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中文摘要  

 

 文件的向量表達方式在自然語言處理的許多應用上扮演核心角色。尤其，以

非監督學習所得到的一般性向量表達在這些應用中更是一大助益。在實務上，情

緒分析是一個縱使困難，卻被認為非常語意層面的的應用，也因此常被用來當作

檢測向量品質的工具。目前以非監督方式學習文件向量的方法主要可分為以下兩

類：序列式的，他們直接把字彙間的排列順序納入考慮，以及非序列式的，他們

不直接考慮字彙間的順序。然而，他們各自都有各自的問題仍待解決。在這篇論

文中，我們提出一個模型，可以同時解決這兩種主要方法所面臨的難處。實驗證

明我們所提出的方法在常見的情緒分析和同時考量多層面的細緻情緒分析上，都

遠遠優於現有的最佳方法。 
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ABSTRACT 

 

 Document representation is the core of many NLP tasks on machine understanding. 

A general representation learned in an unsupervised manner reserves generality and can 

be used for various applications. In practice, sentiment analysis (SA) has been a 

challenging task that is regarded to be deeply semantic-related and is often used to 

assess general representations. Existing methods on unsupervised document 

representation learning can be separated into two families: sequential ones, which 

explicitly take the ordering of words into consideration, and non-sequential ones, which 

do not explicitly do so. However, both of them suffer from their own weaknesses. In 

this paper, we propose a model that overcomes difficulties encountered by both families 

of methods. Experiments show that our model outperforms state-of-the-art methods on 

popular SA datasets and a fine-grained aspect-based SA by a large margin. 
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Chapter 1 Introduction 

 

 An informative document representation is the key to many NLP applications such 

as document retrieval, ranking, classification and summarization. Learning without 

supervision reserves generality of learned representation and takes advantage of large 

corpus with no labels. 

 

There are two families on learning document representation without supervision: 

Sequential and non-sequential models. The former takes ordering of words into 

consideration when processing a document, often with sequential architectures such as 

RNN. The effectiveness of these models drops significantly when the text being 

processed gets much longer than a sentence. Consequently, simpler models from 

non-sequential family often outperforms sequential ones on the task. However, semantic 

meaning is intuitively lost when ordering of words is discarded. 

 

For instance, consider these two reviews on beer: “I love the smell of it, but the taste is 

terrible.” and “This one tastes perfect, but not its smell.” Obviously, for models 

discarding the order of words, recognizing which aspect each sentimental word “love”, 

“terrible”, “perfect”, “not” refers to is not possible. 

 

The overall sentiment of the reviews cannot be well captured either without aspect 

separation. That is because an overall sentiment can be viewed as a combination of 

individual aspects weighted by their importance. The best a non-sequential model can 

do with a mixture of sentimental words without knowing importance of each of them is 
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a rough average.  

 

In this paper, we propose a model that overcomes difficulties encountered by both 

sequential and non-sequential models. Our model is tested on widely used IMDB 

sentiment analysis dataset and the challenging aspect-based Beeradvocate dataset. Our 

results significantly outperform state-of-the-art methods on both datasets. 
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Chapter 2 Related Works 

 

 Non-sequential methods range widely from early Bag-of-Word model and topic 

models including LDA to more complex models such as Denoising Autoencoders, 

Paragraph Vectors and doc2vecC. Sequential methods emerge quickly in recent years 

thanks to the development of neural networks. Models for text sequence representation 

include Skip-thoughts, a sentence level extension from word level skip-gram model, and 

many other CNN or RNN based methods. 

     

    Modeling a document as a group of sentences is not a new idea, but an effective 

design to learn without supervision under this framework is yet to be done. The closest 

work to our model should be doc2vecC and Skip-thoughts Vectors. Our model is similar 

to doc2vecC in the way that our model represents a document by averaging embedding 

of sentences in it, while doc2vecC averages embedding of words in the document. 

Besides, both doc2vecC and our model explicitly use mean of embedding during 

training to assure a meaningful aggregation of embedding vectors. Our model is similar 

to Skip-thought Vectors in the way that both models try to capture relations between 

adjacent sentences. Skip-thought Vectors chooses a generic prediction model, while our 

model projects sentences into a shared hidden space and learn meaningful features by 

managing relations of sentences in the space. 
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Long text (documents) Short text (sentences)

Sequential Non-
sequential Sequential Non-

sequential

Supervised Hierarchical 
model

Word 
embedding 

average
RNN, CNN Bag-of-words

Unsupervised
Denoising

Autoencoders, 
Here We Are!

doc2vecC, LDA BERT, 
skip-thought

Bag-of-words
autoencoder

 

Table 2.1 Research map of our work. 

