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Abstract

Genetic algorithms using optimal mixing have shown promising results,
but lack theoretical supports. This thesis investigates population sizing from
the supply aspect under the optimal mixing scenario. Specifically, more pre-
cise analyses on supply, including the expectation and the lower bound, are
made. Furthermore, considering recombining one randomly generated chro-
mosome with the rest of the population to achieve the global optimum, the
tight bounds on the size of the population providing proper fragments chosen
by restricted oracles are derived. A global upper bound on the size of the
population with the guide of an oracle is also derived. Finally, for problem
dependent cases, tight bound on the size of the population on problems with
fitness functions with ring topologies is derived. Based on the intuition in
the proof of the ring topologies case, a category of problem topologies, lay-
ered structures, is defined, and upper bounds on the size of the population
on problems with fitness functions that can be viewed as layered structures
are derived. Examples of layered structures, such as torus and hypercube, are

provided to show the applicability of the layered structures.

Keywords: Genetic Algorithms, Optimal Mixing, Population Sizing, Initial

Supply
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Chapter 1

Introduction

Optimal mixing (OM) is an operator widely adopted in modern genetic algorithms (GAs) (Hol-
land, 1975) such as LT-GOMEA (Bosman and Thierens, 2012; Thierens and Bosman,
2011) and DSMGA-II (Hsu and Yu, 2015) and has shown promising results in many appli-
cations (Luong et al., 2018; Orphanou et al., 2018; Virgolin ef al., 2017). Unlike previous
successful developments in GA - estimation of distribution algorithms (Miihlenbein and
Paal3, 1996), GAs using OM only requires a relatively small population. This is one of
the possible reasons why GAs using OM usually outperform the estimation of distribu-
tion algorithms. However, the real reason is yet unknown due to the slow development of
theoretical support.

Population sizing is one of the focuses of theoretical developments of GAs. Since
it greatly affects the performance of GAs. The amount of information obtained in the
initialization process, mainly related to the population size, bounds the performance of
a certain run. However, an unnecessarily large population only consumes extra function
evaluations than needed to find the global optimum. For traditional GAs, by analyzing
facetwise models, there are sound theoretical derivations on population sizing (Goldberg
et al., 1992, 2001; Harik et al., 1997; Pelikan et al., 2006; Tung, 2015; Yu et al., 2007),
but for GAs using OM, the only applicable results are the supply issue for simple GA
addressed by Goldberg ef al. (2001) and for GAs using OM with non-overlapping masks
addressed by Tung (2015). For other models, experiments (Bosman and Thierens, 2012;

Hsu and Yu, 2015) showed that the population size does not match. To conclude, new
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theories about population sizing for GAs using OM are in need. Based on the background,

the following thesis objectives are proposed.

Thesis Objectives
* Adopt the concept of oracles to provide a tool to analyze the supply model.

* Derive the bounds on the population size for selcto-recombinative GAs using OM

for the supply model.

* Apply the adoption of the concept of oracles to specific problems to derive bounds

on the population size and computation complexity.

This work focuses on the supply model of selecto-recombinative GAs using OM as the
first step. Also, empirically, the population required for GAs using OM is sublinear to
the chromosome length (Bosman and Thierens, 2012; Hsu and Yu, 2015; Thierens and
Bosman, 2011), which is closest to the supply bound among facetwise models mentioned
above. To discuss supply issues only, this work derives bounds on the population size for
GAs using OM with an oracle, an automaton that guides the recombination of chromo-
somes. Because an oracle is a perfect model builder and a perfect decision maker, our
derivations focus on the supply issue. As a result, the derived bounds are lower bounds on
population size to achieve a certain success rate for GAs using OM. Also, since this work
focuses on selecto-recombinative GAs, mutation is not considered here. Nevertheless, the

effect of mutation can be integrated into the results of this work via facetwise approaches.

Roadmap
The rest of the thesis is organized as follows.

» Chapter 2 provides the necessary background of the thesis. Selecto-recombinative

GAs and OM are introduced. In addition, related works are included in this chapter.

2 doi:10.6342/NTU201902839



Chapter 3 begins the study by a simple problem formulation followed by the def-
inition of oracles used throughout this thesis. Also, the basic supply problem is

analyzed in this chapter.

Chapter 4 extends the discussion and defines c-composite oracles to give bounds on

the population size with restrictions on the behavior of the oracles.

Chapter 5 applies the results in Chapters 3 and 4 into specific problems with ring
topologies. Computation complexity when using an oracle in those problem types

is also discussed.

Chapter 6 generalizes the results in Chapter 5 into problems with layered structures.
Computation complexity when using an oracle in those problem types is also dis-

cussed.

Chapter 7 concludes the thesis with a summary of what has been done, future works,

and contributions this thesis provides.

3 doi:10.6342/NTU201902839
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Chapter 2

Background

In this chapter, background knowledge of thesis is provided. First of all, the background
of GAs and selecto-recombinative GAs are provided. Next, the most important operator in
this thesis, OM, is introduced. Also, family of subsets and some associated notations are
defined since it is important to GAs using OM. Finally, a brief introduction to facetwise
models used in the population sizing of GAs is given, followed by previous works related

to supply models in a more detailed manner.

2.1 Genetic Algorithms and Selecto-recombinative Genetic

Algorithms

Proposed in the late 1960s (Holland, 1975), GAs are a type of stochastic population-based
metaheuristic algorithms solving black-box optimization problems inspired by the concept
of natural selection. Solving optimization problems is an important task in the field of both
science and engineering, and the two concerns are the value of the objective function and
the computational cost required. However, for problems proved to be NP-Hard, such as
traveling salesman problem and k-minimum spanning tree problem, no deterministic al-
gorithms that can give the exact global optimum in polynomial time, and metaheuristic
algorithms are good choices to solve these problems. Instead of searching the whole fea-

sible which is usually exponential to the problem size, metaheuristic algorithms try to

5 doi:10.6342/NTU201902839



Initialization
No
Output Replacement

Figure 2.1: Illustration of a general flowchart of GAs.

Mutation

gain more knowledge about the problem by combining prior knowledge and the charac-
teristics found in the process and to propose a more promising feasible solution. Some
metaheuristic algorithms are inspired by natural phenomena, and GAs are one on them.
In the process of natural selection, creatures suit the environment thrive while those do
not vanishes, and in GAs, the candidate solutions, encoded into bit strings with required
cardinality and problem length and called chromosomes, with better values on the objec-
tive function, denoted as the fitness function, survive through the process while others

are discarded.

Figure 2.1 is an illustration of a flowchart of GAs. In general, a GA can be decom-
posed into the following phases: initialization, selection, recombination, mutation, and
replacement. Initialization is a phase where the set of chromosomes, the population, is
set. Each chromosome is initialized independently and identically, and in most cases,
without any prior knowledge of the fitness function, in any chromosome, for each posi-
tion, called locus, the value, denoted as the allele, is determined by a distribution such that
all feasible solutions are equally likely to be sampled. After initialization is done, the rest

of the phases form a cycle, and each cycle is called a generation.

In each generation, firstly, a selection is performed literally to preserve the part of a
population with relatively better fitness values and enhance the probability that a more
promising chromosome is observed. After selection, recombination, representing the re-
production in nature, processes are conducted on the preserved chromosomes in hopes
of creating a chromosome with its fitness value being closer to the one of the global op-

timum. To increase the diversity of the population, mutation is performed by randomly
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Figure 2.2: Illustration of a general flowchart of selecto-recombinative GAs.

changing alleles. Just like the case in nature, mutation happens with a relatively low like-
lihood. Finally, in nature, as the generation changes, those are old will be replaced with
those new. A replacement phase is needed to determine the chromosomes that can go to
the next iteration or so-called generation. The simplest replacement stage is replacing
the chromosomes being fed into the recombination operators with those newly generated,

while other skills such as niching can also be applied here.

Termination happens when either of the two conditions is satisfied. The first one is
that the limit of computation, usually determined by the number of the fitness function is
queried and denoted as the number of function evaluations (nFE), is met. The second one
is that under no limitation on the computation power, all chromosomes in the population
converge, meaning no better solution can be generated without mutation. Note that none

of the conditions guarantees the output solution to be optimal.

The convergence of GAs can be viewed as the vanishing of the diversity of informa-
tion. In this sense, mutation tries to maintain the diversity of information or at least tries
to postpone the vanishment of diversity. However, since mutation is a stochastic pro-
cess that seldom happens, it increases the difficulty in the analysis of convergence. Thus,
selecto-recombinative GAs (Goldberg et al., 1993) are proposed. Selecto-recombinative
GAs are GAs without mutation. Figure 2.2 is an illustration of a general flowchart of

selecto-recombinative GAs.

7 doi:10.6342/NTU201902839



2.2  Optimal Mixing

This section introduces the only recombination operator discussed in this thesis, OM. Pro-
posed by Thierens and Bosman (2011), OM is a recombination operator. In the operation
of OM, two chromosomes, namely the donor and the receiver, are involved. The donor
copies some of its bits to the receiver’s corresponding loci. The action, also known as
a donation, is accepted by the receiver only if the value of the fitness function does not
decrease. Figure 2.3 gives an example of one operation of OM when solving the one max

problem.

Donor fitness= 3 @@@@@@
Receiver fitness= 3 @@@@@
Accepted donation fitness=5 @c@c@
Rejected donation fitness= 2 @@c@@

Figure 2.3: Example of OM. Suppose solving the one max problem. The black circles

indicate the donated bits. Both examples of accepted and rejected donation are given.

OM is a hill climber with a customized neighborhood and has shown promising results
in many applications (Luong et al., 2018; Orphanou et al., 2018; Virgolin et al., 2017). The
difference between OM and other recombination operators in GA is that in the operation
of OM, the result is determined by the change in the value of fitness function. This enables
OM to filter out chromosomes with less desired information in the view of the value of

the fitness function before it is introduced to the population.

2.3 Family of Subsets

The operation of OM can be viewed as actions taken on bits with linkage defined by GAs,
and the family of subsets (FOS) (Thierens, 2010), denoted F, is originally designed to
show the linkage of bits. To define FOS, the following notations introduced. A chromo-

some x is an ordered set of bits with each bit having cardinality x. The length of the

8 doi:10.6342/NTU201902839



chromosome is denoted ¢, and the set of natural numbers is denoted as N. Based on these

notations, some definition relating to FOS can be defined as follows.

Definition 2.1. For any ¢ € N, an index set
S, =40,1,...,0—1}.

Any subset of Sy is called a mask.
Definition 2.2. For an index set Sy, a FOS F satisfies the following properties.

I }“:<M1,M2,...,M|F‘>‘, whereV i€ {1,2,... |F

L M C S,

2. Uieq12

.....

