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Abstract

Traditional wireless sensor networks (WSN) are powered by batteries. Once the batteries
run out, the devices become useless until they are replenished. However, for some kinds
of applications, such as building structure monitoring, it is nearly impossible to replenish
the batteries of devices. To overcome this problem, people turn to the energy-harvesting
(EH) WSNs which can harvest energy'from the environment. In this work, we construct
theoretic models where devices are eompeting for limited transmission resource. Since
the devices are selfish, they all choose. to|transmit regardless of others’ strategy, which
leads to the severe network congestion. We..propose two incentive mechanisms, a pricing
scheme and an intervention scheme, that prohibit the systemoutcome from the worst case.
The incentive scheme can induce the désiredoptimal outcomes which maximize the social
welfare or the proportional fairness. In the last part, we.also build an extension model in
which the energy can be stored for the future. ‘'We show that it is more likely that the
device chooses to save some energy for the period when the energy harvesting probability
is comparatively low. On the other hand, the devices will choose a higher transmission
probability at the period when the energy harvesting probability is comparatively high.
Keywords: game theory, Nash equilibrium, energy-harvesting WSNs, incentive mechanism,

social optimal, proportional fairness
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Chapter 1

Introduction

Due to the advancements in the technology for miniaturization of electronic devices,
wireless sensor networks (WSNs) have drawn increasing attention recently. There are
two types of WSNs according to how the sensors are powered up. The first is the battery-
powered WSNs, where the energy of the battery can only deplete with time. The second
type are energy-harvesting*WSNs, where the sensor makes tse of renewable energy to
maintain its operation and the battery energy usually remains,at low level to avoid energy
leakage [1]. In both types of W.SN’s, proper energy management is essential to maximize
each sensor’s utility, such as transmission suceess rate. As the energy level typically
fluctuates at low level (Fig. 1.1), modeling of energy-harvesting sensors require the
knowledge of instantaneous harvesting probability and the transmission policy.

In a model for energy-harvesting WSNSs, the transmission policy of energy harvesting

Stored Energy
Snapshot ... Energy-Harvesting (Discharge)

Energy-Harvesting (Recharge)

— =— =— = Battery-Powered

(«

Figure 1.1: The comparison between battery-powered WSNs and WSN-HEAP.



device should take the harvesting probability into consideration. Take Fig. 1.1 as an
example. At time ty, the device successfully harvests a unit of energy and transmit
information packets at the same time slot. (Assume that a unit of energy can afford the
number of packets that bring a unit of information.) At time ¢;, the device harvests a
unit of energy but transmit at the next time slot ¢; + 1. In general, the device should
choose a transmission policy that maximizes the probability of successful transmission,
given the probability of harvesting energy. In this work, we use game theory to build
models for energy-harvesting WSNs. The transmission resources are limited so that the
devices have to compete with each other. In the first model, we consider a battery-based
WSN model where devices are not aware of harvesting energy. The devices choose the
transmission policy to maximize-its own probability of successful transmission. In the
second model, we propose.our main medel for.energy<harvesting WSNs where devices
harvest energy from the environment. The devices maximize its own probability of
successful transmission based on the knowledge of energy-harvesting probabilities. In
the third model, we extend the energy-halix{esting model into the multi-stage one. The
devices are able to store energy for future and consider the future benefit of transmission.

Energy-harvesting technique can be implemented on most electric devices. However,
we focus on WSNss in this work because of their well-known problem: sensors are easily
depleted and difficult to renew, which is exactly the problem that the energy-harvesting
technique aims to solve. Besides, sensors are typically small in size and equipped with
small energy capacity, which matches the setting in our models. Therefore, to stay focused
at the energy-harvesting issue, we only discuss energy-harvesting WSNs throughout this

work.



Chapter 2

Related Works

2.1 Energy Issue in WSNs

Energy management plays an impottant role in wireless sensor networks (WSNs). Pantazis
et al. provide a survey on power control issue.in WSNs [2].  The power conservation
mechanisms are classified ifito two categories: passive and active. Passive power conservation
mechanisms reduce energy consumption of sensor node by turning off its transceiver
when there is no transmissiony whereas active power.conservation mechanisms count on
concept of improving the node’s operation instead of turning off the radio module into
power-saving mode.

Compared with the traditional WSNs, the energy harvesting WSNss start to arise much
attention in these years. The energy harvesting devices have some fundamental differences
from the traditional ones [1]. First, the energy source is different: traditional devices aim
to utilize the battery energy efficiently, while energy-harvesting devices aim to use the
harvested energy smartly. Second, the energy capacity is different: typically, traditional
devices have a large-capacity battery to reduce the replenishment cost, while energy-
harvesting devices are equipped small-capacity storage to minimize the size of device.

Kansal ef al. propose an analytic model that characterizes the power management of

energy harvesting WSNs [3][4]. The authors propose the energy-neutral operation where



the energy used never exceeds the energy harvested. Given the energy-neutral condition
is achieved, they also seek the optimal network performance.

Seyedi and Sikdar propose a Markov model for energy harvesting nodes and derive
the closed form for the loss probability and the average time to run out energy [5]. Such
analytic results provide a good guideline for engineers to design protocols for energy
harvesting WSNs. Niyato ef al. develop a multidimensional discrete-time Markov chain
to model the channel, the solar radiation, and the packet arrival [6]. The authors then
use Nash bargaining solution to obtain the optimal sleep-or-wake-up strategy. Lei et al.
propose a generic model for energy harvesting by using Markov chain [7]. They derive
the optimal transmission policy for the node to decide whether to transmit or not. The
node would transmit if the value of transmission exceeds a threshold, which depends on
its current energy state. Susu et al._present a stochasticframework for energy harvesting
WSN nodes [8], which enables designers to assess statistical'system performance such as
operation time or lifetime. Ho et al. propose a generalized Markovian (GM) model that
introduces an additional parameter to cap.tl_lre the non-stationary properties of energy-
harvesting circumstance [9]. Based on their empirical experiments, the GM model is
better than the stationary Markovian model:

Sharma ef al. study the optimal policy for energy harvesting nodes. The generated
data bits and replenished energy are independently independent and identically distributed
random variable respectively. After deriving the necessary condition for stability, the
authors construct the throughput-optimal policy and the delay-optimal policy.

However, the energy conservation is not always beneficial since energy storage units
have limited capacity and are leakage-prone. The more energy store in the storage unit, the
more energy leak away. Zhu et al. formulate the leakage problem and implement leakage-

aware feedback control techniques to utilize energy that could leak away effectively[10].



2.2 Medium Access Control Game

Akkarajitsakul et al. provide a broad survey for multiple access game-theoretic models
[11]. Yang et al. construct a non-cooperative game for CSMA/CA networks and design
an adaptive price setting to achieve the desired outcome [12]. Cui ef al. consider multiple
contention measure signals in the random access game model [13]. Their work also
studies the dynamics for random access game, including best-response, gradient-play,
and Jacobi-play.

Chen et al. propose a dynamic game model for contention control [14]. The node
can choose its own transmission probability to maximize its own utility. Chowdhury
et al. present a game-theoretic model for contention control in IEEE 802.16/WiMax
networks [15]. The game considers a saturated network where nodes always have packets
to transmit. To ensure the uniquesexistence of Nash-equilibrium, the author design a
special form of utility function.

Since the equilibrium is,not necessarily the best outcome.incentive schemes are used
to achieve the best outcome. Park ez al. have designed a series of new incentive schemes
based on intervention to induc¢the target outcome[16]. The pricing scheme, the repeated
interaction, and the intervention-schemes are well-known for providing incentives to
the users. However, to charge price requires.a secure and reliable process between the
manager and the user, which creates burden on both sides. On the other hand, the repeated
interaction is hard to implement since users change frequently in mobile networks and
fixed interactions are hard to sustain. The intervention schemes directly impose intervention
on the users, which exclude the problems of pricing schemes and repeated interactions.
Compared with the general intervention schemes in [16], the authors provide an example

by applying intervention schemes in medium access control game in [17].



