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ABSTRACT

In this study, the finite element software ABAQUS is used to investigate the
behavior of piles subjected to negative friction. Coupled consolidation analysis is
used to simulate the dissipation of excess pore water pressure of soil with time and
the soil consolidation-induced negative friction. Firstly, the applicability of two
soil constitutive models (Porous elastic+Modified Drucker-Prager/Cap and Porous
elastic+Critical state plasticity) to simulate clay behavior is investigated. Then,
field negative friction tests on Bangkok clay are utilized to build the negative
friction analysis model, in which the soil is modeled using Porous elastic+Critical
state plasticity model. Eventually, the established analytical model is further
applied to carry out a series of parametric analyses for exploring the negative
friction behaviors under different pile-soil system conditions, including soil
permeability coefficient, friction coefficient and threshold shear displacement of
pile-soil interfaces, soil surcharge, pile-head loading and group pile effect.

The application of pile-head loading has different effects on negative friction
behavior for piles with different end-bearing types. For friction piles, the pile-head
loading will reduce the negative friction force, and the drgree of reduction is
significant with increasing pile-head loading. The depth of neutral point is located
between 0.3-0.7 times the pile length. For piles whose tip is on dense sand, the
negative friction reduction is less than for the friction piles, and the depth of neutral
point is located between 0.6-0.8 times the pile legth. For piles whose tip is on a
hard layer, the pile-head loading has no significant effect since the neutral point is
located at the pile base.

Considering the serviceability of pile, the pile-head displacement is also an
important design factor. Although the pile-head loading can greatly reduce the
negative friction of friction piles, their pile-head displacement is the largest among
the above three types of end bearing piles and they even have bearing failure under
large pile-head loads. Therefore, considering the pile displacement and axial force,
for an end bearing pile on dense sand, it will sustain smaller negative friction when
subjected pile-head loading; on the other hand, compared to a friction pile, it has a
smaller pile-head displacement and less bearing failure will occur under large pile-
head loading because of larger stiffness and strength of the bottom soil than those
of clay.

Keywords: Pile foundation; Negative friction; Coupled consolidaition analysis;
Finite element method; Neutral point
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# 2.1 pie (Garlanger, 1974)
2k piE
b 2 0.2-0.25
o2 0.25-0.35
F) 2 0.35-0.5

%22 B (P A% fhibg  1978)

o viE B e
F LR 20% 12 7F 0.25-0.35
7L E I O 20-50% 0.35-0.55
7 F 2 (N<10) 50-70% 0.55-0.65

% 2.3 3 %% ¥ % (Sunetal., 2015)

Parameter Value

A 0.1,0.2

b (m) 0.5,1.0,20

D (m) 20, 30, 40, 50
Dv/D 0,0.02,2
Surcharge (kPa) 40
Normalized pile head loading Phead/Pnro 0,05,1,15,2
Pile head loading application time Tuave 0, 0.33, 0.67, 0.95

% 2.4 #cie i3] 4% (Sunetal., 2015)

Material Soil Pile Interface
#at (KN/m?) 18 24 -
Vv 0.2 0.33 -
E (kPa) - 30x10° -
M 0.9 - -
A 0.1,0.2 - -
K 0.01 - -
N (e atp' =1 kPa) 2.2 - -
OCR 1 - -
Ko 0.6 - -
k (10° m/day) 2 - -
Ocutoft (MM) - - 5
u - - 0.27
2-13
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% 2.5 #iE 7 2% (Liuetal., 2012)

Material Pile Consolidating layer Bearing layer

Elastic modulus E (MPa) 2.8x10" 5 5

Unit weight y (KN/m?3) 18 18 18
Poisson’s ratio v 0.17 0.35 0.3
Cohesion ¢ (kPa) - 3 0.1
Friction angle ¢ - 20 35
Dilation angle - 0.1 10
\oid ratio e - 1 1

Permeability coefficient

kx10 (M/s) ' . !

% 2.6 73 %% % (Liuetal, 2012)

Investigated influencing factors Range of parameters
Consolidation time for one-way drainage (day) 10, 30, 60, 180, 360, 1080, 1800
Consolidation time for two-way drainage (day) 1, 10, 30, 60, 120, 180
Friction coefficient between pile and soil 0.05,0.1,0.2,0.3,0.4
Lateral earth pressure coefficient 0.45, 0.5, 0.6, 0.7
Limiting displacement (mm) 4.2,5,6,7
Magnitude of surcharge (kPa) 25, 50, 100, 200, 400
Bearing layer stiffness influence (En/Ec) 1, 10, 100, 1000
Consolidation layer stiffness influence (Ep/Ec) 700, 1400, 2800, 5600

# 2.7 B3 2 #EEF (Kongetal., 2015)

Material Clay Silt
c,, (kPa) 7.00 16.16
¢ () 19.10 33.90
a, (MPa) 0.65 0.93
Es (MPa) 2.01 2.13
r (KN/m?3) 17.40 13.90
e 1.34
Wo (%) 48.60 13.00
w2 (%) 20.53 13.40
Wio (%) 54.76 20.59
w (%) 14.06 13.47
I 34.23 7.19
I 0.82 -0.06
Gs 2.74
pamax (9/cm®) 1.62 1.91
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% 2.8 # i #c7] 48 (Kongetal., 2015)

Material Concrete pile Soft clay Bearing sand
Model Isotropic elastic Mohr-Coulomb Mohr-Coulomb
E (MPa) 20000 5 50
1% 0.2 0.3 0.3
Ced (MPa) - 3 0.1
ded (©) - 20 45
4Q) - 0.1 10
k (m/s) - 1.82x107" 1.82x107*
Ko 1.0 0.65 0.5
7 (KN/m?3) 25 18 20

% 2.9 #cie fich] 28 (Lee etal., 2002)

Material Concrete pile Soft clay Bearing sand
Model Isotropic elastic Mohr-Coulomb Mohr-Coulomb
E (kPa) 2000000 5000 50000
c (kPa) - 3 0.1
1% 0.3 0.3 0.3
Q) - 20 45
v (%) - 0.1 10
Ko 1.0 0.65 0.5
7 (KN/m?) 25 18 20

2-15
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Surcharge 2
¥
o |

i oR

Soil

Dy

B 2.1 # @3] (Sunetal., 2015)
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Normalized depth z/D

Normalized depth z/D

-400

0

0.2

0.6

0.8

0.2

0.4

0.6

0.8

1

-350 -300

Relative displacement (mm)

-250 -200

-150

-100

-50 0

50 100

PpeadPnpo =0

. b=2m

D=50m
Dy/D=2

i

—

Cutoff
=5 mm

éé—Smm

Cutoff

B22 2 ERGEHB AHESE 2P FE (Sunetal, 2015)

Degree of skin friction mobilization (%)

Phead/Pnpo = 0
D=50m

Dy/D=2

-100 -50 0 50 100
A
0.1 0.2
N 0.5 ............... i
b(m) 1|~~~ ===
2 — —

B 23 4 iﬁ@‘{ﬁb‘_ﬁ BEEHKRE e Bt 2 25 (Sunetal., 2015)
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Downdrag (mm)

Normalized depth z/D

40

oo
=

120

160

0.2

<
~

<
o

<
o0

Average degree of consolidation U,y (%)
20 40 60 80 100

Phead/Pnpo =0 s
D=50m
DyD=2

Bl 24 2 ERGFEL R EHER L B2 (Sunetal., 2015)

Degree of skin friction mobilization (%)
-100 -50 0 50 100

Phead/Prnpo =0

A=0.1 7
b=2m
Dy/D =2

Bl 25 #& $H54 4 6 A4 3 B 2 22 (Sunetal., 2015)
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Average degree of consolidation U, (%)
0 20 40 60 80 100

40

Downdrag (mm)
oo
o
I

120 B 0 ................
Phead/Pnpo =0 DD 0.02|--- ---
160 201 ! |

B 2.6 thi EHRRINT 2V RGE &R HHRE 2L B2 (Sunetal., 2015)

Degree of skin friction mobilization (%)

-100 -50 0 50 100
O 1 I I
D (m)
20 50
02 [ T 4
Q DyD 0.02|--- ---
N — —
= i Phead/PNpo =0 2 |
,d§ 0.4 b=05m
3 A=0.1
N
< 0.6 [ -
=
S
Z
0.8 i
1 ! . ]

B 2.7 BonT 2 v ORGEE B R HinE 46 B4 28 F (Sunetal, 2015)

2-19

doi:10.6342/NTU201902834



Degree of skin friction mobilization (%)
-100  -50 0 50 100

0 - '1=02
b=0.5m
Q 02 T — Dy/D =2 7
= =
= ~
+
_§0.4 - ]
—O I--------. ****** N
g L ST =
S06 F - I
(an1 ~ 1. T Tm==-al_
g P he:ldfp \I]r(]- ------------------------------
............ 0 -’-."-
G ) s 1
—_—-
—— ] 5
I - '

Bl 2.8 804 < [ 9D 46 B4 $ B2 B8 8 et (Sunetal, 2015)

Degree of skin friction mobilization (%)

-100 -50 0 50 100
0 . ] ]
A=02
b=2m
D=50m
q 02 D,/D=2
N
S
504 .
o
g
Q
N
Té 0.6 1 7
Z
0.8 7
|
Bl 2.9 e+ ~ [ Hihd 4o B4 FE2 8-+ 3 S L+ (Sunetal, 2015)
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Pile

Gs

YL

Groundwater table

Consolidating layer

DN Pile
v |t—t#]
A A !
v Intérface Properties
— Gl ¢———>_
b= Non-slif} Slip
5 ' T=Uoh
] |
= 1
wl 1
i
L Smm Displacem;;

/

Interface element

Bearing layer

L

W

@ 2.10 # @ #-3] (Liuetal., 2012)

(b) 0.0 , : : :
\ Consolidation time
01Pg===r=-=-- ---
BN a —0— 10 day
1 1 —~
o2 | e _ —C—30 day
E‘P 5 : : —— 60 day
0.3 -0 <Rz = - 4= - - | ¥ 180 day
O i —— 1 year
0.4F- ‘(I“f:'”"?" --- | % 3year
‘L: }|\ é’?:\ —/— S year
= 05 |- _(J}l_/\__gg.}x_ P e —— Sy—
N : ] " 1 '
o1 A\ Y X ]
| | | Yo
0.6 =00 <Cr1dx = = = sem Hir === p == = =
OlA 4w My !
I mr !
07 - mte - A b
O 5 L !
0.8 Ammmmbooo
(]
0.9 et LT e
:
1

1.0

800
Axial load (kKN)

1000

B 211 ¥ 5 ki dh4 gpF B 2% E (Liuetal, 2012)
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0.0

0.2

0.4

PIP_..

0.6

0.8

1.0

Bl 213 HgFEw -k fhd &29 28> 8 FRDAE 2

Consolidation degree, U, (%)

2-22

(b) 0.0 1
. I Consolidation time
01k ____:. _____ ¢ —+— lday
'59 \ : \ |—~— 10day
02 fF 4R - ----~- i |—o— 30day
Bi 4‘ y | —#— 60day
03[ =7~ = 18& "~ "1 | —— 120day
70 R 180da
0.4 Fo--h-p -4 % . y
D4, ] :
R e e et
- [I;| Al b ' ¥r R
o
B o i
0.7 “?“‘%""1'.‘“‘;’“': ,i"“
O [N O % 4
0.8---?'--&----/J:'7./: )'liv —————
q [ /'5 '
09f--t--1 e TR I
- Mi@f’ ; :
1.0 R S EE
0 200 400 600 800
Axial load (kN)
B 212 ook L mhd g2 3 (Livetal, 2012)
- s ————— 0.0
i —u— PP One-way drainage |
'\ —a— P/P__ Two-way drainage 0o
\ —o—L /L One-way drainage||
[ D\D —a—L JL Two-way drainage |
" 0.4
-
\D_
=
-
- —_— H06
A A1y
i A/A \ 1os
A/ -
1 1 1 1 \h 1.0
0 20 40 60 80 100

v g (Liuetal., 2012)
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(b) -0 @ : ' !
! Friction coefficient

—0— 0.05]

o— 0.1
—— 0.2
—— 0.3
—k— 0.4

o 200 400 600 800
Axial load (kN)

Bl 2.14 7% o B¥EGEcHsL 4 2 5 (Livetal, 2012)
0.0
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L L

0.6
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0.9

1.0

A T N S R
0 100 200 300 400 500 600
Axial load (kN)

B 215 e 2 B4 Gl pns 2 258 (Livetal, 2012)
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%

"

03k -

800

400
Axial load (kN)

B 2.16 #2 % E >

—— 25kPa
—C— 50kPa
—— 100kPa
—+— 200kPa

Surcharge on

ground surface

(b) 0.0
0.1

1000 1500 2000 2500

Axial load (kN)

500

Bl 217 3 24 € <)
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I T
: ! EJE=1

1
O =777 [—o— EJE=5600
02f--d -t |79 E/E=2800
3y —#— E/E=1400

03f===-= 2 |4 EJEST00

P
N TN N
N

(b) 00

n

z/L

Axial load (kN)

B 2.18 #2 Fip= g 2 58 (Livetal., 2012)

(b) 0.0 T T T T
1 1 1 1
) 1 1 )
XY S A S
| ! ) )
1
o2bty--f----- —0— E/E=1
|
1 —O— ED/E=10
03F------- -
_ — A EJE=100
04F---- -t --- |7 E/E=1000
1 1 T I
o | ! 1 i
1 1 1 1
N 05F---- s s Wi it debed
N
(A
| ! - i
1 | ~ 1
07F---- :-----:i--@{-\—*‘&-f----
1 ,L\‘l b
| ,? Tl \_”\,
_____ | ¥ Y S _—-
0.8 ! Fﬂ ﬁ# QT{
1 1 \ \
l 1 C: TR
09f---- S Ry T S
1 1 1 :.\"a
BN VA R SO B
0 300 600 90

0 1200 1500

kN)
B 2.19 AR =R 2. B2 % (Liuetal., 2012)
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’

SL.
8 ,
Li_ Ly ddgr “* |, Model tank

7T =
g | }I'/\/ 2. Drain hole
g q 3. Micro-eearth pressure cell
X e 4. Strain gauge
< 5. Model piles
) 6. Settlement standard
£ ! @D e 7.LVDTs .
E q S| Pi 8. Strain collection box
o -4 Sl
S g 1 o ¥si @ 9. Computer control system
ke s2
1
P , E% @Pc @Pc
A —— e e — ] < 6
50 mm o) \ =3 sb -
e XX AX 3 XX 77 s’

B 2.20 #-7)3#5% (Kongetal., 2015)

0 50 100 150 200 250 300
1 A

2 1 Y 1 4 " 1 " 1 "
PG 3 x 3 4D, Sc-S3
o ===PG_3 x3_3D, Sc-S3

lgs, =—1.69¢ "5 +1.77

) s -
s : P W

lgs, =-222¢ 1" 4+232

1 i 1

-
28

0.01 R R R
» ==—PG_3x3_4D, $b-S2

s =—PG_3 %3 3D, Sb-S2

e
—-

lgs, = -1.74e "% +180

I
42,10

Settlement, Igs, (mm) Settlement, Igs, (mm)

lgs, =-2.09¢

-

B 2.21 ¥ b2 3 X B ocknE (Kongetal., 2015)
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Consolidation time, 7 (h)
100 150 200 250

"

:

Per pile tip resistance, F 5 (N)
| =]
g

300

o == Pi, Interior pile
B Pe, Edge pile
o e P Corner pile

F, =-1028e ** +207.]