Definition 2.3. For an index set Sy, a FOS F = <M1, M?, ..., M|f|> is a disjoint FOS
if
Vi, je{1,2,...,|F|},i#j, M N M =0,

where () denotes an empty set.

Definition 2.4. For an index set Sy and k > 2 such that (k — 1) |{, a FOS is a homoge-

neous overlapping FOS, denoted as F ., if
Fuy = (M', M?,.. ,M%>,
where N i € {1,2,...,%},
M ={jlj € Se, (i = 1) (k—1) <j < (i (k—1)mod ()} .

Taking an example when ¢ = 3. Sy = {0, 1,2}. {0} and {0, 1} aremasks. ({0,1},{1,2}),
({1,2},{0,1}), and ({1,2},{0,1},{1,2}) are three FOSs, while ({1, 2}) is not a FOS
since 0 does not appear in the union of masks. ({0}, {1,2}) is a disjoint FOS since

{0} N {1,2} = (. However, ({0,1},{1,2}) is not a disjoint FOS since {0,1} N {1,2} =

!() denotes an ordered set.

9 doi:10.6342/NTU201902839



{1}. Fry = ({0,1},{1,2},{0,2}). Note that the order of masks matter in FOS, and
there may be duplicated masks.

Elements in FOS are called masks because, during OM, variables are mixed according
to the masks in FOS, and the operation can be viewed as a variable-wise mask operation.
Also, note that the homogeneous overlapping FOS defined in this thesis is different from
the one defined by Tung (2015). The homogeneous overlapping FOS defined by Tung
consists of some pairs of masks, and both masks in every pair share one common index,
while masks from different pairs are disjoint. In contrast, in the homogeneous overlapping

FOS defined in this work, masks can no longer be separated into pairs.

2.4 Facetwise Models

Since GAs are a kind of stochastic population-based algorithm. The control of the popu-
lation size, called population sizing, plays an important role in the performance since the
population size upper bounds the amount of information stored in the population at once.
However, in GAs, there are many stochastic steps taken. Thus, difficulties arise when
directly analyzing the relationship between the population size and the whole process. To
gain more understanding regarding the run of a GA, facetwise models are used. Facetwise
model, first used by Goldberg, is a simplified model used to know how a part of a complex
system works.

Concerning population sizing, three major facetwise models, which are supply, de-
cision making, and model building, are often addressed. Supply model focuses on the
population size needed to ensure having sufficient information to recombine the global
optimum. An important issue in the supply model is collecting schemas (Holland, 1975).
A schema is a collection of alleles at specific loci. In order words, collecting schemas is
equivalent to collecting chromosomes with desired bit values under certain masks. More
detailed results will be discussed in the next section.

Addressed by Goldberg et al. (1992) and Harik et al. (1997), decision making models
focus on the population size needed to distinguish chromosomes with global optimum

fragments from those without. The need of decision making models arises because even

10 doi:10.6342/NTU201902839



under the assumption that global optimum fragment is optimal in the sub-function, the
sampling noise due to inter-competition between schemas may result in filtering out some
of the fragment accidentally. Thus, a sufficient amount of chromosomes is needed to
conquer the noise.

As GAs develope, more efficient information retrieving and recombining techniques
are in need. A major way is to build a model that approximates the fitness function based
on known information. Thus, the need for model building, which examines the popu-
lation size needed to learn a high-quality model to generate high-quality chromosomes,
arises. There are derivations for model building derived by Pelikan et al. (2006) and
Yu et al. (2007). However, the main focuses of these works are identifying the correct

linkage between bits, and more operator-oriented analyses still need to be done.

2.5 Related Works

In this section, a review of the previous results on supply is given. Among the previous
works regarding the population sizing using the supply model, two works are the most
related. Specifically, results derived by Goldberg ef al. (2001) and Tung (2015) are intro-
duced.

Goldberg et al. (2001) derived that in order to guarantee having all schemas of all
fragments of a chromosome with cardinality of y with m building blocks with each frag-
ment having an order of k£ with a success rate of 1 — %, assuming m is large, let n be the

population size, n must satisfy
1-— i = exp <—Xk exp (—Z)) ,
m X
and solving n yields
n=0 (Xk (klog x + logm)) )

Tung (2015) derived that in order to guarantee all the global optimal fragments of order

11 doi:10.6342/NTU201902839



k exists in the population with a probability of p, the following equation holds.

p=(1-0-x"7)"

where y is the cardinality of genes, m is the number of building blocks in the chromo-

somes, and 7 is the population size. Letting p be constant and solving n yields
n=0 (Xklogm) .

Also, there is a brief discussion on problem with separable overlapping structures, though
no theorems are developed.

Both works mainly discuss problems with fully separable non-overlapping problem
structures. The result derived by Tung (2015) implies that the bound derived by Gold-
berg et al. (2001) is tight if the success rate is constant. However, in the real world, fully
separable non-overlapping problem structures is a restriction that is too strict. Thus, a

study of the supply model in more general cases is in need.

12 doi:10.6342/NTU201902839



Chapter 3

Oracles and Basic Supply Problem

To begin the study, in this chapter, the problem formulation is specified. Next, since
this thesis derives bounds in the view of supply, the concept of oracles is introduced
to optimally handle the run of GAs. The last part of the section the most basic supply
problem: having all the schemas (Holland, 1975) of order 1 in the population for selecto-

recombinative GAs using OM is studied.

3.1 Problem formulation

As mentioned in Chapter 1, the development in the population sizing of GAs using OM
is still in an early stage. This thesis focuses on the population sizing of GAs using OM in
the view of supply. However, this is still a problem too big to be solved at once. Thus,
this thesis focuses on the binary-encoded chromosomes as the prototype. Also, selecto-
recombinative GAs are the main focus in order to rule out the process of mutation, which
is not considered in the supply model. For the same reason, the selection phase is ne-
glected. In addition, without further prior knowledge about the problem formulation, the
initialization process should not inject certain inter or intra tendencies among bits. Thus,
each bit of the chromosome is assumed to be initialized with identically and indepen-
dently distributed Bernoulli distribution with % being the probability determined to be
1. As the last restrictions, OM is the only recombination operator allowed to be used, and

simple replacement is chosen. To sum up, the problem to be answered is as follows.

13 doi:10.6342/NTU201902839



Let { be the chromosome length, what is the population size (number of chromosomes)
required for binary-encoded selecto-recombinative GAs using OM as the only recombi-
nation operator followed by simple replacement with no selection phase and with an ini-
tialization process in which each bit of the chromosome is assumed to be initialized with
identically and independently distributed Bernoulli distribution with % being the proba-
bility determined to be 1 to have a success rate of 1 — © ({~%) in the view of supply?

The problem asked above does not show how to make the success rate solely relies on
supply, and the workaround will be discussed in the next section, but before that, to sim-
plify to notation, in the following content, if not specified ¢ is the chromosome length and
binary-encoded selecto-recombinative GAs using OM as the only recombination operator
followed by simple replacement with no selection phase and with initialization process in
which each bit of the chromosome is assumed to be initialized with identically and inde-
pendently distributed Bernoulli distribution with % being the probability determined to be
1 is abbreviated as binary-encoded selecto-recombinative GAs using OM.

To make clear and simplify the notations used when discussing arguments relating to
chromosoes. For 5 € Z*, define operators @ and © asV s,t € Z, s®zt = (s + ¢) mod
andV s,t € Z, s ©gt = (s — t)mod 3. Then a chromosome x = (x;)), where [i] € G,
in which Gg is an additive group of 3 elements with the set {[0],[1],...,[8 — 1]} and

operator @©g. Also, for any mask M, x;; = <x[i]

1€ ]\/[>, and if not specified, & = @y

and © = ©,.

3.2 Oracle

In the last section, the problem to be solved is specified. Since this thesis concentrates on
the supply issue, to have the success rate of GAs solely relies on supply, the concept of
oracles is adopted to optimally handle the recombination tasks under certain restriction as

desired. An oracle is defined as follows.

Definition 3.1. oracle: For GAs on an optimization problem, an oracle is an automaton
with input in the form of 3-tuple (f, P,{w}). [ is the fitness function. P is a population, a

14 doi:10.6342/NTU201902839



Population

333231,

OM —>| Oracle

CIexoxeTe]N

* Global
optimum
)

A\

Fitness function —>

Figure 3.1: Illustration of an oracle considered in this thesis. Each row in the population
represents a chromosome, and each circle in a chromosome represents a bit. Each arrow
on the right of the population represents a donation, with the chromosome next to the base
being the donor. The colored area on the donor is the mask used in the donation. Donations

are sorted with the one on the left happened first.

set of chromosomes. In other words, let C' be the set containing all chromosomes, ¥ x €
P x € C. wis an operator, defined as a function € R, where R : (C’C, (A)) — ¢
for {, (' € N. Ais a set of masks (Hsu and Yu, 2015), which is a set of loci. The
operator must satisfy the following constraint: for each allele in the output set, there must
exist one chromosome in the input set with the same allele at the same locus. The oracle
optimizes f by recombining chromosomes among P using {w} as recombining operators.
If any chromosome in P can achieve the optimal solution, the oracle returns a sequence
of ((y), ¥, (M)), wherey € C, ¢ € R, and ({y) , M) is the corresponding input of 1. If

the optimal solution is not achievable, the oracle returns a FAIL.

In other words, in this thesis, the oracle takes an input of fitness function, a population,
and description of OM and the oracle returns a sequence of donors, description of OM, and
masks. Figure 3.1 gives an illustration of an oracle discussed in this thesis. Notice that any
stochastic operators such as randomized mutation and operators that generate alleles not
existing in the input set such as complement a binary-encoded chromosome are not valid.

Thus, the amount of information the oracle can have is upper bounded by the input of the
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oracle. Since if given sufficient supply to solve the problem, the oracle never outputs FaIL,
the probability of the supply is sufficient to solve a problem and the success rate of GA
using OM with an oracle are of the same value. In this way, the probability of the supply
is sufficient to solve a problem and the success rate of GAs are directly related. However,
since the two issues are different, in the following derivations success probability instead
of success rate is used when the solving scheme uses an oracle. Also, since only focusing
on cases with the aid of an oracle, the derived bounds are lower bounds on the population
size for binary-encoded GAs using OM and are tight when using an oracle in Chapters 3

and 4 whereas only upper bounds when using an oracle are derived in Chapters 5 and 6.

3.3 Basic Supply Problem

Consider the most basic supply problem: having all the schemas of order 1 in the popula-
tion. This can be viewed as the supply problem for selecto-recombinative GAs using an
arbitrary recombination operator. Thus, this can be viewed as a requirement of solving a

problem by an omnipotent oracle, defined as follows.

Definition 3.2. omnipotent oracle: An omnipotent oracle is an oracle that uses an arbi-

trary set of operators defined in Definition 3.1.

