
doi:10.6342/NTU201902038

國立臺灣大學電機資訊學院生醫電子與資訊學研究所

碩士論文

Graduate Institute of Biomedical Electronics and Bioinformatics

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

以核苷酸 k聚體頻度分類序列

Sequence Classification Based on kmer Frequencies

陳泓宇

HungYu Chen

指導教授：趙坤茂博士

Advisor: KunMao Chao, Ph.D.

中華民國 108年 7月

July, 2019

doi:10.6342/NTU201902038

doi:10.6342/NTU201902038

誌謝

首先要感謝我的指導教授趙坤茂老師，從我大學至今多年來給予我

非常多指導與幫助。在我大學階段，老師擔任我的導師時就常常關心

我，有時也在我的求學生涯上提供相當有用的指引，偶爾在導生宴時

聽到老師與學長姐們討論演算法更是啟發了我對演算法的興趣。研究

所時有幸進入趙老師的實驗室，感謝老師給予我們非常大的自由，讓

我能隨心所欲的探索有興趣的領域，而對於我想發展的各個課題也總

是會提出精闢的建議與我討論，提供我很多幫助。

感謝實驗室同伴們營造了一個自在而適於研究的空間，讓我在研究

的過程中能夠非常順利，有疑惑時能一起討論，要趕進度時能一起努

力。感謝實驗室學長們在我每學期的報告中給予我建議及鼓勵，讓我

的研究主軸能漸趨完整。也感謝射箭社中時常關心我研究進度的學弟

妹、學長姐，以及互相督促的研究生夥伴們，讓我在這兩年中總是有

個地方可以放鬆心情。

最後感謝我的家人，在這二十多年中給予我支持與鼓勵，讓我可以

一直無後顧之憂的求學至今。

ii

doi:10.6342/NTU201902038

摘要

序列分類在計算生物學的許多研究中是一個在研究初期就需要解決

之問題，有許多方法被研發出來計算此問題，但隨著高通量定序技術

的發展，需要計算的資料量也大幅增加，導致許多現有方法已無法在

能取得的計算資源及可接受的時間內完成計算。以核苷酸 k聚體為基

礎的演算法就是其中一種，目前已有不少方法可以快速且準確的完成

分類，但卻需要大量的計算空間，因此無法在一般個人電腦中完成計

算。

在本篇論文中，我們提出一個以核苷酸 k聚體為基礎的演算法，在

時間上與現有方法相當，在空間上則避免現有方法中儲存上的冗餘性

而做出改善。為進一步降低所需記憶體空間，我們提出一個分割架構，

此架構除了可以減少所需空間，也適合平行化以縮短計算所需時間。

關鍵字：序列分類、環境基因體學、基因體學、k聚體、免序列比對、

序列特徵、演算法

iii

doi:10.6342/NTU201902038

Abstract

Sequence classification is a preliminary step in many researches of

computational biology. There are a variety of methods proposed to compute

this problem. However, with the development of highthroughput sequencing

technologies, the datasets of sequencing data are getting much larger. As

a result, many existing methods cannot accomplish this task with limited

computational resource and acceptable time. The kmer based algorithms are

some of these methods. Most of them could finish the classification fast and

accurately, but they need large computational space, which is not available in

common personal computers.

In this thesis, we propose a kmer based algorithm. The time complexity

of our algorithm is comparable to those of the existing methods, while we

make an improvement in space usage by avoiding the redundancy of storing

the kmers. To further reduce the memory usage, we propose a partitioning

strategy. In addition to the reduction in memory usage, the algorithm under

this partitioning structure can be highly parallelized to improve performance.

Keywords: sequence classification, metagenomics, genomics, kmer,

alignmentfree, sequence signature, algorithm

iv

doi:10.6342/NTU201902038

Contents

誌謝 ii

摘要 iii

Abstract iv

Contents v

List of Figures vii

List of Tables viii

List of Algorithms ix

1 Introduction 1

1.1 Motivation . 3

1.2 Problem Description . 3

1.3 Main Results . 4

1.4 Organization of the Thesis . 5

2 Related Work 6

2.1 kmer Counting Tools . 6

2.2 kmer Based Metagenomic Comparison and Classification Methods . . . 10

3 Methods 14

3.1 Algorithm . 14

v

doi:10.6342/NTU201902038

3.2 Analysis of the Algorithms . 18

3.3 Partitioning Strategy . 20

4 Conclusion 24

Bibliography 25

vi

doi:10.6342/NTU201902038

List of Figures

1.1 Sequence classification problem . 4

2.1 Human readable kmer spectrum file . 10

2.2 Workflow of Simka . 12

2.3 Workflow of CLARK . 13

3.1 From a kmer to an element in the hash table 15

3.2 The construction of index hash tables with partitioning strategy 21

3.3 The classification of an object dataset with partitioning strategy 21

3.4 Index construction phase with multithreading 23

3.5 Classification phase with multithreading 23

vii

doi:10.6342/NTU201902038

List of Tables

2.1 Sizes of datasets and KMC3 output files 10

3.1 Space complexity of both algorithms . 19

3.2 Time complexity of both algorithms . 19

viii

doi:10.6342/NTU201902038

List of Algorithms

1 BuildIndex . 16

2 Classify . 17

3 AlgorithmWithPartitioning . 22

ix

doi:10.6342/NTU201902038

Chapter 1

Introduction

A substring of length k in a given string, usually a sequencing read, is called a kmer

in bioinformatics. For example, given a sequencing read ACGGTTC, all 3mers in this

read are ACG, CGG, GGT, GTT, and TTC. With the development of highthroughput

sequencing technologies, the studies of kmers are getting more and more important

because many computational methods use kmers to analyze the sequencing reads and

datasets. In other words, kmer is a fundamental unit for many methods [2, 25, 28, 29, 32,

62].

The number of the occurrences of each kmer in a given dataset is called kmer

frequency or kmer spectrum, and the problem of computing kmer frequencies is called

kmer counting. The kmers with high frequencies can be regarded as features of a

dataset. In contrast, the kmers with low frequencies, such as kmers occurring only

one time, which are called singleton kmers, are often generated by sequencing errors.

There are many methods and applications making use of kmer counting. For instance,

genome assembly [4, 19, 41], estimation of genome size [57], read correction [23], repeat

detection [8, 20, 26, 27, 34], sequence alignment [14] and comparison of genomes [9, 42,

64].

kmer counting is conceptually simple, but it is difficult to be both fast and memory

efficient. In particular, the sizes and the amounts of datasets nowadays are increasing

rapidly. Some traditional kmer counting tools cannot complete the task of large datasets

or large k in reasonable time and space. A naïve implementation of kmer counting is to

1

doi:10.6342/NTU201902038

use a simple hash table, where keys are the kmers and values are the counts. However,

when there are many distinct kmers, the hash table should be very large, which is often

larger than given memory space, to avoid collisions. As a result, some studies make

efforts to implement more spaceefficient data structures for kmer counting. There are

also some studies trying to solve this problem by using disk space instead, which is a

tradeoff between performance and space because disk I/O operations are much slower.

