國立臺灣大學理學院數學系碩士論文
 Department of Mathematics
 College of Science
 National Taiwan University Master Thesis

中華民國101年6月
June 2012

誌謝

感謝王慕道老師，張樹城老師以及李瑩英老師這雨年來的耐心教導與照顧；感謝家人不斷的支持與鼓勵；

感謝同學們互相陪伴的這些日子。
謝谢大家。

中文摘要

跟著［1］中的計算，我們利用特定的次椭圓算子以及最大值原理來證明球面上稌維度 1 曲面的某些性質會在均曲率流中會保持。利用同様的方法，我們證明雙曲空間中稌維度 1 的均曲率流也會保持某種凸性。關鍵詞：均曲率流，尺度不變量，最大值原理

目 錄

口試委員會審定書 i
誌謝 ii
中文摘要 iii
第一節 1
第二節 2
第三節 3
第四節 8
參考文獻 12

圖 目 錄
圖 5

1 Introduction

Scale invariant quantities are very usefully in studying the asymptotic behaviour of mean curvature because selfsimilars appear as we do parabolic rescaling near the singularity. In [3] and [4] Huisken and Hamilton both used scale invariant quantity to rule out grim reaper as the limit of curve shortening flow with compact embedding initial condition. In [1], Andrews defined δ non-collapsing property for mean convex hypersurface in \mathbb{R}^{n+1} which is also scale invariant. He used maximal principle to prove this property is preserved under the mean curvature flow and reproved Huisken's celebrated result: every convex hypersurface in \mathbb{R}^{n+1} would converge to a round point under the mean curvature flow. In the first part of this paper, we follow the calculation in [1] to prove that δ non-collapsing is preserved for mean curvature flows in S^{n+1}. In the second part we use a similar method to prove the preservation of certain convexity condition for mean curvature flows in the hyperboloc space.

Definition 1 Let $M^{n} \hookrightarrow \mathbb{R}^{n+1}$ be a closed mean-convex hypersurface bounding an open region Ω. For $x \in M$, let ν_{x} be the unit outer normal of M at $x, H(x)$ be the mean , cutrvature and $\delta>0$ be a constant. Denote by $B(x, \delta)$ the ball with center $x-\delta / H(x) \nu_{x}$ and radius $\delta(H(x)$. M is called interior δ non-collapsing if for all $x \in M B(x, \delta)$ is contained in Ω. Suppose that M is convex, then M is called exterior δ non-collapsing if Ω is contained in $B(x, \delta)$ for all $x \in M$.

Proposition 1 is proved in [1].
Proposition 1 Let $F:[0, T) \times M^{n} \longrightarrow \mathbb{R}^{n+1}$ be a family of smooth embeddings evolved by the mean curvature flow. $\frac{\partial F}{\partial t}=-H \nu$

Suppose that $M_{0}=F(0, \bar{M})$ is interior (exterior) $=\delta$ non-collapsing, then $M_{t}=F(t, \bar{M})$ is also interior (exterior) δ non-collapsing for all $t \in[0, T)$.

Consider δ non-collapsing for mean-convex hypersurfaces in S^{n+1}. Note that the mean curvature of a geodesic sphere in S^{n+1} with radius $r>0$ is $n \cot (r)$. Here we define δ non-collapsing in S^{n+1} :

Definition 2 Let $M^{n} \hookrightarrow S^{n+1}$ be a closed mean-convex hypersurface and Ω is the domain bounded by M. For $x \in M$, denote by $H(x)$ the mean curvature of M at $x, B(x, \delta)$ the geodesic ball with center $\exp _{x}\left(-\cot ^{-1}(H(x) / \delta) \nu_{x}\right)$ and radius $\cot ^{-1}(H(x) / \delta)$. M is interior δ non-collapsing if for any $x \in M, B(x, \delta)$ is contained in Ω. Suppose that M is convex, then M is exterior δ non-collapsing if Ω is contained in $B(x, \delta)$ for all $x \in M$.

In the ($\mathrm{n}+1$)-dimensional hyperbolic space, a horosphere is a hypersurface which is the limit of geodesic spheres, passing through a same point and whose center goes to infinity along a geodesic. In other words, horospheres are the umbilic hypersurfaces with mean curvature equal to n.

Definition 3 Let $M^{n} \hookrightarrow \mathbb{H}^{n+1}$ be a closed convex hypersurface, Ω be the domain bounded by M and $\delta>0$ be a constant. For any $x \in M$, denote by N_{x} the complete umbilic hypersurface with mean curvature n / δ, tangent to M at x and has the same normal vector with M at $x . M$ is called δ-convex if Ω is enclosed by N_{x} for any $x \in M$. In particular, a 1-convex hypersurface is supported by horospheres.

The main result of this paper is the following:

Proposition 2 Let $F:[0, T) \times \bar{M}^{n} \rightarrow \mathbb{S}^{n+1}$ be a family of smooth embeddings evolved by the mean curvature flow. Suppose that $M_{0}=F(0, \bar{M})$ is interior(exterior) δ non-collapsing, then $M_{t}=F(t, \bar{M})$ is also interior(exterior) δ non-collapsing for all $t \in[0, T)$.

Proposition 3 Let $F:[0, T) \times \bar{M}^{n} \rightarrow \mathbb{H}^{n+1}$ be a family of smooth embeddings evolved by the mean curvature flow. Assume that $M_{0}=F(0, \bar{M})$ is δ-convex for some $0<\delta \leq 1$. Then then $M_{t}=F(t, \bar{M})$ is also δ-convex for all $t \in[0, T)$.