The omnipotent oracle can be viewed as a selecto-recombinative GA with an arbi-
trary recombination operator. Thus, the requirement on the population size for selecto-
recombinative GAs using an omnipotent oracle is a lower bound for every GA using an
oracle.

Also, this problem is in effect a special case of problems already discussed by Gold-
berg et al. (2001), with cardinality of 2 and order of building block of 1; however, their
result is an upper bound and is not applicable here. The results derived by Tung (2015) are
not applicable here either since the need is to collect all schemas, not only the ones that the
global optimum consists of. Though this problem is a variation of the coupon collector’s

problem (de Moivre, 1711), no applicable result specialized for GAs exists.
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3.3.1 Expectation

Before deriving the lower bound on the population size required to have the success prob-
ability higher than certain value directly, the expectation, which is an easier task and pro-
vides as an upper bound on the lower bound desired, is investigated. Specifically, this
subsection focuses on the expected number of chromosomes with length of ¢ for binary-
encoded GAs satisfying having all the schemas of order 1 in the population, denoted by

vy. Based on the definition of vy, the following Lemmas hold.
Lemma 3.3. v, is O (log {).

Proof. Consider solving v, using recursive relation. Let v, be the expected number of
chromosomes needed after the first chromosome is initialized and thus, v, , = vy — 1.
Since each bit is initialized identically and independently, the difference of uncollected
schemas before and after another chromosome is initialized is a random variable with
Binomial distribution with % being the probability of success and the number of uncol-
lected schemas before another initialization the being the number of sample size. Thus,

the recursive relation of v, can be written as follows.

W: L4y (D2t 121

0 (=0

Now define another recursive relation v, as follows to bound v;.
1+ 1+
0 =0

Since v, v}, and v, are monotonically increasing, and the median of a Binomial dis-
tribution is between the ceiling of success probability multiplied by number of sample size
and the floor of the same value, by mathematical induction, Vi < ¢, v; < v/, < v;". Since

v < 2logy l + 2, vy is O (log £). O
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Lemma 3.4. v, is 2 (log ).

Proof. Consider solving v, directly. First, Pr{a schemas of order 1 for one locus are
collected with a population with size smaller than or equal to i} = 1 — 2=~ 1, Since all
loci are independent, Pr{all schemas of order 1 are collected with a population with size
smaller than or equal to ¢} = (1 — 2*(1*1)>€. Therefore, let A be an integer greater than

or equal to [log, /| + 1, v, =

N ((1 —276) (1 - p6) )
=2
> XA:@ ((1 - 2—“—1))Z - (1- 2—<i—2>)£> + A+ 1) (1= (1=2707D) (3.1)
ZZQA* ¢ ¢
==Y (1-270) $ A+ (1270
- i-1)*
P _ 9 (=
> ;2 (1—276-D) 4+
[log, £]+1 -1
> (1—276-1) > (1-2700) 4

Therefore, v, is 2 (log £). O

Combining Lemmas 3.3 and 3.4, the tight bound of v, is given in the following theo-

rem:

Theorem 3.5. v, is O (log (). That is to say, for a binary-encoded GA with chromosome
with length of {, the expected number of chromosomes satisfying having all the schemas

of order 1 in the population is © (log ().
Proof. The result can be directly inferred from Lemmas 3.3 and 3.4. [l

Some experiment is conducted to verify the derivation (Figure 3.2) (Liao et al., 2019).
The experiment is conducted on ¢ = 2! for i = 1 to 15, and for each ¢, each bit of a

chromosome is assigned with Bernoulli distribution With% being the probability of success.
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Figure 3.2: Experiment on the expectation of the basic supply problem. Dots are the mean
of one million trials of number of chromosomes needed to have all the schemas of order
1 in the population with variance added versus ¢. The maximal variance is 0.0019. The

dashed line shows the curve fitting result.

The minimal number of chromosomes to have all the schemas of order 1 in the population
is counted. Experiment result is shown in Figure 3.2. The dots are the mean over one
million tests on the number of chromosome needed to have all the schemas of order 1
with variance added with different ¢ in log scale. The dashed line shows the curve fitting

result, which shows that Theorem 3.5 agrees with the result.

3.3.2 Lower bound

In the previous subsection, the expected number of chromosomes with length of ¢ for
binary-encoded GAs to satisfy having all the schemas of order 1 in the population is de-
rived. However, to guarantee a success probability of 1 — %, the minimal number of
chromosomes, rather than the expected number of chromosomes, that satisfies the con-

dition is needed. Because of that, in this subsection, the lower bound on the number of
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chromosomes with length of ¢ for binary-encoded GAs to satisfy having all the schemas
of order 1 in the population is derived. Based on Equation 3.1 derived in Lemma 3.4, the

following theorem hold:

Theorem 3.6. For positive constant o, the minimual number of chromosomes needed to
guarantee a success probability of 1 — © ({~%) for binary-encoded GAs using an omnipo-

tent oracle with chromosomes with length of { is © («log ().

Proof. Suppose 3 ¢, > 0 such that V¢ > ¢, the success probability is bounded between

1— 2 and 1 — where n~ > 7™ are non-negative constants. From Equation 3.1,

Za 9
V B > 2, Pr{fail to collect all schemas of order 1 with a population with size of 5} =
¢
1-— (1 — 2_(5_1)) . Thus, V ¢ > 2, > 0, Pr{fail to collect all schemas of order 1 with
Ny
a population size of [(a + 1)log, ¢ —logon~ ]} < 0 — (1 — #) . Estimate the upper

NV
boundon 1 — (1 — /17?) . The upper bound would be

BN
n N n
1- (1 o gHa) =1- <1 - g1+a€) fo

Thus, with (oz log, ¢ —log, ™| chromosomes, success probability would greater than

or equal to 1—"L-. Next, consider the probability with a population size of | (o + 1) log, {—

¢
log,n™ — 1J , which is greater than or equal to 1 — (1 — ;’@) .

For / > max (2, (Qnﬂ)l;“), to lower bound the value, let L (z) = (1 — )", Since

+

¢
v 2 <1dL()>O L()<1+de—ff).Becausel—(1—/fW) =1-1L K%ZZ)and

<1,

£1+a g

20t 2n*
2—a \ 1= (=1) 53

2n* 2
:Za (C—1)(2p*) ¢
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Because V ¢ > max (ﬁo, 2, (277%) 1110‘) ,a > (, the success probability can be bounded
between 1 — Z—: and 1 — - with the the number of chromosomes required are bounded
between [(o + 1)log, ¢ — log,n~] and |(a + 1)log, ¢ — log,n™ — 1|, the minimual
number of chromosomes needed to guarantee a success probability of 1 — © (¢~¢) for

binary-encoded GAs using an omnipotent oracle with chromosomes with length of ¢ is

O (alog?). O

To verify the derivation, success probability with population size of [2log, /| + 2
and |2log, | — 1 are tested on ¢ = 2° for i = 1 to 15, and the results are shown in
Figure 3.3 (Liao et al., 2019). Each bit is determined using Bernoulli distribution with %
being the probability of success. It can be shown that Theorem 3.6 agrees with the result,
and Lemma 3.3 is a close approximation.

Finally, based on Theorem 3.6, the lower bound of the supply is derived:

Theorem 3.7. For positive constant «, the population size for binary-encoded selecto-

recombinative GAs using OM to guarantee a success rate of 1 — © ({=%) is Q (alog ().

Proof. The result can be inferred from Theorem 3.6 and the fact that having all the schemas

of order 1 is a minimal requirement to solve the problem. U
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Figure 3.3: Experiment on the probability of successfully solving the basic supply prob-

lem. Dots are the results of one million trials on the success probability of whether

[21og, ] + 2 chromosomes can have all the schemas of order 1 in the population with

95% confidence interval added versus log . Crosses are the results of one million trials on

the success probability of whether |2 1log, ¢| — 1 chromosomes can have all the schemas of

order 1 in the population with 95% confidence interval added. Maximum one-sided range

for population size [2log, ¢] + 2 and |2log, ¢] — 1 are 0.00083 and 0.00096 respectively.

The dashed line shows the success probability of 1 — % for each /.
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Chapter 4

c-composite Oracles and Supply

In Chapter 3, bounds on the most basic supply issue are derived. The issue is equivalent to
the success probability when solving with an omnipotent oracle. However, an omnipotent
oracle is more powerful than binary-encoded selecto-recombinative GAs using OM with
an oracle because of the variety of operators an omnipotent oracle holds. Thus, in this
chapter, oracles only using OM as the operator are focused. Even so, the behavior of
the oracle is still hard to estimate because it can be very problem dependent. Thus, we
put restrictions on the oracle and derive the bounds on the population size for using a

c-composite oracle, defined as follows.

Definition 4.1. composite: A composite is a composition of one or many non-overlapping

masks.

Definition 4.2. c-composite oracle: For a constant nonnegative integer c, a c-composite
oracle is an oracle designed for optimization problems such that if the oracle does not
return FAIL, for each output sequence of the oracle, all the masks in the sequence where

no two masks are identical can form at most c composites in the most compact way.

Figure 4.1 gives an example of a c-composite oracle optimizing a 6-bits problem. The
masks can form 3 composites in the most compact way. Since the number c restricts the
maximal number of composites can be formed in the process, a 3-composite oracle can

optimize this problem with the given population, whereas a 2-composite oracle can not.
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Figure 4.1: Example for a c-composite oracle. Suppose optimizing a 6-bits problem with
a given population and the masks of the process yeilding minimum number of composites
in the most compact way are given. The solid circles represent the masks, and the dotted
line circles are the unchanged bits. Color of the circle indicates that it belongs to the
same mask with the ones with the same color. The masks can form 3 composites in the

most compact way. Thus, a 3-composite oracle can optimize this problem with the given

population, whereas a 2-composite oracle can not.

4.1 Investigation on 1-composite oracles

In this section, a special case of c-composite oracle, 1-composite oracle, is focused on.
Firstly, based on the derivation done by Tung (2015), a tight bound on the population
size for binary-encoded selecto-recombinative GAs using OM with a 1-composite oracle
with the longest mask with length of x. Then, based on a qualified scheme, a general
upper bound for binary-encoded selecto-recombinative GAs using OM with a 1-composite

oracle is derived along with some investigation on the tightness of the bound.

4.1.1 Result with prior knowledge on the masks

Inferred from Definition 4.2, when using a 1-composite oracle, each locus can be changed
at most once. This inference implies a 1-composite oracle on OM forces the donors to
donate bits the same as the ones of the optimal solution only or there must be some locus

being changed more than once. Thus, the requirement of recombining a certain chromo-
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some to globabl optimum with the aid of a 1-composite oracle with a success probability
of 1 — © (£~) is the same as the requirement of having the same rate of having one cer-
tain schema in every segment with respect to the partition of the process in which the
chromosome are recombined.

