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中文摘要  

癲癇是一種常見的慢性神經疾病，並且會有不定時的發作情形。顛顯發作時

病人會短暫失去肢體控制並導致生命危險。目前有關癲癇之研究及診斷多數利用

腦波圖(Electroencephalogram)。腦波圖可以用不同的顯示方法被呈現，其中兩種為

單極點訊號 (Unipolar)和雙極點訊號 (Bipolar)。傳統腦波訊號分析大多利用單極點

訊號作為基礎，但醫師在診斷顛癇時時常利用雙極點訊號來呈現腦波圖。因此我

們也把雙極點訊號拿來作為辨識系統之參考數據。我們設計了一列對於雙極點訊

號之訊號處理及特徵抽取方法希望能夠改善目前現有之自動化癲癇診斷系統。在

訊號處理方面我們利用了小波轉換(Wavelet Transform)將主要不同腦波頻帶抽取出

來。在特徵抽取上我們利用似熵 (Approximate entropy)及種總變差(Total variation)

來顯示出規則與不規則之腦波現象。在特徵排序及選擇我們採用了基因演算法 

(Genetic Algorithm)和費雪分數法 (Fisher Score)。最後再利用支持向量機(Support 

Vector Machine)來當我們的分類器。 

 

關鍵詞: 小波轉換、心電圖、支持向量機 



 

 iii 

ABSTRACT 

Epilepsy is a common chronic neurological disorder characterized by recurrent 

unprovoked seizures. Seizure episodes can cause temporal paralysis of the body, which 

can lead to severe injuries. Electroencephalogram (EEG) is a tool commonly used for 

analyzing brain activity and diagnosing brain disorders. EEG can be presented under 

different montage schemes. This study focuses on two of the montage schemes; unipolar 

montage and bipolar montage. Traditionally, the most commonly used montage for 

automated EEG analysis is unipolar. We experiment with incorporating bipolar EEG 

montage for creating a classification system to classify different epileptic wave forms. A 

series of functions were designed for bipolar EEG montage. We used wavelet transform 

(WT) to decompose EEG signal into its primary sub-bands. We use Approximate 

Entropy and Total Variation as features designed specifically for spike and seizure 

detection. We used Genetic Algorithm and Fisher Score to rank and selected most 

influential features for classifier. Finally we use multi-class Support Vector Machine as 

our classifier.  

 

Keywords: Genetic Algorithm, Fisher Score, Support Vector Machines 
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Chapter 1 Introduction 

Epilepsy is a chronic neurological disorder characterized by recurrent unprovoked 

seizures. The disorder affects almost 60 million people around the world [1]. Prevalence 

rates in the US and Europe are 0.52% and 0.68% respectively [2]. In developing 

countries the prevalence rates go as high as 1.5%. Epilepsy is the third most common 

neurological disorder after Alzheimer’s disease and stroke [3]. In Taiwan, there are 

192,369 people with epilepsy [4], which is about 0.8% of Taiwan’s population. Seizure 

happens when clusters of brain neurons signal abnormally, which may temporarily 

cause anomaly in a person’s consciousness, behavior, movements, and actions. 

Medicinal and surgical remedies for seizure prevention are available. However, in 25% 

of patients neither medication nor surgery completely controls epileptic seizure 

occurrence [5]. One way to diagnose and analyze epilepsy is through careful studies of 

patient’s electroencephalogram (EEG.) EEG measures voltage changes from ionic 

current flows within the neurons of the brain [6], shows temporal and spatial 

information of the brain, and is useful in the diagnosis of epilepsy. Studies have shown 

that EEG provides high sensitivity and specificity for the diagnosis of epilepsy. For 

example, the 3-Hz spike-and-wave in EEG is unique to petit mal and a particular form 

of absence seizure of childhood onset. As a result, several studies 0-[14] have proposed 

forewarning algorithms for epileptic seizures using EEGs. If successful, it would 

improve the quality of life and safety for patients with epilepsy. Thus, real-time EEG 

analysis system is and will be a vital part of seizure forewarning system.  

Various approaches for providing automatic seizure detection have been proposed. 

Weng and Khorasani [7] used amplitude, duration, and coefficients of variation and 
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frequency as inputs for a neural network. Güler and Übeyli [8]-[10] proposed a method 

for seizure detection based on wavelet coefficients, eigenvectors, and a support vector 

machine (SVM). A system proposed by Srinivasan et al. [11] utilizes approximate 

entropy as the feature classification for seizure detection. Recently, Adeli et al. [12] 

performed a principal component analysis on enhanced cosine radio basis function 

neural network (RBFNN) to detect seizures, while Tzallas et al. [13] demonstrated the 

suitability of time–frequency analysis to classify EEG segments for epileptic seizures. 

Some experts have also used specific shapes of interictal spikes as features in the 

hippocampus in terms of cell- and network-related parameters of neuronal circuits [14]. 

Although promising results have been reported in these studies, the accuracy of 

recognition is still low, and the performance of such systems needs to be improved. 

Furthermore, most of these studies tested the performance on open source data and lack 

validation with clinical data. 

