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摘要 

細懸浮微粒又稱 PM2.5，它進入人體呼吸道後能在肺泡穿越氣血屏障，進而抵

達血液循環系統然後傳遞至其他器官。過去文獻指出 PM2.5誘導的體內氧化壓力上

升可能造成脂質的擾動，而含有磷酸膽鹼的脂質(phosphorylcholine-containing lipids)

是人體構成細胞膜的最主要成分，在面對氧化攻擊時細胞膜是體內的第一道防線。

本實驗室先前的研究使用脂質體學的方法探討在慢性暴露 PM2.5 後大鼠肺部含有

磷酸膽鹼脂質的變化，發現磷脂醯膽鹼(phosphatidylcholines, PCs)的顯著改變可能

與肺部表面活性劑功能的損傷有關。然而除了肺臟外，PM2.5對人體其他器官的脂

質效應目前仍不清楚。因此，在本研究中我們利用脂質體學的方法透過大鼠長期吸

入 PM2.5的動物模型，去探討慢性暴露 PM2.5後不同器官與血液的脂質效應。 

十隻六週大的雄性 SD 大鼠，五隻全身持續性地暴露於未經濃縮的含有 PM2.5

的外來一般空氣，其他五隻則吸入通過懸浮微粒過濾器的空氣。整個實驗在臺北市

臺大公衛大樓進行長達八個月，實驗結束後暴露組與控制組所測得的平均 PM2.5濃

度分別為 16.7 ± 10.1 μg/m3與 0.70 ± 0.46 μg/m3。隨後採集動物的血液樣本及其各

式器官，包括心臟、肝臟、胰臟、腎臟、脾臟、睪丸及副睪丸，接著將脂質從每個

器官組織及血清中萃取出來進行極致液相層析串聯式質譜儀(UPLC-MS/MS)分析，

得到的圖譜經過數據前處理後，再利用偏最小平方判別分析(partial least squares 

discriminant analysis)搭配無母數統計方法 Wilcoxon rank sum tests 去檢驗暴露組與

控制組間的脂質變異。 

本研究結果指出慢性暴露 PM2.5 確實會在肺以外的器官造成脂質擾動的情形。

偏最小平方判別分析顯示含磷酸膽鹼脂質在大鼠睪丸、胰臟、心臟、肝臟及腎臟的

兩組別中有顯著差異，而無母數統計分析顯示在大鼠睪丸中發現最大量的含磷酸

膽鹼脂質變化，包括多種磷脂醯膽鹼(lyso-PCs, diacyl-PCs, ether-linked PCs)及神經

磷脂(sphingomyelins)，此改變推測可能與維持精子細胞膜完整性、抗氧化、抗發炎

及輕微生精功能障礙有關。此外，在血液中的脂質調查發現與睪丸有一致的特定脂

質 PC(16:0/18:1)下降趨勢，但其是否為 PM2.5毒性的潛在生物指標物需要更進一步

的研究證實。總結，脂質體學是一種有效不偏頗且靈敏的方法去探究在 PM2.5造成

嚴重損傷前體內的分子變化，同時幫助於潛在生物指標物的開發。 

關鍵字：脂質體學、磷脂醯膽鹼、PM2.5、慢性暴露、睪丸、毒性 
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Abstract 

    Fine particulate matter (PM2.5) is able to pass the respiratory barrier and further enter 

the circulatory system, and consequently spread to the whole body. PM2.5-induced 

toxicity has been correlated with oxidative stress, which may lead to lipid perturbation. 

Our previous studies have applied a lipidomic platform to investigate the chronic effects 

of PM2.5 exposure on the pulmonary lipids in rats inhaled ambient air, and found that 

significantly altered levels of phosphorylcholine-containing lipids, which might impair 

pulmonary surfactant functions. However, the effects of PM2.5 on phosphorylcholine-

containing lipids in other organs have not been fully elucidated yet. In this study, we 

examined the lipid effects of chronic PM2.5 exposure on various organs and serum using 

a rat inhalation model. 

    Five male Sprague-Dawley rats were continually whole-body exposed to non-

filtered and non-concentrated ambient air containing PM2.5 from the outside of the Public 

Health building in Taipei city for 8 months, while five rats were inhaled filtered air. The 

mean concentrations of PM2.5 in the exposure and control group were 16.7 ± 10.1 μg/m3 

and 0.70 ± 0.46 μg/m3, respectively. Blood samples and various tissues, including heart, 

liver, kidney, pancreas, spleen, testis and epididymis were collected. Then lipids from 

each organ and serum were extracted for further ultra-performance liquid 

chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) analysis. 

Subsequently, the partial least squares discriminant analysis (PLS-DA) and Wilcoxon 

rank sum tests were used to examine the variations of phosphorylcholine‐containing 

lipids among samples. 

    Our results demonstrated that after the chronic and low-dose PM2.5 exposure, the 

lipidome were significantly different in the certain organs. In the PLS-DA models, the 

patterns of phosphorylcholine-containing lipids were altered in the testis, pancreas, heart, 

liver and kidney of rats exposed to PM2.5. After statistical analyses, most of significantly 

changed phosphorylcholine-containing lipids were discovered in the rat testis after 

chronic PM2.5 exposure. The changed lipids include decreased lyso-phosphatidylcholines 

(PCs), increased unsaturated diacyl-PCs, a decreased ether-linked PC and increased 

sphingomyelins, which may be related to maintain membrane integrity of spermatozoa, 

play anti-oxidants and anti-inflammatory roles, and dysfunction of spermatogenesis. 

Additionally, our results showed decreased PC(16:0/18:1) was both observed in the serum 
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and testis. Further studies to verify potential biomarkers for PM2.5-induced toxicity are 

needed. We concluded lipidomics is a powerful, unbiased, and sensitive approach to study 

biological molecular effects in different organs after long-term and low concentration 

PM2.5 exposure. Our study suggested target organs of PM2.5 exposure and revealed the 

underlying possible mechanisms of PM-induced toxicity and potential biomarkers. 

 

Key words: Lipidomics, Phosphorylcholine-containing lipids, PM2.5, Chronic exposure, 

Testis, Toxicity 
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1. Introduction 

1.1 Background 

In the last decades, with rapid development of industry and transportation, ambient 

air pollution has become a significant public health issue. Particulate matter (PM), metals, 

and gaseous pollutants etc. have associated with numerous adverse effects to humans [1, 

2]. Especially, fine particulate matter (PM2.5) gets more concern due to its complex 

composition and divergent mechanism of toxicity [3, 4]. Although several animal studies 

have focused on the acute effect of short-term PM exposure at high dose treatment by 

intratracheal instillation [5-7], the underlying knowledge on chronic inhalation of real 

world, non-concentrated ambient PM in animals remain unclear. 

