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Abstract

Audio-visual event localization requires one to identify the event label
across video frames by jointly observing visual and audio information. To
address this task, we propose a deep neural network named Audio-Visual
sequence-to-sequence dual network (AVSDN). By jointly taking both au-
dio and visual features at each time segment as inputs, our proposed model
learns global and local event information in a sequence to sequence man-
ner. Besides, we also propose a deep learning framework of cross-modality
co-attention for audio-visual event localization. The co-attention framework
can be applied on existing methods and AVSDN. Our co-attention model
is able to exploit intra and inter-frame visual information, with audio fea-
tures jointly observed to perform co-attention over the above three modalities.
With visual, temporal, and audio information observed across consecutive
video frames, our model achieves promising capability in extracting infor-
mative spatial/temporal features for improved event localization. Moreover,
our model is able to produce instance-level attention, which would identify
image regions at the instance level which are associated with the sound/event
of interest. Experiments on a benchmark dataset confirm the effectiveness of
our proposed framework, with ablation studies performed to verify the design

of our propose network model.

Keywords: Audio-Video Features, Dual Modality, Cross Modality, Event

Localization, Deep learning, Machine learning, Computer vision
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Chapter 1

Introduction

In real-world activities, visual and audio signals are both perceived by humans for percep-
tual understanding. In other words, both visual and audio data should be jointly exploited
for understanding the observed content or semantic information. Recently, audio-visual
event localization [|15, 34, 49, 1, B9, 40] attracts the attention from computer vision and
machine learning communities. As depicted in Fig. [L.1), this task requires one to identify
the content information (e.g., categorical labels) for each frame or segment in an video,
by observing both visual and audio features across video frames.

Audio-visual event localization can be viewed as a cross-modality learning task, which
deals with the challenging task that the feature representations and distributions across
visual and audio domains are very different.

To explore audiovisual representation, joint learning of multi-modal deep networks
across these two domains have been studied [21, 47, 23, [15]. However, existing models
require the presence of both visual and audio information to learn the event of interest.
In other words, they cannot deal with scenarios with partial information observed or in
weakly supervised settings.

On the other hand, cross-modal synthesis models [52, 8] have also been proposed to
exploit information observed from different data modalities. For example, [45, 51] are
capable of converting spoken audio data with captions into face video frames. However,
since these models require label annotation for each data domain, and the synthesized

videos are typically limited (e.g., for cropped-out face regions), such techniques cannot
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Figure 1.1: Illustration of audio-visual event localization (recognizing video event with
matched visual and audio information). Note that the first column shows our correct local-
ization outputs with cross-modality co-attention, the 2nd and 3rd columns show the video
and audio inputs across five consecutive frames, with ground truth visual/audio and event
labels depicted in the last two columns.

be easily extended to audio-visual event localization for general video data.

To address this challenging task, we propose an end-to-end deep learning framework
of Audio-Visual sequence-to-sequence dual network (AVSDN). Based on sequence to se-
quence (seq2seq) [38] and autoencoder, our network architecture takes both audio and
visual data at each time segment as inputs and exploits global and local event information
in a seq2seq manner. More importantly, our model can be learned in a fully or weakly

supervised settings, i.e., ground truth event labels observed in the frame or video levels.

Moreover, to better associate audio and visual information for video event localiza-
tion, we propose a novel deep attention model which jointly performs visual, temporal,
and audio cross-modality co-attention for video event localization. This is realized by
advancing LSTMs for encoding intra-frame patches, followed by exploitation of encoded
intra-frame visual and audio features. As a result, one important features of our proposed
attention model is that we not only improve the overall localization (i.e., classification)
performances, it further attends proper regions across video frames (e.g., the correspond-

ing object of interest in Fig. [[.1}). More importantly, we will show that our model is not

2
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limited to the use of fully supervised video data (i.e., visual and audio labels annotated for
each frame). Learning of our model in a weakly supervised setting can be conducted,.in
which only an overall soft label at the video level is observed during fraining. . We \now

highlight the contributions of this work as follows: A

* We propose a unique end-to-end trainable network for audio-visual event localiza-
tion, which is able to jointly take visual and audio data as inputs. By exploiting
this cross-modality information across time, such encoded global features will be

conditioned on the decoder for event localization.

* We propose a novel end-to-end trainable module for visual, temporal, and audio
co-attention, which can exploit cross-modality information across video frames for

event localization.

» Without attention supervision, our model performs instance-level attention during
event localization. This is achieved by advancing LSTMs to model local image
regions within each frame, followed by temporal and audio information jointly ex-

ploited across video frames.

