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中中中文文文摘摘摘要要要

傳統無線感測網路以電池作為電源供應，然而一旦電池用盡，網路將陷入無法使用的困

境，直至更新電池為止。但在某些無線感測網路應用當中，更換電池幾乎不可行，譬如

建築監測感測系統。為了解決這問題，人們轉向使用可從環境汲取能源之能量收集無線

感測網路。在這論文裡，我們建立了能量收集無線感測網路之隨機接取控制理論模型，

探討眾多無線感測裝置爭取有限傳輸資源產生之問題。考慮無線感測裝置會自私地最大

化自己的效用，所有裝置將會不顧系統整體效能選擇傳輸，使得系統陷入最糟情況。我

們提出兩種激勵機制：收費機制和干擾機制，用以防止系統陷入最糟狀況。這兩種激

勵機制可以誘使無線感測裝置選擇對系統而言最佳的策略，使系統達到社會最適(Social

Optimal)、或是比例公平(Proportional Fair)的分配。在論文最後，我們深入探討無線感

測裝置可選擇留存能源之延伸模型。我們發現，無線感測裝置會根據每段時間的能量收

集機率，決定是否將能源留存至未來。在系統達成平衡之後，無線感測裝置會在能量收

集機率較高的期間，選擇較高的傳輸機率。

關關關鍵鍵鍵字字字: 賽局理論、納許均衡、能量收集無線感測網路、激勵機制、社會最適、

比例公平
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Abstract

Traditional wireless sensor networks (WSN) are powered by batteries. Once the batteries

run out, the devices become useless until they are replenished. However, for some kinds

of applications, such as building structure monitoring, it is nearly impossible to replenish

the batteries of devices. To overcome this problem, people turn to the energy-harvesting

(EH) WSNs which can harvest energy from the environment. In this work, we construct

theoretic models where devices are competing for limited transmission resource. Since

the devices are selfish, they all choose to transmit regardless of others’ strategy, which

leads to the severe network congestion. We propose two incentive mechanisms, a pricing

scheme and an intervention scheme, that prohibit the system outcome from the worst case.

The incentive scheme can induce the desired optimal outcomes which maximize the social

welfare or the proportional fairness. In the last part, we also build an extension model in

which the energy can be stored for the future. We show that it is more likely that the

device chooses to save some energy for the period when the energy harvesting probability

is comparatively low. On the other hand, the devices will choose a higher transmission

probability at the period when the energy harvesting probability is comparatively high.

Keywords: game theory, Nash equilibrium, energy-harvestingWSNs, incentive mechanism,

social optimal, proportional fairness
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Chapter 1

Introduction

Due to the advancements in the technology for miniaturization of electronic devices,

wireless sensor networks (WSNs) have drawn increasing attention recently. There are

two types of WSNs according to how the sensors are powered up. The first is the battery-

powered WSNs, where the energy of the battery can only deplete with time. The second

type are energy-harvesting WSNs, where the sensor makes use of renewable energy to

maintain its operation and the battery energy usually remains at low level to avoid energy

leakage [1]. In both types of WSNs, proper energy management is essential to maximize

each sensor’s utility, such as transmission success rate. As the energy level typically

fluctuates at low level (Fig. 1.1), modeling of energy-harvesting sensors require the

knowledge of instantaneous harvesting probability and the transmission policy.

In a model for energy-harvesting WSNs, the transmission policy of energy harvesting

Stored Energy

Energy-Harvesting (Recharge)

Battery-Powered

Time

Snapshot Energy-Harvesting (Discharge)

t0 t1 t2 t3 t4 t5 t6

Figure 1.1: The comparison between battery-powered WSNs and WSN-HEAP.
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device should take the harvesting probability into consideration. Take Fig. 1.1 as an

example. At time t0, the device successfully harvests a unit of energy and transmit

information packets at the same time slot. (Assume that a unit of energy can afford the

number of packets that bring a unit of information.) At time t1, the device harvests a

unit of energy but transmit at the next time slot t1 + 1. In general, the device should

choose a transmission policy that maximizes the probability of successful transmission,

given the probability of harvesting energy. In this work, we use game theory to build

models for energy-harvesting WSNs. The transmission resources are limited so that the

devices have to compete with each other. In the first model, we consider a battery-based

WSN model where devices are not aware of harvesting energy. The devices choose the

transmission policy to maximize its own probability of successful transmission. In the

second model, we propose our main model for energy-harvesting WSNs where devices

harvest energy from the environment. The devices maximize its own probability of

successful transmission based on the knowledge of energy-harvesting probabilities. In

the third model, we extend the energy-harvesting model into the multi-stage one. The

devices are able to store energy for future and consider the future benefit of transmission.

Energy-harvesting technique can be implemented on most electric devices. However,

we focus on WSNs in this work because of their well-known problem: sensors are easily

depleted and difficult to renew, which is exactly the problem that the energy-harvesting

technique aims to solve. Besides, sensors are typically small in size and equipped with

small energy capacity, which matches the setting in our models. Therefore, to stay focused

at the energy-harvesting issue, we only discuss energy-harvesting WSNs throughout this

work.
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Chapter 2

Related Works

2.1 Energy Issue in WSNs

Energy management plays an important role in wireless sensor networks (WSNs). Pantazis

et al. provide a survey on power control issue in WSNs [2]. The power conservation

mechanisms are classified into two categories: passive and active. Passive power conservation

mechanisms reduce energy consumption of sensor node by turning off its transceiver

when there is no transmission, whereas active power conservation mechanisms count on

concept of improving the node’s operation instead of turning off the radio module into

power-saving mode.

Compared with the traditional WSNs, the energy harvesting WSNs start to arise much

attention in these years. The energy harvesting devices have some fundamental differences

from the traditional ones [1]. First, the energy source is different: traditional devices aim

to utilize the battery energy efficiently, while energy-harvesting devices aim to use the

harvested energy smartly. Second, the energy capacity is different: typically, traditional

devices have a large-capacity battery to reduce the replenishment cost, while energy-

harvesting devices are equipped small-capacity storage to minimize the size of device.

Kansal et al. propose an analytic model that characterizes the power management of

energy harvesting WSNs [3][4]. The authors propose the energy-neutral operation where
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the energy used never exceeds the energy harvested. Given the energy-neutral condition

is achieved, they also seek the optimal network performance.

Seyedi and Sikdar propose a Markov model for energy harvesting nodes and derive

the closed form for the loss probability and the average time to run out energy [5]. Such

analytic results provide a good guideline for engineers to design protocols for energy

harvesting WSNs. Niyato et al. develop a multidimensional discrete-time Markov chain

to model the channel, the solar radiation, and the packet arrival [6]. The authors then

use Nash bargaining solution to obtain the optimal sleep-or-wake-up strategy. Lei et al.

propose a generic model for energy harvesting by using Markov chain [7]. They derive

the optimal transmission policy for the node to decide whether to transmit or not. The

node would transmit if the value of transmission exceeds a threshold, which depends on

its current energy state. Susu et al. present a stochastic framework for energy harvesting

WSN nodes [8], which enables designers to assess statistical system performance such as

operation time or lifetime. Ho et al. propose a generalized Markovian (GM) model that

introduces an additional parameter to capture the non-stationary properties of energy-

harvesting circumstance [9]. Based on their empirical experiments, the GM model is

better than the stationary Markovian model.

Sharma et al. study the optimal policy for energy harvesting nodes. The generated

data bits and replenished energy are independently independent and identically distributed

random variable respectively. After deriving the necessary condition for stability, the

authors construct the throughput-optimal policy and the delay-optimal policy.

However, the energy conservation is not always beneficial since energy storage units

have limited capacity and are leakage-prone. The more energy store in the storage unit, the

more energy leak away. Zhu et al. formulate the leakage problem and implement leakage-

aware feedback control techniques to utilize energy that could leak away effectively[10].
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2.2 Medium Access Control Game

Akkarajitsakul et al. provide a broad survey for multiple access game-theoretic models

[11]. Yang et al. construct a non-cooperative game for CSMA/CA networks and design

an adaptive price setting to achieve the desired outcome [12]. Cui et al. consider multiple

contention measure signals in the random access game model [13]. Their work also

studies the dynamics for random access game, including best-response, gradient-play,

and Jacobi-play.

Chen et al. propose a dynamic game model for contention control [14]. The node

can choose its own transmission probability to maximize its own utility. Chowdhury

et al. present a game-theoretic model for contention control in IEEE 802.16/WiMax

networks [15]. The game considers a saturated network where nodes always have packets

to transmit. To ensure the unique existence of Nash equilibrium, the author design a

special form of utility function.

