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中文摘要 

  本研究將以圓錐貫入試驗 (cone penetration test, CPT) 的修正之錐尖阻抗 (qt) 

資料做為討論對象，探討辨識趨勢函數的可行性與方法。現地調查所獲得的空間分

布資料可以被分成兩項，趨勢函數以及沿著趨勢且平均值為零的變異性，而趨勢函

數可以讓工程師更輕易的了解土壤性質隨空間的變化，空間變異性可以透過標準差

(σ)及關聯性長度(δ)估計。除了垂直向的關聯性長度外，本研究探討三度空間問題，

所以還需要估計水平方向的關聯性長度，相比於垂直向的關聯性長度，由於土層水

平方向的變異性較小，且水平的資料數量遠少於垂直方向的資料，大大增加水平向

參數估計的難度。 

當進入三維分析時，所需要的計算量將大幅提升，導致運算時間太長甚至超過

記憶體的負荷量，所以使用了 Cholesky decomposition 與克羅內克積 (Kronecker 

product) 等數學方法，大幅減少計算量。 

本研究透過兩步驟的貝氏分析架構來辨識以及模擬空間中的趨勢函數，第一步

是透過 sparse Bayesian learning的架構來選擇真正需要的基函數 (basis function, BF)，

不同種類的基函數形式在文中也會進行探討。第二步是透過漸進式馬可夫鏈蒙地卡

羅法 (transitional Markov chain Monte Carlo, TMCMC; Ching and Chen, 2007) 作為估

計隨機場參數的方法，透過上述兩個步驟就能模擬出代表現地趨勢函數，接下來則

可以利用第二步所取得的趨勢與關聯性參數進一步進行隨機場的模擬。 

關鍵字: 大地工程、圓錐灌入試驗、趨勢函數、空間變異性、隨機場 
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Abstract 

  This study investigated the modified cone tip resistance (qt) data from cone 

penetration tests (CPT). The feasibility and method of identifying the trend function were 

also discussed. The vertical spatial distribution is expressed as a depth-dependent trend 

function and a zero-mean spatial variation. Trend function can help us catch soil properties 

in space. Spatial variation can be estimated by standard deviation (σ) and scale of 

fluctuation (δ). 

In addition to the vertical scale of fluctuation, in 3D case, horizontal scale of 

fluctuation is also important. However, the number of horizontal data is much less than that 

of the vertical data. Horizontal scale of fluctuation is hard to be estimated. The estimation 

of the horizontal parameter is difficult. Another problem is that when analyzing multiple 

data at a time, the matrix becomes very huge, increasing the computation and even 

exceeding the load of the memory. We use Cholesky decomposition and Kronecker product 

to simplify the matrix. In this way, we can greatly reduce the computation. 

This study uses a two-step Bayesian analysis to identify trend functions. The first step 

is to select the basis functions we need by sparse Bayesian learning. In this study, we also 

consider the effects of different kinds of basis functions. The second step is to use 

transitional Markov chain Monte Carlo (TMCMC; Ching and Chen, 2007) as a method for 

estimating the parameters of the random field. Through the above two steps, we can fit the 

trend function and model the random field. 

Keywords: geotechnical engineering, cone penetration test, trend function, site 

characterizarion, spatial variability 
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第一章 緒論 

在大地工程現地調查中，一筆具有空間變異性的資料可以被分成趨勢函數( t )以

及平均值為零的空間變異性(ε) 

 Y(z) = t(z) + ε(z) 1-1 

然而從現地中取得的空間分布資料並不能客觀的區分趨勢函數與空間變異性，

往往需仰賴人工判讀，尤其當土壤的空間變異性較大時，人為判斷的差異更為巨大，

為了解決這個問題，Ching and Phoon (2017)提出了在 sparse Bayesian learning 

(Tipping,2001) 的架構下找出趨勢函數的方法。 

空間變異性對於取得趨勢有著很大的影響，而關聯性長度 (scale of fluctuation, 

SOF) 是描述土壤參數隨空間變化極為重要的參數，關聯性長度可以簡單的將其想

成大約在此長度內的資料具有相關性，若兩筆資料的距離超過關聯性長度，可將這

兩點的資料視為獨立。SOF 小的資料沿著趨勢會有較高頻率的震盪，SOF 大則震盪

頻率較小，表現較接近均質，許多研究指出關聯性長度對可靠度分析有極重要的影

響 (Fenton and Griffiths, 2002, 2003; Fenton et al., 2005; Srivastava and Sivakumar Babu, 

2009; Stuedlein and Bong, 2017)。根據前人的研究，以圓錐貫入試驗 (cone penetration 

test, CPT) 之修正錐間阻抗 (qt) 所求得的垂直方向 SOF 大約 0.3 公尺到 2.6 公尺 

(Phoon and Kulhawy, 1999; Jaksa et al., 1999; Uzielli et al., 2005; Firouzianbandpey et al., 

2014; Onyejekwe et al., 2016)，水平方向的 SOF 大約 1.2 公尺到 80 公尺 (Phoon and 

Kulhawy, 1999; Jaksa et al., 1999; Firouzianbandpey et al., 2014)。 
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1.1 研究動機與目的 

在過去的可靠度研究中，在取得隨空間變異的資料後會先將資料進行去趨勢 

(detrend) 的處理，一般會以最小平方法 (ordinary least squares, OLS) 找到趨勢函

數，再利用公式 1-2 得到一個平均值為零的空間變異性資料(ε)進行可靠度分析。 

 ε(z) = Y(z) − t(z) 1-2 

然而這樣的方法也存在著一些問題，例如：在使用 OLS 求取趨勢函數時必須先

決定函數的形式，所以每個人判斷出的趨勢將不相同，影響分析結果。Ching et al. 

(2017) 表明如果忽略趨勢函數會增加統計不確定性且會高估可靠度，近年的研究也

開始關心趨勢對可靠度分析的影響 (e.g., Kulatilake 1991; Li 1991; Jaksa et al. 1997)，

Ching et al. (2016, 2017) 分別考慮了趨勢為常數與一次函數的影響，也近一步發現

不同趨勢函數的形式也會影響分析結果。 

為了取得土壤在空間中的趨勢，首先，必須先了解土壤隨空間分布的變化性，

現在大地工程最常被使用的現地調查方法為 CPT 和標準貫入試驗 (standard 

penetration test, SPT)，而 CPT 有著取樣密度極高、取樣速度快、經濟等優點，加上

電腦的普及以及資料處理速度的快速提升，CPT 所取得的大量資料也可以快速地進

行分析處理，增加其在工程應用的潛能，有助於提升大地工程設計的品質，已經是

現今大地工程中十分常見的現地調查方法。由於一般常見的鑽探試驗都以垂直方向

施作為主，水平方向鑽探往往受到重重限制且難度較高、價格昂貴，在一般工程基

本上皆無施作，然而在僅施作少數垂直孔位鑽探時，水平方向數據數量遠小於垂直

方向，且資料間距往往遠大於垂直方向，因此水平方向參數的估計也較垂直方向困

難，故過去大地工程的分析多著重探討垂直方向，水平方向多被視為均質。但在某

些現地案例中發現水平方向的土壤變異性並不能忽視，因為水平方向的調查長度往

往大於垂直方向，再加上土壤沉積後可能還會受到斷層錯動、擠壓褶皺變形等活動

的影響，水平方向視為均質並不合理。 
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圖 1-1 垂直方向資料較多而水平資料較少 (Stuedlein et al., 2016) 

一旦進入三維的分析，就必須面對運算量過大的問題，以 CPT 為例，垂直方向

的取樣間距大約 2 公分，一個 10 公尺的鑽孔就有 500 筆資料，若一次分析 20 個鑽

孔資料總共就有 10000 筆資料，在做分析時需要對 10000×10000 的矩陣進行列運算

與反矩陣，而計算這個大矩陣的計算量過於龐大，需要耗費太多的時間。所以在本

研究中運用了克羅內克積 (Kronecker product) 將原本 10000×10000 的矩陣分別拆

成 500×500 跟 20×20 的矩陣，大幅降低運算量，加快計算時間，進一步配合 Cholesky 

decomposition，將原本的方陣拆成下三角矩陣，又再一部加快了計算時間。透過這

些數學的方法，本研究才能有效率的分析多個孔位資料，處理三維分析的問題。 
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綜合以上觀點，本研究將以 CPT 之修正錐尖阻抗 (qt) 做為主要的模擬研究資

料，以探討如何辨識出三度空間中的趨勢函數，並討論以不同函數類型作為基函數 

(basis function, BF) 對分析結果的影響，進一步建立具關聯性的空間隨機場。 
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1.2 研究方法 

圖1-2為一筆空間分布資料，這筆資料的趨勢可能判斷成一次式、二次式甚至

是更高次項的方程式，會受到人為主觀的影響，所以 Ching and Phoon在2017年發

表的Characterizing Uncertain Site-Specific Trend Function by Sparse Bayesian Learning

中提出了客觀辨識趨勢函數的方法。此篇文章將估計趨勢函數的方法分成兩個步

驟，第一步為選擇真正需要的BFs，文中以 Tipping (2001) 所提出的sparse 

Bayesian learning (SBL) 來做為選擇BFs的方法，其中： 

 t(z) =∑wkϕk(z)

m

k=0

 1-3 

ϕk為BF的第k項，wk為第k項所對應之權重 (weight)。 

透過計算出wk的大小來決定ϕk是否需要，在3.2.1節會做更詳細的介紹。而本研

究進一步分析三度空間的趨勢函數，故將式1-3改寫成： 

 t(x, y, z) =∑wkϕk(x, y, z)

m

k=0

 1-4 

第二步就是以第一步所選定的BFs進行貝氏分析，以 Ching and Chen (2007) 提

出的 transitional Markov chain Monte Carlo (TMCMC) 進行取樣，即可求出權重

wk，進一步模擬三度空間中的趨勢函數。 

第三步則可以透過第二步所擬合的趨勢與取樣的隨機場參數建立空間的隨機場

模型。 
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圖 1-2 相同的空間分布資料由人所判斷的趨勢不一定相同 
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1.3 本文內容 

本研究共有五章，各章之內容概述如下： 

第一章簡述研究動機與目的，並簡單介紹研究過程中選用之研究方法。 

第二章為文獻回顧，內容包括隨機場、自關聯性模型、Whittle-Matérn 模型、馬

可夫鏈蒙地卡羅法、TMCMC、SBL 以及介紹不同型態的 BFs。 

第三章為模擬資料的隨機場參數估計，會先說明如何模擬資料，利用先前提到

的兩個步驟模擬之資料進行反算，推估隨機場的真實參數，並展示不同設計狀況所

估計的參數樣本分布與趨勢擬合的結果。 

第四章為利用真實案例演示估計三維趨勢函數之過程，以及展示在不同 BFs 對

趨勢函數估計的結果。 

第五章為結論與建議，將針對本文之研究結果進行總結。 
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第二章 文獻回顧 

2.1 隨機場 (random field) 

工址調查為工程計畫中不可或缺的重要項目，最重要目的為取得地下土壤參數

隨空間分布的資訊。一般會將取得土壤隨空間分布的資料表示成趨勢函數與一個平

均值為零的空間變異性之和，雖然本研究主要關心對象為趨勢函數，但空間變異性

對於大地工程構造物與土壤的行為之影響在過去的許多文獻中被提及與研究，顯示

了空間變異性對於土壤行為之重要性。(Ahmed and Soubra 2014; Fan et al. 2005; 

Fenton and Griffiths 2003; Haldar and Babu 2008; Hicks et al. 2014; Hu and Ching 2015; 

Li et al. 2014; Srivastava and Babu 2009; Wang and Cao 2013; Wu et al. 2012) 

2.1.1 穩態隨機場 (stationary random field) 

空間變異性對大地工程的構造物行為有的顯著的影響，故如何透過少量的工址

調查來準確估計空間變異性的統計參數即為一個不可忽視的問題，而最常被使用來

描述空間變異性的就是隨機場模型，又以穩態隨機場最常被大家所使用。 

Vanmarcke 於 1977 年提出隨機場理論應用於空間變異性的研究，而空間分布資

料為穩態是一個很關鍵的簡化假設。穩態指的是資料的統計性質不隨空間變化，

Brockwell and Davis (1987) 提出嚴謹的定義，包括： 

1. 平均值 (mean) 隨距離的變化應保持常數，即資料中不存在趨勢函數或浮動項。 

2. 變異數  (variance) 隨距離的變化應保持常數，此即為變異性同質性 

(homoscedastic)。 

3. 不具有周期性的變異數 (seasonal variance)。 

4. 不具有不規則波動 (irregular fluctuation)。 
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而在實務操作上，Vanmarcke (1983) 定義較常被使用的二階穩態過程 (weak 

stationarity process)，具備下列特徵： 

1. 資料平均值為常數。 

2. 變異數為常數。 

3. 資料點之間的相關性 (auto-correlation) 僅和資料點與點的間距有關，和資料點

在空間上的位置無關，也就是資料點之間的相關性為資料點間距的函數。 

在現實的大地工程中，資料不全然是穩態，最常見的就是資料的平均值非常數，

而對於非穩態的資料可以透過資料轉換來將其轉為穩態，資料轉換方式有分解法 

(decomposition)、微分法 (differencing) 和變異數轉換法 (variance transformation)，此

三種轉換方式之整理可見 Jaska (1995)，而在大地工程中以分解法最廣為使用 (Jaksa 

et al., 1997)。 

分解法是將一個隨機場資料 Y 可分解成趨勢函數 (t) 加上一個殘餘的項 () ，

土壤隨深度的變化可以寫成：  

 Y(z) = t(z) + (z) 2-1 

其中 Y(z)為隨深度變化土壤參數，t(z)為趨勢函數，在大地工程中最常被使用的

方法為最小平方法，本研究則以 Ching and Phoon (2017) 所提出在 SBL 的架構下來

求得趨勢函數，在第三章有更深入的介紹。(z)為在趨勢函數附近跳動的震盪項，通

常會把(z)視為二階穩態狀態 (Chatfield, 2004)，在(z)中則包含了不同來源的不確定

性 (uncertainty)，Kulhawy 於 1992 年整理歸納出不確定性的種類來源包括：土壤本

身具有之空間變異性 (inherent soil variability)，現地量測時可能出現的量測誤差 

(measurement error)、統計誤差 (statistical uncertainty)，若有進行量測數據與設計參

數之間的轉換，則有轉換模型不確定性 (model uncertainty)，而扣除趨勢的震盪項(z)

可以透過建立適當的自關聯性函數 (auto-correlation function, ACF) 來進行模擬。 
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2.1.2 自關聯性函數 (auto-correlation function, ACF) 

自相關函數 (auto-correlation function, ρ) 的定義為： 

 ρ(Δz) =
CV[W(z),w(z + Δz)]

√Var[W(z)] ∙ √Var[W(z + Δz)]
 2-2 

其中 W 為隨機場的值，z 為深度位置，Δz 為資料間距，CV[.]為共變異數函數，Var[.]

為變異數函數。 

自鄉關聯性函數的種類繁多，前人的研究也提出了許多種不同的自相關聯性函

數模型 (auto-correlation models)，這裡介紹以下三個在大地工程較常被使用的模型 

(Vanmarcke 1977,1983; Uzielli et al. 2005)： 

ρ(∆z) = exp (−2
|Δz|

δ
) Single exponential (SExp) model 

ρ(∆z) = (1 + 4
Δz

δ
) × exp (−4

Δz

δ
) Second order Markov (SMK) model 

ρ(∆z) = exp (−π
Δz2

δ2
) Square exponential (QExp) model 

其中 δ為關聯性長度 (scale of fluctuation, SOF)，定義為 ACF 下的面積，如式 2-3，

Δz為資料間距。
 

 ∫ ρ(Δz)dΔz
∞

−∞

 2-3 

 

圖 2-1 自關聯性模型
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2.2 Whittle-Matérn 模型 

Whittle-Matérn 模型 (W-M model) 為一種定義更廣泛的模型，此模型可以透過

平滑性參數 ν 來控制樣本的平滑程度 (Stein 1999; Guttorp and Gneiting 2006; Liu et 

al. 2017)，此關聯性模型表示如下： 

 ρ(Δz) =
21−𝜈

Γ( 𝜈 )
∙ (
√2𝜈 ∙ |∆z|

s
)

𝜈

K𝜈 (
√2𝜈 ∙ |Δz|

s
) 2-4 

其中 ν為平滑性參數 (smoothness parameter)，s 為尺度參數 (scale parameter)，

Γ為珈瑪函數 (Gamma function; Abramowitz and Stegun, 1970)，Kν為 ν階的第二類

修正貝索函數 (modified Bessel function of the second kind with order ν; Abramowitz 

and Stegue, 1970)。 

在 W-M 模型中，SOF 和尺度參數成正比： 

 s =
δ

c(𝜈)
 2-5 

其中 c(ν)之計算如下 (Hristopulos and Žukovič, 2011)： 

 c(𝜈) =
√2𝜋 ∙ Γ(𝜈 + 0.5)

√𝜈 ∙ Γ(𝜈)
 2-6 

圖 2-2 為 c(ν)函數與 ν 的關係圖，從圖中可以發現當 ν = 0.5 時 c(ν) = 2，正好是 SExp

模型，當 ν = 1.5 和∞時正好對應 SMK 模型與 QExp 模型 

 

圖 2-2 c(ν)函數 
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2.3 平滑性參數的影響 

ν 值所控制的是隨機場資料的平滑程度，當 ν 值小時，關聯性隨距離下降的速

度較快，隨機場的資料分布就會有局部跳動的現象，例如：SExp 模型。而當 ν 值越

大時，隨機場資料則趨於平滑，例如：QExp 模型。圖 2-3 為不同 ν 值的隨機場資料，

以及關聯性隨距離的變化。 

 

圖 2-3 不同 ACF 的隨機場資料 

Ching and Phoon ( 2018 ) 利用大地工程中常見的工程案例說明 ν 的影響，在這

裡以淺層滑坡的案例說明 ν 對破壞機率的影響。 

這個案例考慮一個傾角為 α = 22°的斜坡，平行於斜坡的方向用 x 表示，垂直於

斜坡用 z 表示，如圖 2-4。該斜坡在 x 方向的寬度 W = 100 m 和在 z 方向的深度 D = 

10 m。tan[( z )]為平均值 μ = tan(30°) 和 COV = 10％的穩態常態隨機場： 

 tan [ϕ′(z)] = μ + σ ∙ ε(z) 2-7 

tan[( z )]表示深度 z 處摩擦角的正切值； σ = tan(30°)×10％是 tan[( z )]的標準偏

差；ε(z)為標準差為 1 的零均穩態常態隨機場，採用 W-M 模型作為 ACF 模型。對
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此邊坡來說，當 tan[( z )] < tan(α)時，深度 z 的潛在滑動面則破壞。因此，無限邊

坡的極限狀態函數 G 可寫為： 

 G = min
𝑧∈[0,10]

tan[( z )] − tan (𝛼) = μ + σ ∙ εmin − tan (𝛼) 2-8 

其中εmin表示ε(z)取樣的最小值。當 G < 0 時，此邊坡發生破壞，然而像邊坡滑動這

種由弱帶控制的案例中，ν 就會有很顯著的影響，如圖 2-4(a)，當 ν 較小時 (ν = 0.5) 

樣本抖動的情況較明顯，就會有比較大的機會找到較小的值，破壞機率就比較高。

當 ν 較大時 (𝜈 = ∞)，如圖 2-4(b)，樣本較為平滑，極值出現的機率也就比較小，破

壞機率就較低。 

 

（a）SExp 模型的 tan [( z )]的樣本 

 

 

（b）QExp 模型的 tan [( z )]的樣本 

圖 2-4 無限邊坡下 tan [ϕ(z)]的隨機場樣本 
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圖 2-5 破壞機率相對於ν的變化 (Ching and Phoon 2018) 
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2.4 不同型態的基函數 

Ching and Phoon (2017) 之研究中發現，利用不同型態的基函數 (basis functions, 

BFs) 對趨勢的估計會有影響，本研究分別考慮：shifted Legendre polynomial, discrete 

cosine basis 以及高斯分布 (Gaussian distribution) 的 radial basis function。 

Shifted Legendre polynomial 是 Legendre polynomial 的一種變形，區間再從原本

的[-1,1]變成[0,1]，如圖 2-6，第零項為常數項，第一項為一次函數，第二項為二次函

數，到第 m 項的 m-1 次函數。 

 Pk(𝑧) =
1

2𝑘𝑘!