Bl 2.22 #57 & B B IE4nd

1.0

(Kong et al., 2015)

0.9-

0.8+

Maximum dragload, F_ _ /F_

T

I Fynsr = 0.0433 4 0.72
D
A
Frose = 0.046 = +0.63
¢’

1 'F_;'m—h:'. / F}m_g‘ = ﬂaﬂﬁzi +0.50

\P

0.7 = Pi, Interior pile
o Pe, Edge pile
- A Pc, Corner pile
o'a | | | I 1 I I
25 3.0 35 4.0 45 5.0 55 6.0

Pile spacing divided by pile diameter, $/D

6.5

300 350 400
] A 1

B 2.23 & Hi &~ b4 2R FE2 B % (Kongetal., 2015)
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B 2.24 $-#F~ 7 2. #7] (Kongetal., 2015)

35

S.L. =50 kPa Consolidation time, 7 (d)
0 5 10 15 20 25 30
o.o 1 i 1 A L A 1 A 1 A 'l A L

—a—Pi,PG 3x3 4D
—o—Pe, PG 3x3 4D
—a—Pc, PG 3 %3 4D
—i— SP

Downdrag, s (mm)
- © o ©o o
T > T + W

-
N
L

14

B 2.25 #¥#5¢ L =% 2 =% E (Kongetal., 2015)
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S.L. =50 kPa

t=30d Dragload F, /kN
. ' 200 300 400 500
0 : * L - 1 i 1
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........................ &  Comer pile
’ .............................
.
»
R P S RRRERRRS
@
e
.
i .
200 300 400

Dragload: kN

B 227 #5728 BREHRL 4 2 B F (Leeetal., 2002)
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S.L. = 50 kPa

t=304d Dragload, F, (kN)
0 100 200 300 400 500
o i ' i L A 1 A L
—a—Pc, PG_3 =3 3D
- —e—Pc, PG 33 4D
5 —a—Pc, PG 3 %3 6D
g
[
-é -10 - ~
(=9
ke
=
15- \
LA
20 .-

(b)
Bl 2.28 FiFIEHR L 2 25 (Kongetal., 2015)

S.L.=50 kPa Dragload (MN)

-1 0 1 2 3 4

=X==Dpile i, s=3D
=O==pile p, s=3D
={=pile ¢, s=3D
—single pile

—a—pile i, s= 6D
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SRS e aE e e e e e
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E [oormmros L e e e s
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B 2.29 7 FHFIEE 2 b =% 2 b
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P.L=2000 kN . i
S.L.=200 kPa Axial froces of pile shaft F (kN)
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B 2.31 #cim s (Leeetal., 2002)
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Dragload (kN)
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| 1
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B 2.32 Egeise gLk FA 2 Faidh 4 v i B (Lee etal., 2002 ~ Comodromos et al., 2005)
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R A

ARG RT3 U F R R B 7L R Pl
fEES FRAM YR B ORG24 2 RApHEH Fl 2 D
AR BT f BB B E o HERARE B TR 271 R
AF AR MRS AR e SRR RP I BT L HEEE AR
Mo r ¥ BRBAI HER BRI DT 50 ¢ 7 = fh/B P E-KE% (Triaxial
consolidated drained test) 22 = #h /& % % £ -k 3# 5% (Triaxial consolidated

undrained test) » A F & #-4EgF IR G R F AL o

3.1 #mEALITHIEA L

MG R G U F 0 g0l ABAQUS G SIMULIA 2 @ 74k ik e
EEGH HAH T PR ET et > i AL fiR i 2 A1 A2t 0
B E%)E 32 FREOCILZE/ES BEA17) 0 7 0 R
BREG-H£THELIT - BE LT E M F o4

¥t s B A7t 5 ABAQUS/Standard ¥ ABAQUS/Explicit »
ABAQUS/Standard # 3 »c it S fr2b M1 42 b PR R > T R LAE
R A B TII G > Bl A B B RBE . F L T kR
PGB ipd (8% > ol BFWME - BRTWET AP0 R EFHEHR -
ABAQUS/EXplicitif * >*##t % B 2LM P d 4 &> % P ¥ 50 ppd ehde LR %o
bl 4o o & OCRBOF Rt 32 o ABAQUS/EXplicit ® shp A B L 1€ 2 g
AR 2 BRE R0 A o

AFER @ dWE A 5 ABAQUS6.14-1 > 1 ABAQUS/CAE it i+ >
#* ABAQUS/Standard 4 7 fi£ e :E {7 & F7 ©
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32 IEAZHFEHHEAE
3.2.1 HCA A A B

FEAF A > BX 2 L EF (Homogeneous) ~ #2w+ (Isotropic ) 58
AL > SEEIR A ;ﬁ = Porous elastic #-3% » ¥ 304 «E{ = Critical state
plasticity #-5% 24 Z_Drucker-Prager/Cap #-5% o d *t 27 7 €353 A tenf &
Bed FR B2 PRBECRG M o 30 RAITI KR SEE B AR
PE R e it > Tt gk * A7 L R B (Transient consolidation) A 47 o &4 7 #-3)
R RN A B LI N EAR L

322 L E S
(1) P = s
PSR ALY LT AR R AR €5 T Fﬁi@ﬁ{’ﬁ
FZL RS ¥ S 0 45 Porouselastic B o pt A R T L H ik
4T ISR SR - Az o S SRR (- T 5%) ¢
K B LT R 1 2 BRI () S B 4ol 31
» H

$ 5T B 1% 5% 4050 (3.1):

K P+ Py e
(L+e)  p+p” )
;\‘. =

K% ¥ 8 ¥ 48 - #c(Logarithmic bulk modulus);

v A4

p & &»c/R &4 (Equivalent pressure stress) » p== (0'11+O'22+0'33)

ST LT TR

1+¢®

J 5 SEAH R4 REAE 27 R 4ok fE B8 44 v (Elastic volumetric strain ) » J® = .
+e,

Py & A7 4 % >R & 4 (initial equivalent pressure ) » ¥ 12 i% i% Edit keyword &9

ﬁ?ﬁ%?%ﬁﬁﬁiﬁﬁiﬁ@@J;
3-2
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€ » A4t ot > T 15 4B Editkeyword il § g » A 4ok R R deat
L o
R A 5 a‘é?‘;‘lz‘:
(1) =&7 > sl
FAPRAT o HH(G) A ph At (S RLEIAA % (e )in
B 5 S =2Ge -
(2) =&fptrr 350
FaRA o afp et (v) 0 ABAQUS ¢ 1245 B e el 2 R 1 b % &2 %
Tehp o1t 34550 (3.2)3- B » T 4 H

_3(1-2v)(1+e
B 21+v)x

o) (p+ P ) exp(el (3.2)
ie

= In(3®)

dO B R E R A L RS R R 4o B 40 2
T4 HBGR B 4 > B A dS=2Gde” TR BEM G50 o

vol

(2) %4 = st

ABAQUS # 537 % 2 e [ 2 3 e S sV 287 3 ¥ % 3 ;Y

~ B % Critical state plasticity ;% 2 Modified Drucker-Prager/Cap #i=;% » = 7|
SEE R R AR R Y N
(1) Critical state plasticity i3\

Critical state plasticity #-7% #* 2 Modified camclay #-%] (MCCM) - i%iF
RS ER R E R ERP T G RIEE SR FRET M
M e B Y ko 2 P (Associated flow rule) » & 4k * A b
(Strain hardening) 32 > 1345 & 4 2B REAE B % < ] Koo 8 Ra =

st BT ERH E DITRA R AR

ﬂ—(_—) +( ) ~1=0 (3.3)
3-3
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FEBDTHET I Ept TG ARG of] 32457 0 A
1,1

g1+ =—(1-) )
q{ ( K)(q)}

gs Mises 54 2 %% > q= 38:8;

1
rs=%=8Kg+4 %% > r:(gS:S~S)3;

M ® % RA TR B SR o 2 RS T M= S gy

at il E_EE KRG L]

K % = #h ¥ 38 332 2% (Triaxial extension test) ¥7 = #h /& & 2 % (Triaxial

compresssion test)2_ s & vt B o * k4 ¢ B A R 4 (Intermediate principle

stress) =@ B > 57 @R Rwm idwL 2 K4 T e (Deviatoric principle stress
8

plane)® = ha > F]M P g% 20.778<K <1 4§ 3.3 #77 ;
iy M eh

P ke xERe Ak AR RERDZR(SMp) > 7 FITFCR 0 B35
ABAQUS Ff# 515 A fut BI(t<Mp) » 7 ¥ 4L 18] fF 3k 24 5 10 5]
PR T SEPE o WA R TR R R AUR R KRG Ak o

ABAQUS/Standard @ ¥ 3 * 4 #i(Exponential) & # 4 i+ (Hardening)
R PR SEEINA chiF G ] 5B Porous elastic i& 7 £ & o 13454, #ed
ford R R AN (B4 EE KRG L]

a=a, exp{(1+e );\:Ipl} (3.4)

S

JP 5 SRR R4 R AR 22 R desk BB AR e (Plastic volumetric strain) ;

K5 ¥ Ec LB W8 o 2 % Porous elastic 43 {7 5 ;

A% ¥ B o8 -8 (Logarithmic plastic bulk modulus) » #_# Critical state

plasticity +1#L {7 % ;

3-4
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CENGEEE 205 T N AR B A S R R L
FhERTL o LERARERG <) o 527 2% E % L Normal
consolidation line i e fh:H# §E (e1) @ 4B 3.4 #777 - ABAQUS ¢ 19

g Yotk 15 (Do, €0) &2 HH S dc(i A) > d T 52 54 (35)3H B4t Ra &)

aozlexp{el_eo_’(In po} (3.5)

F Y opo 5 2 KRR 4 474 (Equivalent hydrostatic pressure stress) »

FAREA AR B P E Qg Eauise BRES BP0 7 2 (3.6)40T

+p' (3.6)

[ bt o2 AE N . ' 1 .
P' A A nE TR A 0 p :é(all+azz+033) ;

A 4R enihL B4 > =0y5-0y °

(2) Modified Drucker-Prager/Cap -3\

Modified Drucker-Prager/Cap #i-5% % ¢ Drucker-Prager #i-;\ 2£ ¥ @ {8 > &2
Drucker-Prager $-;% 7 Fe n8_Cap #3] ¢ ¥ g "% R5% B ST FVR I 4v @ 3 4o o
7 % o Modified Drucker-Prager/Cap ;% ¢ » 9" 4 gl & a3k * 244 Drucker-

Prager #i£;% » 3] ¥ - AT > %E ke > 4B 3.5 #77 » B % ke > 425l

(3.7)4c™:
F =t-ptang-d=0 (3.7)
SN,

p ~ t 1 % ¥ Critical state plasticity $i=;% 48 F

PEF 5 KG f pt TG p dhehd &> SRR T > ¥4 Mohr
Coulomb #5538 ¢ e e 4 gl 3k

d £F >k pt Ta Atttz i 24 E 4 74 Mohr

Coulomb #c38 ¢ e B4
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& ABAQUS ¢ ¥ rz i * Mohr Coulomb ;' % #iciE 4% = Drucker-Prager

W@ o Az iR R BN e

_ Bsing
tanﬂ_B—sinqﬁ’ (3.8)
0 CoS¢g
o, —ZCl_Sin¢, (3.9
d :af(l—%tanﬂ); (3.10)
_3-sing
) ~ 3+sing (3.11)

