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摘要

視聽事件定位需要人類透過聯合觀察跨模態視聽信息及跨越視頻

幀的事件標籤。為了解決這個任務，我們提出了一個跨模式的深度學

習框架專注在共同關注視頻事件定位。我們提出的模型能夠利用幀內

和幀間時間及視覺信息，以及同時間的音訊資訊，利用觀察上述的三

種資訊，來實現共注意視覺物件。搭配視覺，連續觀察到的時間及音

訊資訊，我們的模型實現了有新穎的能力來提取空間訊息/時間特徵以

改進視聽事件定位。而且，我們的模型能夠產生實例級別的視覺注意

力，這將識別圖像最有可能發出聲音的區域/位置，並且在同時有相同

物體的場景中找出真正發聲的物體。在實驗設計方面，我們利用了最

新穎的方法來跟我們所提出的共注意模組進行比較，並且使用公開的

數據集來驗證我們提出方法的有效性，其中我們的實驗結果準確度超

過目前現有的方法，可視化的結果也能印證我們提出的架構能達到實

例級別的視覺注意力。

關鍵字： 視聽特徵,雙模態,跨模態,事件定位,深度學習,機器學習,電

腦視覺
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Abstract

Audio-visual event localization requires one to identify the event label

across video frames by jointly observing visual and audio information. To

address this task, we propose a deep neural network named Audio-Visual

sequence-to-sequence dual network (AVSDN). By jointly taking both au-

dio and visual features at each time segment as inputs, our proposed model

learns global and local event information in a sequence to sequence man-

ner. Besides, we also propose a deep learning framework of cross-modality

co-attention for audio-visual event localization. The co-attention framework

can be applied on existing methods and AVSDN. Our co-attention model

is able to exploit intra and inter-frame visual information, with audio fea-

tures jointly observed to perform co-attention over the above three modalities.

With visual, temporal, and audio information observed across consecutive

video frames, our model achieves promising capability in extracting infor-

mative spatial/temporal features for improved event localization. Moreover,

our model is able to produce instance-level attention, which would identify

image regions at the instance level which are associated with the sound/event

of interest. Experiments on a benchmark dataset confirm the effectiveness of

our proposed framework, with ablation studies performed to verify the design

of our propose network model.

Keywords: Audio-Video Features, Dual Modality, Cross Modality, Event

Localization, Deep learning, Machine learning, Computer vision
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Chapter 1

Introduction

In real-world activities, visual and audio signals are both perceived by humans for percep-

tual understanding. In other words, both visual and audio data should be jointly exploited

for understanding the observed content or semantic information. Recently, audio-visual

event localization [15, 34, 49, 1, 39, 40] attracts the attention from computer vision and

machine learning communities. As depicted in Fig. 1.1, this task requires one to identify

the content information (e.g., categorical labels) for each frame or segment in an video,

by observing both visual and audio features across video frames.

Audio-visual event localization can be viewed as a cross-modality learning task, which

deals with the challenging task that the feature representations and distributions across

visual and audio domains are very different.

To explore audiovisual representation, joint learning of multi-modal deep networks

across these two domains have been studied [21, 47, 23, 15]. However, existing models

require the presence of both visual and audio information to learn the event of interest.

In other words, they cannot deal with scenarios with partial information observed or in

weakly supervised settings.

On the other hand, cross-modal synthesis models [52, 8] have also been proposed to

exploit information observed from different data modalities. For example, [45, 51] are

capable of converting spoken audio data with captions into face video frames. However,

since these models require label annotation for each data domain, and the synthesized

videos are typically limited (e.g., for cropped-out face regions), such techniques cannot

1
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Figure 1.1: Illustration of audio-visual event localization (recognizing video event with
matched visual and audio information). Note that the first column shows our correct local-
ization outputs with cross-modality co-attention, the 2nd and 3rd columns show the video
and audio inputs across five consecutive frames, with ground truth visual/audio and event
labels depicted in the last two columns.

be easily extended to audio-visual event localization for general video data.

To address this challenging task, we propose an end-to-end deep learning framework

of Audio-Visual sequence-to-sequence dual network (AVSDN). Based on sequence to se-

quence (seq2seq) [38] and autoencoder, our network architecture takes both audio and

visual data at each time segment as inputs and exploits global and local event information

in a seq2seq manner. More importantly, our model can be learned in a fully or weakly

supervised settings, i.e., ground truth event labels observed in the frame or video levels.