There are many latest researches [5, 18] about kmer counting.

kmers are widely used in metagenomics in recent years. For example, signa

ture kmers representing members of a certain protein family can be used to annotate

metagenomes [15] and kmer frequencies can be used in binning metagenomic contigs [1].

An important application is the classification of sequences. In some researches, the

sequences to be classified belong to the same metagenome, and the researchers want to

knowwhichmetagenome it is. In some other researches, the researchers want to determine

the identities of the species in the sequenced sample. A solution common to these two

problems is to compare the given sequences with sequences of known origins. kmer

frequencies can be very helpful in both cases. With analyzing and comparing the k

mer frequencies of the given sequences of the same metagenome/species to the kmer

frequencies of the sequences of other determined metagenomes/species, we can get the

dissimilarities and then infer the relationships between different datasets [6, 13, 45, 50].

Considering the properties of kmers and the fact that the computation of kmer

frequencies is getting faster and uses much lower memory space than before, the sequence

comparison based on kmer frequencies is promising. Some of the comparison methods

mentioned above can use the output of the kmer counting tools as input, while some

methods develop their own methods to count kmers. CLARK [45] is a fast classification

method based on kmer frequencies which takes files containing kmer frequencies as

input. Nevertheless, the memory usage of CLARK is too large for common personal

computers. There is a variant of CLARK trying to solve this problem, but the accuracy

gets lower. In this thesis, we propose the algorithms which not only overcome this issue

but also improve the performance.

2

doi:10.6342/NTU201902038

1.1 Motivation

The classification of datasets is an essential task in the preliminary stage of many

researches. An intuitive approach is to measure the dissimilarities between datasets.

Sequence alignment is a traditional solution in taxonomy. Through analysing the results

of the alignment, the evolutionary relationships between object datasets and reference

datasets could be inferred. However, object datasets usually consist of sequencing reads,

which are not suitable for alignment, and the assembly of reads from unknown origins

is a difficult task. Therefore, alignmentfree methods are proposed. One category of

these alignmentfree methods is based on kmers. Some properties of kmers, which

are described in Section 2.2, make kmers appropriate for comparing datasets. Some k

mer based methods compute the pairwise distances between kmer spectra of datasets to

measure the dissimilarities. Nonetheless, pairwise comparisons are timeconsuming.

An approach to avoid pairwise comparisons between datasets is to find the signature

kmers of each dataset and classify the datasets according to these signature kmers. The

criteria of finding the signature kmers is another critical issue. The kmers with highest

frequencies may be candidates, but kmers occurring many times in one dataset could also

occur many times in other datasets just because they are common in nucleotide sequences.

CLARK provides an intuitive and efficient approach to solve this problem. It finds the k

mers specific to each target dataset and classifies the object datasets accordingly. The

disadvantage of CLARK is the large memory usage. As a result, we try to improve this

method by reducing memory usage.

1.2 Problem Description

Given p object datasets to be classified and n target datasets of known origins, determine

which target is the most likely origin of each object (Figure 1.1).

The datasets could be metagenomic or genomic sequences as long as all the sequences

in the object and target datasets are grouped into datasets at the same level. It is also

feasible to construct the datasets with the sequences grouped at species or genus level.

3

doi:10.6342/NTU201902038

Figure 1.1: Sequence classification problem

In traditional methods, the definition of “the most likely origin” is the target with

the smallest taxonomic dissimilarity. However, these methods usually need complete

reference databases to compute the dissimilarities and they are computationally costly.

Consequently, many researchers attempt to find methods based on other data instead of

the contents of the sequences. Some proposed methods make use of kmer frequencies.

There are some existing kmer based methods which could solve this problem fast. In this

thesis, we focus on how to solve this problem fast and accurately on the basis of kmer

frequencies with limited memory space.

1.3 Main Results

There is a fast and accurate method, CLARK, resolving this problem based on kmer

frequencies. However, it uses large RAM space during the computation. In this thesis,

we try to reduce the memory usage such that this task could be computed with common

personal computers. We propose algorithms which avoid the redundancy of storing kmers

in CLARK. The time complexities of these algorithms are the same as CLARK’s, while

they should be faster than CLARK in practice. We also propose a partitioning strategy to

further reduce the memory usage.

4

doi:10.6342/NTU201902038

1.4 Organization of the Thesis

• Chapter 2 Related Work

In this chapter, we summarize some related work about kmer counting tools and

kmer based comparative metagenomics methods. The algorithms of some kmer

counting tools provide good ideas to improve classification methods. In addition,

we conclude some researches indicating that kmers have some good properties such

that they are suitable for comparing datasets.

• Chapter 3 Methods

In this chapter, we propose algorithms which overcome the issue of large memory

usage. We describe the algorithms, analyze them and compare them with the

existing kmer based classification method, CLARK. In addition, we propose a

partitioning strategy to further reduce thememory usage of the purposed algorithms.

The algorithms with this strategy can be highly parallelized.

• Chapter 4 Conclusion

In this chapter, we conclude the proposed algorithms and the partitioning strategy.

Besides, we describe the direction of future work.

5

doi:10.6342/NTU201902038

Chapter 2

Related Work

2.1 kmer Counting Tools

Although there are many studies based on kmer counting, early ones only consider it

as a preliminary step and describe it sketchily. Tallymer [26] is the first tool designed

specifically for kmer counting. Rather than hash table, this tool is based on suffix array.

Meryl is a kmer counting tool from the Celera assembler [41] package, which uses a

sortingbased approach. However, these tools are not efficient enough to deal with large

datasets.

Jellyfish [39] uses a multithreaded, lockfree hash table. Users have to prespecify the

memory size for the hash table to use. Once the hash table is full, the intermediary kmer

counts are saved to disk and merged to the final results later. Its current versions are still

used commonly in recent studies.

BFCounter [40] points out that more than half of the observed kmers even in

preprocessed datasets are singletons, which can be weeded out as wrong data caused by

sequencing error and thus should not be inserted into the data structure for counting.

BFCounter uses a twopass method. In the first pass, it uses a Bloom filter [7] to

filter out the kmers which occur only one time. The Bloom filter is an approximate

membership query (AMQ) data structure. An AMQ data structure maintains a compact

and probabilistic representation of a set or multiset, so it could generate false positives

during querying if there are collisions. The kmers that present more than once are inserted

6

doi:10.6342/NTU201902038

into a hash table. Since the result of a query to the Bloom filter is probably a false positive,

there may be some kmers occurring only once inserted into the hash table. In the second

pass, it reiterates over all the reads and counts the kmers which are inserted in the hash

table in the first pass using a hash table to get the exact frequencies. BFCounter uses less

memory but much more time than Jellyfish. The difference in speed is mainly due to the

twopass method. It is feasible for BFCounter to do the counting in the first pass and omit

the second pass to obtain approximate kmer frequencies.

