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中文摘要 

睡眠多項生理檢查 (PSG) 是現今阻塞型睡眠呼吸中止症 (OSA) 的標準診斷工具，

然而進行 PSG 時，受測者需要配戴多種感測器，於睡眠檢查室進行一整夜的檢查，既

耗時又不舒適。除此之外，非睡眠專科醫師在門診時，多會將所有疑似有睡眠障礙的

病人，轉診至睡眠科，或安排 PSG進行診斷，皆可能造成 OSA診斷效率下降。為解決

上述問題，已有多項相關研究使用非連續量測資訊來設計 OSA的快速篩檢工具，以達

到更有效率的 PSG 排程。然而在以往的研究中，多有靈敏度 (sensitivity) 高，特異度 

(specificity) 低的問題，且在資料收集時，部份資料定義不夠明確，造成使用上的困

難。本研究使用個人基本資料、身體量測資訊、共病症及睡眠症狀等 32項候選特徵，

為非睡眠專科醫師設計一項 OSA 的快速篩檢工具。本研究比較了八種方法的分類效

能，並選擇其中結果最佳的支持向量機 (SVM) 來進行特徵篩選與最佳化。本研究提出

了二個階段的特徵篩選，再使用 SVM各自對三種不同嚴重程度的 OSA [呼吸紊亂指數 

(AHI) ≥5/hr、AHI ≥15/hr、AHI ≥30/hr] 進行二元分類器的訓練。特徵篩選的過程中發

現，為達到較佳的分類效果 (AUROC ≥0.80)，當預測三種嚴重程度的 OSA時，分別需

要 2、6及 6個特徵。在 6,875人的資料中，使用 2個特徵進行預測、針對 AHI ≥5/hr 的

OSA 患者，分類器效能（精準度、靈敏度、特異度）達到 (75.7%、76.4%、72.2% )，

使用 6個特徵進行 AHI ≥15/hr 的預測效能為 (73.7%、75.1%、70.4%)，使用 6個特徵進

行 AHI ≥30/hr 的預測效能為 (73.0%、74.9%、70.0% )。本研究最終採用 6個特徵做為

快篩系統的輸入，並將訓練好的三個分類器，結合 RedCap來提供網頁化的問卷，可即

時回饋問卷填寫者 OSA預測的結果，並提供醫師資料收集及閱覽的功能。 

關鍵字：呼吸中止症，支持向量機，機器學習，特徵篩選，預測系統 
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ABSTRACT 

Polysomnography (PSG) is the gold standard for diagnosis of obstructive sleep apnea 

(OSA), but it is costly and access is often limited. Besides, the non-sleep specialist physician 

(NSSP) usually transfers most of suspected patients with sleep disorder to department of sleep 

for PSG. This situation lets OSA diagnosis more inefficient. 

To solve above problems, there were several studies used discretely objective and 

subjective information to develop OSA screening tools which provide diagnosis support and 

prioritize PSG. However, several OSA prediction models from recent studies had two issues: 

one is sensitivity range was higher than specificity range, and another is feature definitions as 

model input may be not clear enough. The first issue may lead more non-OSA patients to do 

PSG test, and the second may cause the difficulty of applying the prediction model. This study 

proposed an OSA screening tool for NSSP by 32 features which includes patient basic 

information, anthropometrics, comorbidities, and sleep habitual information. After comparing 

the performance of 8 algorithms, the support vector machine (SVM) had the best performance 

and was chose to be optimized with feature selection. 

The proposed method of this study applied a two stages of feature selection and using 

support vector machine to train classifier for OSA prediction. There were three classifiers 

trained for three apnea-hypopnea-index (AHI) cutoff (5/hr, 15/hr, and 30/hr). This study 

discovered that the classifier required more features with larger AHI cutoff to reach AUROC 

≥0.80. Three AHI cutoffs required 2, 6, and 6 features, respectively. Three classifiers were 

trained and tested with 6,875 subject data. With 2, 6, and 6 features as input to predict three 

AHI cutoffs (5/hr, 15/hr, and 30/hr), the performance (accuracy, sensitivity, and specificity) 

achieved (74.24%, 74.14%, and 74.71%), (72.64%, 75.18%, and 68.73%), and (70.28%, 

70.26%, and 70.30%), respectively. Finally, 6 features were selected and used in a web-based 



doi:10.6342/NTU202000475

 

iii 

system which integrated trained SVM models. The web-based system is capable of giving user 

OSA risk as feedback in real-time, and it also lets medical staff collect and review the input 

data and outcome results. 

Keywords: Obstructive Sleep Apnea, Support Vector Machine, Machine Learning, 

Feature Selection, Prediction System 
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Chapter 1.  Introduction 

1.1 Background and Significance 

Obstructive sleep apnea (OSA) is characterized by repeated episodes of upper airway 

obstruction that results in cessation of airflow during sleep [1]. OSA is a common disease with 

a prevalence of 9-38% in the general population [2]. Risk factors for OSA included age, male, 

obesity, smoking, anomalies of craniofacial features, and menopause in women [3]. Symptoms 

suggestive of OSA included habitual snore, witnessed apnea, choking or gasping at sleep, 

frequent awakening, nocturia, unrefreshed sleep, and daytime sleepiness [3]. Early diagnosis 

of OSA is essential because untreated OSA may increase the probability of developing 

cardiovascular diseases, metabolic disorders, and neurocognitive dysfunctions [4]. The 

overnight polysomnography (PSG) is the gold standard for the diagnosis of OSA, and the OSA 

severity is commonly determined by apnea-hypopnea index (AHI) with cutoff ≥5/hr for the 

presence of OSA, ≥15/hr for the presence of moderate-severe OSA, and ≥30/hr for the presence 

of severe OSA [2]. However, PSG is costly and the access is often limited. As a result, 

prioritizing patients with high risk for moderate-severe OSA for PSG can be crucial for many 

sleep laboratories. 

A recent meta-analysis showed that care of patients with OSA by non-sleep specialist 

physician (NSSP) and sleep-specialist physician brought similar outcomes in terms of 

mortality, quality of life, adherence, and symptom score. Since most NSSPs in the included 

studies had extensive training in sleep medicine, the results may be inferior in the NSSP who 

were less seasoned or inadequately trained [5]. Hence, the development of a screening model 

based on clinical features commonly collected at clinic visits to predict the likelihood of OSA 
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would be extremely practical for NSSP. Such a model can also help NSSP to prioritize patients 

with high pre-test probability of OSA for PSG [6]. 

To build an OSA screening model, there were several studies used discretely objective 

and subjective information to develop OSA screening tools which provide diagnosis support 

and prioritize PSG. However, several OSA prediction models from recent studies had two 

issues: one is sensitivity range was higher than specificity range, and another is feature 

definitions as model input may not clear enough. The first issue may lead more non-OSA 

patients to do PSG test, and the second may cause the difficulty of applying the prediction 

model. 

With above reasons, this study proposed a method to have the balance between sensitivity 

and specificity, and the proposed method could address which features are important to predict 

OSA with clear definitions. Additionally, the model should be easy to use for NSSPs. 

1.2 Literature Review 

Prediction models reported in the literature were mostly built using clinical features ( 

Table 1) including demographics (age, gender, smoking, alcohol consumption), co-morbidities, 

anthropometrics, OSA symptoms, physical findings [7], and physiologic measurements (e.g. 

blood pressure, overnight pulse oximetry, and pulmonary function) [8] collected from either 

sleep lab or community-based population. Among prediction models proposed so far, the 

sensitivity to predict AHI ≥5/hr ranged from 66% to 100% while the specificity ranged from 

30.8% to 76.2%, and the sensitivity predict AHI ≥15/hr ranged from 60.3% to 92.7% while 

specificity ranged from 33.3% to 90.7% (Table 2). The wide-range discriminative ability of 

models could be attributed to the model complexity, number of participants, prevalence of 

OSA, and imbalance between different OSA severity proportion. Moreover, most prediction 
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models for OSA tend to have a higher sensitivity with a lower specificity to promote early 

diagnosis (Table 1). These models can potentially cause a high false-positive rate and lead to 

over-prescription of PSG. Nevertheless, some models were established based on the data of 

which patients with comorbidities were excluded [9], where the generalizability of clinical 

implication would be constrained. 

It is also crucial to validate the model efficacy in subgroups categorized with different 

features. For example, male patients often have fat distributed to the upper body and a higher 

percentage of snoring than female patients [10, 11]. Elder patients with OSA may be less 

susceptible to adverse effects of OSA like sleepiness, impaired quality of life, and mortality 

compared to middle-aged patients [12, 13]. It is also known that the Asian patients have higher 

AHI compared to body mass index (BMI)-matched Caucasians due to narrower craniofacial 

features [14]. Therefore, it may be more efficient to build a whole new model for Asian 

population to predict OSA with local dataset. 
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Table 1. The Algorithm and selected features of related OSA-prediction models 

Author year Algorithm Feature 

No. 

Feature detail 

Kirby 1999 [7] GRNN 23 Age, gender, frequent awakening, witnessed apnea, observed chocking, excessive daytime sleepiness, 

ESS, HT, alcohol consumption, smoking (pack-year), height, weight, BMI, SBP ≥ 140, DBP ≥ 90, 

tonsillar enlargement, soft palate enlargement, crowding of the oral pharynx, sum of the clinical score for 

the binary categorical values 

Rowley 2000 [15] LR 4-6 Witnessed apnea, HT, BMI, age, gender, snoring, gasping, neck 

Rodsutti 2004 [3] LR 5 Age, sex, BMI, snoring, witnessed apnea 

Rodsutti 2004 [16] LR 4 Gender, BMI, snoring index, chocking index 

Sharma 2006 [17] LR 4 Gender, BP, BMI, snoring 

Takegami 2009 [18] Boosting 10 Neck circumference, BMI, age, snoring frequency, waist circumference, snoring loudness, gender, SOL, 

response to “What is the chance that you would doze off or fall asleep while sitting and reading?”, and 

presence or absence of a heart attack. 