Moreover, to better associate audio and visual information for video event localiza-

tion, we propose a novel deep attention model which jointly performs visual, temporal,

and audio cross-modality co-attention for video event localization. This is realized by

advancing LSTMs for encoding intra-frame patches, followed by exploitation of encoded

intra-frame visual and audio features. As a result, one important features of our proposed

attention model is that we not only improve the overall localization (i.e., classification)

performances, it further attends proper regions across video frames (e.g., the correspond-

ing object of interest in Fig. 1.1). More importantly, we will show that our model is not

2
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limited to the use of fully supervised video data (i.e., visual and audio labels annotated for

each frame). Learning of our model in a weakly supervised setting can be conducted, in

which only an overall soft label at the video level is observed during training. We now

highlight the contributions of this work as follows:

• We propose a unique end-to-end trainable network for audio-visual event localiza-

tion, which is able to jointly take visual and audio data as inputs. By exploiting

this cross-modality information across time, such encoded global features will be

conditioned on the decoder for event localization.

• We propose a novel end-to-end trainable module for visual, temporal, and audio

co-attention, which can exploit cross-modality information across video frames for

event localization.

• Without attention supervision, our model performs instance-level attention during

event localization. This is achieved by advancing LSTMs to model local image

regions within each frame, followed by temporal and audio information jointly ex-

ploited across video frames.

• Experimental and visualization results demonstrate that our proposed module per-

forms favorably against state-of-the-art approaches in both fully and weakly super-

vised settings.

3
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Chapter 2

Related Work

Video Classification. Methods based on deep neural networks have shown promising

performances on the task of video classification [12, 22, 53, 44, 54, 46, 50], which takes

visual and temporal information for predicting action or event categories for input videos.

To explore the aforementioned spatial-temporal features from videos, 3D convolutional

networks are utilized, in which 3D architectures with 3D kernels are considered [41, 42, 7].

On the other hand, long short term memory (LSTM) networks [12] has also been employed

to observe 2D CNN features over time. Such recurrent neural networks (RNN) [12, 26, 27]

are alternative ways to learn the temporal relation between frames. However, since uses

of RNNs might limit the length of the input video to be observed [26, 27], some works

choose to sample frames from the entire video to learn robust reasoning relational repre-

sentation [50, 44, 54, 6, 5].

Relating Audio and Visual Features. While RNN-based models have been widely ap-

plied to extract spatial-temporal features from videos, such methods do not consider audio

features when modeling temporal information. To address this issue, cross-modality learn-

ing using audio and visual data are proposed [1, 3, 32, 31, 15, 39]. For example, Aytar et

al. [3] learn the joint representation from audio-visual data, with the goal to identifying

the content using data in either modality. Arandjelovic and Zisserman [1] also exploit

the variety of audio-visual information for learning better representation in audio-visual

5
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correspondence tasks. Furthermore, they [2] visualize sound localization in visual scenes,

which would serve as the bridge connecting between audio and visual modality. Owens

et al. [30] leverage ambient sounds when observing visual contents to learn robust audio-

visual representations. The resulting representation is further utilized to perform video

tasks of action recognition, visualization the locations of sound sources, and on/off-screen

source separation. These studies [30, 2] apparently show that sound source localization

can be guided by semantic visual-spatial information, and verify that these cross-modality

features would be beneficial in the aforementioned video-based applications.

Aside from learning audio-visual representation, works like [9, 45, 51] demonstrate

that such audio-visual based models can be applied to synthesize videos with face images

(e.g., with lip motion), corresponding to the input free-form spoken audio. Concurrently,

some audio-related tasks [30, 49, 14, 15, 13] also utilize visual representation to solve au-

dio source separation and denoising. Nevertheless, while the aforementioned works show

promising results in learning audio-visual representation, it is still challenging to address

audio-visual event localization, which requires one to identify the event with both visual

and audio modality properly presented, especially in a weakly supervised setting (i.e., no

frame-level ground truth annotation). In the next section, we will present and discuss the

details of our proposed co-attention model, which jointly exploits visual, temporal, and

audio data for improved localization and instance-level visualization.

6
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Chapter 3

Proposed Method

3.0.1 Notations and Problem Formulation

In this paper, we design a novel deep neural network model for audio-visual event lo-

calization. In order to deal with cross-modality signals observed from audio and video

data with the ability to identify the event of interest, our model exploits visual information

within and across video frames. Together with the audio tracks, the proposed model not

only performs satisfactory localization performances, it also exhibits promising capability

in attending the objects in the input video associated to that event.

For the sake of completeness, we first define the settings and notations which will

be used in this paper. Following [40], two training schemes for audio-visual event lo-

calization are considered: supervised and weakly-supervised learning. Given a video

sequence with T seconds long, it is split audio a and video v tracks separately into T

non-overlapping segments {at, vt}Tt=1, where each segment is 1s long (since the event

boundary is labeled at second-level). For the supervised setting, segment-wised labels

are available as yt =
{
ytk|ytk ∈ {0, 1} ,

∑C+1
k=1 ytk = 1, t ∈ N

}
, yt ∈ RC+1, where t de-

notes the segment index and C denotes total event categories. We note that, considering

the category of background, the total number of event categories becomes C + 1. In the

supervised setting, every segment-wise labels are observed during the training phase.