2.3 Contribution

In this work, we construct game-theoretic models for energy harvesting WSNs where
several devices compete for limited transmission resources (e.g., wireless channels). The
models are generalized from the previous models which consider only single transmission
resource. The models can apply to many promising applications. For example, for
machine type communication, the wireless machines contend for random access channels
(RACH) for dedicated transmission channel [18]. Typically, the number of RACH resources
is fewer than the number of machine. Only the machines receiving grants from the base
station (BS) can start transmission. However, if more than two machines are granted
for transmission, both machines encounter collision and the transmission fails. Besides
collisions, the machine also_have to considef: the energy harvesting probability when
determining the transmission policy: The similar preblem arises in many other wireless
applications.

We generalize the medium access control (MAC) game model proposed in [17] and
the one in [12]. Compared with their model, our models-further consider the issue of
energy harvesting and more than one transmission resource that the devices can request
for. We derive the proportionally fair outcome and the social optimal outcome, and adopt
two incentive schemes to achieve them. Finally, we extend the model to the multiple-

period model where the energy can be stored for the future use.



Chapter 3

One-Shot Models

In this chapter, we discuss one-shot models where devices make decisions simultaneously.
The devices have a chance to harvest energy for transmission. The transmission may
collide with other devices if twordevices choose the same transmission channel. To
emphasize the importance of energy| harvesting. issue, wefirst build a traditional WSN
model where sensors cannot harvest energy. ~Then we €onStruct our main model, the
energy-harvesting WSN model in the second section.

The first section considersya:typical model whete ‘the devieces have unlimited energy
source and need not to take energy issue,into consideration. This is a generalized form
of traditional median access control (MAC) model discussed in [14] [16], which consider
only single unit of transmission resource.

The second section considers the main model where the devices harvest energy from
the environment for transmission. In this model, the device harvests a unit of energy
with a fixed probability. The transmission cannot success if the device fails to harvest the

energy. That is, the transmission success rate is bounded by the harvesting probability.

3.1 The Random Access Control (RAC) Model

We consider a WSN where N devices asking for transmission resources from the base

station (BS). There are totally M transmission resource (channel) to allocate. Device
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i € N chooses a probability s; € [0, 1] to request a transmission channel from these M
channels. The set of possible strategies is denoted by S; for device i and S = §; x Sy X
... X Sy for all devices.

The device requesting for channel sends the request directly through that channel. If
two devices send the request at the same time, both requests collide and fail. Although
collisions are not favorite, there is no way for device to avoid collision before sending the
request since there is no global information about the channel occupation. A generally
used method for the device to request the channel is to choose randomly (with uniform
distribution). The model is therefore called random access control (RAC) model.

Given that every device randomly chooses a channel to request, the probability that a
device collides with the other is ﬁ On the contrary, the probability that a device does not
collide with the other is % Then thewvalue-of device as the transmission success rate

is:

vi(s) = s; | [0~ ) +.3.7‘MJ\;[1) =& [J- %)
i J#i

The first term in the product is the probability|that device ; does not request for a
channel, and the second term is the probability that device j requests a different channel
from the one that device 7 gets. The summation of these two terms is the probability that
device j does not collide with device 7. Then finally we know that the value v; is the
probability that device ¢ chooses to request and other devices do not collide with device :.

For example, consider a three-device system where the devices choose s; = 0.3, so =
0.5,s3 = 0.7. The number of transmission channel is M = 1. Then the value of first
device will be

v =0.3%(1—0.5)*(1—0.7) = 0.045

and similarly v, = 0.105 and v3 = 0.245. Due to unavoidable collisions, the transmission
success rate of each device is smaller than the transmission probability it chooses. Besides,

the value of third device is highest since it chooses the highest transmission probability.



Generally speaking, the device choosing the highest transmission probability obtains the
highest value.
Considering a special case M = 1, we obtain the previous models like [12] and [17]

which consider only single one transmission channel, with the definition of utility function

v;(s) = siH(l — ;).
J#
Since our model considers a more general case, the results derived in the following

sections can apply to these previous models.

3.2 The RAC Game: Definition and Solution Concept

After defining necessary notationsywe now introduee the mathematical tool to analyze
the system. Due to the selfish hature of wireless devices whe cares its own transmission,
we adopt several concepts in the game|theory-to analyze the model, such as the potential

game and the Nash equilibrium. Our/game model is formulated as a RAC game:

B W, (Si)ienr, (V0)iear)
We introduce the most basic equilibrium concept called Nash equilibrium.

Definition 3.1. (Nash Equilibrium) A strategy profile s* = (si,S2,...,Sn) is a Nash
equilibrium if no unilateral deviation in strategy is profitable for any single device, that
is,

wi(s;,s";) > ui(s;,s",),Vs; € S;, Vi,
wheres_; = (81, 82,...,8i1,Sit1,- - -, SN) is the strategy profile except for device i.

To derive Nash equilibrium, we have to solve the optimization problems with multiple
objective functions, which has no standard method to solve. However, we find that the

RAC game I'#*4¢ is a (exact) potential game whose equilibrium can be derived in an easier



way. First, we have to introduce the potential game.

Definition 3.2. (Potential Game) A game is an (exact) potential game if and only if there

exists a function P : § — R such that

P(sl,s ;) — P(si,s_) = ui(sh, s_;) —ui(si, s-4), Vi, s, 85

79

If u; is a continuous function with respect to s;, the condition is equivalent to

OP(s) B Ju;(s)
8si n 8si

Vi. 3.1

Potential games form a precious subset of games. In potential games, all players can
be thought of as optimizing a joint objective funetion, i.e., the potential function P. If the
deviation in strategy can increase some players utility, then it can also increase the value
of potential function. Therefore, the Strategy maximizing 'the joint objective function P
coordinates the Nash equilibrium. Then we.ean derive the Nash equilibrium by solving

single maximization problem.

3.3 Nash Equilibrium: A-Potential Game Approach

In this section, we use the potential function to derive the Nash equilibrium. To prove that

the RAC game is a potential game, we need the following lemma.

Lemma 3.1. Suppose u; are twice continuously differentiable. The game is a potential
game if and only if
(92u,- o 02uj

aSiaSj n 85,—03]-

) v717 j'
The detail explanation refers to Monderer and Shapleys’ work [19].

Theorem 3.2. The RAC game I'*4C is a potential game with the potential function

Ps) =M ]J(1 - %) (3.2)

10



Proof. To prove that RAC game is a potential game, we must show the condition in

Lemma 3.1 is satisfied.

0%u; 1 Sk O%u;
i = 1- 2ky = j Vi i,
aSiaSj M kl;é_z[]( M) 83i35j’ bd

In addition, the derived potential function must satisfy the condition in Definition 3.2.

Theorem 3.3. The unique Nash equilibrium strategy in I'%4C is st = 1 for all i.

Proof. Since the RAC game is,a potential games, the strategy maximizing P is the

equilibrium strategy s*.

max P = <M ]:[(1 y %) (3.3a)

subject to

s H( - %) > 0 (Individual Rationality)  (3.3b)
JF#i

s; € [0,1] (Strategy Space) (3.3¢)

Obviously, the objective function (3.3a) is linearly increasing with s; since the first-

order derivative

@P Sj

=10 -=7)>0
as,- oz M

is a positive constant. Therefore, the unique solution for this maximization problem is

sy =1 for all . H

The equilibrium s} = 1 for all 7 leads to an unwanted result where every device

requests for the transmission resource with probability one. The system will become full

11
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(a) The Nash Equilibrium (b) The maximum of potential function

Figure 3.1: The Nash equilibrium is the point that maximizes the potential function.

of aggressive devices requesting for limited transmission resource. To avoid this result,
we will propose several incentive schemes to induce better results later.