Remark: It is easy to see that δ-convexity implies $h_{i j} \geq \delta g_{i j}$. In [2], it is proved that a closed hypersurface is 1-convex(supported by horoshperes) if and only if $h_{i j} \geq g_{i j}$.

2 Evolution Equations of $\mathrm{MCF}_{\text {in }} S^{n+1} \hookrightarrow \mathbb{R}^{n+2}$

$\bar{F}:[0, T) \times \bar{M}^{n} \rightarrow S^{n+1}$ is a family of smooth embeddings evolved by the mean curvature flow in S^{n+1}. $i: S^{n+1} \hookrightarrow \mathbb{R}^{n+2}$ is the standard embedding. $F:=i \circ \bar{F}$. Let $g_{i j}$ be the induced metric, $A=\left\{h_{i j}\right\}$ be the second fundamental form, H be the mean curvature and Dbe the unit outer normal of $F(t, \bar{M})$ in S^{n+1}. In the following, F and ν are considered to be vectors in \mathbb{R}^{n+2}. Δ and ∇ are the Laplace-Beltrami operator and covariant derivative with respect to the induced metric. $\langle\rangle,$,$\rangle and \|$.$\| are the standard inner product and the standard norm in the$ Euclidean space.

Lemma 1 The evolution equations are:
(a) $\frac{\partial F}{\partial t}=\Delta F+n F$
(b) $\frac{\partial \nu}{\partial t}=\Delta \nu+|A|^{2} \nu+2 H F$
(c) $\frac{\partial H}{\partial t}=\Delta H+\left(|A|^{2}+n\right) H$

proof:

We use normal coordinates in the calculation. Since F is evolved by MCF on sphere,

$$
\frac{\partial F}{\partial t}=\Delta F-\langle\Delta F, F\rangle F
$$

and

$$
0=\Delta\langle F, F\rangle=2\langle\Delta F, F\rangle+2 n
$$

Then we have (a). For (b), to find the component of $\frac{\partial \nu}{\partial t}$ in each direction, we compute

$$
\begin{gathered}
\left\langle\frac{\partial \nu}{\partial t}, \frac{\partial F}{\partial x^{i}}\right\rangle=-\left\langle\nu, \frac{\partial}{\partial x^{i}}(-H \nu)\right\rangle=\frac{\partial H}{\partial x^{i}} \\
\left\langle\frac{\partial \nu}{\partial t}, \nu\right\rangle=0 \text { and }\left\langle\frac{\partial \nu}{\partial t}, F\right\rangle=-\langle\nu,-H \nu\rangle=H
\end{gathered}
$$

Thus

$$
\frac{\partial \nu}{\partial t}=\nabla H+H F
$$

To calculate $\nabla_{i} \nu$

$$
\begin{gathered}
\left\langle\nabla_{i} \nu, \nu\right\rangle=0, \quad\left\langle\nabla_{i} \nu, F\right\rangle=-\left\langle\nu, \frac{\partial F}{\partial x^{i}}\right\rangle=0 \\
\left\langle\nabla_{i} \nu, \frac{\partial F}{\partial x^{j}}\right\rangle=-\left\langle\nu, \nabla_{i} \frac{\partial F}{\partial x^{j}}\right\rangle=h_{i j}
\end{gathered}
$$

So we get $\nabla_{i} \nu=g^{k m} h_{m i} \frac{\partial F}{\partial x^{k}}$.

$$
\begin{gathered}
\Delta \nu=g^{i j} \nabla_{j} \nabla_{i} \nu=g^{i j} \nabla_{j} g^{k m} h_{m i} \frac{\partial F}{\partial x^{k}} \\
g^{i j}\left(g^{k m} \nabla_{j} h_{m i} \frac{\partial F}{\partial x^{k}}+g^{k m} h_{m i}\left(-h_{j k} \nu-g_{j k} F\right)\right)
\end{gathered}
$$

by Codazzi equation

$$
=\nabla H-|A|^{2} \nu-H F
$$

Then we obtain (b)

For (c)

Lemma $2 F: M^{n} \hookrightarrow S^{n+1}$ is interior(exterior) δ non-collapsing if and only if

$$
Z(x, y):=\frac{H(x)}{2}\|F(y)-F(x)\|^{2}+\delta\left\langle F(y)-F(x), \nu_{x}\right\rangle \geq 0(\leq 0), \quad \forall x, y \in M
$$

proof:

It is clear that $F(x)-\delta / H(x) \nu_{x}$ and $\exp _{F(x)}\left(-\cot ^{-1}(H(x) / \delta) \nu_{x}\right)$, considered as vectors in \mathbb{R}^{n+2}, are parallel because $\tan \left(\cot ^{-1}(H(x) / \delta)\right)=\delta / H(x)$. So the intrinsic distance on \mathbb{S}^{n+1} from a point p to $\exp _{F(x)}\left(-\cot ^{-1}(H(x) / \delta) \nu_{x}\right)$ is monotone increasing with respect to the extrinsic distance in \mathbb{R}^{n+2} from p to $F(x)-\delta / H(x) \nu_{x}$. Together with

$$
Z(x, y)=\frac{H(x)}{2}\left[\left\|F(y)-F(x)+\frac{\delta}{H(x)} \nu_{x}\right\|^{2}-\frac{\delta^{2}}{H(x)^{2}}\right]
$$

$Z \geq 0$ if and only in $F(y) \in B(x, \delta)$. The assertion follows.
Let

$$
Z(t, x, y):=\frac{H(x, t)}{2}\|F(y, t)-F(x, t)\|^{2}+\delta\left\langle F(y, t)-F(x, t), \nu_{x}(t)\right\rangle
$$

In the following, H and $h_{i j}$ are the mean curvature and second fundamental form at $F(x, t)$. To use maximal principle we need the evolution equation of $Z(t, x, y)$.