Jellyfish and BFCounter mainly rely on memory, and usually need dozens of gigabytes

of memory, which are not available in most personal computers. Relatively, it is much

easier to get sufficient capacity from disks. Consequently, some studies try to develop

diskbased kmer counting tools, such as DSK [51] and KMC [11, 12, 24]. DSK relies

on hash tables. Different from Jellyfish, it processes the kmers in several iterations. In

each iteration, only a partition of kmers classified according to their hash values are saved

to their corresponding lists in the disk and then the lists are read from the disk to insert

into a hash table for counting. Users can set the target memory usage size and the target

disk space size. The numbers of iterations and lists are calculated accordingly, so it is

guaranteed that the size of hash tables would not exceed the target memory usage size.

KMC [11] is similar to DSK in concept. The major difference is that KMC has

developed a scheme of parallel algorithm. The whole process can be divided into two

phases. In distribution phase, the kmers are partitioned into several bins on the basis of

their prefixes, sorted and compacted. The bins are then stored into disk as files. In sorting

phase, the files are read from the disk. Kmers are uncompacted, sorted and counted.

Turtle [54] uses a method similar to BFCounter. It uses a patternblocked Bloom

filter [49], which reduces the number of cache misses by restricting the locations to store

a kmer in the filter, to filter out singleton kmers. The kmers occurring more than once

are stored in an array. By repeatedly sorting and compaction, users can get the array of

these kmers with their counts.

KAnalyze [3] implements a modified merge sort algorithm to count kmers, and the

algorithm could be divided into two components: split component and merge component.

7

doi:10.6342/NTU201902038

The split component reads a set of kmers into an array and sorts the array with a dual

pivot quicksort algorithm. Then, it counts the kmers by traversing the array, writes the

kmers with their counts to a file in disk and fills the array with the next set of kmers. The

merge component reads the files and accumulates the counts.

khmer [63] uses an AMQ data structure, countmin sketch [10], to count the kmers.

Different from other methods, khmer does not store kmers in the data structure. To

increment the count of a kmer, it uses a hash function to get the hash value and determines

the locations to be updated in the hash tables of the countmin sketch accordingly. To

retrieve the count of a kmer, the hash value is computed and the minimum count among

the counts in all hash tables is returned. However, there are miscounts in the results of

khmer because the countmin sketch could generate false positives. khmer provides a way

to systematically trade larger memory usage for lower false positive rate.

There is high redundancy in above methods. Consecutive kmers share k–1 symbols,

but they are processed and stored as kmers not relevant at all. MSPKmerCounter [30]

introduces minimizers [52, 53] to the kmer counting problem to reduce the redundancy.

KMC 2 [12] refines the minimizers to signatures, which fit the parallel scheme of KMC

better. In distribution phase, it partitions super kmers consisting of kmers sharing the

same signatures into bins according to their signatures. In sorting phase, it breaks down

super kmers and counts them in an approach similar to the method in KMC. KMC 3 [24]

follows the same scheme as KMC 2 and makes some improvements in details.

KCMBT [37] counts kmers on the basis of multiple burst tries [21, 56]. It inserts k

mers into burst tries and traverses the tries to get the final kmer frequencies after inserting

all the kmers. KCMBT constructs 4a burst tries, where a is the prefix length for indexing

the tries, to reduce the space for storing kmers.

Gerbil [16] uses a diskbased and parallel approach similar to KMC 2. It is divided

into two phases as well: distribution phase and counting phase. In distribution phase, it

uses minimizers to split the input data into several smaller temporary files which are stored

in the disk. They experimentally evaluated various ordering strategies of minimizers, and

they found the strategy, signatures, used by KMC 2 is a good choice for most datasets. In

8

doi:10.6342/NTU201902038

counting phase, the temporary files are reread from the disk. After splitting super kmers

into kmers. Gerbil uses the hash table approach to count the kmers and solves collisions

via quadratic hashing. In addition, Gerbil puts emphasis on algorithm engineering. It

points out several details implemented to gain high performance and utilizes GPUs to

speed up the counting phase. Gerbil can support the counting of kmers for large k of

large datasets, which cannot be finished efficiently by KMC 2 and not supported by DSK.

Squeakr [47] uses counting quotient filters [46] to count the kmers. The counting

quotient filter (CQF) is a novel AMQ data structure, but the collisions can be avoided by

adjusting the size of hash function and the size of data to be stored. Squeakr extracts the

kmers from input data and inserts them into a local CQF in each thread. The data in the

local CQFs are then inserted into a global CQF to get the final approximate results. It is

possible for Squeakr to get exact results by adjusting the CQFs as mentioned above, and

it is called Squeakrexact.

There is a benchmark study [38] of the kmer counting tools. They find that KMC3,

DSK and Gerbil are the most flexible and efficient. (Squeakr is not assessed in this study.)

It seems that the sizes of the output files of kmer counting tools would be very large

when k is large because of the redundancy of kmers. Conceptually, if all possible kmers

occur, there would be 4k kmers stored in the file with their counts. In practice, there

would not be so many kmers in the output files because (1) some kmers hardly occur due

to the molecular structure of nucleic acids, (2) kmers are counted in canonical form (the

lexicographically smaller one among the kmer and its reverse complement) because when

a kmer occurs, there must be its reverse complement occurring on the other strand, and

(3) many kmer counting tools filter out singleton kmers in default, and these singleton

kmers usually account for a large proportion of the kmers. In addition, in most kmer

counting tools and applications based on kmers, the kmers are stored in binary form. A

is encoded as 00, C as 01, G as 10 and T (U) as 11 such that each four bases of a kmer can

be stored in one byte. Take KMC3 for example, it filters out kmers occurring less than 2

times in default and stores the kmers in binary form. To compact the sizes of output files

with reducing the redundancy of kmers, it divides the output into prefix file (.kmc_pre)

9

doi:10.6342/NTU201902038

and suffix file (.kmc_suf). We compute the kmer spectra of some datasets with KMC3

to show that kmer spectrum is a succinct representation of sequence datasets (Table 2.1).

However, it is a lossy representation. There is no information of kmer position kept in

the spectrum.

Organism Genome length Dataset FASTQ
files size

Gzipped
files size

Output files size
with/without filtering

E. coli 5 SRR5002442 3.71 1.24 0.14/1.35
C. elegans 102 DRR008444 19.62 5.95 0.78/1.71
F. vesca 214 SRA020125 9.52 3.38 2.22/5.43

Table 2.1: Sizes of datasets and KMC3 output files. k = 31. FASTQ and gzipped files
are the datasets, and most kmer counting tools could take both of these formats as inputs.
Genome lengths are in Mbases according to http://www.ncbi.nlm.nih.gov/genome/. File
sizes are in Gbytes (1 Gbyte = 109 bytes). For output files with filtering, we set KMC3
to filter out kmers occurring less than 2 times. The datasets were downloaded from
https://www.ebi.ac.uk/ena.

KMC3 provides a tool to convert output files to human readable kmer spectrum files.

The kmer spectrum contains the kmers and their frequencies (Figure 2.1).