We visually show the Nash equilibrium in.'F'ig. 3.1.In Fig. 3.1(a), we show why
the device always chooses th_e strategy s; = 1. Thisis a two-device system. Whatever
strategy device 2 chooses, device 1 alv&.f;y-s'_g_h(:)ﬁ__)se;s 5] =%, .a.nd so does device 2, s5 = 1.
Besides, we find that the utility of deyi’be'ﬁ—fgafr.ll‘y iirlllcreases with its strategy.

In Fig. 3.1(b), we show that theip tenfélllai_- Vali.l%_: with respect to all possible strategy
profile (sy, s2). Recall that the' s"trate;lg):l profile (s’{lg s|§) = (1, 1) that maximizes the value
of potential function is the Nash e.quilibrium, which: coincides with the result in Fig.

3.1(a). Notice that the potential value 1s always negative as we derive in previous section.

3.4 The Energy-Harvesting RAC Game

In the previous section, we have constructed the RAC game and derived the Nash equilibrium
by adopting the potential game concept. In this section, we discuss the energy-harvesting
device, which has to harvest energy for transmission. The energy harvesting devices must
take the energy issue into consideration since the transmission may fail due to the absence

of harvested energy.

The harvesting probability is assumed to be a constant [4] [5] [7]. In [4], Kansal et

12



al. use a function P(t) to formulate the probability of harvesting energy at time ¢. In [5],
Seyedi ef al. set the probability a constant p,. In [7], Lei ef al. assume that the battery
is replenished with probability «, and is recharged with probability 3. In our work, we
denote the probability that device ¢ harvests one unit of energy by p;. A unit of energy is
enough to send a request and start a transmission. Combining with the energy harvesting
issue, we can build our main model as follows. (With a slight abuse of notation, we adopt

the notations of energy harvesting RAC game rather than RAC game in the remaining

paper.)

uls) = s [T (0 = ) + s, @BV FS B = s [0 - 22) 64
JF# J#i
The first term in the product is the probability that device ; does not request for a
channel, the second term is the probability that devicej sends a request but has not
harvested energy, and the third term is/the.probability that device j has harvested energy
but requests a different channel from the on-e that device : gets. The summation of these
three terms is the probability that device j dees not/collidewith device i. Then the value
v; 18 the probability that device i.chooses:to request and other devices do not collide with

device i. The energy-harvesting RAC game is formulated as

FEH = <N, (Si)ie./\/'a (Ui)ie./\/>

3.5 Nash Equilibrium in Energy Harvesting RAC Game

Similarly, we prove that the energy harvesting RAC game is also a potential game and

then derive the Nash equilibrium.

Theorem 3.4. The energy harvesting RAC game I'* s a potential game with the potential

13



function

Ps)= -]~ 3;\5@'). (3.5)

FEH

Proof. To prove is a potential game, we show that the condition of Lemma 3.1 is

satisfied.

&Si@sj M M 882‘88]" b

k#i,j

The potential function must satisfy the condition (3.1).

8P . Sjpj . 8u2

[]

Theorem 3.5. The unique Nash-equilibrium strategy-in-the energy harvesting RAC game

IEH js s* = 1 for all i.

Proof. To derive the equilibrium strategy, we have to solve the following maximization

problem.

max P = —M [J@— S]’é’i) (3.6a)

subject to

s [J(1 - %) >0 (Individual Rationality) (3.6b)
J#i

s; € [0, 1] (Strategy Space) (3.6¢)

Obviously, the objective function (3.6a) is linearly increasing with s; since

oP Sip;
— . 1 — 2487

is a positive constant. Therefore, the unique solution for this maximization problem is

s; =1 forall i. U

14



Same as the RAC game, the EH-RAC game has only one Nash equilibrium s} = 1 for
all device 7. The equilibrium that every device requests a channel is unwanted outcome. In
the next chapter, we introduce two incentive schemes that can induce the target outcome.
By designing incentive schemes which provide appropriate incentive to devices, we can

induce the devices to choose the target strategy.

15



Chapter 4

Incentive Mechanisms

In the previous chapter, we have proposed the energy harvesting RAC game and derived
the Nash equilibrium. However, the Nash equilibrium where every device chooses to
transmit with probability one leads to the severe collision problem. To deal with the
problem, we propose two incentive mechanisms to induce the desired outcome in this
chapter. With any of these two incentive-méchanisms, we prove that the outcome where
every device transmits i$ no-fonger the Nash equilibrium. Moreover, the target outcome
becomes the Nash equilibrium: ' The target outcome is any-outcome the system manager
want to implement. With help of‘the incentive schemes, we prevent the system from

falling into the worst situation and induce it to the desired outcome.

4.1 Pricing Scheme

The pricing scheme is the most direct mechanism that can provide the incentive to reduce
the devices’ transmission probability. The system manager can charge the devices according
to the strategy that the device chooses and the probability of harvesting energy. Rather
than proposing a specific pricing function, we choose to define a generalized price function
¢i(si, p;) of device i. Any pricing function that satisfy the following conditions can be

used to induce the target outcome. Under the pricing scheme, the utility of device

16



becomes

uf = wvi(s) = ci(si,pi) = SiPj H(1 - #) — ci(si pi) 4.1)
JFi

The sequence of events can be listed as follows.

1. The manager chooses a pricing rule ¢;(s;, p;) that charges the devices according to

the requesting probability and the harvesting probability.

2. Knowing the pricing rule, the device chooses a strategy s that maximizes its own

utility u?.
3. The system reaches the Nash equilibrium s*.

And the EH-RAC game under the pricing scheme can be formulated as follows.

JEHFT — TR (S0 & (Uf)ie/\/>v

il

which is also a potential game.
The first condition is: the pricing funetion ¢;(s;, p;) must twice differentiable and
increasing marginal with respéct to s;, that is;

3201'(% pz')
0s?

7

=0

That is, the charging fee has to increase faster than the linear function of s;. With this

condition, we can derive the Nash equilibrium in the following theorem.

Theorem 4.1. Given the target strategy 5 = ($1, S, . . ., Sn), the pricing functions solving

the following simultaneous equations can induce the target Nash equilibrium in T*H P

w 8$i=8; — pz<1 - %>N717 V’l (42)
Si

M
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Proof. First, we prove the game is a potential game.

O%u; DiD;j SkDk O%u;
L= 1— = I Vi
(%‘iasj M H ( M ) v

ki, e

Second, we prove

P=-M H(l - S]Z\?) — Zc(si,pi).

7

is a potential function by showing that

or _ p‘H(l _ Sjpj) B dci(sipi)  Ou;

aSi i M &si 832-

(4.3)

Lastly, we derive the maximal-point'of the potential-by applying the KKT condition.

In this way, we have to solve these simultaneous functions % = 0, Vi, that is,

ar Sjpg dei(sifpi) ~
881 = Di H(l M ) 83i =0

Rewrite the equation we get

aci(sivpi) l _ H(l 15 %)

0s; P - M

Multiple both sides from ¢ = 1 to7 = N, we get

H aCz (i, i) HH SJpJ H(l _ %)N—l

i jFi )

One of the solution is

aCi(Siapi) i _ (1 o %)Nfl
0s; Di M
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Figure 4.1: The equilibrium undefthe pricing scheme{s_‘nearly identical to the target one.

b " i

1 i
To prove that the solution i$ a maxifnumpoint, we show that
| =
R |}
1| A b W
087 I ds? i||l

3

by the prior condition. The potential functiopn is'a concave function. Hence we complete

the proof.
(]

The system manager can achieve the target § = (S, 5s,...,Sy) by designing an
appropriate pricing rule ¢;(s;, p;). Since that the outcome that every device chooses to
transmit with probability one is not favorite, the system manager now can adopt the
pricing scheme to induce the target outcome as it wishes.