Lemma 3

$$
\begin{gather*}
\left(\frac{\partial}{\partial t}-\Delta_{x}-\Delta_{y}\right) Z \\
=\left(|A|^{2}+n\right) Z-2(n-\delta) H+2 g_{x}^{i j} \frac{\partial H}{\partial x^{j}}\left\langle F(y)-F(x), \frac{\partial F}{\partial x^{i}}\right\rangle+2(n-\delta) H(1-\langle F(y), F(x)\rangle) \tag{1}
\end{gather*}
$$

proof:

By direct computation,

$$
\begin{gather*}
\Delta_{x} Z=\frac{\Delta_{x} H}{2}\|F(y)-F(x)\|^{2}+H\left\langle F(y)-F(x),-\Delta_{x} F(x)\right\rangle+n H+\left\langle\nabla_{x} H, \nabla_{x}\|F(y)-F(x)\|^{2}\right\rangle \\
+\delta\left\langle-\Delta_{x} F(x), \nu_{x}\right\rangle+\delta\left\langle F(y)-F(x), \Delta_{x} \nu_{x}\right\rangle-2\left\langle\nabla_{x} F(x), \nabla_{x} \nu_{x}\right\rangle \tag{2}\\
\Delta_{y} Z=H\left\langle F(y)-F(x), \Delta_{y} F(y)\right\rangle+n H+\delta\left\langle\Delta_{y} F(y), \nu_{x}\right\rangle \tag{3}
\end{gather*}
$$

and

$$
\begin{align*}
\frac{\partial Z}{\partial t} & =\frac{\Delta_{x} H+\left(|A|^{2}+n\right)}{2}\|F(y)-F(x)\|^{2}+H\left\langle F(y)-F(x), \Delta_{y} F(y)-\Delta_{x} F(x)\right\rangle+n H\|F(y)-F(x)\|^{2} \\
& \left.+\delta\left\langle\Delta_{y} F(y)-\Delta_{x} F(x), \nu_{x}\right\rangle+n \delta\left\langle F(y)-(x), \nu_{x}\right\rangle+\left.\delta\left\langle F(y)-F(x), \Delta_{x} \nu_{x}+\right| A\right|^{2} \nu_{x}+2 H F(x)\right\rangle \tag{4}
\end{align*}
$$

So we get

$$
\begin{aligned}
& \left(\frac{\partial}{\partial t}-\Delta_{x}-\Delta_{y}\right) Z= \\
- & \left(|A|^{2}+n\right) Z+\underset{\sim H}{n H F}(y)-F(x) \|^{2}+2 \delta H\langle F(y)-F(x), F(x)\rangle \\
& -2 n H+2 g_{x}^{i j} \frac{\partial H}{\partial x^{j}}\left\langle H(y)-F(x), \frac{\partial F}{\partial x^{i}}\right\rangle+2 \delta H \\
= & \left(|A|^{2}+n\right) Z-2(n-\delta) H+2 g_{x}^{i} \frac{\partial H}{\partial x^{j}}\left\langle F(y)-F(x), \frac{\partial F}{\partial x^{i}}\right\rangle+2(n-\delta) H(1-\langle F(y), F(x)\rangle)
\end{aligned}
$$

Lemma 4 At a critical point of Z we can choose a normal coordinate(with respect to the product metric) $\left\{\partial_{j}^{x}, \partial_{j}^{y}\right\}_{j=1}^{n}$ such that $\partial_{j}^{x}=\partial_{j}^{y}, j=1,2, \ldots n-1$ as vectors in \mathbb{R}^{n+2} at this critical point.

In the remaining of this section, we always use this normal coordinate to calculate at critical points.

proof:

It is sufficient to show that $T_{x} M \cap T_{y} M$ is a subspace with dimension at least $n-1$. Let $N=\left(F(x)-\delta / H \nu_{x}\right)$. Since $\nabla_{y} Z=0$,

$$
\begin{aligned}
F(y)-F(x) & +\frac{\delta}{H} \nu_{x} \perp T_{y} M \Rightarrow F(y)-F(x)+\frac{\delta}{H} \nu_{x} \in \operatorname{span}\left\{F(y), \nu_{y}\right\} \\
& \Rightarrow N \in \operatorname{span}\left\{F(y), \nu_{y}\right\} \Rightarrow T_{x} M, T_{y} M \subset N^{\perp}
\end{aligned}
$$

Then the assertion follows.
At a critical point of Z let $\tilde{\nu_{y}}$ be a unit vector orthogonal to $T_{y} M$ and N. Also let $\tilde{\nu}_{x}$ be a unit vector orthogonal to $T_{x} M$, and N. We have $\operatorname{Span}\left\{F(y), \nu_{y}\right\}=\operatorname{Span}\left\{N, \tilde{\nu}_{y}\right\}$ and $\operatorname{Span}\left\{F(x), \nu_{x}\right\}=\operatorname{Span}\left\{N, \tilde{\nu}_{x}\right\}$. Thus

$$
\begin{equation*}
F(y)-F(x)+\frac{\delta}{H} \nu_{x}=\rho_{1} \tilde{\nu_{y}}+\rho_{2} N \tag{5}
\end{equation*}
$$

for some real number ρ_{1} and ρ_{2}. Note that $\rho_{1}=0$ if and only if $F(y)$ is parallel to N. In this case

