Rt BT RTAETREFLFEFTREF T A
ALz
Graduate Institute of Biomedical Electronics and Bioinformatics

College of Electrical Engineering and Computer Science
National Taiwan University

Master Thesis

MR Pk RAAE R A SR T

Sequence Classification Based on A-mer Frequencies

s F
Hung-Yu Chen

f R AL L
Advisor: Kun-Mao Chao, Ph.D.

PoEA R 108 & 77

July, 2019

doi:10.6342/NTU201902038

Bl i 2B RERERMEX
DREBGELE
A% BE K TRARSR R MR A 7

Sequence Classification Based on A-mer Frequencies

W XARRIAFE (R06945024) LB L 2B AL A BRE TS
BMERARATRZAELMH > WRBE 1084E7 B 26 8 A F
FNERXRRBE LB EBR OREA > 4L 0A

FARE WAy BN R A F T S S E R S
“F SRR BASFRE . SR EADREERE M
PR A RE AR R ERE G A0 B AL L
P B R0 Podsh i 32 L AURs 0 AT R 2 s o Y
TG FROMEFOTRT RHEFLT AP L d R
RSE e ST IR R F BB GAE R 0 @ HT A RS B s B B
LER N RAERE A TS REAS FT o
EHFTHZFEPEE T - Bp an gzl EALFY
FREART A SR R 3 R R - A 0 R AR R PR -
Lo RHMTRIEL P AN TP R P B AR B AN
S Y L fha AR B o 4 R FH AT B MR T R D

-

\«\-\

AtH

WoFEe o NI RERSETAPEP S BN s EY By
(-2 IR PE & SN o

BASR A NTA o g LS EY B AL PFEEE S RAT
- IR BNRET S -

i doi:10.6342/NTU201902038

it &

RARET AP Fams Sy 0 Lo B A RT & R
FES RN R E PR R F R U E LA HT
VR FRVFESNTREES AR ERFIMG 2 AL

REEARE TR TR AN R FPE IR RN A

E'-r o

BhRwme? o NPRS- BUPRHR LR AATFEE > &
PR BTG 2Ry 0 AT R RWAMG 20 G ch el
Aol il o SR HEMAFT RN R AR - BB ERE

PEWR TR F LW 4 T R R R

MAEE C BAAN REATIME ATFME KR LB $
B4~ w gk

iii doi:10.6342/NTU201902038

Abstract

Sequence classification is a preliminary step in many researches of
computational biology. There are a variety of methods proposed to compute
this problem. However, with the development of high-throughput sequencing
technologies, the datasets of sequencing data are getting much larger. As
a result, many existing methods cannot accomplish this task with limited
computational resource and acceptable time. The k-mer based algorithms are
some of these methods. Most of them could finish the classification fast and
accurately, but they need large computational space, which is not available in
common personal computers.

In this thesis, we propose a k-mer based algorithm. The time complexity
of our algorithm is comparable to those of the existing methods, while we
make an improvement in space usage by avoiding the redundancy of storing
the k-mers. To further reduce the memory usage, we propose a partitioning
strategy. In addition to the reduction in memory usage, the algorithm under

this partitioning structure can be highly parallelized to improve performance.

Keywords: sequence classification, metagenomics, genomics, A-mer,

alignment-free, sequence signature, algorithm

iv doi:10.6342/NTU201902038

Contents

-

IList of Figures

List of Tables

LList of Algorithms

1 Introduction

[[.1 Motivation|

[[.2 Problem Description

[[.3 Main Resultd

[[.4 Organization of the Thesis

2 Related Work

P.1 k-mer Counting Tools

P.2 k-mer Based Metagenomic Comparison and Classification Methods

B.1 Algorithm

ii

il

iv

vii

viil

ix

doi:10.6342/NTU201902038

B.2 Analysis of the Algorithmg 18

B.3 Partitioning Strate@yl oo e e e e e 20
4 Conclusion 24
B Y PDNY 25

vi doi:10.6342/NTU201902038

List of Figures

[[.1 Sequence classification problem 4
2.1 Human readable k-mer spectrum file 10
R.2 Workflowof Simkd 12
2.3 Workflow of CLARK| 13
B.1 From a k-mer to an element in the hashtabld 15
B.2 The construction of index hash tables with partitioning strategyl 21
B.3 The classification of an object dataset with partitioning strategyl. 21
B.4 Index construction phase with multithreading 23
B.5 Classification phase with multithreading 23

vii doi:10.6342/NTU201902038

List of Tables

R.1 Sizes of datasets and KMC3 outputfiled 10
B.1 Space complexity of both algorithms 19
B.2 Time complexity of both algorithms 19

viii doi:10.6342/NTU201902038

List of Algorithms

I Buildlndex 16
................................... 17
B AlgorithmWithPartitioning o oo 22

ix doi:10.6342/NTU201902038

Chapter 1

Introduction

A substring of length & in a given string, usually a sequencing read, is called a k-mer
in bioinformatics. For example, given a sequencing read ACGGTTC, all 3-mers in this
read are ACG, CGG, GGT, GTT, and TTC. With the development of high-throughput
sequencing technologies, the studies of k-mers are getting more and more important
because many computational methods use k-mers to analyze the sequencing reads and
datasets. In other words, k-mer is a fundamental unit for many methods [2, 25, 28, 29, 32,
62].

The number of the occurrences of each k-mer in a given dataset is called k-mer
frequency or k-mer spectrum, and the problem of computing k-mer frequencies is called
k-mer counting. The k-mers with high frequencies can be regarded as features of a
dataset. In contrast, the k-mers with low frequencies, such as k-mers occurring only
one time, which are called singleton k-mers, are often generated by sequencing errors.
There are many methods and applications making use of k-mer counting. For instance,
genome assembly [4, |19, 41], estimation of genome size [57], read correction [23], repeat
detection [8, 20, 26, 27, 34], sequence alignment [[14] and comparison of genomes [9, 42,
64].

k-mer counting is conceptually simple, but it is difficult to be both fast and memory-
efficient. In particular, the sizes and the amounts of datasets nowadays are increasing
rapidly. Some traditional k-mer counting tools cannot complete the task of large datasets

or large k in reasonable time and space. A naive implementation of k-mer counting is to

1 doi:10.6342/NTU201902038

use a simple hash table, where keys are the k-mers and values are the counts. However,
when there are many distinct k-mers, the hash table should be very large, which is often
larger than given memory space, to avoid collisions. As a result, some studies make
efforts to implement more space-efficient data structures for k-mer counting. There are
also some studies trying to solve this problem by using disk space instead, which is a
trade-off between performance and space because disk I/O operations are much slower.
There are many latest researches [5, 18] about k-mer counting.

k-mers are widely used in metagenomics in recent years. For example, signa-
ture k-mers representing members of a certain protein family can be used to annotate
metagenomes [|1] and k-mer frequencies can be used in binning metagenomic contigs [|1].
An important application is the classification of sequences. In some researches, the
sequences to be classified belong to the same metagenome, and the researchers want to
know which metagenome it is. In some other researches, the researchers want to determine
the identities of the species in the sequenced sample. A solution common to these two
problems is to compare the given sequences with sequences of known origins. k-mer
frequencies can be very helpful in both cases. With analyzing and comparing the k-
mer frequencies of the given sequences of the same metagenome/species to the k-mer
frequencies of the sequences of other determined metagenomes/species, we can get the
dissimilarities and then infer the relationships between different datasets [6, 13, 45, 50].