Derived by Tung (2015), for a problem composed of m subproblems with size k£, to
guarantee a constant success rate, the population size should be O (2’“ In m) However,
a success probability of 1 — © (/=) is not a constant one. Thus, new bounds need to be

derived.

Theorem 4.3. Population size to have a success probability of 1 — © ({~%) for binary-
encoded selecto-recombinative GAs using OM with a 1-composite oracle with the largest
mask with size rk is © (27 (1 + «)log{), where { is the chromosome length and « is a

positive constant.

Proof. Suppose for some ¢y > 0,V ¢ > /,, the required success probability is bounded
between 1 — Z—: and 1 — Z—;, where n~ > n™ are non-negative constants. First, define

n~,n~,n" as follows.

n : minimum population size needed to guarantee having the designated
schema out of 2% patterns for ¢ distinct building blocks with a success
probability of 1 — Z—:

n : minimum population size needed to guarantee a success probability
bounded between 1 — Z—: and 1 — Z—; for solving an arbitrary chromo-
some for a binary-encoded selecto-recombinative GA using OM with
an 1-composite oracle with chromosome with length of ¢ and with the
largest mask with size .

n : minimum population size needed to guarantee having the designated

schema out of 2" patterns with a success probability of 1 — .

Based on the above descriptions, the following equations hold:

(1 —(1- 2%)"+>£ =1- Z—a
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" _T i\ U
— % S 1;[( (1-2m)) <1- 4
—\ 1 777
and (1—(1—2 ) > =1
where 7 is the number of masks needed to be collected, and «;s represent the masks needed

to be collected where Vi € {1,2,... 7}, x; > 0,27 K; < £, and max;e(1 0. 7} Ki = K.

Since V( € N,

(1 ~(1- 2”)C> > 11 (1 ~(1- 2"%)<) ,

i=1

and

II

r
=1

(1 ~(1- 2“i)<) zi:ﬁl (1 ~(1- 2“)<>
> <1 - 2—“)<>Z,

and []7_, (1 —(1- 2*"“)4) is increasing with (, n™ > n > n~. For computation simplic-

ity, we focus on finding the asymptotic order of n* and n~. Based on the results derived

nt=—In (1— (1—ZI>£)®(2“), 4.1)

by Tung (2015),

while

n- =—In (1 - <1 - Z;)l) O (27). (4.2)

Equation 4.2 can be simplified as — In (50 ) © (27) and is hence © (2"« log (). Thus,
we only need to focus on Equation 4.1. Applying the same technique used by Tung (2015),
consider convex function g () = (1 — )", where v > 0,2 € (0, 1]. Based on the two

inequalities:
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By substituting x and ~ with % and - respectively, and with simple arithmetic cal-

/o

culations, V £ > (n*)=,

nt < n)é n
() s (i (1-N\)>s e T
= () 2o (1= (=) ) 2 ot

Thus, Equation4.1is © (2"« log ¢). Since both the upper and lower bounds are © (2%« log ¢),
population size required for a binary-encoded GA using OM with a 1-composite oracle
with the largest mask with size x to have a success probability of 1 — © (¢=%), where ¢ is

the chromosome length and « is a positive constant, is © (2"« log () . [

To verify the derivation, the success probability of solving a randomized chromosome
with length of ¢ with the longest segment with length of x for a binary-encoded GA us-
ing OM with a 1-composite oracle is simulated (Liao et al., 2019). The experiments are
conducted on ¢ = 2° for i = 3 to 12 for k = 2 and 5 respectively. Also, each bit of a chro-
mosome is assigned with Bernoulli distribution with % being the probability of success.
Partition is also determined at random. Without loss of generality, assume the optimal
solution is the chromosome with all 1s. Success probability with supply [2°*1In (] — 10
or [2°T11In /] —100 and |27 In¢] —5 or |27 In ¢] — 50 are estimated using the average over
one million independent trials with 95% confidence interval using normal approximation.

Experiment result is shown in Figure 4.2.

4.1.2 General upper bound

Theorem 4.3 gives a tight bound on the population size when the size of the largest mask
is known, but how can one know the size of the largest mask when being guided by a
1-composite oracle? Consider the situation that in the population there exist two chromo-
somes that have all the schemas of order 1. Since the optimal solution is the chromosome

with the best fitness, with the aid of a 1-composite oracle the global optimum can be
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Figure 4.2: Experiments on the success probability of 1-composite oracles. 4.2(a)
and 4.2(b) show the experiment results for the largest mask with size x = 2 and 5 re-
spectively. In both Figures 4.2(a) and 4.2(b), dots are the averages over one million inde-
pendent trials of whether [2511g ¢] — 10 or [2"11g /] — 100 chromosomes are enough
to solve a chromosome with length of ¢ with the largest mask with size x using OM with
a 1-composite oracle for x = 2 and 5 respectively with 95% confidence interval added
versus ¢, whereas crosses are the ones of |27 1g ¢] — 5 or |27 1g /] — 50 chromosomes for
k = 2 and 5 respectively with 95% confidence interval added versus . Maximum one-
sided intervals are 0.0009 and 0.0008 respectively. The dashed line shows the probability

of 1 — % for each /.

reached by one donation. Thus, if after the initialization there exist two chromosomes
that have all the schemas of order 1, a 1-composite can solve the optimization problem
by proposing a scheme using one donation. With no further assumptions on the fitness
function, the upper bound of the population size derived in this scheme generally fits.
However, Theorem partition states that for 1-composite oracles, the maximum number of
bits involved in one OM donation will exponentially affect the population size required.
Thus, to know more about the underlying distribution of the minimum of the maximal

number of bits used in one donation under the scheme, the distribution of the maximal

28 doi:10.6342/NTU201902839



number of schemas of order 1 that a chromosome in the population and the global opti-

mum shares given the population size needs to be examined.

Theorem 4.4. For binary-encoded selecto-recombinative GAs, the minimal population
size required for the maximal number of schemas of order 1 that a chromosome in the pop-
ulation and the global optimum shares being greater than or equal to | (1 — p) {], where {

is the chromosome length and 0 < p < = zs a constant, with a probability of 1 — JL, where

ga;

o and 1 are positive constants, is O ((€ + 1) ellplogz 2p+(1-p) logz 2(1-p)) (log % + alog E))

Proof. Let n be the population size and 7, be the the maximal number of schemas of
order 1 that a chromosome of length ¢ in the population of size n and the global optimum

share, then

Pr{r, > [(1—p)l]} > gﬂa
= Prima. < |(1-p)t]} <
= Pri{mi<|(1-p )" < L
— (1=Pr{m = [(1-p)0]})" < g%

— (1-Pr{m,i=1-p)})" < ga

— 1— 1 efé(plogg 2p+(1—p) logs 2(p))
(¢ +1)°

IN

N
0o’

where Pr {1 = [(1 - p) (] e~ tplosa 20+(1=p)log22(r)) i proved by Cover and

< (e+11)2
Thomas (2006). Since ¥ = > 1, (1 — l)w < Lin = (04 1) lolosa 20+ (1-p) logy 2(1-p))
(ln + aln E) is sufficient to fulfill the last inequality and Pr {1 < [(1 — p) ¢]}" de-
creases as n increases, for binary-encoded selecto-recombinative GAs, the minimal popu-
lation size required for the maximal number of schemas of order 1 that a chromosome in the
population and the global optimum shares being greater than or equal to [ (1 — p) £], where
( is the chromosome length and 0 < p < 3 is a constant, with a probability of 1 — 75, where

« and 7 are positive constants, is O ((E + 1) etlplogz 2p+(1-p) logz 2(p) (log% + alog ﬁ))

]

Based on Theorems 4.3 and 4.4, a upper bound for selecto-recombinative GAs using
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OM with a 1-composite oracle can be derived.

Theorem 4.5. The minimal population size required for binary-encoded selecto-recombinative
GAs using OM with an oracle to have a success probability of 1 — © ({=2), where ( is the
chromsome length and o is a positive constant is O (Q%a log €>.

Proof. By Theorems 4.3 and 44, O ((6 + 1)? eflploga 20+ (1=p) logz 2(1-p)) Iy E)
+06 (2(Paalog€) chromosomes, where 0 < p < % is a constant, are sufficient
of have a chromosome in the population with number of schemas of order 1 that
shares with the global optimum is greater than or equal to |[(1 — p)¢| and another
chromosome that can recombine with the previous chromosome to reach the global
optimum with probability of 1 — © (¢~%). Since e (a5 losz 5 +(1-1p ) lom2 2(1-35)) < oi5¢
and O ((6 + 1) ellploga 20+ (1=p) logz 2(1-p)) Iy €) increases as p increases, whereas

(2“’5 alog E) decreases as p increases, p such that balances between the asymptotic
orders of O(( + 1) eflplogz 20+ (1= p)1°g22(1_p))ocln€> and @(Z[pﬂalogé) would be
smaller than %, meaning the minimal population size required for binary-encoded
selecto-recombinative GAs using OM with a 1-composite oracle to have a success
probability of 1 — © (¢=%), where / is the chromsome length and « is a positive constant
is O (2%a10g E). Since 1-compoiste oracle is a restricted oracle, the upper bound of
population size derived for 1-composite oracle is also an upper bound for an oracle under

the same condition and the theorem statement holds.

O

Theorem 4.5 gives an upper bound of supply. Since the bound can be applied to any
problem in the worst case scenario and is still exponential to the chromosome length, the
tightness of the bound can be challenged. An example type of problem is presented here
to show that Theorem 4.5 is fairly tight. Consider a maximization problem with its fitness
function being a special case of deceptive-trap function (Deb and Goldberg, 1993), which

can be written as follows.

I
~

1 if $/20 1 {wy =1}
0.9 (g,l,zf;ol ﬂ{xmzl}) ’

v else

[ () =
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where x is a chromosome, and 1 is the indicator function. Figure 4.3(a) gives an illus-
tration for the fitness function. The function is designed such that a chromosome can
only lower the hamming distance to the optimal solution by having all the non-optimal
genes replaced in one donation. This property ensures that given a population, either a
1-composite oracle can optimize in one donation or selecto-recombinative GAs using OM
can not reach the optimal solution using this population.

On the other hand, there are cases such as maximizing onemax problem or maximizing
needle in a haystack problem that a 1-composite oracle with a population of size logarithm
of the chromosome length is sufficient to guarantee a success probability required. Let «
be a chromosome, the fitness functions of onemax problem or needle in a haystack problem

are:

/-1

fONEMAX (a:) :Zﬂ {x[i] _ 1}’

1=0

fNEEDLE (.’15) =1 {.’B — CU*},

where 1 is the indicator function, and x* is the global optimum. Onemax problem can be
viewed as maximizing the number of 1s in the chromosome whereas needle in a haystack
problem aims to find the optimum with no information given from the problem. Fig-
ures 4.3(b) and 4.3(c) gives an illustration for both problems.