2R e FhLy s ZRGOKET CF 50778 Fptty A
BH - *0.778 0 Pl E #& i * 0.778 ©

#2m@ > Drucker-Prager #8323 ¥ g% 2 EX DI FREF 2 Eerg 4
FERET L FRYLEE] D FRBRAE Y Ao 0 TET T R T
Modified Drucker-Prager/Cap #i-3% #» & * 7 444 Drucker-Prager f-3% » v+ 1
F AR E Koo foE 2 3T BRI 4o pFen'E (R {7 5 o #7102 Modified Drucker-
Prager/Cap #-:8 d = Fidrle s » 2 B 5P 2 Ko ~HEE Ko 23 H2 W
SRR R o 4oB) 3.6 Aror 0 B A ECE Ko 2 4258 (3.12) ~ (3.13)40 T

thEERe

R Rt . )
Fc\/[p P.] J{(l+a—a/cosﬂ)} R(d + p, tan ) =0 (3.12)

WWRE S KRG

2
E P 4 B _
t \/[p P.] {t (1 —Cosﬁ)(d+patanﬂ)} a(d+p,tan B) =0 (3.13)
;E! \il ’
_ p,—Rd
Pa = (1+ Rtan ) (314)
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Py
ETIY
¥

Fl My 3 254 e gl ;

as P HliE R E Ak R

Pa = Ty F &2 @R EIEE DT

7 p pheh B T RIR 'R X% 4 (Hydrostatic compression yield

3

=
E3
=

Pp = g
stress) » ¥ U iAEL TR EM LW AR 4o 3.7 Ao HERIRE KRS B

PR A LM A Y E O R L

Modified Drucker-Prager/Cap -3\ ¢ » tj F F en®p (45 B 3 ravg Sl
#,2 Bl (Associated flow rule) » R eh3 7% Ko BB A Ka xg 2 ogh
t#fein e % B (Nonassociated flow rule) » F]pt & 47 + 7 ¢ % 2L fied ok 35

(Unsymmetric matrix storage) =3¢ -

323 HA|R HEER xR

ZHEHEACALEEL T AR O Xy T ) B R G
142524 %) e REREEL RIS LEE o (25 5 )FEL K 50 A
TH b PR G 2L BB ARG SF kT e
(X Yy = % )amg Ko {3 4oB) 3.8 957 o & ARA T 4o b gk R
(U=0 kPa) » ridr ]t 3248 d F TRk Fae it oRR € A T4 e

324 7 i)
i%'y.J- le,,_‘.%lz_pé;‘ ‘}k.ﬂhi,m—\/ I?h”-l/}':,»l-g;?;fgz/a "L% ,I}‘ILL *}g’}v’é’
FEE SRR U SR AR T i AT R i 2 i

A1+ ABAQUS p # Mesh x4 ¢ 14 wi}‘ﬁl’b ghAd A FEY - B

17
A
4o 3.8 #1 o FH AT U p B Mesh 2 s et S Ak iR E e F A

4] 3.9 #ro o
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325 A1

R RS AR T T L S P S O TR
FREEWYIh A F O AR TR AT AZY 2 AN G IR A F
(C3D8P) -

3.26 FEEIAR

(1) A4 4 T 7

d *+ g * Porous elastic 3¢ > F ST B - BA RS K E(FAFT S
o gt 1kPa) » P BRL e dow FIR LkPa it 2 p o 4 Lo m &
ERGAS 0 AT R 20KPa A A kel R SN 34 E TR
p? oo
(2) ¥4 BB

AHBERBEARSI G FRI AT DA FLERGIE R
BRI ERRES 0 ARFREY T ORRA ] S BERY 24
FrERER (TR u=0 kPa) o de Vi SRR S R B 48
A2 R EFARFIHORRAORRE S -
(3) *4ephi

A FE e ph L o CD 2% > PR RERBFH - 28 CU #E% > B
Gt ) BRPE R RGR BB B e B AR MR o b b L eh SV A
AR - e TS EE R > BEEEEA I 20 %dhe B ¥ o

3-8

doi:10.6342/NTU201902834



33 2z hiEmR R 4L

AR R (T M R Bk TenskE o @ * 11 Lambeetal. (1969) ¢ Weald
clay = %éﬁ%%@:#g’ TR do= fhid%k e 77 - 20 ¥ R % Weald

clay s0/B % 2K (CD)#F% 7 = FFIR H=(69 kPa ~ 207 kPa ¥ 690 kPa) -
H g BEM %o 4oB) 310 #r7 0 RppH XS TS R FRaEEL
522 WA R -phe BEH T 4oB 311 AT o e-0r e e-p M TR B 0 Ae R

312 #t7r o B ¥ B HALL BiF CDF% % 0w fF N w [FRUR ¢ 28
(pr-Qr W) > 4o 3.13 #7577 o & ¥ RZH PR3 L (CURERE - 7 FIR 207
kPa Himchdh L & 4 -thd B % > 4o B 3.14 757 o AQFEI MoK B-dho %
ol 315 4T o ERBZ BRI A & 827TKPa - AR T F A he BIUR R
T 5 i CD 3%k (9 PR s v JEA R ¢ 2 (pr-gr ) 0 4o F] 3.16 #F
7o BB BN CURSRNEST FR LS 827KPa f2/R 3 4~ 4 F1/& 69 kPa
gL 4 - B % 4oB) 317 21T o AZFEIC MUK R-dhe B % 0 4o 3.18
t"-rﬁ- o

d 2> ABAQUS % T & $8cp » 7 * thp-q 1932 AT R LT L
oo FARBREATRESL YRGS  BI 2B pg RETE
EDhE A b % 0 4oB) 3.19 #7m o e-Qr g e-p B 4B 0 4-B] 3.20 ¥

T RRAY RpHE AR D CD o v EF A pr-gr ) BREREG T
PBEERE L 22° PRt ST AT VR BRI RS ER BRI P

BAF P CDRE&RTF N p-gr B 5 5 F R G UL EEE L 21.5%
AEA G TAKNIM > {34535 S BT R BB B4 3l AL TR D

GRCRCE Al S S SR X
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3.4 2GR SR T

d ** Critical state plasticity $3% ¢ - =2 § ik i Sz Bl (1>Mp) B >
Rae Ak H T A BEw P AAITRAEE Re 2R H A dphs &
AR E R AP o AT A4 KRG (S0 BA A AR Y
FRG R B RERT R FAITRA A RS J A E R g
PlepAj kg2 ee® » FI VR g7 B xR RADFREF L o 8
Modified Drucker-Prager/Cap -3¢ » T " KRG X B 2 HEPR % R - % B4
B i PR 2P R (6 Bae A2 WRHARE  MER L% 0 25
M H B SRR E B R F h BR(pa) 0 T S R TE R A Sk
FAs Ee o AeT I 2R OE L TEDRARLE RS BRIZE LA
F] Critical state plasticity fi3¢ ® 4= 45" K@ /R R > B ¥ 2 4] Modified
Drucker-Prager/Cap #ic5¢ engodc ¢ & R AR AR 1 D4R P 2 A 4T
SRR IR DINZERG ZRZF LTI A2 Sk

WAL R

3.4.1 Critical state plasticity fi= 3\

Ryp ) = 2p-q @&t e-q2 e-p B 2E(E 3.20) > #-H p b
T D p ARAHEAEEF > 4ol 3.21 77 0 HAvdk EaheInpo € 5 - M
ME # A X9 5 Modified cam clay $03) ¢ & # & % 2 (Normal consolidation
line)snal 4> 50,0902 - e-In po &2 e dhenE FEL e,0 5 11131 - d 3%
Lambe etal. (1969) .4 % ¢ i ;2 § w s E (Swelling line) eh4l 5 x> F] 0 4345
Henkel etal. (1956) ¢ * Weald clay :& {7 35w (lsotropic)4c & f2 R &% - 17 1
w SR E Al 3 K & 0.03 7] 0.036 2 > 4o 3.22 #77 o {dpie Sk %
4 z_Porous elastic fi-5% e 48 - 4% 3.1 #7571 - Critical state plasticity 3% e

S ¥ dod 3.2 1T o
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3.4.2 Modified Drucker-Prager/Cap =3¢

Modified Drucker-Prager/Cap #3% » - B £k (o) § B Tk 2
AT A A B SR AD M EE R 2R A ok 28 ABAQUS AL
PUEBEL pac 1R MREE Ko 2 A28 (3.12) 5 R RG> AR50 (313) o 1
SR BEREHRDES BILE P ok s 0O AP T o ERe ot ER
b Sl o fed St pa R R RG B B4R FIUL R R RF A % 4o 3.23 41

Toparm 0o paT2hE FB/I T Ra > Flpt §d W ER ] KA
ﬁ’é. FI’E 2R ]‘9,«-»%/\%&7“% 13 Pm}{% /{J—g%'ﬁr'/r’}%'ﬁfz}i;{lr}q
A0 BABLTE 0 BRI pac doBl 3.24 47T o it BATHRKNE AT

Pa’ @ MR Slica VO E BB G k  E A I B K ha
B oo %1 pafud A 0 v 2 aE 34 i3t Critical state plasticity 25 ¢ (g R R
sk o Fpt P R it 232 BT S BREERE  BEW
FAN S A EB AR RST 4 B R(TRARE)DEF S o &% o3t

p, —Rd

P, = mu.g »Irrﬂfr,% RGBSR B Y > Bd WA

=

FRG 2 NP E PR LE TR ERE R R 2 B
BB R ) AZRGHRT LETS qE > 4038315 - 50 Rz
Eig e ahn RETRARESpR > B rER RS ATRARER T 2%

pI¥ 48 R0 Sdica ﬁ*ﬁ’ MEE TR N B, ARSI R EZ A

{t—(l—é)(d + p, tan ﬁ)} =a*(d + p, tan f)*-[p-p,|

t=+Ja(d + p, tan £)*-[p- pa]2+(1—$)(d +p,tan ) (3.15)
_ __* _
t=a(d +p,tan )+ (A + P, tan f) =Mp,

PRV R BAER B i B H b

\\\?{r

Bk Lyt R
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(D) &% B%1E
A B e R BRI REGE KRGS 25 FIRApF - Bde 5 e &
Pt o A2 BRAEHA % ot E &R+ o & Critical state plasticity i3
e o Cap BB IER] P e 2 R KRG Bk T8 TR K R 4 (Critical state line)
Aadple 2 sk (f) #EA (DEK S 0 Fla o Cap #5317 B4 BT
PEZTMEFEEREDLE(P) ) F R CERER S ()F 5 00
BEFE-HESFELT? EFR AT ERG Fp 5 A0 ¥ RS
IEREXTERLAGR S 0 MEIRET R RGEBLE > R
#if 32 3 B ¥ Critical state plasticity #-5% enfe kL sp R AP o
Cap B3 B p| e & ensi4 B o822 Critical state plasticity #5848 > 4o
319757 o 2 fdc MET 7 Ka R T {355 it < Modified
Drucker-Prager #5222 3 f R G Bk B Rl g4 S L L (RBELF R
Weald clay ¢ i 6 Bds & g=22:8 735 5 )0 5 7 & fte P27 3 AH
EApk » Xz Cap B3k B R enddicr 4od 33977 » 4t "% ke Ak
Critical state plasticity #5-3% 2 F@= 4 % s 52 B B 0" KRG 25k 40 6 > 4o ] 3.25
Sr5T oot E A Y 4 A 7 02495 Modified cam clay #A ¢ 2 & ¥ BB
(Normal consolidation line) £ w384 (Swelling line) & %[+ & 1 % & F] A "%
RIE* TR PIE EE I o JE T gy ABAQUS ok R
RERGCLOEBEEMFERREGLDDN AR RELTEHEBERER LT
BIR'E R4 S P PHBRE DM % 4ok 3.4 2R 3.26 “71:

RUMAER: 6y =INQ) ; (3.16)
EEEFRE & =InQ%) (3.17)
Ao, goite | ga_lve”
1+e, 1+e,
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(2) ER®IHE

FAE G EAGE R b BT E 1 FIA A RS
DI FE B A 0 B IR B Pac T B AERT I
PR SR v R G 5 0 FIA 2 OWIE A R iy R AR o

s %

f‘x’@\é’i

&+
Bl o BREAMEANO RABLTE S B BSAYAE PP pac
P8 A5 FH] pa 2 B I TRA A LR LE od 30§ 23 S EACER TR G
Proghedhe 4 MM W RTRE CEAERTZBREL RS
A2 2 5 REAR R o Weald 5 8255 w iF NERH 2R GMB R LD
FRRA ZWRARER CRFOPER > 3 FRRKZT AL &G
s F R Az %) 50.01 0

S £ %827 Critical state plasticity fic;84p e > 4o 3.1 #77 o H 4
e MY 205 KRG h 58T 19558 & % Weald clay (pe=827 kPa) i1
B d 5 215 ~ AE4 5 TAKN/IM2E % it o2 5 & G AL OF B il 3
SN o B Cap AR E R chddic Aok 3.5 97 0 BRI E M E R

% A5,4 22 Critical state plasticity ;% 2_ 52/ B ip SR plen™ Ko A5k 4p e

4B 3.27 9751 o d 342 Tk P, —Rd 2L E ge s pg
’]:;}7;1 T_E #ei iE p, = (1+Rtan,B)F A2 A2 Pa’

Aolihp, €3 E N E B Py BRATE € F SR {35 p, ha
LEHARIA PL b E +31.16x15.689=18.19 » P, 1 5 & o F|p A
Py RS RS T A E A ] 2 20kPa s 3t E G N eraiiidp e o BE 1A
dok 3.6 22 ) 3.28 #1o7 o My EA (@ i s Pp &5 20 kPa 0 £ 56 IR
4 TR % k4 827 kPa o
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3.5 H#EE