So $\rho_{1} \neq 0$ as Z is closed to 0 . The figure above shows the case $Z(x, y)=0$ and $Z(x,) \geq$.
Define the differential operator L by

$$
L:=\frac{\partial}{\partial t}-\Delta_{x}-\Delta_{y}=2 g_{x}^{i k} g_{y}^{j l}\left\langle\partial_{i}^{x}, \partial_{j}^{y}\right\rangle \frac{\partial^{2}}{\partial x^{k} \partial y^{l}}
$$

Lemma 5 The spacial part of L is subelliptic at critical points of Z.

proof:

First note that the differential operator is independent of coordinate choice. If $\left\{\tilde{\partial}_{1}^{x}, \tilde{\partial}_{2}^{x}, \ldots, \tilde{\partial}_{n}^{x}, \tilde{\partial}_{1}^{y}, \tilde{\partial}_{2}^{y}, \ldots, \tilde{\partial}_{n}^{y}\right\}$ is another coordinate. Let $\tilde{\partial_{\mu}^{x}}=A_{\mu}^{i} \partial_{i}^{x}$ and $\tilde{\partial_{\nu}^{y}}=B_{\nu}^{i} \partial_{i}^{y}$. Then

$$
\begin{gathered}
\tilde{g}_{x}^{\mu \rho} \tilde{g}_{y}^{\nu \sigma}\left\langle\tilde{\partial}_{\mu}^{x}, \tilde{\partial}_{\nu}^{y}\right\rangle \frac{\partial^{2}}{\partial \tilde{x}^{\rho} \partial \tilde{y}^{\sigma}} \\
=\left(A^{-1}\right)_{p}^{\mu}\left(B^{-1}\right)_{q}^{\nu}\left(A^{-1}\right)_{r}^{\rho}\left(B^{-1}\right)_{s}^{\sigma} A_{\mu}^{i} B_{\nu}^{j} A_{\rho}^{k} B_{\sigma}^{l} g_{x}^{p r} g_{y}^{q s}\left\langle\partial_{i}^{x}, \partial_{j}^{y}\right\rangle \frac{\partial^{2}}{\partial x^{k} \partial y^{l}} \\
=g_{x}^{i k} g_{y}^{j l}\left\langle\partial_{i}^{x}, \partial_{j}^{y}\right\rangle \frac{\partial^{2}}{\partial x^{k} \partial y^{l}}
\end{gathered}
$$

At a critical point the spacial part of L corresponds to the matrix

If $\left\langle\partial_{n}^{x}, \partial_{n}^{y}\right\rangle \in(-1,1)$, then the eigenspaces with eigenvalue 0 or 2 are $n-1$ dimensional. And the remaining two eigenvalues are $1+\left\langle\partial_{n}^{x}, \partial_{n}^{y}\right\rangle$ and $1-\left\langle\partial_{n}^{x}, \partial_{n}^{y}\right\rangle$. If $\left\langle\partial_{n}^{x}, \partial_{n}^{y}\right\rangle= \pm 1$, then the eigenspaces with eigenvalue 0 or 2 are n dimensional.

Lemma 6 At a critical point of Z

$$
\begin{equation*}
L Z=\left[|A|^{2}+n+4 \frac{H-\delta h_{n n}}{H}\left(\frac{H^{2}}{\delta^{2}}+1\right)\left\langle\partial_{n}^{y}, \frac{F(y)-F(x)}{\|F(y)-F(x)\|}\right\rangle^{2}\left(1+\rho_{2}\right)\right] Z \tag{6}
\end{equation*}
$$

proof:

The general form of $\frac{\partial^{2} Z}{\partial x^{i} \partial y^{j}}$ is

$$
\begin{gathered}
\frac{\partial Z}{\partial x^{i}}=\frac{1}{2} \frac{\partial H}{\partial x^{i}}\|F(y)-F(x)\|^{2}-H_{2}\left\langle F(y)-F(x), \partial_{j}^{x}\right\rangle+\delta\left\langle F(y)-F(x), g_{x}^{k m} h_{m i} \partial_{k}^{x}\right\rangle \\
\frac{\partial^{2} Z}{\partial x^{i} \partial y^{j}}=\frac{\partial H}{\partial x^{i}}\left\langle F(y)-F(x), \partial_{j}^{y}\right\rangle-H\left\langle\partial_{j}^{y}, \partial_{i}^{x}\right\rangle+\delta g^{k m} h_{m i}\left\langle\partial_{j}^{y}, \partial_{k}^{x}\right\rangle
\end{gathered}
$$

at a critical point of Z

$$
\begin{align*}
& g_{x}^{i k} g_{y}^{j l}\left\langle\partial_{i}^{x}, \partial_{j}^{y}\right\rangle \frac{\partial^{2} Z}{\partial x^{k} \partial y^{l}}=\sum_{j=1}^{n-1}\left(\frac{\partial H}{\partial x^{j}}\left\langle F(y)-F(x), \partial_{j}^{y}\right\rangle-H+\delta h_{j j}\right) \\
& \quad+\frac{\partial H}{\partial x^{n}}\left\langle F(y)-F(x),\left\langle\partial_{n}^{y}, \partial_{n}^{x}\right\rangle \partial_{n}^{y}\right\rangle-\left\langle\partial_{n}^{y}, \partial_{n}^{x}\right\rangle^{2} H-\delta\left\langle\partial_{n}^{y}, \partial_{n}^{x}\right\rangle^{2} h_{n n} \tag{7}
\end{align*}
$$