As for the scheme of weakly-supervised learning, we only have access to the video-

level event labels during the training phase. Note that the video-level event labels are

7
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processed by averaging the segment event labels Y = 1
T

∑T
t=1 yt,Y ∈ RC+1. For this

weakly supervised setting, while it is less likely to be affected by noise from either modal-

ity at the segment level during training, it also makes the learning of our model more

difficult.

Our proposed framwork consists two major parts: AVSDN [28] and CM CoAtt. As

shown in Fig 3.1, our AVSDN [28] is composed of three components: encoder modules

for learning visual and audio representations, fusion network for producing global video

representation, and decoder to take global and local features for event localization.

As shown in Fig 3.2, our CM CoAtt consists of network modules of intra and inter-

frame visual encoder. Together with audio features across video frames, cross-modality

co-attention can be performed. That is, our model allows joint attention over visual, tem-

poral and audio domains for audio-visual event localization. We now discuss these two

modules in the following subsections.

3.0.2 Audio-Visual Sequence-to-sequence Dual Network (AVSDN)

To address the audio-visual event localization problem in both supervised and weakly-

supervised problems, we propose a novel framework named Audio-Visual sequence-to-

sequence dual network (AVSDN). Based on seq2seq [38] and autoencoder, our network

architecture takes both audio and visual data at each time segment as inputs and exploits

global and local event information in a seq2seq manner.

As shown in Fig 3.1, the framework is composed of three components: encoder mod-

ules for learning visual and audio representations, fusion network for producing global

video representation, and decoder to take global and local features for event localization.

More details about the three components in AVSDN can be obtained as follows:

Encoder: learning global visual and audio representations. The encoder, which is the

first part of our network AVSDN, is aimed to extract global visual and audio representa-

tions for fusion network.

Before learning the global features, we have to obtain the segment visual and audio rep-

resentations by utilizing CNNs. To better learn the visual and audio embedding features,

8
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Figure 3.1: Overview of our Audio-Visual Sequence-to-sequence Dual Network
(AVSDN). Our AVSDN is composed of three main components, which include encoder
modules (in orange and blue) for learning visual and audio representations, a fusion net-
work (in purple) for producing global video representation, and a decoder (in green) which
jointly takes global and local features for event localization. Note that v and a denote vi-
sual and audio features, h and s are the hidden and cell states of LSTMs, and y indicates
the event label.

our CNNs are learned from the large-scale dataset (ImageNet [11] and AudioSet [16])

which are highly shown useful for vision and audition tasks. To be specific, for visual

frames we sample a frame and obtain the visual representation from pre-trained ResNet-

152 [18], which has been trained on ImageNet. On the other hand, for one raw audio, we

convert one segment to log mel spectrogram and extract an audio representation each 1s

from VGGish [19] trained on AudioSet.

In order to further learn the global visual and audio representations, we now utilize the

Long Short-Term Memory (LSTM) [20], which is known to exploit long-range temporal

dependencies, to generate encoded temporal representation sequence. Generally, the most

common implementation of vanilla LSTM [17] includes various gate mechanisms such

as input gate, forget gate, output gate, memory state, and hidden state etc. The utilized

9
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LSTM unit in our proposed model is illustrated in Eq. (3.1).

ft = σg(Wfxt + Ufxt + bf )

it = σg(Wixt + Uixt + bi)

ot = σg(Woxt + Uoxt + bo)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)

ht = ot ◦ σh(ct)

(3.1)

Each time step in Eq. (3.1) denotes subscript t, and xt ∈ Rd denotes the given input

of time step t . ft ∈ Rh, it ∈ Rh and ot ∈ Rh are forget, input and output gate’s activation

vector respectively. ht ∈ Rh and ct ∈ Rh are hidden and cell state of the LSTM unit. When

t = 0, c0 = 0 and h0 = 0 would be the initial values. W ∈ Rh×d, U ∈ Rh×h and b ∈ Rh

are weight matrices and bias vector which can be learned during train phase. Where d and

h refer the number of input features and number of hidden units. Element-wise product

is denoted by ◦. Activation function: σg is sigmoid function and σc is hyperbolic tangent

function.

Eventually, all the audio and visual segments are the inputs of the two designed LSTM

(audio and video separately). Hence, the last time step T of hidden and cell state can be

generated as the global representations of audio and visual tracks.

Fusion network: learning video event representation.

