, then N_{H} is the only one. Hence the "stable" $P o A$ in our
theorem follows.
According to the proof in Theorem 5.15, the $P o S$ and $P o A$ both increase with d_{o} (and $K)$. We should also note that the numerator can be expressed as $(n-1) K-d_{o}$. When K is very large, $p\left(d_{o}\right)$ approaches 1 and therefore $d_{o}=\frac{K}{b p\left(d_{o}\right)} \approx \frac{K}{b}$, so $(n-1) K-d_{o} \approx$ $(n-1) K-\frac{K}{b}=K\left((n-1)-\frac{1}{b}\right)=\Theta(K)$.

According to the proof in Theorem 5.15, the $P o A$ increases with b. We should also note that the $P o S$ can be written as $\frac{d_{o}}{d_{H}} \cdot \frac{(n-1) p\left(d_{o}\right)-1 / b}{(n-1) p\left(d_{H}\right)-1 / b}$. If b is the only increasing parameter and all the other parameters are fixed, d_{o} and $(n-1) p\left(d_{o}\right)$ decrease, and d_{H} and $(n-1) p\left(d_{H}\right)$ increase. In addition, adding the same quantity to both the numerator and denominator of an improper fraction decreases its value. Therefore we can deduce the $P o S$ decreases with b instead.

According to the proof in Theorem 5.15, the PoA increases with n. We should also note that the $P o S$ can be written as $\frac{d_{o}}{d_{H}} \cdot \frac{b p\left(d_{o}\right)-1 /(n-1)}{b p\left(d_{H}\right)-1 /(n-1)}$. If n is the only increasing parameter and all the other parameters are fixed, then d_{H} increases and so does the denominator. In addition, adding the same quantity to both the numerator and denominator of an improper fraction decreases its value. Therefore we can deduce the $P o S$ decreases with n instead.

We close this chapter with the following tables concluding Theorem 5.12, Theorem 5.15, and Theorem 5.16.

Table 5.2: Summary of the PoS and PoA with K as the only varying parameter. We assume d_{o} starts at d_{L} and keeps increasing.

Condition	$d_{L} \leq d_{o} \leq d_{H}$ (Phase 1)	$d_{H}<d_{o}$ (Phase 2)
PoS	1	$u\left(d_{o}\right) / u\left(d_{H}\right)$ (stable PoA)
Monotonicity	-	increasing Yes
Starting at 1	-	Yes
PoA	$u\left(d_{o}\right) / u\left(d_{L}\right)$	
Monotonicity	increasing	
Starting at 1	Yes	

Table 5.3: Summary of the PoS and PoA with b as the only varying parameter.
We assume b starts at its valid minimum value (i.e. $b x p^{\prime}(x)=\frac{1}{n-1}$ has exactly one solution.) and keeps increasing.

Condition	$d_{o}>d_{H}$ (Phase 1)	$d_{H} \geq d_{o} \geq d_{L}$ (Phase 2)
PoS	$u\left(d_{o}\right) / u\left(d_{H}\right)$ (stable PoA) decreasing Monotonicity	1
Terminating at 1	YES	-
PoA	$u\left(d_{o}\right) / u\left(d_{L}\right)$	
Monotonicity	increasing	
Starting at 1	No	

Table 5.4: Summary of the PoS and PoA with n as the only varying parameter. We assume n starts at its valid minimum value (i.e. $b x p^{\prime}(x)=\frac{1}{n-1}$ has exactly one solution.) and keeps increasing.

Condition	$d_{H}<d_{o}$ (Phase 1)	$d_{L} \leq d_{o} \leq d_{H}$ (Phase 2)
PoS	$u\left(d_{o}\right) / u\left(d_{H}\right)$ (stable PoA)	1
Monotonicity	decreasing uncertain	-
Terminating at 1	-	
PoA	$u\left(d_{o}\right) / u\left(d_{L}\right)$	
Monotonicity	increasing	
Starting at 1	No	

Chapter 6

Conclusion and Future Work

In the last chapter, we're going to briefly conclude our analysis, describe additional possibly extended models, and discuss some aspects that can be improved in the future.