𝑑𝑘

𝑑𝑧𝑘
[(2𝑧 − 1)2 − 1]𝑘 2-9 

 

圖 2-6 Shifted Legendre polynomial 
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Discrete cosine basis 為離散型的 cosine 分布，如圖 2-7，第 1 項為常數，第二項

為一個半週期函數，第三項為一個全週期函數，到第 N 項為(N-1)/2 個週期函數。 

 f(𝑧) = ∑𝑤(𝑘)cos [
𝜋(2𝑧 − 1)(𝑘 − 1)

2𝑁
]

𝑁

𝑘=1

 2-10 

 𝑤(𝑘) =

{
 
 

 
 
1

√𝑁
, 𝑘 = 1

√
2

𝑁
, 2 ≤ 𝑘 ≤ 𝑁

 2-11 

 

圖 2-7 Discrete cosine basis 
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Radial basis function 是一種與到原點的距離有關的函數，在本研究選用高斯分

布 (Gaussian distribution) 作為 BFs，不同於其他兩種函數有固定的形式，radial basis

的標準差σr與每個方向個別需要幾個基函數才足以完整表現該方向的趨勢都需要自

行決定，若選擇過多的基函數會使計算量過大，且每個基函數的距離太接近，取代

性太高，若選擇的太少則有可能造成欠擬合 (poor-fit) 的問題，而本研究發現每一到

兩倍的關聯性長度以一個基函數進行擬合最為合適，舉例來說：有一個深度 10 公

尺，關聯性長度 SOF 為 0.5 公尺的空間分布資料，此時需要大約 10 個基函數來進

行擬合。而高斯分布的標準差 σr可以透過 step1 的最佳化過程求解，若 σr較小，則

分佈較為集中，如圖 2-8(左)，若 σr 變大則較像均佈分布，如圖 2-8(右)，整體基函

數分布形式如圖 2-9。 

 f(z) =
1

𝜎𝑟√2𝜋
𝑒
−
1
2
(
𝑧−𝜇
𝜎𝑟

)2
 2-12 

μ 為平均值，σr為標準差。 

 

圖 2-8 (左) σr較小時的函數形式；(右) σr較大時的函數形式 
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圖 2-9 Radial basis function 
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2.5 一維及三維隨機場表示方式 

2.1.1 節提到為一個二階穩態的震盪項，在這裡進一步使的平均值為零，則這

個二階穩態的隨機場就可以由平均值 μ 、標準差 σ 以及自相關聯性函數 ACF 來表

示： 

  = σ ∙ 𝐋 ∙ 𝐔 2-13 

其中 U 為獨立高斯隨機變數向量，L 為關聯性矩陣 R 的 Cholesky decomposition 矩

陣 (R=L×LT)，R 為： 

 

   

 

z 1 2 z 1 n

z n 1 n

1 ρ z z ρ z z

=
1 ρ z z

sym. 1



  
 
 
 
 
  

R  2-14 

其中 ρz(.)為重直方向的 ACF，在本研究則採用 2.2 節提到能表現樣本平滑程度的 W-

M 模型： 

 ρz(Δz) =
21−𝜈

Γ( 𝜈 )
∙ (
√2𝜈 ∙ |∆z|

s
)

𝜈

K𝜈 (
√2𝜈 ∙ |Δz|

s
) 2-15 

s 為尺度參數： 

 s =
δ

c(𝜈)
 2-16 

c(ν)之計算如下 (Hristopulos and Žukovič, 2011)： 

 c(𝜈) =
√2𝜋 ∙ Γ(𝜈 + 0.5)

√𝜈 ∙ Γ(𝜈)
 2-17 

對於三維隨機場(x, y, z)，其中 x 和 y 為水平方向 z 為垂直方向，在這裡做了兩

個假設，第一個假設是 z 的深度要一致，第二個假設是垂直方向與水平方向的 ACF

可以被分開計算，也就是說： 

 ρ(Δx, Δy, Δz) = ρh(Δh) × ρz(Δz) 2-18 

其中 ρh(.)為水平方向的 ACF，Δh = (Δx + Δy)0.5，水平方向一樣採用 W-M 模型。 
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根據上述兩個假設，共變異數矩陣 (auto-covariance matrix) Σ 可以利用克羅內

克積 (Kronecker product) 表示成： 

 Σ = σ2 × (Rh⊗Rz) 2-19 

而 A⊗B 表示 A 和 B 的克羅內克積 (Kronecker product)： 

 A⊗ B = [

a11B a12B
a21B a22B

⋯ a1nB
⋯ a2nB

⋮ ⋮
am1B am2B

⋱ ⋮
⋯ amnB

] 2-20 

Rh為水平方向的關聯性矩陣，ns為鑽探孔個數。 

     
   

 

h 1,2 1,2 h 1,3 1,3 h 1,ns 1,ns

h 2,3 2,3 h 2,ns 2,ns

h

h ns 1,ns ns 1,ns

1 x , y x , y x , y

1 x , y x , y

1

x , y

SYM. 1

 

         
 

      
 
 
   
 
  

R
   2-21 

Rz為垂直方向的關聯性矩陣，n 為垂直方向取樣個數。 

 

     
   

 

z 1,2 z 1,3 z 1,n

z 2,3 z 2,n

z

z n 1,n

1 z z z

1 z z

1

z

SYM. 1



      
 

    
 
 
  
 
  

R
 

2-22 

三維空間的趨勢函數可以透過將三個不同方向的基函數相乘來表示： 

 

t(x, y, z) =∑∑∑wijkϕx,i(x)ϕy,j(y)ϕz,k(z)

mz

k=0

my

j=0

mx

i=0

 

=∑∑wijϕh,i(x, y)ϕz,j(z)

mz

j=0

mh

i=0

 

2-23 
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(ϕx, ϕy, ϕz) 分別是 x, y, z 方向一維度的基函數，(mx, my, mz) 分別為基函數的個

數，wijk跟 wij為基函數所對應到的權重 (weight)，ϕh(x,y) = ϕxϕy為一個二維的基函

數，mh是 ϕh的個數。一個三維的趨勢函數可以被表達成： 

 t = Φ × w = (Φh⊗Φz) × w 2-24 

Φh =

[
 
 
 
ϕh,0(xCPT1, yCPT1) ϕh,1(xCPT1, yCPT1)

ϕh,0(xCPT2, yCPT2) ϕh,1(xCPT2, yCPT2)

⋯ ϕh,mh(xCPT1, yCPT1)

⋯ ϕh,mh(xCPT2, yCPT2)

⋮ ⋮
ϕh,0(xCPTns, yCPTns) ϕh,1(xCPTns, yCPTns)

⋮
⋯ ϕh,mh(xCPTns, yCPTns)]

 
 
 

 2-25 

 Φz =

[
 
 
 
ϕz,0(z1) ϕz,1(z1)

ϕz,0(z2) ϕz,1(z2)

⋯ ϕz,mz(z1)

⋯ ϕz,mz(z2)

⋮ ⋮
ϕz,0(zn) ϕz,1(zn)

⋮
⋯ ϕz,mz(zn)]

 
 
 

 2-26 

由 Φh 跟 Φz所組合出來空間中的趨勢函數如圖 2-10，圖中以 radial basis 為例，

透過不同的權重 w 搭配 mxmy種 Φh 與 mz 個 Φz的組合，就能模擬出空間中的趨勢

函數。 

 

圖 2-10 空間中的趨勢函數示意圖 
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2.6 Sparse Bayesian Learning (SBL) 

在這類趨勢函數研究中的一個重要的問題就是：到底哪些基函數是真正需要的。

以圖 2-11為例，黑色實線為真正的趨勢函數 t(z) = 500 + 200z，若以前面提到的 shefted 

Legendre polynomial 為基函數，趨勢函數可以表示成 t(z) = 600ϕ0(z) + 51.74ϕ1(z)，所

以 w0 = 600, w1 = 51.74, w2 = … wm = 0，只有常數項跟一次項是這個趨勢函數所需要

的，但如果以 m = 20，也就是一個 20 次式來擬合趨勢函數，從圖 2-12 左圖中灰線

可以發現他更傾向模擬空間變異性的部分，這種情況被稱為過擬合 (overfit)；相反

的如果以 m = 0，也就是常數來模擬趨勢函數，從圖 2-12 右圖的灰線可以發現常數

並不足以完整表現出真實趨勢，而這種情況則被稱為欠擬合 (poor-fit)。如果能選到

一組合適的基函數就可以同時避免過擬合或欠擬合的發生。 

 

圖 2-11 實線為 t(z) = 500 + 200z；虛線為空間分布資料 (Ching et al., 2017) 
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圖 2-12 趨勢擬合結果 (Ching et al., 2017) 

從上面的例子可以看出是否需要第 k項的基函數 ϕk來擬合趨勢是由對應的權重

wk所決定，當 wk等於 0 時表示擬合趨勢不需要 ϕk這項基函數。但如果直接對權重

w 進行取樣容易造成過擬合的問題，MacKay (1992) 提出以權重 wk的標準差 sk做為

判斷 ϕk 是否需要的標準，進一步增加 w 的變異性。在本研究中假設每一項權重 wk

的分布為平均值為 0 的常態分布： 

 f(w𝑘|M) = 𝑁(0, sk
2) 2-27 

M = {ϕ0, ϕ1, …,ϕm}。當 sk很小時，wk的分布會很窄，就有很高的機率是 0，也

就是說 ϕk 不被需要；相反的，當 sk 越大，wk 為 0 的機率大幅減小，ϕk 需要的機率

也就越大。Tipping (2001) 進一步提出一個特殊的 sk的先驗分布 (prior PDF)，f(sk)為

inverse gamma 分布： 

 f(sk|M) = IG(α, β) 2-28 

α為形狀因子，β為尺度因子。當α與β約等於0時 f(sk) ∝ 1/sk。這個PDF有很高

的機率使sk = 0，所以除非有很強的證據表示ϕk是需要的，不然sk都會趨近於0，這個

以f(sk) ∝ 1/sk做為先驗分布的方法被稱為sparse Bayesian learning (SBL)。在SBL的

架構下一開始可以選擇較多項的基函數，不需要的基函數項可以透過貝氏定理自動

的去除，透過這個方法就能選擇真正需要的基函數。 
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2.7 馬可夫鏈蒙地卡羅法 

在一個大地工程現地調查中往往無法取得大量有用的資訊，只能對相對稀少的

資料進行分析，然而該如何利用少量的訊息推測所關心的議題的全貌就成了大地工

程中十分重要的研究課題。馬可夫鏈蒙地卡羅法 (Markov chain Monte Carlo, MCMC) 

是一套廣義的方法論，其中 Metropolis-Hastings algorithm (MH; Metroplis et al., 1953; 

Hastings 1970; Beck and Au, 2002) 為最常被使用的演算法，因為 MH 操作相對其他

方法容易，且不需而外計算證據機率 (evidence) 就能進行估計，透過這個方法能在

即使已知資料量較少的情況下，依然可以從所關心的機率密度分布函數取得樣本，

其估計樣本的步驟簡述如下： 

1. 決定初始值 θ0。 

2. 從提議分布函數 (proposal distribution) 取出候選樣本 θC，並計算 r： 

 r =
f(x1, x2, ⋯ , xn|θc)

f(x1, x2, ⋯ , xn|θ0)
 2-29 

其中提議分布函數可依據不同情況由使用者自行定義。 

3. θC有 min(1,r)的機率被接受成為 θ1，若 θc被拒絕，則 θ1=θ0。 

4. 重複步驟 2 到 3，直到取到足夠的樣本數量。 
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步驟 2 中的提議分布較常採用聯合常態分布，其平均值向量為前一階段的樣本

點，共變異數矩陣 Σp為： 

 Σ𝑝 =

[
 
 
 
𝜎1
2 0

𝜎2
2

0 0
0 0

𝑠𝑦𝑚.
⋱ 0

𝜎𝑚
2 ]
 
 
 

 2-30 

其中 σ 值決定了現有樣本轉移至候選樣本的步階大小，當 σ 很大時，候選樣本

與現有樣本會有較大的差異，拒絕率就會變得很高使馬可夫鏈幾乎原地不動，相反

的，當 σ 很小時候選樣本與現有樣本的差異極小，雖然可以降低了拒絕率，但卻造

成候選樣本與現有樣本的相關性過高，而在面對不同的取樣對象時，又會有各自較

適合的 σ 值，且若取樣對象是極度峰態 (very peak)、參數之間有高相關性或多模態 

(multi-model) 的事後機率分布時，提議分布的選擇將變得更加棘手，該如何選擇一

個合適的提議分布就是 MH 常見的使用問題。 

除了提議分布選擇的問題外，MH 還有 burn-in period 以及收斂性的問題，burn-

in period 是從初始狀態到穩態的過程中會有一段不屬於目標機率分布樣本的區段，

由於此區段的樣本與目標樣本相關信極低，所以需要剔除，至於要剔除多少樣本也

都是由使用者自行決定。而要有多少馬可夫鏈樣本才足以表達目標樣本的問題則為

收斂性的問題，由於馬可夫鏈相鄰的樣本相關性往往較高，獨立樣本數較少，在樣

本數較少時難以確定這樣樣本是有有足夠的代表性。 
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2.8 漸進式馬可夫鏈蒙地卡羅法 

為了改善 MCMC 的問題，Ching and Chen (2007)在 MCMC 的架構下提出了改

良的方法：漸進式馬可夫鏈蒙地卡羅法  (transitional Markov chain Monte Carlo, 

TMCMC)。其概念為建立一系列漸變的機率密度分布，使事前機率分布逐漸轉為事

後機率分布，即： 

 fj(θ) ∝ f(θ) ∙ f(Q|θ)
pj   j = 0,⋯ ,m  0 = p0 < p1 < ⋯ < pm = 1 2-31 

其中 j 為漸變過程階段編號。 

從上式可以知道當 pj = p0時，fj(θ)為事前機率分布，而 pj = pm時，fj(θ)為事後機

率分布。TMCMC 所建立這一系列的漸變機率分布，可以提高了取出代表性樣本的

機率，解決 MH 因為事前機率分布變化到事後機率分布過於劇烈所導致取不到代表

性樣本的困擾。 

每一個階段中，將會依照不同階段中計算所得之權重進行重複取樣。若在階段

j 從 fj(θ)取出的樣本為{θj,1, θj,2, …, θj,N}，N 為每一階段的樣本數，則可以在階段(j+1)

從 fj+1(θ)取出樣本{θj+1,1, θj+1,2, …, θj+1,N}，依照{θj,1, θj,2, …, θj,N}估算權重： 

 j 1 jp p

j,k j,kw f(Q | θ ) ,  k=1,...,N 
  2-32 

如前述所提，漸變的機率分布可以解決 MH 從事前機率分布變化到事後機率分

布過於劇烈的問題，指數 pj 的選定就會有很重要的影響。本研究中使用的方式為：

每一階段的 pj應使該階段之權重的變異係數 (covariance of variance, c.o.v.) 為 1，也

就是說： 

   j

j

w

j

w

c.o.v. w 100%


 


 2-33 
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至於提議分布仍採用聯合常態分布函數，但是在 TMCMC 中，共變異數矩陣會

隨著漸變階段而有所變化，這裡將不同階段的共變異數矩陣記為 Σj，這樣可以避免

樣本過度重複，且不需要使用者自行調整，Σj的計算如式(2-32)： 

 
T

N N N
2

j,k j,n j,nj,k j,n j,k j,nj
k 1 n 1 n 1

w w w
  

   
            

   
     2-34 

其中 β 稱為尺度因子 (scaling factor)，為一預先設定的數值，其作用為降低候選樣

本的拒絕率。而在本研究中會採用王俊翔 (民 105) 的研究取 β=0.5。 

TMCMC 在取樣的過程中，會同時估計模型對現有資料的證據機率 (evidence, 

f(Q))，而為了避免計算上的數值問題，將會計算證據機率的自然對數值： 

  
m 1 N

j,k

j 0 k 1

1
ln f ln w

N



 

 
    

 
 Q  2-35 
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TMCMC 使用流程： 

1. 令 p0 = 0，f0(θ) = f(θ)，並用蒙地卡羅法 (Monte Carlo simulation) 對事前機率分

布取出樣本。 

2. 從 j=1 開始，以上一階段之權重的變異係數為 100%為目標求解 pj後，重新計算

權重、提議分布以及過渡的證據機率元素： 

   j 1 jp p

j,k j,kw f | ,   k 1,..., N
 

  Q  2-36 

 
T

N N N
2

j,k j,n j,nj,k j,n j,k j,nj
k 1 n 1 n 1

w w w
  

   
            

   
     2-37 

 
N

j j,k

k 1

1
S w

N 

   2-38 

3. 以 wj,k 為權重進行重要性重複取樣 (importance resampling)，以 Σj進行 MH 對該

階段的 fj(θ)進行取樣。 

4. 重複步驟 2 到 3，直到 pj=1。 

5. 將過程中每一階段的所有樣本權重的平均值取對數後再求其和，即可得到證據

機率對數值： 

    
m 1

j

j 0

ln f ln S




   Q  2-39 

最後一階段的樣本即為 TMCMC 對事後機率分布所取出的樣本。 
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第三章 研究方法 

本研究以已知的參數分別模擬空間中的趨勢項 t 以及平均值為零的震盪項，趨

勢項 t 的模擬會先假設已知基函數以及其對應的權重 w，例如：以 shifted Legendred 

polynomial 的第 0 項與第 1 項，權重分別為 100 跟 50。這樣可以模擬出一條一次線

性的方程式。零均震盪項的模擬則先假設已知的隨機場參數來進行模擬，最後將兩

項相加即可得到一個趨勢接近一次函數的空間分布資料。 

第一步先透過 SBL 的方法選出所需要的基函數，並觀察所選擇的基函數是否跟

一開始假設的相同，接下來將被選到的基函數帶入第二步的貝氏分析，以 TMCMC

估計隨機場的參數樣本，並檢視估計出來的參數樣本是否包含一開始假設的真實參

數。 

本章節將詳細說明資料如何模擬，Step1 如何利用 SBL 來決定基函數並說明三

維空間的計算問題，Step2 的 TMCMC 取樣，以及不同型態的基函數的影響，最後

如何利用 step2 取得的趨勢與參數建立隨機場模型 (3.5)。  
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3.1 資料模擬 

此章節將說明隨機場參數關聯性長度 SOF (δ) 以及平滑性參數 ν 對空間資料的

影響，以及該如何模擬三維的空間分布資料。 

3.1.1 隨機場參數對模擬資料的影響 

本研究模擬的深度範圍從 0 公尺至 10 公尺，資料點間距為 0.1 公尺。首先針對

SOF 進行探討，先固定隨機場參數 (μ, σ) = (0, 50)，並採用 SExp 的自相關函數模型，

在固定同一組隨機變數的情況下，SOF 分別為 0.1、1 和 10 公尺時所模擬出的 ε如

圖 3-1，從圖中可以看出當 SOF 小時，震盪的頻率越高，SOF 大時震盪的頻率則越

低。因此，可看出關聯性長度對資料分布的影響是資料點的震盪頻率。而在大地工

程中，當 SOF 越大表示土壤越均質。 

 