After obtaining the audio and visual global representations, our goal is to convert these

two representations into one video event representation. To perform such a fusion mecha-

nism, our fusion network is designed to fuse cross-modality features which are built based

on dual multimodal residual network (DMRN) fusion block [40]. As mentioned above,

the last time step T of hidden and cell state from encoder can be given as the representa-

tions of audio and visual tracks. Following [40], with time step T , audio and visual hidden

state (ha
T , hv

T ) and cell state (caT , cvT ) can be fused with Eq.(3.2). After fusion hidden and

cell state, these fused state will be the initial state of the decoder LSTM (one LSTM of

10
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right-half Fig.3.2).

ha′
T = σc(h

a
T +

1

2
(gθ(h

a
T ) + gθ(h

v
T )))

hv′
T = σc(h

v
T +

1

2
(gθ(h

a
T ) + gθ(h

v
T )))

hf
T = ha′

T + hv′
T

(3.2)

where σc is denoted as hyperbolic tangent function and gθ(.) is multilayer perceptrons

(MLP) with parameters θ. The cell states can be fused like hidden states. The fused

states, hf
t and cft , turn to be the initial states in our decoder. Because compared with

vanilla LSTM, a representative initial state can benefit a LSTM for prediction [38]. Thus,

we take the fused states for the initialization for the decoder.

Decoder: localization of video events using global and local cross-modality represen-

tations. Generally, our decoder is aimed to perform the supervised and weakly-supervised

event localization. Thus, given both the fused global representations from the fused net-

work and local features of audio and video, our decoder will generate the corresponding

labels segment-wisely. The architecture of our decoder is a single LSTM. Different from

each encoder, the inputs of the decoder are concatenated features which are global and lo-

cal cross-modality representations. We concatenate at and vt which are audio and visual

segment features from pre-trained CNN. Our decoder is designed to not only learn spatial

cross-modality representations but temporal ones. Especially weakly supervised setting,

we can only access to the video-level labels in the training phase. All the individual pre-

dictions will be aggregated by average pooling in Eq.(3.3),

m̂ = avg(m1,m2, ...,mT ) =
1

T

T∑
t=1

mt, (3.3)

where m1, ...,mT are the predictions from the last fully connected layer of our model. The

average prediction m̂ over softmax function can be the probability distribution of the event

category. For both the weakly-supervised and supervised setting, the predicted probability

distribution can be optimized by video-level labels through binary cross-entropy.

11
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Figure 3.2: Overview of our proposed Cross-Modality Co-Attention model (CM-
CoAtt). Our CM-CoAtt deep learning framework is composed of three main components,
intra and inter-frame visual encoders (Sect. 3.2), and a self-attention based mechanism for
cross-modality co-attention (Sect. 3.3). Note that v and a denote visual and audio features,
respectively.

3.0.3 Learning Intra and Inter-Frame Visual Representation

Intra-frame visual encoder . Visual attention has been widely utilized in recent VQA

and audio-visual related tasks [25, 29, 4, 35, 10, 40, 34, 2]. Although convolution neural

networks have been successfully applied in the above works to identify spatial regions of

interest with impressive results, such attention is typically performed at the pixel level,

based on the information observed for the corresponding tasks (e.g., supervision or guid-

ance at the network outputs) [34, 2, 49, 30, 10].

For the task of audio-visual event localization, one needs to identify the video segments

with the event of interest. It would be preferable if one can attend on the object of interest

at the instance level during localization, which would further improve the localization

accuracy.

Inspired by [48], we utilize recurrent neural networks to encode local context informa-

tion into proper representation, so that object instances corresponding to event of interest

can be attended accordingly. To achieve this goal, we input local image patches of a video

frame into a bidirectional LSTM [20] network, which encode the image patches of that

frame in a sequential yet bidirectional order. To be more specific, as illustrated in Fig 3.3,

we divide a input video frame at time step t intoR patches, and extract the CNN feature for

12
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CNN

LSTM LSTM LSTM…LSTM

LSTM LSTM LSTM…LSTM

Regions from 1 to R are preserved

Figure 3.3: Intra-frame Visual Encoder: Local image regions within a video frame are
encoded and represented as channels processed by a CNN. Note that a total of R regions
is extracted from the input frame, while the extracted regions are fed into a BiLSTM in
the forward-backward sequential order for encoding.

each patch. These visual representations of each region are denoted as {vt
r, r = 1, 2..., R},

where vt
r ∈ R1×K represents the visual features of the rth patch. These visual features are

served as the inputs to the bidirectional LSTMs, which is described below:

v̂t
r = LSTM f (vt

r) + LSTM b(vt
r), (3.4)

where LSTM f (.) and LSTM b(.) denote the forward and backward LSTMs, respectively,

and v̂t
r indicates intra-frame visual representations for rth patch. We gather R patches for

intra-frame representations of video frame at time t, that is, v̂t = {v̂t
1, ..., v̂

t
R} ∈ RR×K .

It can be seen that, via advancing recurrent neural networks, visual representation en-

coded in this stage describes local spatial information within a video frame. By combing

13
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temporal and audio information in the following stages, this intra-frame visual encoder

allows improved attention at the instance-level as later verified.

Inter-frame visual encoder . With image representation preserving intra-frame local

visual information obtained, inter-frame visual information needs to be exploited so that

relational reasoning across video frames can be performed. In a recent work of [33], such

strategies have shown promising performances on VQA tasks. Similarly, the network

module of temporal relational reasoning was presented in [50], which captures temporal

relational information for activity recognition.