1.2 Fine particulate matter 

PM2.5 refers to particulate matter with an aerodynamic diameter less than 2.5 μm. 

The main source of PM2.5 are the emissions from motor vehicles and the burning of coal 

[8], which cause the complex chemical properties of PM2.5. The major components of 

PM2.5 are sulfates (SO4
2-), nitrates (NO3

-), ammonium (NH4
+) and metals. Characteristics 

of PM-induced toxicity have been related with particular size ranges and composition 

simultaneously [9]. The main route for the entry of the PM into the body is inhalation, 

comparing to ingestion and dermal contact [10]. Due to small sizes, PM2.5 is able to get 

deep into the respiratory bronchioles and alveoli where gas exchange occurs [11]. 
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However, PM2.5 can not only affect the lung but also multiple extrapulmonary organs of 

the body. The possible pathways of PM2.5 leading to extrapulmonary effects of PM2.5 are 

speculated: (1) nano-sized particulate components can go through the respiratory barrier 

then into circulatory system and further distributed to whole body, (2) PM-induced lung 

injury produce bioactive components and cytokines that subsequently enter circulation 

and affect extrapulmonary tissues, (3) PM interacts with pulmonary nerves and activate 

the autonomic nervous system resulted in systemic alterations [12-14]. 

1.3 Epidemiological studies on fine particulate matter 

Several epidemiological studies have shown the association between PM2.5 and 

numerous health effects, including increased hospital admissions, emergency room visits 

and mortality [15-17]. Moreover, typical pulmonary diseases have been reported, such as 

respiratory symptoms and lung cancer. However, more and more recent studies indicated 

that exposure to PM2.5 could induce the non-pulmonary disease [18]. For example, PM2.5 

was related to adverse effects on male reproductive system [19]. Sperm morphology and 

motility chronologically negatively correlated with PM2.5 levels recorded in males in Salt 

Lake County after two to three months exposure [20]. Comparing to rural area, exposure 

to higher concentrations of SO2 and NO2 of urban ambient air may associate with worse 

semen quality in Chongqing urban males [21]. Some animal studies were also indicated 

relationship between PM2.5 and male reproductive dysfunction in rats [22, 23]. On the 

other hand, Pearson et al. suggested that ambient PM2.5 may cause the increased 
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prevalence of diabetes in the adult population in U.S. [24], and consistent results were 

found in animal model after PM2.5 exposure, which revealed inflammation of adipose 

tissue and insulin resistance [25]. American Heart Association (AHA) has indicated that 

from epidemiology to toxicological studies all provided powerful evidence about PM2.5 

contributing to cardiovascular morbidity and mortality [26]. 

1.4 Mechanism of fine particulate matter-induced toxicity 

Researchers have suggested several mechanisms about PM2.5 induced adverse health 

effects. After arriving at target cells, PM2.5 may alter the cellular physiological processes 

by increasing oxidative stress, inflammation, and genotoxicity, resulting in the injury on 

the tissues and organs, and finally develop to cardiopulmonary diseases, diabetes mellitus, 

adverse reproductive effects and others [4]. 

Oxidative stress has been considered as an important mechanism of PM2.5-induced 

toxicities[27]. Oxidative stress occurs when the level of reactive oxygen species (ROS), 

a byproduct of energy metabolism pathway of aerobic organism, exceeds antioxidant 

capacity [28]. The environmentally persistent free radicals from the combustion-derived 

particles in PM2.5 via reduction-oxidation cycling, or PM2.5-mediated activation of 

inflammatory cells, are both capable of generating excessive ROS [29, 30]. Afterward, 

these ROS can readily react molecules, such as lipids, proteins and DNA, altering their 

structure and function, and then cause damages to the target cells and tissues [31]. A 

number of studies have shown that lipid peroxidation are associated with increased levels 
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of PM2.5 [32-34]. When free radicals attack lipids that contain carbon-carbon double 

bonds, especially polyunsaturated fatty acids (PUFA) containing two or more double 

bonds, lipid peroxidation was occurred [34]. Lipids play important roles on maintaining 

the structure and function of cell membrane [35]. Cell culture studies showed PM2.5 may 

destroy the cell membrane integrity after the bright field microscopy analysis [36, 37]. 

Hence, a series of ROS induced by PM2.5 have the potential to induce a systemic oxidation 

of polyunsaturated phospholipids and severely impair membrane function. 

As mentioned above, inflammation could prompt oxidant injury, thereby 

inflammation and oxidative stress are closely linked and inseparable [38]. Numerous 

studies have reported systemic inflammation was observed in humans and animals 

exposed to PM2.5, with increased levels of inflammation biomarkers, including C-reactive 

protein (CRP), Interleukin-6 (IL-6), tumor necrosis factor α (TNF‐α) and other markers 

[39-42]. Lysophospholipids and sphingolipids are bioactive lipids that could actively 

modulate the chronic inflammatory response and help the body to restore homeostatic 

balance [43]. In fact, previous studies indicated that not only certain lipid species act to 

regulate inflammatory responses, but inflammatory signaling also can influence lipid 

metabolism in biological process conversely [44]. 

1.5 Lipids and Lipidomics 

Lipids are kind of hydrophobic small molecules, and their functions include cell 

membrane formation, energy storage, molecules regulating, and signaling [35]. Based on 
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their chemical structure and biosynthetic characteristics, lipids have been divided into 

eight categories by LIPID MAPS [45], including fatty acyls, glycerolipids, 

glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids and 

polyketides. 

Lipidomics is a branch of the field of metabolomics. Lipidomics aims to 

comprehensively identify and quantify a wide range of lipids, and determine lipid roles 

in physiological processes. Lipidomics can characterize the biochemical changes induced 

by environmental stimuli by detecting alterations of lipids [46]. Thousands of lipids can 

be detected at a time by high-performance mass spectrometry (MS), and presenting 

abundant information about qualitative and quantitative analysis simultaneously. Relying 

on the advance of MS analysis technology, lipidomic investigations on exploring disease 

biomarkers and illustrating metabolic pathways become more efficient and powerful [47]. 

Because of high sensitivity and high throughput properties, application of MS-based 

lipidomics is widely to numerous fields, such as toxicology, nutrition, environmental 

sciences, and others [48]. In the past, numerous PM studies using metabolomics showed 

the changes of lipids and importance of those lipid in response to PM exposure [49-51]. 

However, studies focusing on PM effects on lipids are little. 

1.6 Phosphorylcholine-containing lipids 

Phosphorylcholine-containing lipids are abundant membrane lipids, with significant 

biological importance. Phosphorylcholine-containing lipids include 
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phosphatedylcholines (PCs), a type of glycerophospholipids, and sphingomyelins (SMs), 

a type of sphingolipids, because their structures are both with a phosphocholine head 

group.  