Bouloukaki 2011 [7] LR 4 Gender, EDS, neck circumference, and BMI 

Caffo 2010 [19] LR 1. 5 

2. 4 

1. Age, BMI, waist circumference, gender 

2. Age, waist circumference, ESS score, and minimum oxygen saturation (SaO2) 

Bouloukaki 2011 [20] LR 5 Neck circumference, BMI, snoring, age, and gender 

Zou 2013 [9] LR 4 Gender, age, BMI, and snoring frequency 

Ustun 2016 [11] SLIM 1. 5 

2. 1 

1. Age, HTN, BMI, and gender 

2. Age, BMI, DM, HTN, smoker, and gender 

Marti-Soler 2016 [21] SVM 4 BMI, neck circumference, waist circumference, and age 

Shah 2016 [22] LR 14 BMI, ASA score, age, dyslipidemia, chronic pulmonary disease, liver disease, HTN, CHF, pulmonary 

HTN, AF, DM, CAD, and hemiplegia/paraplegia 

Ustun 2016 [23] LR 5 Neck circumference, BMI, snoring, age, and gender 

Traxdorf 2017 [15] LR 5 ESS score, age, gasping, cardiovascular risk factors (e.g. CHF, CAD, myocardial infarction, AF, stroke), 

and witnessed apneas 

Liu 2017 [24] LR 2 Neck circumference, and age 

Abbreviation: GRNN, generalized regression neural network; LR, logistic regression; SLIM, supersparse linear integer models.  
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Table 2. Summary of related OSA-prediction models 

Author year Source 
Subject 

No. 

Age 

(y/o) 

Male 

(%) 

AHI cutoff 

(/hr) 

Preva 

(%) 
AUROC 

Sen  

(%) 

Spec 

(%) 

PPV 

(%) 

NPV 

(%) 

Kirby 1999 [7] S 150 51.0 66.0 ≥10 65.00 0.94 98.90 80.00 88.10 98.00 

Rowley 2000 [15] S 370 46.5 51.6 
1. ≥10 1. 67.02 1. 0.67-0.74 1. 76-96 1. 13-54 1 .66-77 

N/A 
2. ≥20 2. 48.65 2. 0.70-0.76 2. 33-39 2. 87-93 2. 72-85 

Rodsutti 2004 [16] S 243 51.0 63.0 ≥5 72.02 0.79 100.00 30.88 80.66 84.50 

Sharma 2006 [17] S 104 NA 77.9 ≥15 48.08 NA 82.00 90.70 89.13 84.50 

Takegami 2009 [18] S 308 43.8 99.0 
1. ≥15* 1. 22.40 1. 0.78 1. 73.90 1 .66.10 1 .38.62 1. 89.77 

2. ≥30 2. 6.81 2. 0.85 2. 95.20 2. 61.00 2. 93.09 2. 85.62 

Caffo 2010 [19] C 1,383 65.0 47.3 ≥7* 37.80 0.75 66.00 70.00 57.00 77.21 

Bouloukaki 2011 [20] S 2,690 50.7 79.0 ≥15 79.00 0.78 70.00 73.10 81.00 62.00 

Zou 2013 [9] S 784 41.0 83.2 ≥5 83.80 
1. 0.84 1. 86.91 1. 74.80 1. 94.69 1. 52.49 

2. 0.98 2. 94.22 2. 85.83 2. 97.17 2. 74.15 

Marti-Soler 2016 [21] C 1,042 42.0 45.0 >20 11.52 0.74 85.00 77.00 33.00 98.00 

Shah 2016 [22] C 12,158 48.1 39.4 ≥15 9.02 0.83 77.00 75.00 23.39 97.05 

Ustun 2016 [23] S 1,922 50.2 58.7 >5 or >10* 76.90 
1. 0.77 1. 82.80 1. 56.20 1. 86.29 1. 49.53 

2. 0.79 2. 83.20 2. 58.90 2. 87.08 2. 51.29 

Liu 2017 [24] S 1,154 47.4 70.7 
1. ≥15 1. 61.87 

N/A 
1. 68.35 1. 82.55 1. 86.40 1. 61.65 

2. ≥30 2. 44.04 2. 68.32 2. 79.85 2. 64.99 2. 77.45 

Shin 2017 [25] SW 108,781 54.4 44.4 >5 2.08 0.82 72.30 76.20 6.06 99.23 

Tan 2017 [26] C 242 48.3 50.4 

1. ≥15 1. 28.10 1. 0.70 1. 60.30 1. 79.70 1. 53.90 1. 83.70 

2. ≥20 2. 20.20 2. 0.74 2. 69.40 2. 78.20 2. 44.70 2. 91.00 

3. ≥25 3. 14.50 3. 0.73 3. 71.40 3. 75.40 3. 32.90 3. 94.00 

4. ≥30 4 10.70 4. 0.71 4. 69.20 4. 73.10 4. 23.70 4. 95.20 

Traxdorf 2017 [27] S 100 48.1 76.0 

1. ≥5 1. 70.00 

N/A 

1. 94.30 1. 50.00 1. 81.50 1. 78.90 

2. ≥15 2. 55.50 2. 92.70 2. 33.30 2. 62.90 2. 78.90 

3. ≥30 3. 26.00 3. 92.30 3. 22.90 3. 29.60 3. 89.50 

Duarte 2018 [28] S 2,035 44.0 53.2 

1. ≥5 1. 76.40 1. 0.78 1. 83.10 1. 58.20 1. 86.50 1. 51.60 

2. ≥15 2. 54.70 2. 0.76 2. 88.70 2. 45.30 2. 66.20 2. 76.80 

3. ≥30 3. 35.80 3. 0.75 3. 91.50 3. 36.80 3. 44.60 3. 88.60 
* respiratory disturbance index. 

Abbreviations: S, sleep clinic; C, community, SW; surgical ward; Preva, prevalence. 
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1.3 Machine Learning 

Machine learning has been found to be a potential means in addressing these problems by 

its massive parallelism, self-organization, adaptive learning capability, and robustness. Support 

Vector Machine (SVM) has been increasingly applied in medical healthcare during the past 

few years since it can provide systematized architecture for analyzing and extracting important 

information from complex data [29]. Hence, SVM-based machine learning model may be 

promising for the prediction of OSA. In this study, to prove that SVM is the most appropriate 

method of OSA prediction, classification performance of five machine learning algorithms and 

eight approaches were estimated by AUROC. The eight approaches included: SVM with radial 

basis function (RBF) kernel, SVM with polynomial (Poly) kernel, logistic regression (LR), 

neural network (NN), random forest (RF), RF stacking with LR, gradient boosting tree (GBT), 

and GBT stacking with LR. 

1.4 Aim of this Study 

The present study aimed to propose an easy-to-use and accurate model to identify patients 

with OSA at three AHI cutoffs (≥5/hr, ≥15/hr, ≥30/hr). We developed a data-mining driven 

SVM prediction model using a large-scale sleep-lab database with features routinely collected 

at clinic visits. The model discriminative ability was also tested in the subgroups categorized 

with gender (men versus women) and age (<65 versus ≥65 y/o). The model discriminative 

ability was also compared with that of logistic regression, Berlin Questionnaire, NoSAS Score, 

and Supersparse Linear Integer Models (SLIM) scoring system. Finally, the model was 

integrated into a web-based questionnaire for NSSP practically. 
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1.5 Organization of Thesis 

This thesis shows how to build an SVM model for OSA prediction with two stages of 

feature selection and compare the proposed model with other approaches. The organization of 

this thesis is as following. Chapter 2 introduces the dataset collection, data definition, ma-

chine learning algorithms, feature selection, and SVM optimization processes. We first 

describe the data source, inclusive rules, exclusive rules, and feature definition. Then we 

introduce several popular machine learning algorithms for classification. These machine 

learning algorithms were tested with the targeted dataset, and find out which one had the best 

performance. The last section in Chapter 2 is focusing on the proposed feature selection method 

and the SVM optimization. 

Chapter 3 provides the distribution and statistics results of each feature and outcome. 

Next, the performance of each algorithms are presented by receiver operating characteristic 

(ROC) curve. In this chapter, the feature selection results and the SVM performance after 

optimization are also addressed. The subgroups of the original dataset were tested to show the 

model discriminative ability in the last section. 

In Chapter 4, we discuss pros and cons of the proposed method to predict OSA.  We 

compared the proposed method by dataset, performance, selected features and feature 

definition with other related works. We reveals the limitation of the proposed method in the 

third section. Finally, we addressed the future work and conclusion. 
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Chapter 2.  Method 

This chapter will introduce the dataset, algorithm selection, feature selection and the 

model estimating method. First, the data collection was addressed to introduce the data profile 

about data source, including and excluding criterion, outcome definition, and feature definition. 

Second, to realize which machine learning method is the most appropriate for OSA prediction, 

eight approaches were estimated. The SVM was chosen because it had the maximum AUROC, 

and therefore, we designed an optimization process to select features and reach the promising 

performance. 

2.1 Dataset and Polysomnography 

The dataset developed from information prospectively collected from 7,830 adult patients 

who underwent initial overnight PSG for the first time in the Center of Sleep Disorder of 

National Taiwan University Hospital between Jan. 2009 and Dec. 2016. For data-mining, only 

patients who had any following conditions were excluded: non-Chinese (n = 11), total 

recording time <240 min (n = 7), and missing data (n = 936). A total of 6,875 patients, with 

5,223 men and 1,652 women (5,985 <65 y/o and 890 ≥65 y/o) were included (Tables 4, 5). 