Based on the properties of the problems, the following theorems hold:

Theorem 4.6. The population size required for binary-encoded selecto-recombinative
GAs using OM with an oracle to solve a one max problem with a success probability of

1 —© (%), where { is the chromosome length and o is a positive constant, is O («log ().

Proof. Since the lower bound is derived in Theorem 3.7, only the upper bound need to
be derived. Consider the following strategy: randomly pick a chromosome in the popu-
lation and change each bit to 1 one bit at a time using OM until the chromosome reaches

the global optimum. Since increasing the number of 1s will not worsen the fitness of
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(a) Deceptive-trap function (b) Onemax problem (c) Needle in a haystack problem

Figure 4.3: Illustrarion of the landscapes that 1-composite oracles can solve. Figure 4.3(a)
i1s a 5-bit deceptive-trap function, Figure 4.3(b) is a 6-bit onemax function, and Fig-

ure 4.3(c) is a 3-bit needle in a haystack problem with the optimal solution =* = 100.

the chromosome, each move will be accepted. Also, this process can be done using a 1-
composite oracle with maximal size of the mask being one. Therefore, by Theorem 4.3,
O (alog ¢) chromosomes are sufficient for binary-encoded selecto-recombinative GAs us-
ing OM with a 1-composite oracle to have a success probability of 1 — O (¢~%). Since
a 1-composite oracle is a more restricted oracle, the oppulation size for binary-encoded
selecto-recombinative GAs using OM with an oracle to solve a one max problem with a
success probability of 1 — © (¢7%) is O («log ¢). Thus, the population size required for
binary-encoded selecto-recombinative GAs using OM with an oracle to solve a one max
problem with a success probability of 1 — © (¢/~%), where ¢ is the chromosome length and

« is a positive constant, is © («log ¢). O

Theorem 4.7. The population size required for binary-encoded selecto-recombinative
GAs using OM with an oracle to solve a needle in a haystack problem sith a success

probability of 1 — © ({~%), where { is the chromosome length and « is a positive constant.

Proof. Since the lower bound is derived in Theorem 3.7, only the upper bound need to
be derived. Consider the following strategy: randomly pick a chromosome in the pop-
ulation and change each bit to be the same the one of the global optimum one bit at a
time using OM until the chromosome reaches the global optimum. Since increasing the
number of 1s will not worsen the fitness of the chromosome, each move will be accepted.

Also, this process can be done using a 1-composite oracle with maximal size of the mask
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being one. Therefore, by Theorem 4.3, © (« log ¢) chromosomes are sufficient for binary-
encoded selecto-recombinative GAs using OM with a 1-composite oracle to have a suc-
cess probability of 1 — © (¢~*). Since a 1-composite oracle is a more restricted oracle,
the oppulation size for binary-encoded selecto-recombinative GAs using OM with an or-
acle to solve a needle in a haystack problem with a success probability of 1 — © (/7%) is
O (alog ¢). Thus, the population size required for binary-encoded selecto-recombinative
GAs using OM with an oracle to solve a needle in a haystack problem with a success prob-
ability of 1 — © (%), where £ is the chromosome length and « is a positive constant, is

O (alog?). N

4.2 General case for c-composite oracles

In the previous section, bounds on the population when using a 1-composite oracle, which
is a specific case, are derived. In this section, the general cases are discussed. For a 1-
composite oracle, the oracle is forced to have donors only donate bits the same as the
ones of optimal solution. However, in Theorem 4.3, the goal is equivalent to gathering
designated non-overlapping schemas parallelly with maximum length . This equivalence

is useful when discussing the general case.

Theorem 4.8. For positive constant «, the population size for solving a chromosome with
length of { for binary-encoded GAs using OM with a c-composite oracle with the largest

mask with size r with a success probability of 1 — Q ({=%) is Q (2"alog ().

Proof. Suppose V ¢ > {,, where ¢ is a constant, the required success probability is

bounded below by 1 — 7i, where 7, is a positive constant. By Theorem 4.3, the pop-

ulation size required for gathering designated schemas parallelly with maximum length

of x and total length of all the schemas is less than or equal to ¢ with a success proba-

+ —
bility bounded between 1 — %% and 1 — 7%, where 7, > 7j are positive constants, is
© (2"« log ¢). Because of that, we can have a lower bound of order §2 (2"« log £), since
the total requirement for a c-composite oracle is at most having designated schemas par-

allelly with maximum length x and total length of all the schemas is less than or equal to
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¢ on c different chromosomes instead of 1 chromosome. Ol

Theorem 4.9. For positive constants o, and o, the population size for solving a chromo-
some with length of { for binary-encoded GAs using OM with a c-composite oracle, where
c is O (0*2), with the largest mask with size k with a success probability of 1 — O ({~*")

is O (2" (aq + ag) log?).

Proof. Suppose V ¢ > {,, where ¢ is a constant, the required success probability is
bounded above by 1 — 7%, where 7, is a positive constant and c is upper bounded by
n2l*?, where 1, is a positive constant. By Theorem 4.3, the population size required for
gathering designated schemas parallelly with maximum length of x and total length of
all the schemas is less than or equal to ¢ with a success probability bounded above by
1 — s&fa5, where 73 is a positive constant, is O (2" (a1 + ay)log£). Taking 13 = Z—;,
by union bound, O (2% (ay + az) log ) chromosomes are enough to guarantee solving a
chromosome with length of £ using a binary-encoded GA with OM with a c-composite or-
acle with longest segment with length of x with the success probability bounded above by
1 — 7% . Thus, for positive constants ; and s, the population size for solving a chromo-
some with length of ¢ for binary-encoded GAs using OM with a c-composite oracle, where

¢ is O (£*2), with the largest mask with size k with a success probability of 1 — O (/=)

is O (¢2" (a1 + az) log ¢). O

The asymptotic bounds derived in Theorems 4.8 and 4.9 do not match generally. How-

ever, when c is constant, tight bound exists.

Theorem 4.10. For positive constants o and c, the population size for solving a chromo-
some with length of { for binary-encoded GAs using OM with a c-composite oracle with

the largest mask with size k with a success probability of 1 — O (%) is © (2"alog ().
Proof. The result can be directly inferred from Theorems 4.8 and 4.9. [

To verify the derivations, the success probability of solving a random chromosome
with length of ¢ with largest mask with size k = 5 for a binary-encoded GA using OM

with a c-composite oracle is simulated (Liao et al., 2019). The experiments are conducted
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Figure 4.4: Experiments on the success probability of c-composite oracles. In both Fig-
ures 4.4(a) and 4.4(b), dots are the averages over one million independent trials of whether
[25+11g ] — 100 chromosomes are enough to solve chromosome with length of ¢ with
the largest mask size k = 5 for a GA OM with a c-composite oracle with 95% confi-
dence interval added versus ¢ for ¢ = 2 and 5 respectively, whereas the crosses are the
ones of |27 1g ¢] — 50 chromosomes with 95% confidence interval added versus ¢. Maxi-
mum one-sided intervals are 0.0008 and 0.0009 respectively. Black dots show the success

probability of 1 — % for each /.

on ¢ = 2" fori = 3 to 11 for ¢ = 2,5 respectively. Each bit of a chromosome is de-
termined using Bernoulli distribution with % being the probability of success. Partition is
also determined at random. Without loss of generality, we assume the optimal solution is
the chromosome with all 1s. Success probabilities with population size [25+11g ¢] — 100
and [2%1g¢| — 50 are estimated using the average over one million independent trials.

Experiment result is shown in Figure 4.4 and Theorem 4.10 agrees with it.
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Chapter 5

Results with Problems with Ring

Topologies

In Chapters 3 and 4, except Theorems 4.6 and 4.7, the derived bounds are all problem
structure independent. Thus, in this chapter, bounds on the populaiton size in some special

problem structures are derived.

5.1 Ring topology and reduction

This section focuses on problems with ring topology. To be more specific, only a small
group of NK landscape problems defined by Pelikan et al. (2009) with step size equals
to k is focused. Let x be a chromosome and F ;1) be a homogeneous overlapping FOS,
and x,; be the part of x indicated by a mask M, the fitness function "¢ is defined as

follows.

@)= >0 S ()

MeF i1y

Figure 5.1 gives a illistration of the ring topology. Ring topology is chosen to be exam-
ined becacuse it is homogeneous. However, to make each bit really being homogeneous,
no difference between whether one bit will be used in two sub-functions or in just one sub-

function should exist. Thus, define the reduced problem with chromosomes with length
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Figure 5.1: An illustration of the ring topology focused in this thesis with ¢/ = 30 and

k = 5. Each ellipse represents a sub-function. Each circle represents a bit.

of % and with fitness function freduced-ring:

£
£

freduced-ring (y> — Z fisub-reduce <ym7 y[z]GBﬁ[l]) ,
1=0

where y = <ym), in which: € G L Yl = Tlkdel) and for maximation problems,
fisub—reduce (y[zb yhkﬁﬁ[”) is

sub-ring

max il Lfi- ey L[i y Yli )
oo inax i (yu -kl (2 liklelhs Y1 1@£[11)

while for minimation problems, fsub-reduce (y[i], OEY [1]> is
3

. sub-ring
min i (y[ib Tlikel2], - Tiklolk) Yile g [1]) -

Tli-kl@ (2] Llikl@ K]

Figure 5.2 is an illustration of the reduction. As shown in the figure, no bits belonging
to only one sub-function is in the reduced problem. Also, each sub-function consists of

two bits. Based on the reduction, the following theorem can be derived:

Theorem 5.1. For a problem with chromosomes with length of {, fitness function "¢ and
the corresponding reduced problem having fitness function fre%ed'i8 sunnose for binary-

encoded selecto-recombinative GAs using OM, solving frecedring ywith a c-composite or-
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fring:

freduced—ring .

Figure 5.2: Illustration of problem reduction. Each ellipse represents a sub-function. Each
solid circle represents a shared bit between the original problem and the reduced problem,

whereas a hollow circle represents a reduced bit.

acle with a success probability of 1 — © ({~%), where « is a positive constant, needs popu-
lation size of order O (n). Then, population size for solving a chromosome with length of
¢ for binary-encoded GAs using OM with a c-composite oracle with a success probability

of 1 —© ((~*)is O (2’“ (alogl+ k) + n)

Proof. ‘ For k = 0, the reduced problem is the same as the original problem. Thus, popu-
lation size of order O (n) is enough for the original problem to have a success probability
of 1 — O (£~2).

For k > 1, consider all the bits used in f™¢ but being reduced in freduced-ring _ Since they

£

can form .

non-overlapping segments of length £ — 1 and changing the middle k£ — 1 bits
in a sub-function into its local optimum does not destroy any bits used in two f*>""Eg,
if provided with all the schemas for the non-overlapping segments, with the aid of the

oracle, the solving process can be extended from the one of solving freduced-ring yging O (n)
chromosomes.