* Experimental and visualization results demonstrate that our proposed module per-
forms favorably against state-of-the-art approaches in both fully and weakly super-

vised settings.

doi:10.6342/NTU201902224
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Chapter 2

Related Work

Video Classification. Methods based on deep neural networks have shown promising
performances on the task of video classification [[12, 22, 53, 44, 54, 46, 50], which takes
visual and temporal information for predicting action or event categories for input videos.
To explore the aforementioned spatial-temporal features from videos, 3D convolutional
networks are utilized, in which 3D architectures with 3D kernels are considered [41], 42, [7].
On the other hand, long short term memory (LSTM) networks [12] has also been employed
to observe 2D CNN features over time. Such recurrent neural networks (RNN) [[12, 26, 27]
are alternative ways to learn the temporal relation between frames. However, since uses
of RNNs might limit the length of the input video to be observed [26, 27], some works
choose to sample frames from the entire video to learn robust reasoning relational repre-

sentation [50, 44, 54, 6, 5].

Relating Audio and Visual Features. While RNN-based models have been widely ap-
plied to extract spatial-temporal features from videos, such methods do not consider audio
features when modeling temporal information. To address this issue, cross-modality learn-
ing using audio and visual data are proposed [1, 3, 32, 31}, 15, 39]. For example, Aytar et
al. [3] learn the joint representation from audio-visual data, with the goal to identifying
the content using data in either modality. Arandjelovic and Zisserman [|I]] also exploit

the variety of audio-visual information for learning better representation in audio-visual

5
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correspondence tasks. Furthermore, they [2] visualize sound localization in visual scenes,
which would serve as the bridge connecting between audio and visual modality- - Owens
et al. [30] leverage ambient sounds when observing visual contents to learn robq_s_f audio-
visual representations. The resulting representation is further utilized to peffog}r; yideo
tasks of action recognition, visualization the locations of sound sources, and oﬁ/off-scréen
source separation. These studies [30, 2] apparently show that sound source localization
can be guided by semantic visual-spatial information, and verify that these cross-modality
features would be beneficial in the aforementioned video-based applications.

Aside from learning audio-visual representation, works like [9, 45, 51]] demonstrate
that such audio-visual based models can be applied to synthesize videos with face images
(e.g., with lip motion), corresponding to the input free-form spoken audio. Concurrently,
some audio-related tasks [30, 49, [14, |15, 13] also utilize visual representation to solve au-
dio source separation and denoising. Nevertheless, while the aforementioned works show
promising results in learning audio-visual representation, it is still challenging to address
audio-visual event localization, which requires one to identify the event with both visual
and audio modality properly presented, especially in a weakly supervised setting (i.e., no
frame-level ground truth annotation). In the next section, we will present and discuss the
details of our proposed co-attention model, which jointly exploits visual, temporal, and

audio data for improved localization and instance-level visualization.

doi:10.6342/NTU201902224



Chapter 3

Proposed Method

3.0.1 Notations and Problem Formulation

In this paper, we design a novel deep neural network model for audio-visual event lo-
calization. In order to deal with cross-modality signals observed from audio and video
data with the ability to identify the event of interest, our model exploits visual information
within and across video frames. Together with the audio tracks, the proposed model not
only performs satisfactory localization performances, it also exhibits promising capability
in attending the objects in the input video associated to that event.

For the sake of completeness, we first define the settings and notations which will
be used in this paper. Following [40], two training schemes for audio-visual event lo-
calization are considered: supervised and weakly-supervised learning. Given a video
sequence with 7" seconds long, it is split audio a and video v tracks separately into T’
non-overlapping segments {a’, vt}thl, where each segment is Is long (since the event
boundary is labeled at second-level). For the supervised setting, segment-wised labels
are available as y! = {y}i|y}fC e {0,1}, 39yt =1t e N}, y! € RE*L where t de-
notes the segment index and C' denotes total event categories. We note that, considering
the category of background, the total number of event categories becomes C' + 1. In the

supervised setting, every segment-wise labels are observed during the training phase.

As for the scheme of weakly-supervised learning, we only have access to the video-

level event labels during the training phase. Note that the video-level event labels are

7
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processed by averaging the segment event labels Y = % Zthl y:,Y € R For this
weakly supervised setting, while it is less likely to be affected by noise from-either modal=
ity at the segment level during training, it also makes the learning of our mogfl Mone
difficult. &Y

Our proposed framwork consists two major parts: AVSDN [28] and EMCoAft. As
shown in Fig B.1|, our AVSDN [28] is composed of three components: encoder modules
for learning visual and audio representations, fusion network for producing global video
representation, and decoder to take global and local features for event localization.

As shown in Fig B.2, our CMCoAtt consists of network modules of intra and inter-
frame visual encoder. Together with audio features across video frames, cross-modality
co-attention can be performed. That is, our model allows joint attention over visual, tem-
poral and audio domains for audio-visual event localization. We now discuss these two

modules in the following subsections.