Since the equilibrium is not necessarily the best outcome, incentive schemes are used

to achieve the best outcome. Park et al. have designed a series of new incentive schemes

based on intervention to induce the target outcome [16]. The pricing scheme, the repeated

interaction, and the intervention schemes are well-known for providing incentives to

the users. However, to charge price requires a secure and reliable process between the

manager and the user, which creates burden on both sides. On the other hand, the repeated

interaction is hard to implement since users change frequently in mobile networks and

fixed interactions are hard to sustain. The intervention schemes directly impose intervention

on the users, which exclude the problems of pricing schemes and repeated interactions.

Compared with the general intervention schemes in [16], the authors provide an example

by applying intervention schemes in medium access control game in [17].
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2.3 Contribution

In this work, we construct game-theoretic models for energy harvesting WSNs where

several devices compete for limited transmission resources (e.g., wireless channels). The

models are generalized from the previous models which consider only single transmission

resource. The models can apply to many promising applications. For example, for

machine type communication, the wireless machines contend for random access channels

(RACH) for dedicated transmission channel [18]. Typically, the number of RACH resources

is fewer than the number of machine. Only the machines receiving grants from the base

station (BS) can start transmission. However, if more than two machines are granted

for transmission, both machines encounter collision and the transmission fails. Besides

collisions, the machine also have to consider the energy harvesting probability when

determining the transmission policy. The similar problem arises in many other wireless

applications.

We generalize the medium access control (MAC) game model proposed in [17] and

the one in [12]. Compared with their model, our models further consider the issue of

energy harvesting and more than one transmission resource that the devices can request

for. We derive the proportionally fair outcome and the social optimal outcome, and adopt

two incentive schemes to achieve them. Finally, we extend the model to the multiple-

period model where the energy can be stored for the future use.
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Chapter 3

One-Shot Models

In this chapter, we discuss one-shot models where devices make decisions simultaneously.

The devices have a chance to harvest energy for transmission. The transmission may

collide with other devices if two devices choose the same transmission channel. To

emphasize the importance of energy harvesting issue, we first build a traditional WSN

model where sensors cannot harvest energy. Then we construct our main model, the

energy-harvesting WSN model in the second section.

The first section considers a typical model where the devices have unlimited energy

source and need not to take energy issue into consideration. This is a generalized form

of traditional median access control (MAC) model discussed in [14] [16], which consider

only single unit of transmission resource.

The second section considers the main model where the devices harvest energy from

the environment for transmission. In this model, the device harvests a unit of energy

with a fixed probability. The transmission cannot success if the device fails to harvest the

energy. That is, the transmission success rate is bounded by the harvesting probability.

3.1 The Random Access Control (RAC) Model

We consider a WSN where N devices asking for transmission resources from the base

station (BS). There are totally M transmission resource (channel) to allocate. Device

7



i ∈ N chooses a probability si ∈ [0, 1] to request a transmission channel from theseM

channels. The set of possible strategies is denoted by Si for device i and S = S1 × S2 ×

. . .× SN for all devices.

The device requesting for channel sends the request directly through that channel. If

two devices send the request at the same time, both requests collide and fail. Although

collisions are not favorite, there is no way for device to avoid collision before sending the

request since there is no global information about the channel occupation. A generally

used method for the device to request the channel is to choose randomly (with uniform

distribution). The model is therefore called random access control (RAC) model.

Given that every device randomly chooses a channel to request, the probability that a

device collides with the other is 1

M
. On the contrary, the probability that a device does not

collide with the other is M−1
M
. Then the value of device as the transmission success rate

is:

vi(s) = si
∏
j �=i

((1− sj) + sj
M − 1

M
) = si

∏
j �=i

(1−
sj
M

)

The first term in the product is the probability that device j does not request for a

channel, and the second term is the probability that device j requests a different channel

from the one that device i gets. The summation of these two terms is the probability that

device j does not collide with device i. Then finally we know that the value vi is the

probability that device i chooses to request and other devices do not collide with device i.

For example, consider a three-device system where the devices choose s1 = 0.3, s2 =

0.5, s3 = 0.7. The number of transmission channel is M = 1. Then the value of first

device will be

v1 = 0.3 ∗ (1− 0.5) ∗ (1− 0.7) = 0.045

and similarly v2 = 0.105 and v3 = 0.245. Due to unavoidable collisions, the transmission

success rate of each device is smaller than the transmission probability it chooses. Besides,

the value of third device is highest since it chooses the highest transmission probability.

8



Generally speaking, the device choosing the highest transmission probability obtains the

highest value.

Considering a special caseM = 1, we obtain the previous models like [12] and [17]

which consider only single one transmission channel, with the definition of utility function

vi(s) = si
∏
j �=i

(1− sj).

Since our model considers a more general case, the results derived in the following

sections can apply to these previous models.

3.2 The RAC Game: Definition and Solution Concept

After defining necessary notations, we now introduce the mathematical tool to analyze

the system. Due to the selfish nature of wireless devices who cares its own transmission,

we adopt several concepts in the game theory to analyze the model, such as the potential

game and the Nash equilibrium. Our game model is formulated as a RAC game:

ΓRAC = 〈N , (Si)i∈N , (vi)i∈N 〉

We introduce the most basic equilibrium concept called Nash equilibrium.

Definition 3.1. (Nash Equilibrium) A strategy profile s∗ = (s1, s2, . . . , sN) is a Nash

equilibrium if no unilateral deviation in strategy is profitable for any single device, that

is,

ui(s
∗
i , s

∗
−i) > ui(si, s

∗
−i), ∀si ∈ Si, ∀i,

where s−i = (s1, s2, . . . , si−1, si+1, . . . , sN) is the strategy profile except for device i.

To derive Nash equilibrium, we have to solve the optimization problems with multiple

objective functions, which has no standard method to solve. However, we find that the

RAC game ΓRAC is a (exact) potential game whose equilibrium can be derived in an easier

9



way. First, we have to introduce the potential game.

Definition 3.2. (Potential Game) A game is an (exact) potential game if and only if there

exists a function P : S → R such that

P (s′i, s−i)− P (si, s−i) = ui(s
′
i, s−i)− ui(si, s−i), ∀i, si, s

′
i.

If ui is a continuous function with respect to si, the condition is equivalent to

∂P (s)

∂si
=

∂ui(s)

∂si
∀i. (3.1)

Potential games form a precious subset of games. In potential games, all players can

be thought of as optimizing a joint objective function, i.e., the potential function P . If the

deviation in strategy can increase some players utility, then it can also increase the value

of potential function. Therefore, the strategy maximizing the joint objective function P

coordinates the Nash equilibrium. Then we can derive the Nash equilibrium by solving

single maximization problem.

3.3 Nash Equilibrium: A Potential Game Approach

In this section, we use the potential function to derive the Nash equilibrium. To prove that

the RAC game is a potential game, we need the following lemma.

Lemma 3.1. Suppose ui are twice continuously differentiable. The game is a potential

game if and only if
∂2ui

∂si∂sj
=

∂2uj

∂si∂sj
, ∀i, j.

The detail explanation refers to Monderer and Shapleys’ work [19].

Theorem 3.2. The RAC game ΓRAC is a potential game with the potential function

P (s) = −M
∏
i

(1−
si
M

) (3.2)

10



Proof. To prove that RAC game is a potential game, we must show the condition in

Lemma 3.1 is satisfied.

∂2ui

∂si∂sj
=

1

M

∏
k �=i,j

(1−
sk
M

) =
∂2uj

∂si∂sj
, ∀i, j.

In addition, the derived potential function must satisfy the condition in Definition 3.2.

∂P

∂si
=

∏
j �=i

(1−
sj
M

) =
∂ui

∂si

Theorem 3.3. The unique Nash equilibrium strategy in ΓRAC is s∗i = 1 for all i.

Proof. Since the RAC game is a potential games, the strategy maximizing P is the

equilibrium strategy s∗.

max
s

P = −M
∏
i

(1−
si
M

) (3.3a)

subject to

si
∏
j �=i

(1−
sj
M

) ≥ 0 (Individual Rationality) (3.3b)

si ∈ [0, 1] (Strategy Space) (3.3c)

Obviously, the objective function (3.3a) is linearly increasing with si since the first-

order derivative
∂P

∂si
=

∏
j �=i

(1−
sj
M

) > 0

is a positive constant. Therefore, the unique solution for this maximization problem is

s∗i = 1 for all i.

The equilibrium s∗i = 1 for all i leads to an unwanted result where every device

requests for the transmission resource with probability one. The system will become full

11
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Figure 3.1: The Nash equilibrium is the point that maximizes the potential function.

of aggressive devices requesting for limited transmission resource. To avoid this result,

we will propose several incentive schemes to induce better results later.

