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Abstract

In this thesis, we study the existences of travelling waves of the diffusive FitzHugh-
Nagumo system (DFHN) in RY. This system has a skew-gradient structure as defined
by Yanagida as well as a non-local gradient structure. In addition, by a suitable transfor-
mation, it also has a monotone-system structure on some parameter ranges. For bounded
domains, the variational approach is applied to construct steady states of (DFHN) with
Dirichlet or/and Neumann condition. For unbounded cylindrical domains, we study the
travelling wave solutions via all of the three structures mentioned above when the diffu-
sion coefficients in the equations are equal. By using the nonlocal variational energy, we
establish the existence of a travelling front solution for. (DFHN). Our existence result also
obtains a variational characterization for the wave speed.. On the other hand, using the
skew-gradient structure, weigive- a4-minismax fofmulat’ion of the travelling wave and its
speed. For whole domains we employ the method of super— and subsolutions to establish
the existence of monostable-typetraveling waveselutions'in: RY. Moreover, we construct
infinitely many standing periodic solutwns in RJ based on the reﬁectlon method.

keywords: FitzHugh-Nagumo system; (?Eﬂlhg waves; skew-gradient structure; vari-
ational method; the method of superT bsol'utlons
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Chapter 1

Introduction

In this thesis, we are concerned with the diffusive FitzHugh-Nagumo system (DFHN) in
RY.

w = uge + Ayu+ fu) —
v = d(veg F Ayu) Fo(u — Yv),

where (£,y) € Q := R' x Q, with-Q, being R™! or being a bounded C** domain in
R d>0,6~ >0, and f(u) =l — u)(u —B)ior 0 < < % Moreover, if €2, is a
bounded domain, we impose.the Dirichlet or Neumann boundary condition on it.
(DFHN), a typical model for exmtable media,. arises as asimplification of the Hodgkin-
Huxley for nerve-impulse propagation ([8 1,‘2] and [32]). Here u is the membrane po-
tential of the nerve cells.and v represents Eﬁects of sodium ions and potassium ions.
In the past decades, (DEHN) has b Eme i'{me of the frequently-used reaction-diffusion
systems to describe different’ pheno lena in many ﬁelds such-as physics, chemistry and

biology ([13], [27], [34], 35} and [37})% | ||

Here we interest in the existence of steady states;standing waves and travelling waves
in RY. By setting z = ¢ — ct, (DFHN) is reduced to a elliptic system with a unknown
variable ¢, called the ”wave speed™.

Upy + Ayu + cuy + f(u) —v =0,
d(Vge + Ayv) + cvgy + 0(u — yv) = 0.
Among variant interesting structures related to (DFHN), we list three ones we used in
this thesis as follows.
1. The skew-gradient structure
For variational approach, the functions v and v need to be in the same weighted space, i.e.,

d = 1. Moreover, setting v = v/6% and dropping the tilde we obtain system (1.0.3)-(1.0.4)
enjoying the skew-gradient structure defined by Yanagida [45]; namely, the system

Ugg + Ayt + ctig + f(u) — Vv =0, (1.0.5)
Uze + Ayv + cv, + Vou — oyv =0 (1.0.6)

satisfying 2 (f(u) — Vov) = —%(\/gu — dyv).

1



The corresponding energy of the above system (1.0.5)-(1.0.6) is

1 1
amwzglf%@—ﬁwglfﬁwWP—wm%+£wﬂwm,

where H(u,v) = F(u) + Véuv — 1y6v? and F(u) = — [} f( = Lyt — By 4 a2,
2. The nonlocal-gradient structure

Observing that (1.0.6) is a linear equation, we can formally solve v, expressed in term of

u. Denote v by B.[u]. Consequently, system (1.0.5)-(1.0.6) is reduced to a single equation

Uze + Ayt + cuy + f(u) — Befu] = 0. (1.0.7)

Moreover, equation (1.0.7) is the Euler-Lagrange equation of the nonlocal gradient energy
Esu], defined by

1
Balul = 5 [ e+ V) + [ P+ /CmB

3. The monotone-system structure
For technical restriction, we assume d- = 1..By transforming w = —v + ou, 0 > 0
determined later, system (1.0.8)-(1.0.4) is rewzitten ase

Uzz + Ayt + cuy + f{u) - Uui— i 02-.{ (1.0.8)

Wy + Ayw + cwy + o f () +v(?5r§.§:d'_;l' é)u) + (6 —67y)w = 0. (1.0.9)
= |{

Usually, we expect the solution wis li) undqe[l for} example 0 <u < 1. To ensure system

(1.0.8)-(1.0.9) is monotone, we impose| A —-rjf (u )'4r (g ——2) > 0onwue0,1]. The
condition that v > 1 =+ S ﬁ 18 silfraent anduﬁecessary for A >0 onu e [0,1]. By
choosing o = V9, we obtam a opmma parameter ranige for v such that system (1.0.8)-
(1.0.9) is a monotone system on w & [0;.1}.

The above three structures will be. discussedsmore in chapter 2-5. This thesis is
organized as follows. In chapter 2, we survey the existence of waves from literature and
focus on the statements of the main theorems and simple descriptions of proofs. Next,
in Chapter 3, the steady states of (DFHN) in a bounded domain are established. We
employ the direct method to obtain nontrivial minimizers and use the reflection method
to construct periodic solutions in R!. By applying the method of sub- and supersolutions,
Chapter 4 is devoted to the existence of monostable-type travelling waves for (DFHN). By
using the nonlocal structure of (DFHN), the existence of travelling frons is established in
Chapter 5. Moreover, we obtain a variational characterization for the wave speed. From
the skew-gradient structure, we set a mini-max formulation of the travelling wave and its
speed.



Chapter 2

Literature review

Among variant interesting problems related to (DFHN), the existence of wave solutions
is one of the main issues. There has been tremendous work on this problem.

Assume N = 1. When d = 0, Rinzel and Terman [40] completely analyzed critical
values of 7 based on the results of Carpenter [2], Casten et al. [4] and Keener [18]. If §
is small, they showed that travelling pules, fromits and back waves exist for v € (0,1),
v € (70, 00) and v € (Yo, 72) respectively (See-Eig: 2.1+or the definition of v;, i = 0, 1,2.).

'i;'i 1
= ——Uu ,, _ 1.
| - 70 ‘:} - " u
| i
i AR
1 . .
. 2
ly 7
(0,0
|

v=f(u)

Figure 2.1: There are three critical values 7y, v; and v, of v, which are defined as follows:
v = —u is the line passing through the origin and I; € {v = f(u)} for ¢ = 0,1, 2, where I,
and I 1 are the local maximum and the inflection point of the curve v = f(u) respectively
and I, satisfies the condition that the line 115 is parallel to the u axis.

. . _ 9 . . . . oy
By a direct calculation, v; = 51T As one will see, this v, is also a crucial critical
value in our main theorem.



2.1 Steady states on bounded domains

In this section, assume €2 is a bounded smooth domain and the steady states of (DFHN)
satisfy the Dirichlet boundary condition. Let € = d/d. The system we study is as follows:

Au+ f(u) —v =0, (2.1.1)
Av + e(u —yv) =0, (2.1.2)
U|aQ = 'U|8Q = 0. (2.1.3)

The corresponding energy of system (2.1.1)-(2.1.3) is

/|Vu|2 / (u) + ;/QUB[u], (2.1.4)

where Blu] = e(—A + ey) " ul.

2.1.1 Bistable cases

The existence results of the steady states for system (2.1.1)-(2.1.3) were constructed first
by Klaasen and Mitidieri [20]. According to variational approaches, they obtained two
pairs of solutions for (DFHN), where onetis a minimizer.of the energy and the other is a
mountain pass solution. The ihain-thedrems-in, [20] are stated as follows.

THEOREM 2.1.1. ([20]) Assumery > m =i71. _There exists Ry > 0 such that
if S contains a ball Br, withithe radms<Ro them system (2:1.1)-(2.1.3) has a nontrivial

C?-solution pair (uy, Blug]) which satzsﬁwgs ‘-_.;7 7?

inf uﬂ‘l’;t"@"ful (2.1.5)

H3(9)
Moreover, there exists aneother nontr*v al C%=solution pair (uz, Blus)) which satisfies
! I

i max @[ (s)] = @[uz] >0, (2.1.6)

oEY 0<s'<1
where $ = {0 € C([0,1]; HY(Q))a(0) =0, 0f1) = uy}e
On the other hand, nonexistence theorems were also established in [20].
THEOREM 2.1.2. ([20]) If Q is a ball Br(0) and one of the following assumption is
supposed:
(1) €, >0 are ﬁ:z:ed and R > 0 is sufficiently small;
(11)672>1,7<( 2cmdcmyR>0
(ii7) ey® < 1, 2y/e — ey > (1_5)2 and any R > 0.
Then system (2.1.1)-(2.1.3) has no nontrivial weak solutions.

Alternatively, Reinecke and Sweers [39] obtained the existence of steady states of
system (2.1.1)-(2.1.3) by considering the following eigenvalue problem.

1

XAU + f(u) —v =0, (2.1.7)
%AU + e(u — yv) =0, (2.1.8)
u|39 = U’ag =0. (2.1.9)



According to their existence results, the "boundary layer solution” of system (2.1.7)-
(2.1.9) was established by transforming (2.1.7)-(2.1.8) to a quasimonotone system. Con-
sequently, the new system enjoys the maximum principle. By this structure, a pointwise
estimate was obtained. Let

1— /3
+ if 0 < < ;
O = { f € < (2.1.10)

When 7 is greater than 7(¢), the existence theorem was established as follows.

THEOREM 2.1.3. ([39]) Assume 0 is C3. For all ¢ > 0 and v > 79, there ewist

XN > 0 and a function A € CY([\*, 00), C?(Q) x C%(Q)) such that (uy,vy) := A(N) is a pair

of positive solution of system (2.1.7)-(2.1.9) for all A > X\*. Moreover, p; < maxquy < pa,

% < maxq vy < ’2 and limy_,o A(\) = (po, pz) uniformly on all compact subsets of €2,
2

where 0 < p; < po andpl, pa solve u* — (5 + )u+(ﬁ+%) =0.

Remark. By scaling for space variables, that A is large in Theorem 2.1.3 is equivalent
to that ) contains a large ball in Theorem 2.1.1.

As v > 1, Reinecke et al. [39] and Klaasen et.al. [20] obtained the solutions of system
(2.1.1)-(2.1.3) by different approdches.#lt is fiatural o ask what relations are between
those solutions. Consequently, MatSuzawa [26] proved that the global minimizer in [20]
identifies the boundary layer: solution am [39] under the {5llowing conditions.

(C1) v > max{ + B} ) fi_g_"‘ ‘

(C2) ev—2f>M-=#+#\/’1aﬂi##+§.
ﬁr

(03> 2527955+2 > e’y;M _% (e’y - WiEpE 4&!4__ ¢

THEOREM 2.1.4. ([26]) va'tihe cloizditz'ons dﬂ C3) hold, then there exists N> > 0
such that uy in Theorem 2.1.3 comczdes “with the global minimizer in Theorem 2.1.1 for
all A > N°. '

2.1.2 Monostable cases

For monostable case (0 < v < ), by the nonexistence theorem (see Theorem 2.1.2), if

4
(1— ﬁ)2
Q is sufficiently small or € := & > 2 then system (2.1.1)-(2.1.3) only has trivial solution.
Klaasen [19] obtained a sufﬁ(nent Condltlon to insure the existence of steady states of

(2.1.1)-(2.1.3).

THEOREM 2.1.5. ([19]) Let 0 < v <
that

(e and 6 > 0. If R and d are chosen such

((L)N - 1) (1+5—R4+ﬁ—3(2—6)) L1225 (2.1.11)

R—-1 d+o6yR?> 6 6

Then for all smooth domain containing Br system (2.1.1)-(2.1.3) has two nontrivial clas-
sical solutions.



2.2 Travelling waves in R!
In this section, we consider the following travelling wave equation.

Uge + Uy + f(u) —v =0,
dvgy + cvy + 0(u —yv) = 0.

2.2.1 Bistable cases

For the bistable case, there are also various types of solutions. By the shooting method,
Klaasen and Troy [22] obtained the existences of standing pulses and infinitely many
periodic solutions. The main theorem is stated as follows.

THEOREM 2.2.1. ([22)) Let v > max{~, \%—l—%}. Then system (2.2.1)-(2.2.2) with
¢ =0 has a nonconstant pair (u,v) satisfying (u, u,, v, v,)(+oo) =0 and (uz,v,)(0) = 0.
Moreover, system (2.2.1)-(2.2.2) with ¢ = 0 has an infinite number of periodic solution.