3.0.2 Audio-Visual Sequence-to-sequence Dual Network (AVSDN)

To address the audio-visual event localization problem in both supervised and weakly-
supervised problems, we propose a novel framework named Audio-Visual sequence-to-
sequence dual network (AVSDN). Based on seq2seq [38] and autoencoder, our network
architecture takes both audio and visual data at each time segment as inputs and exploits
global and local event information in a seq2seq manner.

As shown in Fig B.1|, the framework is composed of three components: encoder mod-
ules for learning visual and audio representations, fusion network for producing global
video representation, and decoder to take global and local features for event localization.
More details about the three components in AVSDN can be obtained as follows:
Encoder: learning global visual and audio representations. The encoder, which is the
first part of our network AVSDN, is aimed to extract global visual and audio representa-
tions for fusion network.

Before learning the global features, we have to obtain the segment visual and audio rep-

resentations by utilizing CNNs. To better learn the visual and audio embedding features,

doi:10.6342/NTU201902224
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Figure 3.1: Overview of our Audio-Visual Sequence-to-sequence Dual Network
(AVSDN). Our AVSDN is composed of three main components, which include encoder
modules (in orange and blue) for learning visual and audio representations, a fusion net-
work (in purple) for producing global video representation, and a decoder (in green) which
jointly takes global and local features for event localization. Note that v and a denote vi-
sual and audio features, / and s are the hidden and cell states of LSTMSs, and y indicates
the event label.

our CNNs are learned from the large-scale dataset (ImageNet [[11]] and AudioSet [16])
which are highly shown useful for vision and audition tasks. To be specific, for visual
frames we sample a frame and obtain the visual representation from pre-trained ResNet-
152 [|18], which has been trained on ImageNet. On the other hand, for one raw audio, we

convert one segment to log mel spectrogram and extract an audio representation each 1s

from VGGish [[19] trained on AudioSet.

In order to further learn the global visual and audio representations, we now utilize the
Long Short-Term Memory (LSTM) [20], which is known to exploit long-range temporal
dependencies, to generate encoded temporal representation sequence. Generally, the most
common implementation of vanilla LSTM [|17] includes various gate mechanisms such

as input gate, forget gate, output gate, memory state, and hidden state etc. The utilized

9
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LSTM unit in our proposed model is illustrated in Eq. (B.1]).

fe = 0g(Wyxy+ Upzy + by)

4. :"‘.‘u 1

it = O'g(VVZ‘I't + Ui$t + bl) .
Oy = O'g(WofEt + anft + bo) (31)
¢t = frociog +ip oo (Wexy + Uchyi—q + b.)

hy =00 Uh(Ct)

Each time step in Eq. (B.1]) denotes subscript ¢, and z; € R? denotes the given input
oftimestept. f, € R", i, € R" and o, € R" are forget, input and output gate’s activation
vector respectively. h, € R" and ¢, € R" are hidden and cell state of the LSTM unit. When
t =0, co = 0and hg = 0 would be the initial values. W € R"*?¢ U € R"" and b € R"
are weight matrices and bias vector which can be learned during train phase. Where d and
h refer the number of input features and number of hidden units. Element-wise product
is denoted by o. Activation function: o, is sigmoid function and o, is hyperbolic tangent

function.

Eventually, all the audio and visual segments are the inputs of the two designed LSTM
(audio and video separately). Hence, the last time step 7" of hidden and cell state can be

generated as the global representations of audio and visual tracks.

Fusion network: learning video event representation.

After obtaining the audio and visual global representations, our goal is to convert these
two representations into one video event representation. To perform such a fusion mecha-
nism, our fusion network is designed to fuse cross-modality features which are built based
on dual multimodal residual network (DMRN) fusion block [40]. As mentioned above,
the last time step 7" of hidden and cell state from encoder can be given as the representa-
tions of audio and visual tracks. Following [40], with time step 7', audio and visual hidden
state (R, h%) and cell state (¢, c}) can be fused with Eq.(8.2). After fusion hidden and

cell state, these fused state will be the initial state of the decoder LSTM (one LSTM of

10
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right-half Fig3.2).

¥ = o(h+ 5 00() + g(h)
¥ = oh+ 5 (00(h%) + aolh)

hf = hil + by

(3.2)

s
A

where o, is denoted as hyperbolic tangent function and gy(.) is multilayer pereeptrons
(MLP) with parameters 6. The cell states can be fused like hidden states. The fused
states, h! and c{ , turn to be the initial states in our decoder. Because compared with
vanilla LSTM, a representative initial state can benefit a LSTM for prediction [38]. Thus,

we take the fused states for the initialization for the decoder.