Thirty-two clinical features including demographics, anthropometrics, co-morbidities, 

self-reported habitual sleep patterns, and OSA symptoms were collected through self- 

-administered questionnaires and medical records (Table 3). The demographics included age, 

gender, smoking, alcohol consumption, and hypnotic use defined as taking hypnotics ≥1 

time/week over the past month. Anthropometrics included BMI, neck circumference, and waist 

circumference. Sleep history and OSA symptoms were collected with a self-administered 

questionnaire (description and definition listed in APPENDIX A). Sleep history included 

unrefreshed sleep, subjective sleepiness, frequency of awakening, awakening ≥3 times/night 
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during sleep, minutes of sleep onset latency (SOL) and hours of sleep duration over the past 

month. In addition, the SOL <30 min and the sleep duration categorized as <6 hr/day, 6-8 

hr/day, and ≥8 hr/day) were added. Subjective sleepiness was assessed by the Epworth 

Sleepiness Scale (ESS) with excessive daytime sleepiness (EDS) defined as ESS ≥10 [30]. The 

OSA symptoms included snore, witnessed apnea, frequency of nocturia, witnessed leg jerks at 

sleep, morning headache, nocturia ≥2 times/night and dry throat at wake up. All of 32 feature 

definitions were addressed in APPENDIX A. 

Overnight PSG (Embla N7000, Medcare Flaga, Reykjavik, Iceland) was performed as 

previously reported [31]. Sleep stages and respiratory events were scored according to the 2007 

AASM scoring rule [32]. Apnea was defined as ≥90% decrease in airflow for ≥10 seconds 

while hypopnea was ≥30% decrease in airflow ≥10 seconds associated with ≥4% reduction in 

arterial oxygen saturation. The PSG parameters collected included sleep efficiency, percentage 

of slow-wave sleep (% SWS) and % REM, AHI, oxygen desaturation index (ODI), percentage 

of total sleep time with SpO2 <90% (%TST-SpO2 <90%), and arousal index (AI).  
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Table 3. Included 32 input features and categories 

Demographics  Anthropometric Co-morbidities Sleep history Symptoms suggestive of OSA 

Age BMI Hypertension SOL (min) Snore 

Gender Neck circumference Diabetes SOL < 30 min Witnessed apnea 

Alcohol consumption Waist circumference CAD Sleep duration, < 6, 6-8, and ≥ 8 hr Freq. of nocturia (time/night) 

Current smoking  CHF Unrefreshed sleep Nocturia  2 times/night 

Hypnotics  CVA Freq. of awakening at sleep (time/night) Witnessed leg jerks at sleep 

  CKD Awakening at sleep ≥3 times/night Morning headache 

  COPD ESS Dry throat at wake up 

  Asthma EDS  

  Hypothyroidism   

Abbreviations: BMI, body mass index; circum., circumference; SOL, sleep onset latency; CAD, coronary artery disease; CHF, congestive heart 

failure; CVA, cerebrovascular accident; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; EDS, excessive daytime 

sleepiness 
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2.2 Machine Learning Algorithm Selection 

To find out the most appropriate method of OSA prediction, classification performance 

of five machine learning algorithms and eight approaches were estimated by AUROC. Eight 

approaches included: SVM with radial basis function (RBF) kernel, SVM with polynomial 

(Poly) kernel, logistic regression (LR), neural network (NN), random forest (RF), RF stacking 

with LR, gradient boosting tree (GBT), and GBT stacking with LR. The following contents in 

this section will introduce each algorithm and stacking process. These eight approaches were 

implemented and tested with collected dataset. The input features number was 32 totally. The 

AUROC of each approach was estimated by 5-fold cross-validation. 

Support Vector Machine 

The support vector machines (SVM) have become a common used method to solve 

difficult classification problems in a wide range of real application domains. There are two key 

advantages of using SVM: one is SVM had good generalization performance even in case of 

high-dimensional dataset [33]; another is SVM could find non-linear solutions efficiently by 

the kernel trick. There are two types of SVM method, one is linear and another is non-linear. 

In the case of OSA prediction, we found that the linear model could not solve the classification 

problem appropriately. Therefore, the following content will focus on introducing non-linear 

SVM model. Before starting to introduce the kernel function, please refer the notation of SVM 

decision function from [34]. 

The kernel trick is the key of non-linear SVM. What kernel function does is mapping the 

original vectors to a higher dimensional space, and the new mapping is linearly separable. 

There are two kernel function were tested as candidate, one is radius basis function (RBF) 

kernel as equation (1), and another is polynomial (Poly) kernel as equation (2). 
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𝑘𝜎
𝑅𝐵𝐹(x, x′) = exp (−

1

𝜎
‖x − x′‖2) ( 1 ) 

𝑘𝑑,𝐾
𝑃𝑜𝑙𝑦(x, x′) = (〈x, x′〉 + 𝐾)𝑑 ( 2 ) 

The RBF kernel is also called Gaussian kernel. In equation (1), where 𝜎 > 0 is a parameter 

that controls the width of the Gaussian. It represents the degree 𝑑 of the polynomial kernel in 

controlling the flexibility of the resulting classifier. The RBF kernel is zero if the squared 

distance ‖x − x′‖2 is much larger than 𝜎. Basically, when 𝜎 is large, a given data point x has a 

nonzero kernel value relative to any example in the set of examples. Therefore, the whole set 

of support vectors affects the value of the discriminant function at x, leading to a smooth 

decision boundary [34]. In the other hand, with smaller 𝜎, the kernel becomes more local, 

forming to greater curvature of the decision curve / surface, which means with too small 𝜎 may 

cause over-fitting problem. So, to prevent over-fitting, we restrict the minimum 𝜎 as 0.1 in this 

study. 

In equation (2), where 𝐾  is often chosen to be zero (homogeneous) or one 

(inhomogeneous). The feature space for the inhomogeneous kernel consists of all monomials 

with degree up to 𝑑 [35]. And yet, its computation time is linear in the dimensionality of the 

input space. The kernel with 𝑑  = 1 and 𝐾  = 0, denoted by k linear, is the linear kernel leading 

to a linear discriminant function. The degree of the Poly kernel controls the flexibility of the 

resulting classifier. The lowest degree polynomial is the linear kernel, which is not sufficient 

when a nonlinear relationship between features exists. 

Logistic Regression 

Logistic Regression (LR) is another algorithm which could be used for classification, it is 

based on the concept of probability. Let Y denote the binary response variable of interest and 
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X1, …, Xp the random variables considered as explaining variables, termed features in this 

paper. The logistic regression model links the conditional probability P (Y = 1 | X1, ..., Xp) to 

X1, …, Xp through 

𝑃(𝑌 = 1|𝑋1, . . . , Xp) =  
exp (𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝)

1+exp (𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝)
  , ( 3 ) 

where β0, β1, …, βp are regression coefficients, which are estimated by maximum-likelihood 

from the considered dataset. The probability that Y = 1 for a new instance is then estimated by 

replacing the β’s by their estimated counterparts and the X’s by their realizations for the 

considered new instance in equation (3). The new instance is then assigned to class Y = 1 if P 

(Y = 1) > c, where c is a fixed threshold, and to class Y = 0 otherwise. The commonly used 

threshold c = 0.5, which is also used in this study, generates a so-called Bayes classifier [36]. 

As for all model-based methods, the prediction performance of LR depends on whether the 

data follow the assumed model. In this study, the LR will still be a comparing method after 

algorithm selection. Because the LR was the most used method in recent studies, and it is robust 

in clinic. 

Artificial Neural network 

Artificial NNs are formed with at least three-layer neuron structures, which are the input, 

hidden (middle) and output layers. The input layers collect numerical information data with 

feature sets and activation values. Input values are propagated through the interconnected 

neurons to the hidden layer. In the hidden layer, the input neurons are summed in order to 

compute weighted sum of the input neurons; and summed neurons are further combined to 

produce results in the output layer using an activation (or transfer) function [37, 38]. Both 

neurons and connection contain adjustable weights during the learning process. The summed 
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neurons will transform mathematically in the output layer if the activation function threshold 

is exceeded. 

A number of times the training functions are used to update the connection weights in the 

process of feeding the input values and terminating with output values in ANN is called an 

Epoch [38]. This is where the inputs of artificial neurons are multiplied by weights, and the 

resultant of these summation are fed to the output layer through an activation function [39]. 

The frequently used of activation functions include linear, sigmoid and hyperbolic tangent 

functions. The training terminates when the maximum epoch value and/or the validation checks 

are reached. The resultant trained data is fed into the test data in order to examine the ANN’s 

performance [40]. 

The most common learning rule of ANNs is back-propagation (BP), which is a supervised 

learning approach and can be used for training the deep neural networks [40]. BP adjusts the 

weights of neurons through the calculated errors and enables the network to learn from the 

training process. Typical problem solving of ANNs include three archetypes of learning, i.e. 

supervised learning, unsupervised learning and reinforcement learning [39]. To improve the 

performance of classification, 5 hidden layers were used for NN’s training during model 

selection stage in this study. 

Random Forest 

The random forest (RF) is an “ensemble learning” technique consisting of the assemble 

of a large number of decision trees, resulting in variance reduction compared to the single 

decision tree. In this study, the Leo Breiman’s version of RF was considered [41], while 

acknowledging that other variants develop, for example RF based on conditional inference 
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trees which address the problem of variable selection bias and perform better in some cases, or 

extremely randomized trees. 