Figure 2.1: Human readable kmer spectrum file

2.2 kmer Based Metagenomic Comparison and Classifi

cation Methods

A traditional method to determine the origin of a set of sequences is sequence alignment

with reference sequences. But this method is not feasible when the reference databases are

not complete. The lack of reference databases especially exists in metagenomics [22]. As

a result, some researchers proposed de novo methods. A method [31] measures dissimi

larities between datasets by marker genes and cluster them, but they are computationally

10

doi:10.6342/NTU201902038

expensive and leave lots of the reads unused. Therefore, another method [61] compare

read contents directly with BLAST [2]. However, these methods cannot scale up to large

datasets.

kmer based methods are introduced into this issue in recent years. In [6], it states that

“kmers are a natural unit for comparing communities:

• sufficiently long kmers are usually specific of a genome [17],

• kmer frequency is linearly related to genome’s abundance [60],

• kmer aggregates organisms with very similar kmer composition without need for

a classification of those organisms [58].”

There is also a research [13] comparing kmer based distances and taxonomic distances

based on assignation against reference databases. They find that kmer based distances are

well correlated to taxonomic distances. Additionally, the kmer based distances overcome

the incompleteness issue of reference databases.

Compareads [36], Commet [35] and another method [55] compute the similarities

between datasets based on the number of shared kmers. MetaFast [59] and Mash [43]

compute pairwise similarity matrices using feature vectors of kmer composition.

Simka [6] computes varieties of distances between multiple datasets based on kmer

frequencies. To compute distances between multiple datasets simultaneously, the kmer

frequencies of all the datasets are needed. If we attempt to compute distances after

finishing the counting of the frequencies of all the kmers in datasets, we have to record

a matrix of size W × N, where W is the number of distinct canonical kmers and N is the

number of datasets. When W and N are large, this matrix would require a large amount

of space. To avoid this demand for large space, Simka develops an efficient multiset k

mer counting algorithm (MKC) and applies some ecological distances which are additive

over kmers. To compute these distances, Simka only has to compute the distances using

a part of the kmers in each step, and aggregates the results of all the parts to get final

distances (Figure 2.2). After extracting and storing the canonical representation of each

kmer, MKC separates the kmers into a fixed amount of partitions. Each partition is

11

doi:10.6342/NTU201902038

then sorted, counted and stored as files in disk independently. Thus the files associated

to the same partition contain a specific subset of kmers common to all datasets. With

this partitioning strategy, Simka only takes a part of the counts at a time to compute the

distances. Moreover, this approach is suitable for parallelization.

Figure 2.2: Workflow of Simka. (A) The gray arrows represent the sorting count
processes of MKC. Each process outputs p partitions of sorted kmer counts. (B) The
black arrows represent the merging count processes of MKC. Each process merges the
counts in N partitions of a common subset of kmers and outputs abundance vectors of
these kmers. (C) Simka uses the abundance vectors to update independent contributions
to the distance. In final step, it accumulates contributions to compute the final distance
matrix.

CLARK [45] classifies the datasets using discriminative kmers. It builds a large index

hash table containing the kmer spectra of all target datasets and removes the kmers

occurring in more than one dataset. The remaining kmers are discriminative (target

specific) kmers which could be regarded as representatives of corresponding datasets

because each of these kmers exist in the dataset uniquely. As a result, the targetspecific

kmer sets of all the target datasets are obtained (Figure 2.3 (A) Index Construction Phase).

To classify an object dataset, for each kmer in the dataset CLARK queries the index hash

table to check if this kmer matches a targetspecific kmer of a dataset. If so, it is called a

“hit.” After querying all the kmers, the object is assigned to the target dataset having the

highest number of hits (Figure 2.3 (B) Classification Phase). CLARK offers two modes

of execution. The full mode outputs the top two target assignments, confidence score

12

doi:10.6342/NTU201902038

of the first assignment and the number of hits against all the targets. The default mode

stops querying for an object as soon as there is one target collecting half of possible hits

and only outputs assignments. There is a variant, CLARKE, significantly accelerating

the computation of classification while maintaining high precision and sensitivity. It only

queries nonoverlapping kmers and assigns the object to the first target that obtains a hit.

Figure 2.3: Workflow of CLARK

Besides high accuracy and speed, the major advantage of CLARK is that it provides

an intuitive approach to find the signature kmer sets. However, it uses large memory

space while constructing the index hash table. For example, the RAM peak usage of

the database construction of 2,752 bacterial genomes is 164.1 GB, which is not available

in some workstations and most personal computers. There is another variant, CLARKl,

designed for machines with limited amounts of RAM. CLARKl constructs a smaller hash

table and smaller discriminative kmer sets. It uses smaller k and samples a fraction of k

mers of each target datasets to build the index. In the experiment mentioned above, the

RAM peak usage of CLARKl is only 3.8 GB. Nevertheless, the sensitivity and precision

of CLARKl is much lower in some cases. A method called CLARKS [44] was proposed

later to improve the sensitivity of CLARK on the basis of the idea of spaced seed [33].

Compared to CLARK, its memory usage for classification is even larger and its running

time is much longer.

13

doi:10.6342/NTU201902038

Chapter 3

Methods

CLARK provides an intuitive and efficient approach to find out the discriminative kmer

sets of target datasets and classify object datasets. However, there are some redundant

computations in the algorithm of CLARK which may lead to large memory usage. We

have devised an algorithm which removes the redundancy of CLARK.

In the algorithm of CLARK, the part using the most memory space is the index hash

table. There are 4k possible kmers in the kmer spectrum of a dataset, so the kmer

spectrum is a vector of dimension 4k. To avoid too many collisions, CLARK builds large

hash table and uses separate chaining. It simply inserts the IDs for all the targets containing

a certain kmer to the list of this kmer. When the kmer is common in many datasets, the

list would be long and take up lots of space. In fact, the kmer existing in more than one

dataset would be removed afterwards. As a result, it is a waste of computation resource to

store the same kmer of all the datasets containing this kmer in the hash table. In addition,

there are some values stored in the hash table not necessary in the algorithm, so we also

modify the data structure of the kmer storing in the hash table.

3.1 Algorithm

The algorithms in this thesis focus on the construction of the index hash table and the

classification of object datasets. The computation of kmer frequencies can be finished

fast and memoryefficiently using the kmer counting tools mentioned in related work.

14

doi:10.6342/NTU201902038

The inputs of the whole algorithm are (1) the kmer spectra of target datasets, (2) the

kmer spectra of object datasets, and optionally (3) a minimum number of occurrences if

user wants to remove kmers occurring less than a certain amount of times.

In this algorithm, the data structure of the kmers stored in the index hash table contains

(1) the kmer, (2) the ID of the target dataset, and (3) the count of the kmer in the dataset. In

fact, the count could be replaced with a Boolean variable because the frequency would not

be used afterwards. We describe the algorithm with the count for convenience. Assuming

that the input kmer spectra are counted in canonical form (Figure 3.1 arrow A) and stored

in binary form (Figure 3.1 arrow B), we use a hash table the same as that designed in

CLARK, a hash table of size L with separate chaining. The hash function h is defined as

h(l) = l mod L, where l is the value of the kmer. With this hash function, we store the

value l/L in the bucket h(l) of the hash table (Figure 3.1 arrow C). It is trivial to get the

original kmer from the value stored in the hash table. The value of L is set to a power of 2

such that the modulo operation and division operation could be done easily with dividing

the binary form of a kmer into two parts and taking the second part as hash value and the

first part as the value to store in the element .