圖 3-1 (μ, σ) = (0, 50) 且 ACF 為 SExp 模型在不同 δ下之模擬 ε (左) δ = 0.1 公尺；

(中) δ = 1 公尺；(右) δ = 5 公尺 
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在 ACF 的選擇方面，本研究採用帶有平滑性參數 ν 的 Whittle-Matérn 模型，ν

可以反應空間變異性的粗糙度，ν 值小時，隨機場資料在小範圍內也會有產生局部

的跳動，資料曲線較為粗糙，ν 值大則隨機場資料較為平滑，如圖 3-2。ν 對於破壞

機率的影響在 2.3 節有詳細的說明。 

 

圖 3-2 (μ, σ) = (0, 50) 且 SOF 為 1 時不同 ν 之模擬 ε (左) ν = 0.5；(中) ν = 1.5；(右) 

ν = 20 
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3.1.2 三維空間分布資料之模擬 

(xCPTi, yCPTi) 表示第 i 個 CPT 的水平座標，假設第 i 個 CPT 中有 ni 個資料點，

而這 ni 個資料點的 x 座標與 y 座標完全相同，但 z 座標是不同的。假設 dCPTi 為第 i

個 CPT 所觀察到的資料：dCPTi = [d(xCPTi,yCPTi,zCPTi,1)…d(xCPTi, yCPTi,zCPTi,ni)]
T，上標 T

表示矩陣的轉置  (transpose)。當有 ns 個 CPT 鑽探時， x 座標可以寫成 

(xCPT1,xCPT2,…,xCPTns)，y 座標可以寫成  (yCPT1,yCPT2,…,yCPTns)，z 座標可以寫成 

(zCPT1,zCPT2,…,zCPTns)，d 則可以寫成 (dCPT1,dCPT2,…,dCPTns)，習慣上將觀測到的資料 d

分成趨勢項 t 和空間變異項： 

 d = t +  3-1 

第 i 孔的的空間變異性資料可以寫成 i = [(xCPTi,yCPTi,zCPTi,1)…(xCPTi, 

yCPTi,zCPTi,ni)]
T，則 = (1

T 2
T…ns

T)。假設空間變異項為二階的高斯穩態隨機場，標

準差為 σ，水平和垂直向 SOF 分別為 δh和 δz。則可以表示成： 

  = σ ∙ 𝐋 ∙ 𝐔 3-2 

其中 U 為獨立高斯隨機變數向量，L 為關聯性矩陣 R 的 Cholesky decomposition

矩陣 (R=L×LT)，在三維空間中 R = Rh⊗Rz，根據克羅內克積 (Kronecker product) 

的運算規則 L = Lh⊗Lz，其中 Lh及 Lz分別是 Rh及 Rz的 Cholesky decomposition，

Rh為水平方向的關聯性矩陣。 

     
   

 

h 1,2 1,2 h 1,3 1,3 h 1,ns 1,ns

h 2,3 2,3 h 2,ns 2,ns

h

h ns 1,ns ns 1,ns

1 x , y x , y x , y

1 x , y x , y

1

x , y

SYM. 1

 

         
 

      
 
 
   
 
  

R
 

3-3 

Rz為垂直方向的關聯性矩陣。 
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     
   

 

z 1,2 z 1,3 z 1,n

z 2,3 z 2,n

z

z n 1,n

1 z z z

1 z z

1

z

SYM. 1



      
 

    
 
 
  
 
  

R
 

3-4 

水平方向與垂直方向的 ACF 則都選用 W-M 模型： 

 ρz(Δz) =
21−𝜈v

Γ( 𝜈v )
∙ (
√2𝜈v ∙ |∆z|

sv
)

𝜈v

K𝜈 (
√2𝜈v ∙ |Δz|

sv
) 3-5 

 

ρh(Δh) =
21−𝜈h

Γ( 𝜈h )
∙ (
√2𝜈h ∙ |∆h|

sh
)

𝜈h

K𝜈 (
√2𝜈h ∙ |Δh|

sh
) 3-6 

尺度參數 sv與 sh為： 

 sv =
δv
c(𝜈v)

 3-7 

 sh =
δh
c(𝜈h)

 3-8 

c(ν)之計算如下 (Hristopulos and Žukovič, 2011)： 

 c(𝜈) =
√2𝜋 ∙ Γ(𝜈 + 0.5)

√𝜈 ∙ Γ(𝜈)
 3-9 

趨勢函數的部分由基函數組成： 

 t(𝑥, 𝑦, 𝑧) =∑wkϕk(x, y, z)

m

k=0

 3-10 

其中 ϕk(x,y,z)為第 k個BF，wk是第 k項對應的權重，M為整個BFs的集合{ϕ0,ϕ1…ϕm}，

當 m 夠大時趨勢函數就能模擬多種不同的趨勢形式。 

式 3-10 可以表示成： 

 t = Φ × w = (Φh⊗Φz) × w 3-11 

其中 w = (w0, w1,…, wm)T，Φ 是一個 [N×(m+1)] 的矩陣： 



doi:10.6342/NTU201902309

 

34 

 

 Φ = [

ϕ0(𝑥1, 𝑦1, 𝑧1) ϕ1(𝑥1, 𝑦1, 𝑧1)
ϕ0(𝑥2, 𝑦2, 𝑧2) ϕ1(𝑥2, 𝑦2, 𝑧2)

⋯ ϕ𝑚(𝑥1, 𝑦1, 𝑧1)
⋯ ϕ𝑚(𝑥2, 𝑦2, 𝑧2)

⋮ ⋮
ϕ0(𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁) ϕ1(𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁)

⋮
⋯ ϕ𝑚(𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁))

] 3-12 

並進一步將每一項基函數平方的平均正規化到 1，使基函數的標準差 sk 與整個樣本

的標準差 σ 的影響相同，以利後續步驟進行比較。 

三維空間分布資料就可以寫成： 

 d = Φ×w +  3-13 

以實際數字為例，假設有四孔深度 (D) 為 10 公尺，垂直資料點間距 (Δz) 為

0.1 公尺的 CPT 資料，鑽孔座標分別為 (x1, y1) = (0, 0)、(x2, y2) = (1, 4)、(x3, y3) = (3, 

0)、(x4, y4) = (5, 5)，假設水平及垂直的 ACF 都採用 W-M 模型，設定其隨機場參數 

(σ, δh, δz, νv, νh) = (50, 10m, 1m, 0.5, 1.5)，趨勢函數以 shifted Legendre polynomial 的

第 0 項 ϕ0與第 1 項 ϕ1作為基函數，權重 w 分別為 100 以及 200，故趨勢 t 可以表示

成： 

 t = 100 × ϕ0 + 200 × ϕ1 3-14 

加上空間變異性後即為模擬的完整資料如圖 3-3 所示 

 

圖 3-3 虛線為趨勢函數，實線為空間分布資料  
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3.2 Step1-選擇真正需要的基函數(BFs) 

關於該如何選擇真正需要的基函數一直都是個困難的問題，因為趨勢本身就藏

在空間變異性中，以 shifted Legendre polynomials 為例，當真正的趨勢是一個線性函

數時，通常只需要較低階的基函數來組合就足以表達，如果選擇了很多項的基函數，

空間變異性就會被誤認為是趨勢，造成過擬合 (overfit)；然而，若不經選擇就放棄

較高階的基函數時，如果真實的趨勢是一個較複雜的形式時，少數的基函數將不足

以擬合趨勢，趨勢則會併入空間變異性當中，造成欠擬合 (poor-fit)。 

Bayesian model class selection 是其中一種可以選擇基函數的方法，Mj是基函數

的子集合，例如：M1 = {ϕ0}、M2 = {ϕ0, ϕ2}、M3 = {ϕ1, ϕ3, ϕ6}等等，總共會有 2m+1 種

組合，透過計算證據 (evidence)  f(Y|Mj) 就可以知道哪個集合最為合適： 

 

𝑓(Y|𝑀𝑗) = ∫𝑓(Y|W, 𝜎, 𝛿v, 𝛿h, 𝜈v, 𝜈v, 𝑀𝑗)𝑓(W|𝑀𝑗)𝑓(ln𝜎|𝑀𝑗)

∙ 𝑓(ln𝛿v|𝑀𝑗)𝑓(ln𝛿h|𝑀𝑗)𝑓(ln𝜈v|𝑀𝑗)𝑓(ln𝜈h|𝑀𝑗)

∙ 𝑑W𝑑(ln𝜎)𝑑(ln𝛿v)𝑑(ln𝛿h)𝑑(ln𝜈v)𝑑(ln𝜈v) 

3-15 

但是以這個方法計算各個 f(Y|Mj)需要大量的運算量，而且種共有 2m+1個子集合的情

況需要計算，在本研究可行性不大。 

3.2.1 最大化條件證據 f(Y|S, σ, δ, ν, M) 

本研究使用的方法為 MacKay (1992) 提出的一個新的想法，第 k 項的基函數 ϕk

是否需要是由第 k 項的權重 wk的標準差 sk來決定，而 wk的先驗機率密度函數 (prior 

PDF) 假設為一個平均值為 0，標準差為 sk的常態分布： 

 f(wk|sk) ~ N(0, sk
2) 3-16 
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當 sk = 0 時，wk = 0 的機率就是 1，也就是說所對應的 ϕk是不需要的。在 MacKay 的

這個架構下 S = (s0, s1,s2,…,sm) 是不確定的值，且不去考慮 (M1, M2, M3,…) 等組合，

而是直接考慮整個集合 M = {ϕ1, ϕ2,…,ϕm}，並且最佳化 (S, σ, δv, δh, νv, νh) 這些參

數，使條件證據 f(Y|S, σ, δv, δh, νv, νh, M)最大： 

𝑓(Y|S, σ, δv, δh, νv, νh, M) = ∫𝑓(Y,W|S, σ, δv, δh, νv, νh, M) ∙ 𝑑W 

= ∫𝑓(Y|W, σ, δv, δh, νv, νh, M)𝑓(W|S,M) ∙ 𝑑W 

3-17 

使條件證據 f(Y|S, σ, δv, δh, νv, νh, M)最大化等同於使概似函數  (likelihood 

function) f(Y|W, σ, δv, δh, νv, νh) 最大化： 

𝑓(Y|W, σ, δv, δh, νv, νh) 

=
1

√2𝜋
𝑛 ×

1

√|Σ|
× exp [−

1

2
(Y − ϕ ×W)TΣ−1(Y − ϕ ×W)] 

3-18 

但是現在的目標是調整標準差 S 而不是權重 W，如果直接調整權重的話會產生

嚴重的過擬合問題，然而，前面所提到的最大化模型證據 f(Y|Mj)的方法固然可以解

決過擬合的問題，但所需要的運算量太過龐大，最大化條件證據 f(Y|S, σ, δv, δh, νv, 

νh, M)則為一個很不錯的折衷辦法，條件證據 f(Y|S, σ, δv, δh, νv, νh, M)可以寫成： 

𝑓(Y|S, σ, δv, δh, νv, νh, M) 

=
1

√2𝜋
𝑛 ×

1

√|ϕ × Ω × ϕT + Σ|
× exp [−

1

2
YT(ϕ × Ω × ϕT + Σ)−1Y] 

3-19 

Ω 是 W 的共變異數矩陣： 

 Ω =

[
 
 
 
𝑠0
2 0

0 𝑠1
2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝑠𝑚

2 ]
 
 
 
 3-20 
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整個最佳化的過程共有(m+1)+4 個不同參數要解，其中 S = (s0
2, s1

2,…, sm
2) 和 σ

有解析解 (analytical solutions) ，(δv, δh, νv, νh) 則需透過最佳化 f(Y|S, σ, δv, δh, νv, νh, 

M)求得數值解 (numerical solutions)，若選擇的趨勢函數形式為 2.4 節中提到的高斯

分布形式的 radial basis function 時，基函數的標準差 σr也會影響基函數的形式，所

以本研究將 radial basis function 的標準差定義為 σr = SOF×dz，SOF 為現地資料的關

聯行長度，需自行進行合理的假設，而 dz 則需一起加入 step1 步驟 4 的最佳化分析

當中，當基函數標準差較小時就能擬合局部的趨勢，如圖 3-4(右)，相反的，當基函

數標準差較大則擬合的趨勢較為平緩，如圖 3-4(左)。 

 

圖 3-4 (左) Radial basis function 基函數標準差較大；(右) Radial basis function 基函

數標準差較小 

Tipping (2001) 提出以 inverse gamma 分布為 S 的先驗分布，有效使大部分的 sk 

= 0，他稱此架構為 sparse Bayesian learning (SBL)，並且推導了整個選擇基函數的過

程，但他假設空間中不存在關聯性，然而這個假設對於大地工程問題並不合理，Ching 

and Phoon (2017) 進一步推導具有空間關聯性的使用流程，詳細推導過程請參考附

錄 A，在整個步驟中，C 和 μ 需要不斷的更新： 

 C = (Ω−1 +ϕT × Σ−1 × ϕ)−1 3-21 

 μ = C × ϕT × Σ−1 × Y 3-22 

整個最佳化 f(Y|S, σ, δv, δh, νv, νh, M)的流程如下： 

1. 假設一組 (S, σ, δv, δh, νv, νh) 的初始值並計算 C 跟 μ。 
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2. 更新 (new sk
2) = (old sk

2)k
2/[(old sk

2) – Ckk]，從 k = 0, 1, 2,…,m 重複 m+1 次，

為了避免數值問題，Ω-1的下界設定為 10-10，更新完 S 後再重新計算 C 和 μ。 

3. 更 新  (new σ2) = (old σ2) × [(Y − Φ × μ)TΣ−1(Y − Φ × μ)]/[N − trace(C ×

ΦT × Σ−1 × Φ)]，其中 trace(.)為矩陣的對角線總和，N = n×ns，更新完 σ2 後再

次更新 C 和 μ。 

4. 透過最大化 f(Y|S, σ, δv, δh, νv, νh, M)找出(new δv), (new δh), (new νv), (new νh)，為

了避免數值問題，須設定上下界： 

 lnδ𝑣 ∈ [ln(0.01) , ln(10)]  

 lnδℎ ∈ [ln(0.1) , ln(100)]  

 lnν𝑣 ∈ [ln(0.1) , ln(10)]  

 lnνℎ ∈ [ln(0.1) , ln(10)]  

若趨勢函數形式為高斯分布形式的 radial basis function 時，須再加入垂直方向

基函數的標準差與水平方向基函數的標準差 σr,z = SOFz×dz 及 σr,h = SOFh×dh，

SOFz與 SOFh需自行假設，dz 和 dh 的上下界分別為： 

 ln (dz) ∈ [ln(1) , ln(10)]  

 ln (dh) ∈ [ln(1) , ln(10)]  

完成後再重新計算 C 和 μ，而為了避免數值問題，習慣上會取自然對數，求

ln[f(Y|S, σ, δv, δh, νv, νh, M)]的最大值： 

ln[f(Y|S, σ, δv, δh, νv, νh, M)] 

= −
n

2
ln(2π) −

1

2
ln(|Σ + Φ × Ω ×ΦT|) −

1

2
YT(Φ × Ω × ΦT + Σ)−1Y] 

3-23 

5. 重複步驟 2 ~ 4 直到收斂，此時的參數為 (S*, σ*, δv
*, δh

*, νv
*, νh

*)。 

6. 根據 Ching and Phoon (2017)的研究，當 sk
* < 50%*時表示對應的 ϕk是不需要

的，所以將其移除。 

7. 重複步驟 1 ~ 6 直到沒有 sk
* < 50%*時結束。 
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3.2.2 三維的計算問題與新的公式推導 

進入三維問題時前面所提到的演算法將會遇到運算量過於龐大的問題，在演算

法中，Σ 是一個 (N×N) = (nsnnsn) 的矩陣，這裡假設有一個現地有 20 孔的 CPT 鑽

孔，所以 ns = 20，每個鑽孔有 500 筆 qt資料，所以 n = 500，而 Rh是一個 (20×20) 

的矩陣，Rz是一個 (500×500) 的矩陣，但是 Σ 卻變成一個 (10,000×10,000) 的大矩

陣，而這樣的大矩陣在進行運算時需要花費非常多電腦的運算資源，在演算法中多

次計算 Σ 的反矩陣更是費時。除此之外，Φ 也是一個 [N×(m+1)] = [nsn×(mh+1)(mz+1)]

的大矩陣，跟前面一樣假設 ns = 20 且 n = 500，x 方向跟 y 方向個選 10 個基函數，

z 方向則選 20 個基函數，也就是說 (mx, my, mz) = (10, 10, 20)，此時的 Φ 是會是一

個 (10,000×2,541) 的大矩陣，但 Φz 和 Φh 分別只是 (20×121) 和 (500×21) 的小矩

陣。 

在本研究中利用克羅內克積 (Kronecker product) 以及 Cholesky decomposition 

的運算規則，將原本的大矩陣 Φ 及 Σ 巧妙地分解成小矩陣 Φh, Φz及 Rh, Rz，並重新

推導了新的演算法，詳細過程見附錄 A，C 和 μ 仍須不斷的更新： 

 C = [Ω−1 + σ−2(Φh
TRh

−1Φh) ⊗ (Φz
TRz

−1Φz)]
−1

 3-24 

 μ = σ−2C × vec[Φz
TRz

−1 ×mat(Y) × Rh
−1Φh] 3-25 

其中 mat(Y)是一個由向量 Y1, Y2,…,Yns組合成的 (n×ns) 矩陣，vec(Ap×q)是將 A 矩陣

變成一個 (pq×1) 的向量。 

更新後的計算流程如下： 

1. 假設一組 (S, σ, δv, δh, νv, νh) 的初始值並計算 C 跟 μ。 

2. 更新 (new sk
2) = (old sk

2)k
2/[(old sk

2) – Ckk]，從 k = 0, 1, 2,…,m 重複 m+1 次，

為了避免數值問題，Ω-1的下界設定為 10-10，更新完 S 後再重新計算 C 和 μ。 

3. 更新  
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(new σ2) = trace(ΛTRz
-1ΛRh

-1)/[N-(old σ-2)×trace(C×[(Φh
TRh

-1Φh)⊗(Φz
TRz

-1Φz)])] 

其中 Λ = mat(Y)-Φz×mat(μ)×Φh
T，mat(μ)是一個 (n×ns) 的矩陣。 

4. 透過最大化 ln[f(Y|S, σ, δv, δh, νv, νh, M)]找出(new δv), (new δh), (new νv), (new νh)，

若趨勢函數形式為高斯分布形式的 radial basis function 時，須再加入垂直方向

基函數的標準差與水平方向基函數的標準差，上下界的假設與 3.2.1 節相同，完

成後再重新計算 C 和 μ。 

   ln[f(Y|S, σ, δv, δh, νv, νh, M)] 

= −
N

2
ln(2π) − n∑ln(Lh,ii)

ns

i=1

− ns∑ln(Lz,ii)

n

i=1

 

−(N −m − 1) × ln(σ) − ∑ ln(Lii)

m+1

i=1

−
1

2σ2
(α − βTβ) 