The global bifurcation structure of front and back waves were studied by Ikeda,
Mimura and Nishiura [17] when >0
THEOREM 2.2.2. ([17)) Let ¢ = Z, - T;:anc_i cc= sz, where 1,0 > 0 and s € R
are parameters. Assume 7.= O(o)dor O(L), themstliere exists oo > 0 such that for all
0 < o < oy the "following bifuication phenomena”(seesFig...2.2) holds.

|
- |

¥ '-é;su ”J ;' i
A) = )
s A I I'[ ]
\(bd))
r > T
(©) (D)
S A Sa
— 1 > T

Figure 2.2: (A)y > 7% (B)y1 <7 <7 (C)y=m D)o <y <m



2.2.2 Monostable cases

For the monostable case, Ermentrout, Hastings and Troy [7] proved the existence of two
standing pulses by using the shooting method. Later Dockery [6] obtained a similar result
by a different approach: a geometric singular perturbation.

THEOREM 2.2.3. ([6] and [7]) Let 0 < v < ﬁ. If 6/d is sufficiently small,
system (2.2.1)-(2.2.2) with ¢ = 0 has least two nonconstant, bounded solutions satisfies
the following:

(1) im |z o0 (U, Ug, v, V) = (0,0,0,0);

(7i) u(z) and v(z) have exactly one relative mazimum in R which occurs at v = 0.
Moreover, system (2.2.1)-(2.2.2) with ¢ =0 has a continuum of periodic solutions.

2.3 Standing waves in RY

For the higher dimension case @ = R" and v is large, symmetric standing waves were
obtained by Reinecke et al. [38] and Wei et al. [44]. The system in R is that

At 4 fi(u) —w= 0
Av 4 elu—aqu) = 03

where € = §/d.

Reinecke and Sweers. [38] constructed a entlre solutlon of system (2.3.1)-(2.3.2) by
using solutions to the system (2.3.1)- 3::2_) ‘w1t;h Dirichlet boundary condition on the
ball Bg and letting R — 0o The mam theorem | Bs| \stated as’ follows.

e ’I2B2E55+2 9¢
pair of positive solution (u,v) €G> RN) for system (2.3.1)-(2.3.2). Moreover,
u and v are radially symmetric, decreasmg and'satzsfy pi < max,ecgry u(r) < pe and
max,ery v(z) < 2. :

THEOREM 2.3.1. ([38))If v'> nék 2i1 A4 L L B UBLY yhere enists a
¥)x0(

By a perturbation for §, Wei and Winter [44] established the following existence.

THEOREM 2.3.2. ([44]) For all a € (0,83), there exists a ¢g = eo(c, ) such that for

all 0 < € < ¢ and v = ¢ system (2.3.1)-(2.3.2) has a unique standing wave (uc,v.) in
RY. Moreover, u. and v, are radially symmetric.






Chapter 3

Steady states on bounded domains
and periodic solutions in RY

3.1 Introduction
In this chapter, we are interestediin using a variational approach to study the steady

states of (DFHN) on a bounded domain'® in R¥. Let € = d/d. The system we study is
as follows: :

AL N = 0

Av i e(u Hryise=0; (3.1.2)
| <@=%.) | oy
ula0 = U|@Q§ b 0{-1%? Sl F Q, (3.1.3)

F

|
1

where v is the outer normal of £2: |

In [20], the nonexistence theorein:(seeTheorem 2:1.2) suggests us that Q is sufficiently
large and ¢ is small if we would like to'look foria nontrivial solution as v < 7;. Some
arguments in proving the existences of ayminimizer and a mountain pass solution will be
omitted if the proofs have showed in [20] and [19]. Our main theorem is stated as follows.

THEOREM 3.1.1. Assume v < ;. There exists Ry = Ro(3,N) > 0 such that if
Bpgr, C (), then we have the following existence result.

(1) There exists e = €o(8, N, 7, |2|) so that for all 0 < € < ¢y system (3.1.1)-(3.1.2) with
Dirichlet condition has two pair of classical solutions.

(17) There exist ky = ki(B, N,7v) and €, = €1(8, N,v,Q) such that for all Q satisfying
|2 > ki and for all 0 < € < €, system (3.1.1)-(3.1.2) with Neumann condition has two
pair of classical solutions.

In addition, we can construct the following existence theorems of periodic solutions
in R! by applying the above theorem to the domains Q = [0, L,].

COROLLARY 3.1.2. Assumey <y, and Q) = R'. Then there exists e; = e2(B,7) >0
such that for all 0 < € < ey system (3.1.1)-(3.1.2) has infinitely many periodic solutions.



3.2 Proof of the main theorem

We first observe that from (3.1.2), v can be solved formally expressed in term of u. With
v expressed in terms of u, system (3.1.1)-(3.1.2) is reduced to the single equation

Au+ f(u) — Blu] =0, (3.2.1)

where v = Blu] is a solution of (3.1.2). In this section, we consider (3.2.1) under either
the Dirichlet or Neumann condition. When the Dirichlet (resp., Neumann) problem of
(3.2.1) is taken into account, we denote v = Bylu| (resp., v = Bj[u]) by the solution of
(3.1.2). With no cause for ambiguity, we continue to denote Blu| by replacing By[u] or
Bl [U,]

For Dirichlet (resp., Neumman) problem, we define the energy functional ®gu] :
H} Q) — R((resp., ®1[u] : H'(Q) — R) by

/|Vu|2 / Fu) + ;/QuBi[u],i:O,l (3.2.2)

where F'(u) = — fo s)ds = iu‘l ke +1 3+B u”. With no cause for ambiguity, we continue
to denote CIDO[ | or @4[u } by ®[u].

From the a priori estimate for a.elassical solutionu,Klaasen and Mitidieri [20] modified
F(u) such that the growth of E(#) is not.greatérthan the quadratic function ku? for some
k>0 as u — %00, i.e. for large i}y weshave

()] < ) (3.2.3)
We denote the modlﬁcatlon of F(u) in j_() rby F (u). Let & [u] be the energy, replacing

the term F(u) by F(u) in ®[ul. Therﬁ F ®[u] enjoy the properties that ®[u] is
weakly lower semicontinuous and fﬂl i@g fﬂlu + o(||ul|*) at u = 0. The second
®[u] in

‘5
e o

statement benefits the geometry of unﬁa]m passitheorem.

The following lemma asserts. tha I B [u] is a quunded -operator in L? space and the
operator norm of Blu] tends to 0, as-e_—40; Which 18 curial in showing that the term
Jq uBlu] in ®[u] is small as € is sinall.

LEMMA 3.2.1. Let M\ (resp., \ig) be the ﬁrst eigenvalue of —A with Dzmchlet (resp.,

Neumman) condition on the 0. Then || Bo|ul] llu|l2 and || By[u] — vlﬂ\ o <

||2 — A\ o(Q +ey
)\Ll(Q)"‘E’YHuHZ.
Proof. Let A\, (resp., A, 1) be the positive eigenvalue sequence of —A with Dirichlet

(resp., Neumman) boundary condition and w,, o (resp., wy, 1) be the corresponding eigen-
function with [Jwy, ;|2 =1 for i = 0,1. Then

f EUWy 0 f f EUWY, 1
By yoo =2 P, and B 0 | yoo Jo UL 1
[u] = L ww,oan 1[u] = ’Q’+ nl)\n1+€,y 1
Therefore, for i = 1,2
B 2 B fQ
| Bolulll5 or || Bilu] — IQI||2
Jo €utn; €2 / N € )
= < Pl Wy, 4;|* < ———||ull5.
n 1|)\nz+67’ — ()\1,1“"67)2 n71| 0 ,l — ()\171‘—}—6’)/)2” ||2

10



Proof of theorem 3.1.1. By standard variational arguments, i)[u] is weakly lower
semicontinuous, coercive and bounded below. Therefore, ®[u] attains a global minimum
on H}(Q2) or H'(€2). Next, we prove the minimizer is nontrivial if there exists a nontrivial
test function ug, () such that ®ug,] < 0, where Ry is determined later. For R > 1, define

Up = UR(JU) by

Bo, if v € Br1
up(r) =< Bo(R—|z|), ifz € Cgr (3.2.4)
0, if xr € Q0 — Bp

where 8, = 249 Bp is a ball with radius R and Cr = Br — Br_1. Then, by

3
Lemma 3.2.1,
2, 1
|VUR| F(ug) + 5 | urBolus]
Q

ICRI + F(Bo)| Bra| + F(B)|Crl| +

506
()\1 Q‘GQ) -+ 6")/)

Bie
2(A10(Q) + ) | Bl

”BR’a

= k(B)|Crl + [F(B ) 7.

where k(5) = %3 — F(Bo)+ F(ﬁ) To choose Ry Whlch depends only on g and N, we

2
assume m < - F(ﬁ 0)pre’< %@\\ Here we alreadyuise the assumption v < vy =

2,82—956+2 _ 2F(,B - By the Rayleigh- F be a'.lﬂl inequality, that is, A1 o(€2) > A1 o(B,),
it follows that A, (€) > 220020 whe|f B,
A1 O(Bl)\Bﬂ /Y
- RuEi T

|Q |Theref0re we choose

(3.2.5)

It folloews from the fact |Cg| < |Bl|2N“1RN‘1, forall 0 < e < ¢ that

dofur] < BB k(32 + T Ry
Taking
k(B2
o= F Gy

The proof of the existence of a minimizer of ®g is completed.
For the Neumann condition,

1 1 Jour.  (Jyur)?
_ B —— B _JO Q
2%&31W” 24““1Wﬂ TR
2 2 2
606 ‘BR|—|-BO|BR|
2(A11(2) + €7) 2719

11



Similarly, ®;[ug,] < 0 if we assume that

536 + 63|BR0| < _F<BO)

A sufficient condition of the above inequality is

Be CF(B) BBl _F(5)
@) T e) =4 M ya ST

(3.2.6)

Therefore, we can choose

A11(Q B
€1§ 171( ) andk1:| RO|.
Ay =7y 41y
We also need to exclude the probability of constant solutions for Neumann problem.
Let( v) = (p,q) solve u —yv = 0 and f(u) —v = 0. ThenCIJ = [yIF =
fQ 4 p—P)? —I— — ] > 0, which shows that a minimizer of ®, is nonconstant. Employmg

the mountaln pass theorem the other solution can be obtained. Moreover, those solutions
are C*-functions. The detail of the existence, of the minimizer and the mountain pass
solution can be found in [20]. 0" - _—

Proof of corollary 3.1.2; Let thesdomain Q; =30;<L,]. Then A\;1(Q2) = Z—z To chose
¢ independent of €y, we estlmate L, ];ggusmg (3 2. s Then 2R° <I; < \/ﬁ On
the other hand, if €); contains a ball B Ay ,j;.heﬂ le1 F> 2Ry, To ensure the existence of Ly,
we let \/ﬁ > max{2R s 4717} = A/[@g Vlm €3. Then for all 0 < € < €,
choose L such that M < L; < - 15 Tﬁ@n the Neumann problem is solvable.

e(4
By even reflections with respeet t{‘ the boundary of ), the domain of this solution can
be extended to a larger one. Continting in this m&Jmner we obtain a solution in the whole
domain R'. Since L; can be arbitrarlly chosen na Snterval, the system (3.1.1)-(3.1.2)
has infinitely many solutions. .
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Chapter 4

Monostable-type solutions in RY

This chapter is concerned with monostable-type travelling wave solutions of (DFHN)
in RY for the two components u and v. By solving v in terms of w, this system can
be reduced to a non-local single equation for u. When the diffusion coefficients in the
system are equal, we construct travelling wave solutions for the non-local equation by the
method of super- and subsolutions developed by Morita and Ninomiya [29]. Moreover,
we propose a condition for v, which is similar te.the condition Reinecke and Sweers [38]
used to transform (DFHN) into a quasimonotone systen.

4.1 Introduction

= ;;-f i "
In the present work, we are concerned {Wi_ti':;ﬂi);EHN) in RV j.e.,
. a= |

urlied + AJI ot (4.1.1)
Uy ~NVEd Dy + 5|(u —7u), (4.1.2)
where (¢,y) € RY = R' xR, Nz > 8,9 >'0andid>.0. A typical example of f(y,u)
is f(y,u) = u(l —u)(u— B) for < B <% Throughout the chapter we assume that f is
a C*-function in w and f, f, and fu, are bounded in {(y,u)|y € Q,, |u| < K} for some
large constant K > 0. In addition, f satisfies (H1)-(H5).

The solutions of interest here are traveling wave solutions. Let z = £ — ct, then
travelling wave solutions of (4.1.1)-(4.1.2) satisfy

U + CUy + Ayu~+ f(y,u) —v =0, (4.1.3)
dvgy + cvy + Ayv + 0(u —yv) = 0.