Considering the properties of k-mers and the fact that the computation of k-mer
frequencies is getting faster and uses much lower memory space than before, the sequence
comparison based on k-mer frequencies is promising. Some of the comparison methods
mentioned above can use the output of the k-mer counting tools as input, while some
methods develop their own methods to count &-mers. CLARK [435] is a fast classification
method based on k-mer frequencies which takes files containing k-mer frequencies as
input. Nevertheless, the memory usage of CLARK is too large for common personal
computers. There is a variant of CLARK trying to solve this problem, but the accuracy
gets lower. In this thesis, we propose the algorithms which not only overcome this issue

but also improve the performance.

2 doi:10.6342/NTU201902038

1.1 Motivation

The classification of datasets is an essential task in the preliminary stage of many
researches. An intuitive approach is to measure the dissimilarities between datasets.
Sequence alignment is a traditional solution in taxonomy. Through analysing the results
of the alignment, the evolutionary relationships between object datasets and reference
datasets could be inferred. However, object datasets usually consist of sequencing reads,
which are not suitable for alignment, and the assembly of reads from unknown origins
is a difficult task. Therefore, alignment-free methods are proposed. One category of
these alignment-free methods is based on k-mers. Some properties of k-mers, which
are described in Section P.2, make k-mers appropriate for comparing datasets. Some k-
mer based methods compute the pairwise distances between k-mer spectra of datasets to
measure the dissimilarities. Nonetheless, pairwise comparisons are time-consuming.

An approach to avoid pairwise comparisons between datasets is to find the signature
k-mers of each dataset and classify the datasets according to these signature k-mers. The
criteria of finding the signature k-mers is another critical issue. The k-mers with highest
frequencies may be candidates, but &~-mers occurring many times in one dataset could also
occur many times in other datasets just because they are common in nucleotide sequences.
CLARK provides an intuitive and efficient approach to solve this problem. It finds the -
mers specific to each target dataset and classifies the object datasets accordingly. The
disadvantage of CLARK is the large memory usage. As a result, we try to improve this

method by reducing memory usage.

1.2 Problem Description

Given p object datasets to be classified and » target datasets of known origins, determine
which target is the most likely origin of each object (Figure [L.1]).

The datasets could be metagenomic or genomic sequences as long as all the sequences
in the object and target datasets are grouped into datasets at the same level. It is also

feasible to construct the datasets with the sequences grouped at species or genus level.

3 doi:10.6342/NTU201902038

S1 g1

S2 9>

The most likely origin
S 19
1% n

p Object Datasets n Target Datasets

Figure 1.1: Sequence classification problem

In traditional methods, the definition of “the most likely origin” is the target with
the smallest taxonomic dissimilarity. However, these methods usually need complete
reference databases to compute the dissimilarities and they are computationally costly.
Consequently, many researchers attempt to find methods based on other data instead of
the contents of the sequences. Some proposed methods make use of k-mer frequencies.
There are some existing k-mer based methods which could solve this problem fast. In this
thesis, we focus on how to solve this problem fast and accurately on the basis of k-mer

frequencies with limited memory space.

1.3 Main Results

There is a fast and accurate method, CLARK, resolving this problem based on A-mer
frequencies. However, it uses large RAM space during the computation. In this thesis,
we try to reduce the memory usage such that this task could be computed with common
personal computers. We propose algorithms which avoid the redundancy of storing k-mers
in CLARK. The time complexities of these algorithms are the same as CLARK’s, while
they should be faster than CLARK in practice. We also propose a partitioning strategy to

further reduce the memory usage.

4 doi:10.6342/NTU201902038

1.4 Organization of the Thesis

 Chapter 2 - Related Work

In this chapter, we summarize some related work about k~mer counting tools and
k-mer based comparative metagenomics methods. The algorithms of some k-mer
counting tools provide good ideas to improve classification methods. In addition,
we conclude some researches indicating that k-mers have some good properties such

that they are suitable for comparing datasets.

 Chapter 3 - Methods

In this chapter, we propose algorithms which overcome the issue of large memory
usage. We describe the algorithms, analyze them and compare them with the
existing k-mer based classification method, CLARK. In addition, we propose a
partitioning strategy to further reduce the memory usage of the purposed algorithms.

The algorithms with this strategy can be highly parallelized.

* Chapter 4 - Conclusion

In this chapter, we conclude the proposed algorithms and the partitioning strategy.

Besides, we describe the direction of future work.

5 doi:10.6342/NTU201902038

Chapter 2

Related Work

2.1 k-mer Counting Tools

Although there are many studies based on k-mer counting, early ones only consider it
as a preliminary step and describe it sketchily. Tallymer [26] is the first tool designed
specifically for ~~-mer counting. Rather than hash table, this tool is based on suffix array.
Meryl is a k-mer counting tool from the Celera assembler [41] package, which uses a
sorting-based approach. However, these tools are not efficient enough to deal with large
datasets.

Jellyfish [39] uses a multithreaded, lock-free hash table. Users have to pre-specify the
memory size for the hash table to use. Once the hash table is full, the intermediary k-mer
counts are saved to disk and merged to the final results later. Its current versions are still
used commonly in recent studies.

BFCounter [40] points out that more than half of the observed k-mers even in
preprocessed datasets are singletons, which can be weeded out as wrong data caused by
sequencing error and thus should not be inserted into the data structure for counting.
BFCounter uses a two-pass method. In the first pass, it uses a Bloom filter [7] to
filter out the k-mers which occur only one time. The Bloom filter is an approximate
membership query (AMQ) data structure. An AMQ data structure maintains a compact
and probabilistic representation of a set or multiset, so it could generate false positives
during querying if there are collisions. The k-mers that present more than once are inserted

6 doi:10.6342/NTU201902038

into a hash table. Since the result of a query to the Bloom filter is probably a false positive,
there may be some k-mers occurring only once inserted into the hash table. In the second
pass, it re-iterates over all the reads and counts the k-mers which are inserted in the hash
table in the first pass using a hash table to get the exact frequencies. BFCounter uses less
memory but much more time than Jellyfish. The difference in speed is mainly due to the
two-pass method. It is feasible for BFCounter to do the counting in the first pass and omit
the second pass to obtain approximate k-mer frequencies.

Jellyfish and BFCounter mainly rely on memory, and usually need dozens of gigabytes
of memory, which are not available in most personal computers. Relatively, it is much
easier to get sufficient capacity from disks. Consequently, some studies try to develop
disk-based k-mer counting tools, such as DSK [51]] and KMC []11}, 12, 24]. DSK relies
on hash tables. Different from Jellyfish, it processes the k-mers in several iterations. In
each iteration, only a partition of k-mers classified according to their hash values are saved
to their corresponding lists in the disk and then the lists are read from the disk to insert
into a hash table for counting. Users can set the target memory usage size and the target
disk space size. The numbers of iterations and lists are calculated accordingly, so it is
guaranteed that the size of hash tables would not exceed the target memory usage size.

KMC [[11] is similar to DSK in concept. The major difference is that KMC has
developed a scheme of parallel algorithm. The whole process can be divided into two
phases. In distribution phase, the k-mers are partitioned into several bins on the basis of
their prefixes, sorted and compacted. The bins are then stored into disk as files. In sorting
phase, the files are read from the disk. K-mers are uncompacted, sorted and counted.