Combining (1) and (7), we have

$$
\begin{gather*}
L Z=\left(|A|^{2}+n\right) Z-2\left(H-\delta h_{n n}\right)\left\langle\partial_{n}^{x}, \tilde{\nu}_{y}\right\rangle^{2} \\
+2 \frac{\partial H}{\partial x^{n}}\left\langle F(y)-F(x), \tilde{\nu}_{y}\right\rangle\left\langle\partial_{n}^{x}, \tilde{\nu}_{y}\right\rangle+2(n-\delta) H(1-\langle F(y), F(x)\rangle) \tag{8}
\end{gather*}
$$

From $0=\frac{\partial Z}{\partial x^{n}}$ we get

$$
\frac{\partial H}{\partial x^{n}}=2\|F(y)-F(x)\|^{-2}\left(H-\delta h_{n n}\right)\left\langle F(y)-F(x), \partial_{n}^{x}\right\rangle
$$

From (5)

$$
\left\langle F(y)-F(x), \tilde{\nu}_{y}\right\rangle=\left\langle F(y)-F(x), \frac{1}{\rho_{1}}(F(y)-F(x))+\frac{\delta}{\rho_{1} H} \nu_{x}-\frac{\rho_{2}}{\rho_{1}} N\right\rangle
$$

$$
=\frac{Z}{\rho_{1} H}+\frac{1}{2 \rho_{1}}\|F(y)-F(x)\|^{2}-\frac{\rho_{2}}{\rho_{1}}\langle F(y)-F(x), N\rangle
$$

Put them together

$$
\begin{gather*}
2 \frac{\partial H}{\partial x^{n}}\left\langle F(y)-F(x), \tilde{\nu}_{y}\right\rangle\left\langle\partial_{n}^{x}, \tilde{\nu}_{y}\right\rangle \\
=4 \rho_{1}\|F(y)-F(x)\|^{-2}\left(\frac{Z}{\rho_{1} H}+\frac{1}{2 \rho_{1}}\|F(y)-F(x)\|^{2}-\frac{\rho_{2}}{\rho_{1}}\langle F(y)-F(x), N\rangle\right)\left(H-\delta h_{n n}\right)\left\langle\partial_{n}^{x}, \tilde{\nu}_{y}\right\rangle^{2} \\
=4\|F(y)-F(x)\|^{-2} \frac{H-\delta h_{n n}}{H}\left\langle\partial_{n}^{x}, \tilde{\nu}_{y}\right\rangle^{2} Z+2\left(H-\delta h_{n n}\right)\left\langle\partial_{n}^{x}, \tilde{\nu}_{y}\right\rangle^{2} \\
-4 \rho_{2}\|F(y)-F(x)\|^{-2}\left(H-\delta h_{n n}\right)\left\langle\partial_{n}^{x}, \tilde{\nu}_{y}\right\rangle^{2}\langle F(y)-F(x), N\rangle \tag{9}
\end{gather*}
$$

Insert (9) into (8)

$$
\begin{gather*}
L Z=\left(|A|^{2}+n+4\|F(y)-F(x)\|^{-2} \frac{H-\delta h_{n n}}{H}\left\langle\partial_{n}^{x}, \tilde{\nu}_{y}\right\rangle^{2}\right) Z \\
-4 \rho_{2}\|F(y)-F(x)\|^{-2}\left(H-\delta h_{n n}\right)\left\langle\partial_{n}^{x}, \tilde{\nu}_{y}\right\rangle^{2}\langle F(y)-F(x), N\rangle+2(n-\delta) H(1-\langle F(y), F(x)\rangle) \tag{10}
\end{gather*}
$$

Together with

$$
\begin{gathered}
\|F(y)-F(x)\|^{-2}\left\langle\partial_{n}^{x}, \tilde{\nu}_{y}\right\rangle^{2}=\|F(y)-F(x)\|^{-2}\left\langle\partial_{n}^{y}, \tilde{\nu}_{x}\right\rangle^{2} \\
=\left(1+\frac{\delta^{2}}{H^{2}}\right)\|F(y)-F(x)\|^{-2}\left\langle\partial_{n}^{y}, \nu_{x}\right\rangle^{2}=\left(\frac{H^{2}}{\delta^{2}}+1\right)\left\langle\partial_{n}^{y}, \frac{F(y)-F(x)}{\|F(y)-F(x)\|}\right\rangle^{2}
\end{gathered}
$$

we have

$$
\begin{align*}
& \left.L Z=\left(|A|^{2}+n+4 \frac{H-\delta h_{n n}\left(\frac{H^{2}}{\delta^{2}}\right.}{\text { ave }}+1\right\rangle\left\langle\partial_{n}^{y}, \frac{F(y)-F(x)}{\|F(y)-F(x)\|}\right\rangle^{2}\right) Z \\
& -4 \rho_{2}\left(\frac{H^{2}}{\delta^{2}}+1\right)\left(H-\delta h_{n n}\right)\left\langle\partial_{n}^{y}, \frac{F(y)-F(x)}{\|E(y)-F(x)\|}\right\rangle\langle F(y)-F(x), N\rangle+2(n-\delta) H(1-\langle F(y), F(x)\rangle) \tag{11}
\end{align*}
$$

Let $l=\left\|F(y)-F(x)+\delta / H \nu_{x}\right\|$, then Z can be expressed by $Z=(H / 2)\left(l^{2}-\delta^{2} / H^{2}\right)$. By the cosine law

$$
\begin{gather*}
\langle F(x), N\rangle=1, \quad\langle F(y), N\rangle=\frac{1}{2}\left(1^{2}+\left(1+\delta^{2} / H^{2}\right)-l^{2}\right) \\
\langle F(y)-F(x), N\rangle=\frac{1}{2}\left(\frac{\delta^{2}}{H^{2}}-l^{2}\right)=\frac{-1}{H} Z \tag{12}
\end{gather*}
$$