We visually show the Nash equilibrium in Fig. 3.1. In Fig. 3.1(a), we show why

the device always chooses the strategy s∗i = 1. This is a two-device system. Whatever

strategy device 2 chooses, device 1 always chooses s∗1 = 1, and so does device 2, s∗2 = 1.

Besides, we find that the utility of device linearly increases with its strategy.

In Fig. 3.1(b), we show that the potential value with respect to all possible strategy

profile (s1, s2). Recall that the strategy profile (s∗1, s∗2) = (1, 1) that maximizes the value

of potential function is the Nash equilibrium, which coincides with the result in Fig.

3.1(a). Notice that the potential value is always negative as we derive in previous section.

3.4 The Energy-Harvesting RAC Game

In the previous section, we have constructed the RAC game and derived the Nash equilibrium

by adopting the potential game concept. In this section, we discuss the energy-harvesting

device, which has to harvest energy for transmission. The energy harvesting devices must

take the energy issue into consideration since the transmission may fail due to the absence

of harvested energy.

The harvesting probability is assumed to be a constant [4] [5] [7]. In [4], Kansal et

12



al. use a function P (t) to formulate the probability of harvesting energy at time t. In [5],

Seyedi et al. set the probability a constant ρa. In [7], Lei et al. assume that the battery

is replenished with probability α, and is recharged with probability β. In our work, we

denote the probability that device i harvests one unit of energy by pi. A unit of energy is

enough to send a request and start a transmission. Combining with the energy harvesting

issue, we can build our main model as follows. (With a slight abuse of notation, we adopt

the notations of energy harvesting RAC game rather than RAC game in the remaining

paper.)

vi(s) = sipi
∏
j �=i

((1− sj) + sj(1− pj) + sjpj
M − 1

M
) = sipj

∏
j �=i

(1−
sjpj
M

) (3.4)

The first term in the product is the probability that device j does not request for a

channel, the second term is the probability that device j sends a request but has not

harvested energy, and the third term is the probability that device j has harvested energy

but requests a different channel from the one that device i gets. The summation of these

three terms is the probability that device j does not collide with device i. Then the value

vi is the probability that device i chooses to request and other devices do not collide with

device i. The energy-harvesting RAC game is formulated as

ΓEH = 〈N , (Si)i∈N , (vi)i∈N 〉

3.5 Nash Equilibrium in Energy Harvesting RAC Game

Similarly, we prove that the energy harvesting RAC game is also a potential game and

then derive the Nash equilibrium.

Theorem 3.4. The energy harvesting RAC game ΓEH is a potential game with the potential

13



function

P (s) = −M
∏
i

(1−
sipi
M

). (3.5)

Proof. To prove ΓEH is a potential game, we show that the condition of Lemma 3.1 is

satisfied.
∂2ui

∂si∂sj
=

pipj
M

∏
k �=i,j

(1−
skpk
M

) =
∂2uj

∂si∂sj
, ∀i, j

The potential function must satisfy the condition (3.1).

∂P

∂si
= pi

∏
j �=i

(1−
sjpj
M

) =
∂ui

∂si

Theorem 3.5. The unique Nash equilibrium strategy in the energy harvesting RAC game

ΓEH is s∗i = 1 for all i.

Proof. To derive the equilibrium strategy, we have to solve the following maximization

problem.

max
s

P = −M
∏
i

(1−
sipi
M

) (3.6a)

subject to

sipi
∏
j �=i

(1−
sjpj
M

) ≥ 0 (Individual Rationality) (3.6b)

si ∈ [0, 1] (Strategy Space) (3.6c)

Obviously, the objective function (3.6a) is linearly increasing with si since

∂P

∂si
= pi

∏
j �=i

(1−
sjpj
M

) > 0

is a positive constant. Therefore, the unique solution for this maximization problem is

s∗i = 1 for all i.

14



Same as the RAC game, the EH-RAC game has only one Nash equilibrium s∗i = 1 for

all device i. The equilibrium that every device requests a channel is unwanted outcome. In

the next chapter, we introduce two incentive schemes that can induce the target outcome.

By designing incentive schemes which provide appropriate incentive to devices, we can

induce the devices to choose the target strategy.

15



Chapter 4

Incentive Mechanisms

In the previous chapter, we have proposed the energy harvesting RAC game and derived

the Nash equilibrium. However, the Nash equilibrium where every device chooses to

transmit with probability one leads to the severe collision problem. To deal with the

problem, we propose two incentive mechanisms to induce the desired outcome in this

chapter. With any of these two incentive mechanisms, we prove that the outcome where

every device transmits is no longer the Nash equilibrium. Moreover, the target outcome

becomes the Nash equilibrium. The target outcome is any outcome the system manager

want to implement. With help of the incentive schemes, we prevent the system from

falling into the worst situation and induce it to the desired outcome.

4.1 Pricing Scheme

The pricing scheme is the most direct mechanism that can provide the incentive to reduce

the devices’ transmission probability. The systemmanager can charge the devices according

to the strategy that the device chooses and the probability of harvesting energy. Rather

than proposing a specific pricing function, we choose to define a generalized price function

ci(si, pi) of device i. Any pricing function that satisfy the following conditions can be

used to induce the target outcome. Under the pricing scheme, the utility of device i

16



becomes

uP
i = vi(s)− ci(si, pi) = sipj

∏
j �=i

(1−
sjpj
M

)− ci(si, pi) (4.1)

The sequence of events can be listed as follows.

1. The manager chooses a pricing rule ci(si, pi) that charges the devices according to

the requesting probability and the harvesting probability.

2. Knowing the pricing rule, the device chooses a strategy s∗i that maximizes its own

utility uP
i .

3. The system reaches the Nash equilibrium s∗.

And the EH-RAC game under the pricing scheme can be formulated as follows.

ΓEH−P = 〈N , (Si)i∈N , (u
P
i )i∈N 〉,

which is also a potential game.

The first condition is: the pricing function ci(si, pi) must twice differentiable and

increasing marginal with respect to si, that is,

∂2ci(si, pi)

∂s2i
> 0.

That is, the charging fee has to increase faster than the linear function of si. With this

condition, we can derive the Nash equilibrium in the following theorem.

Theorem 4.1. Given the target strategy s̃ = (s̃1, s̃2, . . . , s̃N), the pricing functions solving

the following simultaneous equations can induce the target Nash equilibrium in ΓEH−P .

∂ci(si, pi)

∂si
|si=s̃i = pi(1−

s̃ipi
M

)N−1, ∀i (4.2)
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Proof. First, we prove the game is a potential game.

∂2ui

∂si∂sj
=

pipj
M

∏
k �=i,j

(1−
skpk
M

) =
∂2uj

∂si∂sj
, ∀i, j

Second, we prove

P = −M
∏
i

(1−
sipi
M

)−
∑
i

c(si, pi). (4.3)

is a potential function by showing that

∂P

∂si
= pi

∏
j �=i

(1−
sjpj
M

)−
∂ci(si, pi)

∂si
=

∂ui

∂si
.

Lastly, we derive the maximal point of the potential by applying the KKT condition.

In this way, we have to solve these simultaneous functions ∂P
∂si

= 0, ∀i, that is,

∂P

∂si
= pi

∏
j �=i

(1−
sjpj
M

)−
∂ci(si, pi)

∂si
= 0

Rewrite the equation we get

∂ci(si, pi)

∂si

1

pi
=

∏
j �=i

(1−
sjpj
M

).

Multiple both sides from i = 1 to i = N , we get

∏
i

∂ci(si, pi)

∂si

1

pi
=

∏
i

∏
j �=i

(1−
sjpj
M

) =
∏
i

(1−
sipi
M

)N−1.

One of the solution is

∂ci(si, pi)

∂si

1

pi
= (1−

sipi
M

)N−1.
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Figure 4.1: The equilibrium under the pricing scheme is nearly identical to the target one.

To prove that the solution is a maximum point, we show that

∂2P

∂s2i
= −

∂2ci(si, pi)

∂s2i
< 0

by the prior condition. The potential function is a concave function. Hence we complete

the proof.

The system manager can achieve the target s̃ = (s̃1, s̃2, . . . , s̃N) by designing an

appropriate pricing rule ci(si, pi). Since that the outcome that every device chooses to

transmit with probability one is not favorite, the system manager now can adopt the

pricing scheme to induce the target outcome as it wishes.