Turtle [54] uses a method similar to BFCounter. It uses a pattern-blocked Bloom
filter [49], which reduces the number of cache misses by restricting the locations to store
a k-mer in the filter, to filter out singleton A-mers. The k-mers occurring more than once
are stored in an array. By repeatedly sorting and compaction, users can get the array of
these k-mers with their counts.

KAnalyze [3] implements a modified merge sort algorithm to count k-mers, and the

algorithm could be divided into two components: split component and merge component.

7 doi:10.6342/NTU201902038

The split component reads a set of k-mers into an array and sorts the array with a dual-
pivot quicksort algorithm. Then, it counts the k-mers by traversing the array, writes the
k-mers with their counts to a file in disk and fills the array with the next set of k-mers. The
merge component reads the files and accumulates the counts.

khmer [63] uses an AMQ data structure, count-min sketch [[10], to count the k-mers.
Different from other methods, khmer does not store A-mers in the data structure. To
increment the count of a k-mer, it uses a hash function to get the hash value and determines
the locations to be updated in the hash tables of the count-min sketch accordingly. To
retrieve the count of a k-mer, the hash value is computed and the minimum count among
the counts in all hash tables is returned. However, there are miscounts in the results of
khmer because the count-min sketch could generate false positives. khmer provides a way
to systematically trade larger memory usage for lower false positive rate.

There is high redundancy in above methods. Consecutive k-mers share & -1 symbols,
but they are processed and stored as k-mers not relevant at all. MSPKmerCounter [30]
introduces minimizers [52, 53] to the k-mer counting problem to reduce the redundancy.
KMC 2 []12] refines the minimizers to signatures, which fit the parallel scheme of KMC
better. In distribution phase, it partitions super k-mers consisting of k-mers sharing the
same signatures into bins according to their signatures. In sorting phase, it breaks down
super k-mers and counts them in an approach similar to the method in KMC. KMC 3 [24]
follows the same scheme as KMC 2 and makes some improvements in details.

KCMBT [37] counts k-mers on the basis of multiple burst tries [21, 56]. It inserts .-
mers into burst tries and traverses the tries to get the final k-mer frequencies after inserting
all the k-mers. KCMBT constructs 4¢ burst tries, where a is the prefix length for indexing
the tries, to reduce the space for storing k-mers.

Gerbil []16] uses a disk-based and parallel approach similar to KMC 2. It is divided
into two phases as well: distribution phase and counting phase. In distribution phase, it
uses minimizers to split the input data into several smaller temporary files which are stored
in the disk. They experimentally evaluated various ordering strategies of minimizers, and

they found the strategy, signatures, used by KMC 2 is a good choice for most datasets. In

8 doi:10.6342/NTU201902038

counting phase, the temporary files are re-read from the disk. After splitting super k-mers
into k-mers. Gerbil uses the hash table approach to count the k-mers and solves collisions
via quadratic hashing. In addition, Gerbil puts emphasis on algorithm engineering. It
points out several details implemented to gain high performance and utilizes GPUs to
speed up the counting phase. Gerbil can support the counting of A-mers for large k of
large datasets, which cannot be finished efficiently by KMC 2 and not supported by DSK.

Squeakr [47] uses counting quotient filters [46] to count the k-mers. The counting
quotient filter (CQF) is a novel AMQ data structure, but the collisions can be avoided by
adjusting the size of hash function and the size of data to be stored. Squeakr extracts the
k-mers from input data and inserts them into a local CQF in each thread. The data in the
local CQFs are then inserted into a global CQF to get the final approximate results. It is
possible for Squeakr to get exact results by adjusting the CQFs as mentioned above, and
it is called Squeakr-exact.

There is a benchmark study [38] of the k-mer counting tools. They find that KMC3,
DSK and Gerbil are the most flexible and efficient. (Squeakr is not assessed in this study.)

It seems that the sizes of the output files of k~-mer counting tools would be very large
when £ is large because of the redundancy of A-mers. Conceptually, if all possible A-mers
occur, there would be 4¢ k-mers stored in the file with their counts. In practice, there
would not be so many k-mers in the output files because (1) some k-mers hardly occur due
to the molecular structure of nucleic acids, (2) k-mers are counted in canonical form (the
lexicographically smaller one among the k-mer and its reverse complement) because when
a k-mer occurs, there must be its reverse complement occurring on the other strand, and
(3) many A-mer counting tools filter out singleton k-mers in default, and these singleton
k-mers usually account for a large proportion of the k-mers. In addition, in most k-mer
counting tools and applications based on k-mers, the k-mers are stored in binary form. A
is encoded as 00, C as 01, Gas 10 and T (U) as 11 such that each four bases of a k~~-mer can
be stored in one byte. Take KMC3 for example, it filters out k-mers occurring less than 2
times in default and stores the k-mers in binary form. To compact the sizes of output files

with reducing the redundancy of k-mers, it divides the output into prefix file (.kmc_pre)

9 doi:10.6342/NTU201902038

and suffix file (kmc_suf). We compute the k-mer spectra of some datasets with KMC3
to show that k-mer spectrum is a succinct representation of sequence datasets (Table 2.1]).
However, it is a lossy representation. There is no information of k-mer position kept in

the spectrum.

Organism | Genomekngth | Dataset | el | e e | withwihou ienin
E. coli 5[SRR5002442 [371 | 1.24 0.14/1.35
C. elegans 102 | DRR008444 [19.62| 595 0.78/1.71
F. vesca 214 | SRA020125 952 | 338 2.22/5.43

Table 2.1: Sizes of datasets and KMC3 output files. £ = 31. FASTQ and gzipped files
are the datasets, and most k-mer counting tools could take both of these formats as inputs.
Genome lengths are in Mbases according to http://www.ncbi.nlm.nih.gov/genome/. File
sizes are in Gbytes (1 Gbyte = 10° bytes). For output files with filtering, we set KMC3
to filter out k-mers occurring less than 2 times. The datasets were downloaded from
https://www.ebi.ac.uk/ena.

KMC3 provides a tool to convert output files to human readable k-mer spectrum files.

The k-mer spectrum contains the k-mers and their frequencies (Figure 2.1]).

Lappfanh A ACTGOCTCAGGATCGCATTAL
Lap AR ARAALAGCGALAGATCGTCGGALGCG
LapARALAANCAGCCCGARACCTTATTCGGT
LappLanLAACTGOCTCAGGATCGCATTALL
Lap AR A8AAAGCGALAGATCOTCGGAAGCGT
Lap AR AL A ACAGCCCGARACCTTATTCGGTT
Lap B AARAACAGCCCGAAGCCTTATTCGGTT

55

L3 [od [oD ed [B2

Figure 2.1: Human readable k-mer spectrum file

2.2 k-mer Based Metagenomic Comparison and Classifi-

cation Methods

A traditional method to determine the origin of a set of sequences is sequence alignment
with reference sequences. But this method is not feasible when the reference databases are
not complete. The lack of reference databases especially exists in metagenomics [22]. As
a result, some researchers proposed de novo methods. A method [31]] measures dissimi-

larities between datasets by marker genes and cluster them, but they are computationally

10 doi:10.6342/NTU201902038

expensive and leave lots of the reads unused. Therefore, another method [61]] compare
read contents directly with BLAST [2]. However, these methods cannot scale up to large
datasets.

k-mer based methods are introduced into this issue in recent years. In [6], it states that

“k-mers are a natural unit for comparing communities:
« sufficiently long k-mers are usually specific of a genome [[17],
* k-mer frequency is linearly related to genome’s abundance [60],

* k-mer aggregates organisms with very similar k-mer composition without need for

a classification of those organisms [58].”