In a two-player file-sharing game, we detailedly examine all Nash equilibria including their stability. When the need for resources is almost not limited, there are two noncollapsing Nash equilibria, one of which with a greater contribution is stable. When the need is a little limited, the contribution of the Nash equilibrium with a greater contribution will be lowered and it will become unstable. Besides, there exist two additional side Nash equilibria in this case. When the limitation is drastic, the system will collapse. In a three-player file-sharing game, we still examine all Nash equilibria, yet without stability. In a multi-player file-sharing game, we only examine symmetric Nash equilibria without stability. The conclusion of the PoA and PoS remains the same when the number of players increases from two to three. It remains the same for an arbitrary number of players if we only consider the symmetric Nash equilibria.

We give an intuitive explanation of the PoS and PoA here. The PoS and PoA both increase with K since the Nash equilibria (the consequence of selfishness) naturally falls behind the maximum total utility (which increases with the amount of resources). We also discover that the two parameters b and n both represent the flexibility of the model. If we increase b and n, ideally the best Nash equilibrium will be improved and the worst Nash equilibrium will be deteriorated. Hence the PoS decreases with b, n but the PoA increases with b, n. When the need for resources is a little limited, the PoS can remain 1 because
the maximum total utility is not too far away such that the best Nash equilibrium is able to catch up.

After the analysis in multi-player file-sharing games, the reader may make a guess of the following conjectures. First, $\left(d_{L}, d_{L}, \ldots, d_{L}\right)$ is always unstable, and $\left(d_{H}, d_{H}, \ldots, d_{H}\right)$ is always stable in a multi-player file-sharing game. Second, $u\left(d_{L}, d_{L}, \ldots, d_{L}\right)$ is the least among all non-collapsing Nash equilibria, and $u\left(d_{H}, d_{H}, \ldots, d_{H}\right)$ is the greatest among all non-collapsing Nash equilibria. If the second conjecture is true, the PoA and PoS derived in multi-player file-sharing games are always true even if we take all Nash equilibria into consideration.

In this thesis, we assume each player can provide at most the benefit K of resources to all other players. This is a simple assumption. If we further consider a more realistic situation where they have different limitations K_{j}, the utility function becomes

$$
u_{i}\left(d_{i}\right)=-d_{i}+\sum_{j \neq i} \min \left\{K_{j}, b d_{j} p\left(d_{i}\right)\right\}, \text { for } 1 \leq i \leq n .
$$

If each player has his/her own desired resources of the "total" benefit K distributed on all the other players, the utility function becomes

$$
u_{i}\left(d_{i}\right)=-d_{i}+\min \left\{K, b p\left(d_{i}\right) \sum_{j \neq i} d_{j}\right\}, \text { for } 1 \leq i \leq n .
$$

If the benefits of these resources $\left(K_{i}\right)$ are different, the utility function becomes

$$
u_{i}\left(d_{i}\right)=-d_{i}+\min \left\{K_{i}, b p\left(d_{i}\right) \sum_{j \neq i} d_{j}\right\}, \text { for } 1 \leq i \leq n
$$

If all players have their unique "files" of different benefits $\left(K_{j}\right)$ and each player will try their best to retrieve all files from all the other players, the utility function becomes

$$
u_{i}\left(d_{i}\right)=-d_{i}+\sum_{j \neq i} \text { if }\left\{b d_{j} p\left(d_{i}\right) \geq K_{j}\right\} \cdot K_{j}, \text { for } 1 \leq i \leq n,
$$

where the value of the "if" function is defined to be 1 if the condition is true, and defined
to be 0 if the condition is false. Since a file is valid only if all portions of it are retrieved, we use the "if" function here. They are also good research problems.