Plug (12) into (11)

$$
\begin{gathered}
L Z=\left[|A|^{2}+n+4 \frac{H-\delta h_{n n}}{H}\left(\frac{H^{2}}{\delta^{2}}+1\right)\left\langle\partial_{n}^{y}, \frac{F(y)-F(x)}{\|F(y)-F(x)\|}\right\rangle^{2}\left(1+\rho_{2}\right)\right] Z \\
+2(n-\delta) H(1-\langle F(y), F(x)\rangle)
\end{gathered}
$$

is obtained.

proof of proposition 2 :

Because

$$
\left|\rho_{2}\right|=\left|\left\langle F(y)-F(x)+\frac{\delta}{H} \nu_{x}, N\right\rangle\right| /\left(1+\delta^{2} / H^{2}\right) \leq\left(2+\frac{\delta}{H}\right) /\left(1+\delta^{2} / H^{2}\right)
$$

for any $0<\tau<T$, there is a constant $C>0$ such that

$$
|c(x, y, t)|:=\left||A|^{2}+n+4 \frac{H-\delta h_{n n}}{H}\left(\frac{H^{2}}{\delta^{2}}+1\right)\left\langle\partial_{n}^{y}, \frac{F(y)-F(x)}{\|F(y)-F(x)\|}\right\rangle^{2}\left(1+\rho_{2}\right)\right|<C
$$

for all $(x, y, t) \in \bar{M} \times \bar{M} \times[0, \tau]$. Let $\bar{Z}=e^{-C t} Z$. Suppose that $Z \geq 0$ as $t=0$ and that \bar{Z} attains $-\epsilon<0$ first time at $\left(x_{0}, y_{0}, t_{0}\right), t_{0} \leq \tau$. By the above lemma, we have

$$
\begin{gathered}
0 \geq L \bar{Z}=(c-C) \bar{Z}+e^{-C t_{0}} 2(n-\delta) H\left(1-\left\langle F\left(y_{0}\right), F\left(x_{0}\right)\right\rangle\right) \\
\geq(c-C)(-\epsilon)>0
\end{gathered}
$$

It is a contradiction. In the second inequality we use the fact that $Z \geq 0$ implies $\delta \leq n$. So $Z \geq 0$ for all $t \in[0, \tau]$. Since τ is arbitrary we get $Z \geq 0$ for all $t \in[0, T)$. Hence we know that interior δ non-collapsing is preserved. Similarly, suppose that $Z \leq 0$ as $t=0$ and that \bar{Z} attains $\epsilon>0$ first time at $\left(x_{0}, y_{0}, t_{0}\right), t_{0} \leq \tau$. By the above lemma, we have

$$
0 \leq L \bar{Z}=(c-C) \bar{Z}+e^{-C t_{0}} 2(n-\delta) H\left(1-\left\langle F\left(y_{0}\right), F\left(x_{0}\right)\right\rangle\right)
$$

by the same argument, proposition 2 follows.

4. δ Convexity in \mathbb{H}^{n+1}

In this section, \langle,$\rangle is the standard inner product in Minkowski space \mathbb{R}^{n+1,1}$ and $\|p\|^{2}=\langle p, p\rangle$ for all $p \in \mathbb{R}^{n+1,1}$. Just like above, we can embed the space form \mathbb{H}^{n} into $\mathbb{R}^{n+1,1}, \mathbb{H}^{n}=\left\{p \in \mathbb{R}^{n+1,1}:\|p\|^{2}=-1\right\}$. Let F : $[0, T) \times \bar{M}^{n} \rightarrow \mathbb{H}^{n+1} \hookrightarrow \mathbb{R}^{n+1,1}$ be a family of embedings evolved by the mean curvature flow in \mathbb{H}^{n+1}. Let $g_{i j}$ be the induced metric, $A=\left\{h_{i j}\right\}$ be the second fundamental form, H bethe mean curvature and ν be the unit outer normal vector of $F(t, M)$. In the following of thissection, $F(x)$ and ν are considered to be vectors in $\mathbb{R}^{n+1,1}$.

Lemma 7 Then the evolution equations are:
(a) $\frac{\partial F}{\partial t}=\Delta F-n F$
(b) $\frac{\partial \nu}{\partial t}=\Delta \nu+|A|^{2} \nu-2 H F$
(c) $\frac{\partial H}{\partial t}=\Delta H+\left(|A|^{2}-n\right) H$

proof:

Since F is evolved by MCF in \mathbb{H}^{n+1},

$$
\frac{\partial F}{\partial t}=\Delta F+\langle\Delta F, F\rangle F
$$

and

$$
0=\Delta\langle F, F\rangle=2\langle\Delta F, F\rangle+2 n
$$

Then we have (a). For (b)

$$
\begin{gathered}
\left\langle\frac{\partial \nu}{\partial t}, \frac{\partial F}{\partial x^{i}}\right\rangle=-\left\langle\nu, \frac{\partial}{\partial x^{i}}(-H \nu)\right\rangle=\frac{\partial H}{\partial x^{i}} \\
\left\langle\frac{\partial \nu}{\partial t}, \nu\right\rangle=0, \quad\left\langle\frac{\partial \nu}{\partial t}, F\right\rangle=-\langle\nu,-H \nu\rangle=H
\end{gathered}
$$