Decoder: localization of video events using global and local cross-modality represen-
tations. Generally, our decoder is aimed to perform the supervised and weakly-supervised
event localization. Thus, given both the fused global representations from the fused net-
work and local features of audio and video, our decoder will generate the corresponding
labels segment-wisely. The architecture of our decoder is a single LSTM. Different from
each encoder, the inputs of the decoder are concatenated features which are global and lo-
cal cross-modality representations. We concatenate a, and v; which are audio and visual
segment features from pre-trained CNN. Our decoder is designed to not only learn spatial
cross-modality representations but temporal ones. Especially weakly supervised setting,
we can only access to the video-level labels in the training phase. All the individual pre-

dictions will be aggregated by average pooling in Eq.(3.3),

T

. 1

i = avg(my, my, ... mz) = = > my, (3:3)
t=1

where my, ..., mp are the predictions from the last fully connected layer of our model. The
average prediction 7 over softmax function can be the probability distribution of the event
category. For both the weakly-supervised and supervised setting, the predicted probability

distribution can be optimized by video-level labels through binary cross-entropy.

11
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Figure 3.2: Overview of our proposed Cross-Modality Co-Attention model (CM-
CoAtt). Our CM-CoAtt deep learning framework is composed of three main components,
intra and inter-frame visual encoders (Sect. 3.2), and a self-attention based mechanism for
cross-modality co-attention (Sect. 3.3). Note that v and a denote visual and audio features,
respectively.

3.0.3 Learning Intra and Inter-Frame Visual Representation

Intra-frame visual encoder . Visual attention has been widely utilized in recent VQA
and audio-visual related tasks [25, 29, 4, B3, [10, 40, B4, 2]. Although convolution neural
networks have been successfully applied in the above works to identify spatial regions of
interest with impressive results, such attention is typically performed at the pixel level,

based on the information observed for the corresponding tasks (e.g., supervision or guid-
ance at the network outputs) [34, 2, 49, 30, [10].

For the task of audio-visual event localization, one needs to identify the video segments
with the event of interest. It would be preferable if one can attend on the object of interest
at the instance level during localization, which would further improve the localization

accuracy.

Inspired by [48], we utilize recurrent neural networks to encode local context informa-
tion into proper representation, so that object instances corresponding to event of interest
can be attended accordingly. To achieve this goal, we input local image patches of a video
frame into a bidirectional LSTM [20] network, which encode the image patches of that
frame in a sequential yet bidirectional order. To be more specific, as illustrated in Fig B.3,

we divide a input video frame at time step ¢ into R patches, and extract the CNN feature for
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Figure 3.3: Intra-frame Visual Encoder: Local image regions within a video frame are
encoded and represented as channels processed by a CNN. Note that a total of R regions
is extracted from the input frame, while the extracted regions are fed into a BILSTM in
the forward-backward sequential order for encoding.

each patch. These visual representations of each region are denoted as {v%.,r = 1,2..., R},
where v!. € RX represents the visual features of the rth patch. These visual features are

served as the inputs to the bidirectional LSTMs, which is described below:

= LSTM' (V') + LSTM"(v'), (3.4)

where LSTM/(.) and LST M?"(.) denote the forward and backward LSTMs, respectively,
and V', indicates intra-frame visual representations for rth patch. We gather R patches for
intra-frame representations of video frame at time ¢, that is, ¥* = {¥}, ..., ¥%} € RExK

It can be seen that, via advancing recurrent neural networks, visual representation en-

coded in this stage describes local spatial information within a video frame. By combing
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temporal and audio information in the following stages, this intra-frame visual encoder

allows improved attention at the instance-level as later verified.

Inter-frame visual encoder . With image representation preserving intra-frame local
visual information obtained, inter-frame visual information needs to be exploited so that
relational reasoning across video frames can be performed. In a recent work of [33], such
strategies have shown promising performances on VQA tasks. Similarly, the network
module of temporal relational reasoning was presented in [50], which captures temporal

relational information for activity recognition.

To encode visual information across video frames for event localization, we need to
integrate temporal information into the derived ¥*. In other words, we need to exploit
inter-frame visual information based on the intra-frame ones previously produced. In our
proposed framework, we choose to perform this inter-frame encoding by feeding consec-
utive video frames (in terms of ¥') into an encoder. As depicted in Fig .4, the encoded

inter-frame visual representation is derived as:

{"t — ge({,t—17{,t7{,t+1), (35)

where ¥' € Rf*X is the encoded intra-frame feature representation at time step ¢ derived
by (B.4). Note that g(.) is a standard multilayer perceptron with parameters  to perform
inter-frame visual encoding. Thus, the output v € R#*? not only contains the regional

relationship within a image but also temporal differences is jointly explored.