Figure 3.1: From a kmer to an element in the hash table

InAlgorithm 1, we describe themethod of building the index hash table. The algorithm

attempts to store all the kmers into the hash table. If user has specified a minimum number

of occurrences, the kmers with frequencies lower than this number should not be stored

in the index. This examination is useful especially for the datasets with low sequencing

quality because most of the kmers with low frequencies arise from sequencing errors.

When storing kmers in each dataset into the hash table, the algorithm would attempt to

store identical kmers from different datasets into the same bucket of the hash table based

15

doi:10.6342/NTU201902038

on the hash function. Rather than the exact frequency of each kmer, what is crucial in this

algorithm is whether a kmer occurs in only one dataset. Based on this observation, when

the algorithm tries to store a kmer into a bucket with the same kmer from a different

dataset already stored in it, this new kmer should be ignored. On the other hand, the k

mer which has been stored in the bucket cannot be used as a targetspecific kmer either,

but it would not be removed because it is kept as a token to record that this kmer exists in

at least two datasets. The algorithm sets the count of the kmer to 0, representing that this

kmer is merely kept as a token, so it would be removed afterwards and not included in

the targetspecific set. For convenience of understanding the algorithm, we check whether

the count of the stored kmer is equal to 0 in Algorithm 1. In practice, we could set the

count to 0 without checking to save the time of checking the condition of the if statement.

After processing all the kmers from all the datasets, there is only one element stored

in the index hash table for each distinct kmer. For each element, the value of count is

either 0, representing this kmer should be removed, or a positive integer, representing the

frequency of this kmer in corresponding dataset. After removing the kmers with counts

equal to 0, the algorithm saves the index hash table in disk.

Algorithm 1 BuildIndex
Input: kmer spectra T (gc) of n target datasets (gc)1≤c≤n

1: create an empty hash table H
2: for c = 1 to n do
3: for each kmer km with frequency cntc in T (gc) do
4: if cntc ≥ minoccur then
5: if there is (km, i, cnti) ∈ H then
6: if cnti = 0 then
7: do nothing
8: else
9: cnti = 0

10: else
11: insert (km, c, cntc) in H
12: for each (km, i, cnti) ∈ H do
13: if cnti = 0 then
14: remove this element
15: store the index hash table in disk

16

doi:10.6342/NTU201902038

After constructing the index hash table, we can use it to classify the object datasets.

In Algorithm 2, we describe the method to classify object datasets. It is conceptually the

same as the algorithm of the classification part of CLARK’s algorithm. We modify it such

that the algorithm fits the structure that we propose later and keep the computation of the

statistics which are computed in CLARK. Using the same hash function, the algorithm

checks whether each kmer in the kmer spectra of object datasets exists in the target

specific kmer set of a target dataset easily. If so, it is a hit and the algorithm counts the hits

by adding the frequency of this kmer in the object dataset to the counter of corresponding

target dataset. After counting all the hits, we calculate the statistic γ. | T (sl) | is the total

number of kmers in object dataset l. γ indicates the proportion of kmers which hit the

targetspecific kmer sets of target datasets. If γ = 0, it means that none of the kmers in the

object dataset hits target datasets and the algorithm cannot classify this object. Otherwise,

the algorithm finds out the targets with the highest and secondhighest numbers of hits and

computes the confidence score of the assignment to the highest target accordingly.

Algorithm 2 Classify
Input: index hash table H; n: the number of target datasets; kmer spectra T (sl) of p

object datasets (sl)1≤l≤p

1: for l = 1 to p do
2: declare n integer b1, b2, ..., bn = 0
3: for each kmer km with frequency cntl in T (sl) do
4: if there is (km, i, cnti) ∈ H then
5: bi = bi + cntl
6: γ =

∑n
t=1

bt
|T (sl)|

7: if γ = 0 then
8: output l, “not assigned”
9: else
10: m1 = argmax{b1, b2, ..., bn}
11: m2 = argmax{{b1, b2, ..., bn} − {bm1}}
12: confidence =

bm1

bm1+bm2

13: output l, b1, b2, ..., bn, γ,m1,m2, confidence

17

doi:10.6342/NTU201902038

3.2 Analysis of the Algorithms

In this section, we analyze and compare our algorithms with the algorithm of CLARK. To

analyze the space complexity, we analyze the peak memory usage.

In index construction phase, the peak usages of both algorithms occur when the

algorithms finish processing all the kmers of target datasets. CLARK simply inserts

all the kmers of target datasets into the index hash table, so the number of elements

inserted into the hash table is equal to the total number of the distinct kmers in the datasets.

Conceptually, there are 4k total possible kmers in a dataset. In fact, for each dataset of

genome length g, there are O(g) distinct kmers because there are s − k + 1 kmers in a

sequence of length s. When the value of k is large, g is much smaller than 4k. For example,

when we set k to 31, 431 is 4.6 × 1018, while the length of the largest known genome is

1.5 × 1011 bp [48]. For all target datasets of total genome length GT , there are O(GT)

distinct kmers. On the other hand, when k is small, there are O(n × 4k) distinct kmers.

As a result, there are O(min(GT , n× 4k)) distinct kmers in general. Considering the size

of the hash table L, the space complexity of CLARK is O(max(L,min(GT , n × 4k))).

In our algorithm, for each distinct kmer, we store at most one element in the hash table.

However, the worst case is that the kmers of each target dataset are distinct in all the

datasets, so we should store the same number of kmers in the hash table as CLARK. As

a result, the space complexities of our algorithm and CLARK are the same. But there

are many repetitive kmers in general, and our algorithm saves the space for storing these

kmers. Suppose that a kmer occurs in r datasets on average, CLARK stores r times as

many kmers as as we do.

In classification phase, after removing the elements of identical kmers from different

datasets in CLARK, the peak usages of both algorithms are the same. The space

complexities of both algorithms in this phase are equal to the space complexity of the

completely built index hash table, which only contains targetspecific kmers. The worst

case is the same as the case mentioned above, and all the kmers are targetspecific k

mers. Consequently, the space complexity of this phase is the same as the complexity of

the index construction phase (Table 3.1).

18

doi:10.6342/NTU201902038

Index Construction Classification Total
O(max(L,min(GT , n× 4k))) O(max(L,min(GT , n× 4k))) O(max(L,min(GT , n× 4k)))

Table 3.1: Space complexity of both algorithms

The time complexities of our algorithm and CLARK’s algorithm are the same because

the structure is basically the same. In index construction phase, the operations performing

on each kmer could be done in constant time. There are O(min(GT , n × 4k)) kmers in

total, so the time complexity of this phase is O(min(GT , n× 4k)). In classification phase,

for each object dataset of genome size g, it takes O(min(g, 4k)) time to count the hits of

the dataset. The declaration of integers, the search of the targets with highest numbers of

hits and the computation of γ take O(n) time. In general, O(min(g, 4k)) is much larger

than n. So for p object datasets of total genome length GO, it takes O(min(GO, p × 4k))

time (Table 3.2).