PR ik e 5 7 ABAQUS Shdlicik TR 17 4 4 = il oL
A EERFREF I ERREFEF R Y RRAL J A S
BTN NRE ST 2k FLERBAD PEF L AR LB
AEE A R T s AR
(1) & ¥ BR%HaL = pRFE-K(CD)FE

CD 5% d Critical state plasticity #-5% > i& T Hdg o fh L & # -dbo B %
4o@] 3.29 “7F 0 Bl R P AR G REKRE S F DR § IR
AR PETE2 fhd o4 BE%SF LR 7 & W44 FR 690 kPa 2 #h A &
bR BEGESR S o MR-t % 4oF) 3.30 YT 0 ] R B
B2 BREHAERIGERE S O NERAREPFTE LB RREE RBRE
AR A S ce-p'h AR 4oB 331 41T 0 T ATRA K A RT B % R
PRERTRRES A pEf ] > RELBR A X HEROBES N A REFD
¥R % Weald clay & % -k 25k 2. (7 5 o d 30 4]a fe s 50 2 1y F A7k 4p
oo FIS L ¥R BAL DER EAIR > BhA LA P B RE] Ao
3.32 #7on o RO % -Bhe v B 0 4o B 3.33 #1F o e-p'M L B 4
B 3.34 #7577 o
(2) =¥ BRI Z BT 72 R (CU)ERK

THEER A I A EA R RS SRR L B R A e T
* ¥R 4 W % 3R Critical state plasticity 3% 2. gt 2 % » T Bl % % & 3.3 &
Vgt - e F RS PRRR SR G e BUR 207 KPa) i (7 e 0 phA
B4 -fhe B %M %0 4o 3.35 #1on 0 22 CD 3RS B3R % 7 40 b chff i
s b BREML QSR PR ERE S 3 MERA R i
%4ﬂ%ﬁ$%%%¢oﬁﬁﬁW¢@ﬁW@%%ﬁ’%ﬁ&%%ﬁ’ﬁ
B2 pd oI HORR ) BB REGER S B o DERA R LS
BEHEEE LR AL o

T!\ﬁ«
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(3) ERBALT = phBR %2k (CD)F%

WRBAI PFERBES 5 82TkPa > A file & HN A MO ER B 4
B2 FLEE AR TR ES SR LV o dhd B b BRI R
Bl > 4ol 3.37 #7% o M -the LB B 0 4o 338 477 o FAKEAE
R 2AEY (G4 FR 690 kPa) @ A AN s Rk o B REERD
Ab2 (A4 FR 69 kPa & 207 kPa) » & e = sV i s % € 5 T4 R » B A
i¢ * Critical state plasticity $=;% » o >t 4= 45" KRa ~ /] ¢ SH T > Fp
W#oaE B Rk L (% % o F E @ * Modified Drucker-Prager/Cap #-5% » i i 32
e TR ERDIEZ XNE R RIS RRTKAE R o2 R T
B e R O RBRERZIT T P HE P2 3 RMENRA R AR > BERER
R SER G 00 REALRAARAREMZ BRA(EFRFIERAR)
FiT o (84 CU B 4 7% * Drucker-Prager/Cap $53" g & 29 285k 2 %

TR o

(4) ER BRI = BT 7 2L (CU)RR

i# * Modified Drucker-Prager/Cap #-5 i& {7 & 47 » {EHCE R R 4L2 Gk
ARSI E DT LA FRBAI DT OME € FIA AR
EHEBERF RS B BREGMESGE P pao B RBR HALD
ot B AR TP R R G 0w e AR EE I KR R T 1S B e e f
FAZERI KR > B RS BRSBTS R SE o R B E PR
FIG 2 fE K BBy E N B o BhA A -fhe R REB 0 4oB] 3.39 AT o

PIY T KR -he v B o) 3.40 fror o 4 BT RB) 0 4o ] 3.41
Bron oo 87 33 &V itz - BRI A EOREHR L E (B4 F/R 69 kPa) & %
R BB s A B B f AR MoK R e & i
NEH TR LG A R e IR D Y AR O R

oo B FIPIRM A g R HnF A o
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3.6 %

-

AEE R A AL e & w5 Porous elastic+Critical state
plasticity $i=5% £2 Porous elastic+Modified Drucker-Prager/Cap fi=;¢ - ficst & 3%
22 SRRSO FERTE A A M SR I S 2 EIEB L

R R SRR RS S w REPE R X g S FE Y
Hip ke o 83 - &k 475 % o Modified Drucker-Prager/Cap fic;¢ # e 7 /%
R ¥ 12 d Critical state plasticity #-;' ¢ efefh ki RA F 2 & > B AL
MK EBak 250 RERS BREBRSINT R c HITER T I HE
Critical state plasticity #-3% @ » d > @k ik gz 2 % Rg 255k B2 $#3°
FERERR R RAAR TP IEE G BAB DR o @ & Modified
Drucker-Prager/Cap #i-5 ¢ » 7 M5 = $h/BR BBk T XM T4 RS 1Y
TET7E R F80 X1 Sladpd] 2 2 4BV R R RA R GRS -
Wipr 22475 %> THEFT $22 A1 B AH0A > 145
FUSRRARR E T F 2 AN E Sl R AR | B T
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# 3.1 Porous elastic % #«

Shear t Log bulk modulus Poisson’s ratio Tensile limit
cartype (k) (v) (p)
Poisson type 0.035 0.3 0
#. 3.2 Critical state plasticity %#
e-axis . . . .
intercent Log plastic bulk | Stress ratio Wet yield Flow stress ratio

(61) P modulus (1) (M) surface size (/) (K)

1.1131 0.0902 0.856 1 0.778

#. 3.3 Modified Drucker-Prager/Cap %-#c (& % &% 4 3%)

Material Angle of eccei?ﬁci i Initial yield Transition Flow stress
cohesion (d) | friction (f) (R) Y| surface position | surface rad («) | ratio (K)
0.01 40.567 1.16 0 0 0.778

%34 MmEA L Sl (X F RSB HEK)

pb (kPa) gv'?)II
1 0
2 0.018487
100 0.139531
1000 0.227859
2000 0.257676
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#. 3.5 Modified Drucker-Prager/Cap %-# (GBE/ER %+ 3E)

Material Angle of | Cap eccentricity Initial yield | Transition Flow

cohesion (d) | friction (B) (R) surface surf rad stress
position (o) ratio (K)

15.687 39.86 1.16 0 0.01 0.778

2036 WEAC fd GERSDAE)

pl

p, (kPa) Evol
20 0
25 0.006735
100 0.051007
1000 0.135341
2000 0.163884
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td

ctitical state line / ~p=10

o

] 3.2 Critical state plasticity 2. " k& (p-tT & )
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t= a1k (- R)(&T]

Curve K
a 1.0
b 0.8

] 3.3 Critical state plasticity "% k& (#hZ 1 &+ &)

—— g, - locates initial consolidation state, by the
e - intercept of the plastic line with Inp =0.

. de _
—— ebﬂlcslop-ec“l—m = =K

; de _ .
plastic slope ainp) = A
L
Inp
(p = effective pressure
stress)

@] 3.4 Clay plasticity = /& % (Isotropic consolidation)pF2_ {7 3
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C[‘

v

@B 3.5 4+ Drucker-Prager #3] 2. "% K& (p-t T & )

# al(d+ p_ tan )

Shear Failure, £;

/‘ Cap, F,

d+p_ tanf

Pa |< >‘ Pb p

®) 3.6 Modified Drucker-Prager/Cap #-7] 2. "% k& (p-t T & )
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ph‘

et
pl

vol

] 3.7 Modified Drucker-Prager/Cap -7 2. 4 2 A i* & 4%

Bl 3.8 = phiF M s iE 7]
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B 3.9 = dhiA M e @ 3] e 1 )
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500

400 r

300

q (kPa)

200

100

10

o

\Volumetric strain (%)

1
(6}

-10

q=(o'1-0'3)/2
—69 kPa
—207 kPa
—690 kPa
0 5 10 15 20 25
Axial strain (%)
B 3.10 g-dhre &% (& ¥ &% Wealdclay » CD 3% » = 3 p-q)

—69 kPa

—207 kPa

—690 kPa

10 15 20 25

Axial strain (%)

B 3.11 %A % -dhe % (& ¥ BT Wealdclay - CD 3#5% » = 3 p-q)
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0.8
p'=(c'1+0'5)/2
q=(0'1-0'3)/2

0.7 |

p0-e0
06 [ pf-ef
qf-ef
05 r
0.4 1 1 1 1 1
0 200 400 600 800 1000 1200
P a5 (kPa)

G (kPa)

B 3.12e-qr 22 e-p B 2B (& ¥ &% Wealdclay » CD #5% > = 2 p-q)

150
0=20.536°
100 r
Gt VS Py
50 r
Turn to Mohr Coulomb parameters.
#=22°
0 1 1 1 1 1 1
0 50 100 150 200 250 300 350
pr (kPa)

B 3.13 s w ﬁﬁ-ﬁﬁ;% ¢ 2Mm (pr-gr @ > & ¥ &% Wealdclay » CD #5 )
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150

<
% 100
[%2]
i
17
L
S
kS
2 50t
O 1 1 1
0 5 10 15 20

Axial strain (%)

Bl 3.14 A &4 -phe % (& ¥ B % Weald clay » CU 3#5% - FIR 207 kPa)

150
<
o
=
[<B]
§ 100
@
S
T
©
=
et
S 50 |
A
8
x
L
0 1 1 1
0 5 10 15 20

Axial strain (%)

B 3.15 AZZpIt Mok BR-dhe % (& F &% Weald clay » CU #5% » FI/R 207 kPa)
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g (kPa)

Deviatoric stress (kPa)

150

0=20.3°
100
s VS Py
for p.=827 kPa
50
Turn to Mohr Coulomb parameters.
¢=21.5°
c=7.4 kPa
0 a=6.9 kN/mp? , , , , ,
0 50 100 150 200 250 300 350
pr (kPa)
] 3.16 fa’%lbﬂ?&ﬁﬁiﬁ& ¢ A (pr-qr B > /& % Wealdclay » CD #5% )
225
150
75 r
0 1 1 1
0 5 10 15 20

Bl 3.17 #h A &4 - i %

Axial strain (%)

(% /& % Weald clay » CU 2% > F/& 69 kPa)
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q (kPa)

75

25

Excess pore water pressure (kPa)

10 15

B 3.18 AZZEI M-k R -dhe B %

1000

Axial strain (%)

(i /& % Weald clay » CU #2% - /& 69 kPa)

800

600

400

200

J=04-03

—69 kPa
—207 kPa
——690 kPa

10 15 20
Axial strain (%)

25

Bl 3.19 A &7 - ¥ (2 % &% Weald clay » CD 2% > = 3 p-q)
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0.8

0.7

0.6

0.5

0.4

p'=(0'1+203)/3
0=01-0'3
p0-e0
L pf-ef
gf-ef
0 200 400 600 800 1000 1200
P, ar (kPa)

B 3.20e-qr &2 e-p B 2B (& ¥ &% Wealdclay » CD #5% » = 2 p-q)

0.8

0.7

0.6

0.5

04
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AR EME AR B EET A 2 R R TR R
2 2 O AT AR LR R EEART RS B AL e

41 WM RSB ARBEET 2 4R

411 HEH PRI

Indraratna et al. (1987) :i& 7728 (hk 3575 (Pullout tests)e? £ Hp
O BARES ER  FERFR TS RE £ A2 10 22 PR H RS 4P
YRSk A end LR B4ARS (Bangkok clay) 0 £ & 5 ER 234 2
gk L3kt 0 T3 R AELNER 16 R nicdidtd B R 6 3] 8 o' epd

"

ERHIRHAY 0 Ak A TIRER 2T R TR AR o kT okt
PATLSF2 0% o it I R ANMNEE 0 4eBl 41 7 o BER
b J7 fF 4i:25% (Dutch cone) ~ Zy -+ 3 % 3 325 (Field vane shear test) 12 2 &
FPRILG AR I BEFTHRTREK(EHT P B%RE Ko B2 £oRE
F)E P AR 222 KT A R R AoR 4.2 27T o b 4 R 2 4 R AL
4ol 4.3 77 o Rk 7o L G HE 400 mm -~ pojE 250 mm o SRR
TGRS B AR PRI L B2 By s E 2t (Load cell) s B
PlIRE fh4 o0 0 4Bl 4.4 977 o A BRSERITERE 1 = AP RER
fo o BB fS- BReiire T AR D 0 FHRBEERE 27T &% > BRI 2
CARBIRE AR 2L oA A BRA WL RLAR RJIEE LR T RET 2T
FEHRE AL T & 24m><14mmipal?§lp\ff A E o I HEFAR 2 0N
SAPERAR S Tk A o | B RRERREMRE > 4oBl 45 97
oot R R R X R IaE ¥ RIEL (Settlement points) ~ 5% R 2 R 4

el P T 3 L RR KR 4 2 (Hydraulic piezometer) 0 ¥ ke £ @ TR T
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> % ¥ wlegs  (Surface settlement plates) & Bl % it KaE 0 & Bl PF B 81T
9 .