PCs are the major structural lipids in cell membranes and account for more than 50% 

of glycerophospholipids [52]. The basic composition of PCs is a glycerol backbone and 

a phosphocholine head group at the sn-3 position. Base on different fatty acyl substituents 

at the sn-1 and/or sn-2 position of glycerol backbone, PCs can be divided into lyso-

phosphatidylcholines (lyso-PCs), diacyl-phosphatidylcholines (diacyl- PCs), 

plasmanylcholines (O-alkyl-acyl-PCs, O-PCs) and plasmenylcholines (O-alkenyl-acyl-

PCs, P-PCs) (Figure 1). Moreover, the various numbers of carbons and double bonds on 

fatty acyl substituents also present different PCs, for instance, PC(16:0/18:1) means a 

fatty acyl substituents with 16 carbons and no double bond at the sn-1 position accompany 

with 18 carbons and 1 double bond at the sn-2 position. 

SMs also play an important role in cell membrane and constitute 2–15% of the total 

phospholipid in mammal organs. Besides, certain part such as brain tissue and peripheral 

nervous tissue have even higher SM contents [53]. SM consists of a sphingosine backbone, 

a phosphocholine head group and fatty acids, which is one of the few membrane 

phospholipids not synthesized from glycerol. Overall, investigation of 

phosphorylcholine-containing lipids of various organs after chronic PM2.5 exposure may 

help to characterize the PM effects at molecular level and understand the potential health 
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effects. 

Our laboratory has developed a liquid chromatography-tandem MS platform [54] to 

profile the alterations of phosphorylcholine-containing lipids in rat lungs after chronic 

PM2.5 exposure [55]. The results showed that PM exposure cause decreases in lyso-PCs, 

surfactant PCs, unsaturated PCs and plasmenylcholines which may indicate repeated 

inflammatory responses, injuries of alveolar cells, and altered membrane integrity. 

Additionally, emphysematous and inflammatory cells were observed on the lung of PM 

exposed rats [55]. Although the significantly altered phosphatidylcholine levels in the 

lung of rats, which may impair pulmonary surfactant functions, the lipid effects after 

chronic exposure of PM2.5 on other organs remain unclear. 
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1.7 Study objectives 

The objectives of this study is as following:  

(1) To examine the effects of chronic PM2.5 exposure on phosphorylcholine-

containing lipids in various organs and blood through a rat inhalation model. 

(2) To clarify and compare PM2.5-induced lipid alteration in different organs, and 

suggest the target organs and potential biochemical mechanisms. 

(3) To determine whether the specific lipid alteration between the target organ and 

blood after chronic PM2.5 exposure which can serve as potential biomarkers. 
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2. Materials and methods 

2.1 Experiment flow chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biological interpretation

Statistical analysis

Multivariate / SIMCA software Univariate / R Project

Data preprocessing 

MZmine software

Sample analysis

UPLC-MS/MS

Sample preparation

Lipid extraction

Animal Experiment

Exposure (n=5) / PM2.5 : 16.7±10.1μg/m3 Control (n=5) / PM2.5 : 0.7±0.4μg/m3
 10 male Sprague-Dawley rats aged 6 weeks 

 
Heart, Liver, Testis, Epididymis, Kidney, Pancreas, Spleen, Serum 



doi:10.6342/NTU20190429210 

2.2 Animal experiment 

All the procedures of animal experiments were conducted by Dr. Tsun-Jen Cheng’ 

s laboratory [55, 56]. The animal care and experiments were approved by the National 

Taiwan University Institutional Animal Care and the Use Committee. Briefly, ten male 

Sprague-Dawley rats aged six weeks were purchased from Lasco, Charles River 

Technology (Yilan, Taiwan). The rats had acclimatized in cages with enough food and 

water for 14 days before the experiment was conducted. Exposure group (n=5) were 

continually whole-body exposed to non-filtered and non-concentrated ambient air 

containing PM2.5 for 24 h/day, 8 months (November 2012 to June 2013) using Taipei air 

pollution exposure system (TAPES), which was located at the inhalation toxicology 

laboratory of the Public Health building. Meanwhile, control group (n=5) were inhaled 

filtered air through a high-efficiency particulate air (HEPA) purifier added on the inlet 

valve of cage. 

Rats were sacrificed by overdose Zoletil, and blood samples were collected from the 

abdominal aorta. The tissues including heart, liver, kidney, pancreas, spleen, testis and 

epididymis were taken and wrapped in aluminum foil, and snap-frozen with liquid 

nitrogen. 

2.3 Lipid extraction 

All the procedures of lipid extraction from different tissues and blood were 
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conducted by Chen et al. [55]. Briefly, the tissue samples were homogenized at a low 

temperature in liquid nitrogen, and freeze-dried for further lipid extraction. 1.0 mg tissue 

(or 0.01 mL serum) was spiked with the 1.0 mg/L internal standard including 

sphingomyelin (d18:1/17:0) in 0.2 mL of methanol. Next, the spiked sample was added 

0.15 mL of 0.15 M sodium chloride(aq) and 0.4 mL of chloroform after thorough vortexing. 

The mixtures were vortexed for 10 minutes and centrifuged at 10,000 rpm and 4°C for 

10 minutes. Eventually, 0.4 mL of the lower layer was collected and dried. The dried lipid 

extracts were reconstituted with 0.2 mL of methanol and filtered for further instrumental 

analysis. 

2.4 UPLC-MS/MS for phosphorylcholine-containing lipids profiling 

LC-MS method was based on our previous publication by Tang et al. [54] and the 

analysis was conducted by Chen et al. [55]. Three duplicate lipid samples from each tissue 

and serum of each rat were analyzed by Waters ACQUITY Ultra-performance liquid 

chromatography system coupled with Waters Quattro Premier XE triple quadrupole mass 

spectrometry (UPLC-MS/MS) (Waters, Milford, MA, USA). 

Reversed-phase liquid chromatography with Waters BEH C18 column (1.7 μm, 2.1 

mm x 100 mm) was conducted in the binary solvent system, including A: 10 mM 

ammonium acetate in water and B: acetonitrile/methanol (65/35, v/v) containing 10 mM 

ammonium acetate. In MS system, the positive ion of the precursor ions of the mass-to-

charge ratio (m/z) 184 was scanned, which was the signal of phosphorylcholine head 
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group in [M+H]+ scan.  

2.5 Data preprocessing 

The raw MS spectra was transformed into NetCDF by Masslynx V4.1 software 

(Waters, CA, USA). Afterward MZmine 2.33. software [57] was applied to process and 

analyze mass spectrometry based molecular profile data. Briefly, we performed mass 

detection, chromatogram building, chromatogram deconvolution, deisotoping and 

alignment to develop a preliminary data list. The minimal signal intensity was 3000 and 

m/z tolerance was 1000 ppm. Next, we executed gap-filling check manually to filter out 

unstable signals and fill the correct integral areas. The m/z tolerance was 1000 ppm and 

RT tolerance was 0.1 min. Finally, the peak area of each detected lipid was normalized 

by the total spectra area using Excel (Office 2016, Microsoft, USA) to balance the 

variation of instrument sensitivity. 