In Fig. (4.1), we use the pricing scheme to achieve the target outcome (0.3,0.7). The

maximal point of the potential function (0.3,0.7) is the Nash equilibrium.
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4.2 Intervention Function

Besides the pricing scheme, we adopt another incentive scheme that can induce the target
outcome. Jaeok Park and Mihaela van der Schaar have designed an intervention function
that can achieve the desired equilibrium [16][17]. In the intervention scheme, the system
manager imposes a certain level of intervention on devices’ transmission according to the
strategy s of devices. Formally, the intervene function can be expressed by g : S — [0, 1].
The intervention level is not tailored to devices as the pricing scheme, but identical for
every device.

The sequence of events can be listed as follows.
1. The manager chooses an intervention rule g.
2. The devices ¢ choose a strategy's; that maximizes its own utility.

3. The system manager imposes an intervention on all the devices according to their

chosen strategy.
4. The system reaches a Stackelberg equilibrium.

Because of the participation of the.system.manager, the EH-RAC game under the
intervention scheme is neither a typical non-cooperative game as previous one nor a
potential game. In game theory, this kind of game is called Stackelberg Game where
a ruler decides the game rule before other players make decision [17]. After the system

manager imposes the intervention, the utility of device ¢ becomes

ul(g.8) = sips(1 = g(s) JJ1 = 222,
JFi

The utility is discount by a factor (1 —g(s)) which is inversely proportional to the level
of intervention imposed by the system manager. And since the system manager aim to
induce the target outcome without imposing much intervention, the utility of the system

manager is
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1—g(s), ifs=S§
UO(ga S) =
0, otherwise

where s is the target outcome that the system manager aims to induce.
The manager gets zero utility if the target equilibrium is not achieved. On the other
hand, if the target equilibrium is achieved, the manager aims to reduce the level of

intervention. The EH-RAC game under the intervention function is formulated as follows.

F;EH_I - <N7 (Si)ief\/ov (uzl(gv :))ief\/b)

where Ny = N U {0} is the player set including the system manager.

According to [17], we construct the intervention funetion as follows.

N
g = Al (44)

where the operator [2]° = min{max {7} a}, b}is used to trim the value between 0 and
1. The level of intervention”g increases ifany device deviates from the target outcome.
Moreover, when the level of intervention reaches the-upper bound (i.e., g = 1), the utility
of all devices will be zero.

We then prove that the intervention function ¢* and the target outcome § = (s, Sa, . .., SN, )

constitute a Stackelberg equilibrium.

Definition 4.1. (Stackelberg Equilibrium) An intervention rule g* and a strategy s* constitute
a Stackelberg equilibrium if s* is a Nash equilibrium of the game under the intervention
scheme and

g" € argmax ug(g,s”)
geg
where G is the set of all possible intervention schemes.

Theorem 4.2. The intervention function g* defined in Eq. (4.4) and the target outcome

5= ($1,82,...,SnN, ) constitute an Stackelberg equilibrium in the energy-harvesting RAC
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game under the intervention scheme I'y .

Proof. We prove the target outcome constitutes a Stackelberg equilibrium by showing
that it constitutes a Nash equilibrium for every device. Then we show that the utility of
the system manager is also maximized.

Let the strategy of devices except for ¢+ choose the strategy profile s_;. We aim to
prove the strategy leading to the highest utility to device i is s; = ;. Therefore, no device
will deviate and § = (51, S, . . ., §x) constitutes a Nash equilibrium.

The utility of device 7 under the intervention g* is

wlgs) = sl — g(9) [l — 22).
0, if s; > 2s;

55 Di H]#Z(l - Sﬁj), lfSl < S

In the first case s; > 2s;, the level of.ﬁ.itervention is g*(8;,8_;) = 1 from Eq. (4.4)
and every device obtains zero utility. | In tfl@ second case s; < s; < 2§;, the level of
intervention is g*(s;,s7;) = 5250, Tn the third case s; < ;, the level of intervention is
g*(si,s73) = 0.

The utility of device ¢ increases on §; < §;, reaches the maximum at s; = §s;, then
decreases on s; < s; < 25;, and stays at 0 on s; > 2s;. Therefore, the strategy s; = S; is
the only strategy that maximizes the utility.

Finally, when every device chooses the target outcome, the intervention function
becomes zero and the system manager obtains the highest utility ug(g*,8) = 1 — ¢*(8) =

1. Therefore, we prove that the intervention function g* and the strategy profile s constitute

a Stackelberg equilibrium. U

In Fig. 4.2, we show the Nash equilibrium under the intervention scheme. The target
outcome (0.3, 0.7) is exactly the Nash equilibrium. Note that the energy-harvesting RAC

game under the intervention scheme is not a potential game since the condition (3.1) is
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Figure 4.2: The equilibrium under the interventien-seheme is exactly identical to the
desired one.

not satisfied. Therefore, we'cannot use the:fépﬂ'tential function. ‘Instead, we derive the Nash
equilibrium by deriving thé-intersection of l;e_st response functions of two devices.

So far we have proposedytwo méthods for achieving the target outcome. In the
following section, we will discuss two-target;outcomes that we aim to achieve: the

proportionally fair outcome, and the social optimal outcome.
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Chapter 5

The Desired Outcome

In the previous chapter, we have proposed two incentive schemes to induce the system
to the target outcome. Withieither the pricing ‘scheme or the intervention scheme, the
system manager can achieve any feasible outcome it desire. In this chapter, we are going
to investigate the outcomes that the system manager desire:

We always want to fulfill the demand-of tisets in wireless*systems. However, this is a
dream that rarely happens in-reality due to thelack of systemi resource. In a system where
limited resource cannot suffice users’ demand, welhave to' make an optimal allocation.
The definition of optimal allocation varies with the purpose of the system applications.
We adopt two most common kinds of optimal allocations: the proportionally fair outcome,

and the social-optimal outcome.

5.1 The Proportionally Fair Qutcome

First, we introduce the proportionally fairness. The proportionally fair outcome maximizes
the overall utility while at the same time allow all devices at least the minimal level of

service.
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Definition 5.1. A strategy profile s* is proportionally fair if s; > 0 for all i and

3 % <0,Vi, 5.1

1

Jfor any other s € S [20], or equivalently, s* is the solution for

max Z log(u;(s)). (5.2)

The condition 5.1 indicates that the deviation in strategy from the proportionally fair
outcome s* increases some utilities and decreases some other utilities, but the summation
of these difference is negative. Moreover, the player whose utility is originally small has
larger weight factor in the summation, so'it guarantees the fairness of the system.

The conditions in Definition™5.1 are equivalentsinee s* is the solution for (5.2) if and
only if log(u;) decreases around'the peint s, thatis,

S (us) Bt ))awgés wi(s ))Is =1 ZW <0,

i = i Y S*>

which coordinates with the condition (5.1).

Theorem 5.1. The proportionally fair outcome (the solution to the (5.3a)) is s; = Nﬂp.

Proof. To find the proportionally fair outcome, we have to solve the following maximization

problem.

max Z log(s;p; H Sj\? ) (5.3a)
subject to
€ [0,1] (Strategy Space) (5.3b)
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First, we rephrase the objective function (5.3a)

msabeg <SipiH<1 - %))

J#

= msaxz log(sip;) + Z Z log(1 — %)

i g
SiDi

—max Y log(s;p;) + (N = 1) Y log(1 - 1\5 )

:maXZIOg (sipi(l - %)Nﬁl)

= max s;p;(1 — Sﬁi)Nfl

Y

which becomes a maximization problem with single variable.