Index Construction Classification Total
O(min(GT , n× 4k)) O(min(GO, p× 4k)) O(min(GT , n× 4k) +min(GO, p× 4k))

Table 3.2: Time complexity of both algorithms

Although the time complexities of both algorithms are the same, our algorithm should

be faster than CLARK’s algorithm in practice. CLARK inserts all the kmers in the hash

table and then removes most of them, and we prevent this waste by only storing the first

occurring kmers.

Note that the peak memory usage of our algorithm is close to the peak memory usage

in the classification phase of CLARK because the elements in the index hash table are the

same. In the experiment of 2,752 bacterial genomes mentioned in the previous chapter,

the RAM peak usage of classification phase of CLARK is 70.1 GB, which is still large

for personal computers. In the next section, we provide a strategy to further reduce the

memory usage.

19

doi:10.6342/NTU201902038

3.3 Partitioning Strategy

Inspired by the idea ofMKC in [6], we propose a structure based on a partitioning strategy

to further reduce the peak memory usage of our algorithm. In the algorithm, it stores all

the kmers of all the target datasets into a hash table, resulting in a hash table of large size.

However, when the algorithm searches for a hit of a kmer of an object dataset, at most

one bucket containing corresponding kmer is needed. That is, we only need to obtain the

bucket containing this element in the hash table. Conceptually, when we want to query a

kmer, we can get the key value of the kmer using the hash function and load the bucket of

this key value from disk. With this approach, the classification phase could be completed

within small memory space. Nonetheless, it would give rise to excessive disk accesses,

causing a large increase of running time.

To make a tradeoff between memory usage and performance, we partition all the k

mers into q parts according to their lexicographical order. The value of q is adjustable

based on the specification of each machine. Some kmer counting tools print the kmers

with their frequencies in lexicographical order in output files while some tools don’t. If

not, we sort the kmers in the files as a preliminary task. It is easy to partition the sorted k

mers such that a partition contains a specific subset of kmers common to all datasets.

In index construction phase, we construct an index hash table independently for each

partition. We take the same partition of each file to construct the same hash table of this

partition (Figure 3.2). We use the same algorithm to construct the index hash tables of

the partitions. In classification phase, we partition the kmers with the same rule. To

classify an object dataset, we count the hits of each partition of kmers with the index of

the partition (Figure 3.3).

This partitioning strategy can be applied to our algorithm with small modification

(Algorithm 3). With this partitioning strategy, we only have to load a hash table of

a partition in memory at a time during the construction and the classification of the

partition. The space complexity of the original index hash table in our algorithm is

O(max(L,min(GT , n × 4k))). With partitioning the kmers into q parts, this can be

reduced to O(max(L,min(GT ,n×4k))
q

). Users could adjust the value of q to fit the RAM size

20

doi:10.6342/NTU201902038

Figure 3.2: The construction of index hash tables with partitioning strategy

Figure 3.3: The classification of an object dataset with partitioning strategy

of the machine. The number of kmers processed in total is the same as that in the

original structure without partitioning, so the time complexity is stillO(min(GT , n×4k)+

min(GO, p× 4k)). However, the execution time in practice would increase as the number

of partitions increases because of the relatively timeconsuming disk accesses of storing

and loading the index hash tables.

Another advantage of this partitioning strategy is that the algorithm with this strategy

can be highly parallelized. For example, in index construction phase, each thread takes

a partition of the kmers in all the target datasets to construct the index hash table of

the partition simultaneously (Figure 3.4). In classification phase, each thread takes a

21

doi:10.6342/NTU201902038

Algorithm 3 AlgorithmWithPartitioning
Input: q; kmer spectra T (gc) of n target datasets (gc)1≤c≤n; kmer spectra T (sl) of p

object datasets (sl)1≤l≤p

1: for each T (xy) do
2: partition T (xy) into q parts (T (xy)m)1≤m≤q

3: form = 1 to q do
4: run BuildIndex((T (gc)m)1≤c≤n) to get index hash table Hm and store it in disk
5: for l = 1 to p do
6: declare n integer b1, b2, ..., bn = 0
7: form = 1 to q do
8: load Hm from disk
9: for each kmer km with frequency cntl in T (sl)m do
10: if there is (km, i, cnti) ∈ Hm then
11: bi = bi + cntl
12: γ =

∑n
t=1

bt
|T (sl)|

13: if γ = 0 then
14: output l, “not assigned”
15: else
16: m1 = argmax{b1, b2, ..., bn}
17: m2 = argmax{{b1, b2, ..., bn} − {bm1}}
18: confidence =

bm1

bm1+bm2

19: output l, b1, b2, ..., bn, γ,m1,m2, confidence

partition of the kmers in the object dataset and loads the index of the partition to count

the hits. After all the threads finish counting, the counts are accumulated to get the final

results (Figure 3.5). Consequently, for machines with large RAM size, we can improve

the performance of index construction and classification instead of reducing the memory

usage.

22

doi:10.6342/NTU201902038

Figure 3.4: Index construction phase with multithreading

Figure 3.5: Classification phase with multithreading

23

doi:10.6342/NTU201902038

Chapter 4

Conclusion

In this thesis, we propose an algorithm with the space complexityO(max(L,min(GT , n×

4k))), where L is the size of the hash table,GT is the total genome length of target datasets,

n is the number of target datasets and k is the length of the kmers. This is the same as

the space complexity of CLARK, but we save large space by avoiding the redundancy of

storing kmers in CLARK. However, the RAM peak usage is still too large for common

personal computers. To solve this problem, we propose a partitioning strategy which can

be applied to our algorithm. The space complexity would be O(max(L,min(GT ,n×4k))
q

) if we

partition the kmers into q parts. The algorithm under this partitioning structure can be

highly parallelized. For machines with sufficient RAM, we can improve the performance

rather than reducing memory usage.

In theoretical analysis, our algorithm is not only more memoryefficient but also faster

than CLARK. Nevertheless, we do not have the experimental data of practical memory

usage and performance of the algorithms. The implementation of these algorithms is a

direction of future work. In implementation, parallelization is another important issue.

The partitioning rule based on lexicographical order is intuitive and efficient, but it may

lead to some partitions with lots of kmers and some partitions with few kmers. This

imbalance of partition sizes could reduce the performance of the parallelization scheme.

Therefore, the partitioning policy is a crucial factor influencing the effectiveness of

parallelization.

24

doi:10.6342/NTU201902038

Bibliography

[1] J. Alneberg, B. S. Bjarnason, I. de Bruijn, M. Schirmer, J. Quick, U. Z. Ijaz, L. Lahti,

N. J. Loman, A. F. Andersson, and C. Quince. Binning metagenomic contigs by

coverage and composition. Nature Methods, 11:1144–1146, 2014.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[3] P. Audano and F. Vannberg. KAnalyze: a fast versatile pipelined Kmer toolkit.

Bioinformatics, 30(14):2070–2072, 2014.