To encode visual information across video frames for event localization, we need to

integrate temporal information into the derived v̂t. In other words, we need to exploit

inter-frame visual information based on the intra-frame ones previously produced. In our

proposed framework, we choose to perform this inter-frame encoding by feeding consec-

utive video frames (in terms of v̂t) into an encoder. As depicted in Fig 3.4, the encoded

inter-frame visual representation is derived as:

ṽt = gθ(v̂
t−1, v̂t, v̂t+1), (3.5)

where v̂t ∈ RR×K is the encoded intra-frame feature representation at time step t derived

by (3.4). Note that gθ(.) is a standard multilayer perceptron with parameters θ to perform

inter-frame visual encoding. Thus, the output ṽt ∈ RR×D not only contains the regional

relationship within a image but also temporal differences is jointly explored.

A final remark on our inter-frame visual encoder is that, the use of simple MLP-based

encoders allows us to exploit short-term temporal information across locally attended vi-

sual features across frames. Together with the audio inputs, it would be sufficient to attend

and recognize audio-visual events in a video. We do not consider LSTM-based modules

to exploit long-term temporal information, which would obviously increase model com-

plexity and training difficulty.

14
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Figure 3.4: Inter-frame Visual Encoder: With local image regions described by intra-
frame visual encoders, we introduce this inter-frame visual encoder to take three consec-
utive frames as the inputs, aiming to model short-term temporal information for event
localization purposes. Note that gθ(.) is a simple multilayer perceptron (MLP).

3.0.4 Cross-Modality Co-Attention for Event Localization

The visual encoders introduced in the previous subsections exploit local spatial and short-

term temporal information. As noted above, to perform frame-level audio-visual event

localization, it would be necessary to integrate the audio features into consideration.

Some previous works [34, 2, 49, 30] have presented to explore the relationship between

audio and visual scenes. They show that correlations between these two modalities can be

utilized to find image regions that are highly correlated to the audio signal. However, these

works only consider single image inputs and its corresponding sound signals, which might

result in incorrect association due to overfitting the visual content. Another concern is that,

if more than one instance visually correspond to the event of interest, how to identify the

object instance would not be a trivial task. Take an audio-visual event in which a person

is playing violin solo in a string quartet for example, it would be challenging to identify

which image region is related to the audio signal, if only a single frame input is observed.

To address the above challenge, we propose to perform cross-modality co-attention

over visual, temporal, and audio features. By taking temporal information into considera-

tion, our intra and inter-frame visual features would be associated with the audio features,
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Figure 3.5: Cross-modality co-attention: Observing locally visual-attended features ṽt
r

and audio inputs at to output the co-attention features vt
att across visual, temporal, and

audio data domains.

which would make the localization of audio-visual events more applicable. To achieve this

goal, we advance the concept of self-attention [43] for computing a soft confidence score

map, indicating the correlation between the attended visual and audio features. Different

from existing co-attention mechanisms like [40, 34, 2, 49, 48, 24], our input visual features

jointly take spatial and temporal information via intra and inter-frame encoding, followed

by joint attention of audio features. Thus, our co-attention model would be more robust

due to the joint consideration of information observed from three distinct yet relevant data

modalities.

As depicted in Fig. 3.5, we have the rth local visual feature of time t
{
ṽt
r, r = 1, 2..., R

}
,

and our co-attention model aims to produce the weight to depict how relevant v̂t
r and at

is. The attention score M t
r can be interpreted as the probability that location r is the right

location related to the sound context. Note that M t
r in our co-attention model is computed

by:

M t
r = Softmax(ṽt

r · (at)
′
), (3.6)
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where · indicates the dot product and ′ denotes transpose operation. Note that visual and

audio representation are in the same dimension, that is, ṽt
r, at ∈ R1×D. With all local

visual features are observed, we pool the associated outputs by a weighted sum M to

obtain the final visual attention representation of the image at time t, i.e.,

vt
att =

R∑
r=1

M t
rv̂

t
r. (3.7)

With this cross-modality co-attention mechanism, our visual attention feature vt
att would

exclude local image regions which are irrelevant to the audio signal, and better bridges

between the visual content and the audio concept by preserving the audio-related image

regions. This is the reason why instance-level visual attention can be performed. We note

that, this attention feature vt
att can be easily deployed in current event localization models

(e.g., [40, 28]). We will detail this implementation and provide thorough comparisons in

the experiment section.

17



doi:10.6342/NTU201902224

18



doi:10.6342/NTU201902224

Chapter 4

Experiments

4.0.1 Dataset

For the audio-visual event localization, we follow [40] and consider the Audio-Visual

Event (AVE) [40] dataset (a subset of Audioset [16]) for experiments (e.g., Church bell,

Dog barking, Truck, Bus, Clock, Violin, etc.). This AVE dataset includes 4143 videos

with 28 categories, and audio-visual labels are annotated at every second.

