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摘要

使用最佳混合之基因演算法在實務上有不錯的表現，但在理論方面

的支持卻不足。本論文於供應面向下探討採用最佳混合的族群大小。

更精確的來說，進行了對於供應包括期望值以及下界等較精確的分

析。此外，考慮使用剩餘族群重組一隨機生成之染色體使之達到全域

最佳，在此情形下用以提供由神諭機選出的合適片段之緊的族群大小

之邊界也被導出。在神諭機引導下的全域族群大小上界也被推導。最

後，對於有環狀拓樸結構適應函數之問題，緊的族群大小之邊界也被

導出。基於環狀拓樸證明中的概念，一類特定的問題拓樸結構，層狀

結構，被定義並且對於可將適應函數視爲層狀結構之問題，族群大小

之上界也被導出。環面、超立方以及小世界結構作爲層狀結構之例子

被舉出以展示層狀結構的可應用性。

關鍵字： 基因演算法,最佳混合,族群大小,初始供應
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Abstract

Genetic algorithms using optimal mixing have shown promising results,

but lack theoretical supports. This thesis investigates population sizing from

the supply aspect under the optimal mixing scenario. Specifically, more pre­

cise analyses on supply, including the expectation and the lower bound, are

made. Furthermore, considering recombining one randomly generated chro­

mosome with the rest of the population to achieve the global optimum, the

tight bounds on the size of the population providing proper fragments chosen

by restricted oracles are derived. A global upper bound on the size of the

population with the guide of an oracle is also derived. Finally, for problem

dependent cases, tight bound on the size of the population on problems with

fitness functions with ring topologies is derived. Based on the intuition in

the proof of the ring topologies case, a category of problem topologies, lay­

ered structures, is defined, and upper bounds on the size of the population

on problems with fitness functions that can be viewed as layered structures

are derived. Examples of layered structures, such as torus and hypercube, are

provided to show the applicability of the layered structures.

Keywords: Genetic Algorithms, Optimal Mixing, Population Sizing, Initial

Supply
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Chapter 1

Introduction

Optimalmixing (OM) is an operator widely adopted inmodern genetic algorithms (GAs) (Hol­

land, 1975) such as LT­GOMEA (Bosman and Thierens, 2012; Thierens and Bosman,

2011) and DSMGA­II (Hsu and Yu, 2015) and has shown promising results in many appli­

cations (Luong et al., 2018; Orphanou et al., 2018; Virgolin et al., 2017). Unlike previous

successful developments in GA ­ estimation of distribution algorithms (Mühlenbein and

Paaß, 1996), GAs using OM only requires a relatively small population. This is one of

the possible reasons why GAs using OM usually outperform the estimation of distribu­

tion algorithms. However, the real reason is yet unknown due to the slow development of

theoretical support.

Population sizing is one of the focuses of theoretical developments of GAs. Since

it greatly affects the performance of GAs. The amount of information obtained in the

initialization process, mainly related to the population size, bounds the performance of

a certain run. However, an unnecessarily large population only consumes extra function

evaluations than needed to find the global optimum. For traditional GAs, by analyzing

facetwise models, there are sound theoretical derivations on population sizing (Goldberg

et al., 1992, 2001; Harik et al., 1997; Pelikan et al., 2006; Tung, 2015; Yu et al., 2007),

but for GAs using OM, the only applicable results are the supply issue for simple GA

addressed by Goldberg et al. (2001) and for GAs using OM with non­overlapping masks

addressed by Tung (2015). For other models, experiments (Bosman and Thierens, 2012;

Hsu and Yu, 2015) showed that the population size does not match. To conclude, new

1
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theories about population sizing for GAs using OM are in need. Based on the background,

the following thesis objectives are proposed.

Thesis Objectives

• Adopt the concept of oracles to provide a tool to analyze the supply model.

• Derive the bounds on the population size for selcto­recombinative GAs using OM

for the supply model.

• Apply the adoption of the concept of oracles to specific problems to derive bounds

on the population size and computation complexity.

This work focuses on the supply model of selecto­recombinative GAs using OM as the

first step. Also, empirically, the population required for GAs using OM is sublinear to

the chromosome length (Bosman and Thierens, 2012; Hsu and Yu, 2015; Thierens and

Bosman, 2011), which is closest to the supply bound among facetwise models mentioned

above. To discuss supply issues only, this work derives bounds on the population size for

GAs using OM with an oracle, an automaton that guides the recombination of chromo­

somes. Because an oracle is a perfect model builder and a perfect decision maker, our

derivations focus on the supply issue. As a result, the derived bounds are lower bounds on

population size to achieve a certain success rate for GAs using OM. Also, since this work

focuses on selecto­recombinative GAs, mutation is not considered here. Nevertheless, the

effect of mutation can be integrated into the results of this work via facetwise approaches.

Roadmap

The rest of the thesis is organized as follows.

• Chapter 2 provides the necessary background of the thesis. Selecto­recombinative

GAs and OM are introduced. In addition, related works are included in this chapter.

2
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• Chapter 3 begins the study by a simple problem formulation followed by the def­

inition of oracles used throughout this thesis. Also, the basic supply problem is

analyzed in this chapter.

• Chapter 4 extends the discussion and defines c­composite oracles to give bounds on

the population size with restrictions on the behavior of the oracles.

• Chapter 5 applies the results in Chapters 3 and 4 into specific problems with ring

topologies. Computation complexity when using an oracle in those problem types

is also discussed.

• Chapter 6 generalizes the results in Chapter 5 into problems with layered structures.

Computation complexity when using an oracle in those problem types is also dis­

cussed.

• Chapter 7 concludes the thesis with a summary of what has been done, future works,

and contributions this thesis provides.

3
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Chapter 2

Background

In this chapter, background knowledge of thesis is provided. First of all, the background

of GAs and selecto­recombinative GAs are provided. Next, the most important operator in

this thesis, OM, is introduced. Also, family of subsets and some associated notations are

defined since it is important to GAs using OM. Finally, a brief introduction to facetwise

models used in the population sizing of GAs is given, followed by previous works related

to supply models in a more detailed manner.

2.1 GeneticAlgorithms and Selecto­recombinativeGenetic

Algorithms

Proposed in the late 1960s (Holland, 1975), GAs are a type of stochastic population­based

metaheuristic algorithms solving black­box optimization problems inspired by the concept

of natural selection. Solving optimization problems is an important task in the field of both

science and engineering, and the two concerns are the value of the objective function and

the computational cost required. However, for problems proved to be NP­Hard, such as

traveling salesman problem and k­minimum spanning tree problem, no deterministic al­

gorithms that can give the exact global optimum in polynomial time, and metaheuristic

algorithms are good choices to solve these problems. Instead of searching the whole fea­

sible which is usually exponential to the problem size, metaheuristic algorithms try to

5
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Initialization Selection Recombination

ReplacementTermination?Output

Mutation
No

Yes

Figure 2.1: Illustration of a general flowchart of GAs.

gain more knowledge about the problem by combining prior knowledge and the charac­

teristics found in the process and to propose a more promising feasible solution. Some

metaheuristic algorithms are inspired by natural phenomena, and GAs are one on them.

In the process of natural selection, creatures suit the environment thrive while those do

not vanishes, and in GAs, the candidate solutions, encoded into bit strings with required

cardinality and problem length and called chromosomes, with better values on the objec­

tive function, denoted as the fitness function, survive through the process while others

are discarded.

Figure 2.1 is an illustration of a flowchart of GAs. In general, a GA can be decom­

posed into the following phases: initialization, selection, recombination, mutation, and

replacement. Initialization is a phase where the set of chromosomes, the population, is

set. Each chromosome is initialized independently and identically, and in most cases,

without any prior knowledge of the fitness function, in any chromosome, for each posi­

tion, called locus, the value, denoted as the allele, is determined by a distribution such that

all feasible solutions are equally likely to be sampled. After initialization is done, the rest

of the phases form a cycle, and each cycle is called a generation.

In each generation, firstly, a selection is performed literally to preserve the part of a

population with relatively better fitness values and enhance the probability that a more

promising chromosome is observed. After selection, recombination, representing the re­

production in nature, processes are conducted on the preserved chromosomes in hopes

of creating a chromosome with its fitness value being closer to the one of the global op­

timum. To increase the diversity of the population, mutation is performed by randomly

6
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Initialization Selection Recombination

ReplacementTermination?Output

Mutation
No

Yes

Figure 2.2: Illustration of a general flowchart of selecto­recombinative GAs.

changing alleles. Just like the case in nature, mutation happens with a relatively low like­

lihood. Finally, in nature, as the generation changes, those are old will be replaced with

those new. A replacement phase is needed to determine the chromosomes that can go to

the next iteration or so­called generation. The simplest replacement stage is replacing

the chromosomes being fed into the recombination operators with those newly generated,

while other skills such as niching can also be applied here.

Termination happens when either of the two conditions is satisfied. The first one is

that the limit of computation, usually determined by the number of the fitness function is

queried and denoted as the number of function evaluations (nFE), is met. The second one

is that under no limitation on the computation power, all chromosomes in the population

converge, meaning no better solution can be generated without mutation. Note that none

of the conditions guarantees the output solution to be optimal.

The convergence of GAs can be viewed as the vanishing of the diversity of informa­

tion. In this sense, mutation tries to maintain the diversity of information or at least tries

to postpone the vanishment of diversity. However, since mutation is a stochastic pro­

cess that seldom happens, it increases the difficulty in the analysis of convergence. Thus,

selecto­recombinative GAs (Goldberg et al., 1993) are proposed. Selecto­recombinative

GAs are GAs without mutation. Figure 2.2 is an illustration of a general flowchart of

selecto­recombinative GAs.

7
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2.2 Optimal Mixing

This section introduces the only recombination operator discussed in this thesis, OM. Pro­

posed by Thierens and Bosman (2011), OM is a recombination operator. In the operation

of OM, two chromosomes, namely the donor and the receiver, are involved. The donor

copies some of its bits to the receiver’s corresponding loci. The action, also known as

a donation, is accepted by the receiver only if the value of the fitness function does not

decrease. Figure 2.3 gives an example of one operation of OM when solving the one max

problem.

Donor fitness= 3 0 1 1 1 0 0

Receiver fitness= 3 1 0 0 0 1 1

Accepted donation fitness= 5 1 1 0 1 1 1

Rejected donation fitness= 2 1 0 1 0 0 0

Figure 2.3: Example of OM. Suppose solving the one max problem. The black circles

indicate the donated bits. Both examples of accepted and rejected donation are given.

OM is a hill climber with a customized neighborhood and has shown promising results

inmany applications (Luong et al., 2018; Orphanou et al., 2018; Virgolin et al., 2017). The

difference between OM and other recombination operators in GA is that in the operation

of OM, the result is determined by the change in the value of fitness function. This enables

OM to filter out chromosomes with less desired information in the view of the value of

the fitness function before it is introduced to the population.

2.3 Family of Subsets

The operation of OM can be viewed as actions taken on bits with linkage defined by GAs,

and the family of subsets (FOS) (Thierens, 2010), denoted F , is originally designed to

show the linkage of bits. To define FOS, the following notations introduced. A chromo­

some x is an ordered set of bits with each bit having cardinality χ. The length of the

8
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chromosome is denoted ℓ, and the set of natural numbers is denoted as N. Based on these

notations, some definition relating to FOS can be defined as follows.

Definition 2.1. For any ℓ ∈ N, an index set

Sℓ = {0, 1, . . . , ℓ− 1} .

Any subset of Sℓ is called a mask.

Definition 2.2. For an index set Sℓ, a FOS F satisfies the following properties.

1. F =
〈
M1,M2, . . . ,M |F|

〉
1, where ∀ i ∈ {1, 2, . . . , |F|},M i ⊆ Sℓ.

2. ∪i∈{1,2,...,|F|}M
i = Sℓ.

Definition 2.3. For an index set Sℓ, a FOS F =
〈
M1,M2, . . . ,M |F|

〉
is a disjoint FOS

if

∀ i, j ∈ {1, 2, . . . , |F|} , i ̸= j,M i ∩M j = ∅,

where ∅ denotes an empty set.

Definition 2.4. For an index set Sℓ and k ≥ 2 such that (k − 1) |ℓ, a FOS is a homoge­

neous overlapping FOS, denoted as F⟨k⟩, if

F⟨k⟩ =
〈
M1,M2, . . . ,M

ℓ
k−1
〉
,

where ∀ i ∈
{
1, 2, . . . , ℓ

k−1

}
,

M i = {j|j ∈ Sℓ, (i− 1) (k − 1) ≤ j ≤ (i (k − 1) mod ℓ)} .