Over the past decades, this system has been extensively studied. For instance, as
N =1, under different assumptions, system (4.1.3)-(4.1.4) admits standing pulses in [6],
[7] and [22], infinitely many periodic solutions in [22], fronts, back waves in [17] and [21]
and travelling pulses in [21]. For the higher dimension case N > 2, symmetric standing
waves were established by Reinecke and Sweers [38] and Wei and Winter [44].

As v — o0, if the solutions are assumed to be bounded, the equations (4.1.3)-(4.1.4)
tend to the single equation

Uy + cty + Ayu+ f(y,u) = 0. (4.1.5)
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Let f(y,u) be a C? function g(u) which has the property that for some 6 € (0,1) ¢(0) =
g(0) =g(1) =0,9,(0) < 0,g,(60) >0,9,(1) <0, g <0on (0,0) and g >0 on (A,1). In
addition to the planar waves, (4.1.5) admits other types of solutions, including travelling
curved fronts (N = 2), conical shapes and pyramidal shapes (N > 3) in [14], [23], [33]
and [41]. Moreover, Hamel and Roquejoffre [15] established travelling wave solutions of
(4.1.5) in R? which connect one unstable periodic solution at # — oo (—oc) and one
stable constant solution at x — —oo (00). On the other hand, travelling wave solutions
of (4.1.5) in RY connecting a unstable one-peak solution at z — oo (—oc) and a stable
constant solution x — —oo (c0) were obtained by Morita and Ninomiya [29].

In this paper, we use the method of super- and subsolutions developed in [29]. Due to
technical restriction, we assume d = 1. Since equation (4.1.4) is linear, v can be solved
formally in terms of u. With v expressed in terms of u, system (4.1.3)-(4.1.4) is reduced
to the non-local equation

Flu] == gy + cuy + Ayu+ f(y,u) — B[u] =0, (4.1.6)

where we denote v by B.[u] := 5(—— —cZ — Ay +0v) 'u. It is readily seen that if u is
independent of x, then by the uniqueness theorem B.[u] = 6(=Ay+07) tu. Asx — +o0,
the asymptotic behaviors of trayelling . wave solutions of (4.1.6) formally satisfy

e

N0, v) — Beful =0, (4.1.7)

where B [u] = 0(—A, + 57) [y, Our amain purpose is to 1ook for monostable-type trav-

elling wave solutions u(x y) which conpect_a stable solution of (4.1.7) as © — —oo (00)

and a unstable one as & — 00 (—00). LW’* '”t lass of generality, we may assume that
u(+00,y) is an unsatble solutions T]P ug‘ ut thls Raper, the following hypotheses are

assumed. _4 ' i

(H1) There are two solutions- ui(‘}) EOf (4.1.7) §artlsfymg u-(y) > uy(y). Moreover,

there exist an eigenvalue g >0 and' its@erresponding’ eigenfunction ¢(y) > 0 with

maxg,ery-13 ¢(y) = 1 and limygj, 50 (y).— 0 such; that

2,6+ Fillgee)g=Bio] = uo. (4.1.8)

(H2) u_(y) > uy(y) + €p(y) for some € > 0.
(H3) There exists no other solution u(y) of (4.1.7) with the property u_(y) > u(y) >

uy (y).

(H4) For all small > 0, there exist solutions u', (y) satisfying lim,_,o v’ (y) = uy(y),

Ayuf + f(y,u}) — Beful] +1 =0 (4.1.9)

and
n
T(y) > — 4.1.1
uiy) = ue(y) + - (4.1.10)

for some constant M > 0.
(H5)

Ayt — (K1 + Vo) <0,i=1,2,3, (4.1.11)
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where

Ky =— min fuly,u) >0, (4.1.12)

{u—(y)>u>us (y),yeRN-1} "

1 =0, s =u_ —uy and%zui—m-

To simplify the proof of the main theorem in this paper, we modify the nonlinear term
f(y,u) such that the minimum and maximum of f,(y,u) in {u(y) € R,y € R¥~1} are
the same as those in {u_(y) > u > u,(y),y € RV}, For convenience, we still denote
f(y,u) for the new modification of f. Set

K" = max fuly,u) >0 (4.1.13)

{u—(y)>2u>u4 (y),ycRV -1}
and let Ky > 0 satisfy Ky + MLKQ = K*. We state the main theorem as follows.

THEOREM 4.1.1. Assume v > f + K1+“ and (H1)-(H5) hold. Then there exists

c* = max{2/1, 2v/ K3} > 0 such that for all c > ¢, system (4.1.3)-(4.1.4) admits a pair
of smooth solutions (u*,v*) which satisfiesuz-< 0,v5 < 0 and the boundary conditions
(u, v*)(£00,y) = (us(y), v+ (y)), where vi(y) = Belua(y)]-

Remark 1. In (H1), when the ifiequality i—(y).> 1.y isreversed,i.e., u_(y) < uy(y),
a result similar to Theorem 4.1.1 caf be proved except that the inequalities u* < 0 and
vy <0 in Theorem 4.1.1 need’to be replaced by-u, >0 and. vy >0 respectlvely

Remark 2. In fact, (H5) can be weakened ‘to the followmg assumption.

-—l-

Ay — Mg, < P' fe Some 'constants M; > 0. (4.1.14)
1 | ¢

This condition holds if Ay does n it decay fasteﬂ than Q,DZ as |y| — oo. In this case, if

we choose v > f + M , where- K3 t’max{Ml, M’g, Mg, K1+ +/3}, then a similar result

can be proved.

It is not easy to find an example which satisfies assumptlons (H1)-(H5) even for the
case f(y,u) = u(l —u)(u — ) since the-stability of the radially symmetric solutions
obtained in [38] and [44] has not yet been studied. However, we believe that for v > 1
the structure of system (4.1.3)-(4.1.4) is similar to that of equation (4.1.6). Accordingly,
we extend the result of theorem 2.1 in [29] to the one in Theorem 4.1.1.

4.2 Proof of the main theorem

To prove the Theorem 4.1.1, we use the super- and subsolutions constructed in [29]. By
considering the following equation, we construct subsolutions of F[u]. Let w(x) satisfy

wxz+cwx+uw—w220,
w(—00) = p, w(c0) = 0.

For all ¢ > 2,/j, the above boundary value problem admits an unique solution w(z) (up
to a translation) which is strictly increasing in x. Subsolutions of F[u| are established as
follows.
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LEMMA 4.2.1. Let U(z,y) = ui(y) + ood(y)w(z). Then there exists oy > 0 such that
FU] >0 for all 0 < 0 < 0y and ¢ > 2,/J1.

Proof. Let V := wB.[¢] — B.[¢pw] > 0, then V' > 0. Indeed, it is easy to see that B.[¢] > 0
by the maximum principle and ¢ > 0. A straightforward calculation gives

Viw + Vo + AV — 09V = —w(p — w)B.[¢] < 0. (4.2.3)
Using the maximum principle, we obtain V' > 0. Therefore by (H1)

FU]

= 0P(Wyy + cwy) + (Ayuy — Belus]) + cwlAyo + f(y, up + oopw) — o B.[pw]
= 00(Wea + cwy + pw) + f(y, us + 0¢w) — fy, uy) = fuly, up)ogw + oV
> gopw? + G,

where G = f(y,uy +00w) — f(y,us) — fuly, us)oow.
Let My = ming, (y)>u>u, (y)yeRV-1} fuul¥stt)e- By choosing o < < and using (H2), w

obtain uy < uy +oow < uy +ep LU, Accord,mg to the mean value theorem, we have
G > 0 if M; >0 and G > M102¢2w2 M, <0 Therefore F[U] > 0 if 0 < oy, where
or=%as M, >0and oy = mm{— } as M; <. The proof is completed. O

In what follows we constiuét supeféautlons ‘of, Ful:

' ‘?H“-_! 5.2 '
e= ‘02 '
LEMMA 4.2.2. Let Q(z) = e ‘2 and U (zgy) = ul(y) + Q(x), where Ky >0
satisfies Kg—l—ﬁ:[(* and ¢ = 2 (U<
Proof. Note that Q.. + cQy +7 7(262 IO and ) < Q < 00. Indeed, by the uniqueness
theorem we have B.[Q(z)] = 8(— 23"~ 2 467) - 1@ and
§ oo : )
BC = — e 2 lz=¢|+ 3 (—=) dé = ).
9= QE)dE = 5= Q(x)

It follows from (H4) that
FIUT] = (Qua + cQx) + (Ayu — Be[ull]) + f(y,u} + Q) — B[C]
- _KQQ + f(yvui + Q) - f(y,ul) i/ BC[Q]

5
{—=Ks + fuly,u] +0Q) 57”(2}@ n<-n<o,

where 0 < 6 < 1. The last second inequality is due to

Ky +

0 2 fuly,w)
= max w(y,u).
0y + Ky {u_(y)>u>ui(y)yeRN-1} Y

We complete the proof of the lemma. n
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Let
L[u] = gy + cty + Ayu — (Ky + p1+ Vo), (4.2.4)

where K1 = — min{u_(y)2u2u+(y),y€RN—1} fu(y,U) > 0.
To show the existences of travelling wave solutions of (4.1.7), we use the following
iteration process:

un(xvy) - ‘C_l(_f(un—l) + Bc[un—l] - (Kl + @ + ﬁ)“n—l)vn = 1a 27 )
In the following lemma, we assert that the supersolutions of F are greater than or

equal to the subsolutions of F. Moreover, we show that both UT — U and u_ — U are
supersolutions of £, which is useful in the proof of iteration process.

LEMMA 4.2.3. Assume vy > \% + 5 and let U == min{U* (2, y),u_(y)}. Then for
all m > 0 there exists o9 > 0 depending on n such that for all 0 < 0 < o9 we have

U>U,LUT U] <0 and Llu_ — U] <0. (4.2.6)

Proof. For the case U = u_(y) we take'ai’< <, then
k3

U~ U = u_(y) — ufly) ~oo@olx) > W< v, @)~ coly) 20, (427)
The last inequality holds by {(H2). Oprthe othei hand,\, |
L -‘“‘-_'m a

Llu- —U}=Aylu_ —u )“:,"‘_Kiw% B4 Vo) (u_ = u) + A, (4.2.8)

5)@%\%—&10Ay¢ Accordlng to (H5), |A| < oCo¢
K1). By cﬁﬁosmg g < % we obtain

where A = —0¢(Wyy 4 cwy) + 1+ 1
for some positive constant C' = C’ (u, 0,
Llu_ — U] < Ay(u_ — u+) AB P8 (im= u+) Jilu_ —uy)+0Co  (4.2.9)
< —eup+ 0CH L0, ' s (4.2.10)
which holds due to assumptions (H2) and (H5).

For the case U = u'.(y) + Q(x), given n > 0 we choose o < 17 and use assumption
(H4), then

U—-U=ul(y) +Qz) —uy(y) — op(y)w(z) > — —op > 0. (4.2.11)

e
M
Moreover,
LU = U] = Ay} —uy) = (Ko + p+ VO (Ul —ur) + At Qus +Qu
— (K1 + p+V5)Q

It is readily seen that Q. + Q. — (K1 + p+ v/$)Q < 0. By (H4) and (H5),

+ < Nk < < ny
LIUT-U] < — M+UC' 0if o UC

Setting o9 = mm{ 5, ;77]1\7’ %}, the lemma holds. ]
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To generalize the result of Theorem 2.1 in [29], the nonlocal term of (4.1.6) needs to
be better estimated. More precisely, we pointwisely control B.[u] by the local term u
such that the iterative sequence u,, is comparable with w,,_1.

LEMMA 4.2.4. Let u € C*(R") be nonnegative and solve uy, + cuy + Ayu — au < 0
for some constant a. Assume v > § + % for some b. Then bu — B.[u] > 0.

Proof. Let v = B.[u] and U = bu — v.Then v > 0 because of v > 0 and the maximum
principle. Our main purpose is to claim U > 0. By the assumption of u and the definition
of v, we have

ab+ 9

U< —(0y—a-— é)v <0. (4.2.12)

Ups + cUy + AU — 2

The last inequality follows from the hypothesis of v and the nonnegativity of v. By the
maximum principle, U > 0. O]

As 7 becomes large, we claim that the iterative sequence u,, is increasing.

LEMMA 4.2.5. Assume vy > f =L K1+“ andse > ¢ = max{2,/11, 2v/ Ky}, then for all
n >0 and 0 < 0 < min{oy, o3} we have u,,m <0 and

o AL <u, 'g o) (4.2.13)

Ty,

“’:_

(take a = K1 + 4+ /0 and b =4/6) w ohtﬁ—' | |

lm | .
Vo( U+ —| r[ '[U+|| i’F up| >0 (4.2.14)
1 :

Proof. We first claim that u, < U for all'ﬂ: ][nd}e?d by Lemma 4.2.3 and Lemma 4.2.4

Therefore Lemma 4.2.2 and Lemma gl L 3 yield

F(U*) + B (1) — Belil] — Ky + -+ V(U — o)
[ 10U (1 = O)uo) 0 — o) < 0,

,C[U—’— - Ul] S
<

where 0 < 6 < 1. According to the maximum principle, Ut —u; > 0. It follows form the
proof of Ut —u; > 0 that u_ — uq > 0. Therefore uy < U. Continuing this process, we
have u, < U for all n by induction.