4.0.2 Implementation Details

In this section, we present the implement details about the evaluation frameworks. For

visual embedding, we utilize the ResNet151 [18] pre-trained on ImageNet [11] to extract

2048-dimensional visual feature for each frame. The feature map of whole video frames

with T seconds long is RT×7×7×2048. We obtain 7 × 7 channels and 2048 dimension

with each channel. Each channel is processed by multilayer perceptrons (MLP) into 512

dimensions. Then, we reshape 7 × 7 channels into 49 channels corresponding to afore-

mentioned total image regions R. As for audio embedding, we extract a 128-dimensional

audio representation for each 1-second audio segment via VGGish [19], which is pre-

trained on AudioSet [16]. Thus, we have audio features produced in a total of T seconds,

i.e., RT×128.

For both fully supervised and weakly-supervised audio-visual event localization, we

consider frame-wise accuracy as the evaluation metric. That is, we compute the per-
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centage of correct matchings over all test input frames as the prediction accuracy. In this

paper, we feed our cross-modality co-attention visual representation into baseline or state-

of-the-art audio-visual classifiers, including a naive LSTM, AVEL [40] and AVSDN [28],

to verify the effectiveness of our co-attended features. We note that, for fair comparisons,

we apply ResNet-151 as the visual backbone and VGGish as audio embedding models

when considering AVEL [40] and AVSDN [28] in our experiments.

4.0.3 Experiment results

Audio-Visual sequence-to-sequencedual network (AVSDN). In AVSDN [28], we use

different visual pre-trained embedding compared with Tian et al [40]. Visual pre-trained

embedding in Tian et al is VGG16 [37]. Thus, we re-implement the model with ResNet-

151 [18] visual pre-trained embedding and show each one modality results. In a fully

supervised manner, all the frame-wise labels are used during training. In Table 4.1, our

model has better results compared with state-of-the-art methods even if the model [40]

is with cross-modality attention mechanism [43] which can find the audio location in the

video scene [40, 2]; In a weakly supervised manner, Table 4.2 shows our model outper-

forms other methods as well.
Furthermore, we further exploit our Cross- Modality Co Attention model (CM CoAtt)

with different classifier. In Table 4.3, we compare the performance of supervised event

localization using baseline and recent models with and without our cross-modality co-

attention features. As for the weakly supervised setting, we repeat the same experiments

and list the performance comparisons in Table 4.4. From both tables presented, it is clear

that use of our cross-modality co-attended features would increase the localization accu-

racy. In other words, either observing frame-level or video-level labels, our proposed co-

attention model would properly extract cross-modality features for improved audio-visual

event localization.

We now present example visualization results in fully supervised settings using the

AVSDN classifier. The attention output produced by ours and the method of [40] are

shown in Fig. 4.1 and 4.2, respectively. We note that, the first and second rows in these

two figures showed scenes with multiple objects, but only one or few of the objects were
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Table 4.1: Comparisons with the state-of-the-art method of [40] in a supervised manner
(all ground truth yt are observed during training. The number in bold indicates the best
result.

Method Accuracy (%) Remarks

AVEL [40] 59.5 audio only
55.3 visual only (VGG16)
71.4 audio+visual (VGG16)
72.7 audio+visual w/ att (VGG16)
65.0 visual only (ResNet-151)
74.0 audio+visual (ResNet-151)
74.7 audio+visual w/ att (ResNet-151)

AVSDN [28] 75.4 audio+visual (ResNet-151)

Table 4.2: Comparisons with the state-of-the-art method of [40] in a weakly supervised
manner (only ground truth Y is observed for training). The number in bold indicates the
best result.

Method Accuracy (%) Remarks

AVEL[40] 53.4 audio only
52.9 visual only (VGG16)
63.7 audio+visual (VGG16)
66.7 audio+visual w/ att (VGG16)
63.4 visual only (ResNet-151)
71.6 audio+visual (ResNet-151)
73.3 audio+visual w/ att (ResNet-151)

AVSDN [28] 74.2 audio+visual (ResNet-151)

associated with the sound of interest. In the first row, airplanes and cars were potential

objects which would result in engine founds. Since only the airplane was moving across

video frames, such characteristic was successfully captured by our cross-modality co-

attention model. Similar remarks can be applied to the results in the second rows of these

two figures, in which only one of the persons was playing violin. Without our intra and

inter-frame visual information, direct association of visual and audio features would not

provide satisfactory attention outputs (as shown in Fig. 4.2).

As for the third row in these two figures, the bell was chiming in the last two frames.

21



doi:10.6342/NTU201902224

Table 4.3: Performance comparisons using baseline or state-of-the-art localization meth-
ods of LSTM, AVEL, and AVSDN and ours in a supervised manner (i.e., all ground truth
yt observed during training). The numbers in bold indicate the best results (i.e., methods
with our proposed cross-modality co-attention mechanism).