There is also a research [13]] comparing k-mer based distances and taxonomic distances
based on assignation against reference databases. They find that k~-mer based distances are
well correlated to taxonomic distances. Additionally, the k-mer based distances overcome
the incompleteness issue of reference databases.

Compareads [36], Commet [35] and another method [55] compute the similarities
between datasets based on the number of shared k-mers. MetaFast [59] and Mash [43]
compute pairwise similarity matrices using feature vectors of k-mer composition.

Simka [6]] computes varieties of distances between multiple datasets based on k-mer
frequencies. To compute distances between multiple datasets simultaneously, the A-mer
frequencies of all the datasets are needed. If we attempt to compute distances after
finishing the counting of the frequencies of all the A-mers in datasets, we have to record
a matrix of size W x N, where W is the number of distinct canonical k-mers and N is the
number of datasets. When W and N are large, this matrix would require a large amount
of space. To avoid this demand for large space, Simka develops an efficient multiset .-
mer counting algorithm (MKC) and applies some ecological distances which are additive
over k-mers. To compute these distances, Simka only has to compute the distances using
a part of the k-mers in each step, and aggregates the results of all the parts to get final
distances (Figure R.2)). After extracting and storing the canonical representation of each

k-mer, MKC separates the k-mers into a fixed amount of partitions. Each partition is

11 doi:10.6342/NTU201902038

then sorted, counted and stored as files in disk independently. Thus the files associated
to the same partition contain a specific subset of k-mers common to all datasets. With
this partitioning strategy, Simka only takes a part of the counts at a time to compute the

distances. Moreover, this approach is suitable for parallelization.

Read set 5, Read set s, TR Read set sy
7 4 7
S) {4
Partition 1 Partition 1 Partition 1 Abundance vectors Up date_p artial
e - . |:> contribution to the |:>
of s, of s, of sy of partition 1 .
distance Accumulate
contributions and
- . . i compute the final
Partition 2 Partition 2 Partition 2 Abundance vectors Up .date_p artial distance matrix
e - contribution to the
of 51 of s, of sy of partition 2 .
distance
Sy Sy |- [sw
51| 0 |dia|.. daw
Sy |dia| O | ... Hon
Partition p Partition p Partition p Abundance vectors Up Flate.p artial sy fanflon|... | 0
of's of s R of s of partition p contribution to the
i 2 B B distance

C

Figure 2.2: Workflow of Simka. (A) The gray arrows represent the sorting count
processes of MKC. Each process outputs p partitions of sorted k-mer counts. (B) The
black arrows represent the merging count processes of MKC. Each process merges the
counts in N partitions of a common subset of k-mers and outputs abundance vectors of
these k-mers. (C) Simka uses the abundance vectors to update independent contributions
to the distance. In final step, it accumulates contributions to compute the final distance
matrix.

CLARK [45] classifies the datasets using discriminative k-mers. It builds a large index
hash table containing the k-mer spectra of all target datasets and removes the k-mers
occurring in more than one dataset. The remaining k-mers are discriminative (target-
specific) k-mers which could be regarded as representatives of corresponding datasets
because each of these k-mers exist in the dataset uniquely. As a result, the target-specific
k-mer sets of all the target datasets are obtained (Figure 2.3 (A) Index Construction Phase).
To classify an object dataset, for each k-mer in the dataset CLARK queries the index hash
table to check if this k~-mer matches a target-specific k-mer of a dataset. If so, it is called a
“hit.” After querying all the k-mers, the object is assigned to the target dataset having the
highest number of hits (Figure 2.3 (B) Classification Phase). CLARK offers two modes

of execution. The full mode outputs the top two target assignments, confidence score

12 doi:10.6342/NTU201902038

of the first assignment and the number of hits against all the targets. The default mode
stops querying for an object as soon as there is one target collecting half of possible hits
and only outputs assignments. There is a variant, CLARK-E, significantly accelerating
the computation of classification while maintaining high precision and sensitivity. It only

queries non-overlapping k-mers and assigns the object to the first target that obtains a hit.

Object Object Object
dataset dataset | ... | dataset
5y Sy Sp
I I I
v v v
Target dataset R
g1
Target dataset - Index
g >
- Hash Table
Target dataset N
Gn
; ; ;
(4) Index Construction Phase Assignment Assignment Assignment

(B) Classification Phase

Figure 2.3: Workflow of CLARK

Besides high accuracy and speed, the major advantage of CLARK is that it provides
an intuitive approach to find the signature k-mer sets. However, it uses large memory
space while constructing the index hash table. For example, the RAM peak usage of
the database construction of 2,752 bacterial genomes is 164.1 GB, which is not available
in some workstations and most personal computers. There is another variant, CLARK-/,
designed for machines with limited amounts of RAM. CLARK-/ constructs a smaller hash
table and smaller discriminative k-mer sets. It uses smaller k£ and samples a fraction of &-
mers of each target datasets to build the index. In the experiment mentioned above, the
RAM peak usage of CLARK-/ is only 3.8 GB. Nevertheless, the sensitivity and precision
of CLARK-/is much lower in some cases. A method called CLARK-S [44] was proposed
later to improve the sensitivity of CLARK on the basis of the idea of spaced seed [33].
Compared to CLARK, its memory usage for classification is even larger and its running

time is much longer.

13 doi:10.6342/NTU201902038

Chapter 3

Methods

CLARK provides an intuitive and efficient approach to find out the discriminative k-mer
sets of target datasets and classify object datasets. However, there are some redundant
computations in the algorithm of CLARK which may lead to large memory usage. We
have devised an algorithm which removes the redundancy of CLARK.

In the algorithm of CLARK, the part using the most memory space is the index hash
table. There are 4* possible k-mers in the k-mer spectrum of a dataset, so the k-mer
spectrum is a vector of dimension 4*. To avoid too many collisions, CLARK builds large
hash table and uses separate chaining. It simply inserts the IDs for all the targets containing
a certain k-mer to the list of this k-mer. When the A-mer is common in many datasets, the
list would be long and take up lots of space. In fact, the k-mer existing in more than one
dataset would be removed afterwards. As a result, it is a waste of computation resource to
store the same k-mer of all the datasets containing this k-mer in the hash table. In addition,
there are some values stored in the hash table not necessary in the algorithm, so we also

modify the data structure of the k&~-mer storing in the hash table.

3.1 Algorithm

The algorithms in this thesis focus on the construction of the index hash table and the
classification of object datasets. The computation of k-mer frequencies can be finished

fast and memory-efficiently using the k-mer counting tools mentioned in related work.

14 doi:10.6342/NTU201902038

The inputs of the whole algorithm are (1) the k-mer spectra of target datasets, (2) the
k-mer spectra of object datasets, and optionally (3) a minimum number of occurrences if
user wants to remove k-mers occurring less than a certain amount of times.