Next obvert that L[u; — ug] = —F[U] < 0 due to Lemma 4.2.1. By the maximum
principle, u; — ug > 0. Applying Lemma 4.2.4 to u; — up, we have

Vo (uy — ug) — Beluy — ug] > 0. (4.2.15)
Therefore

Lluy —ui] = —(f(w1) — f(uo)) + Belur — uo) — (K1 + p+ V) (wr — )

< {—Ffu(Ouy + (1 = O)ug — K1} (uy — ug) — V6 (ug — o) + Boluy — ug]
S 07
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By induction, the sequence of functions {uw,} is
e

where 0 < 6 < 1. Thus uy > uy.
nondecreasing. On the other hand, obvert that ug, = c¢w, < 0. Therefore by (H5)
obtain
L[~ug.) = 0 (paw, — 2ww,) — ow,Ayé + (K1 + pu+ Vo) odw, (4.2.16)
= —ow, {Ay¢ — (K1 + V8)¢ + (—2u + 2w)¢} < 0. (4.2.17)
Using Lemma 4.2.4 again, we have
Vi(—=tgz) — Be|—upa) > 0 (4.2.18)
and
Llur ] = — fu(uo)uo + Belug ] — (Ki 4 p+ V&)ug, > 0. (4.2.19)
O

Then vy, < 0 by the maximum principle. Inducting in n, we obtain wu, , <0
By Lemma 4.2.5, we define u*(z,y) = lim, oo un(x,y).

Proof of Theorem 4.1.1.
Following the proof of theorem 2.1 i @EF&-(‘HEHL@&M (H3), for all ¢ > ¢* we obtain that

u*(z,y) is a smooth solution of (A;' 6341413‘ < 0jand ufq'?oo y) = us(y). Let v* = B.[u],
then vy = Be[u;] <0 by the pd'ax m prineiple. We ‘sqrrf@lete the proof of the theorem.

| "l
Ay =
£ 2%
| ot
=4 =
= - .
"’2_‘5 ‘?r a1 ’:.;.
b oM
= "
o WA
= a—f‘" 2
L ,_::} e - ’ r ';" 3]
B, £ ~& £
-"?;,\ ] 4 N X
- 'f’l"-},;) :‘:{_ ] :Fd_"']'__ ) 1-1["‘.\-
Sl x o
Logapeene"
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Chapter 5

Travelling waves in a cylinder for
bistable cases

5.1 Introduction

In this chapter, we are concerned with (DFHN,). with Dirichlet boundary condition in a
cylinder €2 £

ue = ufet Ayu+ (U)o, (5.1.1)

0= d(vgf TA0) A 8 (u — i)y (5.1.2)

ulpo = U\an'i:—"U: . (5.1.3)
],:-u;.,

where (£,y) € Q := R' x Q, with Qy*bem‘g a bounded C?*9 domain in RV, d > 0,
9,7 >0, and f(u) = u(l = u)( N ) ﬁor Az 3 < =. We ‘also consider this system with
Neumann boundary condition.in: Sectlon 5.1 |

As v — 00, if the solutions are/assumed toshe bounded the equations (5.1.1)-(5.1.3)
tend to the single equation -

up = uge FAyu f(u),
ulag = 0,

which is a gradient system. For N = 2, the existence of travelling waves of (5.1.4) with
boundary condition (5.1.5) were obtained by Gardner [9] when Q, = [0, L] and L is large.
His result indicates that large €2, seems to be necessary for the existence of a travelling
wave with the Dirichlet boundary condition. For higher dimension cases, existence results
of travelling waves of (5.1.4)-(5.1.5) were obtained by Volpert, A. and Volpert, V [43],
Heinze [11], and Lucia, Muratov and Novaga [25].

In this chapter, we are interested in using a variational approach to study the travelling
front solution of (DFHN) and also interested in the higher dimension case N > 1. Let’s
first consider the case of a gradient system. For a gradient system, when the wave speed
is zero, it is natural to consider the solution as a critical point of the corresponding energy
of the system. However when the speed is not zero, how to use the variational method
becomes a very subtle problem. Let ¢ denote the wave speed. Assume ¢ > 0. Heinze [11]
made the change of variable x = ¢(¢ — ¢t) and considered a minimization problem of a
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weighted energy with a constraint. According to his ingenious setting, a minimizer of the
problem corresponds to a travelling front solution while the Lagrange multiplier of the
constraint corresponds to the wave speed. We explain this more precisely by considering
(5.1.4)-(5.1.5) as follows. Using the new variable x = ¢(§ — ct), a travelling wave solution
of the single equation (5.1.4) satisfies

A (Ugy + Ug) + Ayu + fu) = 0. (5.1.6)

Heinze considered the weighted energy, acting on the Sobolev space H, which is the space
W2 with the weight e® dz (See section 5.2.)

2

S.u] == EIo[u] + Jolu] := %/Qexufc + %/Qe“” (IVyul® + F(u)),

where F(u) = — [} f(s)ds = 2u* — 224 4+ £, Let @ be a nontrivially critical point of
Selu] for some ¢ > 0. Denote DS [U ]¢ be the Fréchet derivative of S, at u acting on ¢.
Then the Euler-Lagrange equation DIolt]¢ + % DJoli¢ = 0 holds for all test function
¢ € H. According to this, Heinze viewed @ as a minimizer of Iyu] under the constraint
A = {u € H|Jolu] = k} and % aslthe corresponding Lagrange multiplier. Also it is
easy to verify that the Correspondmg Euler- La,grange equation is (5.1.6). On the other
hand, multiplying (5.1.6) byiu,e*sand taking integratién one obtains ¢*Io[u] 4 Jo[u] = 0.
This implies Jy[u] < 0 if wis a nonfrivial solution 6f (5.1.6): By a suitable translation
o, Jolu(z — xo,y)] = —1. Theréfore, Heinze chese k= =1 and solved the minimizing
problem o~ '. zj ‘

/ 11
| mT:i;‘qﬂl (5.1.7)

Moreover, he proved that' A 74 ) 1s|eL u1vaient t%)

{ 3
inf / (—IV wl* 3 F(w)) < 0. (5.1.8)
weHy(y)
This condition also guarantees that the minimizer is nontrivial.

Later in a series of papers [24]-[31], Lucia, Muratov and Novaga further developed
the variational approach and proved existence results via subtle ideas and techniques. In
their approach (see [25]), the £ variable is not scaled and the energy

Sl = Dofu] + Jo[u] := %/fo“”%/ge (19,ul? + F ()

is considered on the Sobolev space with weight e dz, where z = £ — c¢t. In [25], they
assumed that there is a ¢* > 0 such that S, [u] < 0 for a nontrivial u, which is equivalent
to Heinze’s condition (5.1.8) (see proposition 6.2 in [25]). Then they minimized the
energy S..[u] under the constraint Io[u] = 1. In their proof, to show the lower semi-
continuity of S,[u] is one of the most crucial steps for the existence of inf (7ofu)=1} Se[u).
They proved a minimizer u, of Se[u] under the constraint Io[u] = 1 can be achieved.
By the scaling property of the equations, the travelling wave solution can be obtained as
u(z,y) = ue (xy/1 — Sex[ue], y) and the travelling wave speed equals ¢ = ¢*/1 — Sex [tue].
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Lucia, Muratov and Novaga also gave a new criterion for the so called linear and nonlinear
selection of mono-stable travelling waves as an application of their methods (see [24]).

For a gradient system, one disadvantage in applying these variational approaches
comes from that one needs to assume the diffusion coefficients of all components are
equal when the wave speed ¢ # 0. On the other hand, the variational approaches have
some advantages also. Besides they themselves provide very interesting and different
viewpoints of the problem, these methods are more easily generalized to higher dimension
cases, e. g. waves on cylindrical domains, and usually require only mild assumptions for
the existence of a solution.

Although (DFHN) is not a gradient system, by replacing v by v/dv, this system has the
skew-gradient structure defined by Yanagida [45]. More precisely, under this replacement,
(DFHN) becomes

u = Au+ f(u) — Vo, (5.1.9)
v, = dAv + Vv — v, (5.1.10)

of which the steady states correspond to the critical points of the energy
1 1 -
Slu,v] = 5/ (142 — %o * B, v)) | (5.1.11)
O .

where H (u,v) = F(u) + Vouv,— 29002 Restricted$0'the w-direction, (5.1.9) is the gradi-
ent flow of the energy (5.1.11) Whlle restrl,cted in the v diveetion, (5.1.10) is the gradient
flow of the minus of (5.1.11). Along the Grbits 6f' |(5 1.9) and (5.1.10), the "u-part” of the
energy (5.1.11) decreases and the ’ Lr‘c’,iqe“ffhe pﬁergy increases. Yanagida [45] called a
system of reaction-diffusion equatlonj jrth et!; ene éy like this a skew-gradient system. He
developed a theory for a skew-gradient|system and;found that the correct notion in such
a system corresponding to a m;nt_rmzir% in a gradle!n? system should be a mini-maximizer.
With this structure in mind; the atithorssféel curibus;,:abdut the following problem:

Question 1 Can variational methods be appiied to find wave front or pulse solutions
of a skew-gradient system? For example, applied to (DFHN)?

The setting of Heinze [11] and the setting of Lucia, Muratov and Novaga [24]-[31] in
applying variational methods mentioned above are slightly different. The former uses the
change of variables © = ¢(§ — ct) to scale out the factor ¢ in the weight of the energy
while the latter does not make any scaling in £. Although these two settings are almost
parallel to each other, they posses different advantages and weakness in some subtle
situations. We will comment on this later. Following their approaches, we assume that
d = 1 and consider the following problem. Let us first assume ¢ > 0 and make the change
of variables x = ¢({ —ct) as in [10]. Then a travelling wave solution of (5.1.9) and (5.1.10)
satisfies

A (Ugg + ug) + Ayu + f(u) — Vv =0, (5.1.12)
(Vg + vz) + Ay + Vou — ~vov = 0. (5.1.13)
u‘ag = U‘ag =0 (5.1.14)
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To answer Question 1, we consider the weighted energy

2
U [u,v] == c / e’ (u2 — v?) + L / e (|V,ul* — |V, ol?) + / e"H(u,v). (5.1.15)
2 Jo 2 Ja Q
Then as in the case of a gradient system, the first problem is to determine the speed
c. In general, this is a difficult problem. Assuming that we know the value of ¢, it is
easy to check that a suitable critical point of this energy is a solution of (5.1.12)-(5.1.14).
Since (DFHN) is a skew-gradient system, it is expected that a mini-max approach should
be proper to solve the problem. Unfortunately compared to a minimization problem,
there are much less methods to solve a mini-maximization problem. Recently Chen-Hu
[5] succeeded in applying a mini-max approach to solve (5.1.12)-(5.1.13) with ¢ =0 on a
bounded domain in R™. In their study, the Sobolev space on which the energy is defined
is decomposed into a ”positive” space and a "negative” space, which both have infinite
dimensions. It is a very interesting problem whether one can generalize their method to
the case ¢ # 0.

To further explore the existence problem, we can also consider another variational
setting for the steady state of (DFHN), which has been used in many literatures. That
is, to solve the equation for v firstiand substitute itin the u’s equation. Then we obtain
an equation with only one unknown funéetion-w and a non-local term. For our problem
¢ # 0, we can solve (5.1.13)‘under-thesboundarymeondition (5.1.14) first and denote the
solution ,

v = Bylu] := V5 (—fgz?fﬁ-;:%%) — Al + 75>_ [u]. (5.1.16)
| - |

‘.
\non-local equation for u

Substituting this into (5:1.12), we obHin t
1 |

(g +uw) HA 0+ f(u)H '\_/SBc,:[u] = 0. (5.1.17)

For this equation, we consider the Vifeighted energy

O u] = %/Qe‘”(CZufC + |V ul?) + /Q e F(u) + ?/Qequc[u], (5.1.18)

Fortunately the bilinear form of this non-local term in this energy is symmetric even
¢ # 0. Therefore one can readily check that once the speed c is known, a suitable critical
point of (5.1.18) corresponds to a solution of (5.1.12)-(5.1.14). This consideration leads
to the question.

Question 2 Can variational methods be applied to find wave front or pulse solutions
of a system with a non-local term? For example, applied to the non-local formulation
(5.1.17).