Since O (n) chromosomes can guarantee a success probability of 1 — © (£7%), to
guarantee the whole solving process having a success probability at least 1 — © (£7%),
the probability of not providing all the non-overlapping schemas for all the é segments
should be O (¢~°). By the result derived by Goldberg et al. (2001), this can be done with
0 (2’“ (alog ¢ + k)) chromosomes. Thus, population size for solving a chromosome with
length of ¢ using a binary-encoded selecto-recombinative GA using OM with a success
probability of 1 — © (¢7%) is O (2" (alog € + k) +n). O
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5.2 Tight bounds on population size

Theorem 5.1 forms a relationship between the population size before and after the reduc-
tion. As long as £ is a constant, the difference between the bound for the problem before
reduction and the one after the reduction would be at most at the order of log ¢, which
is acceptable in practice. Therefore, the following context focused on problems with the

following form:

fhomo-ring () — 5 frub-homo-ring () (5.1

ME-F(Q)

where Fy) is a homogeneous overlapping FOS and x), is the part of x indicated by a
mask M. To know more about problems with fitness functions of the same form as in
Equation 5.1, the relationship between the optimal solution and the non-optimal ones is

investigated.

Lemma 5.2. A problem with its fitness function of the same form as in Equation 5.1 has
optimal substructure property in the following form: for a consecutive segment, the seg-
ment of the golbal optimum is the optimal segment, given the bits before and after are the

sames as the ones of the global optimum.

Proof. Without loss of generality, assume the problem is a maximization problem. Let

*

x* = (2];), where [i] € Gy, be the optimal solution and the fitness function be f. Suppose

*

x is a chromosome such that zj;,) = x7; |

*

and zp;,) = L0 where 7; < i5.

Case 1. Ifi; = 14y, consider the set of chromosomes C,;, = {y

Yliy) = l‘[il]}. Since
x* € Cyip, if (2] 01, T aapr - - - Tiyee—1y)) 1 nOt the optimal substructure, then there

exists ¢ € Cy., such that f (a:/) is better than f (x*), which is a contradiction.

Case 2. If iy + 1 = 19, using similar technique in Case 1., consider the set

of chromosomes Cg;, ., = {y

Ylin] = Tliy]s Ylia) = x[iQ]}. Since =* € Cm,il,izs if
(T, 02 Twa)s - - -+ Tlw(e—1y) 1S not the optimal substructure, then there exists x €

Cl.iy.ip Such that f (m/) is better than f (z*), which is a contradiction.
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Case 3. If iy + 1 < iy, define index sets M;, ;, = (ili; <i <iy) and M;, 4 =

11,12

(ig® 1,i9®2,...,i5 @ (iy — iz + £ — 1)). Consider the set of chromosomes Cy 57, , =

A RD)

{y‘v i € M;, i, U{in,do}, yp = 5’7[2‘}}- If the optimal substructure of the index set 1/;, ;, is
not <$E1@1]7$f§1@2p T 7x>[kil€B(i2—i1—1)]>’ suppose it is <$[i1@1]>$[i1@2p T 75’3[2‘1@(1'2—1'1_1)]%

then if the problem is a maximization problem,

i9—2
’
fil’ileel (xril]’$[i1®1])+fi291’i2( [izo1]? $[7«2] : : fl LGD]‘ xll@l § fL iP1 xz w[lﬂ?l])
i=11+1 zEM P
ig—2
<finiror (T Tien) + faori (e ehy) + D fuier (¢ 7hen) E: Fiier (% Tign)
i=i1+1 V€M iy

:f (w*) k)

which is a contradiction. Similar result happens when the problem is a minimization prob-
lem. Thus, given xj;,; = x’["il] and zp;,) = xfiz], the optimal substructure of the index set
M;, i, 18 (mi‘il@l], Th @) - - 7$E1@(i2—z‘1—1)]>' For the same reason, given xj;,) = z7;; and
2[i,) = ¥f;,;, the optimal substructure of the index set M;, i, is (27,017, Tl - - - » Lina(is —int0-1)])-

Therefore, a problem with its fitness function of the same form as in Equation 5.1 has op-

timal substructure property. [

Based on optimal substructure property, the following theorem holds.

Theorem 5.3. Population size required for binary-encoded GAs using OM with an oracle
to solve a problem with its fitness function of the same form as in Equation 5.1 with a
success probability of 1 — © ({~%), where { is the chromosome length and « is a positive

constant, is © (alog ().

Proof. Th process that Figure 5.4 conducts gives an intuition that leads to the proof. Con-
sider optimizing a 6-bit problem with the population shown in Figure 5.3(b) and global
optimum being the chromosomes with all 1s. Since the probelm has optimal substructure
property, if there exists schemas of order 2 that in the bits within are the bits before and
after a consecutive bits of a chromosome which have alleles the same as the ones of the

global optimum in the problem structure, then the consecutive segment can be donated to

11 doi:10.6342/NTU201902839



form a larger consecutive segment. For example, in Figure 5.3(c), the global optimum is
the chromomsome with all 1s, and the bits with index 1 and 3 of chromosome b encloses
the bit with index 2 of chromsome a. Thus, chromosome a can donote the bit with index
2 to chromosome b, and the result shows in Figure 5.3(d), where chromosome b has a
schema of order 3 that the global optimum has. If the condition can be fulfilled contin-
uously, the global optimum can be achieved by enlarging the number of the consecutive
bits of a chromosome which have alleles the same as the ones of the global optimum, such

as the operations shown from Figures 5.3(c) to Figure 5.3(h).
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(a) Problem structure
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Figure 5.4: Illustration of a process that gives an intuition that leads to the proof of Theo-
rem 5.3. Figure 5.3(a) shows the problem structure of a 6-bit problem with fitness function
of the same form as the one in Equation 5.1, where a circle means a bit with the number
inside the circle representing its index , each rounded rectangle represents a sub-function,
and the global optimum is the chromosome with all 1s. Figure 5.3(b) shows the initialized
population, where each row represents a chromosome, and the number on each column
indicates the index. Figures 5.3(c) to 5.3(h) shows a process of making chromosome d
become the global optimum. The arrows in Figures 5.3(c), 5.3(e), and 5.3(g) means the
bits donated from donor to the receiver, and Figures 5.3(d), 5.3(f), and 5.3(h) are the popu-
lations after the donations in Figures 5.3(¢c), 5.3(e), and 5.3(g) happens, respectively, with

circles filled with grey identifying bits being donated.

Based on the intuition, Algorithm 1 is designed. Even though the overall process can
not be guide by a 1-composite oracle, the overall requirement that Algorithm 1 can be
conducted is having disjoint designated schemas of order at most 2 and total length of all
the schemas is less than or equal to ¢, and by Theorem 4.3, a population with © (« log /)
chromosomes can guarantee a sequence of donations described in the last paragraph that
leads to global optimum from a single bit having the same allele as the one of the global
optimum at the corresponding locus with probability 1 — © (£~%), where « is a positive
constant. Therefore, population size required for binary-encoded GAs using OM with an
oracle to solve a problem with its fitness function of the same form as in Equation 5.1
with a success probability of 1 — O (£~%), where £ is the chromosome length and « is a
positive constant, is O («log ¢). By combining the result with Theorem 3.7, the proof is

compelete.

Since in the proof of Theoerm 5.3, not only the population size but also how to reach
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Input Chromosomes x' to azfg], where, ' = (xfj]>, in which 1 € {1, 2,4 |

N
il
Al

and [j] € Gy, and Vi € {1, 2,...,[] } T = Theyp and T oy = Ty
where x* is the global optimum.
begin
fori< 1to[i] —1by1do
Choose ! as donor and ! as receiver, and donate mask
L {0,1,....i—1}u{1el,182,...,16i}.
Output =*
Algorithm 1: Process for reaching the global optimum.

the global optimum with sufficient number of chromosomes are specified. Thus, the nFE

can be bounded.

Theorem 5.4. With a probability of 1—O ({~%), where { is the chromosome length and « is
a positive constant, for binary-encoded GAs using OM with an oracle to solve a problem

with its fitness function of the same form as in Equation 5.1 with population size being

O (alog?), the nFE is O ().

Proof. In the proof of Theorem 5.3, it is showed that © (a log /) chromosomes are suffi-
cient for binary-encoded GAs using OM with an oracle to solve a problem with its fitness
function of the same form as in Equation 5.1 with a success probability of 1 — © ({~°)
using a sequence of donations after which the number of a certain consecutive bits of a
chromosome which have alleles the same as the ones of the global optimum is enlarged.
Since the number of bits is strictly increasing with the number of donations, the number is
upper bounded by ¢, the nFE is O (number of donation made), and only one specific case
is discussed, with a probability of 1 — O (£~°), where ¢ is the chromosome length and « is
a positive constant, for binary-encoded GAs using OM with an oracle to solve a problem
with its fitness function of the same form as in Equation 5.1 with population size being

O (alog?), the nFE is O (¢).
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Chapter 6

Results with Problems beyond Ring

Topologies

In Chapter 5, bounds on the population size for binary-encoded GAs using OM with an
oracle to solve problems with fitness functions of the same form as in Equation 5.1 are
derived. However, the problems discussed are very restricted, and not all problems in
practice have that kind of fitness functions. Thus, in this chapter, bounds on the popula-
tion size for binary-encoded GAs using OM with an oracle to solve problems with less

restricted fitness functions, though may not be as tight, are derived.

6.1 Layered structure

In the proof of Theorem 5.3, only the optimal substructure property proved in Lemma 5.2
is needed and one can reach the optimum by lengthening an optimal segment. In order to
discuss a more generalized optimal substructure property, the layered structure of a fitness

function and problem is defined.

Definition 6.1. layered sturcture: A fitness function f of a problem can be viewed as a
layered structure of X layers if there exists a disjoint FOS (M*, M?,--.  M?*) with M’
being a non-empty mask ¥ i € {1,2,--- A} satisfyingV i € {1,2,--- A}, exist func-
tions g; and h; such that f (x) = g; (:vuélej) + h; (acu;_:iMj> where x = (x14) is a
chromosome, and x ) is the part of x indicated by a mask M.
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(b) Layered structure of the problem (c) Layered structure of the problem

Figure 6.1: Example of the layered structure. Figure 6.1(a) shows an illustration of the fit-
ness function of a 6-bit problem. The fitness function is the summation of 6 sub-functions.
Each circle represents a bit with its index inside, and each ellipse represents a sub-function.
Figures 6.1(b) and 6.1(c) show two layered structures that the fitness function in Fig-
ure 6.1(a) can be viewed as. The indexes of the bits in the same colored region belong to

the same mask.