We use the first-order condition

S D et %)Nél

M —=()
asi
to derive the maximum point
" Al

To verify this is a maximum point, we use the second-order differentiation:

(9281‘]91'(1 - %)N_l

2
0s;

Therefore, s = NL; is a solution for (5.3a) and s* is the proportionally fair outcome. [

From this theorem, the proportional fair strategy profile enables the device with low p;
to choose a higher transmission probability, and, on the contrary, enables the device with
high p; to choose a lower transmission probability. The strategy is also proportional to
the number of transmission resource and inversely proportional to the number of device.
The devices have to choose lower transmission probabilities when the number of devices

are too many, while they can choose higher transmission probabilities when the number
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of transmission resource is abundant.

Denote the fairness index by the value of

Z log(us(s))-

We can further prove that the value of fairness index is independent of the distribution of

harvesting probability p = (p1, p2, . .., PN)-

Theorem 5.2. The value of fairness index is a function of the number of device N and the

number of transmission resource M, that is,
> log(ui(s)) = NN = 1) Tog(M(N= 1)) — N*log(N),

for given N, M.

By definition, we have

Proof.
> tos(u (M= Foaess T &)
= Y oy
B M(N —1)N-!
= Ei:log( )
B M(N —1)N-!
= N log( NN )
= N(N —1)log(M(N — 1)) — N*log(N)
and complete the proof. [

This theorem shows that the fairness index is independent of the distribution of energy
harvesting probability of the devices in the system. Even if the devices have higher (or

lower) chance to harvest energy, the fairness remains the same.
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5.2 The Social Optimal Outcome

In this section, we derive another optimal outcome that maximizes the overall utility of
the system. The outcome is called social optimal since the overall utility represents the
social welfare. To derive the social optimal outcome, we have to solve the maximization

problem as follows.

max Z wi(s) subject to

s; € 10,1] (Strategy Space) (5.4a)

Theorem 5.3. Without loss of generality, we letp, > ps > ... > pn. Then the strategy
profile sy, = sy = ... =8, = Land sy, = ... = sy = 0 with the maximal positive

integer k such that

H(1—7 —72 I (18 (5.5)

i<k <k J#
J<k

is the social optimal strategy set.

Proof. First, we prove that in the social strategy set, each device’s strategy is either s; = 1
or s; = 0. Secondly, we prove that the social optimal strategy consists of consecutive
devices from 1 to k. Thirdly, we prove that the value £ is the maximal positive integer
such that Eq. (5.5) holds.

First, to prove that each device’s strategy is either s; = 1 or s; = 0, we check the

first-order derivative of the objective function (5.4a)

0> sipi [1,(1 — 228) s s
j M :piH< _J_pJ ZSJpJH 1_ﬂ),

0s; M
i j J#Z ki, j

which is independent with s;. Since the first-order derivative is a constant, the optimal
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point is located at the boundary. If the first-order derivative is positive, the optimal point
i1s s7 = 1. On the contrary, if the first-order derivative is negative, the optimal point is
s;=0.

For notational convenience, we denote the set containing all devices whose s; = 1
by € . On the contrary, the complementary set N \ € consists of all devices whose
s; = 0. Therefore, for every possible strategy set s = {s1, S, ..., sSx }, there must exist a
corresponding one-to-one set ¢2. Then the strategy profile in the statement of theorem can
be rephrased to that the device set Q2 = {1,2,..., k} is the social optimal solution.

After that, now we can define A(£2) as the social welfare given the set {2 as follows.

s Pj
= ZPiH(l =) M)

€0 jAi

Note that only devices in the set £2 choose s; = 1. Besides, if a new device i is added,

the new social welfare becomes

ai=

AQULY) = AQ)( 1'— =)+ o] (= (5.6)

7N

The first term on the right hand side 1s the. social’ welfare deduction (within those
original devices except for device 7) since the prebability of collision increases if device
7 joins in the set €2, and the second term is the social welfare addition since the utility of
device ¢ also contributes to the social welfare.

Secondly, we use the contradiction to prove that the social optimal strategy consists
of consecutive number of devices from 1 to k. Let & be the largest number in the set (2.
If €2 does not contain consecutive number of devices, there exists a value h < k such that
h ¢ €. Construct two new sets ' = Q \ k and Q" = ' U h. We show that the social

welfare of new set A(Q2”) is higher than A(2) by comparing

AQ) = A U{k}) = A2 )(1—— )+oe [J(1-

JEY
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and
A(Q) = AQ U {R}) = M) -0+ [T - 7.

We can find that

A@) = Aty (H( by o) ) > Ay <H< NUE A}fj')) = A@).

je Je

since pp, > pk-

In other word, if €2 does not contain consecutive number of devices, we can remove
the device with the largest number and add one with smaller number to increase the social
welfare. Therefore, the set {2 cannot be the social optimal solution. For any set {2 that
does not contain consecutive number of ‘devices; there exists a new set {2’ that contains
consecutive number of devices biifig-higher socialwelfare. A social optimal strategy set
must contain consecutive number of devices.

Lastly, from Eq. (5.6), we derive the difference between the social welfare before and

after device 7 is added.

AQU{i}) - AQ) =p[ 1= %) = AJSZ)) = ([ - sf\?) - A]SZ))'

JEOQ i

Device ¢ would be included in the social optimal outcome if and only if the difference
remains positive, or equivalently, Eq. (5.5) is positive. We complete the proof.

[]

Different from the proportionally fair strategy profile, the social optimal strategy
profile only enables the device with higher harvesting probability to choose the highest
transmission probability, while prohibits others from transmitting. In view of maximizing
the system performance, this is the best way to allocate the limited resource to the better
devices. The theorem also indicates what the number of device in the social optimal
strategy profile is. To express in a practical form, we design an algorithm to implement

the social optimal outcome as follows. The algorithm is used in the simulation.
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Figure 5.2: The social optimal outcome leads to the highest social welfare, compared with
other outcomes that are randomly generated.
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Algorithm I: SOCIALOPTIMALALGORITHM (p, N, M)

p <— DESCENTSORT(p)

fork < 2to N
if Hz‘gk (1— pﬁ) - ﬁ Zzgkpznjé (1- pﬁj) <0
1>

then break

do

return (k)

The algorithm first sorts the devices with respect to their energy harvesting probability
in descent order. Then it adds the device with the largest p; in the list, and then the second
largest one, and so one. The process terminates if the condition cannot be satisfied.

In Fig. 5.1, we use a simple system. with-four devices to show the social optimal
outcome. We calculate that the social optimal outeeme is (s, 2, s3,54) = (1,1,0,0).
Because of the constraint of figure dimension, Fig.. 5.1 illustrates the effect of strategy of
device 2 and device 3 on the social welfare.Apparently, to maximize the social welfare,
device 2 has to choose s3 = 1 and device 3 has to choose s;'= 0. On the other hand, Fig.
5.2 shows that the outcome derived by Algorithm I indeéd leads to an outcome whose

social welfare is maximized.

5.3 Adopting the Incentive Schemes to Achieve the Optimal
Outcomes

After proposing two incentive schemes (the pricing scheme and the intervention scheme)
and deriving two optimal outcomes (the proportionally fair outcome and the social optimal
outcome), we start to adopt the incentive schemes to find the optimal outcomes in this

section. There are four kinds of combination.