Taking an examplewhen ℓ = 3. Sℓ = {0, 1, 2}. {0} and {0, 1} aremasks. ⟨{0, 1} , {1, 2}⟩,

⟨{1, 2} , {0, 1}⟩, and ⟨{1, 2} , {0, 1} , {1, 2}⟩ are three FOSs, while ⟨{1, 2}⟩ is not a FOS

since 0 does not appear in the union of masks. ⟨{0} , {1, 2}⟩ is a disjoint FOS since

{0} ∩ {1, 2} = ∅. However, ⟨{0, 1} , {1, 2}⟩ is not a disjoint FOS since {0, 1} ∩ {1, 2} =
1⟨⟩ denotes an ordered set.

9
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{1}. F⟨2⟩ = ⟨{0, 1} , {1, 2} , {0, 2}⟩. Note that the order of masks matter in FOS, and

there may be duplicated masks.

Elements in FOS are called masks because, during OM, variables are mixed according

to the masks in FOS, and the operation can be viewed as a variable­wise mask operation.

Also, note that the homogeneous overlapping FOS defined in this thesis is different from

the one defined by Tung (2015). The homogeneous overlapping FOS defined by Tung

consists of some pairs of masks, and both masks in every pair share one common index,

while masks from different pairs are disjoint. In contrast, in the homogeneous overlapping

FOS defined in this work, masks can no longer be separated into pairs.

2.4 Facetwise Models

Since GAs are a kind of stochastic population­based algorithm. The control of the popu­

lation size, called population sizing, plays an important role in the performance since the

population size upper bounds the amount of information stored in the population at once.

However, in GAs, there are many stochastic steps taken. Thus, difficulties arise when

directly analyzing the relationship between the population size and the whole process. To

gain more understanding regarding the run of a GA, facetwise models are used. Facetwise

model, first used by Goldberg, is a simplified model used to know how a part of a complex

system works.

Concerning population sizing, three major facetwise models, which are supply, de­

cision making, and model building, are often addressed. Supply model focuses on the

population size needed to ensure having sufficient information to recombine the global

optimum. An important issue in the supply model is collecting schemas (Holland, 1975).

A schema is a collection of alleles at specific loci. In order words, collecting schemas is

equivalent to collecting chromosomes with desired bit values under certain masks. More

detailed results will be discussed in the next section.

Addressed by Goldberg et al. (1992) and Harik et al. (1997), decision making models

focus on the population size needed to distinguish chromosomes with global optimum

fragments from those without. The need of decision making models arises because even

10
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under the assumption that global optimum fragment is optimal in the sub­function, the

sampling noise due to inter­competition between schemas may result in filtering out some

of the fragment accidentally. Thus, a sufficient amount of chromosomes is needed to

conquer the noise.

As GAs develope, more efficient information retrieving and recombining techniques

are in need. A major way is to build a model that approximates the fitness function based

on known information. Thus, the need for model building, which examines the popu­

lation size needed to learn a high­quality model to generate high­quality chromosomes,

arises. There are derivations for model building derived by Pelikan et al. (2006) and

Yu et al. (2007). However, the main focuses of these works are identifying the correct

linkage between bits, and more operator­oriented analyses still need to be done.

2.5 Related Works

In this section, a review of the previous results on supply is given. Among the previous

works regarding the population sizing using the supply model, two works are the most

related. Specifically, results derived by Goldberg et al. (2001) and Tung (2015) are intro­

duced.

Goldberg et al. (2001) derived that in order to guarantee having all schemas of all

fragments of a chromosome with cardinality of χ withm building blocks with each frag­

ment having an order of k with a success rate of 1− 1
m
, assumingm is large, let n be the

population size, n must satisfy

1− 1
m

= exp
(
−χk exp

(
− n

χk

))
,

and solving n yields

n = O
(
χk (k logχ+ logm)

)
.

Tung (2015) derived that in order to guarantee all the global optimal fragments of order

11
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k exists in the population with a probability of p, the following equation holds.

p =
(
1−

(
1− χ−k

)n)m
,

where χ is the cardinality of genes, m is the number of building blocks in the chromo­

somes, and n is the population size. Letting p be constant and solving n yields

n = Θ
(
χk logm

)
.

Also, there is a brief discussion on problem with separable overlapping structures, though

no theorems are developed.

Both works mainly discuss problems with fully separable non­overlapping problem

structures. The result derived by Tung (2015) implies that the bound derived by Gold­

berg et al. (2001) is tight if the success rate is constant. However, in the real world, fully

separable non­overlapping problem structures is a restriction that is too strict. Thus, a

study of the supply model in more general cases is in need.

12
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Chapter 3

Oracles and Basic Supply Problem

To begin the study, in this chapter, the problem formulation is specified. Next, since

this thesis derives bounds in the view of supply, the concept of oracles is introduced

to optimally handle the run of GAs. The last part of the section the most basic supply

problem: having all the schemas (Holland, 1975) of order 1 in the population for selecto­

recombinative GAs using OM is studied.

3.1 Problem formulation

As mentioned in Chapter 1, the development in the population sizing of GAs using OM

is still in an early stage. This thesis focuses on the population sizing of GAs using OM in

the view of supply. However, this is still a problem too big to be solved at once. Thus,

this thesis focuses on the binary­encoded chromosomes as the prototype. Also, selecto­

recombinative GAs are the main focus in order to rule out the process of mutation, which

is not considered in the supply model. For the same reason, the selection phase is ne­

glected. In addition, without further prior knowledge about the problem formulation, the

initialization process should not inject certain inter or intra tendencies among bits. Thus,

each bit of the chromosome is assumed to be initialized with identically and indepen­

dently distributed Bernoulli distribution with 1
2 being the probability determined to be

1. As the last restrictions, OM is the only recombination operator allowed to be used, and

simple replacement is chosen. To sum up, the problem to be answered is as follows.

13
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Let ℓ be the chromosome length, what is the population size (number of chromosomes)

required for binary­encoded selecto­recombinative GAs using OM as the only recombi­

nation operator followed by simple replacement with no selection phase and with an ini­

tialization process in which each bit of the chromosome is assumed to be initialized with

identically and independently distributed Bernoulli distribution with 1
2 being the proba­

bility determined to be 1 to have a success rate of 1−Θ (ℓ−α) in the view of supply?

The problem asked above does not show how to make the success rate solely relies on

supply, and the workaround will be discussed in the next section, but before that, to sim­

plify to notation, in the following content, if not specified ℓ is the chromosome length and

binary­encoded selecto­recombinative GAs using OM as the only recombination operator

followed by simple replacement with no selection phase and with initialization process in

which each bit of the chromosome is assumed to be initialized with identically and inde­

pendently distributed Bernoulli distribution with 1
2 being the probability determined to be

1 is abbreviated as binary­encoded selecto­recombinative GAs using OM.

To make clear and simplify the notations used when discussing arguments relating to

chromosoes. For β ∈ Z+, define operators⊕ and⊖ as ∀ s, t ∈ Z, s⊕β t = (s+ t) mod β

and ∀ s, t ∈ Z, s⊖β t = (s− t) mod β. Then a chromosome x = ⟨x[i]⟩, where [i] ∈ Gℓ

in which Gβ is an additive group of β elements with the set {[0] , [1] , . . . , [β − 1]} and

operator ⊕β . Also, for any mask M , xM =
〈
x[i]

∣∣∣i ∈M〉
, and if not specified, ⊕ = ⊕ℓ

and ⊖ = ⊖ℓ.

3.2 Oracle

In the last section, the problem to be solved is specified. Since this thesis concentrates on

the supply issue, to have the success rate of GAs solely relies on supply, the concept of

oracles is adopted to optimally handle the recombination tasks under certain restriction as

desired. An oracle is defined as follows.

Definition 3.1. oracle: For GAs on an optimization problem, an oracle is an automaton

with input in the form of 3­tuple (f, P, {ω}). f is the fitness function. P is a population, a

14
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Population

OracleOM

Fitness function

Global

optimum

Figure 3.1: Illustration of an oracle considered in this thesis. Each row in the population

represents a chromosome, and each circle in a chromosome represents a bit. Each arrow

on the right of the population represents a donation, with the chromosome next to the base

being the donor. The colored area on the donor is themask used in the donation. Donations

are sorted with the one on the left happened first.

set of chromosomes. In other words, let C be the set containing all chromosomes, ∀ x ∈

P,x ∈ C. ω is an operator, defined as a function ∈ R, where R :
(
Cζ , ⟨∆⟩

)
→ Cζ′

for ζ, ζ ′ ∈ N. ∆ is a set of masks (Hsu and Yu, 2015), which is a set of loci. The

operator must satisfy the following constraint: for each allele in the output set, there must

exist one chromosome in the input set with the same allele at the same locus. The oracle

optimizes f by recombining chromosomes among P using {ω} as recombining operators.

If any chromosome in P can achieve the optimal solution, the oracle returns a sequence

of (⟨y⟩ , ψ, ⟨M⟩), where y ∈ C, ψ ∈ R, and (⟨y⟩ ,M) is the corresponding input of ψ. If

the optimal solution is not achievable, the oracle returns a FAIL.

In other words, in this thesis, the oracle takes an input of fitness function, a population,

and description of OM and the oracle returns a sequence of donors, description of OM, and

masks. Figure 3.1 gives an illustration of an oracle discussed in this thesis. Notice that any

stochastic operators such as randomized mutation and operators that generate alleles not

existing in the input set such as complement a binary­encoded chromosome are not valid.

Thus, the amount of information the oracle can have is upper bounded by the input of the
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oracle. Since if given sufficient supply to solve the problem, the oracle never outputs FAIL,

the probability of the supply is sufficient to solve a problem and the success rate of GA

using OM with an oracle are of the same value. In this way, the probability of the supply

is sufficient to solve a problem and the success rate of GAs are directly related. However,

since the two issues are different, in the following derivations success probability instead

of success rate is used when the solving scheme uses an oracle. Also, since only focusing

on cases with the aid of an oracle, the derived bounds are lower bounds on the population

size for binary­encoded GAs using OM and are tight when using an oracle in Chapters 3

and 4 whereas only upper bounds when using an oracle are derived in Chapters 5 and 6.

3.3 Basic Supply Problem

Consider the most basic supply problem: having all the schemas of order 1 in the popula­

tion. This can be viewed as the supply problem for selecto­recombinative GAs using an

arbitrary recombination operator. Thus, this can be viewed as a requirement of solving a

problem by an omnipotent oracle, defined as follows.

Definition 3.2. omnipotent oracle: An omnipotent oracle is an oracle that uses an arbi­

trary set of operators defined in Definition 3.1.

The omnipotent oracle can be viewed as a selecto­recombinative GA with an arbi­

trary recombination operator. Thus, the requirement on the population size for selecto­

recombinative GAs using an omnipotent oracle is a lower bound for every GA using an

oracle.

Also, this problem is in effect a special case of problems already discussed by Gold­

berg et al. (2001), with cardinality of 2 and order of building block of 1; however, their

result is an upper bound and is not applicable here. The results derived by Tung (2015) are

not applicable here either since the need is to collect all schemas, not only the ones that the

global optimum consists of. Though this problem is a variation of the coupon collector’s

problem (de Moivre, 1711), no applicable result specialized for GAs exists.
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3.3.1 Expectation

Before deriving the lower bound on the population size required to have the success prob­

ability higher than certain value directly, the expectation, which is an easier task and pro­

vides as an upper bound on the lower bound desired, is investigated. Specifically, this

subsection focuses on the expected number of chromosomes with length of ℓ for binary­

encoded GAs satisfying having all the schemas of order 1 in the population, denoted by

νℓ. Based on the definition of νℓ, the following Lemmas hold.

Lemma 3.3. νℓ is O (log ℓ).

Proof. Consider solving νℓ using recursive relation. Let ν ′
ℓ be the expected number of

chromosomes needed after the first chromosome is initialized and thus, ν ′
chi,ℓ = νℓ − 1.

Since each bit is initialized identically and independently, the difference of uncollected

schemas before and after another chromosome is initialized is a random variable with

Binomial distribution with 1
2 being the probability of success and the number of uncol­

lected schemas before another initialization the being the number of sample size. Thus,

the recursive relation of ν ′
ℓ can be written as follows.

ν ′
ℓ =


1 +∑ℓ−1

i=0

(
ℓ
i

)
2−ℓν ′

ℓ−i l ≥ 1

0 ℓ = 0
.

Now define another recursive relation ν+
ℓ as follows to bound ν ′

ℓ.

ν+
ℓ =


1 + 1

2ν
+
⌊ ℓ

2 ⌋ + 1
2ν

+
ℓ ℓ ≥ 1

0 ℓ = 0
.