Figure 6.1 gives an example of a 6-bit problem having a layered structure of 3 layers.
Note that a fitness function can be viewed as multiple layered structures. For example,
the fitness function in Figure 6.1(a) can also be viewed as layered structures shown in
Figures 6.1(b) and 6.1(c). This example also shows that a fitness function of the same form
as in Equation 5.1 can be viewed as a layered structure of (%W layers with the FOS of the
layered structure being the sequence of masks used to reach the global optimum in the way
used in the proof of Theorem 5.3. This means that the layered structure preserves some
property desired, and the optimal substructure property for the layered structure is derived
in the following theorem to derive bounds on the population size for binary-encoded GAs
using OM with an oracle to solve problems with fitness functions with more generalized

structure.
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Theorem 6.2. A problem with its fitness function can be viewed as a layered structure of
A layers with FOS F = (M*', M?,--- | M*)and functions g; and h; such that f (x) =
gi (wU;ZIMj) + h; (wu?:iMj) where x = <x[s]> is a chromosome, and x y; is the part of
x indicated by a mask M has optimal substructure property in the following form: Yi €
{1,2,- -+, A}, for any chromosome y if y \: = @y, where x* = (x}y) is the optimal solu-
tion, then if the porblem is a maximization problem then :1:3;-_ i € argmaxyu§=1hlj Ji (yu;-:1 Mj>
and azz?:iMj € argmaXyU?:iMj h; (yU?:iMj), and if the porblem is a minimization problem

* 3 . X * 3 ) X
then Thi_ i € argmin,, e i (yU;ZIMJ) andx’, ,.; € argmin, - hi (yU?:iM]).
J= Jj=1

Proof. 1If the problem is a maximization problem and suppose a:’@;-,_:l vi 2

argmaxyuéilw Ji (ij-:l M]-). If the chromosome y* = (y[5]> satisifes Yoo i = T s
and Yoi_,ms € argmaxyu;_:lm Ji (yU;:IMj), then
") = f (@)
(0 )+ 0) ~ 0 ) 5 (0)
=9 (yZ;:_le) — 9 (wC;_le) + hi <yz;iMj) —hi (xz;iMj)
=9i (yu;‘_le) — Gi (xu;ile)
>0.
This violates the assumption that x* is the optimal solution. Thus, =, ,,, €
j=1

argmax, . i (yU§:1 Mj). The rest of the parts of the theorem can be proved in the
j=1
similar way.

]

Based on the results derived above, the upper bound on the population size for binary-
encoded GAs using OM with an oracle to solve problems with fitness functions that can

be viewed as a layered structure is derived.

Theorem 6.3. The population size required for binary-encoded GAs using OM with an

oracle to solve a problem with its fitness function that can be viewed as a layered structure
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of \ layers with FOS F = (M, M?, - . | M*) with a success probability of 1 — © (£=%),

M A £> ’

where { is the chromosome length and « is a positive constant, is O <o¢2maxi

where | M | denotes the number of elements in M.

Proof. For i € {1,2,---,\}, if there exists chromosomes @' = (z{;) such that
x',; = T, where x* = (:cfs]> is the global optimmum, x,; is the part of x indi-
cated by a mask M, and all z’s do not need to be disjoint, then the global optimum
can be reached by Algorithm 2. The condition of the previous algorithm is gathering

all the non-overlapping schemas of order |M!] | |M?|,--- |

M ’\‘ respectively. By Theo-

rem4.3,0 ((a 4 1) Qmaxi M i log €> chromosomes are enough to guarantee the condition
be fulfilled with a probability of 1 — © (£~>~1). Since « is a constant, by applying union
bound, the population size required for binary-encoded GAs using OM with an oracle to
solve a problem with its fitness function that can be viewed as a layered structure of A

layers with FOS F = (M?!, M?, ...  M*) with a success probability of 1 — © (£~%) is
O (a2maxi M| log E).

begin
fori< 1toA—1byldo ‘ '
L Choose « as donor and '+ as receiver, and donate mask U’_, M.

Output z*
Algorithm 2: Process for reaching the global optimum.

]

Theorem 6.4. With a probability of 1 — O ({~%), where { is the chromosome length and
« is a positive constant, for binary-encoded GAs using OM with an oracle to solve a

problem with its fitness function that can be viewed as a layered structure of )\ layers with

FOS F = (M, M?,--- | M) with population size being O (anaXi | log E), the nFE

is O(M\).

Proof. In the proof of Theorem 6.3, it is showed that O (a?ma"i M| log €> chromosomes
are sufficient for binary-encoded GAs using OM with an oracle to solve a problem with
its fitness functionthat can be viewed as a layered structure of A\ layers with FOS F =

(M, M?,---  M?) with a success probability of 1 — © (¢~%) using Algorithm 2. Since
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the number of bits is strictly increasing with the number of donations, the number is upper
bounded by ¢, and the nFE is O (number of donation made) if using an oracle. Since a
larger population only increases the success probability, with a probability of 1 — O (¢~ %),
where ( is the chromosome length and « is a positive constant, for binary-encoded GAs
using OM with an oracle to solve a problem with its fitness function that can be viewed

as a layered structure of \ layers with FOS F = (M*, M? ..., M*) with population size

being O (anaXi | log E) , the nFE is O ().

Theorem 6.3 states an upper bound on the population size required for binary-encoded
GAs using OM with an oracle to have a success rate of 1 — © (£~%). In the following sec-
tions, to show its applicability to real cases, some fitness functions with specific topologies

are discussed. To begin with, fitness functions with torus topologies are discussed.

6.2 Results on torus topologies

In this section, fitness functions with torus topologies are focused. To begin with, in this
section, / = r¢, where r,d € Z7T. Also, re-define a chromosome = = <$[i1},[iz},...,[id]>a

where [i1], [i2], ..., [id € G, X G, X -+ X G,, a fitness function with a torus topology

d
of dimension d, so called a d-torus, of radius r, f°%" is defined as follows:

r—1 r—1 r—1 d
orus,d,r _ sub-torus
ft (w> - Z Z T Z il,igt.‘.,id,j ('T[il]7[i2],..-7[id}7 x[il],...[i]'_l],[iﬂ@r[1},[’L‘j+1]7-.-7[id]) .
11=01i2=0 iq=0j=1

(6.1)

Figure 6.2 shows an example of a torus topology of 2-torus of radius 12, where each in-
tersection of line segments is a bit, and each line segment between two bits represents a
sub-function. Torus is the first topology to be discussed because, by definition, a fitness
function of the same form as in Equation 5.1 is a fitness function with a torus topology
of dimension 1 of radius ¢, meaning that a torus topology is a generalized case for a ring

topology. Since Theorem 6.3 states that the upper bound of the population size is exponen-
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Figure 6.2: Example of a torus topology. The figure is a 2-torus of radius 12, where each
intersection of line segments is a bit, and each line segment between two bits represents a

sub-function.

tial to the size of the mask with the largest number of elements in the FOS of the layered
structure, the next to be answered is: What kind of layered structure a fitness function of
the same form as in Equation 6.1 should be viewed as in order to have a small maximal
size in the FOS? In the following, a layered structure is discussed based on the FOS used
in a ring topology. In Figure 6.1(b), how a 1-torus of radius 6 can be separated into a
layered structure is shown. For a fitness function with a topology of a d-torus of radius 7,
if the same method can be applied along one axis, then a fitness function with a topology
of a d-torus of radius r can be viewed as a layered structure of [ %] layers with a maximal
size in the FOS being 2r?~!. Figure 6.3 shows an example of how it can be applied on a

2-torus. Based on this intuition, the following theorems are derived.

Theorem 6.5. The population size required for binary-encoded GAs using OM with an
oracle to solve a problem with fitness function of the same form as in Equation 6.1 with a
success probability of 1 — © (%), where { is the chromosome length and « is a positive

d—1
constant, is O (a22£ * log E).

Proof. Consider the following FOS F = (M' M? --. MI3l), where M! =
{[j IR [jd]‘ Hjl - %‘ + 1J = z} A fitness function of the same form as in Equa-
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tion 6.1 can be viewed as a layered structure of [ ] layers with FOS F and Vi < [5],

b-
DRSS s orts o (Tl osfsals Tlos)n b srlr U fiosilonlod])

DD ot it (Tlordosfoals lorhwfor- 1l Wil 5

0<s1<| S5t -(i-1) | -2

V[EFE G- | +1<si<r—1,
0<s2,...,5q<r—1, 1<t<d

where x is a chromosome, and ), is the part of @ indicated by a mask M. grz1 () =

3
forser (z), and hrzp = 0 for all inputs. The maximum size of M* in F is 2r*! =
1 _
2 (rd) T =T By applying Theorem 6.3, the population size required for binary-
encoded GAs using OM with an oracle to solve a problem with fitness function of the

same form as in Equation 6.1 with a success probability of 1 — © (/~%), where ¢ is the

d—1
chromosome length and « is a positive constant, is O (042% ¢ log €>. [

Theorem 6.6. With a probability of 1 — O (%), where { is the chromosome length and
« is a positive constant, for binary-encoded GAs using OM with an oracle to solve a

problem with fitness function of the same form as in Equation 6.1 with population size

d—1
being O (0422Z * log E), the nFE is O ((%})

Proof. The result can be directly inferred from Theorems 6.4 and 6.5. [
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(a) A 2-torus of radius 5.

(b) Planar representation of Figure 6.3(a). (c) Layered structure of Figure 6.3(b).

Figure 6.3: Example of forming a layered structure from a torus topology. Figure 6.3(a)
is an illustration of a fitness function with a topology of a 2-torus of radius 5, where each
black circle represents a bit and each line segment between two circles represents a sub-
function. Figure 6.3(b) is the planar representation of Figure 6.3(a), where the two arrows
on the same line mean that the two line segments are connected and belong to the same sub-
function. Figure 6.3(c) shows a layered structure that the fitness function in Figure 6.3(a)
can be viewed as. The indexes of the bits in the same colored region belong to the same

mask.
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6.3 Results on hypercube topologies

Torus topologies discussed in the last section is the generalization of ring topologies dis-
cussed in Chapter 5. However, the homogeneity that torus topologies hold makes the vi-
sualization or imagination more difficult, let alone discussing layered structures on them.
Thus, in this section, fitness functions with hypercubic topologies that have something
in common with torus topologies but break down the homogeneity are focused. To be-
gin with, in this section, / = (r + 1)d, where r,d € Z*. Also, re-define a chromo-

-----

some © = <x[i1}7[i2} [id]>, where [i1], [ia] ..., [ia] € Gri1 X Gyyq X -+ X Gyyy, a fit-

d
ness function with a hypercubic topology of dimension d, so-called a d-cube, of radius r,

feubedr s defined as follows:

cube,d,r _ . sub-cube L ) ) ) ) ) )

P () = NS e () ol il Tl iyt (] fi])
0<i41,i2,..,0g <7,
GEQL2,nd)s iy #r

(6.2)

Figure 6.4 shows an example of a hypercube topology of a 3-cube of radius 10, where

Figure 6.4: Example of a hypercube topology. The figure is a 3-cube of radius 10, where
each intersection of line segments is a bit, and each line segment between two bits repre-

sents a sub-function.
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each intersection of line segments is a bit, and each line segment between two bits rep-
resents a sub-function. The main difference between Equations 6.2 and 6.1 is that the
sub-functions in Equation 6.2 do not form any cycle along one axis, meaning that there
is no homogeneity within fitness functions of the same form as in Equation 6.2. In Fig-
ures 6.1(b) and 6.3, how can a torus be separated into a layered structure by separating
along one axis is demonstrated. By applying a similar technique to hypercubes, a fitness
function with a topology of a d-cube of radius r can be viewed as a layered structure of
r + 1 layers with a maximal size in the FOS being 7~!. Figure 6.5 shows an example
of how it can be applied to a 3-cube. Based on this intuition, the following theorems are

derived.