Theorem 5.4. To achieve the proportionally fair outcome by using the pricing scheme,
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we have to set the price function c;(s;, p;) which satisfies

8c,~ Siy Pi N —1 _ .
g =p
Proof. Adopting s} = Nﬂp in Theorem 4.1, we complete the proof. 0J

Theorem 5.5. 7o achieve the social optimal outcome by using the pricing scheme, we

have to set the price function c;(s;, p;) which satisfies

aCi(SuPi) Di N1 .
R =pi(1— = <
g5, =t = pill— )t Vs k
and
¢ (i, pi )
76 (S p)|5i:0 =P, Vi >k
8si

where the value k is determined by Thearem 5.3,

Proof. Adopting s7 = 1ferall: < k aﬁd-.s;‘ =0 forall ¢« > k in Theorem 4.1, we

complete the proof. ] _ ]

Theorem 5.6. 7o achieve the proportionally fair outcome by using the intervention scheme,

we have to set the intervention function

N ¢ _ N
* v Mp;
() =D —% "
i=1 Mp;
Proof. Adopting s} = NLz[n in Theorem 4.2, we complete the proof. U

Here we have presented the way to implement proportionally fair outcome and social
optimal outcome by using the pricing scheme and the intervention scheme. Note that
theoretically the social optimal outcome cannot be implemented by the intervention scheme,
since the intervention function is not well-defined if the element of target outcome s; is
zero. However, one can still implement the social optimal outcome by choosing infinitesimal

strategy that is extremely close to zero. That is, with an arbitrarily chosen § — 0, we can
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construct a sub-optimal strategy s; = 1 for ¢ < k and s; = ¢ for z > k. From Theorem

4.2, we know the sub-optimal strategy constitutes a NE, and leads to social welfare equal

to
- p op - p op
5 _ . _ 4 _ 5 A _ 4 _ o5
=1 J#i J#i i=k+1 J#i J#i
i<k j>k i<k >k
On the other hand, the optimal strategy leads to social welfare equal to
k o
SWY = ; — 2,
=1 j#F
J<k
Since § — 0, the ratio %—ng can be approximated as
k ; 8p;
Syyb 2P H;f}z{ (19 H;fﬁ a=77)
SV DAL [ (1 - %) ’
“mwpL
which is bounded by
0 SWP
ANV R <1
( M) N STV

Even in the worst case, the social welfare of sub-eptimal strategy is (1 — %)N —k of
optimal strategy. We can conclude that, by using infinitesimal strategy to achieve the
social optimal under the intervention scheme, the social welfare decreases by a factor of
(1— %)N ~* at most. The larger § we choose, the more social welfare we lose.

In implementing these two incentives, we have to bear in mind that these two schemes
have a fundamental difference. The pricing scheme charges different pricing to the devices.
The BS has to design proper pricing functions to achieve the target outcome. On the
contrary, the intervention scheme imposes the same level of intervention on the devices,
which can be implemented by dropping a certain percentage of packets that the BS

receives. Therefore, to implement the pricing scheme, we have to install the pricing

program on the device side. On the other hand, to implement the intervention scheme,
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we have to install the intervention program on the BS side. It is more recommended to

implement the intervention scheme since the change on the BS side is usually easier.
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Chapter 6

Extension: Multi-Period Model

In the previous section, we construct:an one-shot game model and propose two incentive
schemes to achieve the target equilibrium.In thissection, we start to construct an extension
model that considers multi-period.€nergy-harvesting WSN model. Since the energy can
be stored for the future usage, the devicesface new trade-off in the multi-period energy-

harvesting WSN.

6.1 Model Setting

Adopting the notations from the previous.model; there are NV devices competing for M
transmission channel. The collision occurs if there is more than two device requesting for
the same channel.

We consider the slotted-time model. There are 7" periods in each of which the energy
arrives with different probability. Since the value of information increases with the number
of transmission success, the devices aim to maximize the number of transmission success
during these 7" periods.

At the period 0, the device ¢ chooses a transmission probability s; which cannot be
changed during these 7" period. The probability of harvesting energy varies with the time,
which is p! at the period ¢.

The energy capacity is also another important issue. However, to keep the result
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tractable, we consider a simple scenarios where the devices can store at most one unit of

energy.

6.2 The Probability of Harvesting Energy

Since the energy can be stored for future usage, the probability of harvesting energy at
period ¢ depends on the strategy of previous periods. To clarify, we denote the harvesting
probability that the device harvests a unit of energy at the period ¢ by pf, while the
powered-up probability that the device has enough energy to transmit at the period ¢ by
q!. Notice that ¢/ > p! since if the device has enough energy to transmit (i.e., the device
is powered-up), the energy sources from either the harvested energy at period ¢, or the
energy stored in the previous periods.

For example, at the period 1
gi = ;i
and at the period 2

g 58 14— o)1 —Eh(UF ;).

The device has one unit of energy at period 2 if it harvests a unit of energy at period 2
or it has harvested energy in the past and did not use it. Therefore, the general form of ¢!
at period ? is

g =1—(1—-pH(1—qg '(1—s)). (6.1)

We find that ¢! is a recursive function of ¢/ '. By rearranging the recursive function

(Eq. (6.1)), we can derive ¢! in form of (p}, p?,...,p!) and s;.

Lemma 6.1. The probability that the device has enough energy to transmit at period t

can be expressed as

G = (p? II a-pma- Si)) (6.2)

=n+1
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Proof. First, we rephrase Eq. (6.1) to

¢ =pi+ 1 —p)(1—s)g"

We define the summation factor

b= (1-p)(1—s)

and divide []’ _, b™ from the both sides.

t -1 ‘
G __ 4% P

[Tms D2 T 25 0 I L, b

After summing up both sides, of equation, we'have

LA el | N qZ _|_
Hm Ok Z H
or equivalently,

qf:qz-lli[bmﬂLi:(p? f[ bm)Zi(p? f[ bm).

m=2 P2 m=n+1 n=1 m=n+1

Replacing b with (1 — pt)(1 — s;), we derive the solution.

=3 (o T - -s)

n=1 m=n+

0

From this lemma, we can determine ¢! from the previous probability of energy harvesting

(pl,p?,...,pt) and the strategies s;
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6.3 Nash equilibrium: Intersection of Best Response

In this section, we provide a mathematical solution for the Nash equilibrium of multi-
period model. We first introduce the best response, that is, the strategy that produces the
most favorite outcome for a device, taking others’ strategies as given. Therefore, if all the
devices select the best response to others’ players’ strategies, it is a Nash equilibrium.

From Lemma 6.2, we have

¢ => (p?(l —s) ™ [ - pl”))

n=1 =n-+1

and the multi-period game can be formulated as following.

P B (N (S ) reng, (UzM)z'eN>

where the utility is the summation of probability of successful transmission

Z Sigj H 3 qJ

=1 = 33
First, we prove that the Nash e¢quilibrium exists in'the game 'V

Lemma 6.2. The pure-strategy Nash equilibrium exists if the strategy sets S; are nonempty
compact convex subsets of a Euclidean space and the utility functions u; are continuous

in s; and quasi-concave in s;. [21]

Theorem 6.3. In the multi-period game U'™F | the pure-strategy Nash equilibrium exists.

Proof. First, the strategy set S; in the multi-period game I'M¥

are nonempty compact
convex subsets of a Euclidean space. And the utility functions u; are continuous in s;.
Second, we prove the utility function is a concave function with respect to the strategy

s;. Replacing ¢! with Eq. (6.2) and s! = s, for all period ¢, we find the utility

u' =3 s (Z( (1—s)" H <1—p?>>>H<1—%5>

t=1 n=1 m=n+1 VE=)
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is a polynomial function of variable s; which can rephrased as

where the constant

@mzﬂﬂ—i%HE:MHﬂ pi")

is independent with the strategy s;. Since s; € [0, 1], we verify the dual function

T-1
=(1—s) Z CniSis
m=0

=M

which has the same concayvity (ot convexity) with v/, %o prove .} is concave by using

the second-order derivative

aQM

—2chmsm 1 A1 —|s]) Ef‘cmm " Wi (6.3)
T-1
< (—2s; + (m= L)1 % ) C’m,imszm_2
m=2
T-1
= (m—1) — (1 4+ m)8).Cppims’ >
m=2
T—1
=2(1 —38,)Cy — T(T — 1)Cp_157 % + — (14+m —1))C,,ims]?
m=3
T-1
< (m—1)— (1 +m—1))Cpyms’?
m=3
T-1
= — Z Chnims; 2
m=3
<0

That is, both dual function w; and the utility function u; are concave functions in s;.