Since νℓ, ν ′
ℓ, and ν+

ℓ are monotonically increasing, and the median of a Binomial dis­

tribution is between the ceiling of success probability multiplied by number of sample size

and the floor of the same value, by mathematical induction, ∀ i ≤ ℓ, νi ≤ ν ′
i ≤ ν+

i . Since

ν+
ℓ ≤ 2 log2 ℓ+ 2, νℓ is O (log ℓ).
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Lemma 3.4. νℓ is Ω (log ℓ).

Proof. Consider solving νℓ directly. First, Pr{a schemas of order 1 for one locus are

collected with a population with size smaller than or equal to i} = 1− 2−(i−1). Since all

loci are independent, Pr{all schemas of order 1 are collected with a population with size

smaller than or equal to i} =
(
1− 2−(i−1)

)ℓ
. Therefore, let λ be an integer greater than

or equal to ⌊log2 ℓ⌋+ 1, νℓ =

∞∑
i=2

i
((

1− 2−(i−1)
)ℓ
−
(
1− 2−(i−2)

)ℓ
)

≥
λ∑

i=2
i
((

1− 2−(i−1)
)ℓ
−
(
1− 2−(i−2)

)ℓ
)

+ (λ+ 1)(1− (1− 2−(λ−1))ℓ) (3.1)

=−
λ−1∑
i=2

(
1− 2−(i−1)

)ℓ
+ λ+

(
1− 2−(λ−1)

)ℓ

≥−
λ−1∑
i=2

(
1− 2−(i−1)

)ℓ
+ λ

≥−
⌊log2 ℓ⌋+1∑

i=2

(
1− 2−(i−1)

)ℓ
−

λ−1∑
i=⌊log2 ℓ⌋+2

(
1− 2−(i−1)

)ℓ
+ λ

≥− 1
e
⌊log2 ℓ⌋ − (λ− ⌊log2 ℓ⌋+ 2) + λ

≥(1− 1
e

)⌊log2 ℓ⌋ − 2.

Therefore, νℓ is Ω (log ℓ).

Combining Lemmas 3.3 and 3.4, the tight bound of νℓ is given in the following theo­

rem:

Theorem 3.5. νℓ is Θ (log ℓ). That is to say, for a binary­encoded GA with chromosome

with length of ℓ, the expected number of chromosomes satisfying having all the schemas

of order 1 in the population is Θ (log ℓ).

Proof. The result can be directly inferred from Lemmas 3.3 and 3.4.

Some experiment is conducted to verify the derivation (Figure 3.2) (Liao et al., 2019).

The experiment is conducted on ℓ = 2i for i = 1 to 15, and for each ℓ, each bit of a

chromosome is assignedwith Bernoulli distributionwith1
2 being the probability of success.
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Figure 3.2: Experiment on the expectation of the basic supply problem. Dots are the mean

of one million trials of number of chromosomes needed to have all the schemas of order

1 in the population with variance added versus ℓ. The maximal variance is 0.0019. The

dashed line shows the curve fitting result.

The minimal number of chromosomes to have all the schemas of order 1 in the population

is counted. Experiment result is shown in Figure 3.2. The dots are the mean over one

million tests on the number of chromosome needed to have all the schemas of order 1

with variance added with different ℓ in log scale. The dashed line shows the curve fitting

result, which shows that Theorem 3.5 agrees with the result.

3.3.2 Lower bound

In the previous subsection, the expected number of chromosomes with length of ℓ for

binary­encoded GAs to satisfy having all the schemas of order 1 in the population is de­

rived. However, to guarantee a success probability of 1 − 1
ℓ
, the minimal number of

chromosomes, rather than the expected number of chromosomes, that satisfies the con­

dition is needed. Because of that, in this subsection, the lower bound on the number of
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chromosomes with length of ℓ for binary­encoded GAs to satisfy having all the schemas

of order 1 in the population is derived. Based on Equation 3.1 derived in Lemma 3.4, the

following theorem hold:

Theorem 3.6. For positive constant α, the minimual number of chromosomes needed to

guarantee a success probability of 1−Θ (ℓ−α) for binary­encoded GAs using an omnipo­

tent oracle with chromosomes with length of ℓ is Θ (α log ℓ).

Proof. Suppose ∃ ℓ0 > 0 such that ∀ℓ ≥ ℓ0, the success probability is bounded between

1 − η+

ℓα and 1 − η−

ℓα , where η− ≥ η+ are non­negative constants. From Equation 3.1,

∀ β ≥ 2, Pr{fail to collect all schemas of order 1 with a population with size of β} =

1−
(
1− 2−(β−1)

)ℓ
. Thus, ∀ ℓ ≥ 2, α > 0, Pr{fail to collect all schemas of order 1 with

a population size of ⌈(α + 1) log2 ℓ − log2 η
−⌉} ≤ 0 −

(
1− η−

ℓ1+α

)ℓ
. Estimate the upper

bound on 1−
(
1− η−

ℓ1+α

)ℓ
. The upper bound would be

1−
(

1− η−

ℓ1+α

)ℓ

≤ 1−
(

1− η−

ℓ1+α
ℓ

)
≤ η−

ℓα
.

Thus, with ⌈α log2 ℓ− log2 η
−⌉ chromosomes, success probability would greater than

or equal to 1− η−

ℓα . Next, consider the probability with a population size of ⌊(α + 1) log2 ℓ−

log2 η
+ − 1⌋, which is greater than or equal to 1−

(
1− 2η+

ℓ1+α

)ℓ
.

For ℓ ≥ max
(

2,
(

1
2η+

) −1
1+α

)
, to lower bound the value, let L (x) = (1− x)ℓ. Since

∀ x ≤ 1, d2L(x)
dx2 ≥ 0, L (x) ≤ 1 + xdL(x)

dx
. Because 1 −

(
1− η+

ℓ1+α

)ℓ
= 1 − L

(
2η+

ℓ1+α

)
and

2η+

ℓ1+α ≤ 1,

1−
(

1− 2η+

ℓ1+α

)ℓ

≥1−

1− ℓ
(

1− 2η+

ℓ1+α

)ℓ−1 2η+

ℓ1+α


=2η+

ℓα

(
1− 2η+

ℓ1+α

)ℓ−1

≥2η+

ℓα

(
1− (ℓ− 1) 2η+

ℓ1+α

)

=2η+

ℓα
− (ℓ− 1)

(
2η+

)2
ℓ−2α
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≥2η+

ℓα
−
(
2η+

)2
ℓ−2α

=2η+

ℓα

(
1− 2η+

ℓα

)

≥η
+

ℓα
.

Because ∀ ℓ ≥ max
(
ℓ0, 2,

(
1

2η+

) −1
1+α

)
, α > 0, the success probability can be bounded

between 1 − η+

ℓα and 1 − η−

ℓα with the the number of chromosomes required are bounded

between ⌈(α + 1) log2 ℓ − log2 η
−⌉ and ⌊(α + 1) log2 ℓ − log2 η

+ − 1⌋, the minimual

number of chromosomes needed to guarantee a success probability of 1 − Θ (ℓ−α) for

binary­encoded GAs using an omnipotent oracle with chromosomes with length of ℓ is

Θ (α log ℓ).

To verify the derivation, success probability with population size of ⌈2 log2 ℓ⌉ + 2

and ⌊2 log2 ℓ⌋ − 1 are tested on ℓ = 2i for i = 1 to 15, and the results are shown in

Figure 3.3 (Liao et al., 2019). Each bit is determined using Bernoulli distribution with 1
2

being the probability of success. It can be shown that Theorem 3.6 agrees with the result,

and Lemma 3.3 is a close approximation.

Finally, based on Theorem 3.6, the lower bound of the supply is derived:

Theorem 3.7. For positive constant α, the population size for binary­encoded selecto­

recombinative GAs using OM to guarantee a success rate of 1−Θ (ℓ−α) is Ω (α log ℓ).

Proof. The result can be inferred fromTheorem3.6 and the fact that having all the schemas

of order 1 is a minimal requirement to solve the problem.
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Figure 3.3: Experiment on the probability of successfully solving the basic supply prob­

lem. Dots are the results of one million trials on the success probability of whether

⌈2 log2 ℓ⌉ + 2 chromosomes can have all the schemas of order 1 in the population with

95% confidence interval added versus log ℓ. Crosses are the results of one million trials on

the success probability of whether ⌊2 log2 ℓ⌋−1 chromosomes can have all the schemas of

order 1 in the population with 95% confidence interval added. Maximum one­sided range

for population size ⌈2 log2 ℓ⌉+ 2 and ⌊2 log2 ℓ⌋− 1 are 0.00083 and 0.00096 respectively.

The dashed line shows the success probability of 1− 1
ℓ
for each ℓ.
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Chapter 4

c­composite Oracles and Supply

In Chapter 3, bounds on the most basic supply issue are derived. The issue is equivalent to

the success probability when solving with an omnipotent oracle. However, an omnipotent

oracle is more powerful than binary­encoded selecto­recombinative GAs using OM with

an oracle because of the variety of operators an omnipotent oracle holds. Thus, in this

chapter, oracles only using OM as the operator are focused. Even so, the behavior of

the oracle is still hard to estimate because it can be very problem dependent. Thus, we

put restrictions on the oracle and derive the bounds on the population size for using a

c­composite oracle, defined as follows.

Definition 4.1. composite: A composite is a composition of one or many non­overlapping

masks.

Definition 4.2. c­composite oracle: For a constant nonnegative integer c, a c­composite

oracle is an oracle designed for optimization problems such that if the oracle does not

return FAIL, for each output sequence of the oracle, all the masks in the sequence where

no two masks are identical can form at most c composites in the most compact way.

Figure 4.1 gives an example of a c­composite oracle optimizing a 6­bits problem. The

masks can form 3 composites in the most compact way. Since the number c restricts the

maximal number of composites can be formed in the process, a 3­composite oracle can

optimize this problem with the given population, whereas a 2­composite oracle can not.
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Masks
Composites

Figure 4.1: Example for a c­composite oracle. Suppose optimizing a 6­bits problem with

a given population and the masks of the process yeilding minimum number of composites

in the most compact way are given. The solid circles represent the masks, and the dotted

line circles are the unchanged bits. Color of the circle indicates that it belongs to the

same mask with the ones with the same color. The masks can form 3 composites in the

most compact way. Thus, a 3­composite oracle can optimize this problem with the given

population, whereas a 2­composite oracle can not.

4.1 Investigation on 1­composite oracles

In this section, a special case of c­composite oracle, 1­composite oracle, is focused on.

Firstly, based on the derivation done by Tung (2015), a tight bound on the population

size for binary­encoded selecto­recombinative GAs using OM with a 1­composite oracle

with the longest mask with length of κ. Then, based on a qualified scheme, a general

upper bound for binary­encoded selecto­recombinative GAs using OMwith a 1­composite

oracle is derived along with some investigation on the tightness of the bound.

4.1.1 Result with prior knowledge on the masks

Inferred from Definition 4.2, when using a 1­composite oracle, each locus can be changed

at most once. This inference implies a 1­composite oracle on OM forces the donors to

donate bits the same as the ones of the optimal solution only or there must be some locus

being changed more than once. Thus, the requirement of recombining a certain chromo­
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some to globabl optimum with the aid of a 1­composite oracle with a success probability

of 1− Θ (ℓ−α) is the same as the requirement of having the same rate of having one cer­

tain schema in every segment with respect to the partition of the process in which the

chromosome are recombined.

Derived by Tung (2015), for a problem composed of m subproblems with size k, to

guarantee a constant success rate, the population size should be O
(
2k lnm

)
. However,

a success probability of 1 − Θ (ℓ−α) is not a constant one. Thus, new bounds need to be

derived.

Theorem 4.3. Population size to have a success probability of 1 − Θ (ℓ−α) for binary­

encoded selecto­recombinative GAs using OM with a 1­composite oracle with the largest

mask with size κ is Θ (2κ (1 + α) log ℓ), where ℓ is the chromosome length and α is a

positive constant.

Proof. Suppose for some ℓ0 ≥ 0, ∀ ℓ ≥ ℓ0, the required success probability is bounded

between 1 − η+

ℓα and 1 − η−

ℓα , where η− ≥ η+ are non­negative constants. First, define

n−, n−, n+ as follows.

n+ : minimum population size needed to guarantee having the designated

schema out of 2κ patterns for ℓ distinct building blocks with a success

probability of 1− η+

ℓα .

n : minimum population size needed to guarantee a success probability

bounded between 1 − η+

ℓα and 1 − η−

ℓα for solving an arbitrary chromo­

some for a binary­encoded selecto­recombinative GA using OM with

an 1­composite oracle with chromosome with length of ℓ and with the

largest mask with size κ.

n− : minimum population size needed to guarantee having the designated

schema out of 2κ patterns with a success probability of 1− η−

ℓα .