[4] S. Batzoglou, D. B. Jaffe, K. Stanley, J. Butler, S. Gnerre, E. Mauceli, B. Berger,

J. P. Mesirov, and E. S. Lander. ARACHNE: a wholegenome shotgun assembler.

Genome Research, 12:177–189, 2002.

[5] S. Behera, S. Gayen, J. S. Deogun, and N. V. Vinodchandran. KmerEstimate:

A Streaming Algorithm for Estimating kmer Counts with Optimal Space Usage.

In Proceedings of the 2018 ACM International Conference on Bioinformatics,

Computational Biology, and Health Informatics, pages 438–447. ACM, 2018.

[6] G. Benoit , P. Peterlongo, M. Mariadassou, E. Drezen, S. Schbath, D. Lavenier, and

C. Lemaitre. Multiple comparative metagenomics using multiset kmer counting.

PeerJ Computer Science, 2:e94, 2016.

[7] B. H. Bloom. Space/time tradeoffs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.

25

doi:10.6342/NTU201902038

[8] D. Campagna, C. Romualdi, N. Vitulo, M. D. Favero, M. Lexa, N. Cannata, and

G. Valle. RAP: a new computer program for de novo identification of repeated

sequences in whole genomes. Bioinformatics, 21(5):582–588, 2004.

[9] B. Chor, D. Horn, N. Goldman, Y. Levy, and T. Massingham. Genomic DNA kmer

spectra: models and modalities. Genome Biology, 10:R108, 2009.

[10] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count

min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[11] S. Deorowicz, A. DebudajGrabysz, and S. Grabowski. Diskbased kmer counting

on a PC. BMC Bioinformatics, 14:160, 2013.

[12] S. Deorowicz, M. Kokot, S. Grabowski, and A. DebudajGrabysz. KMC 2: fast and

resourcefrugal kmer counting. Bioinformatics, 31(10):1569–1576, 2015.

[13] V. B. Dubinkina, D. S. Ischenko, V. I. Ulyantsev, A. V. Tyakht, and D. G. Alexeev.

Assessment of kmer spectrum applicability for metagenomic dissimilarity analysis.

BMC Bioinformatics, 17:38, 2016.

[14] R. C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Research, 32(5):1792–1797, 2004.

[15] R. A. Edwards, R. Olson, T. Disz, G. D. Pusch, V. Vonstein, R. Stevens, and

R. Overbeek. Real Time Metagenomics: Using kmers to annotate metagenomes.

Bioinformatics, 28(24):3316–3317, 2012.

[16] M. Erbert, S. Rechner, and M. MüllerHannemann. Gerbil: a fast and memory

efficient kmer counter with GPUsupport. Algorithms for Molecular Biology, 12:9,

2017.

[17] Y. Fofanov, Y. Luo, C. Katili, J. Wang, Y. Belosludtsev, T. Powdrill, C. Belapurkar,

V. Fofanov, T.B. Li, S. Chumakov, and B. M. Pettitt. How independent are the

appearances of nmers in different genomes? Bioinformatics, 20(15):2421–2428,

2004.

26

doi:10.6342/NTU201902038

[18] J. Ge, N. Guo, J. Meng, B. Wang, P. Balaji, S. Feng, J. Zhou, and Y. Wei. Kmer

Counting for Genomic Big Data. In International Conference on Big Data, pages

345–351. Springer, 2018.

[19] P. Havlak, R. Chen, K. J. Durbin, A. Egan, Y. Ren, X.Z. Song, G.M.Weinstock, and

R. A. Gibbs. The Atlas genome assembly system. Genome Research, 14(4):721–

732, 2004.

[20] J. Healy, E. E. Thomas, J. T. Schwartz, and M. Wigler. Annotating large genomes

with exact word matches. Genome Research, 13(10):2306–2315, 2003.

[21] S. Heinz, J. Zobel, and H. E. Williams. Burst tries: a fast, efficient data structure

for string keys. ACM Transactions on Information Systems (TOIS), 20(2):192–223,

2002.

[22] E. Karsenti, S. G. Acinas, P. Bork, C. Bowler, C. D. Vargas, J. Raes, M. Sullivan,

D. Arendt, F. Benzoni, J.M. Claverie, M. Follows, G. Gorsky, P. Hingamp,

D. Iudicone, O. Jaillon, S. KandelsLewis, U. Krzic, F. Not, H. Ogata, S. Pesant,

E. G. Reynaud, C. Sardet, M. E. Sieracki, S. Speich, D. Velayoudon, J. Weissenbach,

P. Wincker, and the Tara Oceans Consortium. A Holistic Approach to Marine Eco

Systems Biology. PLoS biology, 9(10):e1001177, 2011.

[23] D. R. Kelley, M. C. Schatz, and S. L. Salzberg. Quake: qualityaware detection and

correction of sequencing errors. Genome Biology, 11(11):R116, 2010.

[24] M. Kokot, M. Długosz, and S. Deorowicz. KMC 3: counting and manipulating

kmer statistics. Bioinformatics, 33(17):2759–2761, 2017.

[25] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M. Phillippy.

Canu: scalable and accurate longread assembly via adaptive kmer weighting and

repeat separation. Genome research, 27(5):722–736, 2017.

[26] S. Kurtz, A. Narechania, J. C. Stein, and D. Ware. A new method to compute K

mer frequencies and its application to annotate large repetitive plant genomes. BMC

Genomics, 9:517, 2008.

27

doi:10.6342/NTU201902038

[27] A. Lefebvre, T. Lecroq, H. Dauchel, and J. Alexandre. FORRepeats: detects repeats

on entire chromosomes and between genomes. Bioinformatics, 19(3):319–326,

2003.

[28] H. Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long

sequences. Bioinformatics, 32(14):2103–2110, 2016.

[29] H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,

34(18):3094–3100, 2018.

[30] Y. Li and XifengYan. MSPKmerCounter: A Fast and Memory Efficient Approach

for Kmer Counting. arXiv:1505.06550 [qbio.GN], 2015.

[31] M. R. Liles, B. F. Manske, S. B. Bintrim, J. Handelsman, and R. M. Goodman. A

Census of rRNA Genes and Linked Genomic Sequences within a Soil Metagenomic

Library. PLoS biology, 69(5):2684–2691, 2003.

[32] H.N. Lin and W.L. Hsu. Kart: a divideandconquer algorithm for NGS read

alignment. Bioinformatics, 33(15):2281–2287, 2017.

[33] B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive homology

search. Bioinformatics, 18(3):440–445, 2002.

[34] H. Ma, L.C. Tu, A. Naseri, Y.C. Chung, D. Grunwald, S. Zhang, and T. Pederson.

CRISPRSirius: RNA scaffolds for signal amplification in genome imaging. Nature

Methods, 15(11):928–931, 2018.

[35] N. Maillet, G. Collet, T. Vannier, D. Lavenier, and P. Peterlongo. Commet:

Comparing and combining multiple metagenomic datasets. In 2014 IEEE

International Conference on Bioinformatics and Biomedicine. IEEE, 2014.