2.6 Multivariate analysis 

The statistical analysis we used were divided into two methods, multivariate 

combine with univariate analysis. The processed data were imported into SIMCA 13.0.1 

(Umetrics, Umeå, Sweden) for multivariate analysis. In SIMCA 13.0.1, after logarithm 

transformation and unit variance scaling, we performed partial least squares discriminant 

analysis (PLS-DA), a common supervised multivariate analysis which was applied in 

highly-dimensional dataset, such as metabolomics data [58]. The score plot of PLS-DA 
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model could visualize the clustering of samples, and the variable importance in projection 

(VIP) score indicated the contribution of each lipid for the difference between two groups. 

The PLS-DA model was evaluated using R2Y and Q2, which represent the model 

performance and prediction, respectively. The levels of R2Y were higher than 0.9 

indicated that the model was powerful; Q2 values were not less than 0 indicated that the 

model was qualified [58]. In addition, permutation test, a statistical tool which rearranges 

the labels on the samples to calculate distribution of all possible statistic values, could 

confirm whether the model was over-fitting or not. We performed 500 randomly 

assigning samples to the two groups, and all of the 500 Q2 levels in the randomly grouped 

models should be lower than the Q2 in the original model or the intercept of random Q2 

regression line and Y axis should be below 0 [58]. 

2.7 Univariate analysis 

The fold changes of identified lipid features were present by the median of peak area 

ratio between two groups. The univariate analysis was used to evaluate the statistical 

significance between two groups by independent variable. Owing to the sample size, 

Wilcoxon rank sum tests, the nonparametric statistics was conducted to examine the 

statistical significance between PM2.5 treatment and control groups (p-value < 0.05) by R 

3.3.1 project. Furthermore, false discovery rate (FDR) method was also used to compare 

two group strictly for avoiding false-positive findings caused by multiple testing (p-value 

< 0.2) [59]. In metabolomics, especially for detecting environmental impacts, often 
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tolerant FDR thresholds are used in order to capture as many features as possible, because 

environmental chemicals effects in the human metabolites may be slight [60]. However, 

only a few lipid features in the testis and serum were qualified FDR correction. Therefore, 

combining with multivariate analysis, we identified the significant changed lipid features 

that had p-values lower than 0.05 in Wilcoxon rank sum tests and VIP scores higher than 

1.00 in the PLS-DA model. 
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3. Results 

3.1 PM2.5 exposure data 

The concentrations of PM2.5 in the exposure and control cages throughout the 

experiment were 16.7 ± 10.1 μg/m3 and 0.70 ± 0.46 μg/m3 (mean ± standard deviation), 

respectively. PM2.5 is accounted for 99.2% of total PM less than 10 μm in diameter (PM10) 

in the whole TAPES, which demonstrated the majority of the particles rats exposed to 

were PM2.5. Furthermore, the major components of particles in TAPES were organic 

carbon (30.9%), sulfate (30.4%), ammonium (14.8%) and nitrate (11.4%), which showed 

typical traffic-related air pollution in Taipei City [55]. 

3.2 Phosphorylcholine-containing lipids composition in various organs 

of rat 

After MS analysis and data preprocessing, the numbers of phosphorylcholine-

containing lipid signals detected in each organ of rat were following: kidney was 128, 

pancreas was 126, testis was 123, spleen was 118, epididymis was 100, liver was 92, heart 

was 82, and lung from Chen et al. was 110 [55]. Furthermore, there were 68 lipid signals 

in serum of rat. Then, the lipid signals were identified by our in-house library with m/z 

and retention time. The numbers of lipids and percentages of each lipid class among total 

lipids in each organ and serum were shown in Figure 2. 

The diacyl-PCs were the major lipid class, which almost accounted for half 
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percentage among total phosphorylcholine-containing lipids in all organs. SMs were 

second largest lipid class in each organ, and they were most abundant in the kidney than 

other organs. Besides, ether-linked PCs displayed slightly higher percentage in the 

epididymis (Figure 2). 

3.3 Effects of PM2.5 on patterns of phosphorylcholine-containing lipids 

in the organs and serum of rats 

In the PLS-DA model, each spot represents a sample, and the distance between two 

samples are closer which represents they are more similar. In this study, chronic ambient 

PM2.5 exposure mostly induced more phosphorylcholine-containing lipid changes in the 

testis, pancreas, and serum of rats, than those in the heart, liver and kidney of rats (Figure 

3). No obvious changes on patterns of phosphorylcholine-containing lipids were found in 

the spleen and epididymis of rats after exposure. 

In the testis, phosphorylcholine-containing lipids profile of the treatment group 

differed from that in the control group in PLS-DA model (Figure 3A). Besides, the total 

explained variance R2Y was 0.962 and the predictive ability Q2 was 0.825. The PLS-DA 

model also satisfied the permutation test, because original Q2 value was higher than 

randomized Q2 values (Figure 4A). 

In the pancreas, one sample in the exposure group of pancreas was excluded from 

following analysis as a result of its weak MS signal intensity which was approximately 

10 times lower than other samples. We recorded this sample was not completely dried 
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after lyophilisation, which may cause PC degradation. In the PLS-DA model, 

phosphorylcholine-containing lipids profile of the pancreas in the treatment group also 

differed from that in the control group (Figure 3B). Besides, the total explained variance 

R2Y was 0.972 and the predictive ability Q2 was 0.833. The permutation test was also 

qualified (Figure 4B). 

In the heart, the phosphorylcholine-containing lipids profile of the treatment group 

and control group presented a clear separation in PLS-DA model (Figure 3C). The total 

explained variance R2Y was 0.933 and the predictive ability Q2 was 0.627, and the model 

passed the permutation test absolutely (Figure 4C). 

Liver samples have different phosphorylcholine-containing lipids pattern between 

treatment group and control group in PLS-DA model (Figure 3D). The acceptable total 

explained variance R2Y and predictive ability Q2 was 0.955 and 0.498, respectively. It 

also qualified permutation test result (Figure 4D). 

In the PLS-DA model for the analysis of kidney, the pattern of treatment group 

seems to differed from that in the control group (Figure 3E), and the total explained 

variance R2Y was 0.928, but the predictive ability Q2 was 0.272. However, it was still 

considered that PM2.5 exposure caused the significant alteration of phosphorylcholine-

containing lipids in kidney of rat, due to its eligible permutation test result (Figure 4E). 