In the original version of RF [41], each tree of the RF is built based on a bootstrap sample 

drawn randomly from the original dataset using the conditional inference tree (CART ) method 

and the decrease Gini impurity as the splitting criterion [41]. When building each tree, at each 

split, only a given number mtry of randomly selected features are considered as candidates for 

splitting. RF is usually considered a black-box algorithm, as gaining insight on a RF prediction 

rule is hard due to the large number of trees. In this study, one splitting criteria of the DGI and 

information gain were chosen depend on which performance is better. 

Gradient Boosting Tree 

Gradient boosting tree (GBT) was originally called gradient boosting machine, which was 

designed by Friedman (2001). The learning procedure of GBT consecutively fits new models 

to provide a more accurate estimate of the response variable. The principle idea behind this 

algorithm is to construct the new base-learners to be maximally correlated with the negative 

gradient of the loss function, associated with the whole ensemble. The loss functions applied 

can be arbitrary, but to give a better intuition, if the error function is the classic squared-error 

loss, the learning procedure would result in consecutive error-fitting. In general, the choice of 

the loss function is up to the researcher, with both a rich variety of loss functions derived so far 

and with the possibility of implementing one's own task-specific loss [42]. 

The high flexibility of GBT allows high customizability to any particular data-driven task. 

It addresses a lot of freedom into the model design so that making the choice of the most 

appropriate loss function a matter of trial and error. A particular GBT can be designed with 



doi:10.6342/NTU202000475

 

16 

different base-learner models on board. In this study, the decision tree algorithm was applied 

as base-learner [42]. 

Model Stacking 

Stacking is a technique which usually is used to build a combining method for multiple 

classifiers ensemble. In the past, stacking showed success in data science competition, the 

Netflix competition for example, which was an open competition on using historical ratings of 

users to predict new films ratings. There were many teams with top rank employed stacking to 

combine classifiers. In particular, the winning team [43] applied stacking to combine hundreds 

of models, which accomplished the top performance. The stacking method with K-fold cross 

validation was addressed in Figure 1 [44]. There were two stacking approaches established, 

one was RF (first-level) + LR, and another was GBT (first-level) + LR. 

Input: Training data 𝐷 = {𝐱i, 𝑦𝑖}𝑖=1
𝑚 (𝐱i ∈ ℝ𝑛, 𝑦𝑖 ∈ Υ) 

Output: An ensemble classifier H 

1: Step 1: Adopt cross validation approach in preparing a training set for second-level classifier  

2: Randomly split 𝐷 into 𝐾 equal-size subsets: 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝐾}  

3: for 𝑘 ← 1 to 𝐾 do  

4:       Step 1.1: Learn first-level classifiers  

5:       for 𝑡 ← 1 to 𝑇 do  

6:             Learn a classifier ℎ𝑘𝑡 from 𝐷 ∖ 𝐷𝑘  

7:       end for  

8:       Step 1.2: Construct a training set for second-level classifier  

9:       for 𝑥𝑖 ∈ 𝐷𝑘 do  

10:           Get a record {𝐱𝑖
′, 𝑦𝑖}, where 𝐱𝑖

′ = {ℎ𝑘1(𝐱i), ℎ𝑘2(𝐱i), … , ℎ𝑘𝑇(𝐱i)}   

11:     end for  

12: end for  

13: Step 2: Learn a second-level classifier  

14: Learn a new classifier h' from the collection of {𝐱𝑖
′, 𝑦𝑖}  

15: Step 3: Re-learn first-level classifiers  

16: for 𝑡 ← 1 to 𝑇 do  

17:       Learn a classifier ℎ𝑡 based on 𝐷  

18: end for  

19: return H(𝐱) = ℎ′{ℎ1(𝐱), ℎ2(𝐱), … , ℎ𝑇(𝐱)}  

Figure 1. Stacking with K-fold cross validation 
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2.3 Feature Selection and Support Vector Machine Optimization 

After modeling methods selection, the SVM with RBF kernel was chosen for the next 

stage of optimization. Figure 2 illustrates the flowchart of SVM prediction model development 

(APPENDIX B shows the detail of model development). The training procedure of the 

proposed prediction model includes data input, data exclusion, feature selection, and OSA 

classification. 

 

Non-Chinese (n = 11), total recording time < 240 min (n = 7), and any missing data (n = 936) were excluded. 

In the first feature selection stage, we observed that the top half of AUROC and MCC feature ranks were similar 

in all three different AHI cutoffs suggesting the robustness of these features. Therefore, only features with 

AUROC or MCC higher than median remained in the model. During the last feature selection, the fewest features 

were selected to keep AUROC ≥ 0.80. Abbreviations: AUROC, area under receiver operating characteristic curve; 

MCC, Matthews correlation coefficient; 

Figure 2. The flow chart of developing SVM-based prediction model 
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The training procedure conducted in this study was based only on the training dataset to 

prevent overfitting. Subsequently, a comprehensive blind validation using the testing dataset 

was conducted during the testing stage. In the proposed method, we applied the cross-validation 

approach in this study to test the effectiveness of the selected features and the machine learning 

model. Cross validation (CV) is a re-sampling procedure used to hold out part of the available 

data as a testing set for model evaluation when data are limited. To perform CV, we put aside 

a portion of the data not used in model training for testing/validation as Figure 3. 

 

 

First, the whole dataset was separated into 5 folds randomly. Second, in the first iteration, fold 5 was an 

isolated testing fold, and fold 1-4 were the training folds for feature selection and model optimization. Third, after 

5 iterations, the CV result is the average of the testing results from all iterations. 

Figure 3. Illustration of procedures of the 5-fold cross validation 
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To optimize the discriminative ability using the fewest features, continuous and 

categorical features were selected by single-feature SVM Area under the Receiver Operating 

Characteristic (AUROC) and Matthews Correlation Coefficient (MCC), respectively, during 

the feature selection [45]. The MCC calculation followed equations (4) and (5). The TP 

indicates the number true positive, the TN indicates the number of true negative, the FP 

indicates the number of false positive, and the FN means false negative number. The notation 

cov(X, Y) represents the covariance function [46]. The MCC values range between -1 and 1, 

which indicates the most negative correlated to the most positive, and the zero is non-

correlated. 

MCC (Binary case) =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝐹𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)

 ， ( 4 ) 

MCC (Multi-classes case) =
cov(𝑋,𝑌)

√cov(𝑋,𝑋)∙cov(𝑌,𝑌)

 ( 5 ) 

Due to different mathematical characteristics between continuous and categorical 

features, this study developed a two-stage feature selection procedure to prevent the selection 

relying on a single type of feature set in the proposed model. In the first stage, only the 

continuous and categorical features with the top half of AUROC (Table 5) and MCC (Figure 

5), respectively, were reserved to reduce the interference from the redundant features, in which 

these features may be robustly related to different AHI cutoffs. Subsequently, forward stepwise 

feature selection (FSFS) was exploited in the second half of feature selection. 

The feature set selected by FSFS was increased stepwise based on the greedy approach 

[47]. Specifically, the features with the maximum AUROC or MCC in the first stage were 

regarded as the feature candidates in the second stage. Afterward, each feature from the feature 

candidates was randomly integrated then used to train a new SVM for evaluating classification 
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performance. During each iteration in the second stage, the add-on feature with the superior 

SVM performance was reserved for updating the selected feature. Accordingly, the updated 

selected set was used to evaluate the next incoming feature candidate. 

The whole training procedure of FSFS was iterated until the stopping criteria (AUROC ≥ 

0.8). To achieve significant clinical application, the selected feature set based on FSFS was 

aimed to achieve target criteria in AUROC in three AHI cutoffs during the selection procedure. 

Eventually, the selected feature set after the two-stage feature selection was used to establish 

the prediction model for OSA recognition based on SVM [48]. The posterior probability of the 

SVM was used to determine the class of the incoming datum [49], either OSA or non-OSA. 

To further optimize the classification result, the Youden's index was employed to find the 

optimal threshold of SVM posterior probability to determine categories. In addition, the 5-fold 

CV was randomly repeated 5 times to verify the model reliability. The average AUROC of the 

5-fold CV for each of the three AHI cutoffs was calculated. The prediction model was trained 

by sleep-lab-based dataset with three AHI cutoff 5/hr, 15/hr, and 30/hr, respectively, which 

means the models based on three AHI cutoffs were fairly trained and validated. To further 

evaluate the model robustness, the learning curves of three AHI cutoffs were depicted as  

Figure 7. 

2.4 Data Analysis 

The discriminative ability of the proposed SVM model was evaluated using average of 5-

fold CV of AUROC, F1-score, accuracy, sensitivity, specificity, positive predictive value 

(PPV), negative predictive value (NPV), and positive likelihood ratio (LR+), and negative 

likelihood ratio (LR-) for each of the three AHI cutoffs. The performance was expressed as 

mean [95% confidence interval (CI)]. The cut-off of AUROC value was identified using the 
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Youden’s index as equation (4). The SVM model was tested in subgroups categorized by 

gender (men versus woman) and age (< 65 y/o versus ≥ 65 y/o) to identify subgroups for which 

the model worked best. The performance of the SVM model was compared to logistic 

regression, Berlin Questionnaire (BQ), NoSAS score, and SLIM scoring system. 

For logistic regression, 67% of participants were randomly selected as training set, while 

the remaining 33% of the participants were selected as testing set. Logistic models with forward 

selection was used to identify suitable factors to establish the prediction model for AHI ≥ 5/hr, 

≥ 15/hr, and ≥ 30/hr in the training test. Each parameter has to be significant at the 0.0001 level 

to remain in the model. All the remaining variables were listed with odds ratio (OR) and 95% 

CI. The predictability of AHI ≥ 5/hr, ≥ 15/hr, and ≥ 30/hr was assessed by the AUROC. The 

feature selection results of LR were shown as APPENDIX C. In addition, sensitivity, 

specificity, PPV, and NPV were calculated by using the cut-off of Youden’s index. 