(a) A 3-torus of radius 3. (b) Layered structure of Figure 6.5(a).

Figure 6.5: Example of forming a layered structure from a hypercube topology. Fig-
ure 6.5(a) is an illustration of a fitness function with a topology of a 3-cube of radius 3,
where each intersection of line segments is a bit, and each line segment between two bits
represents a sub-function. Figure 6.5(b) shows a layered structure that the fitness func-
tion in Figure 6.5(a) can be viewed as. The indexes of the bits in the same colored region

belong to the same mask.

Theorem 6.7. The population size required for binary-encoded GAs using OM with an
oracle to solve a problem with fitness function of the same form as in Equation 6.2 with a

success probability of 1 — © (%), where { is the chromosome length and « is a positive

d—1
constant, is O (QQZ ¢ log €>.
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Proof. Consider the following FOS F = (M! M? --- M™1), where M! =
{l71]; [j2] s - - - [Jallj1 = @ — 1}. A fitness function of the same form as in Equation 6.1

can be viewed as a layered structure of r + 1 layers with FOS F with

sub-cube
gi (-'Buz.lej)— S Y et (Bl st el (1o fsa])
0<s1<5—1,
0<s2,...,84<r,
te{1,2,...,d}, si#r

and

b-cub:
hi (%;QM]): S e (Tortlsads Tlothonforoablsdr s (Ll )l

j<si<r,
0<s2,...,84<r,
te{1,2,...,d}, si#r

where x is a chromosome, and x,; is the part of & indicated by a mask M. The maxi-
1 .

mum size of M’ in Fis (r+ 1) = ((7" + l)d) T =T By applying Theorem 6.3,

the population size required for binary-encoded GAs using OM with an oracle to solve a

problem with fitness function of the same form as in Equation 6.1 with a success proba-

bility of 1 — © (¢~%), where ¢ is the chromosome length and « is a positive constant, is

d—1
@) (Oz2£ ¢ logﬁ). O

Theorem 6.8. With a probability of 1 — O ({~%), where { is the chromosome length and
« is a positive constant, for binary-encoded GAs using OM with an oracle to solve a

problem with fitness function of the same form as in Equation 6.2 with population size

d—1
being O (a?g “ log 6), the nFE is O (r + 1).
Proof. The result can be directly inferred from Theorems 6.4 and 6.7. O

Theorems 6.5 and 6.7 derive bound on the population size required for binary-encoded
GAs using OM with an oracle to solve a problem with fitness function of the same form
as in Equation 6.1 and in Equation 6.2 respectively. The only difference between the
topologies is homogeneity. However, the order of the upper bound can be reduced to nearly

half. Also, for more complicated problem structures that result in a higher dimension of
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certain structures or topologies, the upper bound will be closer to the exponential of the

chromosome length, and this phenomenon fits the intuition.

6.4 Results on small-world topologies

In Sections 6.2 and 6.3, upper bounds on the number of chromosomes required for binary-
encoded GAs using OM with an oracle to solve a problem with torus or hypercube topol-
ogy is derived. However, in both cases, for d > 2, the population size required is greater
than the nFE needed, meaning that one will initialize a chromosome and use it without
knowing the fitness of the chromosome. This is possible for a GA when using an ora-
cle, but not in practical use. Also, in 2-D Ising spin-glass problems, which have two-
dimensional torus structures, the derived bound is sub-exponential. However, in practice,
the population size required need not be as large, meaning the derived bounds are still
loose. Thus, in this section, bounds on the population size required for binary-encoded
GAs using OM with an oracle to solve a problem with small-world topologies, a class of
modified ring topologies, are estimated to find results more applicable in practice. To be-
gin with, a fitness function with small-world topology of size £ with ¢ bridges, fsmall-world:t.e

is defined as follows:

-1 1—1
small-world,?,. _ sub-small-world sub-small-world
/ (x) = Z i (x[i]xm@m) + D fors (x[sj,l]x[sj’ﬂ) , (6.3)
1=0 j=0

whereV j € {0,...,0— 1}, 551 < Sj2/ASj1 # Sj2P1ASj1 # 55201 ,and (85, 1, Sj,.2) #
(8jo.1,Sja2) if 71 # J2 ¥ j1,j2 € {0, ..., — 1}. Figure 6.6 shows an example of a small-
world topology of size 20 with 3 bridges, where each circle is a bit, and each line segment
between two bits represents a sub-function. The main difference between Equations 5.1
and 6.3 is that the homogeneity that ring topology holds is destroyed by the bridges. By
adding bridges, the ring can be separated into a part containing all bits used in bridges and
different chains. Figure 6.7 shows an example of how it can be applied to a small-world

topology of size 6 with 2 bridges. Based on this observation, the following theorem holds.
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Figure 6.6: Example of a small-world topology. The figure is a small-world topology of
size 20 with 3 bridges, where each circle is a bit, and each line segment between two bits

represents a sub-function.

Theorem 6.9. The population size required for binary-encoded GAs using OM with an
oracle to solve a problem with fitness function of the same form as in Equation 6.3 with
log, © (¢)—log, log £+ O (1) bits used in bridges with a success probability of 1—© ({=%),
where ( is the chromosome length and « is a positive constant, is O (al), and the nFE

0(0).

Proof. Consider the partition of a small-world topology mentioned above. Suppose the
fitness function is partitioned into @ chains with length b;, 1 < ¢ < a. Thus, log, © (¢) —
log,log ¢ + © (1) + 3¢, b; = (. First, by Theorem 4.3, a population of © (af) chro-
mosomes suffices to provide a chromosome having all the alleles of the bits used in the
bridges being the same as the ones of the global optimum with probability 1 — © (/7).
Note that since each chain belongs to the ring, Lemma 5.2 holds and therefore, one can
donate a chain with all the alleles the same as the ones of the global optimum to the part
having all the alleles of the bits used in the bridges being the same as the ones of the global
optimum. By Theorems 6.7 and 6.8, for a chain with length b; a population size of « log ¢

can guarantee existing a set of chromosomes that can use the technique used in layered
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Figure 6.7: Example of a partition of a small-world topology. Circles with the same color

filled belond to the same part.

structures to form the segment the global optimum holds in O (b;) nFEs with probability
1 —© (¢~*) with the aid of oracles. Therefore, with a population of © () chromosomes,
the probability of not existing a set of chromosomes that can use the technique used in lay-
ered structures to form the segment the global optimum holds in O (b;) nFEs with the aid
of oracles is w (¢~%). Since each parts are all distinct and by using union bound, the pop-
ulation can be shared to find all required schemas simultaneously, a population of © (/)
chromosomes suffices to provide a chromosome having all the alleles of the bits used in
the bridges being the same as the ones of the global optimum and for all chains to find a set
of chromosomes that can use the technique used in layered structures to form the segment
the global optimum holds in a total of O (¢) nFE with tha aid of an oracle with probability
1 —© (¢£~*). Since there may exist a more method requiring less chromosomes, the bound

on the population is an upper bound, and the theorem statement holds. O

Since the difficulty of small-world topology is relative to the number of bridges, Theo-
rem 6.9 gives an upper bound on the number of bridges, in most cases, around logarithm of
the chromosome length, such that the population does not exceed the nFE with the help of

an oracle, meaning it is potentially practical. Also, note that in the proof of Theorem 6.9,
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the number of bits used in bridges instead of the number of bridges is the factor affecting
the bound of the population size. Thus, even with the same number of bridges, the bound
may be different. Another possible implication of the result is that the model builders in
modern GAs using OM is near-optimal, since by adding about log ¢ fake sub-functions,
the requirement of population size with the aid of an oracle may grow to linear, while in

practice, the observed required population size is sub-linear.
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Chapter 7

Conclusion

In this thesis, population sizing for binary-encoded GAs using OM in the view of supply is
discussed. The concept of oracles is adopted to have the success rate of GAs solely relies
on supply. For the most basic supply problem, the expected value and the lower bound are
derived, and both of them are of the same order as the bound derived by Goldberg et al.
is (Goldberg et al., 2001). Next, the population size required for binary-encoded GAs
using OM with a c-composite oracle is estimated. Tight bounds on 1-composite oracle, a
special case, and on c-composite oracle, which represents a more general case, are derived.
Also, a global upper bound on supply is derived with some discussion on the tightness of
the bound. For problem dependent cases, bounds on the population as well as on the nFE
are derived for problems with their fitness that can be viewed as a layered structure. Fitness
functions with torus and cube topologies are estimated as some special cases, showing the
applicability of layered structures. Fitness functions with small-world topologies are also
estimated as a more realistic example.

To further extend this work, the following approaches are suggested. In this work,
supply is estimated on fitness functions being the sum of sub-functions with two bits.
Thus, estimating fitness functions being the sum of sub-functions with more than two bits
can be viewed as a choice. Also, most results are based on Theorem 4.3, which discusses
the bound on the population size when using a 1-composite oracle. A more thorough
investigation on general c-composite oracles is also an interesting topic. Last but not

least, estimations on the supply for more realistic problem structures, such as random
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graphs with all nodes having fixed degrees, are also desired.

The contributions of this thesis are listed below. Firstly, this thesis is the first one to
discuss the supply model for non-fully separable overlapping problem structures. Sec-
ondly, bounds on the supply for problem dependent and problem independent cases are
derived. General upper bound and lower bound are both derived. For more restricted
problem independent cases, the bounds are tight for binary-encoded GAs using OM with
c-composite oracles provided that c is a constant and that the largest size of the masks is a
constant. Bounds on the supply for fitness functions with ring topologies are tight, while
for fitness functions with torus and cube topologies, only upper bounds are derived. Last
of all, in this work, the concept of the oracle is adopted to the population sizing of GAs.
With the aid of oracles, bounds on the population size and nFEs for GAs using OM on
both problem dependent and independent cases are developed. By using this framework,
the next step would be solving the complexity issues on the automaton, which corresponds

to the convergence time of GAs.
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