Serum can reflect the systemic effect of exposure. The phosphorylcholine-

containing lipids profile of PM2.5 treatment group was quite different from that of control 
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group in PLS-DA model (Figure 3F). The total explained variance R2Y was 0.977 and 

the predictive ability Q2 was 0.885, and Figure 4F showed that the model satisfied the 

permutation test totally. 

3.4 Effects of PM2.5 on individual phosphorylcholine-containing lipids 

in the organs and serum of rats 

3.4.1 Testis 

After Wilcoxon rank sum tests combined with the VIP scores of the PLS-DA model, 

24 significantly changed testis phosphorylcholine-containing lipids were picked (Table 

1). In the treatment group, the lyso-PCs including PC(16:1/0:0) + PC(0:0/16:1), 

PC(20:4/0:0), PC(0:0/18:1), PC(20:2/0:0) and PC(22:5/0:0), were significantly lower 

than those in control group. A few saturated and monounsaturated diacyl-PCs such as 

PC(16:0/16:0) and PC(16:0/18:1), and one ether-linked PC, PC(P-36:3), were also 

decreased in the rat testis after chronic PM2.5 treatment. 

On the other hand, among nine changed diacyl-PCs, the levels of six polyunsaturated 

diacyl-PCs, including PC(18:2/20:4), PC(16:0/22:6), PC(34:4), PC(38:2), PC(42:6) and 

PC(42:4) had the same trend which is higher in the PM2.5 exposure group compared with 

those in the control group. Lastly, SMs such as SM(d18:2/23:0), SM(d18:2/16:0) and 

other unknown-SMs except SM(d34:1), were all higher than those in the control group. 

Noticeably, all the significantly changed phosphorylcholine-containing lipids of testis 
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passed the FDR correction (p-value < 0.2). 

3.4.2 Pancreas 

In the pancreas, five significantly changed phosphorylcholine-containing lipids were 

recognized after rats exposing to PM2.5 (Table 2). Comparing to that in the control group, 

the level of lyso-PC, PC(0:0/18:2) was higher in ambient PM2.5 treatment group. Besides, 

among four changed diacyl-PCs, three diacyl-PCs including PC(16:0/22:6), PC(18:0/22:6) 

and PC(44:4), were lower in treatment group than those in the control group. However, a 

diacyl-PC, PC(40:2), was increased after chronic PM2.5 treatment. 

3.4.3 Other organs 

In the heart and liver, only two phosphorylcholine-containing lipids satisfied both 

criteria of multivariate analysis (VIP score >1.00) and univariate analysis (p-value < 0.05) 

(Table 3), even though there were approximately 30 lipids with VIP scores higher than 

1.00. The level of diacyl-PC(20:4/20:4) was increased, and the level of ether-linked PC, 

PC(O-18:0/16:0), was decreased in the heart of rat after chronic PM2.5 exposure (Table 3). 

In the liver, diacyl-PC(34:4) was 0.5-fold lower in treatment group than that in the control 

group (Table 3). 

On the other hand, although four significantly changed phosphorylcholine-

containing lipids were detected in the kidney, only an ether-linked PC, PC(O-18:0/16:0) 

was identified to decrease in the kidney of rat after chronic PM2.5 exposure (Table 3). 
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Interestingly, the increasing trend of unknown-SM was consistent with that in the testis. 

3.4.4 Serum 

After statistical analyses, seven significantly changed phosphorylcholine-containing 

lipids were recognized in the serum (Table 4), and four of them even passed the FDR 

correction (p-value < 0.2). The level of lyso-PC(18:0/0:0) was higher in the PM2.5 

exposure group than that in the control group, moreover, unsaturated diacyl-PCs, 

including PC(16:0/16:1), PC(16:0/17:1), PC(16:0/18:1) and PC(16:0/20:4) were lower in 

the PM2.5 exposure group compared with those in the control group. 

In addition, phosphorylcholine-containing lipids profiles in the serum were also used 

to find out the potential biomarkers for specific organs after PM2.5 exposure in the present 

study. After comparison of the changed lipids between serum and organs, decrease 

PC(16:0/18:1) was both found in the serum and testis in the PM2.5 treatment group 

compared with control group (Table 1 & 4). 
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4. Discussion 

A previous literature has demonstrated that lung PC alterations of the rat that were 

exposed to ambient PM2.5 chronically, which were associated with inflammation, 

oxidative stress, and alveolar cell injuries [55]. However, The trend towards atypical 

respiratory-related disease was reported by epidemiological and toxicological studies on 

PM2.5 health effect [18]. Although there were few lipidomic studies about extrapulmonary 

effects of PM2.5 exposure, the perturbations of lipidome were found in the testis, pancreas, 

heart, liver and kidney of rat after chronic PM2.5 exposure in the present study. In this 

study, we applied an MS-based lipidomics approach to examine the changes in 

phosphorylcholine-containing lipids after rat inhalation of ambient air to further identify 

potential health effects of PM2.5. 

4.1 Lipidome comparison among various organs of rat 

In this study, we established a foundational phosphorylcholine-containing lipid 

library of various rat organs through MS-based lipid profiling. This is the first study 

comparing phosphorylcholine-containing lipids in various organs. Our result showed that 

diacyl-PCs almost accounted for half percentage among total phosphorylcholine-

containing lipids in all organs (Figure 2), and SMs account for 30% in the 

phosphorylcholine-containing lipids of rat kidney, which is most abundant among all 

organs (Figure 2A). Previous studies showed that SMs abound in phospholipid class 
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distribution of rat kidney comparing to other organs such as liver, spleen and heart [61-

64]. Moreover, O-PC (alkyl ether bond) and P-PC (alkenyl ether bond), are richer in the 

rat epididymis than other organs (Figure 2E). In fact, spermatozoa from mammal animal 

such as human, ram and rat contain high levels of ether-linked PCs [65-68], and 

epididymis play a role in storage and maturation of spermatozoa [69, 70]. 

In addition, we also found that the lipid effects followed by chronic inhalation of 

PM2.5 particles. Our results suggested that testis was the most sensitive organ for PM2.5 

through the results of PLS-DA model combined with Wilcoxon rank sum tests, which 

both present more significant alterations of lipidome than those in the other organs. 

Consequently, the potential mechanism underlying the rat sensitive organs after chronic 

PM2.5 exposure were discussed in the following sections. 