The clinical features were compared between patients with and without OSA and among 

four subgroups at three AHI cutoffs. Continuous variables were expressed as mean ± standard 

deviation (SD) and categorical variables were expressed as percentage. Independent samples 

t-test and Chi-Square test were applied as appropriate in comparison of OSA datasets and non-

OSA datasets as well as in the subgroups. A two-tailed P-value <0.05 was considered 

statistically significant. All statistical analyses were conducted by Python (Python Software 

Foundation. Python Language Reference, version 3.6.1. Available at http://www.python.org), 

and SAS Version 9.3 (SAS Institute, Cary, NC). 
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Chapter 3.  Preliminary Results 

The clinical features of patients are listed in Tables 4 and 5. The mean age was 47.8 y/o 

and 76% were men. The mean AHI was 29.6/hr with a prevalence of 82.5%, 61.3%, and 40.6% 

at AHI ≥ 5/hr, ≥ 15/hr, and ≥ 30/hr cuto3ffs, respectively. Compared to patients without OSA, 

those with OSA were older, more obese, sleepier, and had higher percentage of men, history 

of smoking and alcohol consumption, comorbidities and OSA symptoms as well as shorter 

SOL. The patients without OSA had longer SOL, higher percentage of witnessed leg jerks in 

sleep and morning headache than those with OSA. The habitual SOL is weakly correlated with 

SOL recorded by polysomnography (Person correlation, γ = 0.202, P <0.001). 

With 32 features as input, 8 approaches were used to train a model, respectively. The 

comparison of 8 approaches of algorithms and stacking technique showed that the SVM with 

RBF kernel had the best AUROC compared to the others. And the stacking technique could 

not improve the performance by simply ensemble LR with GBT or RF. Figure 4 illustrates the 

ROC curves and AUROC values of each approach with 3 different AHI cutoffs. It was 

significant that with higher AHI cutoff, the performance was getting worse. Even with 32 

features as input, it is difficult to reach AUROC ≥8.0 with AHI cutoff 30/hr. 
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Table 4. Comparison of clinical features between patients with and without OSA at three AHI cutoffs 

Feature name 
Overall  

(N = 6,875) 

AHI < 5  

(N = 1,206) 

AHI ≥ 5  

(N = 5,669) 

AHI < 15  

(N = 2,664) 

AHI ≥ 15  

(N = 4,211) 

AHI < 30  

(N = 4,084) 

AHI ≥ 30 

 (N = 2,791) 

Age (y/o) 47.8±14.5 40.6±15.1 49.4±13.9 44.1±15.0 50.2±13.7 46±14.8 50.47±13.8 

Man, n (%) 5,223 (76.0) 660 (54.8) 4,563 (80.5) 1,673 (62.8) 3,550 (84.3) 2,798 (68.5) 2,425 (86.9) 

BMI (kg/m2) 27.0±5.0 23.5±3.5 27.7±4.9 24.6±3.9 28.4±5.0 25.3±4 29.3±5.3 

Neck circumference (cm) 37.7±4.1 34.6±3.4 38.3±4.0 35.6±3.7 39.0±3.9 36.3±3.8 39.7±3.8 

Waist circumference (cm) 91.4±13.0 80.9±10.2 93.6±12.5 84.4±10.9 95.8±12.3 86.8±11.2 98±12.7 

Current Smoker, n (%) 1,104 (16.1) 135 (11.2) 969 (17.1) 334 (12.5) 770 (18.3) 520 (12.7) 584 (20.9) 

Alcohol consumption, n (%) 688 (10.0) 80 (6.6) 608 (10.7) 182 (6.8) 506 (12.0) 328 (8) 360 (12.9) 

Hypnotic, n (%) 634 (9.2) 151 (12.5) 483 (8.5) 314 (11.8) 320 (7.6) 435 (10.7) 199 (7.1) 

Comorbidity               

Hypertension, n (%) 2,021 (29.4) 126 (10.4) 1,895 (33.4) 435 (16.3) 1,586 (37.7) 835 (20.4) 1,186 (42.5) 

Diabetes, n (%) 580 (8.4) 31 (2.6) 549 (9.7) 117 (4.4) 463 (11) 231 (5.7) 349 (12.5) 

CAD, n (%) 248 (3.6) 16 (1.3) 232 (4.1) 62 (2.3) 186 (4.4) 119 (2.9) 129 (4.6) 

CHF, n (%) 101 (1.5) 6 (0.5) 95 (1.7) † 22 (0.8) 79 (1.9) 37 (0.9) 64 (2.3) 

CVA, n (%) 124 (1.8) 5 (0.4) 119 (2.1) 31 (1.2) 93 (2.2) † 54 (1.3) 70 (2.5) 

CKD, n (%) 62 (0.9) 7 (0.6) 55 (1.0) & 13 (0.5) 49 (1.2) † 18 (0.4) 44 (1.6) 

COPD, n (%) 67 (1.0) 14 (1.2) 53 (0.9) & 22 (0.8) 45 (1.1) & 37 (0.9) 30 (1.1) & 

Asthma, n (%) 490 (7.1) 105 (8.7) 385 (6.8) † 210 (7.9) 280 (6.6) & 321 (7.9) 169 (6.1) † 

Hypothyroidism, n (%) 156 (2.3) 25 (2.1) 131 (2.3) & 63 (2.4) 93 (2.2) & 103 (2.5) 53 (1.9) & 

The data were presented as mean ± standard deviation or number (percentage) 

Abbreviations: AHI, apnea-hypopnea index; BMI, body mass index; ESS, Epworth sleepiness scale; EDS, excessive daytime sleepiness; CAD, coronary 

artery disease; CHF, congestive heart failure; CVA, cerebrovascular disease; COPD, chronic obstructive pulmonary disease 

The comparisons between non-OSA and OSA participants were analyzed with the independent t-test and Chi-square test. All P values were <0.001, except for 

variable marked with & and †, of which the P-values were > 0.05 and < 0.05, respectively. 
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Table 5. Comparison of clinical features between patients with and without OSA at three AHI cutoffs 

Feature name 
Overall  

(N = 6,875) 

AHI < 5  

(N = 1,206) 

AHI ≥ 5  

(N = 5,669) 

AHI < 15  

(N = 2,664) 

AHI ≥ 15  

(N = 4,211) 

AHI < 30  

(N = 4,084) 

AHI ≥ 30  

(N = 2,791) 

Habitual sleep pattern               

Habitual SOL (min) 20.9±22.5 25±29.9 20±20.5 23.7±26.7 19.1±19.3 22.6±24.2 18.4±19.6 

Habitual SOL <30 min, n (%) 4,794 (69.7) 770 (63.8) 4,024 (71.0) 1,744 (65.5) 3,050 (72.4) 2,752 (67.4) 2,042 (73.2) 

Habitual sleep duration (hr) 6.6±3.3 6.6±2.7 6.5±3.5 6.5±2.6 6.6±3.7† 6.5±2.8 6.6±4& 

Unrefreshed sleep, n (%) 3,685 (53.6) 770 (63.8) 2,915 (51.4) 1,613 (60.5) 2,072 (49.2) 2,325 (56.9) 1,360 (48.7) 

Freq. of awakening in sleep (time/night) 0.5±1.5 0.5±1.5 0.6±1.5& 0.5±1.5 0.6±1.5& 0.5±1.5 0.6±1.5 

Awakening at sleep ≥3 times/night 1,504 (21.9) 237 (19.7) 1,267 (22.3) † 526 (19.7) 978 (23.2) † 802 (19.6) 702 (25.2) 

ESS 10.3±4.9 10.0±4.9 10.4±4.9† 9.8±4.8 10.6±4.9 9.9±4.7 11±5 

EDS, n (%) 3,764 (54.7) 628 (52.1) 3,136 (55.3) † 1,355 (50.9) 2,409 (57.2) 2,098 (51.4) 1,666 (59.7) 

Symptom suggestive of OSA               

Snoring, n (%) 5,480 (79.7) 753 (62.4) 4,727 (83.4) 1,912 (71.8) 3,568 (84.7) 3,099 (75.9) 2,381 (85.3) 

Witnessed apnea, n (%) 1,066 (15.5) 79 (6.6) 987 (17.4) 221 (8.3) 845 (20.1) 417 (10.2) 649 (23.3) 

Freq. of nocturia (times/night) 1.1±1.2 0.9±1.1 1.2±1.2 1±1.1 1.3±1.2 1±1.1 1.3±1.3 

Nocturia ≥2 times/night, n (%) 2,352 (34.2) 308 (25.5) 2,044 (36.1) 746 (28.0) 1,606 (38.1) 1,203 (29.5) 1,149 (41.2) 

Witnessed leg jerks in sleep, n (%) 3,278 (47.7) 603 (50) 2,675 (47.2) & 1,303 (48.9) 1,975 (46.9) & 1,974 (48.3) 1,304 (46.7) & 

Morning headache, n (%) 799 (11.6) 192 (15.9) 607 (10.7) 351 (13.1) 448 (10.6) † 513 (12.6) 286 (10.2) † 

Dry throat at waking up, n (%) 3,856 (56.1) 577 (47.8) 3,279 (57.8) 1,324 (49.7) 2,532 (60.1) 2,132 (52.2) 1,724 (61.8) 

AHI (/hr) 29.6±26.0 1.9±1.5 35.5±24.9 6.1±4.5 44.5±22.8 11.6±8.7 56±19.5 

The data were presented as mean ± standard deviation or number (percentage) 

Abbreviations: SOL, sleep onset latency; AHI, apnea-hypopnea index 

The comparisons between non-OSA and OSA participants were analyzed with the independent t-test and Chi-square test. All P values were <0.001, except for 

variable marked with & and †, of which the P-values were > 0.05 and < 0.05, respectively. 
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From top to bottom, the AHI cutoff is 5/hr, 15/hr, and 30/hr, respectively 

Figure 4. ROC curves and AUROC comparison of 8 machine learning approaches 
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3.1 Feature Selection 

The MCCs of categorical features for different AHI cutoffs are listed in Figure 5. Twelve 

categorical features with top half of MCC value were selected for each AHI cutoff. The results 

of AUROC evaluation with SVMs trained by each single continuous feature are listed in Table 

6. Four continuous features with top half of AUROC in predicting OSA were waist, neck 

circumference, BMI and age. In total, 16 features were selected. 