[36] N. Maillet, C. Lemaitre, R. Chikhi, D. Lavenier, and P. Peterlongo. Compareads:

comparing hugemetagenomic experiments. BMCBioinformatics, 13(Suppl 19):S10,

2012.

28

doi:10.6342/NTU201902038

[37] A.A. Mamun, S. Pal, and S. Rajasekaran. KCMBT: a kmer Counter based on

Multiple Burst Trees. Bioinformatics, 32(18):2783–2790, 2016.

[38] S. C. Manekar and S. R. Sathe. A benchmark study of kmer counting methods for

highthroughput sequencing. GigaScience, 7(12):1–13, 2018.

[39] G. Marçais and C. Kingsford. A fast, lockfree approach for efficient parallel

counting of occurrences of kmers. Bioinformatics, 27(6):764–770, 2011.

[40] P. Melsted and J. K. Pritchard. Efficient counting of kmers in DNA sequences using

a bloom filter. BMC Bioinformatics, 12:333, 2011.

[41] J. R. Miller, A. L. Delcher, S. Koren, E. Venter, B. P. Walenz, A. Brownley,

J. Johnson, K. Li, C. Mobarry, and G. Sutton. Aggressive assembly of

pyrosequencing reads with mates. Bioinformatics, 24(24):2818–2824, 2008.

[42] K. J. V. Nordström, M. C. Albani, G. V. James, C. Gutjahr, B. Hartwig, F. Turck,

U. Paszkowski, G. Coupland, and K. Schneeberger. Mutation identification by

direct comparison of wholegenome sequencing data from mutant and wildtype

individuals using kmers. Nature Biotechnology, 31(4):325–330, 2013.

[43] B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman, S. Koren,

and A. M. Phillippy. Mash: fast genome and metagenome distance estimation using

MinHash. Genome Biology, 17:132, 2016.

[44] R. Ounit and S. Lonardi. Higher classification sensitivity of short metagenomic reads

with CLARKS. Bioinformatics, 32(24):3823–3825, 2016.

[45] R. Ounit, S. Wanamaker, T. J. Close, and S. Lonardi. CLARK: fast and accurate

classification of metagenomic and genomic sequences using discriminative kmers.

BMC Genomics, 16:236, 2015.

[46] P. Pandey,M.A. Bender, R. Johnson, andR. Patro. A generalpurpose counting filter:

Making every bit count. In Proceedings of the 2017 ACM International Conference

on Management of Data, pages 775–787. ACM, 2017.

29

doi:10.6342/NTU201902038

[47] P. Pandey, M. A. Bender, R. Johnson, and R. Patro. Squeakr: an exact and

approximate kmer counting system. Bioinformatics, 34(4):568–575, 2017.

[48] J. Pellicer, M. F. Fay, and I. J. Leitch. The largest eukaryotic genome of them all?

Botanical Journal of the Linnean Society, 164(1):10–15, 2010.

[49] F. Putze, P. Sanders, and J. Singler. Cache, hash, and spaceefficient bloom filters.

Journal of Experimental Algorithmics, 14(4):1950–1957, 2009.

[50] J. Ren , N. A. Ahlgren , Y. Y. Lu , J. A. Fuhrman, and F. Sun. VirFinder: a novel

kmer based tool for identifying viral sequences from assembled metagenomic data.

Microbiome, 5:69, 2017.

[51] G. Rizk, D. Lavenier, and R. Chikhi. DSK: kmer counting with very low memory

usage. Bioinformatics, 29(5):652–653, 2013.

[52] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke. Reducing storage

requirements for biological sequence comparison. Bioinformatics, 20(18):3363–

3369, 2004.

[53] M. Roberts, B. R. Hunt, J. A. Yorke, R. A. Bolanos, and A. L. Delcher. A

preprocessor for shotgun assembly of large genomes. Journal of Computational

Biology, 11(4):734–752, 2004.

[54] R. S. Roy, D. Bhattacharya, and A. Schliep. Turtle: Identifying frequent kmers with

cacheefficient algorithms. Bioinformatics, 30(14):1950–1957, 2014.

[55] S. Seth, N. Välimäki, S. Kaski, and A. Honkela. Exploration and retrieval of whole

metagenome sequencing samples. Bioinformatics, 30(17):2471–2479, 2014.

[56] R. Sinha and J. Zobel. Cacheconscious sorting of large sets of strings with dynamic

tries. ACM Journal of Experimental Algorithmics (JEA), 9(1.5):1–31, 2004.

[57] H. Sun, J. Ding,M. Piednoël, andK. Schneeberger. findGSE: estimating genome size

variation within human and Arabidopsis using kmer frequencies. Bioinformatics,

34(4):550–557, 2017.

30

doi:10.6342/NTU201902038

[58] H. Teeling, J. Waldmann, T. Lombardot, M. Bauer, and F. O. Glöckner. TETRA:

a webservice and a standalone program for the analysis and comparison of

tetranucleotide usage patterns in DNA sequences. BMCBioinformatics, 5:163, 2004.

[59] V. I. Ulyantsev, S. V. Kazakov, V. B. Dubinkina, A. V. Tyakht, and D. G. Alexeev.

MetaFast: fast referencefree graphbased comparison of shotgunmetagenomic data.

Bioinformatics, 32(18):2760–2767, 2016.

[60] Y.W. Wu and Y. Ye. A Novel AbundanceBased Algorithm for Binning

Metagenomic Sequences Using ltuples. Journal of Computational Biology,

18(3):523–534, 2011.

[61] S. Yooseph, G. Sutton, D. B. Rusch, A. L. Halpern, S. J. Williamson, K. Remington,

J. A. Eisen, K. B. Heidelberg, G. Manning, W. Li, L. Jaroszewski, P. Cieplak, C. S.

Miller, H. Li, S. T. Mashiyama, M. P. Joachimiak, C. van Belle, J.M. Chandonia,

D. A. Soergel, Y. Zhai, K. Natarajan, S. Lee, B. J. Raphael, V. Bafna, R. Friedman,

S. E. Brenner, A. Godzik, D. Eisenberg, J. E. Dixon, S. S. Taylor, R. L. Strausberg,

M. Frazier, and J. C. Venter. The Sorcerer II Global Ocean Sampling Expedition:

Expanding the Universe of Protein Families. PLoS biology, 5(3):e16, 2007.

[62] D. R. Zerbino and E. Birney. Velvet: Algorithms for de novo short read assembly

using de Bruijn graphs. Genome research, 18(5):821–829, 2008.

[63] Q. Zhang, J. Pell, R. CaninoKoning, A. C. Howe, and C. T. Brown. These are not

the kmers you are looking for: efficient online kmer counting using a probabilistic

data structure. PloS one, 9(7):e101271, 2014.

[64] F. Zhou, V. Olman, and Y. Xu. Barcodes for genomes and applications. BMC

Bioinformatics, 9:546, 2008.

31

	誌謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Problem Description
	Main Results
	Organization of the Thesis

	Related Work
	k-mer Counting Tools
	k-mer Based Metagenomic Comparison and Classification Methods

	Methods
	Algorithm
	Analysis of the Algorithms
	Partitioning Strategy

	Conclusion
	Bibliography