4.2. Significantly changed phosphorylcholine-containing lipids in the 

rat testis after chronic PM2.5 treatment 

In this study, we observed the significant decreased lyso-PCs, increased unsaturated 

diacyl-PCs, a decreased ether-linked PC and increased SMs in the testis of rat exposed to 

PM2.5. The decreased levels of lyso-PCs and increased levels of unsaturated diacyl-PCs 

may be associated with membrane function. Lyso-PCs could influence the permeability 

and flexibility of membrane, due to their micelle property in lipid aggregated structures 

[71]. Thus, decreased lyso-PCs could be regarded as protective roles to promote 

membrane curvature to maintain stability [72], and to avoid forming the pores on 
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membrane [73]. In addition, the double bond on unsaturated fatty acyl chains of diacyl-

PCs increases the inter-chain distance and forms space of membrane by creating the rigid 

kink in the hydrocarbon chain [74]. Comparing with the saturated diacyl-PCs, unsaturated 

diacyl-PCs can prevent fatty acyl chains from packing closely together and provide more 

fluidity and flexibility of membrane [74, 75]. Previous metabolomic study has also 

demonstrated increasing trends of unsaturated diacyl-PCs in testis of rats exposed to 

PM2.5, the outcomes may affect sperm morphology and thus impaired the reproductive 

function of rats [76]. In this study, the decreased lyso-PCs and increased unsaturated 

diacyl-PCs in the testis may relate to promote the integrity of cell membrane. 

On the other hand, most of up-regulation diacyl-PCs contained PUFA chains, 

including PC(18:2/20:4), PC(16:0/22:6), PC(34:4), PC(42:6) and PC(42:4). The 

increased unsaturated diacyl-PCs could not only bend membrane and enhance flexibility, 

but also supply capacity for surface area expansion and external force resistance, such as 

oxidative stress induced cell swelling [77, 78]. Therefore, increase diacyl-PCs contained 

PUFA chains may act as important roles to strengthen cellular function as well as resist 

further PM2.5-induced oxidative stress. 

In present study, we observed the decreased P-PC, PC(P-16:0/20:3), which may be 

associated with anti-oxidants. Ether-linked PCs are PCs with an ether bond at the sn-1 

position which is more susceptible to oxidative attack than the ester-linked PCs [79, 80], 

however, they are also prone to autoxidation and thus inhibit peroxidation of PUFA [81]. 
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Because the excessive oxidative stress may lead to cellular damage and aging, and even 

apoptosis [82, 83]. Therefore, the consumption of ether-linked PCs might play an anti-

oxidant role to trigger self-protection mechanism, and protect other membrane 

constituents from oxidative conditions. 

Five increased SMs were discovered in the testis after rat exposed to PM2.5 

chronically. Although a few SMs with large molecular weight were unidentified due to 

shortage of database and insufficient MS signal intensity for structural identification, 

previous studies showed SMs indeed contain very long chain-fatty acid with at least 28 

carbons in certain tissues such as testis and sperm [84, 85]. Through sphingomyelinases, 

hydrolysis of SMs generate simpler sphingolipids such as ceramides, which is involved 

in cell signaling events [86, 87], cell survival regulation and apoptosis [88, 89]. The 

accumulation of SMs may result from suppression of sphingomyelinase activity, 

importantly, SMs were demonstrated to serve as an endogenous anti-inflammatory 

molecule [90]. SMs helps maintain the integrity of the plasma membrane by protecting 

diacyl-PCs against phospholipase degradation. Previous study indicated that lecithin-

cholesterol acyltransferase (LCAT) action is inhibited by SMs [91] and thereby regulate 

the eicosanoid synthesis and the inflammatory reactions [90, 92]. Thus, the increasing 

trend of testis SMs in this study may protect cell/tissue from PM2.5-induced inflammation. 

Furthermore, besides the general functions of phosphorylcholine-containing lipid 

species, the certain activities of those in the testis are also essential. Lyso-PCs, which 
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possessed a hydroxyl substituent at either the sn-1 or sn-2 position instead of the esterified 

linking fatty acyl substituent, can be converted back to PCs by the re-acylation of 

lysophosphatidylcholine acyltransferase (LPCAT) [93]. The perturbations in lyso-PCs 

could have resulted from abnormal enzyme activities [94], and previous study indicated 

overexpression of the LPCAT1 gene may contribute to the progression of human cancers 

[95], such as prostate cancer [96]. Thus, decreased lyso-PCs may correlate with some 

form of reproductive disease. In addition, dihydroxyacetonephosphate acyltransferase 

(DHAPAT) are enzymes involved in the synthesis of the ether bond on lipids in mammals, 

previous study described the DHAPAT-deficient mouse model with the lack of ether-

linked lipids presented early arrest of spermatogenesis [97, 98]. It also be mention in the 

chapter 4.5. The SMs contain very long chain-fatty acid, particularly in testis, is related 

to maintain membrane integrity of spermatozoa, sperm capacitation and survive in the 

female reproductive tract [99, 100]. 

In conclusion of testis lipidome changes after PM2.5 exposure, the decreased lyso-

PCs and increased unsaturated diacyl-PCs could strengthen the physical properties of cell 

membrane to resist membrane morphological alterations. Besides, the increased diacyl-

PCs consisting of PUFAs and decreased ether-linked PCs were regarded as anti-oxidants, 

and increased SMs also act a protective role against inflammation induced by PM2.5. 
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4.3 Contrary trend of changes of phosphorylcholine-containing lipid in 

the rat pancreas after chronic PM2.5 treatment 

In this study, comparing to the results in the testis, we found the contrary trend of 

lipidome alterations such as an increased lyso-PC and decreased unsaturated diacyl-PCs 

in the pancreas after chronic PM2.5 treatment. The down-regulation of diacyl-PCs with 

unsaturated fatty acyl chains included PC(16:0/22:6), PC(18:0/22:6) and PC(44:4). Based 

on physical function of unsaturated diacyl-PCs on the cell membrane, it may be inferred 

a phenomenon of poor fluidity and flexibility of the membrane [74].  

On the other hand, The position of double bonds on fatty acyl chains of diacyl-PCs 

is highly vulnerable to oxidative attack from free radicals, due to its much reactive 

attribute [101]. Under sustained attack, the diacyl-PCs become degraded through their 

fatty acid tails [102]. Thus, decreased unsaturated diacyl-PCs in the pancreas could result 

from damaged membrane integrity induced by elevating oxidative stress. 

As we know, pancreas is an important organ about our blood glucose balance, and 

the pancreas dysfunction involves in each type of diabetes [103]. Besides, diabetes is one 

of the major risk factors for cardiovascular disease, and at least a half percent of people 

with diabetes die from some form of hypertension and cardiovascular disease [104]. 

Accordingly, the trend of changed lipids in the pancreas may be observed in the serum 

meanwhile. 

Our results displayed only two increased lyso-PCs, PC(0:0/18:2) and PC(18:0/0:0), 
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after PM2.5 treatment, one is in the rat pancreas and the other in the serum. A lot of studies 

suggested the increased level of lyso-PCs in the plasma of diabetes mellitus and 

cardiovascular disease patients [105-108]. Lyso-PCs could be involved in the 

pathogenesis of type II diabetes by inducing insulin resistance and islet cell injury [109]. 