In the final feature selection, 2, 6, and 6 features were selected with FSFS for AHI ≥ 5/hr, 

≥ 15/hr, and ≥ 30/hr, respectively (Table 7, Figure 6) where the detailed iterations are listed in 

Table S5. The learning curve showed no evidence of overfitting (Figure 7). In addition to waist 

circumference and age, snoring, neck circumference, witnessed apnea, and SOL < 30 min were 

selected for AHI ≥ 15/hr and AHI ≥ 30/hr (Table 7). For logistic regression, 7, 10, and 10 

features were selected for AHI ≥ 5/hr, ≥ 15/hr, and ≥ 30/hr, respectively (Table 6). Five features 

selected in the SVM model including waist circumference, age, neck circumference, snoring, 

and witnessed apnea were also selected in the LR. The SOL was selected instead of SOL < 30 

min. Additional selected features in LR includes BMI, dry throat, gender, hypnotic, and 

hypertension (Table 7). 
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Table 6. AUROC of single continuous feature at SVM model for three AHI cutoffs. 

Order 
AHI ≥ 5 /hr AHI ≥ 15 /hr AHI ≥ 30 /hr 

Feature AUROC Feature AUROC Feature AUROC 

1 Waist 0.794 Waist 0.763 Waist 0.754 

2 BMI 0.772 Neck 0.747 Neck 0.742 

3 Neck 0.769 BMI 0.739 BMI 0.736 

4 Age 0.665 Age 0.561 Age 0.584 

Features not selected 

5 SOL 0.525 Freq. of nocturia 0.520 Freq. of nocturia 0.510 

6 Freq. of nocturia 0.513 ESS 0.516 ESS 0.518 

7 
Freq. of 

awakening in sleep 
0.513 

Freq. of 

awakening in sleep 
0.494 

Freq. of 

awakening in sleep 
0.503 

8 ESS 0.495 SOL 0.488 SOL 0.493 
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Figure 5. MCC values of categorical features correlated with three AHI cutoffs 

-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25

M
C

C
MCC (AHI ≥ 5)

-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25

M
C

C

MCC (AHI ≥ 15)

-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25

M
C

C

MCC (AHI ≥ 30)



doi:10.6342/NTU202000475

 

29 

Table 7. The features selected with forward stepwise feature selection of SVM model and 

logistic regression for three AHI cutoffs. 

Method Order AHI ≥ 5/hr AHI ≥ 15/hr AHI ≥ 30/hr 

SVM 

1 Waist circumference Waist circumference Waist circumference 

2 Age Age Witnessed apnea 

3   Neck circumference Age 

4   Snoring Neck circumference 

5   Witnessed apnea Snoring 

6   SOL < 30 min SOL < 30 min 

Logistic 

regression 
N/A 

Snoring Snoring Witnessed apnea 

Gender Witnessed apnea Gender 

Age Dry throat Snoring 

Neck circumference Gender Hypertension 

SOL Hypnotic Dry throat 

BMI Age Waist circumference 

Waist circumference  Waist circumference Age 

  Neck circumference Neck circumference 

  SOL BMI 

  BMI SOL 

In SVM model, the minimal feature set was selected to achieve the target criteria in the 

AUROC. When AHI cutoffs were 5/hr and 15/hr, the target AUROC was set as 0.8. While AHI 

cutoff was 30/hr, the experiment showed that the maximum AUROC was 0.78, so we selected 

minimum features to achieve the performance. 

 

Abbreviations: AHI, apnea-hypopnea index; BMI, body mass index; SOL, sleep onset latency; 

N/A, not applicable 
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This figure illustrates the relationship between AUROC of prediction model and corresponding numbers of features in the stepwise forward feature 

selection. The results show that the fewest numbers of features to achieve AUROC ≥ 0.80 were 2, 6 and 6 for AHI ≥ 5, 15 and 30/hr, respectively. 

The solid dot and bar indicated mean and standard deviation, respectively. The green circles indicated selected feature numbers with specific AHI 

cutoff. 

Figure 6. The second stage of feature selection with FSFS 
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Figure 7. Learning curves of SVM with three AHI cutoffs 
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3.2 Model Discriminative Ability 

The discriminative ability of the SVM model and logistic regression, BQ, NoSAS score, 

and SLIM scoring system for three AHI cutoffs are shown in Table 8. The performance of 

SVM model remains good consistently across three AHI criteria. The AUROC was 0.82, 0.80, 

and 0.78 for AHI ≥ 5/hr, ≥ 15/hr, and ≥ 30/hr, respectively, while the accuracy was 74.24%, 

72.68%, and 70.28%, respectively. The sensitivity was 74.14%, 75.18%, and 70.26%, for AHI 

≥ 5/hr, ≥ 15/hr, and ≥ 30/hr, respectively, while the specificity was 74.71%, 68.73%, and 

70.30% respectively. Compared to logistic regression, the SVM model had similar AUROC 

and accuracy across three AHI cutoffs. Moreover, at higher AHI cutoffs, the SVM model 

upheld good sensitivity and NPV without losing specificity and PPV. Compared to the BQ, the 

SVM model had higher AUROC, accuracy, specificity, PPV and NPV across three AHI criteria 

while it had higher AUROC, accuracy, sensitivity, and NPV compared to NoSAS score. 

Compared to SLIM scoring system, the SVM model had higher AUROC, accuracy, and 

sensitivity across three AHI criteria. 

The discriminative ability of SVM model in four subgroups are shown in Tables 9 and 10. 

The AUROC and accuracy were similar between male and female while AUROC, accuracy, 

specificity, PPV and NPV were higher in < 65 y/o than ≥ 65 y/o subgroup. Moreover, the 

discriminative ability was best for male < 65 y/o and modest for female ≥ 65 y/o. To make this 

proposed prediction model available to researchers and clinicians, we have built an easy-to-use 

website (http://howareyou.csie.ntu.edu.tw), which provides OSA probability prediction based 

on our machine learning model. 
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Table 8. The performance of SVM, logistic regression, Berlin Questionnaire, NoSAS score, and SLIM scoring system at three AHI cutoffs. 

Model 
AHI cutoff 

(/hr) 

Feature 

no. 
AUROC F1-factor Accuracy (%) 

Sensitivity 

(%) 

Specificity 

(%) 
PPV (%) NPV (%) LR+ LR- 

SVM 

≥5 2 
0.82 

(0.79－0.85) 
0.83 

(0.81－0.85) 
74.24 

(71.59－76.89) 
74.14 

(71.33－76.95) 
74.71 

(70.88－78.54) 
93.23 

(92.17－94.29) 
38.15 

(34.79－41.52) 
2.96 

(2.52－3.41) 
0.35 

(0.30-0.40) 

≥15 6 
0.80  

(0.79－0.81) 
0.77 

(0.74－0.80) 
72.68 

(70.52－74.84) 
75.18 

(67.61－82.76) 
68.73 

(61.72－75.75) 
79.32 

(76.84－81.80) 
64.03 (59.75－

68.31) 
2.45 

(2.04－2.87) 
0.36 

(0.29-0.43) 

≥30 6 
0.78  

(0.77－0.80) 
0.66 

(0.61－0.70) 
70.28 

(68.68－71.88) 
70.26 

(60.21－80.31) 
70.3 

(64.18－76.43) 
61.93 

(59.21－64.35) 
77.86 

(73.68－82.03) 
2.39 

(2.14－2.64) 
0.42 

(0.32-0.52) 

LR 

≥5 7 
0.84  

(0.83－0.86) 
- 73.77 94.41 37.87 72.55 79.56 1.52 0.15 

≥15 10 
0.81  

(0.80－0.82) 
- 72.14 79.94 62.69 72.21 72.03 2.14 0.32 

≥30 10 
0.79  

(0.78－0.81) 
- 72.83 65.01 78.77 69.94 74.77 3.06 0.44 

BQ 

≥5 - 
0.54  

(0.52－0.56) 
- 67.58 74.95 32.91 84.01 21.89 1.11 0.76 

≥15 - 
0.53  

(0.52－0.55) 
- 58.39 76.09 30.41 63.34 44.58 1.09 0.79 

≥30 - 
0.53  

(0.51－0.54) 
- 48.09 76.68 28.55 42.31 64.17 1.07 0.81 

NoSAS 
score 

≥5 4 
0.70  

(0.68－0.71) 
- 57.25 50.62 88.39 95.31 27.58 4.36 0.56 

≥15 4 
0.68  

(0.67－0.70) 
- 66.01 57.99 78.67 81.13 54.23 2.72 0.53 

≥30 4 
0.68  

(0.67－0.69) 
- 68.3 64.88 70.64 60.16 74.64 2.2 0.5 

SLIM 
(10 size) 

≥5 10 
0.69  

(0.67－0.70) 
0.63 54.68 47.1 90.3 95.8 26.64 4.86 0.59 

≥15 10 
0.68  

(0.67－0.69) 
0.65 64.77 54.33 81.27 82.1 52.96 2.9 0.56 

≥30 10 
0.68  

(0.67－0.70) 
0.62 69.4 62.24 74.29 62.33 74.22 2.42 0.51 
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Table 9. The performance of SVM model in subgroups including men, women, < 65 y/o, and ≥ 65 y/o. 