Ehx g 2 IaE o) o B B2 KA IR R R T
B AT 577 » ML RF AR R PR B gssart K oy & TR
B 15 28 FHYTRAE (%] o BT T ek o & oG AT B et A o
B 48 977 3 2% % RF RS o doR 4.9 97T o A F chd x fhd
B (W g R )N F R BRI R e q g B 3R & IRGUR

R R R 5 B A IR 40% o A &1 R
PR TR RENAE D ol

413 W ARSI BRI EF
B30 T 385 0 0 A BT - BB HE A 17 0 4o Indraratna et al.
(1987)% Yanetal. (2012) - Indraratnaetal. (1987) ¥t H 5 iF ey 25 E =
a%ﬁﬁrw«%@4mﬁﬁ°ﬁﬁmﬁi%ﬁ$%ﬁ’ﬁ%?%§$%
RGBT L R LT Sl Aok AL o WL S RPE B R EK G
SR Sk 42977 o BRI B R G BEHEY Koo 0 I ARl T LN
EH FApHEHE I MM B E0 2 28 E o JIMEFR 2 IUIHEE
e oWl 411477 > 4o V18 3 % 0 L T HIMIER GRS B R < 0 &
265 X S H IR B RHREE LB A L 4Bl 412 17 0 A E g AT R
Pt WS E o B B2 I ARERE SRR B X ET Y 2B
A R g4 Agrsd )%1 B i 4 ;é] LR ® FRE 3 o
Yan et al. (2012) k4%t Ry 2R T 0 11 ABAQUS 2> - &
PO¥HFECA] 0 AoB] 413 1o o WAl A2 R B A b 2 o v SR THR 4
e i) 2 3 7 4 @ % Modified cam clay #i-3] <& {7 #535t - 95 Indraratna
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etal. (1987) e #c 2 % 2 &% S % F M2 ;S8 ok 43477 o i o
By @ % A KR s AT * 20 2 3 28y Indraratna et al. (1987)
AT dek o RIS S G 10 B o A TTE erR e o
< 10 B2 %% v & Bangkok clay & 3] 0% % 0 B e B p
(Horpibulsuk et al. 2007) » ® ic 7 #& & g & I Bk E Rl % o /% 4
BAEER KGR RS S 0 Nk he AR BRI ] o e B Y
FEIEEARE el 414 977 o2 APHEHB I ELIERRELE P 2 8
> B R IFE ) AR 415 AT o AR G RJZEZ P B R E S B iES
AR HRIFR L2 8% ¢ LF L8 REORDET SRR 0 4o Fl
4.16 #7% o
RS E R RS Rl S N R LI tde Lee et al. (2007)
WEROE S ARZAMPE TR PLEFRE BRI %R T REFT &

B R o BB R BT B 2R Ty w#%?—.?ﬁ%iiﬁfﬁ‘%’ﬁ et i
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42 AEt&fE % 8 A i 2
421 A& * K

AEEL 2 f B REECIS A REEAAR R B S Tk g
Bd RH AT 20 s B T ORRG TS AR 2Efro b3 AR g
fj v 247 o Bk 2 3 5 5 (Homogeneous) ~ 35w (Isotropic) 38 # {4 44 4 o
Bei  EEM Y R 2GR Ao d ARy LW AR B 73
B ahPRG B FIS R PORRFEPEFRE DL 2 T AL
Bk R e 2 S0P R bl oo LB i S R Ry BB €
FALIFIHOKE > L H R R A FBG B E 8T 9% LK
R AR A 0 F R AT P G AT Lt AR KR 2
WAL Bl e r 2P - e F A Y THEe L0 iR
oo 2 A S ERECA > A 2 R %S L i

%&

4.2.2 FFiL e s ot
4o 4.1.3 & A7it > A FF 3 T L I Bl endic (B ikt 0 )4 Modified Cam
clay #:% ##t & % 4k 2 (Indraratnaetal. (1987)¢ Yanetal. (2012)) - ¥ 345
Chaudhry et al. (1975) ~ Hassan et al. (1976)¥ Surarak etal. (1976) % % 2_ 2
TOLHVRTEERTE PRI BRI R -RRGTL ERTE AL
2 A -REM R EEI ST A RRACERPEZH 75 c g%
FF NI EAH Y E WS FAL R RN A2 ]

B4 & 37607 Porous elastic 03¢ » 4+ Critical state plasticity -3¢ fic#t

|4

I

B p3F2 - BN w3322 &P 0 At R R

423 4 K SR Ak R
AP BRI RRIEARES AR EFA AR R T B8
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2R AT A ) SRERA A S e R B RE ) R TS ¢
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L LE R AR RS L RS 3 4= 8 =
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B¥ef B Y o X4 BRI F g AL ApRIFHS - ABAQUS P - T
#* % ¥ 52 (Surface to surface discretization):E % 4% f ¥+ (Contact pairs)
FHEBFIEFRG ¥ EELAHPEAHEIARF DML 2 1 0
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Pl BAAAPH B HRART | B4 275 -

4-8

doi:10.6342/NTU201902834



43 HEEF

431 2 & i# % eomxs0m 2 FA A A TR %

w429 4170 2 Foe e & (3 AP A4 FURS B A S (S dn
Fog > SERCRPER 4 BB A 2 BB R AFR 8 2 (A 427 6

)T IR AR F TG %ﬁo%@4%%ﬁ’h§ eSS
BOR AZER I MOK R ER R ] 0 IV MR R AT 278 X (8 0 FR 8 ¢
—:»;;_;«,J»_ﬁu@uﬁ; AR o KRR AT 3 BT X A e 4ol 4.31 41

CRMFERDESE LR 0 WAL B HDOREEE > BT 5 RHE R
HERERH S BB EE PR AL B ELE I A PG FL
Bh R FERERAAT R RS S nT L o 4B 432 9757 0
TIHEHE R R (T B ) RREE RS AFR 18 o
T o L phd & 4B 4.33 T oo e R A e A 2 s ehh
B

V\J

S5 A A
AR BF RSB A B BRI BBV REFRAFAR
8 3|18 = & e 2 5 52 ApF B E ] PR
ﬁ*ﬁ*ﬁﬁéﬂ?ﬁﬁﬂiﬁ$%$%rﬁ§%&i£ﬁ%&§%é
A EFRBERET A LB e o Flpted 2 - FAIRS BT S 1 g ed

Aol o R EER I HATEE BT

432 3 KER AL HEE L BT

Hed T RRID K R % ) 0 2 3R R S 24mxddm o #HH 2
SRt DR KR Y qz@;}zgglggzgiifk—r—s;@i%q_,j,
T4 K %<t G 26mx16m ~ 30mx20m ¥ 60m<50m (4.3. 2 HA) )i 7 R
vgd N EER L AHER R

do@) 4.34 A1 0 2 A B R o] (26mx16m £7 30m < 20m ) e ] A de
AAFAAHTRRERIBTOIERCE IERBFEFH B AR
PORGURER G S ER KRG ORB IR AL > R B 278 X (St kn

4-9

doi:10.6342/NTU201902834



ootk 2% @ 2 kB4 (60mx50m ) T 0 AR AR R

Ny
]
T
Ll
H\

AR o 4o Bl 4.35 1o 0 B R Bl 2 H0A] 0 A VR R S P
FOORFIHORBRER S > TMFRRERDES 5 o R RS 2ZHA] 0 A
Fr AR OR R EIF R e RS o 4o R 436 4Tom o e PP A R
ol A ks R o] SR R ER DS R RS o a T R s
AR A VA Rl R JULR Al S A S R R ks gt i o
Yo 4.37 om0 i R RC) A A R R S pRenY 2 BRI B RR AR o
g RE R R G R WA 2 R R g S E g P
FELEE FRG e T RIFEOER e A N R RS R P 2Dl A
ikl AR GIRA PIRDEE T X7 g RIFDE S o dof] 4.38 4F
o R R ORCE] > B R BERE RS 0 T AN e
R G RFEDETRE FHER RS PR B € 4@‘%'1%%“?%»}%9
AR B EER 278 X (S iR o

Rt s 8% fO ) @R SRRy | B F EAET
o RIRARIT T ER TR GBS R A A 4 2 FRITKAE ) IR R e
Fap] tad 3t P2 AR R R EKRTE LS kTR TP -
LT 0 Bk R KRS R IR 2 RS Tl T R

—

T~

FE o o AT E AR R 0 F P SRR e+ 10 @i i

RITE e

4-10

doi:10.6342/NTU201902834



433 % G 10 B2 2% i

4o B 4.39 #1510 %% e+ 10 B 180 B ] (26mx16m 22 30mx20m )
R ﬁ?rw*ﬁﬁ%ﬁ%ﬁ?wﬁ@%ﬁiﬁ%ﬁgﬁ°@%ﬁ*
278 % 18 » H I M A A g iind Glick3cs 10 2o+ » 2§

L5

B RF e AR BPH A eI o @ $T B R e~ (60mx50m ) A e

-y

(‘g]é_f;%\,—r;;g;i 12 ;}qﬁq—r—g)ﬁq%&é;& .,«4%%3:\.}3, 2R

”c%
)
[V

A D o 4oB 4.40 1T 0 FUHORR ST R SRS B B S o AZIEI
KB KBRS AN REF R X o de R 441 41 o [ B R eh
ﬁﬂ&ﬁﬁmiﬁﬁﬁﬁﬁ%&SJWF’%i%@%ﬁ¢&’iﬁﬁﬂﬁ

SRR B R AR oA TR RS PR AP A E o B E R
,THBU Fp o Aol 442 477 0 F R O] B Bt fUR] R S R 2 g
BOAERBGY A BBEOR UG P 2B PR RIEST L R AFER
20 2% Ao @ H B R DD P 2 g e R A e BIRR 20
2% e 4ol 443 47 o FTE R ROl SRR A R R S 0 2 ghe
BHE 0 TR RS DERR O TR ] o FRBRREE P 2
BLP AR DT MR e X | BRG] B4 BB S o s i R AL
bl X pEehd @ A OMR BRI RS

Wip itz A48 % > 2 R 4 #] (26mx16m £ 30mx20m ) ¥ /%
B 10 B gad) > BRE R EE,M SR AL ERFE 2

8 R 26mx16m ik & F b 33T

4-11

doi:10.6342/NTU201902834



434 2 EFER 8BS GES D HESPEELFE VR

BArrt b2 AT S 2 2 2 BEHHREN S S 2 TR S YR
AEd I EER G A ERE GRS DRSS T HELEEES

AT RBKERI B2 FRE S R PR mEl o R R

< Roehp i k)Y §ﬁi@m%aozﬁﬁﬁ9ﬁ CEY ¥

~

«—%

LESE RS S R EEE £ A i - SR o
BOLE TR A 0 BT EF R BEK G ARGER A R A 4
LGN SRR St o X Rk Rt S U R IO S

i%@%ﬁ%@ﬁmﬁ’ﬁﬁﬁ*%ﬁ@' LE Roha REER ST L
PrAprdiofs 2 EERFEA R > XTI ERRRRE S &
PR R R R BITKAR A 4 o B RS2 T ORABE R G 4RIT o
RORERER A A ERRE IR AR FER AT
* 2 KRR EEE o deBl 4.44 A7 0 295 Westergrard & Steinbrener 2_ 43|35
,’7’,,1\‘._-@‘--: ' EET S B4 i“g}';& A i}rﬁ%ci\‘.‘g‘,ﬁ N T ALy
PR TR MR VT AR IORR o T b B R 2R
PR P E 2R AR HORER BB KRG R BT R
ol C SRR E KRR BB E T 2 Bl e o R A e RO el
BAEROGH P E AT 2 B M 2R s T et B Y R
KRG ] IR R DR
Rypedoif £ 4 88T 2 B4 H L ALGEa e FEY 0T
CERPREFERT LGS HEL A AR FI AP B AT FURR B
BREHAF o d R LN S ROk T w2 ok o B RE 4o B 445 47
T AR ITEORE R R R P BB KRR AL R R ER

WAl e o AP ¢ B R A RRE [ AR B GRURE A 2 BT
Baafrsmppe gid ERFRAGLRIEMIERLAL 0 A )

4%p§%ﬁﬂw4*w% %ETi@di% AR KREE ST AR > TP A
BTG kT gtk By £E e R H RSB 4e Bl 4.46 47T

4-12

[y

doi:10.6342/NTU201902834



PR PR A S 4Rk L BUR A et 3 AR Rk 150
Ao REI AL ER L AR DA -
E o W RSB R e AT % JERIM R E 2 L

HFr e ¥ - 25 o 159 % 3 Rk (T 2 518 IR 7 RO P SR
oA ERATEL MR R IRE ERIE A - BBk 3%k
205G RO IR 2 3 R Gl %S Gl s 10 B outs o o) 3

B R dlz 2t haE 2 f B FEARS SR T ORI R BT e

435 3 K :F T 2emxiem B A 47 5% % 31
%@4Mﬁﬁ’i%%&ﬁﬁg%%ﬁﬁiﬁmyﬁ%#’ghfpy
FUTHEE A & d N R TR e A SRR e 2 ITEEE A
ol SRy B2 55 % o Aol 4.48 4107 AZFRAE ORI e §lA ) Gtk if
%Wﬁ% +dﬁm£’p¢§@¢&ﬁ% TR TR R BT AR 0 2R

JB RO Ao 8 AT 208 0 A A R BT KA. 4o R 4.49 A1 o NER P
B4 fs > X f B 8 PR &%~ o 40 450 #75 » ¢ = 8L
PR AL PR R AFOLER 14 2 g SRR B EENERE S BKY

M%ﬁ%??@ﬂ%ﬁ4ﬂﬁﬁ’E%§M%$ﬁ¢£ﬁ$%%§%4ﬁ
B dIRI R A e YA B e A IRV UK R 0 A B B R 3T Ao is A
BB ZRF T AR R o e R A Bt 28 OF
Bl o )i g% (GFR 10 2%) Fo RigBRGBE-RPFFHL &
Aghd B GFR 20 2 S O)fGE%R SR (FR 23 2 2 )R - R3TH A R
BELGPRIELBRS BIG 22 AL ERGERH DR
Bl end 230G RO Rk R T S R H R et B ARS -