Based on the above descriptions, the following equations hold:

(
1−

(
1− 2−κ

)n+)ℓ

= 1− η+

ℓα
,
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1− η−

ℓα
≤

τ∏
i=1

(
1−

(
1− 2−κi

)n)
≤ 1− η+

ℓα
,

and
(

1−
(
1− 2−κ

)n−)
= 1− η−

ℓα
,

where τ is the number of masks needed to be collected, and κis represent the masks needed

to be collected where ∀ i ∈ {1, 2, . . . , τ} , κi > 0,∑τ
i=1 κi ≤ ℓ, and maxi∈{1,2,...,τ} κi = κ.

Since ∀ ζ ∈ N,

(
1−

(
1− 2−κ

)ζ
)
≥

τ∏
i=1

(
1−

(
1− 2−κi

)ζ
)
,

and

τ∏
i=1

(
1−

(
1− 2−κi

)ζ
)
≥

τ∏
i=1

(
1−

(
1− 2−κ

)ζ
)

≥
(

1−
(
1− 2−κ

)ζ
)ℓ

,

and∏τ
i=1

(
1− (1− 2−κi)ζ

)
is increasing with ζ , n+ ≥ n ≥ n−. For computation simplic­

ity, we focus on finding the asymptotic order of n+ and n−. Based on the results derived

by Tung (2015),

n+ = − ln

1−
(

1− η+

ℓα

) 1
ℓ

Θ (2κ) , (4.1)

while

n− = − ln

1−
(

1− η−

ℓα

)1
Θ (2κ) . (4.2)

Equation 4.2 can be simplified as − ln
(

η−

ℓα

)
Θ (2κ) and is hence Θ (2κα log ℓ). Thus,

we only need to focus on Equation 4.1. Applying the same technique used by Tung (2015),

consider convex function g (x) = (1− γ)x, where γ > 0, x ∈ (0, 1]. Based on the two

inequalities:

(1− x) g (0) + xg (1) ≥ g (x) ≥ g (0) + x
dg (0)
dx

.
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By substituting x and γ with 1
ℓ
and η+

ℓα , respectively, and with simple arithmetic cal­

culations, ∀ ℓ > (η+)
1
α ,

η+

ℓ (ℓα − η+)
= 1
ℓ

 1
1− η+

ℓα

− 1

 ≥ 1
ℓ

ln 1
1− η+

ℓα

≥ 1−
(

1− η+

ℓα

) 1
ℓ

≥ η+

ℓ1+α

⇒ − ln
(
η+

ℓ1+α

)
≥ − ln

(
1−

(
1− η

ℓ

) 1
ℓ

)
≥ − ln η+

ℓ (ℓα − η+)
.

Thus, Equation 4.1 isΘ (2κα log ℓ). Since both the upper and lower bounds areΘ (2κα log ℓ),

population size required for a binary­encoded GA using OM with a 1­composite oracle

with the largest mask with size κ to have a success probability of 1−Θ (ℓ−α), where ℓ is

the chromosome length and α is a positive constant, is Θ (2κα log ℓ) .

To verify the derivation, the success probability of solving a randomized chromosome

with length of ℓ with the longest segment with length of κ for a binary­encoded GA us­

ing OM with a 1­composite oracle is simulated (Liao et al., 2019). The experiments are

conducted on ℓ = 2i for i = 3 to 12 for κ = 2 and 5 respectively. Also, each bit of a chro­

mosome is assigned with Bernoulli distribution with 1
2 being the probability of success.

Partition is also determined at random. Without loss of generality, assume the optimal

solution is the chromosome with all 1s. Success probability with supply ⌈2κ+1 ln ℓ⌉ − 10

or ⌈2κ+1 ln ℓ⌉−100 and ⌊2κ ln ℓ⌋−5 or ⌊2κ ln ℓ⌋−50 are estimated using the average over

one million independent trials with 95% confidence interval using normal approximation.

Experiment result is shown in Figure 4.2.

4.1.2 General upper bound

Theorem 4.3 gives a tight bound on the population size when the size of the largest mask

is known, but how can one know the size of the largest mask when being guided by a

1­composite oracle? Consider the situation that in the population there exist two chromo­

somes that have all the schemas of order 1. Since the optimal solution is the chromosome

with the best fitness, with the aid of a 1­composite oracle the global optimum can be
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Figure 4.2: Experiments on the success probability of 1­composite oracles. 4.2(a)

and 4.2(b) show the experiment results for the largest mask with size κ = 2 and 5 re­

spectively. In both Figures 4.2(a) and 4.2(b), dots are the averages over one million inde­

pendent trials of whether ⌈2κ+1 lg ℓ⌉ − 10 or ⌈2κ+1 lg ℓ⌉ − 100 chromosomes are enough

to solve a chromosome with length of ℓ with the largest mask with size κ using OM with

a 1­composite oracle for κ = 2 and 5 respectively with 95% confidence interval added

versus ℓ, whereas crosses are the ones of ⌊2κ lg ℓ⌉ − 5 or ⌊2κ lg ℓ⌉ − 50 chromosomes for

κ = 2 and 5 respectively with 95% confidence interval added versus ℓ. Maximum one­

sided intervals are 0.0009 and 0.0008 respectively. The dashed line shows the probability

of 1− 1
ℓ
for each ℓ.

reached by one donation. Thus, if after the initialization there exist two chromosomes

that have all the schemas of order 1, a 1­composite can solve the optimization problem

by proposing a scheme using one donation. With no further assumptions on the fitness

function, the upper bound of the population size derived in this scheme generally fits.

However, Theorem partition states that for 1­composite oracles, the maximum number of

bits involved in one OM donation will exponentially affect the population size required.

Thus, to know more about the underlying distribution of the minimum of the maximal

number of bits used in one donation under the scheme, the distribution of the maximal
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number of schemas of order 1 that a chromosome in the population and the global opti­

mum shares given the population size needs to be examined.

Theorem 4.4. For binary­encoded selecto­recombinative GAs, the minimal population

size required for the maximal number of schemas of order 1 that a chromosome in the pop­

ulation and the global optimum shares being greater than or equal to ⌊(1− ρ) ℓ⌋, where ℓ

is the chromosome length and 0 < ρ < 1
2 is a constant, with a probability of 1− η

ℓα , where

α and η are positive constants, is O
(
(ℓ+ 1)2 eℓ(ρ log2 2ρ+(1−ρ) log2 2(1−ρ))

(
log 1

η
+ α log ℓ

))
.

Proof. Let n be the population size and τℓ,n be the the maximal number of schemas of

order 1 that a chromosome of length ℓ in the population of size n and the global optimum

share, then

Pr {τℓ,n ≥ ⌊(1− ρ) ℓ⌋} ≥ 1− η

ℓα

⇐⇒ Pr {τℓ,n < ⌊(1− ρ) ℓ⌋} ≤
η

ℓα

⇐⇒ Pr {τℓ,1 < ⌊(1− ρ) ℓ⌋}n ≤ η

ℓα

⇐⇒ (1− Pr {τℓ,1 ≥ ⌊(1− ρ) ℓ⌋})n ≤ η

ℓα

⇐= (1− Pr {τℓ,1 = ⌊(1− ρ) ℓ⌋})n ≤ η

ℓα

⇐=
(

1− 1
(ℓ+ 1)2 e

−ℓ(ρ log2 2ρ+(1−ρ) log2 2(ρ))
)n

≤ η

ℓα
,

where Pr {τℓ,1 = ⌊(1− ρ) ℓ⌋} ≤ 1
(ℓ+1)2 e−ℓ(ρ log2 2ρ+(1−ρ) log2 2(ρ)) is proved by Cover and

Thomas (2006). Since ∀ x > 1,
(
1− 1

x

)x
< 1

e
, n = (ℓ+ 1)2 eℓ(ρ log2 2ρ+(1−ρ) log2 2(1−ρ))(

ln 1
η

+ α ln ℓ
)
is sufficient to fulfill the last inequality and Pr {τℓ,1 < ⌊(1− ρ) ℓ⌋}n de­

creases as n increases, for binary­encoded selecto­recombinative GAs, the minimal popu­

lation size required for themaximal number of schemas of order 1 that a chromosome in the

population and the global optimum shares being greater than or equal to ⌊(1− ρ) ℓ⌋, where

ℓ is the chromosome length and 0 < ρ < 1
2 is a constant, with a probability of 1− η

ℓα , where

α and η are positive constants, is O
(
(ℓ+ 1)2 eℓ(ρ log2 2ρ+(1−ρ) log2 2(ρ))

(
log 1

η
+ α log ℓ

))
.

Based on Theorems 4.3 and 4.4, a upper bound for selecto­recombinative GAs using
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OM with a 1­composite oracle can be derived.

Theorem4.5. Theminimal population size required for binary­encoded selecto­recombinative

GAs using OM with an oracle to have a success probability of 1−Θ (ℓ−α), where ℓ is the

chromsome length and α is a positive constant is O
(
2 11ℓ

40 α log ℓ
)
.

Proof. By Theorems 4.3 and 4.4, O
(
(ℓ+ 1)2 eℓ(ρ log2 2ρ+(1−ρ) log2 2(1−ρ))α ln ℓ

)
+Θ

(
2⌈ρℓ⌉α log ℓ

)
chromosomes, where 0 < ρ < 1

2 is a constant, are sufficient

of have a chromosome in the population with number of schemas of order 1 that

shares with the global optimum is greater than or equal to ⌊(1− ρ) ℓ⌋ and another

chromosome that can recombine with the previous chromosome to reach the global

optimum with probability of 1 − Θ (ℓ−α). Since eℓ( 11
40 log2

22
40 +(1− 11

40) log2 2(1− 11
40)) < 2 11

40 ℓ

and O
(
(ℓ+ 1)2 eℓ(ρ log2 2ρ+(1−ρ) log2 2(1−ρ))α ln ℓ

)
increases as ρ increases, whereas

Θ
(
2⌈ρℓ⌉α log ℓ

)
decreases as ρ increases, ρ such that balances between the asymptotic

orders of O
(
(ℓ+ 1)2 eℓ(ρ log2 2ρ+(1−ρ) log2 2(1−ρ))α ln ℓ

)
and Θ

(
2⌈ρℓ⌉α log ℓ

)
would be

smaller than 11
40 , meaning the minimal population size required for binary­encoded

selecto­recombinative GAs using OM with a 1­composite oracle to have a success

probability of 1− Θ (ℓ−α), where ℓ is the chromsome length and α is a positive constant

is O
(
2 11ℓ

40 α log ℓ
)
. Since 1­compoiste oracle is a restricted oracle, the upper bound of

population size derived for 1­composite oracle is also an upper bound for an oracle under

the same condition and the theorem statement holds.

Theorem 4.5 gives an upper bound of supply. Since the bound can be applied to any

problem in the worst case scenario and is still exponential to the chromosome length, the

tightness of the bound can be challenged. An example type of problem is presented here

to show that Theorem 4.5 is fairly tight. Consider a maximization problem with its fitness

function being a special case of deceptive­trap function (Deb and Goldberg, 1993), which

can be written as follows.

fTRAP (x) =


1 if ∑ℓ−1

i=0 1
{
x[i] = 1

}
= ℓ

0.9
(

ℓ−1−
∑ℓ−1

i=0 1{x[i]=1}
)

ℓ−1 else
,
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where x is a chromosome, and 1 is the indicator function. Figure 4.3(a) gives an illus­

tration for the fitness function. The function is designed such that a chromosome can

only lower the hamming distance to the optimal solution by having all the non­optimal

genes replaced in one donation. This property ensures that given a population, either a

1­composite oracle can optimize in one donation or selecto­recombinative GAs using OM

can not reach the optimal solution using this population.

On the other hand, there are cases such as maximizing onemax problem or maximizing

needle in a haystack problem that a 1­composite oracle with a population of size logarithm

of the chromosome length is sufficient to guarantee a success probability required. Let x

be a chromosome, the fitness functions of onemax problem or needle in a haystack problem

are:

fONEMAX (x) =
ℓ−1∑
i=0

1

{
x[i] = 1

}
,

fNEEDLE (x) =1 {x = x∗} ,

where 1 is the indicator function, and x∗ is the global optimum. Onemax problem can be

viewed as maximizing the number of 1s in the chromosome whereas needle in a haystack

problem aims to find the optimum with no information given from the problem. Fig­

ures 4.3(b) and 4.3(c) gives an illustration for both problems.

Based on the properties of the problems, the following theorems hold:

Theorem 4.6. The population size required for binary­encoded selecto­recombinative

GAs using OM with an oracle to solve a one max problem with a success probability of

1−Θ (ℓ−α), where ℓ is the chromosome length and α is a positive constant, is Θ (α log ℓ).