Method Accuracy (%) CM-CoAtt

LSTM 74.98 N
75.82 Y

AVEL[40] 74.00 N
76.37 Y

AVSDN [28] 75.4 N
77.86 Y

Table 4.4: Performance comparisons using baseline or state-of-the-art localization meth-
ods of LSTM, AVEL, and AVSDN and ours in a weakly supervised manner (i.e., only
ground truth Y observed for training). The numbers in bold indicate the best results (i.e.,
methods with our proposed cross-modality co-attention mechanism).

Method Accuracy (%) CM-CoAtt

LSTM 73.11 N
73.81 Y

AVEL[40] 71.60 N
74.30 Y

AVSDN [28] 74.20 N
75.85 Y

It can be seen that our model did not attend on the bell region and identify the event

until these two frames. It again verifies that our cross-modality co-attention is capable of

discerning relation between the audio signal and visual image regions. As for the last two

rows, the supervision of inter-frame allows us to concisely identify the region of interest,

comparing to the direct use of [40] for attention.

The above quantitative and qualitative result successfully verify the effectiveness and

robustness of our proposed cross-modality co-attention model. It not only produces im-

proved audio-visual event localization result; more importantly, it is able to attend visually

informative local regions across frames, and performs instance-level visual attention. This

is also the reason why improved event localization performances can be expected.
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Figure 4.1: Example attention results using AVSDN [28] with our proposed co-
attention model: Each row shows a video input with visually attended regions. Note that
the frames bounded in red rectangles denote those with unmatched audio-visual events. It
can be seen that our model produced satisfactory attention outputs with the corresponding
audio-visual events.

Figure 4.2: Example attention results using AVSDN [28] with the attention model of
AVEL [40]: Each row shows a video input with visually attended regions. Note that the
frames bounded in red rectangles denote those with unmatched audio-visual events. Take
row 3 for example, it can be seen that AVEL would incorrect attend the regions of bell
which was not actually associated with the sound of chime.
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Table 4.5: Ablation studies on our network design, i.e., our decoder taking hidden and
cell states of global visual/audio representations as conditioned LSTM inputs. Note that
weakly supervised learning is considered in this table.

Method Accuracy (%)

Visual input only 70.2
Audio input only 70.9
Audio + Visual (label guided) 72.6
Fusion (Ours) 74.2

4.0.4 Ablation studies

In this section, we will verify the design and contributions of different global information

for the decoder LSTM in AVSDN [28]. Besides, we also verify our intra and inter-frame

visual encoders by using co-attention mechanisms [40, 24, 2, 34]. This would support

the learning and exploitation of intra or inter-frame visual representation for audio-visual

event localization.

Global representation in AVSDN. In Table 4.5, first-two rows show the results which

initial state is only from visual or audio content respectively. Further, we want to ex-

plore whether encoder LSTM can learn global event information or not. With the last

hidden states from visual and audio modality individually, these hidden states are guided

by video-level labels through a simple multilayer perceptron (MLP). The third row in Ta-

ble 4.5 shows the result is improved compared with only one modality. However, extra

loss functions for guiding the last hidden states are not needed. The last hidden states are

well-learned during the training of our AVSDN [28].

Intra-frame visual representation. We note that, existing co-attention mechanisms

typically operate at each single frame while associating visual and audio information. Re-

call that we have notations that v1 ∈ R49×128 denotes visual feature, vr ∈ R1×128 denotes

1note that we omit the superscript t which indicates time step for simplicity here
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Table 4.6: Comparisons of recent audio-visual co-attention mechanisms [40, 24, 2, 34]
with/without integrating our intra-frame visual encoder (Intra-V) in fully supervised set-
ting (i.e., all ground truth yt observed during training). The numbers in bold indicate the
best results (i.e., with our cross-modality co-attention).

Attention Mechanism Method Intra-VAVEL [40] AVSDN [28]

None 74.00 75.40 N

Add [40, 24] 74.70 76.12 N
75.04 75.57 Y

Dot [2, 34] 71.06 75.21 N
75.54 75.57 Y

CM-CoAtt (Ours) 75.55 76.02 N
76.37 77.86 Y

Table 4.7: Comparisons of recent audio-visual co-attention mechanisms [40, 24, 2, 34]
with/without our intra-frame visual encoder (Intra-V) in weakly supervised manners (i.e.,
only ground truth Y observed during training). The numbers in bold indicate the best
results (i.e., with our cross-modality co-attention).

Attention Mechanism Method Intra-VAVEL [40] AVSDN [28]

None 71.60 74.20 N

Add [40, 24] 73.30 74.68 N
74.08 73.81 Y

Dot [2, 34] 72.64 72.29 N
73.75 72.64 Y

CM-CoAtt (Ours) 73.66 75.15 N
74.30 75.85 Y

visual feature of the rth region and a ∈ R1×128 denotes audio feature. One way to com-

pute the attention map is to directly measure the attention score through inner products

between vr and a for every r, which produces an attention map M ∈ R1×49. This type of

attention can be interpreted as calculating the cosine similarity between the visual and au-

dio features for each video frame, while taking their similarities as the attention weights.