Finally, the reader may discover that in the results of [2] and our thesis, the common problems of P2P such as whitewashing attacks and sybil attacks from malicious users are still not taken into consideration. In fact there are many studies [1, 4, 11, 13, 15] focusing on these problems. Maybe we can study these papers in the future and improve our models to concretely solve the problems.

Bibliography

[1] S. Buchegger and J.-Y. Le Boudec. A Robust Reputation System for P2P and Mobile Ad-hoc Networks. In Proceedings of the Second Workshop on Economics of Peer-to-Peer Systems (P2PEcon 2004), page 2004.
[2] C. Buragohain, D. Agrawal, and S. Suri. A Game Theoretic Framework for Incentives in P2P Systems. In Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P2003), pages 48-56, Sep. 2003.
[3] B. Cohen. Incentives Build Robustness in BitTorrent. In Proceedings of the First Workshop on Economics of Peer-to-Peer Systems (P2PEcon 2003), volume 6, pages 68-72, 2003.
[4] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati, and F. Violante. A Reputation-Based Approach for Choosing Reliable Resources in Peer-to-Peer Networks. In Proceedings of the 9th ACM conference on Computer and communications security, pages 207-216, 2002.
[5] M. Feldman and J. Chuang. Overcoming Free-Riding Behavior in Peer-to-Peer Systems. ACM SIGecom Exchanges, 5(4):41-50, July 2005.
[6] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge. Incentives for Sharing in Peer-to-Peer Networks. In Proceedings of the Second International Workshop on Electronic Commerce (WELCOM 2001), pages 75-87. Springer, 2001.
[7] R. Gupta and A. K. Somani. Game Theory As A Tool To Strategize As Well As Predict Nodes' Behavior In Peer-to-Peer Networks. In Proceedings of the 11th In-
ternational Conference on Parallel and Distributed Systems (ICPADS'05), volume 1, pages 244-249, 2005.
[8] Y. Hu, L. N. Bhuyan, and M. Feng. Peer-to-Peer Indirect Reciprocity via Personal Currency. Journal of Parallel and Distributed Computing, 72(8):1045-1054, 2012.
[9] D. Hughes, G. Coulson, and J. Walkerdine. Free Riding on Gnutella Revisited: The Bell Tolls? IEEE Distributed Systems Online, 6(6), 2005.
[10] X. Kang and Y. Wu. Incentive Mechanism Design for Heterogeneous Peer-to-Peer Networks: A Stackelberg Game Approach. IEEE Transactions on Mobile Computing, 14(5):1018-1030, 2014.
[11] P. Narang and C. Hota. Game-Theoretic Strategies for IDS Deployment in Peer-toPeer Networks. Information Systems Frontiers, 17(5):1017-1028, 2015.
[12] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory. Cambridge University Press, 2007.
[13] F. N. Nwebonyi, R. Martins, and M. E. Correia. Reputation Based Approach for Improved Fairness and Robustness in P2P Protocols. Peer-to-Peer Networking and Applications, 12(4):951-968, 2019.
[14] W. Qingjie, J. Yu, M. Yu, Z. Jie, and Z. Zheng. Incentive Compatible Mechanism in P2P Systems. In Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom'09), pages 4112-4115, Piscataway, NJ, USA, 2009.
[15] G. Theodorakopoulos and J. S. Baras. Game Theoretic Modeling of Malicious Users in Collaborative Networks. IEEE Journal on selected areas in communications, 26(7):1317-1327, 2008.
[16] T. Typpi. Game Theory in Peer-to-Peer Networks. In Seminar on Internetworking, Spring, 2009.
[17] Q. Wang, Y. Liu, J. Yu, J. Zhang, and Z. Zhao. Micro-Payment Platform Based on Incentive Compatible Mechanism in P2P Systems. In Proceedings of the 2009 International Conference on Computational Intelligence and Software Engineering (CiSE 2009), pages 1-4, 2009.
[18] Q. Zhang, Y. Leng, and L. Fan. Blockchain-Based P2P File Sharing Incentive. IACR Cryptology ePrint Archive, 2018:1152, 2018.