Proof. Since the lower bound is derived in Theorem 3.7, only the upper bound need to

be derived. Consider the following strategy: randomly pick a chromosome in the popu­

lation and change each bit to 1 one bit at a time using OM until the chromosome reaches

the global optimum. Since increasing the number of 1s will not worsen the fitness of
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Figure 4.3: Illustrarion of the landscapes that 1­composite oracles can solve. Figure 4.3(a)

is a 5­bit deceptive­trap function, Figure 4.3(b) is a 6­bit onemax function, and Fig­

ure 4.3(c) is a 3­bit needle in a haystack problem with the optimal solution x∗ = 100.

the chromosome, each move will be accepted. Also, this process can be done using a 1­

composite oracle with maximal size of the mask being one. Therefore, by Theorem 4.3,

Θ (α log ℓ) chromosomes are sufficient for binary­encoded selecto­recombinative GAs us­

ing OM with a 1­composite oracle to have a success probability of 1 − Θ (ℓ−α). Since

a 1­composite oracle is a more restricted oracle, the oppulation size for binary­encoded

selecto­recombinative GAs using OM with an oracle to solve a one max problem with a

success probability of 1 − Θ (ℓ−α) is O (α log ℓ). Thus, the population size required for

binary­encoded selecto­recombinative GAs using OM with an oracle to solve a one max

problem with a success probability of 1−Θ (ℓ−α), where ℓ is the chromosome length and

α is a positive constant, is Θ (α log ℓ).

Theorem 4.7. The population size required for binary­encoded selecto­recombinative

GAs using OM with an oracle to solve a needle in a haystack problem sith a success

probability of 1−Θ (ℓ−α), where ℓ is the chromosome length and α is a positive constant.

Proof. Since the lower bound is derived in Theorem 3.7, only the upper bound need to

be derived. Consider the following strategy: randomly pick a chromosome in the pop­

ulation and change each bit to be the same the one of the global optimum one bit at a

time using OM until the chromosome reaches the global optimum. Since increasing the

number of 1s will not worsen the fitness of the chromosome, each move will be accepted.

Also, this process can be done using a 1­composite oracle with maximal size of the mask
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being one. Therefore, by Theorem 4.3, Θ (α log ℓ) chromosomes are sufficient for binary­

encoded selecto­recombinative GAs using OM with a 1­composite oracle to have a suc­

cess probability of 1 − Θ (ℓ−α). Since a 1­composite oracle is a more restricted oracle,

the oppulation size for binary­encoded selecto­recombinative GAs using OM with an or­

acle to solve a needle in a haystack problem with a success probability of 1 − Θ (ℓ−α) is

O (α log ℓ). Thus, the population size required for binary­encoded selecto­recombinative

GAs using OMwith an oracle to solve a needle in a haystack problem with a success prob­

ability of 1 − Θ (ℓ−α), where ℓ is the chromosome length and α is a positive constant, is

Θ (α log ℓ).

4.2 General case for c­composite oracles

In the previous section, bounds on the population when using a 1­composite oracle, which

is a specific case, are derived. In this section, the general cases are discussed. For a 1­

composite oracle, the oracle is forced to have donors only donate bits the same as the

ones of optimal solution. However, in Theorem 4.3, the goal is equivalent to gathering

designated non­overlapping schemas parallelly with maximum length κ. This equivalence

is useful when discussing the general case.

Theorem 4.8. For positive constant α, the population size for solving a chromosome with

length of ℓ for binary­encoded GAs using OM with a c­composite oracle with the largest

mask with size κ with a success probability of 1− Ω (ℓ−α) is Ω (2κα log ℓ).

Proof. Suppose ∀ ℓ > ℓ0, where ℓ1 is a constant, the required success probability is

bounded below by 1 − η1
ℓα , where η1 is a positive constant. By Theorem 4.3, the pop­

ulation size required for gathering designated schemas parallelly with maximum length

of κ and total length of all the schemas is less than or equal to ℓ with a success proba­

bility bounded between 1 − η+
2

ℓα and 1 − η−
2

ℓα , where η−
2 > η+

2 are positive constants, is

Θ (2κα log ℓ). Because of that, we can have a lower bound of order Ω (2κα log ℓ), since

the total requirement for a c­composite oracle is at most having designated schemas par­

allelly with maximum length κ and total length of all the schemas is less than or equal to
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ℓ on c different chromosomes instead of 1 chromosome.

Theorem 4.9. For positive constants α1 and α2, the population size for solving a chromo­

some with length of ℓ for binary­encoded GAs using OM with a c­composite oracle, where

c is O (ℓα2), with the largest mask with size κ with a success probability of 1 − O (ℓ−α1)

is O (c2κ (α1 + α2) log ℓ).

Proof. Suppose ∀ ℓ > ℓ0, where ℓ1 is a constant, the required success probability is

bounded above by 1 − η1
ℓα , where η1 is a positive constant and c is upper bounded by

η2ℓ
α2 , where η2 is a positive constant. By Theorem 4.3, the population size required for

gathering designated schemas parallelly with maximum length of κ and total length of

all the schemas is less than or equal to ℓ with a success probability bounded above by

1 − η3
ℓα1+α2 , where η3 is a positive constant, is O (2κ (α1 + α2) log ℓ). Taking η3 = η1

η2
,

by union bound, O (c2κ (α1 + α2) log ℓ) chromosomes are enough to guarantee solving a

chromosome with length of ℓ using a binary­encoded GA with OMwith a c­composite or­

acle with longest segment with length of κ with the success probability bounded above by

1− η1
ℓα . Thus, for positive constants α1 and α2, the population size for solving a chromo­

some with length of ℓ for binary­encoded GAs using OMwith a c­composite oracle, where

c is O (ℓα2), with the largest mask with size κ with a success probability of 1 − O (ℓ−α1)

is O (c2κ (α1 + α2) log ℓ).

The asymptotic bounds derived in Theorems 4.8 and 4.9 do not match generally. How­

ever, when c is constant, tight bound exists.

Theorem 4.10. For positive constants α and c, the population size for solving a chromo­

some with length of ℓ for binary­encoded GAs using OM with a c­composite oracle with

the largest mask with size κ with a success probability of 1−Θ (ℓ−α) is Θ (2κα log ℓ).

Proof. The result can be directly inferred from Theorems 4.8 and 4.9.

To verify the derivations, the success probability of solving a random chromosome

with length of ℓ with largest mask with size κ = 5 for a binary­encoded GA using OM

with a c­composite oracle is simulated (Liao et al., 2019). The experiments are conducted
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(b) Results for c = 5

Figure 4.4: Experiments on the success probability of c­composite oracles. In both Fig­

ures 4.4(a) and 4.4(b), dots are the averages over one million independent trials of whether

⌈2κ+1 lg ℓ⌉ − 100 chromosomes are enough to solve chromosome with length of ℓ with

the largest mask size κ = 5 for a GA OM with a c­composite oracle with 95% confi­

dence interval added versus ℓ for c = 2 and 5 respectively, whereas the crosses are the

ones of ⌊2κ lg ℓ⌉ − 50 chromosomes with 95% confidence interval added versus ℓ. Maxi­

mum one­sided intervals are 0.0008 and 0.0009 respectively. Black dots show the success

probability of 1− 1
ℓ
for each ℓ.

on ℓ = 2i for i = 3 to 11 for c = 2, 5 respectively. Each bit of a chromosome is de­

termined using Bernoulli distribution with 1
2 being the probability of success. Partition is

also determined at random. Without loss of generality, we assume the optimal solution is

the chromosome with all 1s. Success probabilities with population size ⌈2κ+1 lg ℓ⌉ − 100

and ⌊2κ lg ℓ⌋ − 50 are estimated using the average over one million independent trials.

Experiment result is shown in Figure 4.4 and Theorem 4.10 agrees with it.
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Chapter 5

Results with Problems with Ring

Topologies

In Chapters 3 and 4, except Theorems 4.6 and 4.7, the derived bounds are all problem

structure independent. Thus, in this chapter, bounds on the populaiton size in some special

problem structures are derived.

5.1 Ring topology and reduction

This section focuses on problems with ring topology. To be more specific, only a small

group of NK landscape problems defined by Pelikan et al. (2009) with step size equals

to k is focused. Let x be a chromosome and F⟨k+1⟩ be a homogeneous overlapping FOS,

and xM be the part of x indicated by a mask M , the fitness function f ring is defined as

follows.

f ring (x) =
∑

M∈F⟨k+1⟩

f sub­ring
M (xM) .

Figure 5.1 gives a illistration of the ring topology. Ring topology is chosen to be exam­

ined becacuse it is homogeneous. However, to make each bit really being homogeneous,

no difference between whether one bit will be used in two sub­functions or in just one sub­

function should exist. Thus, define the reduced problem with chromosomes with length
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Figure 5.1: An illustration of the ring topology focused in this thesis with ℓ = 30 and

k = 5. Each ellipse represents a sub­function. Each circle represents a bit.

of ℓ
k
and with fitness function f reduced­ring:

f reduced­ring (y) =
ℓ
k

−1∑
i=0

f sub­reduce
i

(
y[i], y[i]⊕ ℓ

k
[1]

)
,

where y = ⟨y[i]⟩, in which i ∈ G ℓ
k
, y[i] = x[k·i]⊕[1], and for maximation problems,

f sub­reduce
i

(
y[i], y[i]⊕ ℓ

k
[1]

)
is

max
x[i·k]⊕[2],...,x[i·k]⊕[k]

f sub­ring
i

(
y[i], x[i·k]⊕[2], . . . , x[i·k]⊕[k], y[i]⊕ ℓ

k
[1]

)
,

while for minimation problems, f sub­reduce
i

(
y[i], y[i]⊕ ℓ

k
[1]

)
is

min
x[i·k]⊕[2],...,x[i·k]⊕[k]

f sub­ring
i

(
y[i], x[i·k]⊕[2], . . . , x[i·k]⊕[k], y[i]⊕ ℓ

k
[1]

)
.

Figure 5.2 is an illustration of the reduction. As shown in the figure, no bits belonging

to only one sub­function is in the reduced problem. Also, each sub­function consists of

two bits. Based on the reduction, the following theorem can be derived:

Theorem 5.1. For a problem with chromosomes with length of ℓ, fitness function f ring and

the corresponding reduced problem having fitness function f reduced­ring, suppose for binary­

encoded selecto­recombinative GAs using OM, solving f reduced­ring with a c­composite or­
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f ring:

f reduced-ring:

· · · · · ·

Figure 5.2: Illustration of problem reduction. Each ellipse represents a sub­function. Each

solid circle represents a shared bit between the original problem and the reduced problem,

whereas a hollow circle represents a reduced bit.

acle with a success probability of 1−Θ (ℓ−α), where α is a positive constant, needs popu­

lation size of order O (n). Then, population size for solving a chromosome with length of

ℓ for binary­encoded GAs using OM with a c­composite oracle with a success probability

of 1−Θ (ℓ−α)is O
(
2k (α log ℓ+ k) + n

)
.

Proof. ‘ For k = 0, the reduced problem is the same as the original problem. Thus, popu­

lation size of order O (n) is enough for the original problem to have a success probability

of 1−Θ (ℓ−α).

For k ≥ 1, consider all the bits used in f ring but being reduced in f reduced­ring. Since they

can form ℓ
k
non­overlapping segments of length k− 1 and changing the middle k− 1 bits

in a sub­function into its local optimum does not destroy any bits used in two f sub­ring
i s,

if provided with all the schemas for the non­overlapping segments, with the aid of the

oracle, the solving process can be extended from the one of solving f reduced­ring using O (n)

chromosomes.

Since O (n) chromosomes can guarantee a success probability of 1 − Θ (ℓ−α), to

guarantee the whole solving process having a success probability at least 1 − Θ (ℓ−α),

the probability of not providing all the non­overlapping schemas for all the ℓ
k
segments

should be O (ℓ−α). By the result derived by Goldberg et al. (2001), this can be done with

O
(
2k (α log ℓ+ k)

)
chromosomes. Thus, population size for solving a chromosome with

length of ℓ using a binary­encoded selecto­recombinative GA using OM with a success

probability of 1−Θ (ℓ−α) is O
(
2k (α log ℓ+ k) + n

)
.
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5.2 Tight bounds on population size

Theorem 5.1 forms a relationship between the population size before and after the reduc­

tion. As long as k is a constant, the difference between the bound for the problem before

reduction and the one after the reduction would be at most at the order of log ℓ, which

is acceptable in practice. Therefore, the following context focused on problems with the

following form:

f homo­ring (x) =
∑

M∈F⟨2⟩

f sub­homo­ring
M (xM) , (5.1)

where F⟨2⟩ is a homogeneous overlapping FOS and xM is the part of x indicated by a

mask M . To know more about problems with fitness functions of the same form as in

Equation 5.1, the relationship between the optimal solution and the non­optimal ones is

investigated.