In Fig. (4.1), we use the pricing scheme to achieve the target outcome (0.3,0.7). The

maximal point of the potential function (0.3,0.7) is the Nash equilibrium.
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4.2 Intervention Function

Besides the pricing scheme, we adopt another incentive scheme that can induce the target

outcome. Jaeok Park and Mihaela van der Schaar have designed an intervention function

that can achieve the desired equilibrium [16][17]. In the intervention scheme, the system

manager imposes a certain level of intervention on devices’ transmission according to the

strategy s of devices. Formally, the intervene function can be expressed by g : S → [0, 1].

The intervention level is not tailored to devices as the pricing scheme, but identical for

every device.

The sequence of events can be listed as follows.

1. The manager chooses an intervention rule g.

2. The devices i choose a strategy s∗i that maximizes its own utility.

3. The system manager imposes an intervention on all the devices according to their

chosen strategy.

4. The system reaches a Stackelberg equilibrium.

Because of the participation of the system manager, the EH-RAC game under the

intervention scheme is neither a typical non-cooperative game as previous one nor a

potential game. In game theory, this kind of game is called Stackelberg Game where

a ruler decides the game rule before other players make decision [17]. After the system

manager imposes the intervention, the utility of device i becomes

uI
i (g, s) = sipj(1− g(s))

∏
j �=i

(1−
sjpj
M

).

The utility is discount by a factor (1−g(s))which is inversely proportional to the level

of intervention imposed by the system manager. And since the system manager aim to

induce the target outcome without imposing much intervention, the utility of the system

manager is
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u0(g, s) =

⎧⎪⎨
⎪⎩

1− g(s), if s = s̃

0, otherwise

where s̃ is the target outcome that the system manager aims to induce.

The manager gets zero utility if the target equilibrium is not achieved. On the other

hand, if the target equilibrium is achieved, the manager aims to reduce the level of

intervention. The EH-RAC game under the intervention function is formulated as follows.

ΓEH−I
g = 〈N , (Si)i∈N0

, (uI
i (g, :))i∈N0

〉

where N0 = N ∪ {0} is the player set including the system manager.

According to [17], we construct the intervention function as follows.

g∗(s) = [

N∑
i=1

si − s̃i
s̃i

]10 (4.4)

where the operator [x]ba = min{max{x, a}, b} is used to trim the value between 0 and

1. The level of intervention g increases if any device deviates from the target outcome.

Moreover, when the level of intervention reaches the upper bound (i.e., g = 1), the utility

of all devices will be zero.

We then prove that the intervention function g∗ and the target outcome s̃ = (s̃1, s̃2, . . . , s̃N , )

constitute a Stackelberg equilibrium.

Definition 4.1. (Stackelberg Equilibrium)An intervention rule g∗ and a strategy s∗ constitute

a Stackelberg equilibrium if s∗ is a Nash equilibrium of the game under the intervention

scheme and

g∗ ∈ argmax
g∈G

u0(g, s
∗)

where G is the set of all possible intervention schemes.

Theorem 4.2. The intervention function g∗ defined in Eq. (4.4) and the target outcome

s̃ = (s̃1, s̃2, . . . , s̃N , ) constitute an Stackelberg equilibrium in the energy-harvesting RAC
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game under the intervention scheme ΓEH−I
g .

Proof. We prove the target outcome constitutes a Stackelberg equilibrium by showing

that it constitutes a Nash equilibrium for every device. Then we show that the utility of

the system manager is also maximized.

Let the strategy of devices except for i choose the strategy profile s̃−i. We aim to

prove the strategy leading to the highest utility to device i is si = s̃i. Therefore, no device

will deviate and s̃ = (s̃1, s̃2, . . . , s̃N) constitutes a Nash equilibrium.

The utility of device i under the intervention g∗ is

ui(g
∗, s) = sipj(1− g∗(s))

∏
j �=i(1−

sjpj
M

).

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if si > 2s̃i

sipi(2−
si
s̃i
)
∏

j �=i(1−
sjpj
M

), if s̃i ≤ si ≤ 2s̃i

sipi
∏

j �=i(1−
sjpj
M

), if si < s̃i

In the first case si > 2s̃i, the level of intervention is g∗(si, ˜s−i) = 1 from Eq. (4.4)

and every device obtains zero utility. In the second case s̃i ≤ si ≤ 2s̃i, the level of

intervention is g∗(si, ˜s−i) = si−s̃i
s̃i
. In the third case si < s̃i, the level of intervention is

g∗(si, ˜s−i) = 0.

The utility of device i increases on si < s̃i, reaches the maximum at si = s̃i, then

decreases on s̃i ≤ si ≤ 2s̃i, and stays at 0 on si > 2s̃i. Therefore, the strategy si = s̃i is

the only strategy that maximizes the utility.

Finally, when every device chooses the target outcome, the intervention function

becomes zero and the system manager obtains the highest utility u0(g
∗, s̃) = 1− g∗(s̃) =

1. Therefore, we prove that the intervention function g∗ and the strategy profile s̃ constitute

a Stackelberg equilibrium.

In Fig. 4.2, we show the Nash equilibrium under the intervention scheme. The target

outcome (0.3, 0.7) is exactly the Nash equilibrium. Note that the energy-harvesting RAC

game under the intervention scheme is not a potential game since the condition (3.1) is
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Figure 4.2: The equilibrium under the intervention scheme is exactly identical to the
desired one.

not satisfied. Therefore, we cannot use the potential function. Instead, we derive the Nash

equilibrium by deriving the intersection of best response functions of two devices.

So far we have proposed two methods for achieving the target outcome. In the

following section, we will discuss two target outcomes that we aim to achieve: the

proportionally fair outcome, and the social optimal outcome.
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Chapter 5

The Desired Outcome

In the previous chapter, we have proposed two incentive schemes to induce the system

to the target outcome. With either the pricing scheme or the intervention scheme, the

system manager can achieve any feasible outcome it desire. In this chapter, we are going

to investigate the outcomes that the system manager desire.

We always want to fulfill the demand of users in wireless systems. However, this is a

dream that rarely happens in reality due to the lack of system resource. In a system where

limited resource cannot suffice users’ demand, we have to make an optimal allocation.

The definition of optimal allocation varies with the purpose of the system applications.

We adopt twomost common kinds of optimal allocations: the proportionally fair outcome,

and the social-optimal outcome.

5.1 The Proportionally Fair Outcome

First, we introduce the proportionally fairness. The proportionally fair outcomemaximizes

the overall utility while at the same time allow all devices at least the minimal level of

service.
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Definition 5.1. A strategy profile s∗ is proportionally fair if si ≥ 0 for all i and

∑
i

ui(s)− ui(s
∗)

ui(s∗)
≤ 0, ∀i, (5.1)

for any other s ∈ S [20], or equivalently, s∗ is the solution for

max
s

∑
i

log(ui(s)). (5.2)

The condition 5.1 indicates that the deviation in strategy from the proportionally fair

outcome s∗ increases some utilities and decreases some other utilities, but the summation

of these difference is negative. Moreover, the player whose utility is originally small has

larger weight factor in the summation, so it guarantees the fairness of the system.

The conditions in Definition 5.1 are equivalent since s∗ is the solution for (5.2) if and

only if log(ui) decreases around the point s, that is,

∑
i

(ui(s)− ui(s
∗))

∂log(ui(s))

∂s
|s=s∗ =

∑
i

ui(s)− ui(s
∗)

ui(s∗)
≤ 0,

which coordinates with the condition (5.1).

Theorem 5.1. The proportionally fair outcome (the solution to the (5.3a)) is s∗i = M
Npi
.

Proof. To find the proportionally fair outcome, we have to solve the followingmaximization

problem.

max
s

∑
i

log(sipi
∏
j

(1−
sjpj
M

)) (5.3a)

subject to

si ∈ [0, 1] (Strategy Space) (5.3b)
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First, we rephrase the objective function (5.3a)

max
s

∑
i

log

(
sipi

∏
j �=i

(1−
sjpj
M

)

)

=max
s

∑
i

log(sipi) +
∑
i

∑
j �=i

log(1−
sjpj
M

)

=max
s

∑
i

log(sipi) + (N − 1)
∑
i

log(1−
sipi
M

)

=max
s

∑
i

log
(
sipi(1−

sipi
M

)N−1
)

=max
si

sipi(1−
sipi
M

)N−1,

which becomes a maximization problem with single variable.

We use the first-order condition

∂sipi(1−
sipi
M

)N−1

∂si
= 0

to derive the maximum point

s∗i =
M

Npi
.

To verify this is a maximum point, we use the second-order differentiation:

∂2sipi(1−
sipi
M

)N−1

∂s2i
|si=s∗i

=
−p2iN

M
(1−

1

N
)N−2 < 0

Therefore, s∗i = M
Npi

is a solution for (5.3a) and s∗ is the proportionally fair outcome.