4-13

doi:10.6342/NTU201902834



436 2§ RS TR R
A B G 2 HR A P AT L RO WS R RS S
i defUenfiin o ¥ R B ol 2R 8 2 4 e U enEa) (26mxl6m) i 7
Mo b 452 4R 0 2 3R R IR A PR A (S 3 kA PO o
o dofB] 4.53 ¢ 08 3t S JORET) s SRR HOR R A Mok 2
“?ﬁﬂ*’%Q“JQéiﬁeﬁkﬁﬁéiig“v’ﬁ.ﬁ*N@’
PHORBRAR AL @ 2B kaR A PR PR o 4o@) 454 7
SRR JIEAT ﬁmmmaaiiﬂn%’%ﬁ¢@%u@§%®ﬂ$
HEA] el & 8 fed o 4o 455 AT o e OB A B 2§ B4 )
;iﬂi%&ﬁ@iﬁﬁﬁwﬁmﬁ’w%aﬁiﬁﬁ@wr’aﬁ«@%ug,
BEY ZEEE B 24 R A BB A Ao s o do ] 4.56 U1
wcwwﬁpﬂi’ 2R R b BRAR R GRER 6 2 8 )
R B POl T R B BO] o B R BRS04 0 2 R
A e B R Bt ghd Ao s i3] ¢ 2Bk B R aiEk 20 2
© R 4ol 457 T o Bed ApH B E S R S (WY 2B R )N
el EBTRE O AP RIS AFR 6 N ke BRHEREH AFR 20 2
R Jeee 4r B 4.58 A1 0 Bk fhA ¥ o ST B PE R R e @ BB IR Fain
EPE L o DI PRI 2 KRR 2 B PHCIARR S T e

lF‘b

4-14

doi:10.6342/NTU201902834



4.4 ]

-

~F &1 i Arom 22 2 V3% 2_Porous elastic+Critical state plasticity #-
FHREAAYFZ I SER e BERE TR B RS B 75
waE AR B 24703 0 #02 Indraratnaetal. (1987) 2. Iy f OB BB
PRREREERRFLARS L EEME

N R S DA R 3 Dy T B R A
FTREBEKXBRE A ZFFE AL R e R o A BRI E R RS
RER 2 H AP e P AR BT 2 KREFE T R A
Sk T2 Pk RE GRS PR A2 F S R AT
PR T g R R R ¥ BT EERE RS R TP
Aol 2 R 2 2 AR TR A PR AT R o s X
3R kA T ERBE KIS RORART T RB R A
% 5 RARE G BT e

WRESR P S E AT S RPN 2 SR E ) R K S
AU 2 ool 2 RER R Rl SRR RS R k2 i ae
0N SR PR T 253 EGE FRERR DS IRK O AT kT

2R E IR ZRE AN - SRR I FEHRLIFS Gl N

o

Bp 2 3R il BRS Gilic 10 R B 4 B R A2 4
BREEEf B FRAEPERBHRET PERG FRT -

FRF 2FRE AL wHE I DS Bk R 10 B el 0 B R
Wy 7R RAIOE P ik s L FHERHRER ERT NS )

Mz\

i3E: @ﬁﬂﬁ**%#@ﬁﬁﬁ 2% % i F IR Fal i AR g
fRgd FEARS - Ry Ag 2 A7 8% 7 1% ABAQUS #1i& = 242
Bk EZEHRE BE AT ERBRGR f B 275 o

4-15

doi:10.6342/NTU201902834



% 41 & K 3 3 F %% (Indraratna et al., 1987)

(@) Modified Cam-clay parameters for coupled analysis

Depth G Y kx 1073
(m) K A €cs M (t/m®» ¥  (t/m® (m/day)
0-4  0.053 0.182 1.667 1.05 170 0.33 1.7 67.6
4-10 0.084 0514 3.052 0.97 180  0.33 1.5 5.5

10-20  0.063 0.323 2.085 0.98 205  0.33 1.7 2.63

20-40  0.027 0.116 1.199 090 367  0.33 1.9 3.72

242 wE I o RPR E R %#c (Indraratna et al., 1987)

(b) Material properties of embankment fill, bearing stratum, and pile

E Y k x 1073
Material type Depth (m) (t/m?) v (t/m>) (m/day)
Fill? -2-0 500 0.2 1.7 67.6
End bearing 24-27 2800 0.33 1.95 3.72
Pile —2-25 3 x 10% 0.33 1.5 1 x 1077

%43 & Kk 4P F 44 (Yanetal, 2012)

(f) kx107*
Material Depthz(m) (]\'NY/m3 » Kyt OCR* et K AP M ¢ P E (kPa)’ (m/day)*
Fill 0-2 16.7 0.4 2.7 1.93 — — — 33 0.2 4900 67.6
Weathered clay 2-6 16.7 0.70 2.7 24 0.053  0.182 1.05 — 0.33 — 67.6
Soft clay 1 6-12 14.7 0.60 1.2 3.8 0.084 0514 097 — 0.33 — 5.5
Soft clay 2 12-22 16.7 0.60 1.3 34 0.063 0323 098 — 0.33 — 2.63
Medium to stiff clay and sand 22-32 18.6 0.67 1.8 1.6 0.027  0.116 090 — 0.33 — 3.72
Sand 32-40 19.1 0.45 — 1.2 — — — 33 0.33 27440 67.6
Pile 0-27 24 — — — — — — — 033 3010 —

*Obtained from data interpretation of field measurement reported in Indraratna et al. (1992).
*Same parameters were adopted by Indraratna et al. (1992).
“Ten times larger than the values reported by Indraratna et al. (1992).
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% 4.4 e B

kI

EE 8 S

@
Material | Depth(m) | Constitutive law enct (e1) K A M
Weathered Critical state
Layer(Dry) | oy 2-4m aeticity 175642 | 0.053 | 0.182 | 1.05
Layer1(Wet) | Veathered |, g Critical state 175642 | 0.053 | 0.182 | 1.05
clay plasticity
Layer2-1 | Softclayl | 6-8m Critical state 3.3501 0.084 | 0514 | 0.97
plasticity
Critical state
Layer2-2 | Softclayl | 8-10m asticity 3.3501 0.084 | 0.514 | 0.97
Critical state
Layer2-3 | Softclayl | 10-12m asticity 3.3501 0.084 | 0.514 | 0.97
Layera-1 | Softclay? | 12-1am | Criticalstate 22652 0.063 | 0.323 | 0.98
plasticity
Layer3-2 | Softclay2 | 14-16m | Critical state 2.2652 0.063 | 0.323 | 0.98
plasticity
Layer3-3 | Softclay2 | 16-18m | Critical state 2.2652 0.063 | 0.323 | 0.98
plasticity
Layer3-4 | Softclay2 | 18-20m | Critical state 22652 0.063 | 0.323 | 0.98
plasticity
Layer3-5 | Softclay2 | 20-2om | Critical state 22652 0.063 | 0.323 | 0.98
plasticity
Layera-1 | Mediumto |, oy, | Critical state 1.2607 0.027 | 0.116 | 09
stiff clay plasticity
Layera-2 | Mediumto |, o6, | Critical state 1.2607 0.027 | 0.116 | 0.9
stiff clay plasticity
Layera-3 | Mediumto | g og, | Critical state 1.2607 0.027 | 0.116 | 0.9
stiff clay plasticity
Layera-a | Mediumto | ,g o, | Critical state 1.2607 0.027 | 0.116 | 0.9
stiff clay plasticity
Material | Depth(m) | Constitutive law E (kN/m?)
Layerb Sand 30-40m Linear elastic 27468
Fill Fi11 0-2m Linear elastic 4905
Pile Pile 0-27m Linear elastic 17933906

4-17

doi:10.6342/NTU201902834




345 BB S0

EE 8 S

. Id
Material Depth (m) k (m/s) OCR Ko v (KN/mP) €o
Layer1(dry) Wei}:yed 2-4m - 27 | 07 | 03 | 1668 | 1.55684
Layerl(wet) Weifzsred a6m | 782600 | 27 | 07 | 03 | 1096 | 1.39662
Layer2-1 | Soft clayl 6-8m 6.37E-10 | 1.2 06 | 03 7.74 2.45577
Layer2-2 Soft clayl 8-10m 6.37E-10 1.2 0.6 0.3 7.82 2.36693
Layer2-3 | Softclayl | 10-12m | 6.37E-10 | 1.2 06 | 03 7.88 2.29121
Layer3-1 Soft clay2 12-14m 3.04E-10 1.3 0.6 0.3 10.73 1.53576
Layer3-2 Soft clay2 14-16m 3.04E-10 1.3 0.6 0.3 10.81 1.48651
Layer3-3 Soft clay2 16-18m 3.04E-10 1.3 0.6 0.3 10.88 1.44379
Layer3-4 Soft clay2 18-20m 3.04E-10 1.3 0.6 0.3 10.94 1.4061
Layer3-5 Soft clay2 20-22m 3.04E-10 1.3 0.6 0.3 11.00 1.37229
Layera-1 | Medumto | oy oim | 43110 | 1.8 | 067 | 03 | 1399 | 0.90002
stiff clay
Layeraz | Mediumto |5, o6m | 43110 | 1.8 | 067 | 03 | 1403 | 088742
stiff clay
Layera-3 | Mediumto | o6 ey | 431610 | 1.8 | 067 | 03 | 1406 | 087607
stiff clay
Layera-a | Mediumto | 5o a0 | 43160 | 18 | 067 | 03 | 1409 | 086572
stiff clay
Material Depth (m) k (m/s) OCR Ko v | ra(KN/m) €0
Layer5 Sand 30-40m | 7.82E-09 - 045 | 03 | 13.78 1.2
Fill Fill 0-2m - - 02 | 16.68 -
Pile Pile 0-27m - - 033 | 14.72 -
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% 4.6 BiE kTR A7 4ok fE

Depth (m) o, (kPa) U, (kPa)
2 0 0
4 33.35 0
6 47.09 19.62
8 56.90 39.24
10 66.71 58.86
12 76.52 78.48
14 90.25 98.1
16 103.99 117.72
18 117.72 137.34
20 131.45 156.96
22 145.19 176.58
24 162.85 196.2
26 180.50 215.82
28 198.16 235.44
30 215.82 255.06
40 309.02 353.16
247 piEiTR Y
Depth(m) :;‘;gtre(r n(:)f on (kPa) | uw(kPa) | on (kPa) Z—: (Oriélinal) (Re dlﬁ tion)
2-4m 3 11.67 0 11.67 1 0.384 0.384
4-6m 5 28.15 9.81 37.96 0.741 0.384 0.284
6-8m 7 31.19 29.43 60.62 0.514 0.384 0.197
8-10m 9 37.08 49.05 86.13 0.430 0.384 0.165
10-12m 11 42.96 68.67 111.63 0.384 0.384 0.147
12-14m 13 50.03 88.29 138.32 | 0.361 0.384 0.138
14-16m 15 58.27 107.91 166.18 | 0.350 0.384 0.134
16-18m 17 66.51 127.53 194.04 | 0.342 0.384 0.131
18-20m 19 74.75 147.15 221.90 | 0.336 0.384 0.129
20-22m 21 82.99 166.77 249.76 | 0.332 0.384 0.127
22-24m 23 103.19 186.39 289.58 | 0.356 0.384 0.136
24-26m 25 115.02 206.01 321.03 | 0.358 0.384 0.137
26-28m 27 126.85 225.63 352.48 | 0.359 0.384 0.138
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Depth Soll Water Content 3 K OCR
(m) | Description (%) % (H/m7) Gs o
40 60 80 186 1B 20 26 27 065 076 2 3
0 Weathered — ‘
1y =577 s i
O
1 O
= O
104  Soft = od
i Cloy o
b O A J
. o
. OB |
20 o—1loa
Medium
. Stiff oo A
Cloy .
O-0-
Stiff
- Cloy A
i Sand
30

B4l @icteme 2 k2 AAMF (Indraratna et al., 1987)
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B 4.2 232 2 k3 4 3 & (Indraratna et al., 1987)
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Stresses (f/ma)
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Bl 43 w2 k2 &+ ki (Indraratna etal., 1987)
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Bl 4.4 B Ere & TRl &k Bk (Indraratna et al., 1987)
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Settlement (mm)
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B 45 § A$x4 Ee%pe s (Indraratnaetal., 1987)

End of Embonkment

Construction Time {day)
50 100 150 200 250 300
0
r=0.