Lemma 5.2. A problem with its fitness function of the same form as in Equation 5.1 has

optimal substructure property in the following form: for a consecutive segment, the seg­

ment of the golbal optimum is the optimal segment, given the bits before and after are the

sames as the ones of the global optimum.

Proof. Without loss of generality, assume the problem is a maximization problem. Let

x∗ = ⟨x∗
[i]⟩, where [i] ∈ Gℓ, be the optimal solution and the fitness function be f . Suppose

x is a chromosome such that x[i1] = x∗
[i1] and x[i2] = x∗

[i2], where i1 ≤ i2.

Case 1. If i1 = i2, consider the set of chromosomes Cx,i1 =
{
y
∣∣∣y[i1] = x[i1]

}
. Since

x∗ ∈ Cx,i1 , if ⟨x∗
[i1⊕1], x

∗
[i1⊕2], . . . , x

∗
[i1⊕(ℓ−1)]⟩ is not the optimal substructure, then there

exists x
′ ∈ Cx,i1 such that f

(
x

′
)
is better than f (x∗), which is a contradiction.

Case 2. If i1 + 1 = i2, using similar technique in Case 1., consider the set

of chromosomes Cx,i1,i2 =
{
y
∣∣∣y[i1] = x[i1], y[i2] = x[i2]

}
. Since x∗ ∈ Cx,i1,i2 , if

⟨x∗
[i1⊕2], x

∗
[i1⊕3], . . . , x

∗
[i1⊕(ℓ−1)]⟩ is not the optimal substructure, then there exists x

′ ∈

Cx,i1,i2 such that f
(
x

′
)
is better than f (x∗), which is a contradiction.
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Case 3. If i1 + 1 < i2, define index sets Mi1,i2 = ⟨i|ii < i < i2⟩ and Mi1,i2 =

⟨i2 ⊕ 1, i2 ⊕ 2, . . . , i2 ⊕ (i1 − i2 + ℓ− 1)⟩. Consider the set of chromosomes Cx,Mi1,i2
={

y
∣∣∣∀ i ∈Mi1,i2 ∪ {i1, i2} , y[i] = x[i]

}
. If the optimal substructure of the index setMi1,i2 is

not ⟨x∗
[i1⊕1], x

∗
[i1⊕2], · · · , x∗

[i1⊕(i2−i1−1)]⟩, suppose it is ⟨x
′

[i1⊕1], x
′

[i1⊕2], · · · , x
′

[i1⊕(i2−i1−1)]⟩,

then if the problem is a maximization problem,

fi1,i1⊕1
(

x∗
[i1], x

′

[i1⊕1]

)
+ fi2⊖1,i2

(
x

′

[i2⊖1], x∗
[i2]

)
+

i2−2∑
i=i1+1

fi,i⊕1
(

x
′

[i], x
′

[i⊕1]

)
+

∑
i∈Mi1,i2

fi,i⊕1
(

x∗
[i], x∗

[i⊕1]

)
<fi1,i1⊕1

(
x∗

[i1], x∗
[i1⊕1]

)
+ fi2⊖1,i2

(
x∗

[i2⊖1], x∗
[i2]

)
+

i2−2∑
i=i1+1

fi,i⊕1
(

x∗
[i], x∗

[i⊕1]

)
+

∑
i∈Mi1,i2

fi,i⊕1
(

x∗
[i], x∗

[i⊕1]

)
=f (x∗) ,

which is a contradiction. Similar result happens when the problem is a minimization prob­

lem. Thus, given x[i1] = x∗
[i1] and x[i2] = x∗

[i2], the optimal substructure of the index set

Mi1,i2 is ⟨x∗
[i1⊕1], x

∗
[i1⊕2], . . . , x

∗
[i1⊕(i2−i1−1)]⟩. For the same reason, given x[i1] = x∗

[i1] and

x[i2] = x∗
[i2], the optimal substructure of the index setMi1,i2 is ⟨x∗

[i2⊕1], x
∗
[i2⊕2], . . . , x

∗
[i2⊕(i1−i2+ℓ−1)]⟩.

Therefore, a problem with its fitness function of the same form as in Equation 5.1 has op­

timal substructure property.

Based on optimal substructure property, the following theorem holds.

Theorem 5.3. Population size required for binary­encoded GAs using OM with an oracle

to solve a problem with its fitness function of the same form as in Equation 5.1 with a

success probability of 1−Θ (ℓ−α), where ℓ is the chromosome length and α is a positive

constant, is Θ (α log ℓ).

Proof. Th process that Figure 5.4 conducts gives an intuition that leads to the proof. Con­

sider optimizing a 6­bit problem with the population shown in Figure 5.3(b) and global

optimum being the chromosomes with all 1s. Since the probelm has optimal substructure

property, if there exists schemas of order 2 that in the bits within are the bits before and

after a consecutive bits of a chromosome which have alleles the same as the ones of the

global optimum in the problem structure, then the consecutive segment can be donated to
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form a larger consecutive segment. For example, in Figure 5.3(c), the global optimum is

the chromomsome with all 1s, and the bits with index 1 and 3 of chromosome b encloses

the bit with index 2 of chromsome a. Thus, chromosome a can donote the bit with index

2 to chromosome b, and the result shows in Figure 5.3(d), where chromosome b has a

schema of order 3 that the global optimum has. If the condition can be fulfilled contin­

uously, the global optimum can be achieved by enlarging the number of the consecutive

bits of a chromosome which have alleles the same as the ones of the global optimum, such

as the operations shown from Figures 5.3(c) to Figure 5.3(h).
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0 1

2

3

5

4

(a) Problem structure

0 1 2 3 4 5

index

chromosome a

chromosome b

chromosome c

chromosome d

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

0 0 0 0 0 1

(b) Initialized population

0 1 2 3 4 5

index

chromosome a

chromosome b

chromosome c

chromosome d

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

0 0 0 0 0 1

(c)

0 1 2 3 4 5

index

chromosome a

chromosome b

chromosome c

chromosome d

0 0 1 0 0 0

0 1 1 1 0 0

1 0 0 0 1 0

0 0 0 0 0 1

(d)

0 1 2 3 4 5

index

chromosome a

chromosome b

chromosome c

chromosome d

0 0 1 0 0 0

0 1 1 1 0 0

1 0 0 0 1 0

0 0 0 0 0 1

(e)

0 1 2 3 4 5

index

chromosome a

chromosome b

chromosome c

chromosome d

0 0 1 0 0 0

0 1 1 1 0 0

1 1 1 1 1 0

0 0 0 0 0 1

(f)

0 1 2 3 4 5

index

chromosome a

chromosome b

chromosome c

chromosome d

0 0 1 0 0 0

0 1 1 1 0 0

1 1 1 1 1 0

0 0 0 0 0 1

(g)

0 1 2 3 4 5

index

chromosome a

chromosome b

chromosome c

chromosome d

0 0 1 0 0 0

0 1 1 1 0 0

1 1 1 1 1 0

1 1 1 1 1 1

(h)
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Figure 5.4: Illustration of a process that gives an intuition that leads to the proof of Theo­

rem 5.3. Figure 5.3(a) shows the problem structure of a 6­bit problemwith fitness function

of the same form as the one in Equation 5.1, where a circle means a bit with the number

inside the circle representing its index , each rounded rectangle represents a sub­function,

and the global optimum is the chromosome with all 1s. Figure 5.3(b) shows the initialized

population, where each row represents a chromosome, and the number on each column

indicates the index. Figures 5.3(c) to 5.3(h) shows a process of making chromosome d

become the global optimum. The arrows in Figures 5.3(c), 5.3(e), and 5.3(g) means the

bits donated from donor to the receiver, and Figures 5.3(d), 5.3(f), and 5.3(h) are the popu­

lations after the donations in Figures 5.3(c), 5.3(e), and 5.3(g) happens, respectively, with

circles filled with grey identifying bits being donated.

Based on the intuition, Algorithm 1 is designed. Even though the overall process can

not be guide by a 1­composite oracle, the overall requirement that Algorithm 1 can be

conducted is having disjoint designated schemas of order at most 2 and total length of all

the schemas is less than or equal to ℓ, and by Theorem 4.3, a population with Θ (α log ℓ)

chromosomes can guarantee a sequence of donations described in the last paragraph that

leads to global optimum from a single bit having the same allele as the one of the global

optimum at the corresponding locus with probability 1 − Θ (ℓ−α), where α is a positive

constant. Therefore, population size required for binary­encoded GAs using OM with an

oracle to solve a problem with its fitness function of the same form as in Equation 5.1

with a success probability of 1 − O (ℓ−α), where ℓ is the chromosome length and α is a

positive constant, is O (α log ℓ). By combining the result with Theorem 3.7, the proof is

compelete.

Since in the proof of Theoerm 5.3, not only the population size but also how to reach
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Input Chromosomes x1 to x⌈ ℓ
2 ⌉, where, xi = ⟨xi

[j]⟩, in which i ∈
{
1, 2, . . . , ⌈ ℓ

2⌉
}

and [j] ∈ Gℓ, and ∀i ∈
{
1, 2, . . . , ⌈ ℓ

2⌉
}
, xi

[i⊖1] = x∗
[i⊖1], and xi

[1⊖i] = x∗
[1⊖i],

where x∗ is the global optimum.
begin

for i← 1 to ⌈ ℓ
2⌉ − 1 by 1 do

Choose xi as donor and xi+1 as receiver, and donate mask
{0, 1, . . . , i− 1} ∪ {1⊖ 1, 1⊖ 2, . . . , 1⊖ i}.

Output xλ

Algorithm 1: Process for reaching the global optimum.

the global optimum with sufficient number of chromosomes are specified. Thus, the nFE

can be bounded.

Theorem 5.4. With a probability of 1−O (ℓ−α), where ℓ is the chromosome length andα is

a positive constant, for binary­encoded GAs using OM with an oracle to solve a problem

with its fitness function of the same form as in Equation 5.1 with population size being

O (α log ℓ), the nFE is O (ℓ).

Proof. In the proof of Theorem 5.3, it is showed that Θ (α log ℓ) chromosomes are suffi­

cient for binary­encoded GAs using OM with an oracle to solve a problem with its fitness

function of the same form as in Equation 5.1 with a success probability of 1 − Θ (ℓ−α)

using a sequence of donations after which the number of a certain consecutive bits of a

chromosome which have alleles the same as the ones of the global optimum is enlarged.

Since the number of bits is strictly increasing with the number of donations, the number is

upper bounded by ℓ, the nFE is O (number of donation made), and only one specific case

is discussed, with a probability of 1−O (ℓ−α), where ℓ is the chromosome length and α is

a positive constant, for binary­encoded GAs using OM with an oracle to solve a problem

with its fitness function of the same form as in Equation 5.1 with population size being

O (α log ℓ), the nFE is O (ℓ).
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Chapter 6

Results with Problems beyond Ring

Topologies

In Chapter 5, bounds on the population size for binary­encoded GAs using OM with an

oracle to solve problems with fitness functions of the same form as in Equation 5.1 are

derived. However, the problems discussed are very restricted, and not all problems in

practice have that kind of fitness functions. Thus, in this chapter, bounds on the popula­

tion size for binary­encoded GAs using OM with an oracle to solve problems with less

restricted fitness functions, though may not be as tight, are derived.

6.1 Layered structure

In the proof of Theorem 5.3, only the optimal substructure property proved in Lemma 5.2

is needed and one can reach the optimum by lengthening an optimal segment. In order to

discuss a more generalized optimal substructure property, the layered structure of a fitness

function and problem is defined.

Definition 6.1. layered sturcture: A fitness function f of a problem can be viewed as a

layered structure of λ layers if there exists a disjoint FOS ⟨M1,M2, · · · ,Mλ⟩ with M i

being a non­empty mask ∀ i ∈ {1, 2, · · · , λ} satisfying ∀ i ∈ {1, 2, · · · , λ}, exist func­

tions gi and hi such that f (x) = gi

(
x∪i

j=1Mj

)
+ hi

(
x∪λ

j=iM
j

)
where x = ⟨x[s]⟩ is a

chromosome, and xM is the part of x indicated by a maskM .
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0 1
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3

5

4

(a) Example problem

0 1 2 3 4 5

M
3

M
2

M
1

(b) Layered structure of the problem

0 1 2 3 4 5

M
1

(c) Layered structure of the problem

Figure 6.1: Example of the layered structure. Figure 6.1(a) shows an illustration of the fit­

ness function of a 6­bit problem. The fitness function is the summation of 6 sub­functions.

Each circle represents a bit with its index inside, and each ellipse represents a sub­function.

Figures 6.1(b) and 6.1(c) show two layered structures that the fitness function in Fig­

ure 6.1(a) can be viewed as. The indexes of the bits in the same colored region belong to

the same mask.

Figure 6.1 gives an example of a 6­bit problem having a layered structure of 3 layers.