A final remark on our inter-frame visual encoder is that, the use of simple MLP-based
encoders allows us to exploit short-term temporal information across locally attended vi-
sual features across frames. Together with the audio inputs, it would be sufficient to attend
and recognize audio-visual events in a video. We do not consider LSTM-based modules
to exploit long-term temporal information, which would obviously increase model com-

plexity and training difficulty.
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Figure 3.4: Inter-frame Visual Encoder: With local image regions described by intra-
frame visual encoders, we introduce this inter-frame visual encoder to take three consec-
utive frames as the inputs, aiming to model short-term temporal information for event
localization purposes. Note that gy(.) is a simple multilayer perceptron (MLP).

3.0.4 Cross-Modality Co-Attention for Event Localization

The visual encoders introduced in the previous subsections exploit local spatial and short-
term temporal information. As noted above, to perform frame-level audio-visual event

localization, it would be necessary to integrate the audio features into consideration.

Some previous works [34, 2,49, 30] have presented to explore the relationship between
audio and visual scenes. They show that correlations between these two modalities can be
utilized to find image regions that are highly correlated to the audio signal. However, these
works only consider single image inputs and its corresponding sound signals, which might
result in incorrect association due to overfitting the visual content. Another concern is that,
if more than one instance visually correspond to the event of interest, how to identify the
object instance would not be a trivial task. Take an audio-visual event in which a person
is playing violin solo in a string quartet for example, it would be challenging to identify

which image region is related to the audio signal, if only a single frame input is observed.

To address the above challenge, we propose to perform cross-modality co-attention
over visual, temporal, and audio features. By taking temporal information into considera-

tion, our intra and inter-frame visual features would be associated with the audio features,

15

doi:10.6342/NTU201902224



t
Vatt

Jﬂ sum over R

T
e ] )

Softmax

T

Matmul

y A

4. :"‘.‘u 1

NG

Figure 3.5: Cross-modality co-attention: Observing locally visual-attended features V.
and audio inputs a’ to output the co-attention features v’,, across visual, temporal, and
audio data domains.

which would make the localization of audio-visual events more applicable. To achieve this
goal, we advance the concept of self-attention [43]] for computing a soft confidence score
map, indicating the correlation between the attended visual and audio features. Different
from existing co-attention mechanisms like [40, 34, 2, 49, 48, 24], our input visual features
jointly take spatial and temporal information via intra and inter-frame encoding, followed
by joint attention of audio features. Thus, our co-attention model would be more robust
due to the joint consideration of information observed from three distinct yet relevant data

modalities.

As depicted in Fig. B.5, we have the rth local visual feature of time t {V%,r = 1,2..., R},
and our co-attention model aims to produce the weight to depict how relevant ' and a’
is. The attention score M can be interpreted as the probability that location r is the right
location related to the sound context. Note that M! in our co-attention model is computed
by:

M! = Softmaz(¥! - (a')), (3.6)
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where - indicates the dot product and ' denotes transpose operation. Note that visual and

audio representation are in the same dimension, that is, f/i, a! ¢ R™P 0 With all loeal

visual features are observed, we pool the associated outputs by a weighted suni-\/ to
";,"-o,

obtain the final visual attention representation of the image at time ¢, i.¢., c:

R
Vi = ML (3.7)
r=1

With this cross-modality co-attention mechanism, our visual attention feature v, would
exclude local image regions which are irrelevant to the audio signal, and better bridges
between the visual content and the audio concept by preserving the audio-related image
regions. This is the reason why instance-level visual attention can be performed. We note
that, this attention feature v%,, can be easily deployed in current event localization models
(e.g., [40, 28]). We will detail this implementation and provide thorough comparisons in

the experiment section.
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Chapter 4

Experiments

4.0.1 Dataset

For the audio-visual event localization, we follow [40] and consider the Audio-Visual
Event (AVE) [40] dataset (a subset of Audioset [[16]) for experiments (e.g., Church bell,
Dog barking, Truck, Bus, Clock, Violin, etc.). This AVE dataset includes 4143 videos

with 28 categories, and audio-visual labels are annotated at every second.