Thus

$$
\begin{gathered}
\frac{\partial \nu}{\partial t}=\nabla H-H F \\
\left\langle\nabla_{i} \nu, \nu\right\rangle=0, \quad\left\langle\nabla_{i} \nu, F\right\rangle=-\left\langle\nu, \frac{\partial F}{\partial x^{i}}\right\rangle=0
\end{gathered}
$$

By

$$
\left\langle\nabla_{i} \nu, \frac{\partial F}{\partial x^{j}}\right\rangle=-\left\langle\nu, \nabla_{i} \frac{\partial F}{\partial x^{j}}\right\rangle=h_{i j}
$$

we have $\nabla_{i} \nu=g^{k m} h_{m i} \frac{\partial F}{\partial x^{k}}$.

$$
\begin{gathered}
\Delta \nu=g^{i j} \nabla_{j} \nabla_{i} \nu=g^{i j} \nabla_{j} g^{k m} h_{m i} \frac{\partial F}{\partial x^{k}} \\
g^{i j}\left(g^{k m} \nabla_{j} h_{m i} \frac{\partial F}{\partial x^{k}}+g^{k m} h_{m i}\left(-h_{j k} \nu+g_{j k} F\right)\right)
\end{gathered}
$$

by Codazzi equation
then we obtain (b)

For (c)

$$
\begin{aligned}
& \frac{\partial h_{i j}}{\partial t}=\frac{\partial}{\partial t}\left\langle\frac{\partial F}{\partial x^{i}}, \nabla_{j} \nu\right\rangle=\left\langle\nabla_{i}(-H \nu), h_{\partial j^{\circ}} g^{l} l \frac{\partial F}{\partial x^{l}}\right\rangle+\left\langle\frac{\partial F}{\partial x^{i}}, \nabla_{j}(\nabla H-H F)\right\rangle \\
& \frac{\partial H}{\partial t}=-g^{i k} g^{l j}\left(-2 H g_{k l}\right) \hbar_{i j}+g^{i j}\left(-H h_{j k} h_{k i} g^{k l}-H g_{i j}+\nabla \nabla_{j} H\right)=\Delta H+\left(|A|^{2}-n\right) H
\end{aligned}
$$

Note that δ-convexity of $F: M^{n} \rightarrow \mathbb{H}^{n+1} \rightarrow \mathbb{R}^{n+1,1}$ is equivalent to

$$
Z_{0}:=\frac{1}{2}\|F(y)-F(x)\|^{2}+\delta\left\langle F(y)-F(x), \nu_{x}\right\rangle \leq 0
$$

Lemma 8 At a critical point of Z_{0}, we can choose a normal coordinate $\left\{\partial_{j}^{x}, \partial_{j}^{y}\right\}_{j=1}^{n}$ (with respect to the product metric) such that $\partial_{j}^{x}=\partial_{j}^{y}, j=1,2, \ldots, n-1$ as vectors in $\mathbb{R}^{n+1,1}$ at this point. And we also have $\left\langle\partial_{n}^{x}, \partial_{n}^{y}\right\rangle=1$ if $\delta=1$ and $0 \leq\left\langle\partial_{n}^{x}, \partial_{n}^{y}\right\rangle \leq 1$ if $0<\delta<1$.

proof:

Following the same argument in section 3, we have $T_{x} M \cap T_{y} M$ is at least $\mathrm{n}-1$ dimensional. Let $N=F(x)-\delta \nu_{x}$. ∂_{n}^{x} and ∂_{n}^{y} lie in the 2-dimensional subspace $\pi=\left\{\partial_{1}^{x}, \partial_{2}^{x}, \ldots, \partial_{n-1}^{x}, N\right\}^{\perp}$. If $\delta=1$, then N is a null vector and the restrict inner product on π degenerates. So we can choose $\left\langle\partial_{n}^{x}, \partial_{n}^{y}\right\rangle=1$. For $\delta<1, N$ is a timelike vector and π is isometric to \mathbb{R}^{2}. Thus $\left\langle\partial_{n}^{x}, \partial_{n}^{y}\right\rangle \leq 1$

By the above lemma, the spacial part of operator L defined in section 3 is still subellptic. Note that if N is spacelike then it is not necessarily subelliptic since $\left\langle\partial_{n}^{x}, \partial_{n}^{y}\right\rangle$ might be grater than 1.

Lemma 9 Assume $Z_{0}>-2\left(1-\sqrt{1-\delta^{2}}\right)$ at a critical point, then

$$
L Z_{0}=\left(|A|^{2}-n\right) Z_{0}-\frac{1}{2 n}\left(n|A|^{2}-2 \delta n H+n^{2}\right)\|F(y)-F(x)\|^{2}
$$

proof:

$$
\begin{gathered}
\Delta_{x} Z_{0}=\left\langle F(y)-F(x),-\Delta_{x} F(x)\right\rangle+n+\delta\left\langle-\Delta_{x} F(x), \nu_{x}\right\rangle+\left\langle F(y)-F(x), \Delta_{x} \nu_{x}\right\rangle-2 \delta H \\
\Delta_{y} Z_{0}=\left\langle F(y)-F(x), \Delta_{y} F(y)\right\rangle+n+\delta\left\langle\Delta_{y} F(y), \nu_{x}\right\rangle \\
\frac{\partial Z_{0}}{\partial t}=\left\langle F(y)-F(x), \Delta_{y} F(y)-\Delta_{x} F(x)\right\rangle-n\|F(y)-F(x)\|^{2}+\delta\left\langle\Delta_{y} F(y)-\Delta_{x} F(x), \nu_{x}\right\rangle \\
\left.-n \delta\left\langle F(y)-F(x), \nu_{x}\right\rangle+\left.\delta\left\langle F(y)-F(x), \Delta_{x} \nu_{x}+\right| A\right|^{2} \nu_{x}-2 H F\right\rangle
\end{gathered}
$$