From this theorem, the proportional fair strategy profile enables the device with low pi

to choose a higher transmission probability, and, on the contrary, enables the device with

high pi to choose a lower transmission probability. The strategy is also proportional to

the number of transmission resource and inversely proportional to the number of device.

The devices have to choose lower transmission probabilities when the number of devices

are too many, while they can choose higher transmission probabilities when the number
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of transmission resource is abundant.

Denote the fairness index by the value of

∑
i

log(ui(s)).

We can further prove that the value of fairness index is independent of the distribution of

harvesting probability p = (p1, p2, . . . , pN).

Theorem 5.2. The value of fairness index is a function of the number of deviceN and the

number of transmission resourceM , that is,

∑
i

log(ui(s)) = N(N − 1) log(M(N − 1))−N2 log(N),

for given N ,M .

By definition, we have

Proof.

∑
i

log(ui(s)) =
∑
i

log(
M

N

∏
j

(1−
1

N
))

=
∑
i

log(
M

N
(
N − 1

N
)N−1)

=
∑
i

log(
M(N − 1)N−1

NN
)

= N log(
M(N − 1)N−1

NN
)

= N(N − 1) log(M(N − 1))−N2 log(N)

and complete the proof.

This theorem shows that the fairness index is independent of the distribution of energy

harvesting probability of the devices in the system. Even if the devices have higher (or

lower) chance to harvest energy, the fairness remains the same.
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5.2 The Social Optimal Outcome

In this section, we derive another optimal outcome that maximizes the overall utility of

the system. The outcome is called social optimal since the overall utility represents the

social welfare. To derive the social optimal outcome, we have to solve the maximization

problem as follows.

max
s

∑
i

ui(s) subject to

si ∈ [0, 1] (Strategy Space) (5.4a)

Theorem 5.3. Without loss of generality, we let p1 > p2 > . . . > pN . Then the strategy

profile s1 = s2 = . . . = sk = 1 and sk+1 = . . . = sN = 0 with the maximal positive

integer k such that

∏
i≤k

(1−
pi
M

)−
1

M

∑
i≤k

pi
∏
j �=i
j≤k

(1−
pj
M

) > 0 (5.5)

is the social optimal strategy set.

Proof. First, we prove that in the social strategy set, each device’s strategy is either si = 1

or si = 0. Secondly, we prove that the social optimal strategy consists of consecutive

devices from 1 to k. Thirdly, we prove that the value k is the maximal positive integer

such that Eq. (5.5) holds.

First, to prove that each device’s strategy is either si = 1 or si = 0, we check the

first-order derivative of the objective function (5.4a)

∂
∑

i sipi
∏

j(1−
sjpj
M

)

∂si
= pi

∏
j

(1−
sjpj
M

)−
pi
M

∑
j �=i

sjpj
∏
k �=i,j

(1−
skpk
M

),

which is independent with si. Since the first-order derivative is a constant, the optimal
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point is located at the boundary. If the first-order derivative is positive, the optimal point

is s∗i = 1. On the contrary, if the first-order derivative is negative, the optimal point is

s∗i = 0.

For notational convenience, we denote the set containing all devices whose si = 1

by Ω . On the contrary, the complementary set N \ Ω consists of all devices whose

si = 0. Therefore, for every possible strategy set s = {s1, s2, . . . , sN}, there must exist a

corresponding one-to-one set Ω. Then the strategy profile in the statement of theorem can

be rephrased to that the device set Ω = {1, 2, . . . , k} is the social optimal solution.

After that, now we can defineΔ(Ω) as the social welfare given the set Ω as follows.

Δ(Ω) ≡
∑
i∈Ω

pi
∏
j �=i

(1−
pj
M

)

Note that only devices in the set Ω choose si = 1. Besides, if a new device i is added,

the new social welfare becomes

Δ(Ω ∪ {i}) = Δ(Ω)(1−
pi
M

) + pi
∏
j∈Ω

(1−
pj
M

). (5.6)

The first term on the right hand side is the social welfare deduction (within those

original devices except for device i) since the probability of collision increases if device

i joins in the set Ω, and the second term is the social welfare addition since the utility of

device i also contributes to the social welfare.

Secondly, we use the contradiction to prove that the social optimal strategy consists

of consecutive number of devices from 1 to k. Let k be the largest number in the set Ω.

If Ω does not contain consecutive number of devices, there exists a value h < k such that

h �∈ Ω. Construct two new sets Ω′ = Ω \ k and Ω′′ = Ω′ ∪ h. We show that the social

welfare of new setΔ(Ω′′) is higher thanΔ(Ω) by comparing

Δ(Ω) = Δ(Ω′ ∪ {k}) = Δ(Ω′)(1−
pk
M

) + pk
∏
j∈Ω′

(1−
pj
M

)
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and

Δ(Ω′′) = Δ(Ω′ ∪ {h}) = Δ(Ω′)(1−
ph
M

) + ph
∏
j∈Ω′

(1−
pj
M

).

We can find that

Δ(Ω′′) = Δ(Ω′)+ph

(∏
j∈Ω′

(1−
pj
M

)−
Δ(Ω′)

M

)
> Δ(Ω′)+pk

(∏
j∈Ω′

(1−
pj
M

)−
Δ(Ω′)

M

)
= Δ(Ω).

since ph > pk.

In other word, if Ω does not contain consecutive number of devices, we can remove

the device with the largest number and add one with smaller number to increase the social

welfare. Therefore, the set Ω cannot be the social optimal solution. For any set Ω that

does not contain consecutive number of devices, there exists a new set Ω′′ that contains

consecutive number of devices bring higher social welfare. A social optimal strategy set

must contain consecutive number of devices.

Lastly, from Eq. (5.6), we derive the difference between the social welfare before and

after device i is added.

Δ(Ω ∪ {i})−Δ(Ω) = pi(
∏
j∈Ω

(1−
pj
M

)−
Δ(Ω)

M
) = pi(

∏
i

(1−
sipi
M

)−
Δ(Ω)

M
).

Device i would be included in the social optimal outcome if and only if the difference

remains positive, or equivalently, Eq. (5.5) is positive. We complete the proof.

Different from the proportionally fair strategy profile, the social optimal strategy

profile only enables the device with higher harvesting probability to choose the highest

transmission probability, while prohibits others from transmitting. In view of maximizing

the system performance, this is the best way to allocate the limited resource to the better

devices. The theorem also indicates what the number of device in the social optimal

strategy profile is. To express in a practical form, we design an algorithm to implement

the social optimal outcome as follows. The algorithm is used in the simulation.
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Figure 5.1: An example of social optimal outcome: device 2 has to choose s2 = 1 and
device 1 has to choose s1 = 0.
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Algorithm I: SOCIALOPTIMALALGORITHM(p,N,M)

p← DESCENTSORT(p)

for k ← 2 to N

do

⎧⎪⎨
⎪⎩
if

∏
i≤k (1−

pi
M
)− 1

M

∑
i≤k pi

∏
j �=i
j≤k

(1− pj
M
) < 0

then break

return (k)

The algorithm first sorts the devices with respect to their energy harvesting probability

in descent order. Then it adds the device with the largest pi in the list, and then the second

largest one, and so one. The process terminates if the condition cannot be satisfied.

In Fig. 5.1, we use a simple system with four devices to show the social optimal

outcome. We calculate that the social optimal outcome is (s1, s2, s3, s4) = (1, 1, 0, 0).

Because of the constraint of figure dimension, Fig. 5.1 illustrates the effect of strategy of

device 2 and device 3 on the social welfare. Apparently, to maximize the social welfare,

device 2 has to choose s2 = 1 and device 3 has to choose s3 = 0. On the other hand, Fig.

5.2 shows that the outcome derived by Algorithm I indeed leads to an outcome whose

social welfare is maximized.

5.3 Adopting the Incentive Schemes to Achieve the Optimal

Outcomes

After proposing two incentive schemes (the pricing scheme and the intervention scheme)

and deriving two optimal outcomes (the proportionally fair outcome and the social optimal

outcome), we start to adopt the incentive schemes to find the optimal outcomes in this

section. There are four kinds of combination.

Theorem 5.4. To achieve the proportionally fair outcome by using the pricing scheme,
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we have to set the price function ci(si, pi) which satisfies

∂ci(si, pi)

∂si
|si= M

Npi

= pi(
N − 1

N
)N−1, ∀i

Proof. Adopting s∗i = M
Npi

in Theorem 4.1, we complete the proof.