] o—o r=1.0 m

100+ s—ar=}5 m

r=2.0 m

] r=30 m
200
300-
400

B 4.6 3T > & =% L iwlaE (Indraratnaetal., 1987)
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Depth {m)

Settlement { mm )

|||||||||

Depth (m)

__________________________

Weathered
Clay

MEASUREMENTS

—e 3 days
A—4 25 days
&a—a 53 days
—— 81 days
o—o 14l days
o—an 209 days
O—0a 265 days

30

B 4.7 #% 1 EEEAE % € (Indraratna et al., 1987)
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B 48 & % o Jd2 2 ¥ #h4  (Indraratnaetal., 1987)
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Seftlement {(mm)
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B 4.11 g =H5 2% (Indraratnaetal., 1987)
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B 4.12 A4 5 ST HEh4 2 % (Indraratna et al., 1987)
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e — 0

cﬁ Fill (Surcharge)

Original ground surface

%—1 m

C$ Soft clay 2
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to stiff clay

— Pile toe at 27 m
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FEN

I
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Bl 4.13 - aph¥fiaceicd] (Yanetal, 2012)
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Soil settlement (mm)
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Bl 4.14 2 -2 % (Yanetal, 2012)

Relative displacement (mm)
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30 : . N
B 4.15 %2 B EHESE S (Yanetal, 2012)
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Axial load (kN)
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12m
14 m
I6m
18 m
20m
22m
24m
26m
28m
30m

40 m

Fill

AV

Layer 1 (Dry)

Layer 1 (Wet)

Layer 2-1

Layer 2-2
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Layer 3-1

Layer 3-2
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Layer 3-5

Layer 4-1

Layer 4-2

Layer 4-3

Layer 4-4

Layer 5

Rl 4.17

B 3] A K R
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B 4.18 2 KA~ 4ok B E A (B 6 & Bl SID)

©ODB: Job-1,0db  Abagus/Standard 6,14-1 Mon Jun 24 12:38:36 GMT+08:00 2019

Step: geostatic
Increment 1: Step Time = 1,000
Primary Var: U, U3
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PE, PE33

(Ava: 75%)
+0,000e+00
-3,3062-05
-6.612e-05
-9,918e-05
-1,322e-04
-1,653e-04
-1,9842-04
-2,3142-04
-2.645a-04
-2,975e-04
-3.2062-04
-2.636a-04
-3.967=-04

ODB: Job-1,0db  Abaqus/Standard 6.14-1  Mon Jun 24 12:38:36 GMT+HOS:00 2019

Step: geostatic
Increment 1: Step Timme = 1.000
Primary War: PE, PE33

B 421 2 Kadek s idl (o 7 A 8J2)
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Bl 4.24 F¥sf B4 #)

Bl 4.25 Afsf B4 03 e R

4-33

doi:10.6342/NTU201902834



Equivalent Critical shear stress in default model

shear stress /

i (Contact friction coefficient)

Stick region

—
Contact pressure
F14.26 T4 sraaff i+ B (B4 B#EEIT)
\
Equivalent
shear stress
Critical shear stress in
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% 5.1 Sy A% 2 S
Material | Depth(m) CO”‘T‘;&’“"G ence (61) K a0 M k) | v ] K
Softclay | 2-30m | Critical state 22652 | 0.063 | 0.323 | 0.98 | 3.04E-08 | 0.3 | 0.6
plasticity

Material | Depth(m) CO”‘T‘;EV““"G EKN/m?) | - i ke | v | K
sand | 30-40m | Linearelastic | 27468 i i - | 3.04E08 | 03 | 045
Fill 0-2m Linear elastic 4905 - - - - 0.2 -
Pile 0-27m Linear elastic 17933906 - - - - 0.33 -

% 5.2 SHAT T HA| 2 A ok i

Iy

Depth (m) | OCR (kN/m?) €0
2-4m 3 16.67 1.84623
4-6m 3 10.69 1.56188

6-8m 1.2 10.50 1.69591

8-10m 1.2 10.60 1.62266

10-12m 1.2 10.69 1.56299

12-14m 1.2 10.76 1.51391

14-16m 1.2 10.83 1.47037

16-18m 1.2 10.90 1.432

18-20m 1.2 10.95 1.39771

20-22m 1.2 11.01 1.36671

22-24m 1.2 11.08 1.32726

24-26m 1.2 11.13 1.30126

26-28m 1.2 11.17 1.277193

28-30m 1.2 11.21 1.25479

30-40m - 13.77 1.2
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Fill
2m
Soft clay (Dry)
4m AV
Soft clay (Wet)
30m
Sand
40m

Bl 5.1 3-dF § B34 K B
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Pore water pressure (kPa)
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B 5.3 itk B3 E (4827 A
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Depth (m)
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Axial load (kN)
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B 57 miwiE 4 204Ld k2 2@ 28> ¥ 35 (Bowles, 1982)
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Bl 5.8 13 B (s G B2 8)

Pore water pressure (kPa)
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B 5.9 23t HokB . 1B (Fins G 28)
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Depth (m)

Relative displacement (mm)
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0 T T T T T
— 0.1 (3 days)
5 r — —un0.1(3 years)
‘\\\\ —— 110.15 (3 days)
NS — —10.15 (3 years)
i NN ——102@3d
10 ~ o~ ~ 0.2 (3 days)
NN T — —u 0.2 (3 years)
N ~ ~ <
N ~ -~
~N ~ ~ ~ <
15 | ~ ™S - ~ <
~ ~ ~ <
~ ~ ~
~ ™S - ~ <
N \ N
AN N \
20 r 7 7 ~
/ P P
- — - — —
— -~ — = - -—
- — - .
25 + - ===
—
—_—
30
B 5.15 Haphd 1 B (JF3d R o B GE B )
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Depth (m)

10

15

20

25

30

Depth (m)

Soil displacement (mm)

0 100 200 300 400
T T T /
-~
-
-
-~
L 7
- - /
- -
-~
L -~
~
~
~
7
7
// —— Threshold interface shear displacement 3 mm (3 days)
/ — — Threshold interface shear displacement 3mm (3 years)
I // Threshold interface shear displacement 5 mm (3 days)
/ — — Threshold interface shear displacement 5 mm (3 years)
i / Threshold interface shear displacement 7 mm (3 days)
— — Threshold interface shear displacement 7 mm (3 years)
B1516 23g s BBl (FHAS PHET B2 BF)
Pile displacement (mm)
20 40 60 80 100 120
O T T I T T T
5 :
10 |
15 I
Threshold interface shear displacement 3 mm (3 days)
' = — Threshold interface shear displacement 3mm (3 years)
20
' Threshold interface shear displacement 5 mm (3 days)
l = = Threshold interface shear displacement 5 mm (3 years)
25
: Threshold interface shear displacement 7 mm (3 days)
—— = Threshold interface shear displacement 7 mm (3 years)
30

B 5.17 #h0 %ea fv mB AR s PHET B2 1P
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Depth (m)

Depth (m)

30

-50

Relative displacement (mm)

0 50 100 150 200 250 300
n
\¥J ' ' T T T T T
1 )/
(N -
I ~ -
51F _ 7
[ -
-
K -
-
100 k! _ -
1t _ =
1t S/
1 P
1 L
: : /7 —— Threshold interface shear displacement 3 mm (3 days)
| // — — Threshold interface shear displacement 3mm (3 years)
[N 4
20 y'| Threshold interface shear displacement 5 mm (3 days)
1t
/ rh — — Threshold interface shear displacement 5 mm (3 years)
i
//25' -1 Threshold interface shear displacement 7 mm (3 days)
’ :1 : — = Threshold interface shear displacement 7 mm (3 years)
I
30—
B 5.18 tht Baps s BB GFA 6 PHET 082 B
Axial load (kN)
100 200 300 400 500
Threshold interface shear displacement 3 mm (3 days)
— — Threshold interface shear displacement 3mm (3 years)
Threshold interface shear displacement 5 mm (3 days)
~ N — — Threshold interface shear displacement 5 mm (3 years)
=~ ~ - Threshold interface shear displacement 7 mm (3 days)
S - — — Threshold interface shear displacement 7 mm (3 years)
S~
~
-~ S
— -~ _
- —
-~
-~
RS
o>
==
-—'é
—
- -
—
-— -
”
- - -
— -

B 519 tadh4 KB GEA Ao PHETD =82
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(BN
o

Depth (m)
o

20

25

30

[EY
o

Depth (m)
o

20

25

30

Soil displacement (mm)
300 400 500 600

—7 . .

Surcharge 4.9 kPa (3 days)
— — Surcharge 4.9 kPa (3 years)
Surcharge 23.52 kPa (3 days)
— — Surcharge 23.52 kPa (3 years)
Surcharge 33.32 kPa (3 days)
— — Surcharge 33.32 kPa (3 years)
Surcharge 49 kPa (3 days)
Surcharge 49 kPa (3 years)

F15.20 2 % in A i el (B3t A9 E % 1 2 140

Pore water pressure (kPa)
50 100 150 200 250 300

Surcharge 4.9 kPa (3 days)
— — Surcharge 4.9 kPa (3 years)
Surcharge 23.52 kPa (3 days)
— — Surcharge 23.52 kPa (3 years)
Surcharge 33.32 kPa (3 days)
— — Surcharge 33.32 kPa (3 years)
Surcharge 49 kPa (3 days)
Surcharge 49 kPa (3 years)
- — —Hydrostatic pore pressure

B 521 3Bk B (FiE AL ]2 B
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Depth (m)

=
o

[N
ol

N
o

25

30

Pile displacement (mm)

100 150

Surcharge 4.9 kPa (3 days)
— — Surcharge 4.9 kPa (3 years)
Surcharge 23.52 kPa (3 days)
— — Surcharge 23.52 kPa (3 years)
Surcharge 33.32 kPa (3 days)
— — Surcharge 33.32 kPa (3 years)
Surcharge 49 kPa (3 days)
Surcharge 49 kPa (3 years)

B] 5.22 ¥ i im B (Fite

3 RS X))

Relative displacement (mm)

Depth (m)

40 140 240 340 440 540
U : : I T T I T / T T
i/ / _ 7/ _ -
: / g
5 / /

il ~

"y 7 -

| |’ // -

I
10 7

7 -

]/ e

w7
15 1k /

1/

|l Surcharge 4.9 kPa (3 days)

: | — — Surcharge 4.9 kPa (3 years)
20 I Surcharge 23.52 kPa (3 days)

A ! — — Surcharge 23.52 kPa (3 years)

//" : Surcharge 33.32 kPa (3 days)

26 ih — — Surcharge 33.32 kPa (3 years)
ANl Surcharge 49 kPa (3 days)

: : Surcharge 49 kPa (3 years)

1

B 5.23 #52 FApH B B RE (¥ 21 £ 285
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=
o

Depth (m)
o

20

25

Axial load (kN)

100 200 300 400

Surcharge 4.9 kPa (3 days)
— — Surcharge 4.9 kPa (3 years)
Surcharge 23.52 kPa (3 days)
N — — Surcharge 23.52 kPa (3 years)

30
600
500

400

£

E

=

g 300

2

3

3 200
100
0

N
BN S Surcharge 33.32 kPa (3 days)
\\ S — — Surcharge 33.32 kPa (3 years)
N T < Surcharge 49 kPa (3 days)
N \ \\\\ = Surcharge 49 kPa (3 years)
~N T~
-~
\ <=
S~ ~ ~ -
| ~
/ > >
/ ~
/ _7 = g
e d —_ 4§$ -
7 ==
- — =
T =
B 5.24 fhphs BB (Fits AR €4 2 B8
100
—e— Soil settlement e
4
- = - Pile head displacement P 1 80
1 60
1 40
1 20
1 1 1 1 0
10 20 30 40 50

Surcharge (kPa)

SRR RE (R AR EA 2R
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Pile head displacement (mm)



NP/L

0.2

0.4

0.6

0.8

1.2
- -
a- -
) o
4 0.8
: :
o
kS
I
I
L . 5
L Z
.\. T 04
e
'
v 4 @
—e— NP/L
- B - Normalized PNSF
1 1 1 1 O
0 10 20 30 40 50

Surcharge (kPa)
B1526 ZRi P =8 f Bged L RE GRHFEAPES 2B

PEMAG
(Avg: 75%)
+1.242e-01
+1.138e-01
1 g

F e-

+8.280e-02
+7.245e-02
+6,210e-02
+5.175e-02
+4.140e-02
+3.105e-02
+2.070e-02
+1.035e-02
+0.000e+00

Pile bottom plastic zone

B 527 8 4 £ €T oA BRFHRATLLILE A LT
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Depth (m)

Depth (m)

-100

Relative displacement (mm)

100 200 300 400 500

T T T T T

No surcharge

Surcharge 4.9 kPa (3 days)

— = =Surcharge 4.9 kPa (3 years)
Surcharge 23.52 kPa (3 days)
- = = Surcharge 23.52 kPa (3 years)
Surcharge 33.32 kPa (3 days)
Surcharge 33.32 kPa (3 years)
Surcharge 49 kPa (3 days)
Surcharge 49 kPa (3 years)

-150

B1528 2 k¥ LT E€T 2 352 B E v B (B84 123.28KN)

Relative displacement (mm)

150 250 350 450

T T ' '

10 4

No surcharge

Surcharge 4.9 kPa (3 days)

— — =Surcharge 4.9 kPa (3 years)
Surcharge 23.52 kPa (3 days)
— — =Surcharge 23.52 kPa (3 years)
Surcharge 33.32 kPa (3 days)
Surcharge 33.32 kPa (3 years)
Surcharge 49 kPa (3 days)
Surcharge 49 kPa (3 years)

e — — — = — — — L —

B15.29 7 2 2 P ET 2 5t tast A B0t Bl ($h5F 4 369.83 kN)
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Depth (m)

Depth (m)

-200

Relative displacement (mm)

-350

-100 0 100 200 300 400
T & | l T ' T T
o [
|2 -7
/ rd
11 //
n ,
' [
|| | /
10fH
}1
l
L
151 No surcharge
I’ : : Surcharge 4.9 kPa (3 days)
ol — — =Surcharge 4.9 kPa (3 years)
1204 H Surcharge 23.52 kPa (3 days)
I’ l: : - = =Surcharge 23.52 kPa (3 years)
! U Surcharge 33.32 kPa (3 days)
I’ 25"4 i Surcharge 33.32 kPa (3 years)
' | ]: : Surcharge 49 kPa (3 days)
1 Surcharge 49 kPa (3 years)
30-11L
B530 7 ¥ 2 & T2 52 pf s B Bl (F55 4 616.38 kN)
Relative displacement (mm)
-250 -150 -50 50 250 350