 
AHI 

cutoff 

No. of ≥ 

AHI cutoff 
AUROC F1 score Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) LR+ LR- 

Male 

≥5 4,653 
0.8 0.82 71.82 71.21 76.06 95.35 27.69 3 0.38 

(0.77－0.83) (0.80－0.83) (69.59－74.04) (69.04－73.37) (73.04－79.08) (94.67－96.04) (25.55－29.84) (2.59－3.42) (0.34－0.42) 

≥15 3,550 
0.77 0.76 69.86 69.3 71.08 83.7 52.62 2.44 0.43 

(0.77－0.78) (0.70－0.81) (65.74－73.98) (59.97－78.63) (63.99－78.16) (81.83－85.58) (48.17－57.07) (2.07－2.82) (0.35－0.51) 

≥30 2,425 
0.76 0.66 69.65 64.58 74.06 68.5 71.09 2.52 0.47 

(0.74－0.78) (0.59－0.73) (67.17－72.13) (52.25－76.91) (67.47－80.64) (66.53－70.48) (66.21－75.98) (2.29－2.74) (0.36－0.59) 

Female 

≥5 1,106 
0.78 0.79 72.76 77.75 62.64 80.79 58.64 2.11 0.36 

(0.73－0.83) (0.74－0.84) (67.28－78.24) (70.55－84.96) (56.94－68.35) (77.74－83.85) (50.32－66.96) (1.65－2.58) (0.23－0.48) 

≥15 661 
0.79 0.67 67.92 81.84 58.64 57.13 82.87 2.02 0.31 

(0.75－0.83) (0.65－0.69) (63.79－72.06) (79.15－84.53) (50.16－67.12) (52.74－61.53) (81.88－83.86) (1.65－2.39) (0.29－0.33) 

≥30 366 
0.79 0.52 68.17 77.04 65.64 39.47 90.91 2.33 0.35 

(0.75－0.82) (0.47－0.57) (61.43－74.91) (74.41－79.67) (56.66－74.62) (33.20－45.75) (89.86－91.96) (1.68－2.98) (0.31－0.40) 

<65 y/o 

≥5 4,870 
0.82 0.83 74.52 74.68 73.81 92.56 40.14 2.88 0.34 

(0.79－0.85) (0.80－0.85) (71.62－77.41) (71.42－77.93) (69.80－77.82) (91.41－93.71) (36.42－43.86) (2.46－3.31) (0.29－0.40) 

≥15 3,577 
0.81 0.77 73.43 76.46 68.94 78.66 66.74 2.5 0.34 

(0.80－0.82) (0.74－0.81) (71.47－75.39) (68.81－84.10) (62.42－75.46) (76.51－80.82) (62.27－71.22) (2.15－2.85) (0.27－0.41) 

≥30 2,347 
0.79 0.66 70.96 71.83 70.4 61.22 79.75 2.46 0.4 

(0.78－0.81) (0.62－0.70) (69.22－72.70) (62.05－81.61) (63.93－76.87) (58.19－64.25) (75.68－83.82) (2.13－2.79) (0.29－0.50) 

≥65 y/o 

≥5 799 
0.7 0.78 65.84 65.83 65.73 94.47 17.94 2.19 0.53 

(0.64－0.76) (0.76－0.79) (63.68－68.00) (63.37－68.30) (52.01－79.45) (92.42－96.52) (14.85－21.04) (0.88－3.50) (0.43－0.63) 

≥15 634 
0.69 0.72 64.94 65.75 62.92 81.77 42.92 1.87 0.54 

(0.67－0.72) (0.66－0.79) (59.99－69.88) (54.68－76.82) (50.00－75.84) (77.98－85.57) (39.06－46.79) (1.33－2.40) (0.46－0.63) 

≥30 444 
0.7 0.62 64.16 58.52 69.74 66.07 63.23 1.97 0.59 

(0.68－0.72) (0.54－0.69) (61.20－67.12) (45.19－71.85) (60.90－78.58) (63.15－68.99) (58.75－67.71) (1.71－2.23) (0.47－0.71) 
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Table 10. The performance of SVM model in subgroups including men, women, with < 65 y/o, and ≥ 65 y/o. 

 
AHI 

cutoff 

No. of  ≥ 

AHI cutoff 
AUROC F1 score Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) LR+ LR- 

Male  

<65 y/o 

≥5 3,972 
0.81 0.82 72.47 71.8 76.81 95.29 29.46 3.14 0.37 

(0.78－0.84) (0.80－0.84) (70.56－74.37) (69.64－73.97) (72.96－80.67) (94.52－96.06) (27.70－31.22) (2.63－3.65) (0.33－0.40) 

≥15 3,075 
0.78 0.76 70.74 70.18 71.89 83.77 54.5 2.56 0.41 

(0.77－0.79) (0.72－0.81) (67.41－74.07) (61.74－78.62) (64.65－79.14) (81.54－86.01) (50.56－58.44) (2.08－3.05) (0.34－0.48) 

≥30 2,077 
0.77 0.66 70.15 65.96 73.64 67.68 72.62 2.53 0.46 

(0.75－0.79) (0.61－0.72) (68.40－71.91) (54.65－77.26) (67.30－79.97) (65.67－69.69) (68.15－77.10) (2.29－2.78) (0.35－0.56) 

Male  

≥65 y/o 

≥5 591 
0.66 0.77 64.99 65.65 57.09 94.53 13.31 1.82 0.81 

(0.50－0.82) (0.71－0.84) (56.26－73.71) (58.02－73.28) (30.16－84.02) (90.98－98.08) (5.67－20.95) (0.85－2.79) (-0.07－1.70) 

≥15 475 
0.69 0.72 64.67 64.21 66.08 84.07 40.99 1.91 0.54 

(0.64－0.75) (0.59－0.85) (52.79－76.55) (46.97－81.45) (57.94－74.23) (81.07－87.07) (30.06－51.92) (1.45－2.37) (0.31－0.76) 

≥30 348 
0.68 0.6 61.58 54.82 69.49 67.95 57.03 1.8 0.64 

(0.65－0.72) (0.51－0.70) (57.45－65.71) (40.88－68.77) (61.48－77.50) (66.43－69.47) (52.80－61.27) (1.68－1.92) (0.52－0.77) 

Female 

<65 y/o 

≥5 898 
0.78 0.78 72.32 78.52 61.35 78.23 62.05 2.06 0.35 

(0.72－0.84) (0.74－0.83) (67.63－77.01) (72.21－84.82) (55.96－66.73) (75.33－81.13) (54.74－69.35) (1.67－2.45) (0.24－0.46) 

≥15 502 
0.79 0.66 67.7 85.67 57.7 53.22 87.83 2.07 0.25 

(0.76－0.83) (0.62－0.70) (62.00－73.39) (81.39－89.94) (48.59－66.82) (48.26－58.19) (84.22－91.43) (1.68－2.45) (0.17－0.33) 

≥30 270 
0.79 0.49 66.83 81.11 63.44 35.01 93.33 2.3 0.3 

(0.76－0.83) (0.43－0.55) (59.86－73.80) (76.69－85.54) (55.04－71.83) (28.68－41.34) (91.53－95.14) (1.61－2.99) (0.21－0.39) 

Female 

≥65 y/o 

≥5 208 
0.71 0.78 68.88 68.31 71.07 93.19 29.79 3.14 0.44 

(0.57－0.85) (0.72－0.85) (62.49－75.26) (56.76－79.85) (47.64－94.50) (89.36－97.02) (28.03－31.56) (1.14－5.13) (0.39－0.49) 

≥15 159 
0.68 0.66 60.3 60.32 60.39 73.41 46.04 1.56 0.66 

(0.61－0.74) (0.59－0.73) (54.38－66.22) (50.11－70.54) (50.49－70.30) (68.65－78.17) (39.42－52.66) (1.25－1.86) (0.49－0.84) 

≥30 96 
0.7 0.59 66.88 60.47 70.95 58.64 73.92 2.66 0.57 

(0.65－0.76) (0.49－0.69) (56.89－76.87) (47.36－73.59) (55.26－86.63) (42.90－74.38) (65.99－81.84) (0.42－4.91) (0.34－0.79) 
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Chapter 4.  Discussion 

4.1 Preliminary Findings 

This study proposed an SVM model driven by data mining that uses a large-scale data set 

based on the sleep laboratory to predict OSA with three different AHI limits. The 

characteristics selected in the model were as few as 2, 6 and 6 for AHI ≥ 5/hr, ≥ 15/hr, and 

≥30/hr, respectively, and all were collected in the clinics. Compared to the logistic regression, 

the SVM model had a non-inferior discriminative capacity, balanced sensitivity and specificity, 

and with fewer features. The discriminative capacity of the SVM model was better than BQ, 

NoSAS score and SLIM scoring system. The SVM model worked best for men < 65 y/o. 

4.2 Comparison with Prior Work 

Compared to other related studies, a major strength of the proposed model is that the SVM 

prediction is built using a large-scale dataset from sleep clinics with very few exclusions which 

enhance the representativeness of the dataset and minimize the selection bias of small samples 

(Table 2) [9, 15-21, 23, 24, 26-28, 50]. Moreover, all 32 features are information routinely 

collected at the clinic visits and are not physiological parameters derived from overnight pulse 

oximetry or pulmonary function test. Unlike certain model [7] that includes physical findings 

of oral cavity which may be difficult to measure precisely [16], this study did not include such 

features for the model development. Similarly, there was a concern that single office blood 

pressure may not be representative so it was not included as an input feature. 