In this chapter, the authors are concerned with finding travelling front solutions of
(DFHN). The major part will focus on Question 2 for (DFHN) and rely on the non-local
energy (5.1.18) to solve (5.1.12)-(5.1.14). As for Question 1, it seems more complicated
to apply the energy W .[u,v] to obtain a travelling wave solution. We have only partial
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answer for it. In section 5.6, after converting the Lagrange multiplier formulation of
Heinze for the wave speed into a quotient form of energy, we use the energy V.[u,v]| to
describe a mini-max formulation for the wave speed and show that a mini-maximizer, as
in Yanagida’s theory, of the speed functional is a solution of (5.1.12)-(5.1.14). However
we do not know how to find a mini-maximizer in general when ¢ # 0.

To study this problem, we refer to some papers written by Lucia, Muratov and Novaga
[24]-[31]. They obtained many good viewpoint for gradient systems, with a local energy.
The first two term of the energy ®[u] is the same as their energy. Therefore the process
of this paper is a little similar to [25]. However, we discuss our energy containing a
nonlocal term, which causes that the boundedness of solution is not easy. Moreover,
combining the advantages of [11] and [25], we obtain the travelling wave speed according
to the minimal energy in subsection 5.3.2 In [25], travelling wave solutions are obtained
by scaling a minimizer with negative energy. However, we show the existence of travelling
wave by choosing a ”good” minimizing sequence to approximate it. If some lemmas are
similar to [25], we skip the proof.

For the existence of travelling waves to (DFHN), we need to assume that Q, is large
enough. Our main theorem is as follows.

THEOREM 5.1.1. Assumey > m Then'there exists Ry > 0 such that (5.1.12)-

(5.1.14) has a solution (uo, vo)qwith,c = eq-> 0-for some cgif Q contains a ball with radius
Ry. Moreover, (ug,vo) decays exporentially to Ofumiformlyin y as x — +00.

To understand the behaviot ofitg, vg.as = — =00, We need to investigate the equations

(5.1.12)-(5.1.14) without, &- coordlnate i€l ) g

A+ £ q.sv%@ T’o in Q,, (5.1.19)

AN ¥ du — q/ﬁv = Q i, & (5.1.20)
ulag —!U|8Q = 0 : tl (5.1.21)
The above system is associated Wlth the energy E‘ = H}(Q,) — R defined by
55
= —/ ]Vyu]2+/ F(u) + —/ u(—A, +76) " ul. (5.1.22)
2 Qy Qy 2 Qll
Assume v > m, Klaasen and Mitidieri [20] showed that E[u] has at least two

critical points if the domain 2, contains a ”large” ball. One is a minimizer with negative
energy and the other one derived from the Mountain Pass theorem has positive energy.

Due to the nonlocal term of (5.1.17), the asymptotic behavior of the solution (ug, vy)
obtained in Theorem 5.1.1 as * — —oo is much more complicated than the behavior of
a gradient system. It seems (ug,vg) may not tend to a steady state satisfying (5.1.19)-
(5.1.21) as x — —oo in general. However, when 72§ > 1, we can obtain the L?-estimate
for ug , (see Lemma 5.5.3). Using this estimate and following the ideas of Proposition 6.6
and Corollary 6.8 in [25], we obtain the following two theorems.

THEOREM 5.1.2. Assume v2§ > 1 and the assumptions in Theorem 5.1.1 hold. Let
(ug,vo) be the solution in Theorem 5.1.1. Then there exists a sequence x,, — —o0 such
that limy,—, oo (uo, vo)(xn, y) ezists and solves (5.1.19)-(5.1.21). Moreover, if all critical
points of Elu] with negative energy are discrete in H}(S,), then the above limit is a full
limit, that is, lim,_, o (ug,vo)(x,y) exists and E[uy(—o0,y)] < 0.
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THEOREM 5.1.3. Let N =1 and v*5 > 1. Then v > m if and only if there

exist co > 0 and a pair of classical solutions (ug,vo) for (5.1.12)-(5.1.13) which satisfies
ug € H, ug, € L*(Q) (ug, vo)(+00) = (0,0) and (ug, vo)(—00) = (p2, q2) (see figure 2).

This chapter is organized as follows. In Section 5.2, we recall some Poincaré-type
inequalities of weighted Sobolev spaces and investigate the properties of the non-local
operator B.[u]. Also the maximum principle on an unbounded cylinder is proved for
equation (5.1.13). In Section 5.3 we define an energy functional associated with equations
(5.1.12)-(5.1.13) and show the boundedness and low semicontinuity of the energy. Next
the continuity of the minimal energy and the estimate of the travelling speed are obtained.
Then, in Section 5.4 we claim the existences and some properties of minimizers with
negative energy, which are chosen to approximate the travelling wave solutions. In Section
5.5, we establish the existence of the travelling wave. Moreover, the behavior of travelling
wave as © — +o0o are investigated. Finally, in Section 5.6 we discuss the skew-gradient
structure and Neumann problem of our system in Section 5.7.

5.2 Preliminaries

5.2.1 Basic properties .of the 'Weig'htedeOboleV space

Let L2 = {u|||u||2 = M 5[ oo} and H beithe weighted Sobolev space, the
completion of COO(Q) (the function space con51st1ng of €™ functions with a compact
support in ) with respect to the norm H = |42 12 1 HVuH . The following lemma
was proved by Lucia, Muratov, and l\f jva 1 2"5] '

LEMMA 5.2.1. If u(z,y)'€ H th}e

00/ +O©:_'
/ / 34/ / e u?, (5.2.1)
R Q,
oo
/ uw*(R,y)dy < e_R/ / e“u?, (5.2.2)
Qy R Q

/exu2 §4/e$ui. (5.2.3)
Q Q
Proof. By integration by parts with respect to =z,

“+oo +00

/ / e“u? = —eR/ u?*(R,y) — 2/ / e U,
R Q, Q,
+oo +oo
<2 / / e“u? / / e“:u dx ,
R Q, Q,
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which gives (5.2.1). (5.2.2) follows from the estimate

+00 +oo
/ eRu2 / / Ep (e“u(x,y)? / / u —|—2qu)
Qy €
+oo 400 400
= —/ / e (u 4 uy)? ~|—/ / e“u? < / / e“u?.
r Jo, r Ja, r Ja,

Finally, letting R — —o0o in (5.2.1), we obtain (5.2.3). O

5.2.2 Non-local operator

The system of u and v can be reduced to one equation if we solve v, denoted by v = B.[u],
in term of u from equation (5.1.13) and put it into (5.1.12). The dependence of B.[u] on
v is omitted. When N = 1, the operator B, can be written as

+oo
\/% e~ YRS 36y ¢ de. (5.2.4)
c\/ ¢+ 470 J-—

For N = 2, we have (see example 7:3:2- 7 in [36])

B.[u] =

Sl mz—exp T 559 ) s (e s

where o, = \/ e+ F < and Q| —,«-{D;EL] "‘generalr it is difficult to find a simple
representation of B.[u] if N > 8. ThHe folf@n;u.g 'lémma is concerned with the existence

and properties of operator B.. | ,-L ' '
i &

LEMMA 5.2.2. Assumet € L2 rf en'the follolwzng properties hold.

(a) There ezists a unique v =11 [ ] EEH which sk)llves 5.1.13) in the weak sense.

(0) [|Be[ulllar < Csellullzs, forsome constamt C’WC depending on v,0 and c.
(c
(d
(e

)
) Jo € uB.[u] > 0. '

) er w1 Be[us] = er ug Beuy] foraugyug e
) If u € L2 N L>®(Q), then B.Ju] € CL%(Q) for all 0 < o < 1. Moreover, if the support

loc
of u is compact in Q, B.[u] = O(1)e™*/? as x — +oo uniformly in y.
(f) If u € HN L>®(Q), then B.Ju] = O(1)e™*/? as & — —oo and B.[u] = O(1)e=*/(N+2)

as r — 0Q.

Proof. First, we prove (a). Let w = e*/?v and g = ¢*/?u. Then (5.1.13) is equivalent to
Py + Ayw — (70 + /4w 4+ Vg = 0, (5.2.5)
where g € L*(Q2). We define an inner product in Hy(2) by
<w,p >= / Cwedy + Vyw - Vo + (76 + & /d)we
Q
and define T,(¢) : H}(Q) — R!' by T,(¢) = \/SfQ g¢. From the Riesz representation

theorem, it follows that there exists one unique solution w € Hj(Q) solving T,(¢) =<
w, ¢ > for all ¢ € HY(). This implies the statement (a).
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From T, (w) =< w,w >, (b) and (c) follow easily.

Let w; = e*/2B.[u,;] and g; = €*/?u;,i = 1,2. According to T, (wy) =< wy,wy >=
Ty, (w1 ),we have (d).

To prove (e), let 71 < g < 3 < w4, K1 = (22,23) X Q, and Ky = (21, 24) X .
By (5.2.5), LP-theory (see Theorem 8.12, Theorem 9.13 and Lemma 9.16 in [10]) and the
Sobolev imbedding theorem, for all 0 < o < 1, we obtain

[wllorey < Cllwll2e) + 19l x)), (5.2.6)

where C' depends on N, ¢, p,7,6 and the geometry of K; and K. Therefore, B.[u] €
Clloca(Q) Furthermore, if u has compact support then so does g. The right hand side
of (5.2.6) is less than C'(||w||r2) + ||9]|Le()), which is invariant when K is translated
along z-axis. This means w € L=(Q) and v(z,y) = e~ ?w(x,y) = O(1)e */? as v — o0
uniformly in y.

Now we prove (f). Let v = B.[u]. By (5.2.6),

[olleramy < Cre”2wlloramy < CiCle™|lwllza@) + llull L=@)- (5.2.7)

Therefore |[Vu| = O(1) as x — ooand |Viw| = Q(e™%?).as x — —oo. Suppose |[v(z,y)| =
o > 0. If x > 0, then since |[Vv| = O(1); there'exists a neighborhood U of (z,y) with
volume of the order o on which [0/ /2. Henge,

e"o I < C"-l\‘@xUQ ,'SG' |[v]|23 < o0
| U.'II'; B _i_ | u

- ' |
]

- |
ol
ot 0 oGy 42) S0ty &

aL |
Now we assume z < 0 and 0.5 e_(/ . Then théke exists ‘a neighborhood U of (z,y)
with volume O(1) on which fo| > ¢/2."Again by the-—bouhdedness of ||v]|3, , we conclude
v=0(e""?) as x — —o0. - O

and

From Lemma 5.2.2(e), we know that v'is'bounded as x — oo if the support of u is
compact. This is not strong enough for our purpose. We will need the boundedness of v
on the whole domain €2 in finding a travelling wave solution of (5.1.12)-(5.1.14). With the
boundary condition (5.1.14), one may expect that the boundedness of v follows from the
maximum principle if u is bound. However in general, this is not true in an unbounded
domain if v does not satisfy suitable growth condition at infinity. The following lemma
has the form suitable for our purpose. More results related to the maximum principle for
second order elliptic equations on unbounded domains can be found in [42].

LEMMA 5.2.3. Let u € H satisfy m1 < u < 19, where 7y < 0 and 1y > 0 are

two constants. Assume B.u] = O(1)e™+* as x — “+oo uniformly in y, where m, <
—14+ /14 47v0/c? —1— /1 +4~6/c?
+ 2+7/C and m_ > 2+7/C.Then
N < Bu <

W T T T e
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Proof. Let h = B.[u] —;’—\}3. Then h satisfies ¢ (hye+hy)+A,h—y0h < 0 in the weak sense

and h|sg > 0. We claim h > 0 in Q and prove this by contradiction. Suppose infg h < 0.
Let A > 0 be the first eigenvalue of Laplace’s operator —A on the unit ball B;(0) C
R ™! with the Dirichlet boundary condition and ¢(y) be the corresponding eigenfunction

. . " . . —14+4/14+4(Ae24+78) /2
which is positive in B;(0) and satisfies sup ¢(y) = 1. Let AL = 5 and
w(z,y) = (eM* + e*7)p(ey), where € > 0 is chosen such that Q, C By/(0). Then we

have ¢*(wy, +w,) + Ayw —yéw = 0. By direct computation, the function g = — satisfies
w

(Gaw + Gz) + Ayg+ 2[c*0, logw - g, + Vylogw - V,g)] <0.