Note that a fitness function can be viewed as multiple layered structures. For example,

the fitness function in Figure 6.1(a) can also be viewed as layered structures shown in

Figures 6.1(b) and 6.1(c). This example also shows that a fitness function of the same form

as in Equation 5.1 can be viewed as a layered structure of ⌈ ℓ
2⌉ layers with the FOS of the

layered structure being the sequence of masks used to reach the global optimum in the way

used in the proof of Theorem 5.3. This means that the layered structure preserves some

property desired, and the optimal substructure property for the layered structure is derived

in the following theorem to derive bounds on the population size for binary­encoded GAs

using OM with an oracle to solve problems with fitness functions with more generalized

structure.
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Theorem 6.2. A problem with its fitness function can be viewed as a layered structure of

λ layers with FOS F = ⟨M1,M2, · · · ,Mλ⟩and functions gi and hi such that f (x) =

gi

(
x∪i

j=1Mj

)
+ hi

(
x∪λ

j=iM
j

)
where x = ⟨x[s]⟩ is a chromosome, and xM is the part of

x indicated by a maskM has optimal substructure property in the following form: ∀i ∈

{1, 2, · · · , λ}, for any chromosome y if yM i = x∗
M i , wherex∗ = ⟨x∗

[s]⟩ is the optimal solu­

tion, then if the porblem is amaximization problem thenx∗
∪i

j=1Mj ∈ argmaxy∪i
j=1Mj

gi

(
y∪i

j=1Mj

)
andx∗

∪λ
j=iM

j ∈ argmaxy∪λ
j=i

Mj
hi

(
y∪λ

j=iM
j

)
, and if the porblem is aminimization problem

thenx∗
∪i

j=1Mj ∈ argminy∪i
j=1Mj

gi

(
y∪i

j=1Mj

)
andx∗

∪λ
j=iM

j ∈ argminy∪λ
j=i

Mj
hi

(
y∪λ

j=iM
j

)
.

Proof. If the problem is a maximization problem and suppose x∗
∪i

j=1Mj ̸∈

argmaxy∪i
j=1Mj

gi

(
y∪i

j=1Mj

)
. If the chromosome y∗ = ⟨y∗

[s]⟩ satisifes y∗
∪λ

j=iM
j = x∗

∪λ
j=iM

j

and y∗
∪i

j=1Mj ∈ argmaxy∪i
j=1Mj

gi

(
y∪i

j=1Mj

)
, then

f (y∗)− f (x∗)

=
(
gi

(
y∗

∪i
j=1Mj

)
+ hi

(
y∗

∪λ
j=iM

j

))
−
(
gi

(
x∗

∪i
j=1Mj

)
+ hi

(
x∗

∪λ
j=iM

j

))
=gi

(
y∗

∪i
j=1Mj

)
− gi

(
x∗

∪i
j=1Mj

)
+ hi

(
y∗

∪λ
j=iM

j

)
− hi

(
x∗

∪λ
j=iM

j

)
=gi

(
y∗

∪i
j=1Mj

)
− gi

(
x∗

∪i
j=1Mj

)
>0.

This violates the assumption that x∗ is the optimal solution. Thus, x∗
∪i

j=1Mj ∈

argmaxy∪i
j=1Mj

gi

(
y∪i

j=1Mj

)
. The rest of the parts of the theorem can be proved in the

similar way.

Based on the results derived above, the upper bound on the population size for binary­

encoded GAs using OM with an oracle to solve problems with fitness functions that can

be viewed as a layered structure is derived.

Theorem 6.3. The population size required for binary­encoded GAs using OM with an

oracle to solve a problem with its fitness function that can be viewed as a layered structure

49



doi:10.6342/NTU201902839

of λ layers with FOS F = ⟨M1,M2, · · · ,Mλ⟩ with a success probability of 1−Θ (ℓ−α),

where ℓ is the chromosome length and α is a positive constant, is O
(
α2maxi|M i| log ℓ

)
,

where |M | denotes the number of elements inM .

Proof. For i ∈ {1, 2, · · · , λ}, if there exists chromosomes xi = ⟨xi
[s]⟩ such that

xi
M i = x∗

M i , where x∗ = ⟨x∗
[s]⟩ is the global optimmum, xM is the part of x indi­

cated by a mask M , and all xis do not need to be disjoint, then the global optimum

can be reached by Algorithm 2. The condition of the previous algorithm is gathering

all the non­overlapping schemas of order |M1| , |M2| , · · · ,
∣∣∣Mλ

∣∣∣ respectively. By Theo­

rem 4.3, O
(

(α + 1) 2maxi|M i| log ℓ
)
chromosomes are enough to guarantee the condition

be fulfilled with a probability of 1−Θ (ℓ−α−1). Since α is a constant, by applying union

bound, the population size required for binary­encoded GAs using OM with an oracle to

solve a problem with its fitness function that can be viewed as a layered structure of λ

layers with FOS F = ⟨M1,M2, · · · ,Mλ⟩ with a success probability of 1 − Θ (ℓ−α) is

O
(
α2maxi|M i| log ℓ

)
.

begin
for i← 1 to λ− 1 by 1 do

Choose xi as donor and xi+1 as receiver, and donate mask ∪i
j=1M

j .
Output xλ

Algorithm 2: Process for reaching the global optimum.

Theorem 6.4. With a probability of 1 − O (ℓ−α), where ℓ is the chromosome length and

α is a positive constant, for binary­encoded GAs using OM with an oracle to solve a

problem with its fitness function that can be viewed as a layered structure of λ layers with

FOS F = ⟨M1,M2, · · · ,Mλ⟩ with population size being O
(
α2maxi|M i| log ℓ

)
, the nFE

is O (λ).

Proof. In the proof of Theorem 6.3, it is showed that O
(
α2maxi|M i| log ℓ

)
chromosomes

are sufficient for binary­encoded GAs using OM with an oracle to solve a problem with

its fitness functionthat can be viewed as a layered structure of λ layers with FOS F =

⟨M1,M2, · · · ,Mλ⟩ with a success probability of 1 − Θ (ℓ−α) using Algorithm 2. Since
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the number of bits is strictly increasing with the number of donations, the number is upper

bounded by ℓ, and the nFE is O (number of donation made) if using an oracle. Since a

larger population only increases the success probability, with a probability of 1−O (ℓ−α),

where ℓ is the chromosome length and α is a positive constant, for binary­encoded GAs

using OM with an oracle to solve a problem with its fitness function that can be viewed

as a layered structure of λ layers with FOS F = ⟨M1,M2, · · · ,Mλ⟩ with population size

being O
(
α2maxi|M i| log ℓ

)
, the nFE is O (λ).

Theorem 6.3 states an upper bound on the population size required for binary­encoded

GAs using OM with an oracle to have a success rate of 1−Θ (ℓ−α). In the following sec­

tions, to show its applicability to real cases, some fitness functions with specific topologies

are discussed. To begin with, fitness functions with torus topologies are discussed.

6.2 Results on torus topologies

In this section, fitness functions with torus topologies are focused. To begin with, in this

section, ℓ = rd, where r, d ∈ Z+. Also, re­define a chromosome x =
〈
x[i1],[i2],...,[id]

〉
,

where [i1] , [i2] , . . . , [id] ∈ Gr ×Gr × · · · ×Gr︸ ︷︷ ︸
d

, a fitness function with a torus topology

of dimension d, so called a d­torus, of radius r, f torus,d,r, is defined as follows:

f torus,d,r (x) =
r−1∑
i1=0

r−1∑
i2=0
· · ·

r−1∑
id=0

d∑
j=1

f sub­torus
i1,i2...,id,j

(
x[i1],[i2],...,[id], x[i1],...[ij−1],[ij ]⊕r[1],[ij+1],...,[id]

)
.

(6.1)

Figure 6.2 shows an example of a torus topology of 2­torus of radius 12, where each in­

tersection of line segments is a bit, and each line segment between two bits represents a

sub­function. Torus is the first topology to be discussed because, by definition, a fitness

function of the same form as in Equation 5.1 is a fitness function with a torus topology

of dimension 1 of radius ℓ, meaning that a torus topology is a generalized case for a ring

topology. Since Theorem 6.3 states that the upper bound of the population size is exponen­
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Figure 6.2: Example of a torus topology. The figure is a 2­torus of radius 12, where each

intersection of line segments is a bit, and each line segment between two bits represents a

sub­function.

tial to the size of the mask with the largest number of elements in the FOS of the layered

structure, the next to be answered is: What kind of layered structure a fitness function of

the same form as in Equation 6.1 should be viewed as in order to have a small maximal

size in the FOS? In the following, a layered structure is discussed based on the FOS used

in a ring topology. In Figure 6.1(b), how a 1­torus of radius 6 can be separated into a

layered structure is shown. For a fitness function with a topology of a d­torus of radius r,

if the same method can be applied along one axis, then a fitness function with a topology

of a d­torus of radius r can be viewed as a layered structure of ⌈ r
2⌉ layers with a maximal

size in the FOS being 2rd−1. Figure 6.3 shows an example of how it can be applied on a

2­torus. Based on this intuition, the following theorems are derived.

Theorem 6.5. The population size required for binary­encoded GAs using OM with an

oracle to solve a problem with fitness function of the same form as in Equation 6.1 with a

success probability of 1−Θ (ℓ−α), where ℓ is the chromosome length and α is a positive

constant, is O
(
α22ℓ

d−1
d log ℓ

)
.

Proof. Consider the following FOS F = ⟨M1,M2, · · · ,M ⌈ r
2 ⌉⟩, where M i ={

[j1] , [j2] , . . . , [jd]
∣∣∣⌊∣∣∣j1 − r−1

2

∣∣∣+ 1
⌋

= i
}
. A fitness function of the same form as in Equa­
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tion 6.1 can be viewed as a layered structure of ⌈ r
2⌉ layers with FOS F and ∀ i < ⌈ r

2⌉,

gi

(
x∪i

j=1Mj

)
= ∑

· · ·
∑

⌊ r−1
2 −(j−1)⌋−1≤s1≤⌈ r−1

2 +(j−1)⌉,
0≤s2,...,sd≤r−1, 1≤t≤d

f sub­torus
s1,s2...,sd,t

(
x[s1],...,[sd], x[s1],...[st−1],[st]⊕r[1],[it+1],...,[sd]

)

and

hi

(
x

∪
⌈ r

2 ⌉
j=i Mj

)
=

∑
· · ·

∑
0≤s1≤⌊ r−1

2 −(j−1)⌋−2
∨⌈ r−1

2 +(j−1)⌉+1≤s1≤r−1,

0≤s2,...,sd≤r−1, 1≤t≤d

f sub­torus
s1,s2...,sd,t

(
x[s1],...,[sd], x[s1],...[st−1],[st]⊕r[1],[it+1],...,[sd]

)
,

where x is a chromosome, and xM is the part of x indicated by a mask M . g⌈ r
2 ⌉ (x) =

f torus,d,r (x), and h⌈ r
2 ⌉ = 0 for all inputs. The maximum size of M i in F is 2rd−1 =

2
(
rd
) d−1

d = 2ℓ d−1
d . By applying Theorem 6.3, the population size required for binary­

encoded GAs using OM with an oracle to solve a problem with fitness function of the

same form as in Equation 6.1 with a success probability of 1 − Θ (ℓ−α), where ℓ is the

chromosome length and α is a positive constant, is O
(
α22ℓ

d−1
d log ℓ

)
.

Theorem 6.6. With a probability of 1 − O (ℓ−α), where ℓ is the chromosome length and

α is a positive constant, for binary­encoded GAs using OM with an oracle to solve a

problem with fitness function of the same form as in Equation 6.1 with population size

being O
(
α22ℓ

d−1
d log ℓ

)
, the nFE is O

(
⌈ r

2⌉
)
.

Proof. The result can be directly inferred from Theorems 6.4 and 6.5.

53



doi:10.6342/NTU201902839

(a) A 2­torus of radius 5.

(b) Planar representation of Figure 6.3(a). (c) Layered structure of Figure 6.3(b).

Figure 6.3: Example of forming a layered structure from a torus topology. Figure 6.3(a)

is an illustration of a fitness function with a topology of a 2­torus of radius 5, where each

black circle represents a bit and each line segment between two circles represents a sub­

function. Figure 6.3(b) is the planar representation of Figure 6.3(a), where the two arrows

on the same linemean that the two line segments are connected and belong to the same sub­

function. Figure 6.3(c) shows a layered structure that the fitness function in Figure 6.3(a)

can be viewed as. The indexes of the bits in the same colored region belong to the same

mask.
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6.3 Results on hypercube topologies

Torus topologies discussed in the last section is the generalization of ring topologies dis­

cussed in Chapter 5. However, the homogeneity that torus topologies hold makes the vi­

sualization or imagination more difficult, let alone discussing layered structures on them.