Therefore, the multi-period game I'™? has a pure-strategy Nash equilibrium. 0
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Theorem 6.4. The strategy profile s* = (s}, s5,...,s%) such that s; = [t} constitutes

a Nash equilibrium in TMT, where (53,55,...,5%) solves the following simultaneous
equations.
T-1 T-2
(1=51)"Chos = Y 5i(m+1)(1 = 5))"Cp 0 =0, Vi (64)
m=0 m=0
where
§*.qm+1 T—m m
Cr .= 1— 2L ! 1—pitn 6.5
i ]1;[( i );pznl( ) (6.5)

Proof. Since the utility function

=

-1
UM = S; sz(l — Si)m

3

3
I
(e}

is concave in s;, we can use the first-order derivative'to.derive the best response

auM T—1 '__':. T+1
a LB E Cm,z(]- I Si)m - Si E mC’mﬂ(l —= Si)m_l
S; :
m=1

m=0

We show that the first order condition (the best tesponse function) is

T-1 T-1
S0 (1 — ) s S G- 1)t = 0, Vi
m=0 m=1

Denote the solution of the first order conditions by (57, 83, . . ., % ), which may violate

the constraint of strategy space [0, 1]. However, due to the convexity of utility function,
the maximal value locates at the boundary of strategy space (i.e., s; = 0, 1). Therefore,

the best response is the transacted value of the solution above, that is, s; = [57]}. O

7

6.4 Case Study

In this section, we study a special case where 7' = 2 and N = 2. Denote the devices by 1

and 2. Then we can rephrase Eq. (6.4) as
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Coi+ (1 —5;)C1,; = 5,Chy

or equivalently,

(25i - 1)01,z' = CO,z'

fori=1,2.

Replacing C,, ; with Eq. (6.5), we have
1 2 S 'qJZ' 1 2 554
(23i - 1)1%(1 _pi)(]' - —) = (Pi ‘f’Pz’)(l - —)

and then replace ¢; = p; and

we have the following @'

2

(251~ 1)ph(1 — )T - o) B = (ot + D1 - )

(259 — 1)]9%(1 — D> D - : Y2 —I—p%)(l - 83\5 )

which can be rephrased to

(251 — 1)ay (1 + ags3 + azss) = ayss + as

(282 — 1)b1(1 + bQS% + b3$1) = b481 + b5

42



where

a; = p%(l _p%%

o, — P21 = 13)
2 M 9
 py(1—p3)+p3
as = — )
M
(P
ay = — 2227
M

as = (py + p3)

and
| QG e O
By assuming that these two"d@&ceﬁocate inthe s: environment, we have p! = pl,

for t = 1,2 and therefore a; = b; for: = 1,2, 3,4, 5. By the property of symmetry, we

know that the solution s; = sy = s. Then we can simplify the problem into

(28 — 1)b1(1 + b282 + ng) = b43 + b5

or equivalently,
201695 + by (203 — by)s® + (b1(2 — b3) — by)s — by — bs = 0,

which is a cubic function that can be solved by the general formula.
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Chapter 7

Numerical Results

In this chapter, we build EH-RAC systems and examine the effect of parameter change
on the system performance (i.e., social welfare’and fairness index). Besides, we also
numerically verify the case study in the multi-period EH-RAC game. By the simulation,

we can gain more insight about the case study.

7.1 System Performance With Different Parameters

We discuss how the device parameters affect the.system performance. In Fig. 7.1(a) and
Fig. 7.1(b), we build a system with N = 100 devices and M = 5 transmission channels.
There are 9 groups of device whose average harvesting probability is 0.1,0.2,...,0.9
respectively. The harvesting probability within each group follows the normal distribution
N(0.1,0.1), N(0.2,0.1),...,N(0.9,0.1) respectively.

In Fig. 7.1(a), the social welfare of social optimal outcome is superior to that of
a random outcome. Any random outcome decreases in social welfare since the mutual
interference increases when the average energy harvesting probability increases. The
social welfare of social optimal outcome also increases with the average energy harvesting
probability of group, since only some specific devices are allowed to transmit in the social
optimal algorithm. When the energy harvesting probabilities of those devices increase,

their transmission success rate increases, which improves social welfare. On the other
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Figure 7.1: The social optimal outcome and the proportionally fair outcome under
different choices of parameters.
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Figure 7.2: The value of social welfate changes with the number of transmission resource
and the number of resource. '

hand, in Fig. 7.1(b), the fairness index of propertionally fair outcome is superior to that of
a random outcome, and it also remains constant for each group. As we prove in Theorem
5.2, the value of fairness index is a function of NV and M. Since each group has the same
parameters N and M, the fairness indexes are identical.

In Fig. 7.2(a), the value of social welfare increases with the number of transmission
resource. When the number of transmission resource is below the device number, social
welfare increases sharply mainly because the number of transmitting device is increasing.
Later, when the number of transmission resource is above the device number, the number
of transmitting device remains the same, so social welfare fare increases only because the

average energy harvesting probability increases.
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Figure 7.3: The value of fairness index changes with the number of transmission resource
and the number of resource.

In Fig. 7.2(b), the value of social welfare increases with the number of device, but
saturates when the number of device is too large.” In the increasing region, the system
still has capacity to accommodate more.deviees and the social welfare still has room to
increase. However, in the saturation region, the transmission resource is fully utilized
and the system cannot accommodate any, more device. Therefore, the social welfare stop
increasing. -

In Fig. 7.3(a), the value'of fairness index increases with'the number of transmission
resource. If the system has more transmission ‘resource, then the contention among
devices can be reduced and the outcome'can beé'more fair. The reason is similar to the
previous one. On the other hand, in Fig. 7.3(b), the value of fairness index decreases with
the number of device. If there are more devices in the system, then the problem of lack of

transmission resource would become more severe, and the fairness becomes lower.

7.2 Simulation of The 2-Period 2-Device EH-RAC Game

We take advantage of computer simulation to observe the case discussed in the case
study of multi-period game. We choose 7' = 2, N = 2, and M = 1. The harvesting
probabilities are (pl, p?) = (pi, p3) = (0.2,0.5). The simulation algorithm is shown in

Algorithm L.
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In Fig. 7.4(a), the utility function of device 2 increases along the strategy of device
1 but decreases along the strategy of device 2. The utility function is a concave function
and has maximal point at s; = 1 for any s;. Since the concavity of utility function is not
obvious in Fig. 7.4(a), we derive its first-order differentiation (Fig. 7.4(b)) and find that
the value strictly decreases along the strategy of device 2. Remember that if the first-order
differentiation is strictly decreasing, then the function is concave.

Moreover, from the previous analysis, we have b; = b, = 0.1,b3 = —0.6,b, =

—0.14, b5 = 0.7. Then the solution of

0.02s% — 0.135* + 0.4s — 0.8 = 0,

is s = 4. Since the utility funetion v, is'€oncavein s;, u; 1s monotonically increasing for
s € [0,4]. Due to the constraint of strategy space, the device strategy will choose s; = 1
for i = 1, 2, that is, the strategy profile (s1} s2) = (1, 1) is the Nash equilibrium, as shown

in7.5.