In this algorithm, the data structure of the k~-mers stored in the index hash table contains
(1) the k-mer, (2) the ID of the target dataset, and (3) the count of the k-mer in the dataset. In
fact, the count could be replaced with a Boolean variable because the frequency would not
be used afterwards. We describe the algorithm with the count for convenience. Assuming
that the input k-mer spectra are counted in canonical form (Figure B.1f arrow A) and stored
in binary form (Figure arrow B), we use a hash table the same as that designed in
CLARK, a hash table of size L with separate chaining. The hash function /4 is defined as
h(l) =1 mod L, where [is the value of the ~-mer. With this hash function, we store the
value [/ L in the bucket /(1) of the hash table (Figure B.1| arrow C). It is trivial to get the
original k-mer from the value stored in the hash table. The value of L is set to a power of 2
such that the modulo operation and division operation could be done easily with dividing
the binary form of a k-mer into two parts and taking the second part as hash value and the

first part as the value to store in the element .

Key Element
00

=GCCT A c o1
A AGGC }——| 00101001 |—» 0010100120} OSI%O*
-AGGC ------ ’

...... 10

K-mer spectrum of g,

Figure 3.1: From a k-mer to an element in the hash table

In Algorithm [I], we describe the method of building the index hash table. The algorithm
attempts to store all the k~-mers into the hash table. If user has specified a minimum number
of occurrences, the k-mers with frequencies lower than this number should not be stored
in the index. This examination is useful especially for the datasets with low sequencing
quality because most of the k-mers with low frequencies arise from sequencing errors.
When storing k-mers in each dataset into the hash table, the algorithm would attempt to

store identical k-mers from different datasets into the same bucket of the hash table based

15 doi:10.6342/NTU201902038

on the hash function. Rather than the exact frequency of each k-mer, what is crucial in this
algorithm is whether a k-mer occurs in only one dataset. Based on this observation, when
the algorithm tries to store a k-mer into a bucket with the same k-mer from a different
dataset already stored in it, this new k-mer should be ignored. On the other hand, the .-
mer which has been stored in the bucket cannot be used as a target-specific k-mer either,
but it would not be removed because it is kept as a token to record that this k~~-mer exists in
at least two datasets. The algorithm sets the count of the k-mer to 0, representing that this
k-mer is merely kept as a token, so it would be removed afterwards and not included in
the target-specific set. For convenience of understanding the algorithm, we check whether
the count of the stored k-mer is equal to 0 in Algorithm 1. In practice, we could set the
count to 0 without checking to save the time of checking the condition of the if statement.
After processing all the k-mers from all the datasets, there is only one element stored
in the index hash table for each distinct k-mer. For each element, the value of count is
either 0, representing this k-mer should be removed, or a positive integer, representing the
frequency of this kA-mer in corresponding dataset. After removing the k-mers with counts

equal to 0, the algorithm saves the index hash table in disk.

Algorithm 1 BuildIndex
Input: k-mer spectra T'(g.) of n target datasets (g.)i1<c<n
1: create an empty hash table H
2: forc=1tondo
3: for each k-mer km with frequency cnt. in T'(g.) do

4: if cnt, > mingee,, then

5: if there is (km, i, cnt;) € H then
6: if cnt; = 0 then

7: do nothing

8: else

9: ent; =0

10: else

11: insert (km, ¢, cnt,.) in H

12: for each (km, i, cnt;) € H do
13: if cnt; = 0 then

14: remove this element

15: store the index hash table in disk

16 doi:10.6342/NTU201902038

After constructing the index hash table, we can use it to classify the object datasets.
In Algorithm [, we describe the method to classify object datasets. It is conceptually the
same as the algorithm of the classification part of CLARK’s algorithm. We modify it such
that the algorithm fits the structure that we propose later and keep the computation of the
statistics which are computed in CLARK. Using the same hash function, the algorithm
checks whether each k-mer in the k-mer spectra of object datasets exists in the target-
specific k-mer set of a target dataset easily. If so, it is a hit and the algorithm counts the hits
by adding the frequency of this k-mer in the object dataset to the counter of corresponding
target dataset. After counting all the hits, we calculate the statistic . | 7'(s;) | is the total
number of k-mers in object dataset /. 7 indicates the proportion of k-mers which hit the
target-specific k-mer sets of target datasets. If v = 0, it means that none of the k-mers in the
object dataset hits target datasets and the algorithm cannot classify this object. Otherwise,
the algorithm finds out the targets with the highest and second-highest numbers of hits and

computes the confidence score of the assignment to the highest target accordingly.

Algorithm 2 Classify
Input: index hash table H; n: the number of target datasets; k-mer spectra T'(s;) of p
object datasets (s;)1<i<p

1: for(=1topdo

2 declare n integer by, bo, ..., b, = 0

3 for each k-mer km with frequency cnt; in T'(s;) do
4 if there is (km, i, cnt;) € H then

5: b; = b; + cniy

6 V=2 |Tl()—§l)|

7 if v = 0 then

8 output /, “not assigned”

9: else
10: my = argmax{b, by, ..., b, }
11: my = argmax{{by, ba, ...,0,} — {bm, }}
12: con fidence = bmlzlme
13: output [, by, by, ..., by, v, my, mo, con fidence

17 doi:10.6342/NTU201902038

3.2 Analysis of the Algorithms

In this section, we analyze and compare our algorithms with the algorithm of CLARK. To
analyze the space complexity, we analyze the peak memory usage.

In index construction phase, the peak usages of both algorithms occur when the
algorithms finish processing all the k-mers of target datasets. CLARK simply inserts
all the k-mers of target datasets into the index hash table, so the number of elements
inserted into the hash table is equal to the total number of the distinct k&-mers in the datasets.
Conceptually, there are 4* total possible k-mers in a dataset. In fact, for each dataset of
genome length g, there are O(g) distinct k-mers because there are s — k + 1 k-mers in a
sequence of length s. When the value of k is large, g is much smaller than 4. For example,
when we set k to 31, 43! is 4.6 x 10'®, while the length of the largest known genome is
1.5 x 10 bp [48]. For all target datasets of total genome length G, there are O(G7)
distinct k-mers. On the other hand, when k is small, there are O(n x 4%) distinct k-mers.
As aresult, there are O(min(Gr, n x 4%)) distinct k&-mers in general. Considering the size
of the hash table L, the space complexity of CLARK is O(max (L, min(G7,n x 4%))).
In our algorithm, for each distinct k-mer, we store at most one element in the hash table.
However, the worst case is that the k-mers of each target dataset are distinct in all the
datasets, so we should store the same number of k-mers in the hash table as CLARK. As
a result, the space complexities of our algorithm and CLARK are the same. But there
are many repetitive k-mers in general, and our algorithm saves the space for storing these
k-mers. Suppose that a k-mer occurs in » datasets on average, CLARK stores 7 times as
many k-mers as as we do.

In classification phase, after removing the elements of identical k-mers from different
datasets in CLARK, the peak usages of both algorithms are the same. The space
complexities of both algorithms in this phase are equal to the space complexity of the
completely built index hash table, which only contains target-specific k-mers. The worst
case is the same as the case mentioned above, and all the k-mers are target-specific k-
mers. Consequently, the space complexity of this phase is the same as the complexity of

the index construction phase (Table B.1]).

18 doi:10.6342/NTU201902038

Index Construction Classification Total

O(max(L, min(G7,n x 4%))) | O(max(L, min(G7,n x 4*%))) | O(max(L, min(Gy,n x 4%)))

Table 3.1: Space complexity of both algorithms

The time complexities of our algorithm and CLARK’s algorithm are the same because
the structure is basically the same. In index construction phase, the operations performing
on each k-mer could be done in constant time. There are O(min(G7, n x 4%)) k-mers in
total, so the time complexity of this phase is O(min(G7, n x 4%)). In classification phase,
for each object dataset of genome size g, it takes O(min(g, 4¥)) time to count the hits of
the dataset. The declaration of integers, the search of the targets with highest numbers of
hits and the computation of ~y take O(n) time. In general, O(min(g,4")) is much larger
than n. So for p object datasets of total genome length G, it takes O(min(Go,p x 4%))
time (Table B.2).