Related fields and tasks are classified in the table. Our work is placed in the marked 

block. 
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Chapter 3 Our approach 

 

 Given a document D composed of n sentences [s0, s1, …, sn] in order, our goal is to 

obtain a vector representation vD for the document. Note that […] stands for an ordered 

list in the rest of this paper. 

 

3.1 Overview 

Figure 1 is an overview of our model. The purpose of the model is to obtain a vector 

representation for document D in an unsupervised manner. We update variables in the 

model by training it to predict a target sentence among some candidate sentences given 

its context sentences. The context sentences are defined by k sentences on each side of 

the target sentence st. Namely, Scntx = [st-k, …, st-1, st+1, …, st+k]. 

     

Besides the target sentence, r negative samples are coupled with each target sentence st. 

The model will calculate a probability distribution over these r+1 candidate sentences 

to make prediction. We refer to the list of candidate sentences as Scdd = [st, sneg1, …,snegr]. 

The model will output r+1 scalars, corresponding to each sentence in Scdd. These scalars 

are referred to as logits of the sentences. A higher logit indicates a higher probability is 

distributed to the sentence by the model. Logit of the target sentence st is denoted as lt 

and logits of negative samples sneg1, …, snegr are denoted as lneg1, …, lnegr. 

     

According to Mikolov et al., with those logits given, optimizing the following loss 

function will approximate optimizing the probability distribution over all possible 

sentences in the world: 
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Applying negative sampling, a softmax function is not literally operated while a 

distribution over infinite number of all possible sentences in the world is optimized. 

After the model is trained this way, it can be used to calculate a vector representation for 

a document. 

 

Fig. 3.1 Overview of our model. 
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In the figure, number of context sentences on each side is 1 and number of negative 

samples r is 2. Context sentences st-1, st+1 are fed to the model from the bottom. The 

target sentence st and negative samples sneg1, sneg2 are fed from the top. Logit of the 

target sentence lt and negative samples lneg1, lneg2 are obtained in the middle. These will 

be used to calculate the loss. 

 

3.2 Architecture 

3.2.1 model 

 As illustrated in Figure 1, we use sentence encoders to encode a sentence into a 

fixed-length sentence vector. Two sentence encoders are used in the model, the context 

encoder Ecntx and the candidate encoder Ecdd. Sentences in Scntx are encoded into 

sentence vectors Vcntx = [vt-k, …, vt-1, vt+1, …, vt+k] by Ecntx. Those in Scdd are encoded 

into a target sentence vector vt and negative samples vectors Vneg = [vneg1, …, vnegr] by 

Ecdd. To merge information captured by each sentence vector in Vcntx into a single 

context vector, vectors in Vcntx are element-wise averaged. The obtained context vector 

is called vcntx. 

 

vcntx will go through a process called length adjustment except when calculating Lcntx in 

Section 3.3.1. Length adjustment process will normalize vcntx and lengthen it to the 

average length of sentence vectors which are used to obtain vcntx itself. The process is as 

follow: 

 

where length(x) denotes l2 norm of x and size(y) denotes number of elements in y. This 
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process solves the length vanishing problem of element-wise averaging many vectors. 

 

Now, we have a single vector vcntx containing unified information from context 

sentences. If the sentence vector of a candidate is similar to vcntx, it is probability the 

sentence to be predicted. Similarity is evaluated with inner product. So, vcntx will dot 

with the target sentence vector vt and negative sentence vectors in vneg to obtain a logit 

for each of them. Logit of the target sentence is called lt = dot(vcntx, vt) and logits of 

negative samples are called lnegl, …, lnegr , where lnegi = dot(vcntx, vnegi). 

 

With these logits, the loss can be calculated with Equation (1). 

 

 

Table 3.1 Structure of sentence encoders. 
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For consistency with Figure 1, first layer is placed at the bottom and the last layer at the 

top. 

 

3.2.2 Sentence encoders 

 Ecntx and Ecntx have the same structure, as elaborated in Table 1. Nevertheless, they 

do not share variables except the word embedding table. This allows a sentence to be 

represented differently when playing different roles. We choose convolutional networks 

for sentence encoders for its simplicity and efficiency of training. Note that a global 

average pooling layer is placed on top of convolutional layers to form a fix-length 

vector for sentences of variable length. 