Theorem 5.5. To achieve the social optimal outcome by using the pricing scheme, we

have to set the price function ci(si, pi) which satisfies

∂ci(si, pi)

∂si
|si=1 = pi(1−

pi
M

)N−1, ∀i ≤ k

and
∂ci(si, pi)

∂si
|si=0 = pi, ∀i > k

where the value k is determined by Theorem 5.3.

Proof. Adopting s∗i = 1 for all i ≤ k and s∗i = 0 for all i > k in Theorem 4.1, we

complete the proof.

Theorem 5.6. To achieve the proportionally fair outcome by using the intervention scheme,

we have to set the intervention function

g∗(s) = [

N∑
i=1

si −
N

Mpi
N

Mpi

]10

Proof. Adopting s∗i = M
Npi

in Theorem 4.2, we complete the proof.

Here we have presented the way to implement proportionally fair outcome and social

optimal outcome by using the pricing scheme and the intervention scheme. Note that

theoretically the social optimal outcome cannot be implemented by the intervention scheme,

since the intervention function is not well-defined if the element of target outcome si is

zero. However, one can still implement the social optimal outcome by choosing infinitesimal

strategy that is extremely close to zero. That is, with an arbitrarily chosen δ → 0, we can
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construct a sub-optimal strategy si = 1 for i ≤ k and si = δ for i > k. From Theorem

4.2, we know the sub-optimal strategy constitutes a NE, and leads to social welfare equal

to

SW δ =

k∑
i=1

pi
∏
j �=i
j≤k

(1−
pj
M

)
∏
j �=i
j>k

(1−
δpj
M

) +

N∑
i=k+1

δpi
∏
j �=i
j≤k

(1−
pj
M

)
∏
j �=i
j>k

(1−
δpj
M

).

On the other hand, the optimal strategy leads to social welfare equal to

SW 0 =

k∑
i=1

pi
∏
j �=i
j≤k

(1−
pj
M

).

Since δ → 0, the ratio SW δ

SW
can be approximated as

SW δ

SW 0
≈

∑k

i=1
pi
∏

j �=i
j≤k

(1− pj
M
)
∏

j �=i
j>k

(1− δpj
M
)∑k

i=1
pi
∏

j �=i
j≤k

(1− pj
M
)

,

which is bounded by

(1−
δ

M
)N−k ≤

SW δ

SW 0
≤ 1.

Even in the worst case, the social welfare of sub-optimal strategy is (1 − δ
M
)N−k of

optimal strategy. We can conclude that, by using infinitesimal strategy to achieve the

social optimal under the intervention scheme, the social welfare decreases by a factor of

(1− δ
M
)N−k at most. The larger δ we choose, the more social welfare we lose.

In implementing these two incentives, we have to bear in mind that these two schemes

have a fundamental difference. The pricing scheme charges different pricing to the devices.

The BS has to design proper pricing functions to achieve the target outcome. On the

contrary, the intervention scheme imposes the same level of intervention on the devices,

which can be implemented by dropping a certain percentage of packets that the BS

receives. Therefore, to implement the pricing scheme, we have to install the pricing

program on the device side. On the other hand, to implement the intervention scheme,
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we have to install the intervention program on the BS side. It is more recommended to

implement the intervention scheme since the change on the BS side is usually easier.
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Chapter 6

Extension: Multi-Period Model

In the previous section, we construct an one-shot game model and propose two incentive

schemes to achieve the target equilibrium. In this section, we start to construct an extension

model that considers multi-period energy-harvesting WSN model. Since the energy can

be stored for the future usage, the devices face new trade-off in the multi-period energy-

harvesting WSN.

6.1 Model Setting

Adopting the notations from the previous model, there are N devices competing for M

transmission channel. The collision occurs if there is more than two device requesting for

the same channel.

We consider the slotted-time model. There are T periods in each of which the energy

arrives with different probability. Since the value of information increases with the number

of transmission success, the devices aim to maximize the number of transmission success

during these T periods.

At the period 0, the device i chooses a transmission probability si which cannot be

changed during these T period. The probability of harvesting energy varies with the time,

which is pti at the period t.

The energy capacity is also another important issue. However, to keep the result
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tractable, we consider a simple scenarios where the devices can store at most one unit of

energy.

6.2 The Probability of Harvesting Energy

Since the energy can be stored for future usage, the probability of harvesting energy at

period t depends on the strategy of previous periods. To clarify, we denote the harvesting

probability that the device harvests a unit of energy at the period t by pti, while the

powered-up probability that the device has enough energy to transmit at the period t by

qti . Notice that qti > pti since if the device has enough energy to transmit (i.e., the device

is powered-up), the energy sources from either the harvested energy at period t, or the

energy stored in the previous periods.

For example, at the period 1

q1i = p1i

and at the period 2

q2i = 1− (1− p2i )(1− q1i (1− si)).

The device has one unit of energy at period 2 if it harvests a unit of energy at period 2

or it has harvested energy in the past and did not use it. Therefore, the general form of qti

at period t is

qti = 1− (1− pti)(1− qt−1i (1− si)). (6.1)

We find that qti is a recursive function of q
t−1
i . By rearranging the recursive function

(Eq. (6.1)), we can derive qti in form of (p1i , p2i , . . . , pti) and si.

Lemma 6.1. The probability that the device has enough energy to transmit at period t

can be expressed as

qti =
t∑

n=1

(
pni

t∏
m=n+1

(1− pmi )(1− si)

)
(6.2)
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Proof. First, we rephrase Eq. (6.1) to

qti = pti + (1− pti)(1− si)q
t−1
i

We define the summation factor

bt ≡ (1− pti)(1− si)

and divide
∏t

m=2
bm from the both sides.

qti∏t

m=2
bm

=
qt−1i∏t−1
m=2

bm
+

pti∏t

m=2
bm

After summing up both sides of equation, we have

qti∏t

m=2
bm

= q1i +
t∑

n=2

pni∏n

m=2
bm

or equivalently,

qti = q1i

t∏
m=2

bm +
t∑

n=2

(
pni

t∏
m=n+1

bm

)
=

t∑
n=1

(
pni

t∏
m=n+1

bm

)
.

Replacing bt with (1− pti)(1− si), we derive the solution.

qti =

t∑
n=1

(
pni

t∏
m=n+1

(1− pmi )(1− si)

)

From this lemma, we can determine qtt from the previous probability of energy harvesting

(p1i , p
2
i , . . . , p

t
i) and the strategies si
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6.3 Nash equilibrium: Intersection of Best Response

In this section, we provide a mathematical solution for the Nash equilibrium of multi-

period model. We first introduce the best response, that is, the strategy that produces the

most favorite outcome for a device, taking others’ strategies as given. Therefore, if all the

devices select the best response to others’ players’ strategies, it is a Nash equilibrium.

From Lemma 6.2, we have

qti =

t∑
n=1

(
pni (1− si)

t−n

t∏
m=n+1

(1− pmi )

)

and the multi-period game can be formulated as following.

ΓMP = 〈N , (Si)i∈N , (u
M
i )i∈N 〉

where the utility is the summation of probability of successful transmission

uM
i =

T∑
t=1

siq
t
i

∏
j �=i

(1−
sjq

t
j

M
).

First, we prove that the Nash equilibrium exists in the game ΓMP .

Lemma 6.2. The pure-strategy Nash equilibrium exists if the strategy sets Si are nonempty

compact convex subsets of a Euclidean space and the utility functions ui are continuous

in si and quasi-concave in si. [21]

Theorem 6.3. In the multi-period game ΓMP , the pure-strategy Nash equilibrium exists.

Proof. First, the strategy set Si in the multi-period game ΓMP are nonempty compact

convex subsets of a Euclidean space. And the utility functions ui are continuous in si.

Second, we prove the utility function is a concave function with respect to the strategy

si. Replacing qti with Eq. (6.2) and sti = si for all period t, we find the utility

uM
i =

T∑
t=1

si

(
t∑

n=1

(
pni (1− si)

t−n

t∏
m=n+1

(1− pmi )

))∏
j �=i

(1−
sjq

t
j

M
)
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is a polynomial function of variable si which can rephrased as

uM
i = si

T−1∑
m=0

Cm,i(1− si)
m

where the constant

Cm,i =
∏
j �=i

(1−
sjq

m+1
j

M
)
T−m∑
t=1

pti

m∏
n=1

(1− pt+n
i )

is independent with the strategy si. Since si ∈ [0, 1], we verify the dual function

ūM
i = (1− si)

T−1∑
m=0

Cm,is
m
i ,

which has the same concavity (or convexity) with uM
i , to prove ūM

i is concave by using

the second-order derivative

∂2ūM
i

∂s2i
= −2

T−1∑
m=1

mCm,is
m−1
i + (1− si)

T−1∑
m=2

Cm,im(m− 1)sm−2i (6.3)

<
T−1∑
m=2

(−2si + (m− 1)(1− si))Cm,imsm−2i

=
T−1∑
m=2

((m− 1)− (1 +m)si)Cm,imsm−2i

= 2(1− 3si)C2 − T (T − 1)CT−1s
T−2
i +

T−1∑
m=3

((m− 1)− (1 +m− 1))Cm,imsm−2i

<
T−1∑
m=3

((m− 1)− (1 +m− 1))Cm,imsm−2i

= −
T−1∑
m=3

Cm,imsm−2i

< 0

That is, both dual function ūi and the utility function ui are concave functions in si.