Thus, in this section, fitness functions with hypercubic topologies that have something

in common with torus topologies but break down the homogeneity are focused. To be­

gin with, in this section, ℓ = (r + 1)d, where r, d ∈ Z+. Also, re­define a chromo­

some x =
〈
x[i1],[i2],...,[id]

〉
, where [i1] , [i2] , . . . , [id] ∈ Gr+1 ×Gr+1 × · · · ×Gr+1︸ ︷︷ ︸

d

, a fit­

ness function with a hypercubic topology of dimension d, so­called a d­cube, of radius r,

f cube,d,r, is defined as follows:

f cube,d,r (x) =
∑
· · ·

∑
0≤i1,i2,...,id≤r,

j∈{1,2,...,d}, ij ̸=r

f sub­cube
i1,i2...,id,j

(
x[i1],[i2],...,[id], x[i1],...[ij−1],[ij ]⊕r+1[1],[ij+1],...,[id]

)
.

(6.2)

Figure 6.4 shows an example of a hypercube topology of a 3­cube of radius 10, where

Figure 6.4: Example of a hypercube topology. The figure is a 3­cube of radius 10, where

each intersection of line segments is a bit, and each line segment between two bits repre­

sents a sub­function.
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each intersection of line segments is a bit, and each line segment between two bits rep­

resents a sub­function. The main difference between Equations 6.2 and 6.1 is that the

sub­functions in Equation 6.2 do not form any cycle along one axis, meaning that there

is no homogeneity within fitness functions of the same form as in Equation 6.2. In Fig­

ures 6.1(b) and 6.3, how can a torus be separated into a layered structure by separating

along one axis is demonstrated. By applying a similar technique to hypercubes, a fitness

function with a topology of a d­cube of radius r can be viewed as a layered structure of

r + 1 layers with a maximal size in the FOS being rd−1. Figure 6.5 shows an example

of how it can be applied to a 3­cube. Based on this intuition, the following theorems are

derived.

(a) A 3­torus of radius 3. (b) Layered structure of Figure 6.5(a).

Figure 6.5: Example of forming a layered structure from a hypercube topology. Fig­

ure 6.5(a) is an illustration of a fitness function with a topology of a 3­cube of radius 3,

where each intersection of line segments is a bit, and each line segment between two bits

represents a sub­function. Figure 6.5(b) shows a layered structure that the fitness func­

tion in Figure 6.5(a) can be viewed as. The indexes of the bits in the same colored region

belong to the same mask.

Theorem 6.7. The population size required for binary­encoded GAs using OM with an

oracle to solve a problem with fitness function of the same form as in Equation 6.2 with a

success probability of 1−Θ (ℓ−α), where ℓ is the chromosome length and α is a positive

constant, is O
(
α2ℓ

d−1
d log ℓ

)
.
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Proof. Consider the following FOS F = ⟨M1,M2, · · · ,M r+1⟩, where M i =

{[j1] , [j2] , . . . , [jd]|j1 = i− 1}. A fitness function of the same form as in Equation 6.1

can be viewed as a layered structure of r + 1 layers with FOS F with

gi

(
x∪i

j=1Mj

)
=

∑
· · ·

∑
0≤s1≤j−1,

0≤s2,...,sd≤r,
t∈{1,2,...,d}, st ̸=r

f sub­cube
s1,s2...,sd,t

(
x[s1],...,[sd], x[s1],...[st−1],[st]⊕r+1[1],[it+1],...,[sd]

)

and

hi

(
x∪r+1

j=i Mj

)
=

∑
· · ·

∑
j≤s1≤r,

0≤s2,...,sd≤r,
t∈{1,2,...,d}, st ̸=r

f sub­cube
s1,s2...,sd,t

(
x[s1],...,[sd], x[s1],...[st−1],[st]⊕r+1[1],[it−−+1],...,[sd]

)
,

where x is a chromosome, and xM is the part of x indicated by a mask M . The maxi­

mum size ofM i in F is (r + 1)d−1 =
(
(r + 1)d

) d−1
d = ℓ

d−1
d . By applying Theorem 6.3,

the population size required for binary­encoded GAs using OM with an oracle to solve a

problem with fitness function of the same form as in Equation 6.1 with a success proba­

bility of 1 − Θ (ℓ−α), where ℓ is the chromosome length and α is a positive constant, is

O
(
α2ℓ

d−1
d log ℓ

)
.

Theorem 6.8. With a probability of 1 − O (ℓ−α), where ℓ is the chromosome length and

α is a positive constant, for binary­encoded GAs using OM with an oracle to solve a

problem with fitness function of the same form as in Equation 6.2 with population size

being O
(
α2ℓ

d−1
d log ℓ

)
, the nFE is O (r + 1).

Proof. The result can be directly inferred from Theorems 6.4 and 6.7.

Theorems 6.5 and 6.7 derive bound on the population size required for binary­encoded

GAs using OM with an oracle to solve a problem with fitness function of the same form

as in Equation 6.1 and in Equation 6.2 respectively. The only difference between the

topologies is homogeneity. However, the order of the upper bound can be reduced to nearly

half. Also, for more complicated problem structures that result in a higher dimension of
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certain structures or topologies, the upper bound will be closer to the exponential of the

chromosome length, and this phenomenon fits the intuition.

6.4 Results on small­world topologies

In Sections 6.2 and 6.3, upper bounds on the number of chromosomes required for binary­

encoded GAs using OM with an oracle to solve a problem with torus or hypercube topol­

ogy is derived. However, in both cases, for d ≥ 2, the population size required is greater

than the nFE needed, meaning that one will initialize a chromosome and use it without

knowing the fitness of the chromosome. This is possible for a GA when using an ora­

cle, but not in practical use. Also, in 2­D Ising spin­glass problems, which have two­

dimensional torus structures, the derived bound is sub­exponential. However, in practice,

the population size required need not be as large, meaning the derived bounds are still

loose. Thus, in this section, bounds on the population size required for binary­encoded

GAs using OM with an oracle to solve a problem with small­world topologies, a class of

modified ring topologies, are estimated to find results more applicable in practice. To be­

gin with, a fitness function with small­world topology of size ℓwith ι bridges, f small­world,ℓ,ι,

is defined as follows:

f small­world,ℓ,ι (x) =
ℓ−1∑
i=0

f sub­small­world
i

(
x[i]x[i]⊕[1]

)
+

ι−1∑
j=0

f sub­small­world
ℓ+j

(
x[sj,1]x[sj,2]

)
, (6.3)

where ∀ j ∈ {0, . . . , ι− 1}, sj,1 < sj,2∧sj,1 ̸= sj,2⊕1∧sj,1 ̸= sj,2⊖1 ,and (sj1,1, sj1,2) ̸=

(sj2,1, sj2,2) if j1 ̸= j2 ∀ j1, j2 ∈ {0, . . . , ι− 1}. Figure 6.6 shows an example of a small­

world topology of size 20 with 3 bridges, where each circle is a bit, and each line segment

between two bits represents a sub­function. The main difference between Equations 5.1

and 6.3 is that the homogeneity that ring topology holds is destroyed by the bridges. By

adding bridges, the ring can be separated into a part containing all bits used in bridges and

different chains. Figure 6.7 shows an example of how it can be applied to a small­world

topology of size 6 with 2 bridges. Based on this observation, the following theorem holds.
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Figure 6.6: Example of a small­world topology. The figure is a small­world topology of

size 20 with 3 bridges, where each circle is a bit, and each line segment between two bits

represents a sub­function.

Theorem 6.9. The population size required for binary­encoded GAs using OM with an

oracle to solve a problem with fitness function of the same form as in Equation 6.3 with

log2 Θ (ℓ)−log2 log ℓ+Θ (1) bits used in bridges with a success probability of 1−Θ (ℓ−α),

where ℓ is the chromosome length and α is a positive constant, is O (αℓ), and the nFE

O (ℓ).

Proof. Consider the partition of a small­world topology mentioned above. Suppose the

fitness function is partitioned into a chains with length bi, 1 ≤ i ≤ a. Thus, log2 Θ (ℓ)−

log2 log ℓ + Θ (1) + ∑a
i=1 bi = ℓ. First, by Theorem 4.3, a population of Θ (αℓ) chro­

mosomes suffices to provide a chromosome having all the alleles of the bits used in the

bridges being the same as the ones of the global optimum with probability 1 − Θ (ℓ−α).

Note that since each chain belongs to the ring, Lemma 5.2 holds and therefore, one can

donate a chain with all the alleles the same as the ones of the global optimum to the part

having all the alleles of the bits used in the bridges being the same as the ones of the global

optimum. By Theorems 6.7 and 6.8, for a chain with length bi a population size of α log ℓ

can guarantee existing a set of chromosomes that can use the technique used in layered
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Figure 6.7: Example of a partition of a small­world topology. Circles with the same color

filled belond to the same part.

structures to form the segment the global optimum holds in O (bi) nFEs with probability

1−Θ (ℓ−α) with the aid of oracles. Therefore, with a population of Θ (αℓ) chromosomes,

the probability of not existing a set of chromosomes that can use the technique used in lay­

ered structures to form the segment the global optimum holds in O (bi) nFEs with the aid

of oracles is ω (ℓ−α). Since each parts are all distinct and by using union bound, the pop­

ulation can be shared to find all required schemas simultaneously, a population of Θ (αℓ)

chromosomes suffices to provide a chromosome having all the alleles of the bits used in

the bridges being the same as the ones of the global optimum and for all chains to find a set

of chromosomes that can use the technique used in layered structures to form the segment

the global optimum holds in a total of O (ℓ) nFE with tha aid of an oracle with probability

1−Θ (ℓ−α). Since there may exist a more method requiring less chromosomes, the bound

on the population is an upper bound, and the theorem statement holds.

Since the difficulty of small­world topology is relative to the number of bridges, Theo­

rem 6.9 gives an upper bound on the number of bridges, in most cases, around logarithm of

the chromosome length, such that the population does not exceed the nFE with the help of

an oracle, meaning it is potentially practical. Also, note that in the proof of Theorem 6.9,
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the number of bits used in bridges instead of the number of bridges is the factor affecting

the bound of the population size. Thus, even with the same number of bridges, the bound

may be different. Another possible implication of the result is that the model builders in

modern GAs using OM is near­optimal, since by adding about log ℓ fake sub­functions,

the requirement of population size with the aid of an oracle may grow to linear, while in

practice, the observed required population size is sub­linear.
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Chapter 7

Conclusion

In this thesis, population sizing for binary­encoded GAs using OM in the view of supply is

discussed. The concept of oracles is adopted to have the success rate of GAs solely relies

on supply. For the most basic supply problem, the expected value and the lower bound are

derived, and both of them are of the same order as the bound derived by Goldberg et al.

is (Goldberg et al., 2001). Next, the population size required for binary­encoded GAs

using OM with a c­composite oracle is estimated. Tight bounds on 1­composite oracle, a

special case, and on c­composite oracle, which represents a more general case, are derived.

Also, a global upper bound on supply is derived with some discussion on the tightness of

the bound. For problem dependent cases, bounds on the population as well as on the nFE

are derived for problemswith their fitness that can be viewed as a layered structure. Fitness

functions with torus and cube topologies are estimated as some special cases, showing the

applicability of layered structures. Fitness functions with small­world topologies are also

estimated as a more realistic example.

To further extend this work, the following approaches are suggested. In this work,

supply is estimated on fitness functions being the sum of sub­functions with two bits.

Thus, estimating fitness functions being the sum of sub­functions with more than two bits

can be viewed as a choice. Also, most results are based on Theorem 4.3, which discusses

the bound on the population size when using a 1­composite oracle. A more thorough

investigation on general c­composite oracles is also an interesting topic. Last but not

least, estimations on the supply for more realistic problem structures, such as random
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graphs with all nodes having fixed degrees, are also desired.

The contributions of this thesis are listed below. Firstly, this thesis is the first one to

discuss the supply model for non­fully separable overlapping problem structures. Sec­

ondly, bounds on the supply for problem dependent and problem independent cases are

derived. General upper bound and lower bound are both derived. For more restricted

problem independent cases, the bounds are tight for binary­encoded GAs using OM with

c­composite oracles provided that c is a constant and that the largest size of the masks is a

constant. Bounds on the supply for fitness functions with ring topologies are tight, while

for fitness functions with torus and cube topologies, only upper bounds are derived. Last

of all, in this work, the concept of the oracle is adopted to the population sizing of GAs.

With the aid of oracles, bounds on the population size and nFEs for GAs using OM on

both problem dependent and independent cases are developed. By using this framework,

the next step would be solving the complexity issues on the automaton, which corresponds

to the convergence time of GAs.
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