 

3.3 Training 

During training, a list of sentences sD = [s0, s1, …, sn] from a single document D is fed 

to the model as a single training sample. The total loss to be minimized, Ltotal, is the 

weighted sum of two terms: the context loss Lcntx and the document loss Ldoc. The model 

is then trained end to end by minimizing Ltotal. 

 

3.3.1 Context loss 

For each sentence in sD, k sentences before and k sentences after the target sentence are 

given in Scntx as context sentences. Besides this, randomly selected negative samples 

sneg1, …, snegr are selected from sentences in other documents in the dataset. Length 

adjustment process is not applied when calculating context loss. Target sentence logit lt 

and negative sentences logits lneg1, lneg2, …, lnegr are obtained and used to calculate Lcntxt 

with Equation (1). The context loss Lcntx is defined by averaging losses from each 
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sentence in sD except the first k and the last k sentences for incomplete context 

sentences. 

 

 where Lcntx is the context loss of a single target sentence. 

 

3.3.2 Document loss 

For document loss, there are only two differences from context loss: 1) length 

adjustment process is applied on vcntx. 2) all the sentences in SD, including the target 

sentence st itself, are regarded as context sentences for each target sentence. 

Consequently, each sentence in SD can be used as target sentence. 

The document loss Ldoc is defined by averaging losses from all the sentences in the 

document: 

 

 

3.3.3 Total loss 

The total loss is the weighted sum of context loss and document loss. A hyper-parameter 

α is used to assign weights. Total loss Ltotal is obtained by: 

 

 

Ltotal is then minimized to update model variables. In particular, Lcntx and Ldoc are 

responsible for capturing local and global relations among sentences respectively. Ldoc 

also guarantees an effective aggregation for sentence vectors. 
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Fig. 3.2 Composition of the total loss function. 

Each loss term is obtained from the same model structure but different input. The 

weights of the terms are assigned by a hyper-parameter α. 

 

3.4 Inference of document representation 

For a document D, its representation is the length adjusted average of sentence vectors 

from all sentences in it. No extra training is needed for new documents seen for the first 

time. Notice that it is exactly the context vector vcntx used for calculating Ldoc. It is 

explicitly used during model training on purpose. This leads the model to learn sentence 

vectors that can be effectively aggregated by average. Also, the aggregated 

representation is guaranteed to be informative since it is also learned during training. 
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Chapter 4 Experiments 

 

We first test our model on the widely used IMDB review dataset for SA. To go further, 

we test our model on the Beeradvocate beer review dataset for aspect-based SA. This 

dataset challenges document representations with much more fine-grained SA.  

 

4.1 Sentiment analysis 

4.1.1 Dataset 

We use IMDB review dataset in this sentiment analysis experiment. The dataset consists 

of 100k movie reviews. 25k of the data are labeled for training and another 25k are 

labeled for testing. The rest 50k reviews are unlabeled. Both training and testing data 

are balanced, containing equivalent number of reviews labeled as semantically positive 

and negative. 

 

4.1.2 Experiment design 

We follow the design of Chen to assess our model under two settings: use all available 

data for representation learning or exclude testing data. Both of them make sense since 

representation learning is totally unsupervised. After model training, a linear SVM 

classifier is used to classify learned document representation under supervision. The 

performance of the classifier, evaluated by accuracy, indicates the quality of learned 

representation. 

 

We compare our model with intuitive baseline methods including Bag-of-Words, 

Word2Vec+AVG and Word2Vec+IDF, word-embedding based method like SIF, 
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sequential models including RNN language model, Skip-thought Vectors  and WME, 

and non-sequential models including Denoising Autoencoder, Paragraph Vectors  and 

Doc2vecC. Representative models from both sequential and non-sequential families 

along with some intuitive baselines are compared with. 

 

We use a shared word embedding table of 100 dimensions and train it from scratch. 

Dimensions of learned document representation are set as 100, which can be inferred 

from the outputs of sentence encoders. Dropout rate is 0.5 and α is tuned to be 0.7. 

 

Long text (documents) Short text (sentences)

Sequential Non-sequential Sequential Non-sequential

Supervised Hierarchical 
model

Word embedding 
average RNN, CNN Bag-of-words

Unsupervised

Denoising
Autoencoders, 

WME,
Here We Are!

doc2vecC, LDA, 
Word2Vec+AVG, 
Word2Vec+IDF, 
Bag-of-Words, 

Paragraph Vectors

BERT, 
skip-thought, 

RNN-LM

Bag-of-words
autoencoder, 

SIF with GloVe

 

Table 4.1 The location of comparative models in our research map. 