Therefore, the multi-period game ΓMP has a pure-strategy Nash equilibrium.
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Theorem 6.4. The strategy profile s∗ = (s∗1, s
∗
2, . . . , s

∗
N) such that si = [s̄∗i ]

1
0 constitutes

a Nash equilibrium in ΓMP , where (s̄∗1, s̄
∗
2, . . . , s̄

∗
N) solves the following simultaneous

equations.

T−1∑
m=0

(1− s̄∗i )
mC∗m,i −

T−2∑
m=0

s̄∗i (m+ 1)(1− s̄∗i )
mC∗m+1,i = 0, ∀i (6.4)

where

C∗m,i =
∏
j �=i

(1−
s̄∗jq

m+1
j

M
)

T−m∑
t=1

pti

m∏
n=1

(1− pt+n
i ) (6.5)

Proof. Since the utility function

uM
i = si

T−1∑
m=0

Cm,i(1− si)
m

is concave in si, we can use the first-order derivative to derive the best response

∂uM
i

∂si
=

T−1∑
m=0

Cm,i(1− si)
m − si

T−1∑
m=1

mCm,i(1− si)
m−1

We show that the first order condition (the best response function) is

T−1∑
m=0

C∗m,i(1− s∗i )
m − s∗i

T−1∑
m=1

mC∗m,i(1− s∗i )
m−1 = 0, ∀i.

Denote the solution of the first order conditions by (s̄∗1, s̄∗2, . . . , s̄∗N), which may violate

the constraint of strategy space [0, 1]. However, due to the convexity of utility function,

the maximal value locates at the boundary of strategy space (i.e., si = 0, 1). Therefore,

the best response is the transacted value of the solution above, that is, si = [s̄∗i ]
1
0.

6.4 Case Study

In this section, we study a special case where T = 2 and N = 2. Denote the devices by 1

and 2. Then we can rephrase Eq. (6.4) as
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C0,i + (1− si)C1,i = siC1,i

or equivalently,

(2si − 1)C1,i = C0,i

for i = 1, 2.

Replacing Cm,i with Eq. (6.5), we have

(2si − 1)p1i (1− p2i )(1−
sjq

2
j

M
) = (p1i + p2i )(1−

sjq
1
j

M
)

and then replace q1j = p1j and

q2j = p1j (1− p2j)(1− sj) + p2j ,

we have the following two simultaneous equations to solve

⎛
⎜⎝ (2s1 − 1)p11(1− p21)(1−

s2
M
(p12(1− p22)(1− s2) + p22)) = (p11 + p21)(1−

s2p
1

2

M
)

(2s2 − 1)p12(1− p22)(1−
s1
M
(p11(1− p21)(1− s1) + p21)) = (p12 + p22)(1−

s1p
1

1

M
)

which can be rephrased to

⎛
⎜⎝ (2s1 − 1)a1(1 + a2s

2
2 + a3s2) = a4s2 + a5

(2s2 − 1)b1(1 + b2s
2
1 + b3s1) = b4s1 + b5
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where

a1 = p11(1− p21),

a2 =
p12(1− p22)

M
,

a3 = −
p12(1− p22) + p22

M
,

a4 = −
(p12 + p22)p

1
1

M
,

a5 = (p12 + p22)

and

b1 = p12(1− p22),

b2 =
p11(1− p21)

M
,

b3 = −
p11(1− p21) + p21

M
,

b4 = −
(p11 + p21)p

1
2

M
,

b5 = (p11 + p21)

By assuming that these two devices locate in the same environment, we have pt1 = pt2

for t = 1, 2 and therefore ai = bi for i = 1, 2, 3, 4, 5. By the property of symmetry, we

know that the solution s1 = s2 = s. Then we can simplify the problem into

(2s− 1)b1(1 + b2s
2 + b3s) = b4s+ b5

or equivalently,

2b1b2s
3 + b1(2b3 − b2)s

2 + (b1(2− b3)− b4)s− b1 − b5 = 0,

which is a cubic function that can be solved by the general formula.
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Chapter 7

Numerical Results

In this chapter, we build EH-RAC systems and examine the effect of parameter change

on the system performance (i.e., social welfare and fairness index). Besides, we also

numerically verify the case study in the multi-period EH-RAC game. By the simulation,

we can gain more insight about the case study.

7.1 System Performance With Different Parameters

We discuss how the device parameters affect the system performance. In Fig. 7.1(a) and

Fig. 7.1(b), we build a system with N = 100 devices andM = 5 transmission channels.

There are 9 groups of device whose average harvesting probability is 0.1, 0.2, . . . , 0.9

respectively. The harvesting probability within each group follows the normal distribution

N(0.1, 0.1), N(0.2, 0.1), . . . , N(0.9, 0.1) respectively.

In Fig. 7.1(a), the social welfare of social optimal outcome is superior to that of

a random outcome. Any random outcome decreases in social welfare since the mutual

interference increases when the average energy harvesting probability increases. The

social welfare of social optimal outcome also increases with the average energy harvesting

probability of group, since only some specific devices are allowed to transmit in the social

optimal algorithm. When the energy harvesting probabilities of those devices increase,

their transmission success rate increases, which improves social welfare. On the other
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Figure 7.1: The social optimal outcome and the proportionally fair outcome under
different choices of parameters.
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Figure 7.2: The value of social welfare changes with the number of transmission resource
and the number of resource.

hand, in Fig. 7.1(b), the fairness index of proportionally fair outcome is superior to that of

a random outcome, and it also remains constant for each group. As we prove in Theorem

5.2, the value of fairness index is a function of N andM . Since each group has the same

parameters N andM , the fairness indexes are identical.

In Fig. 7.2(a), the value of social welfare increases with the number of transmission

resource. When the number of transmission resource is below the device number, social

welfare increases sharply mainly because the number of transmitting device is increasing.

Later, when the number of transmission resource is above the device number, the number

of transmitting device remains the same, so social welfare fare increases only because the

average energy harvesting probability increases.
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Figure 7.3: The value of fairness index changes with the number of transmission resource
and the number of resource.

In Fig. 7.2(b), the value of social welfare increases with the number of device, but

saturates when the number of device is too large. In the increasing region, the system

still has capacity to accommodate more devices and the social welfare still has room to

increase. However, in the saturation region, the transmission resource is fully utilized

and the system cannot accommodate any more device. Therefore, the social welfare stop

increasing.

In Fig. 7.3(a), the value of fairness index increases with the number of transmission

resource. If the system has more transmission resource, then the contention among

devices can be reduced and the outcome can be more fair. The reason is similar to the

previous one. On the other hand, in Fig. 7.3(b), the value of fairness index decreases with

the number of device. If there are more devices in the system, then the problem of lack of

transmission resource would become more severe, and the fairness becomes lower.

7.2 Simulation of The 2-Period 2-Device EH-RAC Game

We take advantage of computer simulation to observe the case discussed in the case

study of multi-period game. We choose T = 2, N = 2, and M = 1. The harvesting

probabilities are (p11, p21) = (p12, p
2
2) = (0.2, 0.5). The simulation algorithm is shown in

Algorithm I.
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In Fig. 7.4(a), the utility function of device 2 increases along the strategy of device

1 but decreases along the strategy of device 2. The utility function is a concave function

and has maximal point at s∗2 = 1 for any s1. Since the concavity of utility function is not

obvious in Fig. 7.4(a), we derive its first-order differentiation (Fig. 7.4(b)) and find that

the value strictly decreases along the strategy of device 2. Remember that if the first-order

differentiation is strictly decreasing, then the function is concave.