The six selected features, with the exception of SOL < 30 min, were often selected in the 

prediction models reported in the literature while SOL < 30 min has never been described to 

predict AHI ≥ 15/hr or AHI ≥ 30/hr (Table 2). The selection of SOL < 30 min as a feature in 
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the SVM model was a surprise but was echoed by the selection of SOL in logistic regression. 

Despite that SOL was an input feature in the Boosting model proposed by Caffo et al., it was 

not selected for their modeling [19]. The difference may be due to the fact that the participants 

in the Caffo study were from a community population and were older with more females. 

Similar to the findings of other studies, neither ESS nor EDS was selected as a model 

feature, which reflects that there is a high prevalence of EDS in OSA patients regardless of 

AHI. It may be related to the clinical practice that patients with EDS are more prone to be 

referred for sleep study and sleepiness is not necessarily concordant with OSA severity [16]. 

Our results are comparable to another model validated in the Chinese population. Liu et 

al. [24] developed an SVM-based model to predict OSA with three anthropometric features, 

i.e., waist size, neck size, and BMI. That study included age, BQ, and anthropometrics as 

features. The predictability for AHI ≥ 15/hr and AHI ≥ 30/hr in Liu’s model is highest in 

females 50 y/o. Compared to the discriminative ability for AHI ≥ 15/hr in the model reported 

by Liu et al., our model has higher AUROC and accuracy in elderly males while lower in 

elderly females. The difference in performance is likely due to the inclusion of OSA symptoms 

such as snoring and witnessed apnea. Moreover, the age cutoff in our study for subgroup 

analysis is 65 y/o as opposed to 50 y/o in the study by Liu. This study arbitrarily chose 65 y/o 

as cutoff for subgroup analysis. Elderly OSA patients often have poorer association between 

AHI and body habitus variables (neck size, BMI, and waist-to-hip ratio), a lower percentage of 

habitual snoring, and a longer SOL compared to younger patients [5], which may contribute to 

the poorer performance of our model in the elderly as the proposed model was built with 

anthropometrics and OSA symptoms. 
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4.3 Limitations 

There are some limitations in the present study. First, several features highly associated 

with OSA, such as hyperlipidemia and atrial fibrillation, were not included in the database and, 

therefore, were not used for the development of the model. Second, the dataset was created 

from the information collected from patients referred to our sleep laboratory for the study of 

sleep in which the prevalence of OSA is high. The result may not be applicable to the general 

population where the prevalence of OSA is much lower. Third, all participants are Chinese and 

the accuracy of this model in other ethnic groups remains unclear. The validity of this model 

needs to be confirmed in multi-ethnic community populations to address the meaning and 

implications. Fourth, the use of the AHI limit value as the sole objective of prediction is one of 

the limitations of our study. AHI is known for its flexible association with OSA-related 

outcomes [37], while factors such as EDS may have a better prediction of cardiovascular 

outcome than AHI [38]. In the future, other parameters such as morbidity should be considered 

as prediction objectives. Fifth, we do not compare our model with STOP-Bang [1] since STOP-

Bang was not included as part of the routine questionnaires of the NTUH sleep laboratory until 

January 2017. An additional study that compares our SVM model with STOP-Bang would be 

justified. Finally, the proposed method only works when the SVM is the most or the nearly 

most appropriate algorithm for targeted data classification, and the feature selection method 

requires enough features which are truly related to the outcome, or the feature selection may 

be failed. 

4.4 Future Work 

To validate the proposed feature selection method is robust or not, other types of open 

data may be used for validation. Future studies and the development of the machine learning 
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model algorithm should focus on validation in the sleep laboratory and community populations 

with multiple ethnicities for greater clinical application. 

4.5 Conclusion 

To solve the sensitivity and specificity imbalance problem during using clinical features 

to predict OSA and to develop an easy-to-use tool for non-sleep specialist physician, this study 

compared several popular machine learning models to predict OSA with three AHI cutoffs. We 

found that the SVM with RBF kernel had better performance. With the proposed feature 

selection method, the feature importance could be clarified and the selected features were 

matched as clinical experience. The feature selection method is effective to find out the most 

related features to predict OSA with different AHI cutoffs. The proposed SVM model provides 

a simple and precise modality for the early identification of patients with OSA. To understand 

which subgroup (gender and age) fits our model, we also used 8 subgroups of dataset to test 

trained models. The results showed that our model could fit well with male and < 65 y/o.  

Finally, the web-based questionnaire integrated with trained models is easy to use for NSSPs 

and patients. 
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APPENDIX 

APPENDIX A. Description and definition of sleep pattern parameters and OSA symptoms 

Parameter Description Domain Definition in SVM 

Habitual sleep pattern    

Habitual SOL (min) 
During the past month, how long (in minutes)  

does it usually take you to fall asleep at night? 
  

Habitual SOL < 30 min   < 30 min = 1, ≥ 30 min = 0 

Habitual sleep duration (hr) 
During the past month, how many hours of  

actual sleep did you get at night? 
  

Category of habitual sleep duration   
< 6 hr = -1, 6-8 hr = 0,  

≥ 8 hr = 1 

Unrefreshed sleep Do you feel unrefreshed after waking up in the morning? Yes, No Yes = 1, No = 0 

Freq. of wakening in sleep (times/night) How many times do you wake up during the night?   

Awakening in sleep ≥ 3 times/night   
≥ 3 times/night = 1,  

< 3 times/night = 0 

EDS   ESS ≥10 = 1, ESS <10 = 0 

Symptom suggestive of OSA    

Snoring Do you snore? Yes, No, don’t know 
Yes = 1, No = 0,  

don’t know = 0 

Witnessed apnea 
How often in the past month have you been told to  

have long pauses between breaths while in sleep? 

No, < 1tme/week, 1-2 

times/week, 3 times/week 

No = 0, < 1tme/week = 0,  

1-2 times/week = 0,  

3 times/week = 1 

Freq. of nocturia (times/night) 
How many times do you need to get out of bed to  

go to the bathroom during your sleep period? 
  

Nocturia ≥ 2 times/night   
≥2 times/night = 1,  

< 2 times/night = 0 

Witnessed leg jerks in sleep 
How often in the past month have you been told to  

have had leg twitching or jerking while in sleep? 

No, < 1tme/week, 1-2 

times/week, 3 times/week 

No = 0, < 1tme/week = 0,  

1-2 times/week = 0,  

3 times/week = 1 

Morning headache Do you experience headaches while waking up in the morning? Yes, No Yes = 1, No = 0 

Dry throat at waking up Do you experience dry throat at waking up? Yes, No Yes = 1, No = 0 
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APPENDIX B. Details of SVM prediction model training and testing procedures 

Task Task name Comment Criterion Cutoff 

1 Data input  N/A N/A 

2 Data exclusion 
After exclusion,  

6,875 subjects left 

PSG total recording time < 240 min 

Not Chinese N/A 

Any missing value in 32 features N/A 

3 Data splitting for 5-fold CV  Each fold's prevalence rate is nearly same N/A 

4 

First feature selection  

(continuous feature) 

Use 4 folds for these tasks 

Median of single-feature-SVM's AUROC ≥ Median value 

First feature selection  

(categorical feature) 
Median of MCC ≥ Median value 

5 Forward stepwise feature selection AUROC ≥ 0.8 

6 SVM optimization AUROC Maximum and not overfitting 

7 Testing on hold out fold  N/A N/A 

8 
Averaging the results of  

five test folds 
 N/A N/A 

9 Plotting learning curve To evaluate model for overfitting 
No significant difference  

between training and testing curve 
N/A 

10 Repeating task 4-8 until five times 
With different training  

and testing folds 
N/A N/A 

11 Averaging results from task 10 
Calculate mean and 95% 

confidence interval 
N/A N/A 
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APPENDIX C. The result of multivariable logistic regression. 

AHI ≥ 5/hr AHI ≥ 15/hr AHI ≥ 30/hr 

Variable OR (95% CI) P-value Variable OR (95% CI) P-value Variable OR (95% CI) P-value 

Snoring 2.732 (2.231-3.345) <.0001 Snoring 1.846 (1.543-2.208) <.0001 Witnessed apnea 2.036 (1.684-2.460) <.0001 

Gender 1.640 (1.244-2.163) 0.0005 Witnessed apnea 1.873 (1.506-2.329) <.0001 Gender 1.751 (1.376-2.227) <.0001 

Age 1.046 (1.039-1.053) <.0001 Dry throat 1.451 (1.259-1.674) <.0001 Snoring 1.471 (1.222-1.770) <.0001 

Neck 1.081 (1.030-1.134) 0.0014 Gender 1.640 (1.301-2.066) <.0001 Hypertension 1.416 (1.202-1.667) <.0001 

SOL 0.992 (0.988-0.996) <.0001 Hypnotic 0.635 (0.494-0.817) 0.0004 Dry throat 1.343 (1.168-1.544) <.0001 

BMI 1.131 (1.079-1.186) <.0001 Age 1.040 (1.034-1.046) <.0001 Waist 1.013 (0.999-1.027) <.0001 

Waist 1.029 (1.010-1.048) 0.0026 Waist 1.024 (1.009-1.039) <.0001 Age 1.028 (1.022-1.034) <.0001 

   Neck 1.082 (1.043-1.122) <.0001 Neck 1.078 (1.041-1.116) <.0001 

   SOL 0.991 (0.988-0.995) <.0001 BMI 1.141 (1.103-1.181) <.0001 

   BMI 1.126 (1.086-1.168) <.0001 SOL 0.988 (0.984-0.992) <.0001 

Abbreviation: AHI, apnea-hypopnea index; OR, odd ratio; SOL, sleep onset latency; BMI, body mass index. 