Index Construction Classification Total
O(min(Gr,n x 4%)) | O(min(Go, p x 4%)) | O(min(Gr,n x 4%) + min(Go, p x 4%))

Table 3.2: Time complexity of both algorithms

Although the time complexities of both algorithms are the same, our algorithm should
be faster than CLARK’s algorithm in practice. CLARK inserts all the k-mers in the hash
table and then removes most of them, and we prevent this waste by only storing the first
occurring k-mers.

Note that the peak memory usage of our algorithm is close to the peak memory usage
in the classification phase of CLARK because the elements in the index hash table are the
same. In the experiment of 2,752 bacterial genomes mentioned in the previous chapter,
the RAM peak usage of classification phase of CLARK is 70.1 GB, which is still large
for personal computers. In the next section, we provide a strategy to further reduce the

memory usage.

19 doi:10.6342/NTU201902038

3.3 Partitioning Strategy

Inspired by the idea of MKC in [(]], we propose a structure based on a partitioning strategy
to further reduce the peak memory usage of our algorithm. In the algorithm, it stores all
the k-mers of all the target datasets into a hash table, resulting in a hash table of large size.
However, when the algorithm searches for a hit of a k-mer of an object dataset, at most
one bucket containing corresponding k-mer is needed. That is, we only need to obtain the
bucket containing this element in the hash table. Conceptually, when we want to query a
k-mer, we can get the key value of the k-mer using the hash function and load the bucket of
this key value from disk. With this approach, the classification phase could be completed
within small memory space. Nonetheless, it would give rise to excessive disk accesses,
causing a large increase of running time.

To make a trade-off between memory usage and performance, we partition all the -
mers into g parts according to their lexicographical order. The value of ¢ is adjustable
based on the specification of each machine. Some A-mer counting tools print the k~mers
with their frequencies in lexicographical order in output files while some tools don’t. If
not, we sort the k-mers in the files as a preliminary task. It is easy to partition the sorted -
mers such that a partition contains a specific subset of A-mers common to all datasets.
In index construction phase, we construct an index hash table independently for each
partition. We take the same partition of each file to construct the same hash table of this
partition (Figure B.2). We use the same algorithm to construct the index hash tables of
the partitions. In classification phase, we partition the k-mers with the same rule. To
classify an object dataset, we count the hits of each partition of k~-mers with the index of
the partition (Figure B.3)).

This partitioning strategy can be applied to our algorithm with small modification
(Algorithm PJ). With this partitioning strategy, we only have to load a hash table of
a partition in memory at a time during the construction and the classification of the
partition. The space complexity of the original index hash table in our algorithm is
O(max(L, min(G7,n x 4%))). With partitioning the k-mers into ¢ parts, this can be

reduced to O(max(L’min(qGT’"“k))). Users could adjust the value of ¢ to fit the RAM size

20 doi:10.6342/NTU201902038

K-mer spectrum of g,

Index hash table of
partition 1

K-mer spectrum of g,

Index hash table of
partition 2

Figure 3.2: The construction of index hash tables with partitioning strategy

-

Index hash table of
partition 1

Load the index to count hits

K-mer spectrum of s,

Index hash table of
partition 2

Figure 3.3: The classification of an object dataset with partitioning strategy

and loading the index hash tables.

21

of the machine. The number of k-mers processed in total is the same as that in the
original structure without partitioning, so the time complexity is still O(min(Gr, n x 4%)+
min(Go, p x 4%)). However, the execution time in practice would increase as the number

of partitions increases because of the relatively time-consuming disk accesses of storing

Another advantage of this partitioning strategy is that the algorithm with this strategy
can be highly parallelized. For example, in index construction phase, each thread takes
a partition of the k-mers in all the target datasets to construct the index hash table of

the partition simultaneously (Figure B.4). In classification phase, each thread takes a

doi:10.6342/NTU201902038

Algorithm 3 AlgorithmWithPartitioning
Input: ¢; k-mer spectra T'(g.) of n target datasets (g.)1<c<n; k-mer spectra T'(s;) of p
object datasets (s;)1<i1<p

1: for each T'(z,) do

2: partition T'(x,)) into ¢ parts (T'(xy)m)1<m<q

3: form=1toqdo

4: run BuildIndex((7'(g.)m)1<c<n) to get index hash table H,, and store it in disk

5: for[=1topdo

6: declare n integer by, bo, ..., 0, = 0

7: form=1toqgdo

8: load H,,, from disk

9: for each k-mer km with frequency cnt; in T'(s;),, do

10: if there is (km, i, cnt;) € H,, then

11: b; = b; + cnt;

122 y=>1, ITZ()—;)I

13: if v = 0 then

14: output /, “not assigned”

15: else

16: my = argmax{b, by, ..., b, }

17: mo = argmax{{by, ba,,0,} — {bm, }}

18: confidence = —r—
1 2

19: output [, by, ba, ..., by, v, m1, ma, con fidence

partition of the k-mers in the object dataset and loads the index of the partition to count
the hits. After all the threads finish counting, the counts are accumulated to get the final
results (Figure B.5). Consequently, for machines with large RAM size, we can improve
the performance of index construction and classification instead of reducing the memory

usage.

22 doi:10.6342/NTU201902038

Thread 1

_ Index hash table of
- partition 1
Partitions 1 of all the
target datasets
Thread 2
R Index hash table of
[" partition 2

Partitions 2 of all the
target datasets

Figure 3.4: Index construction phase with multithreading

Thread 1
Partition 1 of the Index hash table of b b b
object dataset partition 1 L2 e T
Thread 2
Partlltlon 2 of the | Index hgsl; table of by, by, ... by Sum the cqtmts of
object dataset partition 2 all the partitions to
get the final counts
by by, ..., by
Thread N
Partition N of the Index hash table of
object dataset partition N by bz, --es b

Figure 3.5: Classification phase with multithreading

23 doi:10.6342/NTU201902038

Chapter 4

Conclusion

In this thesis, we propose an algorithm with the space complexity O(max (L, min(Gr, n X
4%))), where L is the size of the hash table, G is the total genome length of target datasets,
n is the number of target datasets and £ is the length of the kA-mers. This is the same as
the space complexity of CLARK, but we save large space by avoiding the redundancy of
storing k-mers in CLARK. However, the RAM peak usage is still too large for common

personal computers. To solve this problem, we propose a partitioning strategy which can

max(L,min(Gr,nx4F))
(;)

be applied to our algorithm. The space complexity would be O if we

partition the k-mers into g parts. The algorithm under this partitioning structure can be
highly parallelized. For machines with sufficient RAM, we can improve the performance
rather than reducing memory usage.

In theoretical analysis, our algorithm is not only more memory-efficient but also faster
than CLARK. Nevertheless, we do not have the experimental data of practical memory
usage and performance of the algorithms. The implementation of these algorithms is a
direction of future work. In implementation, parallelization is another important issue.
The partitioning rule based on lexicographical order is intuitive and efficient, but it may
lead to some partitions with lots of k-mers and some partitions with few k-mers. This
imbalance of partition sizes could reduce the performance of the parallelization scheme.
Therefore, the partitioning policy is a crucial factor influencing the effectiveness of

parallelization.