Moreover, g(z,y) — 0 as * — 400 uniformly in y and glsq > 0. Since g is continuous
and we assume infg h < 0, g attains the negative minimum at some interior point (o, yo).
Now we choose a bounded subset Q* of Q containing (x¢,yo) such that g|so- is greater
than the minimum. Then the fact ¢ has an interior minimum contradicts the maximum
principle for the bounded domain Q*. Therefore B.lu| > -2 must hold. The other

o~
0
%f

inequality B.[u] <

5.3 Variational approach

5.3.1 Boundedness and lower semlcontmulty of the energy

Define the energy functional @7 : H 4, Rl.Jay F |
E “g’"
* 1 2
orpu = 1 fleei Wl i [\
2 Jq s /ol |
_— +¢2$#¢ 1l | |
' F
Then the Euler-Lagrange equation of (5.0.1)1s the eaﬁation (5.1.12) with v = B_[u]. For
a variational problem, we usually look-for a* minimizer of the energy functional. In our
case, we have ®f[u(x — zo,y)] = e™®iu(z, )]s Hence inf X = either 0 or —oo in H
for all ¢ > 0 since xg can be passed to +o0o. For this reason, it is better to add some
constraint in our problem to avoid the —oo minimum and bad minimizing sequences due
to the translation. As in [25], we define the constraint

/ e"uB.|u (5.3.1)

1
B={uecH | 5 / e“u? = 1}. (5.3.2)
Q

If u(xz,y) € H is nontrival, then u,(z,y) is also nontrivial by Lemma 5.2.1. This implies
there exists unique one xy such that u(x — Zo,y) € B. Moreover, &} is bounded from
below on B. Indeed, from F(u) > w 2 Lemma 5.2.1 and Lemma 5.2.2 (c), it
follows

4(268% — 58 +2)

2 -

on B.

The non-local term q)((;g)* causes additional difficulties. Due to this term, it is hard to

show that the minimizers of ® are bounded on ). To overcome this difficulty, we
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take a cut-off of u in ®* while leave u in ¢ and &% unchanged. To do this, we

consider the problem on a subset C of H as follows. In wv plane, choose a rectangle
ABCD such that AB (C'D) and BC' (DA) lay on the right (left) side of {v = ﬁg} and
{L: L\/%)}, respectively, ﬂi such that DA C {u = a; < 0}, BC C {u = ay > 0},
AB C {v =10, <0} and CD C {v = by > 0} (See Figure 2.). Note that by > f—} and
by < 7“715. By [3], this rectangle is an invariant set of the equations (5.1.1) and (5.1.2).

Let @ := min{max{u, a; },as} and
C={ueHla <u<ayb < B.u] <b}. (5.3.3)

By Lemma 5.2.2 (f) and Lemma 5.2.3,

aq _ (05}
b < B.Ji] < -2 < b, 5.3.4
1< S [a] oV e (5.3.4)
C={ueH|ag <u<ay}and ueC forue H. (5.3.5)
D(al,bz)\ C(azbo)
(P2,02)
o) 7. 0 A
=l 1 \ :
)/A(al,b b | B(az2by)

Figure 5.1: An invariant set of (5.1.1) and (5.1.2), where 0 < p; < py and p;, py solve
uz—(ﬁ—l—l)u—i—(ﬁ—i—%):().

We define the new cut-off energy ®.[u] by replacing @&3)*[14 by
OB [y _ Vo / e*uB,[u] = 3 [a). (5.3.6)
That is,
. [u] = P [u] + 0P [u] + L [u].

®.[u] and ®f[u] can be estimated by the same lower bound on B, i.e.,

Ofu] > & — 4(2/* _95ﬁ + 2)'

(5.3.7)
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In the following sections, we will consider @, instead of ®* on B. As mentioned above,
we have

ay _ a2
by < —= < B/u] < —=<b
Vo Vo
for u € H. This makes the non-local term in ®, is easier to handle than the non-local
term in ®!. Later we will show that the minimizer u, of ®, we seek for satisfies u, = u,
and is also a local minimizer of ®;. Now we show the weak lower semicontinuity (l.s.c.)

of ®.[u].
LEMMA 5.3.1. Let u, — u weakly in H. Then ®.[u] < liminf,_, ®.[u,].

Proof. Note that <I>£1), a part of the norm in H, is weakly l.s.c.. By the proof of Proposition
5.5 of [25], we know that ® is also weakly L.s.c.. Therefore, it suffices to show oY [u] is
weakly l.s.c..

First, we claim that ®{¥*[u] is weakly Ls.c. in L2. This will follow if we can prove
®)*[u] is convex and Ls.c. in L2. By Hélder’s inequality and Lemma 5.2.2(b), ®¥*[u]
is Ls.c. in L?. Indeed, let ¢,, — ¢ strongly in L2 then

| [pa] — D[ . / ¢“6,B ¢h—¢]‘ <¢n—¢>Bc[¢1‘

o <@l 1z | B:lon T @1z +H¢n iz [ Belolllzz,
£ Oy %Hm +H¢HL2)IJ¢n ez,

rar— |_i_

By choosing large n such that ||@y|| .2 Iljjﬂéﬂ'i; tfhie aboye ifequality implies that ' [ ]

2
V6

xityfof <1>$,3i 86 W pg be in L7, and 0 <k < 1.

-

is continuous in L?. To show the €o
Then

((1- k><1><3>*[w1+k@<3>*[w <1><3>*[<1" k)t + ki)

Sl

— k(1K) /Q (0 i B S 0

Here we have used the linearity of B.[u] and Lemma 5.2.2(¢). Hence @ES)*[U] is convex in
L2 . This together with the l.s.c. in L2 implies that P [u] is weakly Ls.c. in L2,
Next, we show w,, — @ weakly in H. Suppose there are a bounded linear functional
h:H— Rl, a number € > 0 and a subsequence u,, of u, such that
|h(Tny) — h(T)| > e. (5.3.8)
From w,, — u weakly in H, we obtain that after passing to a subsequence, @,, — @ a.e.
in Q and supy, ||Tn, ||a < supy, ||un, [[m < co. Consequently, there is a subsequence Up,, of
such that Uny,, — U* weakly in H and a.e. in 2 for some «* € H. This implies that

Unp,,

u* = ae. and U, — 7 weakly in H, which contradicts to (5.3.8). The weak ls.c. of

®? in H follows from the property @, — @ weakly in H and the (weak) l.s.c. of o [ ]
in L2. [
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5.3.2 Continuity of minimal energy

From the lower bound (5.3.7) of ®.[u| for u € B, we obtain
fhe 1= lIBlf P, > —00.

In this section, we show that pu. is continuous in c¢. To do this, we need to prove the
uniform continuity of ®.[u] in c.

LEMMA 5.3.2. Let ¢; < ¢ and C be positive and fized. For ¢,d € [c1,co] and
[ulla < C,

|Dc[u] — P [u]| < Mle— ], (5.3.9)
where M is a constant depending only on ci,co, C,y and 9.

Proof. Let v = B.[u]. Obviously, ]@gl)[u] — @g})[uﬂ < Mlc — (| for some M; and
]<I>£2) [u] — <I)((:,2) [u]| = 0. On the other hand, differentiating equation (5.1.13) and arguing
as in the proof of Lemma 5.2.2; we obtain w..€ H and

lo: @< Cr el || gt = 125 -, (5.3.10)

where (z1, 29, - 2,,) = (2, Y).
Consider the following tW:O'- equations. ot
‘ N ' [" )
(v + v fr @k'—i—
C (Umx + va:)l Ay :i_

Setting V = v — v/, we obtain , i
|

Using the argument in Lemma 5.2.2 agaln, we arrive at

C’y,&c
Vo

This together with (5.3.10) implies that || B.[u] — By[u]||12 < Ms|c— | for some M,. By
Holder’s inequality, |(I>((;3) [u] — CIDS;) [u]| < M|c—¢'| for some M. The proof is complete. [

Via <

[ = ®[[|vhe + vellzs,-

THEOREM 5.3.3. u. is continuous in ¢ € (0, +00).

Proof. For ¢ > 0, let ¢, € [¢/2,2¢] and ¢y — c¢. We show that limsup,_,. fle, = fte =
liminfy_, o fte, . Suppose limsup,,_, o fte, > fte- Then there is a subsequence k; such that

fey, = fe + 30, (5.3.11)
where o := }l(lim SUDg_y00 Mo, — Me) > 0. By the definition of ., we choose u € B so that

fe > Pfu] — 0. (5.3.12)
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By Lemma 5.3.2, as [ is large,
Dcfu] > O, [u] —0 > e, —0 (5.3.13)

Putting (5.3.11) to (5.3.13) together, we obtain a contradiction. On the other hand,
assume lim sup,_, . fte, < fte- Then there is a subsequence k; such that

fe 2 ey, + 30, (5.3.14)
where 7 := 1 (g, — limsup,_,o ) > 0. For each k;, we can choose u; € B so that
fiey, = Doy [u;] — . (5.3.15)
By Lemma 5.3.2, as j is large,
D, [u;] = Peluy] —n = pe — 1. (5.3.16)

Combining (5.3.14) to (5.3.16), we obtain a contradiction again. The proof for lim inf p., =
e 1s similar. We omit it here. O]

5.3.3 Estimates for.the' traveiling' jspegd

In this subsection, we character ghe travelling wave speed ¢ by the minimal energy ..
The following lemma indicates that a/ trav_elliqgfy\fave solution has zero energy.

LEMMA 5.3.4. Supposesthat u & “ﬁflé;z(Q) N Hesolves (5.1.12)-(5.1.14) with

v = B,Ju] for some ¢ # 0. Then ®[u] 0;-!J 1

Proof. If we multiple equation . (5 L. ]j.‘Z by eTu, a)md 1ntegrate it over (). By some inte-
grations by parts, we obtain T 1 | ‘

0= [ A s +u2) + B Flu) il
0
1 1 +oo

= / e {=c?u — F(u) — =|V,ul* — ﬁuBc[u]Hfg + / / e“u Vyu - vy
Q, 2 2 2 —oco  J Oy

- / ez{lc%i — F(u) — 1|Vyu|2 — ﬁuBc[u]} + / ceu?
) 2 2 o

= &[ul,

where v, is the outer normal of 0€2,. Here we have used the assumption of u, B.[u,] =
(B.[u]), and Lemma 5.2.2 (d). The proof is complete. O

The above lemma implies that if pu. is realized by some travelling wave solution u €
BNC, then pu. = ®.Ju] = 0. Therefore it is crucial to search for the roots of p.. In the
following lemma, we prove that pu. > 0if 0 < ¢ > 1 and p. < 0 if ¢ < 1. Then by the
intermediate value theorem for continuous functions, p. has at least a root. At the same
time, this lemma also obtains a lower bound and an upper bound of the travelling wave
speeds of the variational solutions.
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LEMMA 5.3.5. Let p. := infg ®.. Then

(@) pe >0 if ¢ > Cpax := %«/262 — 58+ 2.
(b) For~y > m, there exist cyin > 0 and Ry > 0 such that if Q0 contains a ball Bp,
with radius Ry, then p. < 0 for all 0 < ¢ < ¢pin.

Proof. (a) follows from (5.3.7). (b) is proven as follows. In [20], Klaasen and Mitidieri
showed that there exist Ry > 0 and u € Cy"'(Q) with u = py on Bg,_1(0), u = py(Ro —
|(z,y)|) on Br,(0) — Br,—1(0), w =0 on 2 — Bg,(0) such that

1
—/ |Vu|2—|—/ / uBy[u] <0,
2 Bry Bry Bry

where Bo[u] = V/§(—A 4 v6)~'u. This together with Lebesgue’s dominated convergence
theorem implies that there is a small ¢,;, > 0 so that for 0 < ¢ < ¢pin,

1
I:= —/ ecz|Vu|2+/ e F(u / e““uB[u] <0,
2 Br, Bk, Br,

where B*[u] = V§(—A — cdp 4+ v6)"u. Let 0 (z,y) = u(z/c,y). Then ®.[n] = el < 0.
We further let n.(z,y) = ni(z + zos9) and choose @y to make n. € B. Then ®.[n.] =
e~ d,[n] < 0 also holds. Frem 7. & .Cp"(2); Lemma 5.2.2(e) and Lemma 5.2.3, it
follows 0 < B.[n.] < % = go (Set Figure2)=Therefore, 5. € C. Consequently, y, < 0
for 0 < ¢ < Cupin- 7 O

Remark. If N = 1, we catiprove thé above lémina directly. Let n*(z) = po if < 0 and
ni(z) = pee ™ if z > 0, where A > w nd \ = O( 5). By direct calculation,
de[ni] = F(p2) + % + o(¢) when s 5 ball ¢ ough Since F(py) + % < 0 is equivalent to
v > henre is sn}all

f II
i |

5.4 Existences and propertles of minimizers with neg-

m, we can make ¢ [nc] = ?

ative energy

THEOREM 5.4.1. If u. < 0 for some c, then there exists u, € B such that ®.[u.] = fi..