3-26 

其中 Lz與 Lh分別為 Rz及 Rh的 Cholesky decomposition，也就是說 LhLh
T = Rh，

LzLz
T = Rz，Lh,ii 與 Lz,ii分別是 Lh與 Lz主對角線的第 i 個值。 

 α = trace[mat(Y)T × Rz
−1 ×mat(Y) × Rh

−1] 3-27 

 β = L−1 × Ω1/2 × vec[Φz
TRz

−1mat(Y)Rz
−1Φh] 3-28 

Ω1/2 為 (s0, s1,…,sm) 的主對角線矩陣，L 是式 3-29 的 Cholesky decomposition： 

 LLT = σ2I + Ω1/2 × [(Φh
TRh

−1Φh) ⊗ (Φz
TRz

−1Φz)] × Ω
1/2 3-29 

其中 I 是單位矩陣。 

5. 重複步驟 2 ~ 4 直到收斂，此時的參數為(S*, σ*, δv
*, δh

*, νv
*, νh

*)。 

6. 根據 Ching and Phoon (2017)的研究，當 sk
* > 50%*時表示對應的 ϕk是不需要

的，所以將其移除。 

7. 重複步驟 1 ~ 6 直到沒有 sk
* > 50%*時結束。 
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3.2.3 模擬資料辨識結果 

將 3.1.2 節模擬的四孔 CPT 資料進行 step1 的分析後可以得到以下結果。經過

一次步驟 1 到步驟 6 的分析後，估計出的標準差 σ 為 33.938，篩選後所剩下的基函

數為第 0 項、第 1 項及第 5 項，所對應到的權重分別為 (91.193, 215.970, 18.299)，

趨勢函數可寫成： 

 t = 91.193 × ϕ0 + 215.970 × ϕ1 + 18.299 × ϕ5 3-30 

此階段的趨勢函數跟一開始假設的 t = 100×ϕ0+200×ϕ1並不相同，之所以會造成

這個情況是因為在此階段估計的標準差 (σ = 33.938) 小於真正的標準差 (σ = 50)，

在第一階段估計的標準差會偏小的原因是因為此階段是以完整的基函數 Φ 進行模

擬，直到所有參數均收斂後再以上述步驟 6 將權重太小的基函數移除，因此，此階

段的標準差 σ 會被其他權重較小的基函數影響，導致第一階段的標準差偏小，部分

的變異性被判斷成趨勢，若將此階段的趨勢函數視為真正的趨勢就會造成前面提到

的過擬合， 故需重複步驟 1 ~ 6 直到沒有 sk
* < 50%*時結束。此案例最後所估計

出的標準差 σ 為 50.26，篩選後剩下的基函數為的 0 項及第 1 項，對應的權重分別

為 87.182 及 209.21： 

 t = 87.182 × ϕ0 + 209.21 × ϕ1 3-31 

由此方法可以得知模擬此案例趨勢項所需要的基函數只有兩項，而 ϕ0 及 ϕ1 分別是

由 (ϕh,0, ϕz,0) 與 (ϕh,0, ϕz,1) 組合而成，所以只有這兩個基函數需要被保留下來，進

入 step2 的貝氏分析當中。 

  



doi:10.6342/NTU201902309

 

42 

 

3.3 Step2-貝氏分析 (Bayesian analysis) 

在經過 step1 的分析後，基函數集合由 M 變成 M’，前一小節所提到的 Φ 與 Ω

也都由 Φ’和 Ω’取代，以前面提到的模擬案例為例，Φ’ = [ϕ0, ϕ1]，Ω’為由 (s0
2, s1

2) 

組成的主對角線矩陣，非主對角線為 0。在此步驟將透過貝氏分析，以 Ching and Chen 

(2007) 所提出的 TMCMC 來對 (σ, δv, δh, νv, νh, W) 進行取樣，在 TMCMC 的架構

下，不用額外的運算就可以獲得模型證據 (model evidence) f(Y|M’)，從這個模型證

據可以判斷哪種基函數較適合擬合趨勢，或哪種自相關聯性模型較為合適。 

在這個階段，sk 不再是一個變數，而是將其固定在一個很大的值，也就是說在

沒有新證據之前，權重 w 的標準差很大，這使 wk 的先驗分布為一個非常平坦的分

布，若直接以 step1 所得到的 sk 直接帶入此階段的分析中，在這階段的分析所得到

的 wk 會嚴重的被 step1 的結果所影響，且因為 sk 不同，與其對應的 wk 的先驗分布

就會有所不同，模型證據的估計會因此失準，基於以上原因，此階段的 sk將固定在

一個較大的值。 

要從高維度的後驗機率密度函數 (posterior PDF) f(W’, lnσ, lnδv, lnδh, lnνv, lnνh|Y, 

M’) 取樣是有挑戰性的，在本研究終將其拆成兩部分進行取樣，第一步是從函數 

f( lnσ, lnδv, lnδh, lnνv, lnνh|Y, M’)中取出 (lnσ, lnδv, lnδh, lnνv, lnνh) 的樣本，第二步依

據第一步所取得的 (σ, δv, δh, νv, νh)，透過聯合常態機率密度函數 f(W’| σ, δv, δh, νv, νh, 

Y, M’)對 W’進行取樣。 
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3.3.1 (lnσ, lnδv, lnδh, lnνv, lnνh) 的取樣 

後驗機率密度函數 f(lnσ, lnδv, lnδh, lnνv, lnνh|Y, M’)可以被寫成： 

其中 f(Y|S, σ, δv, δh, νv, νh, M)可以寫成： 

𝑓(Y|S, σ, δv, δh, νv, νh, M
′) 

=
1

√2𝜋
𝑛 ×

1

√|ϕ × Ω × ϕT + Σ|
× exp [−

1

2
YT(ϕ × Ω × ϕT + Σ)−1Y] 

3-33 

根據新版本的公式推導可寫成： 

ln[f(Y|S, σ, δv, δh, νv, νh, M
′)] 

= −
N

2
ln(2π) − n∑ln(Lh,ii)

ns

i=1

− ns∑ln(Lz,ii)

n

i=1

 

−(N −m + 1) × ln(σ) − ∑ ln(Lii)

m+1

i=1

−
1

2σ2
(α − βTβ) 

3-34 

其中 Lz與 Lh分別為 Rz及 Rh的 Cholesky decomposition，也就是說 LhLh
T = Rh，LzLz

T 

= Rz，Lh,ii 與 Lz,ii分別是 Lh與 Lz主對角線的第 i 個值。 

 α = trace[mat(Y)T × Rz
−1 ×mat(Y) × Rh

−1] 3-35 

 β = L−1 × Ω1/2 × vec[Φz
TRz

−1mat(Y)Rz
−1Φh] 3-36 

Ω1/2 為由 step1 選到的 sk 所組成的主對角線矩陣，在這個階段 sk 被固定在一個很大

的值，L 是公式 3-37 的 Cholesky decomposition： 

 LLT = σ2I + Ω1/2 × [(Φh
TRh

−1Φh) ⊗ (Φz
TRz

−1Φz)] × Ω
1/2 3-37 

透過公式 3-34 與 TMCMC 就能對 f( lnσ, lnδv, lnδh, lnνv, lnνh|Y, M’)進行取樣。 

𝑓(lnσ, lnδ𝑣, 𝑙𝑛𝛿ℎ, 𝑙𝑛𝜈𝑣, 𝑙𝑛𝜈ℎ|Y,M′)

=
𝑓(𝑌|𝜎, 𝛿𝑣, 𝛿ℎ, 𝜈𝑣, 𝜈ℎ, 𝑀′)𝑓(𝑙𝑛𝜎|𝑀′)𝑓(𝑙𝑛𝛿𝑣|𝑀′)𝑓(𝑙𝑛𝛿ℎ|𝑀′)𝑓(𝑙𝑛𝜈𝑣|𝑀′)𝑓(𝑙𝑛𝜈𝑣|𝑀′)

𝑓(𝑌|𝑀′)
 

3-32 
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3.3.2 W’的取樣 

在上一個步驟已經取得 (lnσ, lnδv, lnδh, lnνv, lnνh) 的樣本，將其取 exp 就可以得

到 (σ, δv, δh, νv, νh) 的樣本，接下來要從聯合常態分布 f(W’| σ, δv, δh, νv, νh, Y, M’)對

權重 W’進行取樣，其平均值向量與共變異數矩陣分別為： 

 C′ = [Ω′
−1
+ σ−2(Φh

′ 𝑇Rh
−1Φh

′ ) ⊗ (Φz
′ 𝑇Rz

−1Φz
′)]

−1
 3-38 

 μ′ = σ−2C′ × vec[Φz
′ 𝑇Rz

−1 ×mat(Y) × Rh
−1Φh

′ ] 3-39 

其中 (Ω’, Φh’, Φz’) 為經過 step1 篩選後留下的值，以上述模擬案例為例，Ω’為主對

角線為 exp(10) ≈ 22000 的對角線矩陣，Φh’ = {ϕh,0}，Φz’ = {ϕz,0 ϕz,1}，在本研究會以

TMCMC 重複取樣 2000 次，也就是將產生 2000 組參數 (lnσ, lnδv, lnδh, lnνv, lnνh) 與

W’樣本，最終可以模擬出 2000 組趨勢函數。 

(lnσ, lnδv, lnδh, lnνv, lnνh) 的事前機率密度函數皆為均佈分布： 

 lnσ ∈ [ln(0.1) , ln(100)]  

 lnδ𝑣 ∈ [ln(0.01) , ln(20)]  

 lnδℎ ∈ [ln(0.1) , ln(100)]  

 lnν𝑣 ∈ [ln(0.2) , ln(10)]  

 lnνℎ ∈ [ln(0.2) , ln(10)]  

取樣後結果如圖 3-5，上圖為 TMCMC 取樣的 σ 分布，紅色標記為真實的 σ 值，

下圖是 σ 與垂直方向關聯性長度 δv 的分布圖，黑色叉叉是真實的值，灰色是由

TMCMC 取樣出來的資料，紅色虛線是取樣資料的 95%信心區間，從圖中可以觀察

到真實的值有在模擬資料的 95%信心區間內。圖 3-6 為垂直方向的關聯形長度與平

滑性參數的分布，從圖 3-8(上)的 95%信心區間可以看出垂直方向的模擬表現相當不

錯。圖 3-7 為水平方向的關聯性長度與平滑性參數的分布，由於水平方向的資料較

少，所以圖 3-8(下)的資料分布較廣，但真實的資料仍然在 95%信心區間內。 
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圖 3-5 TMCMC 取樣的 σ 分布 
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圖 3-6 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 3-7 TMCMC 取樣的水平方向關聯性長度 δh與平滑性參數 νh分布 
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圖 3-8 TMCMC 取樣分布 
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將 TMCMC 模擬出的 2000 筆參數 (σ, δv, δh, νv, νh) 代入公式 3-38 及 3-39，這

樣就可以模擬出 2000 組平均值向量 μ’與共變異數矩陣 C’，而從平均值為 μ’共變異

數矩陣為 C’的聯合常態分布中就能取樣出 2000 組的 W’樣本，進一步模擬出 2000

組趨勢函數： 

 W′ = 𝑁(μ′, C′) 3-40 

圖 3-9 紅線為空間資料真實的趨勢函數，黑線為真實的空間分布資料，灰色實

線為 2000 組趨勢函數的中位數，左側的灰色虛線為 0.025 分位數 (0.025-quantile)，

右側的灰色虛線為 0.975 分位數 (0.975-quantile)，中間的範圍就是 95%信心區間，

模擬的趨勢只要能落在 95%信心區間內及表示模擬的結果良好，計算出來的模型證

據 (evidence) 為-1.524×103。 

 

圖 3-9 黑線為真實的資料；紅線為真實的趨勢函數；灰色實線為 2000 組趨勢之中

位數；灰色虛線為 95%信心區間 
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3.4 不同型態的基函數擬合成果 

Ching and Phoon (2017) 之研究中發現，利用不同型態的基函數 (basis functions, 

BFs) 對趨勢的估計會有影響，所以除了以 shifted Legendre polynomial 來進行擬合

之外，本研究進一步以 discrete cosine basis 以及 radial basis function 當作基函數，對

已知趨勢函數為 shifted Legendre polynomial 的資料進行擬合，並以 step2 中 TMCMC

所計算的證據 ln[f(Q)] 進行判斷，若此數值較大則表示所使用的基函數擬合結果較

佳，以此探討不同型態基函數對資料擬合結果的影響。 

以 discrete cosine basis 做為基函數時，取樣結果如圖 3-10 到圖 3-13，從圖中可

以發現參數取樣的結果和以 shifted Legendre polynomial 做為基函數時沒有太大的差

異，模型證據為-1.525×103。趨勢函數的部分如圖 3-18，雖然 95%信心區間不能完整

包住真正的趨勢函數，但從模擬結果來看當 discrete cosine basis 為基函數時表現也

還不錯，在 (1,4) 6 公尺到 8 公尺的資料中會發現紅線 (shifted Legendre polynomial) 

擬合的較好，而在 (5,5) 4 公尺到 6 公尺的資料中，灰線 (discrete cosine basis) 擬合

的結果就比紅線好。 

 

圖 3-10 TMCMC 取樣的 σ 分布 
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圖 3-11 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 

 

圖 3-12 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 3-13 TMCMC 取樣分布 
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以 radial basis 做為基函數時，取樣結果如圖 3-14 到圖 3-17，參數的取樣結果一

樣沒有太大的差別，模型證據為-1.527×103。趨勢函數的部分如圖 3-19，整體擬合的

結果雖然與真正的趨勢不同，但是擬合的結果也很不錯，從這三種不同基函數擬合

的結果看來很難說到底哪一種基函數較為合適，而模型證據就是一個可以客觀判斷

到底哪一種基函數較為合適的方法，而在這個模擬案例中以 shifted Legendre 

polynomial 為基函數的表現最好，因為此空間分布資料原本就是以 shifted Legendre 

polynomial 所生成的，但從其他兩種不同基函數模擬出來的結果看來，模型證據並

沒有相差太多，故在第四章的現地案例分析中將以三種基函數分別擬合現地資料，

並觀察擬合結果。 

 

圖 3-14 TMCMC 取樣的 σ 分布 

 

圖 3-15 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 3-16 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 3-17 TMCMC 取樣分布 
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圖 3-18 以 discrete cosine basis 擬合的趨勢 

 

圖 3-19 以 radial basis function 擬合的趨勢 
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3.5 Step3-建立隨機場 

此步驟利用 step2 所取得的趨勢函數 t(x, y, z) 與隨機場參數 (σ, δv, δh, νv, νh) 建

立空間的隨機場模型，透過這些參數可以估計沒有鑽孔位置的 CPT 資料。假設有 nu

個沒有進行鑽探的位置，其中第 k 個孔位水平的座標為  (xu(k)
, y

u(k))，深度為 

(zu
1,z

u
2,…,zu

p)，在這裡須注意假設的深度範圍須在已知鑽孔的深度之內，而第 k 孔

的模擬資料可以由 xu(k), yu(k), zu(k)以及未知的 CPT 資料 Yu(k)四個 (p×1) 的向量來表

示： 

𝐱u(k) = [

xu(k)

xu(k)

⋮
xu(k)

]  𝐲u(k) =

[
 
 
 
yu(k)

yu(k)

⋮
yu(k)]

 
 
 

 𝐳u(k) = [

z1
u

z2
u

⋮
zp
u

]  Yu(k) =

[
 
 
 
 Y1
u(k)

Y2
u(k)

⋮

Yp
u(k)

]
 
 
 
 

 3-41 

將 nu個未知鑽孔 (xu(1), xu(2), … , xu(nu)) 堆疊成一個 (nu×p) ×1 的向量 xu，(yu, zu, 

Yu) 也依相同的方法堆疊成一個 (nu×p) ×1 的向量，根據 step2 所擬合出的空間中趨

勢函數 t(x, y, z) 與 (σ, δv, δh, νv, νh)，可以得到不同未知鑽孔的趨勢 tu，並藉由聯合

常態分布模擬出未知鑽孔的資料 Yu：  

Yu = 𝐭u + vec[Rz
uoRz

−1mat(Y − t)Rh
−1(Rh

uo)T] + σ × vec[Lz
umat(Z)(Lh

u)T] 3-42 

其中Lh
u為Rh

uu − Rh
uoRh

−1(Rh
uo)T的 Cholesky decompositions 下三角矩陣，Lz

u為Rz
uu

的 Cholesky decompositions 下三角矩陣，Rh
uu, Rz

uu, Rh
uo以及Rz

uo的定義為公式 A-21

到 A-24，Z 是一個(p×nu) ×1 標準常態樣本的向量，而 mat(Z)為一個 (pnu) 的矩陣。 
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第四章 現地案例討論 

4.1 Hollywood, South Carolina 

此案例地點位於美國南卡羅萊納州的好萊塢  (Hollywood, South Carolina)，

Stuedlein et al. (2016) 在此進行打擊樁對減輕土壤液化之研究，試驗區全長 30 公尺，

共被分成五個區域 (Zone i)，其中 Pi-5、Pi-6、Pi-7、Pi-8、Pi-9 為有進行 CPT 試驗

之孔位，例如在區域 1 有施作 CPT 的編號分別為 P1-1、P1-6、P1-7、P1-8 和 P1-9。

圖4-1為該場址的樁分布位置以及施作圓錐貫入試驗位置 (三角形符號) 的示意圖，

總共有了 25 孔 CPT 鑽探資料，Bong and Stuedlein (2017) 曾利用此案例之 CPT 的 qt

以及錐身摩擦阻力 (sleeve friction, fs) 資料以最小平方法估計趨勢線以及進行水平

及垂直空間變異性之討論。 

圖 4-2 為該區域沿 A-A’的剖面圖 (Stuedlein et al., 2016)，根據原文作者的分析

結果，本研究所討論的範圍為地下 2.5 公尺至 11 公尺的砂土層，厚度為 8.5 公尺，

資料間距為 0.05 公尺，並一次考量 25 孔的 qt空間分布資料，資料分布如圖 4-3，再

分別以不同形態的基函數判斷整個空間中的趨勢函數，並進一步以 step2 的結果建

立隨機場模型。 

 

 

圖 4-1 案例地點之佈孔位置圖 (Stuedlein et al., 2016) 
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圖 4-2 案例地點沿 A-A’之剖面圖 (Stuedlein et al., 2016) 

 

圖 4-3 案例地點 qt 空間分布資料  
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4.1.1 Step1 分析結果 

對現地的 qt 空間分布資料分別以 shifted Legendre polynomial, discrete cosine 

basis, radial basis function 為基函數進行 step1 的分析，步驟 4 的最佳化過程為了避

免數值問題，分別假設 δv, δh, νv, νh的上下界： 

 lnδ𝑣 ∈ [ln(0.01) , ln(10)]  

 lnδℎ ∈ [ln(0.1) , ln(100)]  

 lnν𝑣 ∈ [ln(0.1) , ln(10)]  

 lnνℎ ∈ [ln(0.1) , ln(10)]  

當基函數為 radial basis function 時，需預先假設一組水平方向與垂直方向的關

聯性長度，在這裡假設垂直方向關聯性長度 δz = 0.5 公尺，水平方向關聯性長度 δh = 

1 公尺，則垂直方向 radial basis function 的標準差 σr,z = SOFz×dz，水平方向 radial 

basis function 的標準差 σr,h = SOFh×dh，並將 dz 和 dh 一起加入步驟 4 的最佳化過程

中，當 dz 跟 dh 越大就表示基函數的標準差越大，函數也就越平緩，其上下界分別

為： 

 ln (dz) ∈ [ln(1) , ln(10)]  

 ln (dh) ∈ [ln(1) , ln(10)]  