24 doi:10.6342/NTU201902038

Bibliography

[1] J. Alneberg, B. S. Bjarnason, I. de Bruijn, M. Schirmer, J. Quick, U. Z. [jaz, L. Lahti,
N. J. Loman, A. F. Andersson, and C. Quince. Binning metagenomic contigs by

coverage and composition. Nature Methods, 11:1144-1146, 2014.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology, 215(3):403—410, 1990.

[3] P. Audano and F. Vannberg. KAnalyze: a fast versatile pipelined K-mer toolkit.
Bioinformatics, 30(14):2070-2072, 2014.

[4] S. Batzoglou, D. B. Jaffe, K. Stanley, J. Butler, S. Gnerre, E. Mauceli, B. Berger,
J. P. Mesirov, and E. S. Lander. ARACHNE: a whole-genome shotgun assembler.

Genome Research, 12:177-189, 2002.

[5] S. Behera, S. Gayen, J. S. Deogun, and N. V. Vinodchandran. KmerEstimate:
A Streaming Algorithm for Estimating k-mer Counts with Optimal Space Usage.
In Proceedings of the 2018 ACM International Conference on Bioinformatics,

Computational Biology, and Health Informatics, pages 438-447. ACM, 2018.

[6] G. Benoit, P. Peterlongo, M. Mariadassou, E. Drezen, S. Schbath, D. Lavenier, and
C. Lemaitre. Multiple comparative metagenomics using multiset k-mer counting.

PeerJ Computer Science, 2:¢94, 2016.

[7] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422—426, 1970.

25 doi:10.6342/NTU201902038

[8] D. Campagna, C. Romualdi, N. Vitulo, M. D. Favero, M. Lexa, N. Cannata, and
G. Valle. RAP: a new computer program for de novo identification of repeated

sequences in whole genomes. Bioinformatics, 21(5):582-588, 2004.

[9] B. Chor, D. Horn, N. Goldman, Y. Levy, and T. Massingham. Genomic DNA k-mer

spectra: models and modalities. Genome Biology, 10:R108, 2009.

[10] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-

min sketch and its applications. Journal of Algorithms, 55(1):58-75, 2005.

[11] S. Deorowicz, A. Debudaj-Grabysz, and S. Grabowski. Disk-based k-mer counting
on a PC. BMC Bioinformatics, 14:160, 2013.

[12] S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz. KMC 2: fast and

resource-frugal k-mer counting. Bioinformatics, 31(10):1569-1576, 2015.

[13] V. B. Dubinkina, D. S. Ischenko, V. I. Ulyantsev, A. V. Tyakht, and D. G. Alexeev.
Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis.

BMC Bioinformatics, 17:38, 2016.

[14] R. C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research, 32(5):1792—1797, 2004.

[15] R. A. Edwards, R. Olson, T. Disz, G. D. Pusch, V. Vonstein, R. Stevens, and
R. Overbeek. Real Time Metagenomics: Using k-mers to annotate metagenomes.

Bioinformatics, 28(24):3316-3317, 2012.

[16] M. Erbert, S. Rechner, and M. Miiller-Hannemann. Gerbil: a fast and memory-
efficient k-mer counter with GPU-support. Algorithms for Molecular Biology, 12:9,
2017.

[17] Y. Fofanov, Y. Luo, C. Katili, J. Wang, Y. Belosludtsev, T. Powdrill, C. Belapurkar,
V. Fofanov, T.-B. Li, S. Chumakov, and B. M. Pettitt. How independent are the
appearances of n-mers in different genomes? Bioinformatics, 20(15):2421-2428,

2004.

26 doi:10.6342/NTU201902038

[18] J. Ge, N. Guo, J. Meng, B. Wang, P. Balaji, S. Feng, J. Zhou, and Y. Wei. K-mer
Counting for Genomic Big Data. In International Conference on Big Data, pages

345-351. Springer, 2018.

[19] P.Havlak, R. Chen, K. J. Durbin, A. Egan, Y. Ren, X.-Z. Song, G. M. Weinstock, and
R. A. Gibbs. The Atlas genome assembly system. Genome Research, 14(4):721—
732, 2004.

[20] J. Healy, E. E. Thomas, J. T. Schwartz, and M. Wigler. Annotating large genomes
with exact word matches. Genome Research, 13(10):2306-2315, 2003.

[21] S. Heinz, J. Zobel, and H. E. Williams. Burst tries: a fast, efficient data structure
for string keys. ACM Transactions on Information Systems (TOIS), 20(2):192-223,
2002.

[22] E. Karsenti, S. G. Acinas, P. Bork, C. Bowler, C. D. Vargas, J. Raes, M. Sullivan,
D. Arendt, F. Benzoni, J.-M. Claverie, M. Follows, G. Gorsky, P. Hingamp,
D. Iudicone, O. Jaillon, S. Kandels-Lewis, U. Krzic, F. Not, H. Ogata, S. Pesant,
E. G. Reynaud, C. Sardet, M. E. Sieracki, S. Speich, D. Velayoudon, J. Weissenbach,
P. Wincker, and the Tara Oceans Consortium. A Holistic Approach to Marine Eco-

Systems Biology. PLoS biology, 9(10):e1001177, 2011.

[23] D.R. Kelley, M. C. Schatz, and S. L. Salzberg. Quake: quality-aware detection and

correction of sequencing errors. Genome Biology, 11(11):R116, 2010.

[24] M. Kokot, M. Dlugosz, and S. Deorowicz. KMC 3: counting and manipulating

k-mer statistics. Bioinformatics, 33(17):2759-2761, 2017.

[25] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M. Phillippy.
Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and

repeat separation. Genome research, 27(5):722-736, 2017.

[26] S. Kurtz, A. Narechania, J. C. Stein, and D. Ware. A new method to compute K-
mer frequencies and its application to annotate large repetitive plant genomes. BMC
Genomics, 9:517, 2008.

27 doi:10.6342/NTU201902038

[27] A.Lefebvre, T. Lecroq, H. Dauchel, and J. Alexandre. FORRepeats: detects repeats
on entire chromosomes and between genomes. Bioinformatics, 19(3):319-326,

2003.

[28] H. Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long

sequences. Bioinformatics, 32(14):2103-2110, 2016.

[29] H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,

34(18):3094-3100, 2018.

[30] Y. Li and XifengYan. MSPKmerCounter: A Fast and Memory Efficient Approach

for K-mer Counting. arXiv:1505.06550 [g-bio.GN], 2015.

[31] M. R. Liles, B. F. Manske, S. B. Bintrim, J. Handelsman, and R. M. Goodman. A
Census of rRNA Genes and Linked Genomic Sequences within a Soil Metagenomic

Library. PLoS biology, 69(5):2684-2691, 2003.

[32] H.-N. Lin and W.-L. Hsu. Kart: a divide-and-conquer algorithm for NGS read
alignment. Bioinformatics, 33(15):2281-2287, 2017.

[33] B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive homology

search. Bioinformatics, 18(3):440-445, 2002.

[34] H. Ma, L.-C. Tu, A. Naseri, Y.-C. Chung, D. Grunwald, S. Zhang, and T. Pederson.
CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nature
Methods, 15(11):928-931, 2018.