4.0.2 Implementation Details

In this section, we present the implement details about the evaluation frameworks. For
visual embedding, we utilize the ResNet151 [|[1§] pre-trained on ImageNet [11] to extract
2048-dimensional visual feature for each frame. The feature map of whole video frames
with T seconds long is RTX7<7x2048 = We obtain 7 x 7 channels and 2048 dimension
with each channel. Each channel is processed by multilayer perceptrons (MLP) into 512
dimensions. Then, we reshape 7 x 7 channels into 49 channels corresponding to afore-
mentioned total image regions R. As for audio embedding, we extract a 128-dimensional
audio representation for each 1-second audio segment via VGGish [[19], which is pre-
trained on AudioSet [[16]. Thus, we have audio features produced in a total of 7" seconds,
ie., RTx128,

For both fully supervised and weakly-supervised audio-visual event localization, we

consider frame-wise accuracy as the evaluation metric. That is, we compute the per-

19

doi:10.6342/NTU201902224



centage of correct matchings over all test input frames as the prediction accuracy. In this
paper, we feed our cross-modality co-attention visual representation into baseline ot state=
of-the-art audio-visual classifiers, including a naive LSTM, AVEL [40] and AVS_,.QN [R4],
to verify the effectiveness of our co-attended features. We note that, for fair cc_:)_m;;f;ri_sons,
we apply ResNet-151 as the visual backbone and VGGish as audio embedciing model$
when considering AVEL [40] and AVSDN [28] in our experiments.

4.0.3 Experiment results

Audio-Visual sequence-to-sequencedual network (AVSDN). In AVSDN [28], we use
different visual pre-trained embedding compared with Tian et al [40]. Visual pre-trained
embedding in Tian et al is VGG16 [37]. Thus, we re-implement the model with ResNet-
151 [[18] visual pre-trained embedding and show each one modality results. In a fully
supervised manner, all the frame-wise labels are used during training. In Table §.1], our
model has better results compared with state-of-the-art methods even if the model [40]
is with cross-modality attention mechanism [43] which can find the audio location in the
video scene [40, 2]; In a weakly supervised manner, Table shows our model outper-

forms other methods as well.
Furthermore, we further exploit our Cross-Modality CoAttention model (CMCoArtt)

with different classifier. In Table §.3, we compare the performance of supervised event
localization using baseline and recent models with and without our cross-modality co-
attention features. As for the weakly supervised setting, we repeat the same experiments
and list the performance comparisons in Table #.4. From both tables presented, it is clear
that use of our cross-modality co-attended features would increase the localization accu-
racy. In other words, either observing frame-level or video-level labels, our proposed co-
attention model would properly extract cross-modality features for improved audio-visual
event localization.

We now present example visualization results in fully supervised settings using the
AVSDN classifier. The attention output produced by ours and the method of [40] are
shown in Fig. and 4.2, respectively. We note that, the first and second rows in these

two figures showed scenes with multiple objects, but only one or few of the objects were
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Table 4.1: Comparisons with the state-of-the-art method of [40] in a supervised manner
(all ground truth y, are observed during training. The number in bold indicates the-best
result.

Method Accuracy (%) Remarks (] ":T
AVEL [40] 59.5 audio only | 2 |
55.3 visual only (VGG16)
71.4 audio+visual (VGG16)
72.7 audio+visual w/ att (VGG16)
65.0 visual only (ResNet-151)
74.0 audio+visual (ResNet-151)
74.7 audio+visual w/ att (ResNet-151)
AVSDN [28] 75.4 audio+visual (ResNet-151)

Table 4.2: Comparisons with the state-of-the-art method of [40] in a weakly supervised
manner (only ground truth Y is observed for training). The number in bold indicates the
best result.

Method Accuracy (%) Remarks

AVELJAQ] 534 audio only
52.9 visual only (VGG16)
63.7 audio+visual (VGG16)
66.7 audio+visual w/ att (VGG16)
63.4 visual only (ResNet-151)
71.6 audio+visual (ResNet-151)
73.3 audio+visual w/ att (ResNet-151)
AVSDN [28] 74.2 audio+visual (ResNet-151)

associated with the sound of interest. In the first row, airplanes and cars were potential
objects which would result in engine founds. Since only the airplane was moving across
video frames, such characteristic was successfully captured by our cross-modality co-
attention model. Similar remarks can be applied to the results in the second rows of these
two figures, in which only one of the persons was playing violin. Without our intra and
inter-frame visual information, direct association of visual and audio features would not

provide satisfactory attention outputs (as shown in Fig. #.2).

As for the third row in these two figures, the bell was chiming in the last two frames.
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Table 4.3: Performance comparisons using baseline or state-of-the-art localization meth-
ods of LSTM, AVEL, and AVSDN and ours in a supervised manner (i.e., allkground truth
y, observed during training). The numbers in bold indicate the best resulfs (i.e- methods
with our proposed cross-modality co-attention mechanism).

4. :"‘.‘u 1

Method Accuracy (%) CM-CoAtt

74.98 N
LSTM 75.82 Y
74.00 N

AVEL[40] n6.37 v
AVSDN [28] 7775 ;‘6 §

Table 4.4: Performance comparisons using baseline or state-of-the-art localization meth-
ods of LSTM, AVEL, and AVSDN and ours in a weakly supervised manner (i.e., only
ground truth Y observed for training). The numbers in bold indicate the best results (i.e.,
methods with our proposed cross-modality co-attention mechanism).