Proof. Choose a minimizing sequence u, € B with ®.[u,] < 0. Obviously, [,e”|u,|* <

8 by u, € B and Lemma 5.2.1. On the other hand, by F(u) > —252_1%13 and
Lemma 5.2.2(¢), we obtain

/ |V yu,|* = 20 [u,] — 02/ e'ul , — \/3/ ", Be[u,] — 2/ e F(uy,)
Q Q 0 Q

8(28% — 53 +2)

< 9 .
Therefore, w, is uniformly bounded in H. Consequently, wu, converges weakly to some
u € H, up to a subsequence. By Lemma 5.3.1, ®.[u] < p. < 0 and u is non-trivial. Note

that
1 1 1
0<—/6xu2§—/exuigliminf—/exuile.
8 (o) 2 0 n— o0 2 Q ’
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By translating u in z-coordinate, there is a xq > 0 such that ¢(z,y) = u(x — x¢,y) € B.
We claim that u,v» € C. Indeed, let g, = e*/*u,, g = ¢**u, w, = */*B.[u,] and
w = e*?B.[u]. Note that g, — ¢ in L2(Q) and %, — @ in H. (by Lemma 5.3.1). By
Lemma 5.2.2(b),

lwallgi @) < Crselltnllrz @) < Cyse sup |t |l < oo.
Therefore, up to a subsequence, w,, — w in H}(Q) for some w € H}(Q2). Moreover,
/Q [c2wn,z¢z + Vywy, - Vyo + (v + 02/4)w¢] — \/g/gngzﬁ =0, (5.4.1)
where ¢ is a test function in HJ(€2). Let n — oo in (5.4.1). Then we obtain
/Q [P, + V0 - Vi + (0 + ¢ /4) 0] — \/S/g¢ —0.

By the uniqueness of w, we have @ = w_and w, — w in H]. It implies that w, — w a.e.
in Q and B.[w,] — B.[u] a.e. in QqTherefore, 1, €€ since u, € C. From

Mcgq)é[w]:emoq)[]<q)[]<ﬂm

we derive zp = 0 and ®.[u] = ,uc ThlST% denoted by Unis What we seek for. O
' ~ F

The function u,. in theorem 5.4.1 may. ﬁaﬂi ﬂhp boundary of C. If this case happens,
then u, satisfies the Euler-Lagrange uaﬁ(")_j‘lfotrlespondmg to ®., but may not satisfy
the Euler-Lagrange equation (5:1.12):(5.1. 121)1 Corré§ponding to @’. The following lemma
is one of the crucial steps which shows that a;| < % < a3 and the Euler-Langrange
equations corresponding to ®sand tbiq)* are the! slame i the following lemma, a > b
denotes ”the essential sup of b— a" > 0= %

LEMMA 5.4.2. Let v. = B.[ug]. Then U and Wy are C%20(Q) and satisfy for each
(x,y) € Q, a1 < uc(z,y) < as and 7?}3 <w(r,y) < 7‘2%. Moreover, u. is a solution of

(2 = p1e) (Uoa + Uen) + Aytie + f(ue) — Vv, = 0. (5.4.2)

Proof. First, we claim a; < u. < ay. Suppose that S := {(z,y) € Qlu. < a; or u, > as}
has positive measure. Then @' )[ | < ® 1)[ |. Since F'(u) is decreasing on (—oo, a1] and
increasing on [ag, +00), o [u] < o )[ ]. Consequently, ®.[u] < ®.[u], which contradicts
®.Ju] = pe. Therefore S has measure zero and for a suitable representation of ., a; <
uc < ay at each point of Q. Moreover, from Lemma 5.2.3 and Lemma 5.2.2 (f), it follows

. U= < ve(z,y) < %.
Next, we obtain a variational inequality for u.. For given 0 < ¢ € C3(€). Note that

ue + €p € C if € is small. Indeed, by Lemma 5.2.2(¢) and Lemma 5.2.3,

el
e

|Bc[uc + €¢ - u_c” S
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Therefore

a1 — €9l
W5

Choose € < min{ almn‘fbl : V‘ﬁ’ﬁ;“?}, then u. +ep € C.

as + €|l

< B.luc + €¢] < 3

. [u]

————— on H. Therefore
1/2 [, eru2

Note that u. € B is a minimizer of the energy W [u] :=

we have the variational inequality

\\ — v
0 < lim clue + € cluc]

e—0t €

:/ em((CQ - NC)UC,mex + vyucvy¢) - / Uc gb + \/_/ uc XEqb (5'4'3)
Q Q

where xp is the characteristic function on £ = {(z,y) € Qla; < u.(z,y) < as}. The

last term of (5.4.3) is obtained as follows. Let g, = m Then |g| < ¢,
€
lim. .9+ gc = xp¢ a.e. and
P, QI F
T k2 el A o W (geB [t & cd] +WBclg]).  (5.4.4)
0+ € 2 ot Jo

According to Lemma 5.2.2 (f) and Jremma 2.3, hme_,m B.[u.+ €¢] = B.[u.]. By
Lemma 5.2.2 (d), the integrand of (5.4.4)i8 botnded by 2¢ - max{—b;,b,}. By Lebesgue’s

dominated convergence theorem, we obtaittthe last term ofs(5.4.3).

Let U := {2 € Q30 < r.{ %, 1lessinfg, ,)jopugds ai}. We use weak Harnack’s
inequality for supersolutions~in' [10]/ ( m 8 ) to show that U = 0. Let w =
u. — ay > 0. From the choice of the 1}1rar1ant set f"t it follows

—f(ue) + VoB.[uxe < f(w+ ar) F Voby = —f(al) +Voby +wg < wg, (5.4.5)

where g = w? + (3a; — 1 — B)w + 3a? —'v2(ﬁi+ Laj + 8 is in L>(2). This together with
(5.4.3) leads to

/ (¢ — po)wads + VywV, b+ gud) > 0. (5.4.6)
Q

If z € U, by weak Harnack’s inequality,
r;N/p||w||Lp(BTz(z)) < Cessinfp _,,-yw =0

for 1 < p < N/(N —2). Therefore w = 0 on B, (z). We conclude from this that U is
relatively open in €2. On the other hand, we can show that U is relatively closed in 2.
Indeed, if there is a z € OU N €2, then by the definition of U, we have z € U. The above
argument shows that either U = Q or U = (). If U = Q, then it contradicts to u|sq = 0
for N > 2 and u(4+00) = 0 for N = 1. Thus U is empty and the essential inf of w. is
greater than a; on any compact set.

Replacing the test function ¢ by —¢ in (5.4.3), we can use similar argument to obtain
the other variational inequality, which implies the essential sup of u. is less than as on
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any compact set. Together with the lower bound estimate "u, > a;”, it implies that
the sign of ¢ can be taken arbitrarily and (5.4.3) becomes an equality. That is, u. is a
weak solution of (5.4.2). Since u. and v, are bounded, by the regularity theory of elliptic
equations, we conclude that u, and v. are C%%0 (Q), and a; < u. < ag has pointwise
meaning. The proof is complete. n

Following the proof of the Proposition 3.3 in [25], we can derive further properties of
Ue.

LEMMA 5.4.3. Let u, be the minimizer in Theorem 5.4.1. Assume ¢; < ¢ < ¢y for
some constants c1,co > 0, then

(a) u. € C22() N L (@),

(b) Vuc 1s uniformly continuous and bounded with its uniform continuity and sup norm
depending on c¢; and cy but being independent of c.

(¢) For all (z,y) € Q, |uc(x,y)| < Ce™® for some constant C > 0 and A > 0, depending

on ¢y and co but being independent of c.

5.5 Existence of travelling solution

THEOREM 5.5.1. Assume v > W and$) contains a ball with a sufficient

large radius Ry. Then there erist co = () and g, c B satzsfymg Conin < €0 < Crax aNd
D, [tio] = ptey = 0. ~ ‘.'.f* |

Cmax, Moo = 0 and p. < 0_for €ninl cl co- 1 We choose a sequence c, satisfying
e, < 0, co > ¢, > co/2and limnﬁp‘ Cn éréo. By Theorem 5.4.1, there exist u, € B
such that ®,, [u,] = p.,. Leta be the minimal lpositive toot of F(u). Then z, :=
max{z|u,(x,y) = o for some y.€ Q} is well-definedidue o the continuity and the decay
of u, (See Lemma 5.4.3).

We claim that x,, is bounded. Beecause u; decays uniformly, x,, is bounded above. On
the other hand, if x,, is not bounded below, we have x,, — —oo up to a subsequence. We
write the energy functional as following.

/ /Q Flun] = /unﬁ;/ (|Vytta]* + V6u, Be, 1))
/m/ (5.5.1)

Note that the last two terms of (5.5.1) are positive from Lemma 5.2.2(c¢) and definition of
x,. Therefore the right hand side of (5.5.1) is greater than ¢2. However, the left hand side
of (5.5.1) converges to 0 because ||uy, ||~ is uniformly bounded. This is a contradiction.
So x,, is bounded.

Defining wy,(x, y) = u,(z+x,,y), we have w, (0, y) = a for some y. From Lemma 5.4.3(b),
Vw, is uniformly bounded in 2. By the Arzela-Ascoli theorem, w, converges uniformly
to some wy € C°() on any compact subset of Q. Therefore, wy(0,y) = « for some y.

| T | |
Proof. By Theorem 5.3.3 and Lem iSS.S'.%?‘t’Eetel exists co >0 such that cpy, < ¢g <
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Consequently, wy is nontrivial. On the other hand, w, is uniformly bounded in H be-
cause of the boundedness of x,, and u,, € B (See Theorem 5.4.1.). Consequently, w,, — wy
weakly in H, up to a subsequence. By Lemma 5.3.1,

O, [wo] < liminf @, [w,] < 0.
n—o0
The last inequality comes from . [u,] < 0 and Lemma 5.3.2. By translating the z-

coordinate of wy, we obtain a ug € B (see the proof of Theorem 5.4.1) and @, [ug] < 0 =
fey- Therefore @, [ug] = 0. O

Remark. If N = 1, we can show this theorem by considering any minimizing sequences
of ., because a function u € H is continuous and decays exponentially.

The minimizer uy has the same properties of u. with g, < 0 in Lemma 5.4.2 and
Lemma 5.4.3. We state in the following without proof.

LEMMA 5.5.2. Let ug be the minimizer obtained in Theorem 5.5.1 and vy := By, [ug).
Then
(a) up € CEX(Q) N CLYQ), Vug € L) and Vg is uniformly contz’nuous.

For all each (x,y) € 2, a; <wuo(r,y) < ay and ‘i}— < vo(z,y) < W\f

(b)
(¢) For all (z,y) € Q, |ug(z,y)| <Ce for solme constant C' >0 and X > 0.
(d) uy and vy solve

ch Uom+U0x +Ayuo+rf Uo \/-_{1020 (5.5.2)

The minimizer obtained in Eheore 5%-1— adt omatically lies in L2. To understand
the asymptotic behavior as =.— oo e al need po study'the L? norm of the derivative
of up in x. For a gradient system, 1t S ea81er “to cla,lm that the derivative of a minimizer
is in L%(Q2). However, for a skew= graﬂl nt system it is nich difficult to prove this. The
key observation of the following lemma 1S to recogmze that the condition 72§ > 1 plays
an important role. ;

LEMMA 5.5.3. If 7?0 > 1, then ug 4, vo, € L*(Q) and

1
P q— 2 5.5.3
/QUO,QJ — 725/;]“0@ ( )

Moreover, lim,_,_ o ug »(2,y) = lim, o v (2, y) = 0 uniformly in y.

Proof. In this proof, we simply denote wug,vy and ¢y by u,v and c respectively. We
integrate the subtraction of (5.1.12) multiplied u, from (5.1.13) multiplied by v, over

Ing = [—-L,R] xQ, for L, R > 0. By integration by parts, we obtain
C2 =R
@ ety = [ ]G0 = T = 190 + Ho)
ILr x=—L

/m/ R {“xayy f’fg} (5.5.4)
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Here H(u,v) = F(u) + v/duv — 7761)2. The last term of (5.5.4) vanishes by the boundary
condition. Since u,v, Vu and Vv are uniformly bounded independently of R and L,

(5.5.4) implies
/ u? < C+/ V2, (5.5.5)
ILr Inr

where C'is a constant independent of R and L. Since u € C>%(€2), Schauder’s theory and
equation (5.1.13) imply v € C2%(Q). Therefore we can differentiate (5.1.13) with respect
to x to obtain

A (Vpgz + Vaz) + Ayv, + Vou, — ~yov, = 0. (5.5.6)
Since ny v2

2 is bounded in x, there are two positive increasing sequences R,, — oo and
L,, — oo such that

1
/ V(= Ly Y) Vi (— L, y)dy = / 5(1}3)35(—[/71, y)dy — 0 as n — oo.
Q, Q

Y

and
/ V(R )l el — Q’as N = 0.