The other way to generate attention map is to add a on each vr, and feed the added

features as the inputs to a MLP. Then, this MLP would output an attention map M ∈
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R1×49. Both of these two co-attention methods can jointly work with our intra-frame visual

encoding component as long as v is replaced with intra-frame visual feature. In Table 4.6

and 4.7, we show and compare these two types of co-attention mechanisms (denoted as dot

and add respectively) with our full model, with and without utilizing the intra-frame visual

features (denoted as Intra-V). More specifically, we apply three types of co-attention (Dot,

Add, CM-CoAtt) along with the baseline model without any co-attention mechanism. For

each method of interest, two types of classifiers (AVEL, AVSDN) are deployed.

From the final results listed in Table 4.6 (for supervised settings) and Table 4.7 (for

weakly supervised settings), we can see that the exploitation of intra-frame visual features

for encoding and observing local image regions would be preferable. The main reason is

that dot-based co-attention directly computes the attention scores between visual regions

and audio feature. It implies that the attention scores are simply determined based on the

semantic relation between audio feature and image features. Our intra-frame visual rep-

resentation additionally exploits local image regions for observing local and consecutive

semantic information, and thus it would contain more information during the attention

process. We note that, intra-frame visual features using AVSDN resulted in slightly de-

graded performances. This is probably due to the fact that it is generally more difficult

to train additional network models with more parameters like LSTMs for calculating at-

tention scores. Nevertheless, from the above results, we can confirm that the exploitation

of intra-frame visual features for encoding and observing local image regions would be

preferable.

Inter-frame visual representation. As to study the effects of learning inter-frame visual

representations for cross-modality co-attention, we consider different methods to model

such inter-frame visual features. To model across frames visual representation, we utilize

3D convolutional networks [41] (Conv3D) and LSTM [20] network in our work. We note

that, for standard Convolutional Neural Network [36] and the recent I3D Network [7],

both based on consecutive video frames and optical flow, are also able to perform such

modeling. In this ablation study, for fair comparisons, we only consider Conv3D and

LSTM which do not require calculation of optical flow information. As for Conv3D, the
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Table 4.8: Ablation studies on the exploiting inter-frame visual information (Inter-V) in
different temporal relational modules. Note that fully supervised settings are considered
in this table, and the nubmers in bold indicate the best performances.

Temporal mechanism Method Intra-VAVEL [40] AVSDN [28]

Conv3D-add 74.88 75.87 N
74.98 76.14 Y

Conv3D-dot 74.50 75.50 N
75.70 75.40 Y

LSTM-add 74.50 75.12 N
75.07 76.62 Y

LSTM-dot 73.08 74.90 N
75.15 76.24 Y

CM-CoAtt (Ours) 75.55 76.02 N
76.37 77.86 Y

inter-frame visual features can be modeled by Conv3D directly. However, LSTM only

receives 1D embedding over times. Thus, we use the same location at every video frame

as 1D embedding vector sequence, then the LSTM is applied to model temporal feature

until every location across frames are processed.

We note that, the visual features derived from Conv3D and LSTM are able to be uti-

lized in current co-attention [40, 24, 34, 2] methods. There are two typical co-attention

mechanisms: add and dot co-attention. Therefore, we not only present different methods

to encode inter-frame visual features but also test them on the two co-attention methods.

As shown in Table 4.8, our cross-modality co-attention performs favorably against other

models with inter-frame visual encoding. In this table, the suffix of temporal mechanism

is the co-attention method (e.g., add [40, 24] and dot [34, 2]). It is also worth noting that,

our method also performed against different co-attention mechanisms. Another advan-

tage of our approach is that, since our inter-frame visual features are calculated by MLPs,

whose computation cost is lower than the models using Conv3D and LSTM. Based on

the above results and observations, we can also confirm the learning of inter-frame visual

features would be preferable in our cross-modality co-attention model, which would result

in satisfactory event localization performances.
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Chapter 5

Conclusion

In this work, we present Audio-Visual sequence-to-sequence dual network (AVSDN) for

video event localization, which can be learned in fully or weakly supervised fashions.

Our network takes both audio and visual local features, together with integrated global

representation, to perform event localization in a sequence to sequence manner.

Besides, we presented a deep learning framework for cross-modality co-attention which

can be applied on current method and our AVSDN [28], with the goal of addressing the

task of audio-visual event localization in fully or weakly supervised learning settings. Our

model jointly exploits intra and inter-frame visual representation while observing audio

features. Together with a self-attention based mechanism, co-attention across the above

feature modalities can be performed. In addition to promising performances on event lo-

calization, our model additionally allows instance-level attention, which is able to attend

the proper image region (at the instance level) associated with the sound/event of interest.

From our experimental results and ablation studies, the use and design of our proposed

framework can be successfully verified.
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