Algorithm I: TwWoO-PERIOD. TWO-PLAYERINASH EQUILIBRIUM (p, M, T))

for 7 + 0 to 100

(
7
Si(—m

for ;7 < 0 to 100
(

) g
Sj <~ 100

fort < 1toT

g =2y PP(L =) " Ty (1= p)
q;- = Zfa:l pj(1l— s5) 7" an:nﬂ (1—=p}")
uM (si,87) = >0y sigh(1 — %)

() (sivs5) = L i1 = 57

BR;(s;) = argmaxg, uM(s;, s;)

do
do do

\

BR;(s;) = argmax,, u}’(s;, s;)
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Figure 7.4: The utility function u; is a concave function increasing along the strategy s;.

Figure 7.5: The.Nash equilibrium in the multi-period model

7.3 Extended Simulations of Multi-period Multi-device

EH-RAC Game

To seek the insight of Nash equilibrium in multi-period energy-harvesting RAC game,

we use the computer simulation to show how the energy harvesting probabilities affect

3 p?

i(1-s)
Period 1 |::> Period 2

Figure 7.6: The energy relation of two-period model
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Figure 7.7: The difference of equilibrium strategy and utility of device 7 with respect to
the harvesting probabilities.
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Figure 7.8: The difference of equilibrium strategy and utility of device j with respect to
the harvesting probabilities. :

the Nash equilibrium in this section. To make the results tractable, we consider only a
two-period-multi-device system. For all devices, the energy can be stored from period
1 to period 2. We use Fig. 7.6 to illustrate the simulation model. The device has the
probability p! of harvesting a unit of energy at period 1 and has the probability p? of
harvesting a unit of energy at period 2. Once the device chooses the strategy s;, the
harvested energy will be stored to period 2 with probability p! (1 — s;). Note that we have
assumed that the energy capacity is one unit. If the device has the energy at period 2, it
can be either stored from period 1 or harvested at period 2.

In Fig. 7.7(a) and Fig. 7.7(b), we manipulate the harvesting probabilities of device 1

at period 1 and 2 while fix the harvesting probabilities of device 2 as constants p} = p2 =
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the number of device.

0.5. The number of devices is N = 50 and the transmission resource is M = 1. In general,
no matter which harvesting probability increases, the equilibrium strategy increases at the
same time. However, there.is a trade-off when the harvesting probability pi is high. The
equilibrium strategy of device lidecreases from 's7 = l-since the probability that the
device ¢ has the energy at period 2 would. Eif:crease if the harvesting probability at is too
high. Therefore, the device i must decrease 1ts equilibrium strategy to maintain the utility
at period 2. On the other hand, we read f.rbm Fig. 7.7(b) that the equilibrium utility
increases along both harvesting probabilities pi.and p7« When pl = p? = 1, the utility of
device 1 reaches the optimum.

In Fig. 7.8(a) and Fig. 7.8(b), we want to observe how the harvesting probabilities
of device 1 influence the equilibrium strategy and equilibrium utility of the other device
(device 2). When the harvesting probabilities of device 1 are both low, the equilibrium
strategy is to choose a high transmission probability; meanwhile, the utility of device 2
reaches the optimum.

In Fig. 7.9(a) and Fig. 7.9(b), we build a system composed of devices with different
energy harvesting probabilities. To obtain the insight of system, we need to include
the devices with all possible harvesting probability. Therefore, we set the harvesting
probability p} = i/N and p} = i/2N. The harvesting probability at period 2 is discounted

by 50% so the devices will focus on the period 1.
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Figure 7.10: If the EH probability ratio is 1hcreasing, the devices with higher EH
probability at period 1 will choose ahigher transmission probability.

We observe that the device with higher harvesting probability will choose higher
equilibrium strategy since the difference between thetharvesting probability at period 1
and one at period 2 is larger.--Moreover, the utility of devices with higher harvesting
probability is higher since these devices have more chance to send transmission successfully.

In Fig. 7.10 and Fig. 7.11, we show that the devices with higher energy-harvesting
(EH) probability ratio (i.e., p?/p}) will choose higher transmission probability and are
less likely to leave energy from period 1 to period 2. First, we construct a system with
parameter N = 50, M = 1. The devices’ EH probability ¢/ = p} are equally distributed
between 0 to 1 and p? is set to satisfy the increasing (or decreasing) order. Formally, in
Fig. 7.10, the EH probability ratio p?/p; is increasing, while p?/p} is decreasing in Fig.
7.10.

In both Fig. 7.10 and Fig. 7.11, we present four figures. The left-top figure shows
the EH probabilities g1, p1, g2, p2: ¢1 1s the EH probability at period 1 that equals to the
powered-up (PU) probability py, ¢» is the EH probability at period 2 that takes account

of the stored energy from period 1 and the PU probability at period 2, and p, is the EH
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Figure 7.11: If the EH probability ratio is decreasing, the devices with lower EH
probability at period 1 will choose ahigher transmission probability.

probability that excludes the stored energy from period 1. The left-bottom figure shows
the probability that the device stores energy/at the period 1, that is, the difference between
g2 — po2. The right-top figure s the equilibrium strategy-that the device chooses in the
Nash equilibrium, while the right<bottom figure is thé equilibrium utility.

In Fig. 7.10, the EH probability ratio p?/pi is increasing. That is, the devices
with higher EH probability at period 1 is have higher EH probability at period 2. The
simulation shows that, in the Nash equilibrium, the device with higher EH probability
ratio will choose the higher transmission probability, which decreases the probability of
storing the harvested energy from period 1 to period 2. Moreover, the utility of devices
with higher EH probability is also higher. Therefore, we conclude that it is less likely that
the devices with higher EH probability ratio will store energy from period 1. Fig. 7.11

also supports the same argument, where the EH probability ratio p?/p; is decreasing.
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Chapter 8

Conclusion

In this work, we first construct the . RAC game and the energy-harvesting RAC game.
To derive the Nash equilibrium, we adopt the-potential solution concept and prove both
games are potential games. However, the equilibria of both games are not efficient.
Therefore, we propose the pricing scheme and.the intervention scheme to achieve the
target outcome and prevent the.inefficient.otitcome from occurring. We mathematically
prove that the target outcome is a unique e-quilibriurn when' the pricing scheme or the
intervention scheme is used:7 In ethér word, the linefficient outcome is no longer an
equilibrium.

Next we derive two target outcomes: the proportionally fair outcome and the social
optimal outcome. The proportionally fair outcome maximizes the overall probability of
successful transmission while at the same time allow all devices at least the minimal level
of service. The social optimal outcome maximizes the overall utility of the system, that
is, the sum of probability of successful transmission. Besides, we show how to use the
pricing scheme and intervention scheme to achieve these two target outcomes.

In addition to the one-shot game models, we also formulate a multi-period energy-
harvesting RAC game. We consider the scenarios where the devices store one unit of
energy. The device can choose a specific strategy during totally 7" periods in which

the harvesting probabilities can be different. Therefore, if the device chooses a large
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transmission probability, then it would acquire benefit from the transmission in the current
period but lose benefit from leaving energy to the future periods, and vice versa. We
derive the harvesting probabilities in form of the harvesting probabilities and the previous
strategies.

Different from the one-shot games, the multi-period game is composed of convex
utility functions. Therefore, even without incentive schemes, in the equilibrium the devices
may choose transmission probability other than s; = 1. We prove that the pure-strategy
Nash equilibrium exists in this game. The Nash equilibrium strategy profile can be derived
by solving the simultaneous equations given in Theorem 6.4.

Finally, we use the simulations to show how the systems parameters affect the equilibrium.
The figures can improve the comprehension of, the previous mathematical models and

results.
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