1)
Il
|

/' l@\ A

7 I

! i

/ \

! Il

/ lIH

] | [

I} o {11 No surcharge (Error at 2.85 days - 821.2 kN)
] i ! Surcharge 4.9 kPa (3 days)
! PQIlH = = = Surcharge 4.9 kPa (3 years)

! : Il Surcharge 23.52 kPa (3 days)
| : : — = = Surcharge 23.52 kPa (3 years)
Al Surcharge 33.32 kPa (3 days)

I IH
1 il Surcharge 33.32 kPa (3 years)

ol

Il

[l

50 1
T O | I'_ T
| )
||| A7
‘/
/
|
/1

Surcharge 49 kPa (3 days)
Surcharge 49 kPa (3 years)

F53L 7 s 2 fif 72

7
~
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10

15

Depth (m)

20

25

30

Depth (m)
& S

N
o

25

30

Axial load (KN)
100 200 300 400 500

600

No surcharge

Surcharge 4.9 kPa (3 days)

— = =Surcharge 4.9 kPa (3 years)
Surcharge 23.52 kPa (3 days)
- = = Surcharge 23.52 kPa (3 years)
Surcharge 33.32 kPa (3 days)
Surcharge 33.32 kPa (3 years)
Surcharge 49 kPa (3 days)
Surcharge 49 kPa (3 years)

Bl1532 7 k¥ L €T 2 fhphd - B (Fh8 4 123.28kN)

Axial load (kN)
200 400 600

800

No surcharge (3 days)
Surcharge 4.9 kPa (3 days)

— = =Surcharge 4.9 kPa (3 years)
Surcharge 23.52 kPa (3 days)
- = = Surcharge 23.52 kPa (3 years)
Surcharge 33.32 kPa (3 days)
Surcharge 33.32 kPa (3 years)
Surcharge 49 kPa (3 days)
Surcharge 49 kPa (3 years)

B15.33 7 2 & P £ T 2 fhitnd 5B ($h5 4 369.83kN)
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Depth (m)
o

20

25

30

10

Depth (m)
&

20

25

30

Axial load (KN)
200 400 600 800 1000

No surcharge

Surcharge 4.9 kPa (3 days)

— = =Surcharge 4.9 kPa (3 years)
Surcharge 23.52 kPa (3 days)
— — = Surcharge 23.52 kPa (3 years)
Surcharge 33.32 kPa (3 days)
Surcharge 33.32 kPa (3 years)
Surcharge 49 kPa (3 days)
Surcharge 49 kPa (3 years)

Bl 534 7 ¥ L P €T 2 fhdhd - Bl (#5884 616.38 kN)

Axial load (kN)
200 400 600 800 1000 1200

— — = Surcharge 23.52 kPa (3 years)
/ Surcharge 33.32 kPa (3 days)
Surcharge 33.32 kPa (3 years)

No surcharge (Error at 2.85 days - 821.2 kN)
Surcharge 4.9 kPa (3 days)

— — = Surcharge 4.9 kPa (3 years)

Surcharge 23.52 kPa (3 days)

Surcharge 49 kPa (3 days)
Surcharge 49 kPa (3 years)

B15.35 7 2 & P T 2 fhitnd 5B ($hF 4 862.93kN)

5-36

doi:10.6342/NTU201902834



Pile head displacement (mm)

NP/L

400

300 r

200

100

0.2

0.4

0.6

0.8

----@--- Pile head displacement (No pile head load)

--@--Pile head displacement (Pile head load 123.28 kN)
— @ —Pile head displacement (Pile head load 369.83 kN)
—o- - Pile head displacement (Pile head load 616.38 kN)
—e— Pile head displacement (Pile head load 862.93 kN)

Surcharge (kPa)
B15.36 #aEEiwiaR v Bl (3 RS B A P E R E)

---@--- NP/L (No pile head load)

--o--NP/L (Pile head load 123.28 kN)
— ® = NP/L (Pile head load 369.83 kN)
—a@- - NP/L (Pile head load 616.38 kN)
—e— NP/L (Pile head load 862.93 kN)

......
ceee
cees
.......
.....
.......
......
cees
..

10 20 30 40 50
Surcharge (kPa)
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Normalized Pygr

Depth (m)

0.8

0.6

0.4

0.2

L g L L L
---4--- Normalized PNSF (No pile head load)
--m--Normalized PNSF (Pile head load 123.28kN) o= -
- m - Normalized PNSF (Pile head logd-389853 kRy ~~~~""=~ ----
- —a - Normalized PNSF (Pileead Toad 616.38 kN)
—=— Normalized PN8F (Pile head load 862.93 kN)
e
_______ a
- - - - ----"
td
rd
td
td
rd
td
td
r'd
- -’ <  — - =l
r'd - W o = s — | —_ =
-’ < L~ )
r” ~
. / )
L L~ )
. * / ‘
| o8
. 1 1 1
0 10 20 30 40 50
Surcharge (kPa)
R 538 % f B v REl (2 Rigd 2 ifidus)
Pile displacement (mm)
0 50 100 150 200 250 300 350 400 450

10

15

20

25

30

No pile head load (3 days)

— — = No pile head load (3 years)

Pile head load 123.28 kN (3 days)
— — =Pile head load 123.28 kN (3 years)
—— Pile head load 369.83 kN (3 days)
— — = Pile head load 369.83 kN (3 years)
Pile head load 616.38 kN (3 days)
Pile head load 616.38 kN (3 years)
Pile head load 862.93 kN (3 days)
Pile head load 862.93 kN (3 years)

Bl 5.39 L s i 1B (BEREARES < 2825
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Depth (m)

30

Depth (m)

100

Soil displacement (mm)
150 200 250 300 350 400

T T T T ' 2

No pile head load (3 days)

— = =No pile head load (3 years)

Pile head load 123.28 kN (3 days)
— — —Pile head load 123.28 kN (3 years)
Pile head load 369.83 kN (3 days)
— — = Pile head load 369.83 kN (3 years)
Pile head load 616.38 kN (3 days)
Pile head load 616.38 kN (3 years)
Pile head load 862.93 kN (3 days)
— = = Pile head load 862.93 kN (3 years)

-250

B 540 13 ¥

e o RE (BB RE Y B

Relative displacement (mm)
-50 150 250 350

No pile head load (3 days)

— = = No pile head load (3 years)

Pile head load 123.28 kN (3 days)
— — —Pile head load 123.28 kN (3 years)
Pile head load 369.83 kN (3 days)
— — = Pile head load 369.83 kN (3 years)
Pile head load 616.38 kN (3 days)
Pile head load 616.38 kN (3 years)
Pile head load 862.93 kN (3 days)
— — = Pile head load 862.93 kN (3 years)

Bl 541 2 dn st s B0 Bl (REHREH T < 1 2 B )
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Depth (m)

200

Axial load (KN)
400 800 1000

600

10

15

20

25

30

Depth (m)

No pile head load (3 days)

= = =No pile head load (3 years)

Pile head load 123.28 kN (3 days)

— = =Pile head load 123.28 kN (3 years)
Pile head load 369.83 kN (3 days)

= = =Pile head load 369.83 kN (3 years)
Pile head load 616.38 kN (3 days)
— — = Pile head load 616.38 kN (3 years)
Pile head load 862.93 kN (3 days)
— — = Pile head load 862.93 kN (3 years)

] 5.42 hiph

20

Rl (BERREE A REE Y < 2 R

Pile displacement (mm)

2 )

60 80 100 120

10 r

15

20

25

30

[ [
No pile head load (3 days)

I’ — = —=No pile head load (3 years)
f Pile head load 123.28 kN (3 days)
— — —Pile head load 123.28 kN (3 years)
Pile head load 369.83 kN (3 days)
,’ - — —Pile head load 369.83 kN (3 years)
| Pile head load 616.38 kN (3 days)
| — — = Pile head load 616.38 kN (3 years)
! Pile head load 862.93 kN (3 days)
— — = Pile head load 862.93 kN (3 years)

B 543 thd s it Bl (RF2FF 2K 2 SRt iaem 4 « o)

B )

7
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Soil displacement (mm)
100 150 200 250 300 350

10

Depth (m)
o

20

25

30

T T T T T Y 4

No pile head load (3 days)

— — = No pile head load (3 years)

Pile head load 123.28 kN (3 days)

— — =Pile head load 123.28 kN (3 years)

——— Pile head load 369.83 kN (3 days)

— — = Pile head load 369.83 kN (3 years)
Pile head load 616.38 kN (3 days)
Pile head load 616.38 kN (3 years)

——— Pile head load 862.93 kN (3 days)

— — = Pile head load 862.93 kN (3 years)

1 5.44 2 3% A i

LR (RER SR A k2 BRI RE Y S LB

Relative displacement (mm)

Depth (m)

100 150 200 250 300 350
T T T L— T 777
T
- - S
- - M
2z~
Pd P Ld
7 7 7
P4 ////
o e
- =zZ a2~
- - o
- - o
22>
- AT

No pile head load (3 days)

— — = No pile head load (3 years)

Pile head load 123.28 kN (3 days)
— — —Pile head load 123.28 kN (3 years)
Pile head load 369.83 kN (3 days)
— = =Pile head load 369.83 kN (3 years)
Pile head load 616.38 kN (3 days)
Pile head load 616.38 kN (3 years)
Pile head load 862.93 kN (3 days)
— = = Pile head load 862.93 kN (3 years)

B (RERF R R BRI R < 2B )
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0 200

Axial load (kN)
400 600 800 1000 1200 1400 1600

[EY
o

Depth (m)
o

20

25

30

No pile head load (3 days)
= = = No pile head load (3 years)

Pile head load 123.28 kN (3 days)
— = =Pile head load 123.28 kN (3 years)
Pile head load 369.83 kN (3 days)
— = = Pile head load 369.83 kN (3 years)
Pile head load 616.38 kN (3 days)
— = = Pile head load 616.38 kN (3 years)
Pile head load 862.93 kN (3 days)
T — —Pile head load 862.93 kN (3 years)

B 5.46 #5804 B (REF R k2 BRBRERBRES 2 2B

Pile displacement (mm)

0 2.5 5 7.5 10 125 15
0 T T T7 T 7 T 7 T P 7
/
: l' // s e
I I / L7
5t | [ / y 7
7 /
[ 7 7 e
10 | ! ’ . .’
] () / /7 P Vs
—_ I ! / / 7
é U II // 4 . s 7
/7 4 P
S 15 | v/, y et
a) 7 4 R No pile head load (3 days)
, )/ - N.o pile head load (3 years)
20 | , 7 7 .7 Pile head load 123.28 kN (3 days)
/2 L7 - - — — —Pile head load 123.28 kN (3 years)
1., .7 - Pile head load 369.83 kN (3 days)
i .- — — —Pile head load 369.83 kN (3 years)
25 | 4 Pile head load 616.38 kN (3 days)
g~ — — = Pile head load 616.38 kN (3 years)
Pile head load 862.93 kN (3 days)
— — —=Pile head load 862.93 kN (3 years)
30

B 5.47 #hE %A

o
|
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Soil displacement (mm)

0 50 100 150 200 250 300 350
0 T T T T T T I
’
rd - - -
5 P
10 - -
B -7 _
~ 7 No pile head load (3 days)
e
§ 5 r e — — = No pile head load (3 years)
a L7 Pile head load 123.28 kN (3 days)
/ — — —Pile head load 123.28 kN (3 years)
20 | Pile head load 369.83 kN (3 days)
I’ — — =Pile head load 369.83 kN (3 years)
/ Pile head load 616.38 kN (3 days)
25 7' Pile head load 616.38 kN (3 years)
Pile head load 862.93 kN (3 days)
— = = Pile head load 862.93 kN (3 years)
30

B 548 2 s v if (REETH A 2 TR RKEFHRES + 2858

Relative displacement (mm)

0 50 100 150 200 250 300 350
0 T T T T TTTH
s
e
5 P
;;; /
10
E
%_ 15 No pile head load (3 days)
a — = = No pile head load (3 years)
Pile head load 123.28 kN (3 days)
20 — — —Pile head load 123.28 kN (3 years)
Pile head load 369.83 kN (3 days)
— = =Pile head load 369.83 kN (3 years)
Pile head load 616.38 kN (3 days)
25 Pile head load 616.38 kN (3 years)
Pile head load 862.93 kN (3 days)
— — = Pile head load 862.93 kN (3 years)
30

B 549 #52 Ap A B Bl (BE % A 2 L B e KRR R4 ) 2 B8
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400

Axial load (kN)

800 1200 1600 2000

[EEN
o

[N
a1

Depth (m)

20

25

30

No pile head Ioald (3 days)

— = = No pile head load (3 years)

Pile head load 123.28 kN (3 days)
— = =Pile head load 123.28 kN (3 years)
Pile head load 369.83 kN (3 days)
— = =Pile head load 369.83 kN (3 years)
Pile head load 616.38 kN (3 days)
Pile head load 616.38 kN (3 years)
Pile head load 862.93 kN (3 days)
— = =Pile head load 862.93 kN (3 years)

50

Rl 5.50 #hh vv Pl (L E R A 2 2 8RR e 4 <)

100

Pile displacement (mm)
150 200

250 300

10

15

Depth (m)

20

25

b

30

Friction pile (Pile head load)

Pile end bearing on sand (Pile head load)

Ideal end bearing pile (Pile head load)

— = = Friction pile (Pile head load+Surcharge)

T
|
|
|
|
|
[}
|
|
I
[}
[}
[}
[}
|
I
[}
[}
|
|
|
: - = =Pile end bearing on sand (Pile head load+Surcharge)
|

— = = |deal end bearing pile (Pile head load+Surcharge)

A RE (F R E B )
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