Method Accuracy (%) CM-CoAtt

73.11 N
LST™M 73.81 Y
71.60 N

AVEL[40] n430 v
74.20 N

AVSDN [28] 75 g5 v

It can be seen that our model did not attend on the bell region and identify the event
until these two frames. It again verifies that our cross-modality co-attention is capable of
discerning relation between the audio signal and visual image regions. As for the last two
rows, the supervision of inter-frame allows us to concisely identify the region of interest,

comparing to the direct use of [40] for attention.

The above quantitative and qualitative result successfully verify the effectiveness and
robustness of our proposed cross-modality co-attention model. It not only produces im-
proved audio-visual event localization result; more importantly, it is able to attend visually
informative local regions across frames, and performs instance-level visual attention. This

is also the reason why improved event localization performances can be expected.
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Figure 4.1: Example attention results using AVSDN [28] with our proposed co-
attention model: Each row shows a video input with visually attended regions. Note that
the frames bounded in red rectangles denote those with unmatched audio-visual events. It
can be seen that our model produced satisfactory attention outputs with the corresponding
audio-visual events.

Figure 4.2: Example attention results using AVSDN [28] with the attention model of
AVEL [40]: Each row shows a video input with visually attended regions. Note that the
frames bounded in red rectangles denote those with unmatched audio-visual events. Take
row 3 for example, it can be seen that AVEL would incorrect attend the regions of bell
which was not actually associated with the sound of chime.
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Table 4.5: Ablation studies on our network design, i.e., our decoder taking hidden and
cell states of global visual/audio representations as conditioned LSTM inputs.” Note that
weakly supervised learning is considered in this table.

Method Accuracy (%)
Visual input only 70.2
Audio input only 70.9
Audio + Visual (label guided) 72.6
Fusion (Ours) 74.2

4.0.4 Ablation studies

In this section, we will verify the design and contributions of different global information
for the decoder LSTM in AVSDN [28]. Besides, we also verify our intra and inter-frame
visual encoders by using co-attention mechanisms [40, 24, 2, 34]. This would support
the learning and exploitation of intra or inter-frame visual representation for audio-visual

event localization.

Global representation in AVSDN. In Table 4.3, first-two rows show the results which
initial state is only from visual or audio content respectively. Further, we want to ex-
plore whether encoder LSTM can learn global event information or not. With the last
hidden states from visual and audio modality individually, these hidden states are guided
by video-level labels through a simple multilayer perceptron (MLP). The third row in Ta-
ble shows the result is improved compared with only one modality. However, extra
loss functions for guiding the last hidden states are not needed. The last hidden states are

well-learned during the training of our AVSDN [2§].

Intra-frame visual representation. We note that, existing co-attention mechanisms
typically operate at each single frame while associating visual and audio information. Re-

call that we have notations that vl € R49%128 denotes visual feature, v, € R*128 denotes

Inote that we omit the superscript ¢ which indicates time step for simplicity here
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Table 4.6: Comparisons of recent audio-visual co-attention mechanisms [40, 24, 2, 34]
with/without integrating our intra-frame visual encoder (Intra-V) in fully superyvisedset-
ting (i.e., all ground truth 3, observed during training). The numbers in bold indicate the
best results (i.e., with our cross-modality co-attention).

Method

Attention Mechanism AVEL [40] AVSDN [28] Intra-Vs
None | 74.00 75.40 N
74.70 76.12 N
Add [40, 24] 75.04 75.57 Y
71.06 75.21 N
Dot [2, B4] 75.54 75.57 Y
75.55 76.02 N
CM-CoAtt (Ours) 76.37 77.86 Y

4. :"‘.‘u 1

Table 4.7: Comparisons of recent audio-visual co-attention mechanisms [40, 24, 2, 34]
with/without our intra-frame visual encoder (Intra-V) in weakly supervised manners (i.e.,
only ground truth Y observed during training). The numbers in bold indicate the best
results (i.e., with our cross-modality co-attention).

. . Method

Attention Mechanism AVEL [#0] AVSDN [2§] Intra-V

None | 7160 74.20 N

73.30 74.68 N

Add [40, 4] 74.08 73.81 Y

72.64 72.29 N

Dot [2,B4] 73.75 72.64 Y

CMCoru(ouy | P TSIS N

visual feature of the rth region and a € R'*12® denotes audio feature. One way to com-

pute the attention map is to directly measure the attention score through inner products

between v, and a for every r, which produces an attention map M € R'*%%, This type of

attention can be interpreted as calculating the cosine similarity between the visual and au-

dio features for each video frame, while taking their similarities as the attention weights.