以 shifted Legendre polynomial 為基函數時，x 方向、y 方向、z 方向分別各以 10

個基函數進行擬合，共有 1000 種組合 (mx, my, mz) = (10, 10, 10)，也就是說三個方

向一開始都是 9 次方程式，並將 x 方向與 y 方向合併成水平方向 (mh = 100)。最後

step1 估計出來的樣本標準差 σ = 1.92，並以判別式 sk > 50%選出 sk 所對應的 Φk，

在這裡只有 Φ0滿足此條件，分別對應到 Φh,0及 Φz,0，所以模擬出來的水平及垂直趨

勢函數皆為常數，所對應到的權重 w = 5.33。 
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以 discrete cosine basis 為基函數時，x 方向、y 方向、z 方向也是分別以 10 個基

函數進行模擬 (mx, my, mz) = (10, 10, 10)，共有 1000 種組合最後 step1 估計出來的樣

本標準差 σ = 1.86，並以判別式 sk > 50%選出 sk所對應的 Φk，在這裡一樣只有 Φ0

滿足此條件，分別對應到 Φh,0 及 Φz,0，所以模擬出來的水平及垂直趨勢函數皆為常

數，所對應到的權重 w = 5.25。 

以 radial basis 為基函數時，x 方向、y 方向、z 方向的基函數個數由該方向的關

聯性長度決定，正如前文所說，如果基函數個數選擇太少會造成欠擬合 (poor-fit)，

個數太多則會產生過多的運算，導致運算效率太低甚至超過記憶體容量導致無法運

算，而本研究發現每一到兩倍的關聯性長度放一個基函數最為合適。此案例 z 方向

長度 8.5 公尺，x 方向長度約 24 公尺，y 方向長度約 3 公尺，在這裡假設垂直方向

關聯性長度 SOFz = 0.5 公尺，水平方向關聯性長度 SOFh = 1 公尺，故 x 方向、y 方

向、z 方向的基函數分別為 (mx, my, mz) = (26, 4, 18)，共有 1872 種組合，最後 step1

估計出來的 dz、dh 都等於 10，也就是說垂直方向的基函數是由 18 個標準差為 100.5 

= 5 的常態分布形式組成，水平方向的基函數則是由 104 個標準差為 101 = 10 的常

態分布形式組成，樣本標準差 σ = 2.19，並以判別式 sk > 50%選出 sk所對應的 Φk，

在這裡有 Φ206、Φ1160、Φ1733 滿足此條件，分別對應到 (Φh,11, Φz,9)、(Φh,92, Φz,4)、(Φh,96, 

Φz,5)，所對應到的權重 w = (3.02, 1.72, 2.53)。 

表 4-1 Hollywood step1 基函數選擇結果 

 (mx, my, mz) σ Φ w SOFz SOFh dz dh 

Legendre (10, 10, 10) 1.92 Φ0 5.33 - - - - 

cosine (10, 10, 10) 1.86 Φ0 5.25 - - - - 

radial (26, 4, 18) 2.18 Φ206 Φ1160 Φ1733 3.02, 1.72, 2.53 0.5 1 10 10 
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4.1.2 Step2 分析結果 

根據 step1 的結果以 TMCMC 的方法對後驗機率密度函數 f(lnσ, lnδv, lnδh, lnνv, 

lnνh|Y, M’)進行 2000 次的取樣，並分別假設 σ, δv, δh, νv, νh的先驗分布為均佈分布： 

 lnσ ∈ [ln(0.1) , ln(100)]  

 lnδ𝑣 ∈ [ln(0.01) , ln(20)]  

 lnδℎ ∈ [ln(0.1) , ln(100)]  

 lnν𝑣 ∈ [ln(0.2) , ln(10)]  

 lnνℎ ∈ [ln(0.2) , ln(10)]  

以 shifted Legendre polynomial 為基函數時，取樣結果如圖 4-4 到圖 4-7，標準差

σ 大約 2.2 到 2.4 之間，垂直方向的關聯性長度 δv 大約 0.4 公尺到 0.45 公尺，垂直

方向平滑性參數 νv 大約 1.2 到 1.4，水平方向關聯性長度 δh 大約 1.2 公尺到 1.8 公

尺，水平方向平滑性參數 νh 大約 0.2 到 0.23，計算出來的模型證據 (evidence) 為   

-1.458×103。估計出的空間中的趨勢函數如圖 4-8，圖中黑色實線為 2000 組趨勢函數

的中位數，因為 step1 所選擇的水平方向與垂直方向基函數均為常數，所以無論在

水平方向或垂直方向趨勢函數皆沒有隨著位置而有所不同。
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圖 4-4 TMCMC 取樣的 σ 分布 

 

圖 4-5 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 

 

圖 4-6 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 
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圖 4-7 TMCMC 取樣分布 

 

圖 4-8 以 shifted Legendre polynomial 擬合的趨勢 
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以 discrete cosine basis 為基函數時，取樣結果如圖 4-9 到圖 4-12，標準差 σ 大

約 2.2 到 2.4 之間，垂直方向的關聯性長度 δv 大約 0.4 公尺到 0.45 公尺，垂直方向

平滑性參數 νv 大約 1.2 到 1.35，水平方向關聯性長度 δh 大約 1.2 公尺到 1.8 公尺，

水平方向平滑性參數 νh大約 0.2 到 0.23，計算出來的模型證據為-1.459×103。估計出

的空間中的趨勢函數如圖 4-13，圖中的黑色實線為 2000 組趨勢函數的中位數，在

Hollywood 的這個案例不論是 discrete cosine basis 或是 shifted Legendre polynomial，

step1 所選擇的水平方向與垂直方向基函數均為常數，所以趨勢模擬的結果會幾乎相

同。 

 

圖 4-9 TMCMC 取樣的 σ 分布 

 

圖 4-10 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 



doi:10.6342/NTU201902309

 

64 

 

 

 

圖 4-11 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-12 TMCMC 取樣分布 

 

圖 4-13 以 discrete cosine basis 擬合的趨勢 
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以 radial basis 為基函數時，取樣結果如圖 4-14 到圖 4-17，標準差 σ 大約 2.2 到

2.4 之間，垂直方向的關聯性長度 δv大約 0.38 公尺到 0.46 公尺，垂直方向平滑性參

數 νv 大約 1.2 到 1.4，水平方向關聯性長度 δh 大約 1 公尺到 2 公尺，水平方向平滑

性參數 νh接近下界 0.2，計算出來的模型證據為-1.468×103。估計出的空間中的趨勢

函數如圖 4-18，圖中的黑線為 2000 組趨勢函數的中位數，由於 step1 估計出來的趨

勢函數標準差 σr較大，所以使 radial basis 的函數形式接近常數。 

 

圖 4-14 TMCMC 取樣的 σ 分布 

 

圖 4-15 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-16 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-17 TMCMC 取樣分布 

 

圖 4-18 以 radial basis function 擬合的趨勢 
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4.1.3 Step3 模擬結果 

透過 step2 的趨勢函數擬合與 TMCMC 的取樣已經獲得 2000 組 t(x, y, z) 與 (σ, 

δv, δh, νv, νh) 的樣本，而每一組的樣本透過 3.5 節公式 3-42 就能建立具有關聯性的

隨機場，以此案例的 A-A’剖面為例，並以任意一組 radial basis 所擬合的趨勢 t(x, y, 

z) 與參數 (σ, δv, δh, νv, νh) 進行模擬，圖 4-19 為一組 A-A’剖面的具聯性隨機場空間

分布資料，黑色實線為真實的現地鑽探資料，當隨機場位置與鑽孔位置相同時，隨

機場資料將與鑽探資料完全一致，相鄰位置則會依 (σ, δv, δh, νv, νh) 等關聯性參數進

行模擬。 

 

圖 4-19 A-A’剖面隨機場空間分布資料 

  



doi:10.6342/NTU201902309

 

68 

 

 

 4.2 Baytown, Texas 

此案例地點位於美國德州貝敦 (Baytown, Texas)，Stuedlein et al. (2012) 在此進

行基腳載重試驗 (footing load test) ，並施作了 5 孔 SPT 與 9 孔的 CPT，圖 4-20 中

CPT-1 ~ CPT-3 以及 CPT-F1 ~ CPT-F6 為施作 CPT 的位置，並利用 qt進行垂直與水

平方向的隨機場研究，從圖 4-21 中的可以看出兩層黏土之間夾了一層砂土層，而圖

4-22 為 9 孔的 qt空間分布資料，可以看出除了中間的 CPT-1 ~ CPT-3 之外，其餘的

CPT-F1 ~ CPT-F6 在地下 6 公尺以下的的深度並沒有 qt 資料，故本研究將此案例分

成兩部分進行分析，上半部扣除表層黏土後分析深度從 0.9 公尺到 3.2 公尺，厚度為

2.3 公尺，資料間距為 0.02 公尺，並考慮全部鑽孔的 qt 空間分布資料，如圖 4-23。

下半部分則考慮深度 5.4 公尺到 15.32 公尺，厚度為 9.92 公尺，資料間距 0.02 公尺，

且只考慮中間 CPT-1 ~ CPT-3 三孔的 qt空間分布資料，如圖 4-24，再分別以不同形

態的基函數 (shifted Legendre polynomial, discrete cosine basis, radial basis function) 判

斷整個空間中的趨勢函數，並進一步以 step2 的結果建立隨機場模型。 

表 4-2 土壤各層 N 值與 qt資料 (Stuedlein et al., 2012) 
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圖 4-20 案例地點之佈孔位置圖 (Stuedlein et al., 2012) 
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圖 4-21 案例地點沿 A-A’之剖面圖 (Stuedlein et al., 2012) 

 

 

圖 4-22 案例地點 qt空間分布資料 
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圖 4-23 上半部 qt空間分布資料 

 

圖 4-24 下半部 qt空間分布資料 
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4.2.1 Step1 分析結果 

4.2.1.1 Upper step1 分析結果 

以上半部分 0.9 公尺到 3.2 公尺之黏土 qt 空間分布資料分別以 shifted Legendre 

polynomial, discrete cosine basis, radial basis function 為基函數進行 step1 的分析，步

驟 4 的最佳化過程為了避免數值問題，分別假設 δv, δh, νv, νh的上下界： 

 lnδ𝑣 ∈ [ln(0.01) , ln(10)]  

 lnδℎ ∈ [ln(0.1) , ln(100)]  

 lnν𝑣 ∈ [ln(0.1) , ln(10)]  

 lnνℎ ∈ [ln(0.1) , ln(10)]  

當基函數為 radial basis function 時，需預先假設一組水平方向與垂直方向的關

聯性長度，在這裡假設垂直方向關聯性長度 δz = 0.6 公尺，水平方向關聯性長度 δh = 

1 公尺，則垂直方向 radial basis function 的標準差 σr,z = SOFz×dz，水平方向 radial 

basis function 的標準差 σr,h = SOFh×dh，並將 dz 和 dh 一起加入步驟 4 的最佳化過程

中，當 dz 跟 dh 越大就表示基函數的標準差越大，函數也就越平緩，其上下界分別

為： 

 ln (dz) ∈ [ln(1) , ln(10)]  

 ln (dh) ∈ [ln(1) , ln(10)]  

以 shifted Legendre polynomial 為基函數時，跟 Hollywood 的案例相同，x 方向、

y 方向、z 方向分別各以 10 個基函數進行擬合，共有 1000 種組合 (mx, my, mz) = (10, 

10, 10)，並將 x 方向與 y 方向合併成水平方向 (mh = 100)。最後 step1 估計出來的樣

本標準差 σ = 0.41，並以判別式 sk > 50%選出 sk所對應的 Φk，在這裡 Φ0及 Φ1滿

足此條件，分別對應到 (Φh,0, Φz,0) 與 (Φh,0, Φz,1)，表示水平方向趨勢項為常數，而
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垂直方向趨勢為一次函數，所對應到的權重 w = (1.28, 0.29)。 

以 discrete cosine basis 為基函數時，x 方向、y 方向、z 方向分別以 (mx, my, mz) 

= (9, 9, 10) 進行模擬，共有 810 種組合最後 step1 估計出來的樣本標準差 σ = 0.35，

並以判別式 sk > 50%選出 sk所對應的 Φk，在這裡 Φ0、Φ1、Φ500滿足此條件，分

別對應到 (Φh,0, Φz,0)、(Φh,0, Φz,1)、(Φh,50, Φz,0)，所對應到的權重 w = (1.01, 0.20, 0.34)。 

以 radial basis 為基函數時，x 方向、y 方向、z 方向的基函數個數由該方向的關

聯性長度決定，此案例 z 方向長度 2.3 公尺，x 方向長度約 12.8 公尺，y 方向長度約

25.6 公尺，在這裡假設垂直方向關聯性長度 SOFz = 0.6 公尺，水平方向關聯性長度

SOFh = 1 公尺，故 x 方向、y 方向、z 方向的基函數分別為 (mx, my, mz) = (6, 12, 4)，

共有 288 種組合，最後 step1 估計出來的 dz = 1.93，dh = 5.60，也就是說垂直方向的

基函數是由 4 個標準差為 1.930.6 = 1.16 的常態分布形式組成，水平方向的基函數

則是由 72 個標準差為 5.601 = 5.60 的常態分布形式組成，樣本標準差 σ = 0.27，並

以判別式 sk > 50%選出 sk所對應的 Φk，在這裡 Φ2、Φ32、Φ39、Φ102、Φ123、Φ130、

Φ200、Φ251、Φ276、Φ288滿足此條件，分別對應到 (Φh,0, Φz,2)、(Φh,8, Φz,0)、(Φh,9, Φz,3)、

(Φh,25, Φz,2)、(Φh,30, Φz,3)、(Φh,32, Φz,2)、(Φh,50, Φz,0)、(Φh,62, Φz,3)、(Φh,69, Φz,0)、(Φh,71, 

Φz,3)，所對應到的權重 w = (0.86, 0.40, 0.67, 0.61, 0.83, 1.07, 0.23, 0.68, 0.29, 0.26)。 

表 4-3 Baytown upper step1 基函數選擇結果 

 (mx, my, mz) σ Φ w SOFz SOFh dz dh 

Legendre (10, 10, 10) 0.41 Φ0 Φ1 1.28,0.29 - - - - 

cosine (9, 9, 10) 0.35 Φ0 Φ1 Φ500 1.01,0.20,0.34 - - - - 

radial (6, 12, 4) 0.37 同上文共 10 個 同上文共 10 個 0.6 2 1.93 5.60 
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4.2.1.2 Lower step1 分析結果 

以 CPT-1 ~ CPT-3 下半部分 5.4 公尺到 15.32 公尺之黏土 qt空間分布資料分別以

shifted Legendre polynomial, discrete cosine basis, radial basis function 為基函數進行

step1 的分析，shifted Legendre polynomial 及 discrete cosine basis 的參數上下界皆與

上半部相同，基函數為 radial basis function 時，需預先假設一組水平方向與垂直方

向的關聯性長度，在這裡假設垂直方向關聯性長度 δz = 0.6 公尺，水平方向關聯性

長度 δh = 1 公尺，則垂直方向 radial basis function 的標準差 σr,z = SOFz×dz，水平方

向 radial basis function 的標準差 σr,h = SOFh×dh，並將 dz 和 dh 一起加入步驟 4 的最

佳化過程中，上下界假設也與上半部分相同。 

以 shifted Legendre polynomial 為基函數時，x 方向、y 方向、z 方向分別各以 10

個基函數進行擬合，共有 1000 種組合 (mx, my, mz) = (10, 10, 10)。最後 step1 估計出

來的樣本標準差 σ = 0.23，並以判別式 sk > 50%選出 sk所對應的 Φk，在這裡 Φ0、

Φ1、Φ3、Φ401、Φ940 滿足此條件，分別對應到 (Φh,0, Φz,0)、(Φh,0, Φz,1)、(Φh,0, Φz,2)、

(Φh,40, Φz,1)、(Φh,94, Φz,0)，所對應到的權重 w = (2.16, 0.22, 0.14, 0.12, 0.12)。 

以 discrete cosine basis 為基函數時，x 方向、y 方向、z 方向分別以 (mx, my, mz) 

= (3, 3, 10) 進行模擬，共有 90 種組合最後 step1 估計出來的樣本標準差 σ = 0.23，

並以判別式 sk > 50%選出 sk所對應的 Φk，在這裡 Φ0、Φ1、Φ3、Φ80 滿足此條件，

分別對應到 (Φh,0, Φz,0)、(Φh,0, Φz,1)、(Φh,0, Φz,3)、(Φh,8, Φz,0)，所對應到的權重 w = 

(2.01, 0.33, 0.14, 0.14)。 
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以 radial basis 為基函數時，x 方向、y 方向、z 方向的基函數個數由該方向的關

聯性長度決定，此案例 z 方向長度 9.9 公尺，x 座標均相同所以長度為 0 公尺，y 方

向長度約 17.1 公尺，在這裡假設垂直方向關聯性長度 SOFz = 0.6 公尺，水平方向關

聯性長度 SOFh = 1 公尺，故 x 方向、y 方向、z 方向的基函數分別為 (mx, my, mz) = 

(1, 9, 20)，共有 180 種組合，最後 step1 估計出來的 dz = 5.44，dh = 8.87，也就是說

垂直方向的基函數是由 20 個標準差為 5.440.6 = 3.26 的常態分布形式組成，水平方

向的基函數則是由 9 個標準差為 8.871 = 8.87 的常態分布形式組成，樣本標準差 σ 

= 0.21，並以判別式 sk > 50%選出 sk所對應的 Φk，在這裡 Φ0、Φ15、Φ16、Φ160、

Φ163、Φ174滿足此條件，分別對應到 (Φh,0, Φz,0)、(Φh,0, Φz,15)、(Φh,0, Φz,16)、(Φh,8, Φz,0)、

(Φh,8, Φz,3)、(Φh,8, Φz,14)，所對應到的權重 w = (0.42, 0.34, 0.73, 0.71, 0.30, 1.12)。 

表 4-4 Baytown upper step1 基函數選擇結果 

 (mx, my, mz) σ Φ w SOFz SOFh dz dh 

Legendre (10, 10, 10) 0.23 Φ0 Φ1 Φ3 Φ401 Φ940 2.16,0.22,0.14,0.12,0.12 - - - - 

cosine (3, 3, 10) 0.23 Φ0 Φ1 Φ3 Φ80 20.1,0.33,0.14,0.14 - - - - 

radial (1, 9, 20) 0.21 同上文共 6 個 同上文共 6 個 0.3 2 5.44 8.87 
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4.2.2 Step2 分析結果 

根據 step1 上半部分與下半部分的分析結果以 TMCMC 的方法對後驗機率密度

函數 f(lnσ, lnδv, lnδh, lnνv, lnνh|Y, M’)進行 2000 次的取樣，並分別假設 σ, δv, δh, νv, νh

的先驗分布為均佈分布： 

 lnσ ∈ [ln(0.1) , ln(100)]  

 lnδ𝑣 ∈ [ln(0.01) , ln(20)]  

 lnδℎ ∈ [ln(0.1) , ln(100)]  

 lnν𝑣 ∈ [ln(0.2) , ln(10)]  

 lnνℎ ∈ [ln(0.2) , ln(10)]  
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4.2.2.1 Upper step2 分析結果 

以 shifted Legendre polynomial 為基函數時，取樣結果如圖 4-25 到圖 4-28，標準

差 σ 大約 0.35 到 0.5，垂直方向的關聯性長度 δv 大約 0.4 公尺到 0.6 公尺，垂直方

向平滑性參數 νv大約 1.2 到 1.35，水平方向關聯性長度 δh與平滑性參數 νh從分布圖

來看並沒有估準，計算出來的模型證據 (evidence) 為 2.495×103。估計出的空間中的

趨勢函數，如圖 4-29，圖中所畫的趨勢是模擬 2000 組趨勢函數之中位數，垂直方向

為一次式，水平方向則判斷為常數，整體模擬結果還可以接受，但因為水平方向被

判斷為常數，所以其中 CPT-3 孔有明顯的偏差。 

 