Martina Wallace et al. indicated that PC(0:0/18:2) and PC(18:0/0:0) are specific lipids 

highly associated with insulin resistance after lipidomic analysis on 39 human blood 

samples [110]. Besides, they also reported that, in the blood of human with insulin 

resistance, PC(34:1) and PC(36:4) have a negative association with CRP, which is a major 

marker of inflammation [110]. Interestingly, we also observed decreased diacyl-PCs, 

PC(16:0/18:1) and PC(16:0/20:4) in the serum after chronic PM2.5 treatment. 

Additionally, the perturbations in lyso-PCs could have resulted from abnormal 

enzyme activities, lyso-PCs are produced by the cutting of PCs via the phospholipase A2 

(PLA2) [111] or by the LCAT action on plasma lipoproteins [112]. Higher LCAT activity 

is correlated with insulin resistance and promotes metabolic syndrome [113]. 

Overproduction of lyso-PCs induced by enhanced activity of PLA2 in endothelial cells 

[114], which lead to oxidative stress elevations as well as development of atherosclerosis 

[115, 116]. 

In conclusion of pancreas lipidome changes after PM2.5 exposure, the decreased 

unsaturated diacyl-PCs and increased lyso-PCs may indicate elevating oxidative stress 

and inflammation, which may associated with insulin resistance, early stage of diabetes 
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and cardiovascular disease. 

4.4 Less changes of phosphorylcholine-containing lipids in other 

organs of rats after chronic PM2.5 treatment 

Unlike the testis and pancreas, less changes of phosphorylcholine-containing lipids 

in the heart, liver, and kidney of rats exposed to PM2.5 chronically. It may attribute to the 

long-term and low-dose PM2.5 exposure, which provided the recovery period for slightly 

injury of those organs. Particularly in the liver, containing higher levels of glutathione 

which is an antioxidant to protect from PM2.5-induced damages [117, 118]. However, it 

did not explain the totally changeless lipidome in the heart and kidney after chronic PM2.5 

treatment, the PM2.5-induced effects may reflect on the other classes of lipids. 

4.5 Lipid alterations in blood may reflect to organ toxicity 

The circulatory system is a network by circulating blood to transport molecular like 

nutrients, hormones, and metabolites to and from the different organs in the body. The 

alterations of phosphorylcholine-containing lipids in the rat serum after exposing to PM2.5 

could reflect the PM2.5-induced systemic effects from various organs by compare the 

results from serum with target organs, it may determine the potential exposure biomarkers 

of target organs for application in the future. 

After chronic PM2.5 exposure, the overall alteration trend of subclass of 

phosphorylcholine-containing lipids in the serum was similar to those in the pancreas. 
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However, on the alteration of individual lipid, the consistent decreasing trend of a specific 

lipid, PC(16:0/18:1) (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC), was 

observed in the testis and serum after chronic PM2.5 treatment (Table 1 & 4). An imaging 

MS research indicated POPC located in the peripheral and the middle layer of the 

seminiferous tubules but not inner layer, which include spermatogonium and 

spermatocyte [119]. Based on the reduction of POPC, this result was consistent with our 

above inference about disturbance of early spermatogenesis [97, 98]. 

Remodeling of POPC is one of pathway to generate PC(16:0/16:0) 

(Dipalmitoylphosphatidylcholine, DPPC) which accounts for 60% in the pulmonary 

surfactant system [120, 121]. Previous study supported exogenous DPPC was able to 

protect a maintenance of spermatogenesis from chemotherapeutic agents-induced 

cytotoxicity, especially on morphological aspects [122]. Therefore, in the current study, 

the lower trend of testis DPPC attributed to insufficient POPC may cause dysfunction of 

spermatogenesis in PM2.5 treated rats. Besides, another study suggested palmitic acid 

(C16:0) and stearic acid (C18:0), substrates for POPC, could induce apoptosis in testicular 

Leydig cell [123], a type of interstitial cells is in charge of testosterone biosynthesis [124]. 

POPC was proved to serve as a component of the pulmonary surfactant system about 

alveolar surface tension in the past [120, 121], but the functions of POPC in the testis 

remain unclear now. Our previous study did not observe significantly changed POPC in 

the lung of rat from our identical PM2.5 treatment batch [55]. However, we revealed that 
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changes of POPC was simultaneously observed in the mouse lung and serum after 

naphthalene treatment [125, 126], which may relate to the PPAR α pathway in the 

pulmonary system [126]. Hence, PC(16:0/18:1) might be a unique and specific lipid in 

different organs under different environmental stimuli. 

The alterations of blood lipids may be contributed from various organs, as a result, 

further studies to confirm whether PC(16:0/18:1) would be a potential biomarker of PM2.5 

in the serum to measure testis effects are needed. 

4.6 Limitation and future work 

In this study, we focused on the phosphorylcholine-containing lipid effects after 

chronic PM2.5 exposure. However, the perturbations of other lipids are unknown. 

Additionally, in some organs such as pancreas, the levels of lipidome difference between 

two groups in PLS-DA model was not consistent with those in Wilcoxon rank sum tests; 

we speculate the univariate analysis was easily influenced by outlier sample, due to our 

small sample sizes (n). On the other hand, the lipid changes may occur in certain cell 

types of the organ; however, we are unable to confirm, due to an entire organ was used 

for analysis. 

To our knowledge, this is the first study to examine the changes of 

phosphorylcholine-containing lipids in various organs and serum of rats after chronic 

exposure to low-dose PM2.5 by MS-based lipidomics. Although few researches 

demonstrated that the direct relation between PM2.5 and changes of lipids in 
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extrapulmonary organs, the underlying mechanisms is not clear. The results of this study 

provided the direction and foundation for future studies. In the future, further examination 

such as histopathological analysis focusing on the target organ—testis, and insulin 

resistance test on the pancreas will help us to clarify the potential important health effects 

of PM2.5 exposure on the male reproductive system and pancreas function. 
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Figure 1. Representative structures of various phosphorylcholine-containing lipids. 
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Figure 2. Phosphorylcholine-containing lipids composition in each organ of rat. (A) Kidney (B) Pancreas (C) Testis (D) Spleen (E) Lung (F) Epididymis (G) 

Liver (H) Heart (I) Serum. a Number of identified lipids for each lipid subclass; b Percentage of identified lipids for each lipid subclass. 