The other way to generate attention map is to add a on each v,, and feed the added

features as the inputs to a MLP. Then, this MLP would output an attention map M €

25

doi:10.6342/NTU201902224



R*49, Both of these two co-attention methods can jointly work with our intra-frame visual
encoding component as long as v is replaced with intra-frame visual featufe. I Table 4.4
and 1.7, we show and compare these two types of co-attention mechanisms ( deno_t_s;:-d as dat
and add respectively) with our full model, with and without utilizing the intra—ﬁ‘farrﬁen visaal
features (denoted as Intra-V). More specifically, we apply three types of co-atteﬁtion (Dot,
Add, CM-CoAtt) along with the baseline model without any co-attention mechanism. For
each method of interest, two types of classifiers (AVEL, AVSDN) are deployed.

From the final results listed in Table §.g (for supervised settings) and Table }.7 (for
weakly supervised settings), we can see that the exploitation of intra-frame visual features
for encoding and observing local image regions would be preferable. The main reason is
that dot-based co-attention directly computes the attention scores between visual regions
and audio feature. It implies that the attention scores are simply determined based on the
semantic relation between audio feature and image features. Our intra-frame visual rep-
resentation additionally exploits local image regions for observing local and consecutive
semantic information, and thus it would contain more information during the attention
process. We note that, intra-frame visual features using AVSDN resulted in slightly de-
graded performances. This is probably due to the fact that it is generally more difficult
to train additional network models with more parameters like LSTMs for calculating at-
tention scores. Nevertheless, from the above results, we can confirm that the exploitation
of intra-frame visual features for encoding and observing local image regions would be

preferable.

Inter-frame visual representation. As to study the effects of learning inter-frame visual
representations for cross-modality co-attention, we consider different methods to model
such inter-frame visual features. To model across frames visual representation, we utilize
3D convolutional networks [41] (Conv3D) and LSTM [20] network in our work. We note
that, for standard Convolutional Neural Network [36] and the recent I3D Network [[7],
both based on consecutive video frames and optical flow, are also able to perform such
modeling. In this ablation study, for fair comparisons, we only consider Conv3D and

LSTM which do not require calculation of optical flow information. As for Conv3D, the
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Table 4.8: Ablation studies on the exploiting inter-frame visual information (Inter-V) in
different temporal relational modules. Note that fully supervised settings are‘Considered
in this table, and the nubmers in bold indicate the best performances.

Temporal mechanism AVEL [4(?]/[&1110\;13])1\1 (8] Intra-V/ ::T
Conv3D-add ngg ;Z?Z I;(I
Conv3D-dot ;45‘38 ;228 1;1
LSTM-add ;g:gg ;2:5 I;
LSTM-dot ;2?2 ;2:22 I;
CM-CoAtt (Ours) ;2;; Z?;gﬁ I;

inter-frame visual features can be modeled by Conv3D directly. However, LSTM only
receives 1D embedding over times. Thus, we use the same location at every video frame
as 1D embedding vector sequence, then the LSTM is applied to model temporal feature
until every location across frames are processed.

We note that, the visual features derived from Conv3D and LSTM are able to be uti-
lized in current co-attention [40, 24, 34, 2] methods. There are two typical co-attention
mechanisms: add and dot co-attention. Therefore, we not only present different methods
to encode inter-frame visual features but also test them on the two co-attention methods.
As shown in Table §.8, our cross-modality co-attention performs favorably against other
models with inter-frame visual encoding. In this table, the suffix of temporal mechanism
is the co-attention method (e.g., add [40, 24] and dot [34, 2]). It is also worth noting that,
our method also performed against different co-attention mechanisms. Another advan-
tage of our approach is that, since our inter-frame visual features are calculated by MLPs,
whose computation cost is lower than the models using Conv3D and LSTM. Based on
the above results and observations, we can also confirm the learning of inter-frame visual
features would be preferable in our cross-modality co-attention model, which would result

in satisfactory event localization performances.
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Chapter 5

Conclusion

In this work, we present Audio-Visual sequence-to-sequence dual network (AVSDN) for
video event localization, which can be learned in fully or weakly supervised fashions.
Our network takes both audio and visual local features, together with integrated global
representation, to perform event localization in a sequence to sequence manner.

Besides, we presented a deep learning framework for cross-modality co-attention which
can be applied on current method and our AVSDN [28], with the goal of addressing the
task of audio-visual event localization in fully or weakly supervised learning settings. Our
model jointly exploits intra and inter-frame visual representation while observing audio
features. Together with a self-attention based mechanism, co-attention across the above
feature modalities can be performed. In addition to promising performances on event lo-
calization, our model additionally allows instance-level attention, which is able to attend
the proper image region (at the instance level) associated with the sound/event of interest.
From our experimental results and ablation studies, the use and design of our proposed

framework can be successfully verified.
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