[35] N. Maillet, G. Collet, T. Vannier, D. Lavenier, and P. Peterlongo. ~Commet:
Comparing and combining multiple metagenomic datasets. In 2014 IEEE

International Conference on Bioinformatics and Biomedicine. IEEE, 2014.

[36] N. Maillet, C. Lemaitre, R. Chikhi, D. Lavenier, and P. Peterlongo. Compareads:
comparing huge metagenomic experiments. BMC Bioinformatics, 13(Suppl 19):S10,

2012.

28 doi:10.6342/NTU201902038

[37] A.-A. Mamun, S. Pal, and S. Rajasekaran. KCMBT: a k-mer Counter based on

Multiple Burst Trees. Bioinformatics, 32(18):2783-2790, 2016.

[38] S. C. Manekar and S. R. Sathe. A benchmark study of k-mer counting methods for

high-throughput sequencing. GigaScience, 7(12):1-13, 2018.

[39] G. Margais and C. Kingsford. A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers. Bioinformatics, 27(6):764-770, 2011.

[40] P. Melsted and J. K. Pritchard. Efficient counting of k-mers in DNA sequences using
a bloom filter. BMC Bioinformatics, 12:333, 2011.

[41] J. R. Miller, A. L. Delcher, S. Koren, E. Venter, B. P. Walenz, A. Brownley,
J. Johnson, K. Li, C. Mobarry, and G. Sutton. = Aggressive assembly of

pyrosequencing reads with mates. Bioinformatics, 24(24):2818-2824, 2008.

[42] K. J. V. Nordstrom, M. C. Albani, G. V. James, C. Gutjahr, B. Hartwig, F. Turck,
U. Paszkowski, G. Coupland, and K. Schneeberger. Mutation identification by
direct comparison of whole-genome sequencing data from mutant and wild-type

individuals using k-mers. Nature Biotechnology, 31(4):325-330, 2013.

[43] B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman, S. Koren,
and A. M. Phillippy. Mash: fast genome and metagenome distance estimation using

MinHash. Genome Biology, 17:132, 2016.

[44] R.Ounitand S. Lonardi. Higher classification sensitivity of short metagenomic reads

with CLARK-S. Bioinformatics, 32(24):3823-3825, 2016.

[45] R. Ounit, S. Wanamaker, T. J. Close, and S. Lonardi. CLARK: fast and accurate
classification of metagenomic and genomic sequences using discriminative k-mers.

BMC Genomics, 16:236, 2015.

[46] P.Pandey, M. A. Bender, R. Johnson, and R. Patro. A general-purpose counting filter:
Making every bit count. In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 775-787. ACM, 2017.

29 doi:10.6342/NTU201902038

[47] P. Pandey, M. A. Bender, R. Johnson, and R. Patro. Squeakr: an exact and

approximate k-mer counting system. Bioinformatics, 34(4):568-575, 2017.

[48] J. Pellicer, M. F. Fay, and I. J. Leitch. The largest eukaryotic genome of them all?
Botanical Journal of the Linnean Society, 164(1):10-15, 2010.

[49] F. Putze, P. Sanders, and J. Singler. Cache-, hash-, and space-efficient bloom filters.
Journal of Experimental Algorithmics, 14(4):1950-1957, 2009.

[50] J. Ren, N. A. Ahlgren, Y. Y. Lu, J. A. Fuhrman, and F. Sun. VirFinder: a novel
k-mer based tool for identifying viral sequences from assembled metagenomic data.

Microbiome, 5:69, 2017.

[51] G. Rizk, D. Lavenier, and R. Chikhi. DSK: k-mer counting with very low memory
usage. Bioinformatics, 29(5):652—653, 2013.

[52] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke. Reducing storage
requirements for biological sequence comparison. Bioinformatics, 20(18):3363—

3369, 2004.

[53] M. Roberts, B. R. Hunt, J. A. Yorke, R. A. Bolanos, and A. L. Delcher. A
preprocessor for shotgun assembly of large genomes. Journal of Computational

Biology, 11(4):734-752, 2004.

[54] R.S.Roy, D. Bhattacharya, and A. Schliep. Turtle: Identifying frequent k-mers with
cache-efficient algorithms. Bioinformatics, 30(14):1950-1957, 2014.

[55] S. Seth, N. Vilimiki, S. Kaski, and A. Honkela. Exploration and retrieval of whole-

metagenome sequencing samples. Bioinformatics, 30(17):2471-2479, 2014.

[56] R. Sinha and J. Zobel. Cache-conscious sorting of large sets of strings with dynamic

tries. ACM Journal of Experimental Algorithmics (JEA), 9(1.5):1-31, 2004.

[57] H.Sun,J. Ding, M. Piednoél, and K. Schneeberger. findGSE: estimating genome size
variation within human and Arabidopsis using k-mer frequencies. Bioinformatics,
34(4):550-557, 2017.

30 doi:10.6342/NTU201902038

[58] H. Teeling, J. Waldmann, T. Lombardot, M. Bauer, and F. O. Glockner. TETRA:
a web-service and a stand-alone program for the analysis and comparison of

tetranucleotide usage patterns in DNA sequences. BMC Bioinformatics, 5:163, 2004.

[59] V. I Ulyantsev, S. V. Kazakov, V. B. Dubinkina, A. V. Tyakht, and D. G. Alexeev.
MetaFast: fast reference-free graph-based comparison of shotgun metagenomic data.

Bioinformatics, 32(18):2760-2767, 2016.

[60] Y.-W. Wu and Y. Ye. A Novel Abundance-Based Algorithm for Binning
Metagenomic Sequences Using I-tuples. Journal of Computational Biology,

18(3):523-534, 2011.

[61] S. Yooseph, G. Sutton, D. B. Rusch, A. L. Halpern, S. J. Williamson, K. Remington,
J. A. Eisen, K. B. Heidelberg, G. Manning, W. Li, L. Jaroszewski, P. Cieplak, C. S.
Miller, H. Li, S. T. Mashiyama, M. P. Joachimiak, C. van Belle, J.-M. Chandonia,
D. A. Soergel, Y. Zhai, K. Natarajan, S. Lee, B. J. Raphael, V. Bafna, R. Friedman,
S. E. Brenner, A. Godzik, D. Eisenberg, J. E. Dixon, S. S. Taylor, R. L. Strausberg,
M. Frazier, and J. C. Venter. The Sorcerer II Global Ocean Sampling Expedition:

Expanding the Universe of Protein Families. PLoS biology, 5(3):e16, 2007.

[62] D. R. Zerbino and E. Birney. Velvet: Algorithms for de novo short read assembly

using de Bruijn graphs. Genome research, 18(5):821-829, 2008.

[63] Q. Zhang, J. Pell, R. Canino-Koning, A. C. Howe, and C. T. Brown. These are not
the k-mers you are looking for: efficient online k-mer counting using a probabilistic

data structure. PloS one, 9(7):¢101271, 2014.

[64] F. Zhou, V. Olman, and Y. Xu. Barcodes for genomes and applications. BMC
Bioinformatics, 9:546, 2008.

31 doi:10.6342/NTU201902038

	誌謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Problem Description
	Main Results
	Organization of the Thesis

	Related Work
	k-mer Counting Tools
	k-mer Based Metagenomic Comparison and Classification Methods

	Methods
	Algorithm
	Analysis of the Algorithms
	Partitioning Strategy

	Conclusion
	Bibliography