So

$$
\begin{gathered}
\left(\frac{\partial}{\partial t}-\Delta_{x}-\Delta_{y}\right) Z_{0}=\left(|A|^{2}-n\right) Z_{0} \\
-\frac{|A|^{2}}{2}\|F(y)-F(x)\|^{2}-\frac{n}{2}\|F(y)-F(x)\|^{2}+\delta H\|F(y)-F(x)\|^{2}-2 n+2 \delta H
\end{gathered}
$$

And at a critical point

Then we have

$$
\begin{aligned}
& \frac{\partial Z_{0}}{\partial x^{j}}=\left\langle F(y)-F(x),-\partial_{j}^{x}\right\rangle+\delta h_{j}^{k}\left\langle F(y)-F(x), \partial_{k}^{x}\right\rangle \\
& \frac{\partial^{2} Z_{0}}{\partial x^{j} \partial y^{j}}=\left\langle\partial_{j}^{y},-\partial_{j}^{x}\right\rangle+\delta h_{j}^{k}\left\langle\partial_{j}^{y}, \partial_{k}^{x}\right\rangle= \begin{cases}\left\langle\partial_{n}^{y}, \partial_{n}^{x}\right\rangle\left(\delta 1+\delta h_{n n}\right) & \text { if } j=n\end{cases} \\
& =\left(|A|^{2}-n\right) Z_{0}-\frac{1}{2 n}\left(n|A|^{2}-2 \delta n H+n^{2}\right)\|F(y)-F(x)\| \|^{2},+\left(1-\left\langle\partial_{n}^{x}, \partial_{n}^{y}\right\rangle^{2}\right)\left(-1+\delta h_{n n}\right)
\end{aligned}
$$

If $\left(-1+\delta h_{n n}\right)=0$ then we have done. By

$$
0=\frac{\partial Z_{0}}{\partial x^{n}}=\left(-1+\delta h_{n n}\right)\left\langle F(y)-F(x), \partial_{n}^{x}\right\rangle
$$

If $\left(-1+\delta h_{n n}\right) \neq 0$, then $\partial_{n}^{x} \perp F(y)$. So $T_{x} M \subset\{F(y), N\}^{\perp}$. Because $F(y)$ is parallel to N if and only if $Z_{0}=$ $-2\left(1-\sqrt{1-\delta^{2}}\right), F(y)$ and N are linearly independent. Then $T_{x} M=\operatorname{span}\{F(y), N\}^{\perp}=T_{y} M$ and $\left\langle\partial_{n}^{x}, \partial_{n}^{y}\right\rangle=1$. In both cases we have

$$
L Z_{0}=\left(|A|^{2}-n\right) Z_{0}-\frac{1}{2 n}\left(n|A|^{2}-2 \delta n H+n^{2}\right)\|F(y)-F(x)\|^{2}
$$

proof of proposition 3:

For the case $\delta=1$, fix $0<\tau<T$. There is a constant $C>0$ such that

$$
\left|\left(|A|^{2}-n\right)\right| \leq C
$$

in $M \times[0, \tau]$. Let $\bar{Z}_{0}=e^{-C t} Z_{0}$. By M_{0} is 1 -convex we know $\bar{Z}_{0} \leq 0$ as $t=0$. If $\bar{Z}_{0}=\epsilon>0$ first time at $\left(x_{0}, y_{0}, t_{0}\right) \in M \times M \times[0, \tau]$, by lemma 9 we have at $\left(x_{0}, y_{0}, t_{0}\right)$

$$
0 \leq L \bar{Z}_{0} \leq\left(|A|^{2}-n-C\right) \bar{Z}_{0}-e^{-C t} \frac{1}{2 n}(H-n)^{2}\|F(y)-F(x)\|^{2} \leq\left(|A|^{2}-n-C\right) \epsilon<0
$$

It is a contradiction. So \bar{Z}_{0} and Z_{0} remain nonpositive in $[0, \tau]$. Thus Z_{0} remains nonpositive as long as the solution exists.

For the case $\delta<1$,
$0 \leq L \bar{Z}_{0} \leq\left(|A|^{2}-n-C\right) \bar{Z}_{0}-e^{-C t} \frac{1}{2 n}(H-n)^{2}\|F(y)-F(x)\|^{2}-2 n e^{-C t}(1-\delta) H\|F(y)-F(x)\|^{2} \leq\left(|A|^{2}-n-C\right) \epsilon<0$
we use that 1-convexity implies $H>n>0$ in the second inequality. Then the result follows.

Reference

[1] B. Andrews, Non-collapsing in mean convex mean curvature flow. arXiv:1108.0247v1
[2] R. Currier, On hypersurfaces of hyperbolic space infinitesimally supported by horospheres. Trans. Amer. Math. Soc. , (1989), 313, (1), 412-431
[3] G.Huisken, A distance comparison principle for evolving curves. Asian J. Math., 2(1):127-133, 1998.
[4] R. S. Hamilton, Isoperimetric estimates for the curve shrinking flow in the plane. In Modern methods in complex analysis (Princeton, NJ, 1992), volume 137 of Ann. of Math. Stud., pages 201-222. Princeton Univ. Press, Princeton, NJ, 1995.