圖 4-25 TMCMC 取樣的 σ 分布 

 

圖 4-26 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-27 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-28 TMCMC 取樣分布 

 

圖 4-29 以 shifted Legendre polynomial 擬合的趨勢 
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以 discrete cosine basis 為基函數時，取樣結果如圖 4-30 到圖 4-33，標準差 σ 大

約 0.32 到 0.45，垂直方向的關聯性長度 δv大約 0.35 公尺到 0.55 公尺，垂直方向平

滑性參數 νv大約 1.2 到 1.4，水平方向關聯性長度 δh 與平滑性參數 νh 則一樣沒有估

準，計算出來的模型證據為 2.487×103。估計出的空間中的趨勢函數如圖 4-34，圖中

所畫的趨勢是模擬的 2000 組趨勢函數之中位數。 

 

圖 4-30 TMCMC 取樣的 σ 分布 

 

圖 4-31 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-32 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-33 TMCMC 取樣分布 

 

圖 4-34 以 discrete cosine basis 擬合的趨勢 
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以 radial basis 為基函數時，取樣結果如圖 4-35 到圖 4-38，標準差 σ 大約 0.25

到 0.4，垂直方向的關聯性長度 δv大約 0.27 公尺到 0.45 公尺，垂直方向平滑性參數

νv 大約 1.2 到 1.4，水平方向關聯性長度 δh 與平滑性參數 νh 則沒有估準，計算出來

的模型證據為 2.358×103。估計出的空間中的趨勢函數如圖 4-39，圖中所畫的黑色實

線是模擬的 2000 組趨勢函數之中位數。由於選到的基函數較多，模型證據的分數來

看 radial basis 較前面兩種基函數低，但就單一孔位來看擬合的較好。 

 

圖 4-35 TMCMC 取樣的 σ 分布 

 

圖 4-36 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-37 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-38 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 

 

圖 4-39 以 radial basis function 擬合的趨勢 
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4.2.2.2 Lower step2 分析結果 

以 shifted Legendre polynomial 為基函數時，取樣結果如圖 4-40 到圖 4-43，標準

差 σ 大約 0.2 到 0.27，垂直方向的關聯性長度 δv 大約 0.22 公尺到 0.31 公尺，垂直

方向平滑性參數 νv 大約 1 到 1.25，水平方向關聯性長度 δh 與平滑性參數 νh 從分布

圖來看並沒有估準，計算出來的模型證據 (evidence) 為 3.239×103。估計出的空間中

的趨勢函數如圖 4-44，圖中所畫的趨勢是模擬的 2000 組趨勢函數之中位數。 

 

圖 4-40 TMCMC 取樣的 σ 分布 

 

圖 4-41 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-42 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-43 TMCMC 取樣分布 

 

圖 4-44 以 shifted Legendre polynomial 擬合的趨勢 



doi:10.6342/NTU201902309

 

85 

 

 

以 discrete cosine basis 為基函數時，取樣結果如圖 4-45 到圖 4-48，標準差 σ 大

約 0.21 到 0.26，垂直方向的關聯性長度 δv大約 0.22 公尺到 0.31 公尺，垂直方向平

滑性參數 νv 大約 1 到 1.25，水平方向關聯性長度 δh 與平滑性參數 νh 則一樣沒有估

準，計算出來的模型證據為 3.263×103。估計出的空間中的趨勢函數如圖 4-49，圖中

所畫的趨勢是模擬的 2000 組趨勢函數之中位數。 

 

圖 4-45 TMCMC 取樣的 σ 分布 

 

圖 4-46 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-47 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-48 TMCMC 取樣分布 

 

圖 4-49 以 discrete cosine basis 擬合的趨勢 
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以 radial basis 為基函數時，取樣結果如圖 4-50 到圖 4-53，標準差 σ 大約 0.18

到 0.24，垂直方向的關聯性長度 δv大約 0.2 公尺到 0.25 公尺，垂直方向平滑性參數

νv 大約 1.1 到 1.3，水平方向關聯性長度 δh 與平滑性參數 νh 則沒有估準，計算出來

的模型證據為 3.266×103。估計出的空間中的趨勢函數如圖 4-54 圖中所畫的趨勢是

模擬的 2000 組趨勢函數之中位數。 

 

圖 4-50 TMCMC 取樣的 σ 分布 

 

圖 4-51 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-52 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-53 TMCMC 取樣分布 

 

圖 4-54 以 radial basis function 擬合的趨勢 
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4.2.3 Step3 模擬結果 

透過 step2 的趨勢函數擬合與 TMCMC 的取樣已經獲得 2000 組 t(x, y, z) 與 (σ, 

δv, δh, νv, νh) 的樣本，而每一組的樣本透過 3.5 節公式 3-42 就能建立具有關聯性的

隨機場，以此案例下半部分為例，並以任意一組 radial basis 所擬合的趨勢 t(x, y, z) 

與參數 (σ, δv, δh, νv, νh) 進行模擬，圖 4-55 為一組具聯性隨機場空間分布資料，黑

色實線為真實的現地鑽探資料，當隨機場位置與鑽孔位置相同時，隨機場資料將與

鑽探資料完全一致，相鄰位置則會依 (σ, δv, δh, νv, νh) 等關聯性參數進行模擬。 

 

圖 4-55 Baytown 下半部分隨機場空間分布資料 
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4.3 Adelaide, South Australia 

此案例位於澳洲南澳的阿得雷德 (Adelaide, South Australia)，土層為過壓密的硬

黏土層，1993 年 Jaksa 等人在一個 50×50 公尺的場地共施做的 201 孔深度為 5 公尺

的 CPT 鑽孔，進行垂直與水平方向的隨機場參數分析，1995 再新增了 50 孔 CD 系

列的 CPT 鑽孔，如圖 4-56，本研究將此場址分成三個部分，分別為 1.紅色的 CD 系

列資料，深度為 1.5 公尺到 5 公尺，厚度為 3.5 公尺，資料間距為 0.02 公尺，如圖

4-57；2.藍色的十字資料，深度為 2.38 公尺到 3.52 公尺，厚度為 1.14 公尺，資料間

距為 0.02 公尺，如圖 4-58；3.從 A0 到 K10 的等間距的資料，深度一樣為 2.38 公尺

到 3.52 公尺，厚度為 1.14 公尺，資料間距為 0.02 公尺，如圖 4-59。利用 CPT 所得

到的錐尖阻抗 qc 空間分布資料，分別以不同形態的基函數  (shifted Legendre 

polynomial, discrete cosine basis, radial basis function) 判斷整個空間中的趨勢函數，

而此案例取樣較為密集，所以無需再透過 step3 進行隨機場預估。  
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圖 4-56 案例地點之佈孔位置圖 (Jaksa et al., 1999) 

 

圖 4-57 CD 系列 qc空間分布資料 
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圖 4-58 十字系列空間分布資料 

 

圖 4-59 A0 到 K10 空間分布資料 
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4.3.1 Step1 分析結果 

4.3.1.1 CD step1 分析結果 

以 CD 系列的 qc空間分布資料分別以 shifted Legendre polynomial, discrete cosine 

basis, radial basis function 為基函數進行 step1 的分析，為了避免步驟 4 的最佳化過

程產生數值問題，分別假設 δv, δh, νv, νh的上下界： 

 lnδ𝑣 ∈ [ln(0.01) , ln(10)]  

 lnδℎ ∈ [ln(0.1) , ln(100)]  

 lnν𝑣 ∈ [ln(0.1) , ln(10)]  

 lnνℎ ∈ [ln(0.1) , ln(10)]  

當基函數為 radial basis function 時，需預先假設一組水平方向與垂直方向的關

聯性長度，在這裡假設垂直方向關聯性長度 δz = 0.5 公尺，水平方向關聯性長度 δh = 

1 公尺，則垂直方向 radial basis function 的標準差 σr,z = SOFz×dz，水平方向 radial 

basis function 的標準差 σr,h = SOFh×dh，並將 dz 和 dh 一起加入步驟 4 的最佳化過程

中，當 dz 跟 dh 越大就表示基函數的標準差越大，函數也就越平緩，其上下界分別

為： 

 ln (dz) ∈ [ln(1) , ln(10)]  

 ln (dh) ∈ [ln(1) , ln(10)]  
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以 shifted Legendre polynomial 為基函數時， x 方向與 z 方向分別各以 10 個基

函數進行擬合，y 方向由於所有鑽孔的 y 座標均相同，只需以常數來表達即可，所

以共只有 100 種組合 (mx, my, mz) = (10, 1, 10)，進一步將 x 方向與 y 方向合併成水

平方向 (mh = 10)。最後 step1 估計出來的樣本標準差 σ = 0.41，並以判別式 sk > 50%

選出 sk 所對應的 Φk，在這裡只有 Φ0 滿足此條件，分別對應到 (Φh,0, Φz,0)，表示水

平方向與垂直方向趨勢均為常數，所對應到的權重 w = (2.26)。 

以 discrete cosine basis 為基函數時，x 方向、y 方向、z 方向分別以 (mx, my, mz) 

= (10, 1, 10) 進行模擬，共有 100 種組合最後 step1 估計出來的樣本標準差 σ = 0.41，

並以判別式 sk > 50%選出 sk所對應的 Φk，跟前面相同只有 Φ0滿足此條件，對應

到 (Φh,0, Φz,0)，所對應到的權重 w = (2.26)。 

以 radial basis 為基函數時，x 方向、y 方向、z 方向的基函數個數由該方向的關

聯性長度決定，此案例 z 方向長度 3.5 公尺，x 方向長度約 25 公尺，y 方向座標均

相同所以長度為 0 公尺，在這裡假設垂直方向關聯性長度 SOFz = 0.5 公尺，水平方

向關聯性長度 SOFh = 1 公尺，故 x 方向、y 方向、z 方向的基函數分別為 (mx, my, 

mz) = (26, 1, 8)，共有 208 種組合，最後 step1 估計出來的 dz = 10，dh = 9.10，也就

是說垂直方向的基函數是由 8 個標準差為 100.5 = 5 的常態分布形式組成，水平方

向的基函數則是由 26 個標準差為 9.11 = 9.1 的常態分布形式組成，樣本標準差 σ = 

0.35，並以判別式 sk > 50%選出 sk所對應的 Φk，在這裡 Φ0、Φ199滿足此條件，分

別對應到 (Φh,0, Φz,0)、(Φh,24, Φz,7)，所對應到的權重 w = (1.42, 1.37)。 

表 4-5 Adelaide CD step1 基函數選擇結果 

 (mx, my, mz) σ Φ w SOFz SOFh dz dh 

Legendre (10, 1, 10) 0.41 Φ0  2.26 - - - - 

cosine (10, 1, 10) 0.41 Φ0  2.26 - - - - 

radial (26, 1, 8) 0.35 Φ0 Φ199 1.42, 1.37 0.5 1 10 9.10 
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4.3.1.2 十字 step1 分析結果 

以藍色十字所取得 qc空間分布資料分別以 shifted Legendre polynomial, discrete 

cosine basis, radial basis function 為基函數進行 step1 的分析，為了避免步驟 4 的最佳

化過程產生數值問題，分別假設 δv, δh, νv, νh 的上下界： 

 lnδ𝑣 ∈ [ln(0.01) , ln(10)]  

 lnδℎ ∈ [ln(0.1) , ln(100)]  

 lnν𝑣 ∈ [ln(0.1) , ln(10)]  

 lnνℎ ∈ [ln(0.1) , ln(10)]  

當基函數為 radial basis function 時，需預先假設一組水平方向與垂直方向的關

聯性長度，在這裡假設垂直方向關聯性長度 δz = 0.5 公尺，水平方向關聯性長度 δh = 

1 公尺，則垂直方向 radial basis function 的標準差 σr,z = SOFz×dz，水平方向 radial 

basis function 的標準差 σr,h = SOFh×dh，並將 dz 和 dh 一起加入步驟 4 的最佳化過程

中，當 dz 跟 dh 越大就表示基函數的標準差越大，函數也就越平緩，其上下界分別

為： 

 ln (dz) ∈ [ln(1) , ln(10)]  

 ln (dh) ∈ [ln(1) , ln(10)]  

以 shifted Legendre polynomial 為基函數時， x 方向、y 方向與 z 方向分別各以

10 個基函數進行擬合，所以共有 1000 種組合 (mx, my, mz) = (10, 10, 10)，進一步將

x 方向與 y 方向合併成水平方向 (mh = 100)。最後 step1 估計出來的樣本標準差 σ = 

0.57，並以判別式 sk > 50%選出 sk所對應的 Φk，在這裡有 Φ0與 Φ190 滿足此條件，

分別對應到 (Φh,0, Φz,0) 及 (Φh,19, Φz,0)，所對應到的權重 w = (2.54, 0.42)。 
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以 discrete cosine basis 為基函數時，x 方向、y 方向、z 方向分別以 (mx, my, mz) 

= (10, 10, 10) 進行模擬，共有 1000 種組合最後 step1 估計出來的樣本標準差 σ = 

0.35，並以判別式 sk > 50%選出 sk 所對應的 Φk，在這裡只有 Φ0滿足此條件，對

應到 (Φh,0, Φz,0)，所對應到的權重 w = (2.39)。 

以 radial basis 為基函數時，x 方向、y 方向、z 方向的基函數個數由該方向的關

聯性長度決定，此案例 z 方向長度 1.14 公尺，x 方向長度約 50 公尺，y 方向長度約

50 公尺，在這裡假設垂直方向關聯性長度 SOFz = 0.5 公尺，水平方向關聯性長度

SOFh = 1 公尺，故 x 方向、y 方向、z 方向的基函數分別為 (mx, my, mz) = (20, 20, 3)，

共有 1200 種組合，最後 step1 估計出來的 dz = 9.75，dh = 4.38，也就是說垂直方向

的基函數是由 3 個標準差為 9.570.5 = 4.79 的常態分布形式組成，水平方向的基函

數則是由 400 個標準差為 4.381 = 4.38 的常態分布形式組成，樣本標準差 σ = 0.37，

並以判別式 sk > 50%選出 sk所對應的 Φk，在這裡有 Φ117、Φ437、Φ441、Φ481、Φ1001、

滿足此條件，分別對應到 (Φh,39, Φz,0)、(Φh,145, Φz,2)、(Φh,147, Φz,0)、(Φh,160, Φz,1)、(Φh,333, 

Φz,2)、，所對應到的權重 w = (1.10, 1.22, 2.19, 0.98, 0.84)。 

表 4-6 Adelaide 十字 step1 基函數選擇結果 

 (mx, my, mz) σ Φ w SOFz SOFh dz dh 

Legendre (10, 10, 10) 0.75 Φ0 Φ190  2.54, 0.42 - - - - 

cosine (10, 10, 10) 0.78 Φ0 2.39 - - - - 

radial (20, 20, 3) 0.37 同上文共 5 個 同上文共 5 個 0.5 1 9.75 4.38 
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4.3.1.3 A0 到 K10 step1 分析結果 

以整個現地每隔 5 公尺的 qc空間分布資料 A0 到 K10，分別以 shifted Legendre 

polynomial, discrete cosine basis, radial basis function 為基函數進行 step1 的分析，為

了避免步驟 4 的最佳化過程產生數值問題，分別假設 δv, δh, νv, νh的上下界： 

 lnδ𝑣 ∈ [ln(0.01) , ln(10)]  

 lnδℎ ∈ [ln(0.1) , ln(100)]  

 lnν𝑣 ∈ [ln(0.1) , ln(10)]  

 lnνℎ ∈ [ln(0.1) , ln(10)]  

當基函數為 radial basis function 時，需預先假設一組水平方向與垂直方向的關

聯性長度，在這裡假設垂直方向關聯性長度 δz = 0.5 公尺，水平方向關聯性長度 δh = 

1 公尺，則垂直方向 radial basis function 的標準差 σr,z = SOFz×dz，水平方向 radial 

basis function 的標準差 σr,h = SOFh×dh，並將 dz 和 dh 一起加入步驟 4 的最佳化過程

中，當 dz 跟 dh 越大就表示基函數的標準差越大，函數也就越平緩，其上下界分別

為： 

 ln (dz) ∈ [ln(1) , ln(10)]  

 ln (dh) ∈ [ln(1) , ln(10)]  

以 shifted Legendre polynomial 為基函數時， x 方向、y 方向與 z 方向分別各以

10 個基函數進行擬合，所以共有 1000 種組合 (mx, my, mz) = (10, 10, 10)，進一步將

x 方向與 y 方向合併成水平方向 (mh = 100)。最後 step1 估計出來的樣本標準差 σ = 

0.58，並以判別式 sk > 50%選出 sk 所對應的 Φk，在這裡只有 Φ0滿足此條件，分

別對應到 (Φh,0, Φz,0)，所對應到的權重 w = (2.41)。 
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以 discrete cosine basis 為基函數時，x 方向、y 方向、z 方向分別以 (mx, my, mz) 

= (10, 10, 10) 進行模擬，共有 1000 種組合最後 step1 估計出來的樣本標準差 σ = 

0.58，並以判別式 sk > 50%選出 sk 所對應的 Φk，在這裡有 Φ0 滿足此條件，對應

到 (Φh,0, Φz,0)，所對應到的權重 w = (2.41)。 

以 radial basis 為基函數時，x 方向、y 方向、z 方向的基函數個數由該方向的關

聯性長度決定，此案例 z 方向長度 1.14 公尺，x 方向長度約 50 公尺，y 方向長度約

50 公尺，在這裡假設垂直方向關聯性長度 SOFz = 0.5 公尺，水平方向關聯性長度

SOFh = 1 公尺，故 x 方向、y 方向、z 方向的基函數分別為 (mx, my, mz) = (17, 17, 3)，

共有 867 種組合，最後 step1 估計出來的 dz = 3.98，dh = 5.54，也就是說垂直方向的

基函數是由 3 個標準差為 3.980.5 = 1.99 的常態分布形式組成，水平方向的基函數

則是由 289 個標準差為 5.541 = 5.54 的常態分布形式組成，樣本標準差 σ = 0.36，

並以判別式 sk > 50%選出 sk 所對應的 Φk，由於 A0 到 K10 的水平方向變異性較

大，為了擬合水平方向的趨勢，在這裡共有 32 個基函數滿足此條件，在這裡就不一

一列出。 

表 4-7 Adelaide A0 到 K10 step1 基函數選擇結果 

 (mx, my, mz) σ Φ w SOFz SOFh dz dh 

Legendre (10, 10, 10) 0.58 Φ0  2.41 - - - - 

cosine (10, 10, 10) 0.58 Φ0 2.41 - - - - 

radial (17, 17, 3) 0.52 共 32 個 共 32 個 0.5 1 3.98 5.54 
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4.3.2 Step2 分析結果 

根據 step1 上半部分與下半部分的分析結果以 TMCMC 的方法對後驗機率密度

函數 f(lnσ, lnδv, lnδh, lnνv, lnνh|Y, M’)進行 2000 次的取樣，並分別假設 σ, δv, δh, νv, νh

的先驗分布為均佈分布： 

 lnσ ∈ [ln(0.1) , ln(100)]  

 lnδ𝑣 ∈ [ln(0.01) , ln(20)]  

 lnδℎ ∈ [ln(0.1) , ln(100)]  

 lnν𝑣 ∈ [ln(0.2) , ln(10)]  

 lnνℎ ∈ [ln(0.2) , ln(10)]  
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4.3.2.1 CD step2 分析結果 