Moreover, from the previous analysis, we have b1 = b2 = 0.1, b3 = −0.6, b4 =

−0.14, b5 = 0.7. Then the solution of

0.02s3 − 0.13s2 + 0.4s− 0.8 = 0,

is s = 4. Since the utility function u1 is concave in s1, u1 is monotonically increasing for

s ∈ [0, 4]. Due to the constraint of strategy space, the device strategy will choose si = 1

for i = 1, 2, that is, the strategy profile (s1, s2) = (1, 1) is the Nash equilibrium, as shown

in 7.5.

Algorithm I: TWO-PERIOD TWO-PLAYER NASH EQUILIBRIUM(p,M, T )

for i← 0 to 100

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

si ←
i

100

for j ← 0 to 100

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sj ←
j

100

for t← 1 to T

do

⎧⎪⎨
⎪⎩
qti =

∑t

n=1
pni (1− si)

t−n
∏t

m=n+1
(1− pmi )

qtj =
∑t

n=1
pnj (1− sj)

t−n
∏t

m=n+1
(1− pmj )

uM
i (si, sj) =

∑T

t=1
siq

t
i(1−

sjq
t
j

M
)

uM
j (si, sj) =

∑T

t=1
sjq

t
j(1−

siq
t
i

M
)

BRi(sj) = argmaxsi u
M
i (si, sj)

BRj(si) = argmaxsj u
M
j (si, sj)
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Figure 7.4: The utility function u1 is a concave function increasing along the strategy s1.
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Figure 7.5: The Nash equilibrium in the multi-period model

7.3 Extended Simulations of Multi-period Multi-device

EH-RAC Game

To seek the insight of Nash equilibrium in multi-period energy-harvesting RAC game,

we use the computer simulation to show how the energy harvesting probabilities affect

Period 1 Period 2

p p21
i i

p (1-s)1
ii

Figure 7.6: The energy relation of two-period model
48



0

0.5

1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

EH probability at t=2 (p2
1)EH probability at t=1 (p1

1)

E
qu

ili
br

iu
m

 S
tra

te
gy

 (s
* 1)

(a) The equilibrium strategy

0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

EH probability at t=2 (p2
1)EH probability at t=1 (p1

1)

E
qu

ili
br

iu
m

 U
til

ity
 (u

1(s
* ))

(b) The first-order differentiation

Figure 7.7: The difference of equilibrium strategy and utility of device i with respect to
the harvesting probabilities.
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Figure 7.8: The difference of equilibrium strategy and utility of device j with respect to
the harvesting probabilities.

the Nash equilibrium in this section. To make the results tractable, we consider only a

two-period-multi-device system. For all devices, the energy can be stored from period

1 to period 2. We use Fig. 7.6 to illustrate the simulation model. The device has the

probability p1i of harvesting a unit of energy at period 1 and has the probability p2i of

harvesting a unit of energy at period 2. Once the device chooses the strategy si, the

harvested energy will be stored to period 2 with probability p1i (1− si). Note that we have

assumed that the energy capacity is one unit. If the device has the energy at period 2, it

can be either stored from period 1 or harvested at period 2.

In Fig. 7.7(a) and Fig. 7.7(b), we manipulate the harvesting probabilities of device 1

at period 1 and 2 while fix the harvesting probabilities of device 2 as constants p12 = p22 =
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Figure 7.9: The difference of equilibrium strategy and utility of device j with respect to
the number of device.

0.5. The number of devices isN = 50 and the transmission resource isM = 1. In general,

no matter which harvesting probability increases, the equilibrium strategy increases at the

same time. However, there is a trade-off when the harvesting probability p11 is high. The

equilibrium strategy of device 1 decreases from s∗1 = 1 since the probability that the

device i has the energy at period 2 would decrease if the harvesting probability at is too

high. Therefore, the device i must decrease its equilibrium strategy to maintain the utility

at period 2. On the other hand, we read from Fig. 7.7(b) that the equilibrium utility

increases along both harvesting probabilities p11 and p21. When p11 = p21 = 1, the utility of

device 1 reaches the optimum.

In Fig. 7.8(a) and Fig. 7.8(b), we want to observe how the harvesting probabilities

of device 1 influence the equilibrium strategy and equilibrium utility of the other device

(device 2). When the harvesting probabilities of device 1 are both low, the equilibrium

strategy is to choose a high transmission probability; meanwhile, the utility of device 2

reaches the optimum.

In Fig. 7.9(a) and Fig. 7.9(b), we build a system composed of devices with different

energy harvesting probabilities. To obtain the insight of system, we need to include

the devices with all possible harvesting probability. Therefore, we set the harvesting

probability p1i = i/N and p1i = i/2N . The harvesting probability at period 2 is discounted

by 50% so the devices will focus on the period 1.
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Figure 7.10: If the EH probability ratio is increasing, the devices with higher EH
probability at period 1 will choose a higher transmission probability.

We observe that the device with higher harvesting probability will choose higher

equilibrium strategy since the difference between the harvesting probability at period 1

and one at period 2 is larger. Moreover, the utility of devices with higher harvesting

probability is higher since these devices have more chance to send transmission successfully.

In Fig. 7.10 and Fig. 7.11, we show that the devices with higher energy-harvesting

(EH) probability ratio (i.e., p2i /p1i ) will choose higher transmission probability and are

less likely to leave energy from period 1 to period 2. First, we construct a system with

parameter N = 50,M = 1. The devices’ EH probability q1i = p1i are equally distributed

between 0 to 1 and p2i is set to satisfy the increasing (or decreasing) order. Formally, in

Fig. 7.10, the EH probability ratio p2i /p1i is increasing, while p2i /p1i is decreasing in Fig.

7.10.

In both Fig. 7.10 and Fig. 7.11, we present four figures. The left-top figure shows

the EH probabilities q1, p1, q2, p2: q1 is the EH probability at period 1 that equals to the

powered-up (PU) probability p1, q2 is the EH probability at period 2 that takes account

of the stored energy from period 1 and the PU probability at period 2, and p2 is the EH
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Figure 7.11: If the EH probability ratio is decreasing, the devices with lower EH
probability at period 1 will choose a higher transmission probability.

probability that excludes the stored energy from period 1. The left-bottom figure shows

the probability that the device stores energy at the period 1, that is, the difference between

q2 − p2. The right-top figure is the equilibrium strategy that the device chooses in the

Nash equilibrium, while the right-bottom figure is the equilibrium utility.

In Fig. 7.10, the EH probability ratio p2i /p
1
i is increasing. That is, the devices

with higher EH probability at period 1 is have higher EH probability at period 2. The

simulation shows that, in the Nash equilibrium, the device with higher EH probability

ratio will choose the higher transmission probability, which decreases the probability of

storing the harvested energy from period 1 to period 2. Moreover, the utility of devices

with higher EH probability is also higher. Therefore, we conclude that it is less likely that

the devices with higher EH probability ratio will store energy from period 1. Fig. 7.11

also supports the same argument, where the EH probability ratio p2i /p1i is decreasing.
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Chapter 8

Conclusion

In this work, we first construct the RAC game and the energy-harvesting RAC game.

To derive the Nash equilibrium, we adopt the potential solution concept and prove both

games are potential games. However, the equilibria of both games are not efficient.

Therefore, we propose the pricing scheme and the intervention scheme to achieve the

target outcome and prevent the inefficient outcome from occurring. We mathematically

prove that the target outcome is a unique equilibrium when the pricing scheme or the

intervention scheme is used. In other word, the inefficient outcome is no longer an

equilibrium.

Next we derive two target outcomes: the proportionally fair outcome and the social

optimal outcome. The proportionally fair outcome maximizes the overall probability of

successful transmission while at the same time allow all devices at least the minimal level

of service. The social optimal outcome maximizes the overall utility of the system, that

is, the sum of probability of successful transmission. Besides, we show how to use the

pricing scheme and intervention scheme to achieve these two target outcomes.

In addition to the one-shot game models, we also formulate a multi-period energy-

harvesting RAC game. We consider the scenarios where the devices store one unit of

energy. The device can choose a specific strategy during totally T periods in which

the harvesting probabilities can be different. Therefore, if the device chooses a large
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transmission probability, then it would acquire benefit from the transmission in the current

period but lose benefit from leaving energy to the future periods, and vice versa. We

derive the harvesting probabilities in form of the harvesting probabilities and the previous

strategies.

Different from the one-shot games, the multi-period game is composed of convex

utility functions. Therefore, even without incentive schemes, in the equilibrium the devices

may choose transmission probability other than si = 1. We prove that the pure-strategy

Nash equilibrium exists in this game. The Nash equilibrium strategy profile can be derived

by solving the simultaneous equations given in Theorem 6.4.

Finally, we use the simulations to show how the systems parameters affect the equilibrium.

The figures can improve the comprehension of the previous mathematical models and

results.
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