Lyso-PCs: lyso-phosphatidylcholines; Diacyl-PCs: diacyl-phosphatidylcholines; O-PCs: O-alkyl-acyl-PC (plasmanylcholines); P-PCs: O-alkenyl-acyl-PC 

(plasmenylcholines); Unknown-PCs: unknown-phosphatidylcholines; SMs: sphingomyelins. 
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Figure 3. The PLS-DA score plots from the analysis of UPLC-MS/MS spectra of phosphorylcholine-containing lipids in each organ of rats after chronic 

ambient PM2.5 exposure. (A) Testis, R2Y: 0.962, Q2: 0.825 (B) Pancreas, R2Y: 0.972, Q2: 0.833 (C) Heart, R2Y: 0.933, Q2: 0.627 (D) Liver, R2Y: 0.955, Q2: 

0.498 (E) Kidney, R2Y: 0.928, Q2: 0.272 (F) Serum, R2Y: 0.977, Q2: 0.885. Rad circle: exposure PM2.5 group; Green square: control group. 
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Figure 4. Permutation test of PLS-DA model for phosphorylcholine-containing lipids in each organ of rats after chronic ambient PM2.5 exposure. (A) Testis (B) 

Pancreas (C) Heart (D) Liver (E) Kidney (F) Serum. 500 times permutation tests were used in the study. All groups accorded with the requirement of the 

standard. R2 presented on green circles and Q2 presented on blue boxes. 
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Table 1. Significant changed phosphorylcholine-containing lipids in the testis of rats after chronic ambient PM2.5 exposure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Variable Importance Projection of PLS-DA component 1; b Fold change calculated by the median peak area ratio of treatment 

group and control group; c All the features were qualified false discovery rate correction. * p-value < 0.05; ** p-value < 0.01. 

Lyso-PCs: lyso-phosphatidylcholines; Diacyl-PCs: diacyl-phosphatidylcholines. 

Subclass Lipid name  VIP a Fold change b 
Wilcoxon rank sum 

tests (p-value) c 

Lyso-PCs 

PC(16:1/0:0) + PC(0:0/16:1) 1.62 0.12 * 

PC(20:4/0:0) 1.94 0.04 ** 

PC(0:0/18:1) 1.91 0.06 ** 

PC(20:2/0:0) 1.59 0.08 ** 

PC(22:5/0:0) 1.89 0.03 ** 

Diacyl-PCs 

Saturated PC(16:0/16:0) 1.76 0.72 ** 

Monounsaturated PC(16:0/18:1) 1.54 0.95 * 

Polyunsaturated 

PC(22:5/18:0) 1.66 0.55 * 

PC(18:2/20:4) 1.63 2.58 * 

PC(16:0/22:6) 1.11 1.45 * 

PC(34:4) 1.32 1.54 * 

PC(38:2) 1.39 1.58 * 

PC(42:6) 1.52 2.09 ** 

PC(42:4) 1.34 1.43 * 
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Table 1. Significant changed phosphorylcholine-containing lipids in the testis of rats after chronic ambient PM2.5 exposure. (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a Variable Importance Projection of PLS-DA component 1; b Fold change calculated by the median peak area ratio of treatment 

group and control group; c All the features qualified false discovery rate correction. * p-value < 0.05; ** p-value < 0.01. P-PCs: O-

alkenyl-acyl-PC (plasmenylcholines). 

 

 

 

 

 

Subclass Lipid name  VIP a Fold change 
b 

Wilcoxon rank sum 

tests (p-value) c 

P-PCs PC(P-16:0/20:3) 1.69 0.66 * 

Sphingomyelins 

SM(d18:2/23:0) 1.37 2.01 * 

SM(d18:2/16:0) 1.49 2.18 * 

SM(d34:1) 1.29 0.42 * 

Unknown 

PC(509) 2.03 0.68 ** 

PC(597) 1.99 0.05 ** 

PC(599) 1.78 0.08 ** 

SM(862) 1.95 1.88 ** 

SM(878) 1.82 1.84 * 

SM(888) 1.72 2.33 * 
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Table 2. Significant changed phosphorylcholine-containing lipids in the pancreas of rats after chronic ambient PM2.5 exposure. 

 

 

 

 

 

 

 

 

 

 

 

a
 Variable Importance Projection of PLS-DA component 1; b Fold change calculated by the median peak area ratio of treatment 

group and control group. * p-value < 0.05; ** p-value < 0.01. Lyso-PCs: lyso-phosphatidylcholines; Diacyl-PCs: diacyl-

phosphatidylcholines. 

 

 

 

 

 

 

 

 

 

 

 

 

Subclass Lipid name  VIP a Fold change 
b 

Wilcoxon rank sum 

tests (p-value) 

Lyso-PCs PC(0:0/18:2) 2.49 1.55 * 

Diacyl-PCs 

PC(40:2) 1.32 1.24 * 

PC(16:0/22:6) 2.50 0.67 * 

PC(18:0/22:6) 2.62 0.74 * 

PC(44:4) 1.99 0.46 * 
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Table 3. Significant changed phosphorylcholine-containing lipids in the heart, liver, and kidney of rats after chronic ambient PM2.5 exposure. 

a
 Variable Importance Projection of PLS-DA component 1; b Fold change calculated by the median peak area ratio of treatment group 

and control group. * p-value < 0.05; ** p-value < 0.01. Diacyl-PCs: diacyl-phosphatidylcholines; O-PC: O-alkyl-acyl-PCs 

(Plasmanylcholines). 

 

 

 

 

 

Organs Subclass Lipid name  VIP a Fold change 
b 

Wilcoxon rank sum 

tests (p-value) 

Heart 
Polyunsaturated diacyl-PCs PC(20:4/20:4) 2.83 1.23 * 

O-PCs PC(O-18:0/16:0) 1.96 0.75 * 

Liver 
Polyunsaturated diacyl-PCs PC(34:4) 2.50 0.53 * 

Unknown PC(827) 1.31 0.77 * 

Kidney 

O-PCs PC(O-18:0/16:0) 1.66 0.64 * 

Unknown 

PC(843) 1.81 0.80 * 

PC(863) 1.04 0.78 * 

SM(872) 2.69 1.46 * 



doi:10.6342/NTU20190429249 

Table 4. Significant changed phosphorylcholine-containing lipids in the serum of rats after chronic ambient PM2.5 exposure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Variable Importance Projection of PLS-DA component 1; b Fold change calculated by the median peak area ratio of treatment 

group and control group; c Qualified false discovery rate correction. * p-value < 0.05; ** p-value < 0.01. Lyso-PCs: lyso-

phosphatidylcholines; Diacyl-PCs: diacyl-phosphatidylcholines. 

 

Subclass Lipid name  VIP a Fold change 
b 

Wilcoxon rank sum 

tests (p-value) 

Lyso-PCs PC(18:0/0:0)  2.30 1.34 ** 

Diacyl-PCs 

Monounsaturated 

PC(16:0/16:1) 2.19 0.60 ** 

PC(16:0/17:1) 1.52 0.74 * 

PC(16:0/18:1) 1.69 0.83 * 

Polyunsaturated 
PC(16:0/20:4) 2.31 0.83 ** 

PC(22:5/20:3) 1.52 1.30 ** 

Unknown PC(843) 1.37 1.25 * 

c 

c 

c 

c 