以 shifted Legendre polynomial 為基函數時，取樣結果如圖 4-60 到圖 4-63，標準

差 σ 大約 0.37 到 0.43，垂直方向的關聯性長度 δv大約 0.38 公尺到 0.48 公尺，垂直

方向平滑性參數 νv 集中在 1.1 附近，水平方向關聯性長度 δh 大約 0.2 公尺到 0.5 公

尺，平滑性參數 νh從分布圖來看，小的部分分布較多，但並沒有往某一個數值集中，

計算出來的模型證據 (evidence) 為 1.799×104。估計出的空間中的趨勢函數如圖 4-

64，圖中所畫的趨勢是模擬的 2000 組趨勢函數之中位數，垂直方向與水平方向均判

斷為常數。 

 

圖 4-60 TMCMC 取樣的 σ 分布 

 

圖 4-61 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-62 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-63 TMCMC 取樣分布 

 

圖 4-64 以 shifted Legendre polynomial 擬合的趨勢 
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以 discrete cosine basis 為基函數時，取樣結果如圖 4-65 到圖 4-68，標準差 σ 大

約 0.37 到 0.43，垂直方向的關聯性長度 δv大約 0.37 公尺到 0.47 公尺，垂直方向平

滑性參數 νv集中在 1.1 附近，水平方向關聯性長度 δh約 0.25 公尺到 0.5 公尺，平滑

性參數 νh 一樣小的數值較多，但沒有向某一個數值集中，計算出來的模型證據為

1.799×104。估計出的空間中的趨勢函數如圖 4-69，圖中所畫的趨勢是模擬的 2000 組

趨勢函數之中位數，因為 step1 趨勢函數的選擇結果只選到常數，所以結果與 shifted 

Legendre polynomial 相似。 

 

圖 4-65 TMCMC 取樣的 σ 分布 

 

圖 4-66 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-67 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-68 TMCMC 取樣分布 

 

圖 4-69 以 discrete cosine basis 擬合的趨勢 
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以 radial basis 為基函數時，取樣結果如圖 4-70 到圖 4-73，標準差 σ 大約 0.34

到 0.38，垂直方向的關聯性長度 δv 大約 0.34 公尺到 0.42 公尺，垂直方向平滑性參

數 νv 一樣集中在 1.1 附近，水平方向關聯性長度 δh 約 0.2 公尺到 0.5 公尺，平滑性

參數 νh則小的部分較為集中，但一樣沒有趨近於某一個數值，計算出來的模型證據

為 1.801×104。估計出的空間中的趨勢函數如圖 4-74，圖中所畫的趨勢是模擬的 2000

組趨勢函數之中位數，從結果來看只有 radial basis 有擬合出水平方向中間下凹的趨

勢，從模型證據的評分中也表示在這個案例以 radial basis 做為基函數較其他兩種合

適。 

 

圖 4-70 TMCMC 取樣的 σ 分布 

 

圖 4-71 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-72 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-73 TMCMC 取樣分布 

 

圖 4-74 以 radial basis function 擬合的趨勢 
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4.3.2.2 十字 step2 分析結果 

以 shifted Legendre polynomial 為基函數時，取樣結果如圖 4-75 到圖 4-78，標準

差 σ 大約 0.43 到 0.55，垂直方向的關聯性長度 δv大約 1.5 公尺到 2.5 公尺，垂直方

向平滑性參數 νv 接近 0.53 左右，水平方向關聯性長度 δh 有往較小的數值集中，但

仍沒有估準，平滑性參數 νh 從分布圖來看並沒有估準，計算出來的模型證據 

(evidence) 為 7.311×103。估計出的空間中的趨勢函數如圖 4-79，圖中所畫的趨勢是

模擬的 2000 組趨勢函數之中位數，圖 4-80 為 Y 方向的趨勢，在 Y 較大的地方 qc值

較大，但趨勢將其視為變異性，圖 4-81 為 X 方向的趨勢，這裡則有擬合出 X 較小

時 qc較大的趨勢。 

 

圖 4-75 TMCMC 取樣的 σ 分布 

 

圖 4-76 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-77 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-78 TMCMC 取樣分布 

 

圖 4-79 以 shifted Legendre polynomial 擬合的趨勢 
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圖 4-80 Y 方向的趨勢 (X = 25) 

 

圖 4-81 X 方向的趨勢 (Y = 25) 
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以 discrete cosine basis 為基函數時，取樣結果如圖 4-82 到圖 4-85 ，標準差 σ 大

約 0.55 到 0.75，垂直方向的關聯性長度 δv大約 2.5 公尺到 5 公尺，垂直方向平滑性

參數 νv 大約 0.53 左右，水平方向關聯性長度 δh 數值小的地方較為集中，平滑性參

數 νh 則一樣沒有估準，計算出來的模型證據為 7.292×103。估計出的空間中的趨勢

函數如圖 4-86，圖中所畫的趨勢是模擬的 2000 組趨勢函數之中位數，圖 4-87 為 Y

方向的趨勢，圖 4-88 為 X 方向的趨勢，Discrete cosine basis 擬合的水平方向趨勢皆

為常數。 

 

圖 4-82 TMCMC 取樣的 σ 分布 

 

圖 4-83 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-84 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-85 TMCMC 取樣分布 

 

圖 4-86 以 discrete cosine basis 擬合的趨勢 
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圖 4-87 Y 方向的趨勢 (X = 25) 

 

圖 4-88 X 方向的趨勢 (Y = 25) 

  



doi:10.6342/NTU201902309

 

112 

 

 

以 radial basis 為基函數時，取樣結果如圖 4-89 到圖 4-92，標準差 σ 大約 0.34

到 0.42，垂直方向的關聯性長度 δv大約 1 公尺到 1.5 公尺，垂直方向平滑性參數 νv

大約 0.5 到 0.56，水平方向關聯性長度 δh數值小的地方較為集中，平滑性參數 νh則

一樣沒有估準，計算出來的模型證據為 7.302×103。估計出的空間中的趨勢函數如圖

4-93，圖中所畫的趨勢是模擬的 2000 組趨勢函數之中位數，圖 4-94 為 Y 方向的趨

勢，圖 4-95 為 X 方向的趨勢，radial basis 在這兩個方向都可以透過調整 dh 來的擬

合趨勢。 

 

圖 4-89 TMCMC 取樣的 σ 分布 

 

圖 4-90 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-91 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-92 TMCMC 取樣分布 

 

圖 4-93 以 radial basis function 擬合的趨勢 
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圖 4-94 Y 方向的趨勢 (X = 25) 

 

圖 4-95 X 方向的趨勢 (Y = 25) 
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4.3.2.3 A0 到 K10 step2 分析結果 

以 shifted Legendre polynomial 為基函數時，取樣結果如圖 4-96 到圖 4-99，標

準差 σ 大約 0.5 到 0.65，垂直方向的關聯性長度 δv大約 1.5 公尺到 2.4 公尺，垂直

方向平滑性參數 νv大約 0.65 左右，水平方向關聯性長度 δh在 0.1 公尺到 1 公尺之

間，平滑性參數 νh則沒有估準，計算出來的模型證據 (evidence) 為 1.015×104。估

計出的空間中的趨勢函數如圖 4-100，圖中所畫的趨勢是模擬的 2000 組趨勢函數

之中位數，垂直方向與水平方向則判斷為常數。 

 

圖 4-96 TMCMC 取樣的 σ 分布 

 

圖 4-97 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-98 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-99 TMCMC 取樣分布 

 

圖 4-100 以 shifted Legendre polynomial 擬合的趨勢 
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以 discrete cosine basis 為基函數時，取樣結果如圖 4-101 到圖 4-104，標準差 σ

大約 0.5 到 0.65，垂直方向的關聯性長度 δv大約 1.4 公尺到 2.4 公尺，垂直方向平

滑性參數 νv大約 0.65 左右，水平方向關聯性長度 δh在 0.1 公尺到 1 公尺之間，平

滑性參數 νh則沒有估準，計算出來的模型證據 (evidence) 為 1.015×104。估計出的

空間中的趨勢函數如圖 4-105，圖中所畫的趨勢是模擬的 2000 組趨勢函數之中位

數，根 shifted Legendre ploynomial 相同，垂直方向與水平方向則判斷為常數。 

 

圖 4-101 TMCMC 取樣的 σ 分布 

 

圖 4-102 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-103 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-104 TMCMC 取樣分布 

 

圖 4-105 以 discrete cosine basis 擬合的趨勢 
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以 radial basis 為基函數時，取樣結果如圖 4-106 到圖 4-109，標準差 σ 大約 0.32

到 0.42，垂直方向的關聯性長度 δv大約 0.65 公尺到 1 公尺，垂直方向平滑性參數 νv

大約 0.65 左右，水平方向關聯性長度 δh在 0.1 公尺到 1 公尺之間，平滑性參數 νh則

沒有估準，計算出來的模型證據 (evidence) 為 9.776×103。估計出的空間中的趨勢函

數如圖 4-110，圖中所畫的趨勢是模擬的 2000 組趨勢函數之中位數，在這個較多孔

的案例中，radial basis 的證據分數較低，但對單一孔位的擬合較好。 

 

圖 4-106 TMCMC 取樣的 σ 分布 

 

圖 4-107 TMCMC 取樣的垂直方向關聯性長度 δv與平滑性參數 νv分布 
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圖 4-108 TMCMC 取樣的垂直方向關聯性長度 δh與平滑性參數 νh分布 

 

圖 4-109 TMCMC 取樣分布 

 

圖 4-110 以 radial basis function 擬合的趨勢 
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第五章 結論與建議 

1. 本研究利用 Cholesky decompositions 與克羅內克積的恆等式推導新公式，將原

本電腦記憶體無法負荷的運算矩陣有效地分成較小的矩陣進行運算，使分析從

原本只針對單一孔位的 1D 分析，進一步能同時進行多個孔位的 3D 分析，並可

以同時估計垂直方向與水平方向的關聯性參數。 

2. 本研究透過 step1 的 SBL 方法與 step2 的貝氏分析對空間分布資料進行趨勢的

擬合與隨機場參數的預估，step3 則可以利用 step2 所擬合的現地趨勢與關連性

參數對沒有進行鑽探的位置進行模擬，進一步建立具關聯性的隨機場模型。 

3. 在 Adelaide 十字與 A0 到 K10 的案例中，基函數為 shifted Legendre polynomial

或 discrete cosine 時，垂直方向的關聯性長度皆在 1.5 公尺到 2.5 公尺，高於傳

統單一孔位分析時所估計的值，造成這個結果的原因可能是因為水平方向的趨

勢誤差所造成，尤其在孔位較多且水平方向變異性較大的案例中，為了擬合整

體空間的趨勢，某些孔位的資料可能全部被視為變異性，如圖 4-88 X 方向趨勢

在 X 座標較小的地方，現地的 qc資料幾乎都大於擬合出來的趨勢函數，再加上

垂直方向的資料相當充足，這就使 step2 估計的垂直方向關聯行長度較大，而

基函數為 radial basis 時估計的垂直方向關聯性長度大約 0.8 公尺，與原作者估

計的數值較接近，但從客觀的模型證據的的分數來看，Radial basis 的分數較其

他兩種基函數低，而本研究一次分析整個現地的方法相較於傳統單一孔位的分

析較能完整表達現地的狀況，因此，傳統單一孔位的分析方法或多或少都會產

生過擬合，而客觀的模型證據進一步驗證這了這一點。 
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4. 在 Baytown 的案例中可以發現無論是上半部或下半部資料的水平方向參數都沒

辦法準確預估，雖然 Whittle-Matérn 模型能透過平滑性參數 ν 來表現更多種可

能的現地關聯性，但仍有許多模型是 Whittle-Matérn 模型沒辦法表現的，例如：

binary noise model，沒能使用正確的 ACF 可能就是造成水平方向參數無法準確

估計的原因之一，雖然如此，仍繼續使用 Whittle-Matérn 模型的原因在於我們

並不能預測現地的資料屬於哪一種 ACF 形式，包含平滑性的 Whittle-Matérn 模

型已經是目前較好的選擇。水平方向的資料點距離太遠也是造成水平方向參數

無法準確預估的原因之一，根據吳采容 (民 106) 的研究發現，當水平資料距離

大於 2 倍的關聯線長度時，該資料點對判斷關聯性長度並沒有幫助，在此案例

的水平間距大約在 6 公尺到 22 公尺，而 Stuedlein et al. (2012) 利用 0.8d̅所估計

出來的水平方向關聯性長度大約 3 公尺到 10 公尺，d̅為趨勢與震盪項交點的平

均距離，而此案例的水平方向距離大多超過兩倍的關聯性長度，以上兩個原因

皆有可能造成水平方向參數無法準確預估。 

5. 在本研究分析的案例中並沒有發現哪一種趨勢函數的表現有系統性的優於其他

兩種，未來可以嘗試其他不同形式的趨勢函數。 
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附錄 A 公式推導 

Step1 舊版公式推導： 

f(Y|S, σ, δv, δh, νv, νh, M)函數最佳化的問題為一個分成三個部分，第一部分為 S，

也就是 sk (k = 0, 1,…,m) 的求解，第二部分為 σ，第三部分為 (δv, δh, νv, νh)，第一與

第二部分有解析解，故在此推導 S 及 σ 的解。在 S 的推導中，將 sk以 sk
-2替代且將

函數 f(Y|S, σ, δv, δh, νv, νh, M)取對數會較容易推導： 

ln[𝑓(Y|S, σ, δv, δh, νv, νh, M)] 

= −
𝑛

2
ln(2𝜋) −

1

2
ln(|Σ + Φ × Ω × Φ𝑇|) −

1

2
YT(Φ × Ω ×ΦT + Σ)−1Y] 

A-1 

要解 sk的最佳解，也就是說∂ln[f(Y|S, σ, δv, δh, νv, νh, M)]/∂sk
-2 = 0，前半部利用

martrix determinant identity |A+B×D| = |A|×|I+D×A-1×B| 與偏微分的恆等式∂ln(|A|)/∂x 

= trace[A-1×(∂A/∂x)]： 

∂ ln(|Φ × Ω ×ΦT + Σ|)

∂sk
−2  

=
∂[ln(|Φ × Σ−1 × ΦT + Ω−1|) + ln(|Ω|) + ln(|Σ|)]

∂sk
−2  

= trace [(Φ × Σ−1 × ΦT + Ω−1)−1 ×
∂(Φ× Σ−1 ×Φt + Ω−1)

∂sk
−2 ] +

∂ ln(|Ω|)

∂sk
−2  

= trace [C ×
∂(Φ × Σ−1 × ΦT + Ω−1)

∂sk
−2 ] +

∂ ln(|Ω|)

∂sk
−2  

= trace [C ×
∂Ω−1

∂sk
−2 ] +

∂ln (|Ω|)

∂sk
−2 = Ckk − sk

2 

A-2 
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後半部利用 martrix inversion lemma (A×B×AT+D)-1 = D-1-D-1×A×(AT×D-1×A+B-1)-

1×AT×D-1以及偏微分恆等式∂(A-1)/∂x = -A-1×∂(A)/∂x×A-1： 

∂[YT(Φ × Ω × ΦT + Σ)−1Y]

∂sk
−2  

=
∂[YTΣ−1Y − YTΣ−1Φ(ΦTΣ−1Φ+ Ω−1)−1ΦTΣ−1Y]

∂sk
−2  

= −YTΣ−1Φ(ΦTΣ−1Φ+ Ω−1)−1 ×
∂(ΦTΣ−1Φ+ Ω−1)

∂sk
−2  

× (ΦTΣ−1Φ+ Ω−1)−1ΦTΣ−1Y = μT ×
∂(Ω−1)

∂sh
−2 × μ = μk

2 

A-3 

將兩部分合併後可得： 

∂ln [𝑓(Y|S, σ, δv, δh, νv, νh, M)]

∂sk
−2 = −

1

2
× (

Ckk

sk
2 − 1) × sk

2 −
1

2
× μk

2 A-4 

偏微分等於 0帶入後可解得： 

(new sk
2) =

μk
2

1 − Ckk/(old sk
2)
=
(old sk

2) × μk
2

(old sk
2) − Ckk

 A-5 

σ 的部分一樣以 σ-2取代 σ 並進行偏微分，前半部分為： 

𝜕 ln(|Φ × Ω × Φ𝑇 + Σ|)

𝜕𝜎−2
 

=
𝜕[(ln|Φ × Σ−1 ×Φ𝑇 + Ω−1|) + 𝑙𝑛(|Ω|) + ln (|Σ|)]

𝜕𝜎−2
 

= 𝑡𝑟𝑎𝑐𝑒 [(Φ × Σ−1 ×Φ𝑇 + Ω−1)−1 ×
𝜕(Φ × Σ−1 × Φ𝑇 + Ω−1)

𝜕𝜎−2
] +

𝜕 ln(|Σ|)

𝜕𝜎−2
 

= 𝑡𝑟𝑎𝑐𝑒(𝐶 × Φ × 𝑅−1 × Φ𝑇) − 𝑁 × 𝜎2  

A-6 
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其中 R = Σ/σ2。後半部分為： 

∂[YT(Φ × Ω × ΦT + Σ)−1Y]

∂sk
−2  

= YT
∂[(Φ × Ω × ΦT + Σ)−1]

∂σ−2
Y = −YT(ΦΩΦT + Σ)−1

∂(Σ)

∂σ−2
(ΦΩΦT + Σ)−1Y 

= YT[Σ−1 − Σ−1Φ(ΦTΣ−1Φ+ Ω−1)−1ΦTΣ−1] 

× (σ2Σ)[Σ−1 − Σ−1Φ(ΦTΣ−1Φ+ Ω−1)−1ΦTΣ−1]Y 

= [YT − YTΣ−1Φ(ΦTΣ−1Φ+ Ω−1)ΦT](σ2Σ−1) 

× [Y − Φ(ΦTΣ−1Φ+ Ω−1)−1ΦTΣ−1Y] 

= (Y − Φ × μ)TR−1(Y − Φ × μ) 

A-7 

將前後兩式合併後可得： 

∂ ln[𝑓(Y|S, σ, δv, δh, νv, νh, M)]

∂σ−2
 

= −
1

2
× [σ2 × trace(C × Φ × Σ−1 × ΦT) − N × σ2] 

−
1

2
× (Y − Φ × μ)TR−1(Y − Φ × μ) 

A-8 

偏微分等於 0且 R = Σ/σ2帶入後可解得： 

(new σ2) =
(Y − Φ × μ)TR−1(Y − Φ × μ)

N − trace(C × Φ × Σ−1 ×ΦT)
 

=
(old σ2) × (Y − Φ × μ)TΣ−1(Y − Φ × μ)

N − trace(C × Φ × Σ−1 × ΦT)
 

A-9 
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Step1 新版公式推導： 

為了解決文中所提到的運算矩陣過大的問題，本研究重新推導 step1 的新版運

算公式，在新版的公式中，共變異數矩陣 Σ = σ2×(Rh⊗Rz)，基函數 Φ = Φh⊗Φz 

根據恆等式(A⊗B)-1 = A-1⊗B-1, (A⊗B)T = AT⊗BT, (AT⊗B)×vec(C) = vec(BCA)，

公式 3-21 的 C 與公式 3-22 的 μ 可以分別改寫成： 

C = (Ω−1 +ΦT × Σ−1 × Φ)−1 

= (Ω−1 + σ−2[(Φℎ
𝑇Rℎ

−1Φℎ) ⊗ (Φℎ
𝑇Rℎ

−1Φℎ)])
−1 

A-10 

μ = C × ΦT × Σ−1 × Y = CΦ𝑇[𝜎2(𝑅ℎ⊗𝑅𝑧)]
−1𝑌 

= 𝜎−2𝐶Φ𝑇(𝑅ℎ⊗𝑅𝑧)
−1𝑌 = 𝜎−2𝐶[(Φℎ

𝑇𝑅ℎ
−1)⊗ (Φ𝑧

𝑇𝑅𝑧
−1)]𝑣𝑒𝑐[𝑚𝑎𝑡(𝑌)] 