We multiply (5.5.6) by v, and 1ntegrat€’1t overy 17 By 1. Then

Y

¥ -— ol
\/S ul-'l)x—f)/é/‘ ’Ui = —62/ I.E' T/ n,y (557)
IL Rn ILan

) .
+ “ Ui(—Ln, y)| 2 ;F'. 192| / / avm / |Vyvx|2
2 Ja, ity W & g, ! o<y Iy R
(5.5.8)
By the choice of R, L, and the behavior of v &s = ;> o0 (Lemma 5.2.2 (b) and Lemma 5.5.2),
the right hand side of (5.5.7) approaches te 0. On the other hand, (5.5.8) is nonnegative
since the boundary term on 052, x [—L,, R,] vanishes. If v,, is not identically zero, then

(5.5.8) is greater than a positive number when n is large. If v,, is identically zero, then
v, 18 a constant equaling zero and (5.5.7) must be zero. Therefore, for large n,

Vo UpVyp—Y0 vz >0

I, Ry, I, Ry
By Holder’s inequality, this leads to

1
ILan

Combining (5.5.5) and (5.5.9), we obtain for large n

1 -1
/1 u§§(1—%> C (5.5.10)

TLRTL
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Here we have used 7?6 > 1. Therefore u, € L*(Q2) by taking n — oo. By (5.5.9),
v, € L*(Q). Letting n — oo in (5.5.7) and (5.5.8), we obtain v/¢§ [, u,v, — 73 [,v2 > 0
and conclude that (5.5.3) holds. Since u,,v, € L*(Q) are uniformly continuous in € (see
Lemma 5.5.2), lim,_, o uz(z,y) = lim, o vz(x,y) = 0 uniformly in y. O

The lemma above indicates that the limit behaviors of ug and vy as + — —oo are
related when v20 > 1. Since the travelling speed ¢y > 0, we know that wug prefers the
state at * = —oo than the state at x = +o00. Therefore, if uy(—o0, y) exists, Elug(—o0,y)]
should be less than Efug(oco,y)] = 0 and be negative. Indeed, by Lemma 5.5.3 and taking
R — +00 in (5.5.4), we have

Bluo(—0,9) = | [5(91t0(=00.9) [ = [V, 00(=00, y)[?) + H (g, o) (—00, )]
2

Qy

= —G( | b= i) <o

Proof of Theorem 5.1.1. The existence of (ug,vg) follows from Theorem 5.5.1. The
decay behavior of (ug,vg) at oo follows from Lemma 5.5.2 and Lemma 5.2.2 (b). The
proof is complete.

Proof of Theorem 5.1.2. The existénce of (u, vo) follows from Theorem 5.5.1. (or
Theorem 5.1.1). The asymptoticbehavier of (ug,vo) /8t —co follows from Lemma 5.5.3,

Lemma 5.5.2, Efug(—o0,y)| < 0 and the argument in ‘the proof of Corollary 6.8 in [25].
The proof is complete. Wy e ~, L
\ 9

Proof of Theorem 5.1.3. For N = r‘l.&ad’ 7| > —————— there are three con-

2682k FR 2

L l
stant steady states satisfying H(0,0 g G"ﬁ(pl a1 ) >0 and H(ps,q2) < 0. Therefore,
i

Theorem 5.1.2 implies the sufficient t O‘HThemrem oy : 3 For the necessary part, we

W Ty

argue by contradiction. Assume "< g2 955;2, thehl H (u, %) 7 —1%[ —4(B+Du+6(8+

%)] > 0. This means three constant steady statdzé have- nonnegatlve energy. However,

if a travelling wave (ug,vy) exists, then H(pg,q2) — Elug(—o0,y)] < 0. This leads to a
contradiction.

5.6 Skew-gradient structure

According to the skew-gradient structure it is natural to consider another approach to
solve (5.1.12)-(5.1.14), that is, finding critical points of the strongly indefinite functional
U, [u,v] := A1 [u,v] + J[u,v] on H x H, where

1
Huo) =5 [ et =)
2 Ja
and
1
Ju, v] :—/ex(\VyuP—\Vyv]2)+/exH(u,v).
2 Jo 0

This variational problem does not have a minimizer since the gradient term of v in the
energy has a minus sign. Therefore one needs to apply a mini-max theory to study such
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a problem. When the domain €2 is bounded, a steady state was obtained by Chen and
Hu in [5] via the critical point theory developed in [1]. Unfortunately it is not easy to
apply the method in [5] to the travelling wave problem with non-zero speed on a cylinder.
On the other hand, from Heinze’s viewpoint in [11], the travelling wave problem can be
viewed as a variational problem under a constraint with its wave speed corresponding to
the Lagrange multiplier. Instead of solving the constraint problem proposed by Heinze,
we consider in this section a slightly different variational problem, that is, the critical
points of the quotient energy

Ku, v] = ‘;[“’”] on H x H. (5.6.1)

[, 0]

The functional Ku,v] is not well-defined when the denominator vanishes. However we
notice that (ug,vg) obtained in Theorem 5.1.2 satisfies I[ug,vo] > 0. See the proof of
Theorem 5.6.2 below for this. Therefore we consider the case I > 0 in this section.
Recall that (u*,v*) is called a local mini-maximizer of K|u,v] (see [45]) if u* is a local
minimizer of K[u,v*] and v* is a local maximizer of K[u*, v]. Our first result asserts that
a local mini-maximizer of K corresponds t6 atravelling wave solution of (5.1.12)-(5.1.14)
while the value —K of it corresponds to the square of its speed.

g " L]
THEOREM 5.6.1. Assume that (wfv*) € HXWE s o local mini-mazimizer of K[u,v]
with I[u*, v*] >0 and Ju v < 005 Then
(a) (u*,v*,c*) solves (5.1.12)=(51.14)fweakly, where ==Kt vt
(b) u* is a nontrivially local minimizeér( 0f§ { puzth (o [ *] =0.
Proof. (a) can be easily obtained by| rst | ’E}rlatlldn of K [u,v] with respect to u and v
in a neighborhood of u* and™v*\ Next,, wesshow (b) By Tfu*,v*] > 0, u* is nontrivial.
We observe that u* is a local niinimi é}r of K [u | ]n iffandconly if u* is a local minimizer

of W,.[u,v*]. Indeed, by the difinition ofe®) Wi [h 2’| =0. Choose a neighborhood G
of u* such that I[u,v*] > 0 for all 4 €@ and wiis a minimizer of K[u,v*] in G. Then
Klu,v*] > K[u*,v*] = —c*? in G, equivalently, U .[u;v*] > 0 in G. Therefore u* is a local

minimizer of W.«[u, v*]. Now we show a relation between @7, and V... By v*’s equation,
/ e (¢ 4+ [V u* 2 4 you*?) = \/5/ e"utv*.
Q Q

Therefore

O [u] = Ve fu, v* /e uBer [u] + ? / e“utvt — \/5/ e"uv*
Q Q
= W [u,v] + 5 /Q e*(u — u*)Bes[u — u*], (5.6.2)

where we have used Lemma 5.2.2 for the last equality. Therefore ®%. [u*] = W [u*, v*] =0
and @ [u] > 0 locally due to Lemma 5.2.2(¢). The theorem is proven. O

Conversely, under an extra condition, we have the following result.
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THEOREM 5.6.2. Let ug and cy be obtained in Theorem 5.5.1 and let vy = By, [ug).
Assume v26 > 1 and for all nontrivial ¢ € H,

/ e’ (i + |V, 0|?) + / e (3ug — 2(B + 1ug + B)¢* > 0.
Q

Q
Then (ug,vo) is a local mini-mazimizer of K|u,v] with I[ug,vo] > 0 and J[ug,vo] < 0.

Proof. First we claim I[ug, vg] > 0. Equation (5.5.6) and the uniqueness of By, [ug ] yield
U0,z = Bey|to ] Following the proof of Lemma 5.2.2, we obtain

/ch|<em/2vom)r|2 + |vyem/2v0,w|2 + (75 + 68/4)6331)3@ = \/S/Q ewu(),xvo,x-

It is readily proved that ([, e"v3,)"? < WST@)M(IQ e"ud )%, This implies I[ug,vo] > 0
since v%§ > 1. By (5.6.2),

Vo

W, [u, v] = O [u] — 5 e”(u — ug) Bey [t — ).
Q
It follows from this relation that W, [ug,vg] = @} [ue] = 0 and J[ug,ve] < 0. For all
¢ € H, a straightforward computation gives
¥ d s . .
Du\IJCO [UO, UO]Cb =] 11_1;% d_E\IIC() [UU ~+= €'¢7 UO] .

S0 kg ~ L2 e, o] = 0

2 Q -

and { ,.:- |
2

= d
Duulllco [Uo, 'UO]Qb = 11_{% @qjco [’U

:/&@ﬁ+wwm+/ﬁemww

Q Q

= / ex(cggbi + |Vy¢|2) + / ez(Su(Q) —2(B+ Dug + B)QDQ > 0.
Q

Q

Therefore ug is a local minimizer of W, [u,v]. Equivalently, ug is a local minimizer of
K[u,vp). Since W, [ug,v] is a concave functional and vy is a critical point of W, [ug, v], vg
is a local maximizer of W, [ug,v]. This implies vy is a local maximizer of K[ug,v]. The
proof is complete. O

5.7 Neumann problem

In the section, we consider the travelling wave equations (5.1.12) and (5.1.13) with Neu-
mann condition. The function space H we used in the previous sections also need to be
changed. Let Hy be the weighted Sobolev space, the completion of C'*°(£2) with respect
to the norm |jullf, = ||u||%%u + ||Vu||%2w Following the idea of Proposition 6.3 in [25], we
obtain the following result which indicates that the variational approach derive planar
waves for system (5.1.12)-(5.1.13) with Neumann condition.
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THEOREM 5.7.1. Suppose i(z,y) € Hy (CL.(Q) is a nontrivial minimizer of ®*[u]
in Hy for some ¢ = ¢ > 0, then 4 depends only on x.

Proof. We first claim ®}[u] > 0 for all w € Hy. It is sufficient to show ®}[u] = 0. Indeed,
Qi[u) < ®.[0] = 0. If ®i[u] < 0, then Pi[au(z — a,y)] = e*P}[u(z,y)] = —o0 as a — oo,
which contradicts to the existence of the minimizer of ®%[u]. Consequently, ®}[d] = 0.
Let 0(x,y) = Bg[t(z,y)] and

m@riég%%m@wf+wwme+mew»+égmy>@wm

Therefore fQ = ®i[a] = 0. Next, we show that m(y) = 0 for all y € Q If 1o,
then there ex1sts a y; € Q, with m(y;) < 0 by the continuity of m(y) and fQ = 0.

Note that u(z,y1) € Hy and 0(x,y1) = Bg[t(z,y1)] by the uniqueness of B [ (x y1)]-
Therefore a straightforward computation gives

0 < [z, 1)
9
c . A
=19 [ (G nlen)® + Bl +
Rl
— 19 m() — (@I, i) Pde) < 0
RI 4

Consequently, m(y) = 0. We.argue that v depends onIy on-z by a contradiction. If there
exists a yo € Q, with [p, € [Vyi(z yz)‘l'zdx 0 then a‘similar calculation yield

\/7_ (z,y1) Belt(z, y1)|dx

0 < OZfa(e, go)] = HIC

,f-ejW a(ay o) |*dx < 0.

In conclusion, |V, a(z, y)| = 0 for all |( ,Y) -Q "j;l'ie proof is completed. O

=N | !|
5.8 Appendix 435 ,

In this section, we list all the energies mentioned above.
(1) The gradient energy of ¢*(uy, + uz) + Ayu+ f(u) =

2

Sufu] = Plofu] + Jofu] = %/ﬂexui—i—%/ﬂefc (19,0 + F(u))

(2) The gradient energy of u,, + cu, + Ayu+ f(u) =

. . 5 1 1
S.lul = fofu) + ol = 5 [ e+ 5 [ e (9,0 + Flw)

(3) The nonlocal gradient energies of ¢?(uy, + uz) + Ayu+ f(u) — VOB.[u] =

(a) The non-cut-off energy:
®;[u] = V[u] + P [u] + 2 [u]

:1/eI(CQuijL\VyuP)—l—/e“F(u)—i—ﬁ/e’”uBc[u]
2 Ja 0 2 Jo
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(b) The cut-off energy:
c[u] = @ [u] + 2 [u] + @V [u]

= oW u] + P [u] + ? / e"uB,[u]

(¢) The limit energy as z — +oc:

Elu] = %/Qy |V, ul® +/ F(u) + g/gy u(=A, +90) ]

Qy

(4) The skew-gradient flow of u; = Au + f(u) — vov and v, = dAv + V/dv — yév:

Sfu, v] = %/Q (IVul — Vol + H(u,v))

(5) The skew-gradient energies of
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