Comparative models and baseline methods are marked in blue. 
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Table 4.2 Sentiment analysis results on IMDB dataset in accuracy (%). 

Extra adv. column marks extra advantages out of experiment settings. D for 

representation dimension greater than 100, E for external data other than IMDB dataset 

used, S for supervision by label during training. Methods in the sequential family are 

marked with (Seq.). Results sources: for WME, for SIF and for others. 

 

4.1.3 Results and discussion 

The results are shown in Table 2. Our model considerably outperforms state-of-the-art 

models. As we discussed, sequential models suffer from long text and non-sequential 

models lose semantic information for discarding ordering of words. Our model, on the 

other hand, successfully overcomes the difficulties encountered by both families of 

methods. Our model considers ordering of words within each single sentence, which is 

considered the fundamental unit of a concept. At the same time, instead of processing 

long text at once, pieces of concepts extracted from sentences are effectively aggregated 

to form a meaningful representation of documents. 
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4.2 Aspect-based sentiment analysis 

 Aspect-based sentiment analysis is a more challenging task for document 

representation. Besides capturing an overall image of a document, detailed information 

mentioned in only part of the document has to be recognized and well preserved. We 

test the ability of our model to learn a single representation that includes information 

from all different aspects. We compare our model with doc2vecC on this task, since it is 

the strongest competitor in the sentiment analysis experiment without any extra 

advantage. 

 

4.2.1 Dataset and Experiment design 

We choose the Beeradvocate beer review dataset for aspect-based SA task. It consists of 

over 1.5 million beer reviews; each has four aspect-based scores and one overall score. 

All the scores are in the range of 0 to 5 and given by the reviewers. The four aspects are 

appearance, aroma, palate and taste. For a fair comparison with the SA experiment, we 

only use the first 500k reviews of the dataset. 

 

To follow the settings of the SA experiment, we reassign labels to each aspect to 

simplify it to a binary classification task. A review is labeled as positive/negative on a 

certain aspect if its score on the aspect is not lower/higher than 4.5/3.5. For each aspect, 

we construct two pools of positive and negative reviews respectively. We randomly 

select 50k samples from each pool. The selected data are split in half for training and 

testing. Now we have 50k balanced data for training and 50k data for testing for each 

aspect. 
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In this experiment, all available data (500k data used in the experiment) are used for 

representation learning. For each aspect, a linear SVM classifier will be trained. We use 

the same parameters as on IMDB review dataset. 

 

 

Table 4.3 Results of aspect-based sentiment analysis on Beeradvocate dataset. 

Reported numbers are accuracy (%). 

 

4.2.2 Results and discussion 

Results of the experiment are shown in Table 3. Our model far outperforms doc2vecC 

on every aspect-based classification tasks including overall. The results indicate that 

information of all aspects is better captured and stored in a single vector learned by our 

model. It also illustrates the generality of our model to perform well on different aspects 

and tasks with different difficulties. 

 

We notice that even though doc2vecC does not explicitly consider ordering of words, it 

still achieves an acceptable accuracy on aspect-based classification. This may be caused 

by the fact that many words used in the reviews are aspect-related on its own. For 

instance, ``delicious'' is a strongly taste-related word that is useful for aspect-based 

sentiment analysis even without knowing its context. 

 

Surprisingly, we find in experiments that performance of our model is hardly sensitive 
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to any of the hyper-parameters except α. We tuned α in the range between 0 and 1 and 

picked 0.7. We find the value generalizable to different tasks and datasets. As for other 

hyper-parameters, we find the model insensitive to them in a wide range. That is why 

we use exactly the same parameters on both IMDB and Beeradvocate datasets. This 

observation indicates the effectiveness as well as robustness of our model design. 
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Chapter 5 Conclusions 

 

Experimental results show that our model outperforms state-of-the-art unsupervised 

document representation learning methods by a large margin on both classic SA task 

and its aspect-based variance. 

 

We attribute this improvement to the design of our model that enables it to reserve 

ordering of words and aggregate sentence vectors effectively at the same time. Splitting 

long text into sentences avoids the curse of length for sequential models. Aggregation 

with average is made effective by explicitly using the obtained representation during 

training. 
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