= 𝜎−2𝐶𝑣𝑒𝑐[Φ𝑧
𝑇𝑅𝑧

−1𝑚𝑎𝑡(𝑌)𝑅ℎ
−1Φℎ] 

A-11 

公式 A-9 可以改寫成： 

(new σ2) =
(old σ2) × (Y − Φ × μ)TΣ−1(Y − Φ × μ)

N − trace(C × Φ × Σ−1 × ΦT)

=
[𝑌 − (Φℎ⊗Φ𝑧)𝜇]

𝑇(𝑅ℎ
−1⊗𝑅𝑧

−1)[𝑌 − (Φℎ⊗Φ𝑧)𝜇]

𝑁 − 𝑡𝑟𝑎𝑐𝑒[(𝑜𝑙𝑑 𝜎−2)𝐶(Φℎ
𝑇⊗Φ𝑧

𝑇)(𝑅ℎ
−1⊗𝑅𝑧−1)(Φℎ⊗Φ𝑧)]

=
[𝑌 − 𝑣𝑒𝑐(Φ𝑧𝑚𝑎𝑡(𝜇)Φℎ

𝑇)]𝑇(𝑅ℎ
−1⊗𝑅𝑧

−1)[𝑌 − 𝑣𝑒𝑐(Φ𝑧𝑚𝑎𝑡(𝜇)Φℎ
𝑇)]

𝑁 − 𝑡𝑟𝑎𝑐𝑒((𝑜𝑙𝑑 𝜎−2)𝐶[(Φℎ
𝑇𝑅ℎ

−1Φℎ) ⊗ (Φ𝑧
𝑇𝑅𝑧−1Φ𝑧)])

=
𝑣𝑒𝑐[𝑚𝑎𝑡(𝑌) − Φ𝑧𝑚𝑎𝑡(𝜇)Φℎ

𝑇]𝑇(𝑅ℎ
−1⊗𝑅𝑧

−1)𝑣𝑒𝑐[𝑚𝑎𝑡(𝑌) − Φ𝑧𝑚𝑎𝑡(𝜇)Φℎ
𝑇]

𝑁 − 𝑡𝑟𝑎𝑐𝑒((𝑜𝑙𝑑 𝜎−2)𝐶[(Φℎ
𝑇𝑅ℎ

−1Φℎ) ⊗ (Φ𝑧
𝑇𝑅𝑧−1Φ𝑧)])

=
𝑣𝑒𝑐[𝑚𝑎𝑡(𝑌) − Φ𝑧𝑚𝑎𝑡(𝜇)Φℎ

𝑇]𝑇𝑣𝑒𝑐(𝑅𝑧
−1[𝑚𝑎𝑡(𝑌) − Φ𝑧𝑚𝑎𝑡(𝜇)Φℎ

𝑇]𝑅ℎ
−𝑇)

𝑁 − 𝑡𝑟𝑎𝑐𝑒((𝑜𝑙𝑑 𝜎−2)𝐶[(Φℎ
𝑇𝑅ℎ

−1Φℎ)⊗ (Φ𝑧
𝑇𝑅𝑧−1Φ𝑧)])

 

A-12 

根據恆等式 vec(A)Tvec(B) = tr(ATB) 

(new σ2) =
𝑡𝑟𝑎𝑐𝑒(Λ𝑇𝑅𝑧

−1Λ𝑅ℎ
−1)

𝑁 − 𝑡𝑟𝑎𝑐𝑒((𝑜𝑙𝑑 𝜎−2)𝐶[(Φℎ
𝑇𝑅ℎ

−1Φℎ) ⊗ (Φ𝑧
𝑇𝑅𝑧−1Φ𝑧)])

 A-13 

其中 Λ = mat(Y) – Φzmat(μ)Φh
T  
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公式 A-1 後半段根據 Woodbury (1950) 提出的 Woodbury matrix identity 可以獲得恆

等式 (ABAT+C)-1 = C-1-C-1A(ATC-1A+B-1)-1ATC-1可以改寫成： 

Y𝑇(Σ + ΦΩΦ𝑇)−1𝑌

= 𝑌𝑇[Σ−1 − Σ−1Φ(Ω−1 +Φ𝑇Σ−1Φ)−1Φ𝑇Σ−1]𝑌

= 𝑌𝑇Σ−1𝑌 − T𝑇Σ−1Φ(Ω−1 +Φ𝑇Σ−1Φ)−1Φ𝑇Σ−1𝑌

= 𝜎−2(𝑌𝑇(𝑅ℎ
−1⊗𝑅𝑧

−1)𝑌 − 𝑌𝑇[(𝑅ℎ
−1Φℎ) ⊗ (𝑅𝑧

−1Φ𝑧)] 

  Ω
1

2 (𝜎2𝐼 + Ω
1

2[(Φℎ
𝑇𝑅ℎ

−1Φℎ) ⊗ (Φ𝑧
𝑇𝑅𝑧

−1Φ𝑧)]Ω
1

2)
−1

Ω
1

2[(Φℎ
𝑇𝑅ℎ

−1) ⊗ (Φ𝑧
𝑇𝑅𝑧

−1)]𝑌) 

= σ−2(𝑌𝑇𝑣𝑒𝑐[𝑅𝑧
−1𝑚𝑎𝑡(𝑌)𝑅ℎ

−1] − 𝑣𝑒𝑐[Φ𝑧
𝑇𝑅𝑧

−1𝑚𝑎𝑡(𝑌)𝑅ℎ
−1Φℎ]

𝑇 

  Ω
1
2 (𝜎2𝐼 + Ω

1
2[(Φℎ

𝑇𝑅ℎ
−1Φℎ) ⊗ (Φ𝑧

𝑇𝑅𝑧
−1Φ𝑧)]Ω

1
2)
−1

Ω
1
2𝑣𝑒𝑐[Φ𝑧

𝑇𝑅𝑧
−1𝑚𝑎𝑡(𝑌)𝑅ℎ

−1Φℎ]) 

A-14 

令 LLT = σ2I + Ω1/2[(Φh
TRh

-1Φh)⊗(Φz
TRz

-1Φz)]Ω
1/2，公式 A-14 可在改寫成： 

Y𝑇(Σ + ΦΩΦ𝑇)−1𝑌

= 𝜎−2 (𝑌𝑇𝑣𝑒𝑐[𝑅𝑧
−1𝑚𝑎𝑡(𝑌)𝑅ℎ

−1]

− 𝑣𝑒𝑐[Φ𝑧
𝑇𝑅𝑧

−1𝑚𝑎𝑡(𝑌)𝑅ℎ
−1Φℎ]

𝑇Ω
1
2𝐿−𝑇𝐿−1Ω

1
2𝑣𝑒𝑐[Φ𝑧

𝑇𝑅𝑧
−1𝑚𝑎𝑡(𝑌)𝑅ℎ

−1Φℎ])

= 𝜎−2(𝑣𝑒𝑐[𝑚𝑎𝑡(𝑌)]𝑇𝑣𝑒𝑐[𝑅𝑧
−1𝑚𝑎𝑡(𝑌)𝑅ℎ

−1] − 𝛽𝑇𝛽)

= 𝜎−2(𝑡𝑟𝑎𝑐𝑒[𝑚𝑎𝑡(𝑌)𝑇𝑅𝑧
−1𝑚𝑎𝑡(𝑌)𝑅ℎ

−1] − 𝛽𝑇𝛽) = 𝜎−2(𝛼 − 𝛽𝑇𝛽) 

A-15 

其中 α = trace[mat(Y)Rh
-1mat(Y)TRz

-1], β = L-1Ω1/2vec[Φz
TRz

-1mat(Y)Rh
-1Φh] 

 

 

 

 

 

 

 



doi:10.6342/NTU201902309

 

133 

 

 

公式 A-1 的前半部分可以利用矩陣行列式值的恆等式|A+B×D| = |I+D×A-1×B|×|A|進

一步推導： 

|Σ + ΦΩΦ𝑇|

= |Σ + ΦΩ
1
2Ω

1
2Φ𝑇| = |I + Ω

1
2Φ𝑇Σ−1ΦΩ

1
2| |Σ|

= σ2𝑁−2(𝑚+1) |𝜎2𝐼 + Ω
1
2(Φℎ

𝑇⊗Φ𝑧
𝑇)(𝑅ℎ

−1⊗𝑅𝑧
−1)(Φℎ⊗Φ𝑧)Ω

1
2| |𝑅ℎ⊗𝑅𝑧|

= σ2𝑁−2(𝑚+1) |𝜎2𝐼 + Ω
1
2[(Φℎ

𝑇𝑅ℎ
−1Φℎ) ⊗ (Φ𝑧

𝑇𝑅𝑧
−1Φ𝑧)]Ω

1
2| |𝑅ℎ⊗𝑅𝑧| 

A-16 

利用矩陣行列式值恆等式|Am×m⊗Bn×n| = |A|n|B|m，且令 Lh, Lz 為 Rh, Rz 的 Cholesky 

decompositions，公式 A-16 可以改寫成： 

|Σ + ΦΩΦ𝑇| = σ2𝑁−2(𝑚+1)|𝐿𝐿𝑇||𝑅ℎ|
𝑛|𝑅𝑧|

𝑛𝑠 

= σ2𝑁−2(𝑚+1)|𝐿|2|𝐿ℎ|
2𝑛|𝐿𝑧|

2𝑛𝑠 

A-17 

又由於 L, Lh, Lz皆為下三角矩陣，所以行列式值等於主對角線相乘： 

|Σ + ΦΩΦ𝑇| = σ2𝑁−2(𝑚+1) (∏𝐿𝑖𝑖

𝑚+1

𝑖=1

)

2

(∏𝐿ℎ,𝑖𝑖

𝑛𝑠

𝑖=1

)

2𝑛

(∏𝐿𝑧,𝑖𝑖

𝑛

𝑖=1

)

2𝑛𝑠

 A-18 

取自然對數後可得： 

ln(|Σ + ΦΩΦ𝑇|) 

= [2N − 2(m + 1) ln(σ) + 2 ∑ ln (𝐿𝑖𝑖)

𝑚+1

𝑖=1

+ 2n∑ln (𝐿ℎ,𝑖𝑖) + 2ns∑ln (𝐿𝑧,𝑖𝑖)

𝑛

𝑖=1

𝑛𝑠

𝑖=1

] 
A-19 

將公式 A-15 與 A-19 整理合併即可得到公式 3-26。 
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Step3 公式推導 

此部分將推導 step3 公式 3-42，首先假設 Y 與 Yu為聯合常態，平均值向量與共

變異數矩陣分別為： 

E ([
Yu

Y
] |σ, δ, ν, Y,M′) = [

tu

t
]    COV ([

Yu

Y
] |σ, δ, ν, Y,M′) = [

Σuu Σuo

(Σuo)T Σ00
] A-20 

其中 E(.)為平均值向量，COV(.)為共變異數矩陣，Σoo 為 Y 的共變異數矩陣，Σoo = 

σ2×(Rh⊗Rz)，Σuu為 Yu的共變異數矩陣，Σuu = σ2×(Rh
uu⊗Rz

uu)，Σuo則是 Y 與 Yu之

間的共變異數矩陣，Σuo = σ2×(Rh
uo⊗Rz

uo)。 

     

   

 

u u u u u u u u u u u u

h 1 2 1 2 h 1 3 1 3 h 1 nu 1 nu

u u u u u u u u

h 2 3 2 3 h 2 nu 2 nu

uu

h

u u u u

h nu 1 nu nu 1 nu

1 x x , y y x x , y y x x , y y

1 x x , y y x x , y y

R 1

x x , y y

SYM. 1

 

         
 
      
 

  
 

   
 
 

 A-21 

     

   

 

u u u u u u

z 1 2 z 1 3 z 1 p

u u u u

z 2 3 z 2 p

uu

z

u u

z p 1 p

1 z z z z z z

1 z z z z

R 1

z z

SYM. 1



      
 
    
 

  
 

  
 
 

 A-22 

     

     

     

u u u u u u

h 1 1 1 1 h 1 2 1 2 h 1 no 1 no

u u u u u u

h 2 1 2 1 h 2 2 2 2 h 2 no 2 no

uo

h

u u u u u u

h nu 1 nu 1 h nu 2 nu 2 h nu no nu no

x x , y y x x , y y x x , y y

x x , y y x x , y y x x , y y

R

x x , y y x x , y y x x , y y

         
 
         
 

  
 
 
         
 

 A-23 

     

     

     

u u u

z 1 1 z 1 2 z 1 no

u u u

z 2 1 z 2 2 z 2 no

uo

z

u u u

z nu 1 z nu 2 z nu no

z z z z z z

z z z z z z

R

z z z z z z

      
 
      
 

  
 
 
      
 

 A-24 
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在已知 Y 的情況下，Yu仍是聯合常態，平均值向量與空變異數矩陣分別為： 

E(Yu|σ, δ, ν, Y,M′) = tu + Σuo(Σoo)−1(Y − t)

= tu + [σ2(Rh
uo⊗Rz

uo)][σ2(Rh⊗Rz)]
−1(Y − t)

= tu + [(Rh
uoRh

−1) ⊗ (Rz
uoRz

−1)](Y − t)

= tu + [(Rh
uoRh

−1) ⊗ (Rz
uoRz

−1)]vec[mat(Y − t)]

= tu + vec[Rz
uoRz

−1mat(Y − t)Rh
−1(Rh

uo)T] 

A-25 

COV(Yu|σ, δ, ν, Y, M′) = Σuu − Σuo(Σoo)−1(Σuo)T

= σ2[Rh
uu⊗Rz

uu − (Rh
uo⊗Rz

uo)(Rh⊗Rz)
−1(Rh

uo⊗Rz
uo)T]

= σ2[Rh
uu⊗Rz

uu − ([Rh
uoRh

−1(Rh
uo)T] ⊗ [Rz

uoRz
−1(Rz

uo)T])] 

A-26 

其中 mat(Y-t) 是一個 (nns) 的矩陣，由於未知鑽孔 z 方向的深度 (zu
1, z

u
2, …, z

u
p ) 

需在已知鑽孔的深部範圍內，而且 z 方向的資料相當密集，所以，對 z 方向而言

uu-uo(oo)-1(uo)T接近零矩陣，也就是說 Σuu  uo(oo)-1(uo)T，因此，共變異數矩

陣可以表示成： 

COV(Yu|σ, δ, ν, Y, M′) ≈ σ2([Rh
uu − Rh

uoRh
−1(Rh

uo)T] ⊗ Rz
uu) A-27 

未知鑽孔的資料 Yu 則可以表示成： 

Yu = tu + vec[Rz
uoRz

−1mat(Y − t)Rh
−1(Rh

uo)T] + σ(Lh
u ⊗Lz

u)𝐙 

= tu + vec[Rz
uoRz

−1mat(Y − t)Rh
−1(Rh

uo)T] + σ(Lh
u ⊗Lz

u)vec[mat(𝐙)] 

= tu + vec[Rz
uoRz

−1mat(Y − t)Rh
−1(Rh

uo)T] + σvec[Lz
umat(𝐙)(Lh

u)T] 

A-28 

其中Lh
u為Rh

uu − Rh
uoRh

−1(Rh
uo)T的 Cholesky decompositions 下三角矩陣，Lz

u為Rz
uu的

Cholesky decompositions 下三角矩陣，Z 是一個(p×nu) ×1 標準常態樣本的向量，而

mat(Z)為一個 (pnu) 的矩陣，公式 A-28 推導結果極為式 3-42。 
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附錄 B 提問與答覆 

王瑞斌 博士 

提問與建議 作者答覆 

請問甚麼叫做 95%信心區間? 我們一次會取樣 2000 組的資料，

95%信心區間就是百分之 2.5 到百分之

97.5 這個範圍內的資料，就是我們的

95%信心區間。 

論文開頭裡的 sparse Bayesian 

learning 跟一般的 Bayesian updating 有

甚麼不一樣? 

 

SBL 有是用一般的 Bayesian 分析，

但他的目標不是要找後驗分布，他的目

標是要幫我們決定要選哪些 basis。 

在做 Bayesian updating 的時候需要

先驗，需要 likelihood function，有後驗

分布，那你先驗分布是甚麼? 

 

S 是權重 W 的標準差，W 是一個

隨機變數，他的先驗分布是一個常態分

佈，他的標準差 S 也是一個隨機變數，

S 的先驗分布是 inverse Gamma 分布。 
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權重是給什麼的權重? 

 

權重是給 basis，以 Legendre 為例，

第一項是常數 1，但如果區是向 qt 的資

料可能是 3 或 5，那 W 就會是 3 或 5，

透過權重乘以 basis 來進行模擬。 

投影片的第四頁的研究動機有說

工程師在做判斷的時候會有主觀的影

響，這頁的投影片有 show 出不同種的

可能，但我是工程師的話我看出他有一

個很明顯的三次式，所以我會用三次式

去擬合。 

這筆資料真正的趨勢其實是一次，

所以不能以人主觀的判斷來判定，所以

我們研究才希望能以客觀的方法來進

行判斷。 

得到的 evidence 的意義是甚麼? 

 

他是 bayesian 分析的 by-product，

可以說他是 model 的 likelihood，這裡

的 model 就是 basis 的型式，他可以告

訴我們到底哪一個 basis 的種類比較合

理。 

Overfit 對工程師來說應該會覺得

他預測做得很好，但你說他還是有它的

缺點，缺點是甚麼? 

 

為在大多大地工程的實際資料都

會有局部抖動的情況，如果要以一般的

basis 去做 fit 的話需要很高的 order，對

我們的計算非常不利，即使可以 fit 得

很好，但在後續進行模擬的時候會相當

困難，而這些抖動的情況如果利用 auto-

correlation model 只需要一兩個參數就

可以進行模擬，所以這裡才會說不希望

overfit。 
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林志平 博士 

提問與建議 作者答覆 

Kronecker product 跟 cholesky 

decomposition 在哪一個步驟有用到? 

Step1 跟 Step2 都有。 

有沒有建議哪一種 basis 比較好? 原本期望 radial basis的表現會是最

好的，而且最好不要跟前人的結果有太

多的衝突，隨然 radial basis 的結果跟前

人研究較接近，但是從客觀的證據來看

radial basis 並不一定都比較好，但是每

個案例的結果又不太一樣，所以真的沒

有辦法說哪一種 basis 比較好，也是比

較可惜的地方。 

SBL 中為什麼 S 要大於 0.5 倍的 σ

而不是其他數值? 

之前的研究試過很多模擬的案例，

等於 0.5 時模擬的趨勢大約有 95%的機

會包含真正的趨勢。 
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為什麼會選這 3 種 basis? Legendre 跟 cosine 是比較常見的

basis，在 1D 的 case 也有做這兩個，當

初會想用 radial 的原因是因為在水平方

向常常可以看到有某些孔的數值會偏

高或偏低，所以想利用 radial 可以調整

局部的這個特性來擬合，但最後的結果

我們發現 radial basis 會為了去 fit 大不

分的孔而把突出的那孔視為變異性，結

果就會跟常數很像。 

為什麼要用 W-M mode，能不能透

過調整 SExp 的 sof 的大小來進行模擬? 

不行，因為 SExp 在原點的地方是

不可微分的，所以無論 sof 多大都會有

局部抖動的情況，所以需要 W-M model

跟 nu 來調整平滑性。 

Radial basis 永遠都是正的對趨勢

不會有所限制嗎? 

W 可以是付得所以不會有影響。 

 