Multichannel EEG provides higher spatial resolution of brain activity than single 

channel EEG [15]. More often than not single channel EEG is not enough for extracting 

meaningful features for recognition of epilepsy. However, due to large computational 

and storage requirement, especially in the case of long-term EEG monitoring, many 

studies only focus on processing single channel EEG signals. Long term EEG records 

can last from 24 hours to several days, amounting large bodies of data. Therefore, 

features must be carefully selected in order to reduce the size of data for faster and more 

efficient classification. Also, considering physiological aspects of various phenomena of 

epilepsy, it is necessary to use multichannel EEG to extract physiologically meaningful 

features. Only through multichannel EEG can researchers get a fully understanding of 

different states of different parts of the brain. The aim of the research is to develop an 
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analytic algorithm for multichannel EEG signals to facilitate the detection of epileptic 

seizure warning signs. For this thesis we have indeed designed a preliminary system 

with promising results for the detection of various epileptic phenomena. The rest of the 

thesis will elaborate more on our work; some background knowledge related to this 

research is listed in Chapter 2 and details of this analytic system are discussed in detail 

in Chapter 3. Performance and experiment results of the proposed system are discussed 

in Chapter 4. Conclusion and discussion are discussed in Chapter 5. 
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Chapter 2 Background 

2.1 Biosignal 

2.1.1 Electroencephalogram (EEG) 

Biological beings emit signals of different kinds pertaining to different 

physiological meanings. The term biosignal refers to all kinds of signals that can be 

measured and monitored from living organisms. Biosignals can be either non-electrical 

or electrical, but most commonly the latter, which are called bio-electrical signals. 

Electrical biosignals are usually taken to be electric currents produced by the sum of 

electrical potential differences across a specialized tissue, organ or cell system like the 

nervous system. Some best-known bio-electrical signals are the electroencephalogram 

(EEG), Magnetoencephalogram (MEG), Galvanic skin response (GSR), 

Electrocardiogram (ECG), Electromyogram (EMG), and heart rate variability (HRV). 

Among these bio-electrical signals, EEG is most commonly used to study activities and 

anomalies of the brain. In analyzing epileptic-related phenomenon, we focus on 

processing the EEG. The following section briefly introduces EEG and how it is used in 

analyzing brain-related disorders.  

EEG is the recording of the electrical activity along the scalp produced by the 

firing of neurons within the brain. The voltage amplitudes are small, typically in the 

range of tens of microvolts. They are thought to be caused by synchronized activity in 

very large numbers of synapses in the cerebral cortex. In practice, EEG recordings 

usually last between 20 to 40 minutes, usually with multiple electrodes placed on the 

scalp.  Typically, meaningful EEG signal frequencies fall between 1-60Hz. Activities 
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outside this range are likely to be artifactual. Different frequency bands (EEG bands) 

reflect different types of activities (Figure 1). The section below lists different EEG 

bands: 

(1) Delta wave: has a frequency of 3 Hz or below. It tends to be the highest in amplitude 

and the slowest wave. It is normally the dominant rhythm in infants up to one year 

old and in stages 3 and 4 of sleep. It may occur focally with sub-cortical lesions and 

in general distribution with diffuse lesions, metabolic encephalopathy 

hydrocephalus, or deep midline lesions. Delta waves are usually most prominent 

frontally in adults and posterior in children.  

(2) Theta wave: has a frequency of 3.5 to 7.5 Hz and is classified as "slow" activity. It is 

perfectly normal in children up to 13 years and in sleep but abnormal in adults who 

are awake. It can be seen as a manifestation of focal sub-cortical lesions and can 

also be considered in generalized distribution in diffuse disorders such as metabolic 

encephalopathy or some instances of hydrocephalus. 

(3) Alpha wave: has a frequency between 7.5 and 13 Hz. It is usually best seen in the 

posterior regions of the head on each side, being higher in amplitude on the 

dominant side. It appears when an individual closes the eyes and relaxes, and 

disappears when the eyes are open or if there is an alert by any mechanism (e.g., 

thinking, calculating, etc.). It is the major rhythm observed in normal relaxed adults, 

and is present throughout most of an individual’s life, especially after the thirteenth 

year. 

(4) Beta wave: denotes “fast” activity. It has a frequency higher than 14 Hz. It is usually 

found on both sides in symmetrical distribution and is most evident frontally. It is 
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accentuated by sedative-hypnotic drugs, especially the benzodiazepines and the 

barbiturates. It may be absent or reduced in areas of cortical damage. It is generally 

regarded as a normal rhythm. It is the dominant rhythm in patients who are alert or 

anxious or have their eyes open. 

 

 

Figure 1 The various frequency bands of EEG signals 

For most clinical and research applications, the placement and names of electrodes 

for EEG follows the International 10-20 system* (Figure 2). The purpose for using 

standardized scalp electrode placement guide is so that subject’s test sessions could be 

compared and different subjects’ experimental results could be compared as well. The 

“10” and “20” refer to the distances between adjacent electrodes to be either 10% or 

20% of the total front-back or right-left distance of the skull. Each electrode site has a 

letter to identify lobe and a number to identify hemisphere. The letters for lobe 

identification are F, T, C, P, and O, which stand for frontal, temporal, central, parietal, 

and occipital lobes, respectively. Even numbers 2, 4, 6, and 8 refer to right 

hemispherical electrode positions. Odd numbers 1, 3, 5, and 7 refer to left hemispherical 

electrode positions. Between the two hemispheres are the midline electrodes marked 

with subscript z, which stands for zero.  
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Figure 2 The scalp electrodes for a classical EEG recording 

 EEG signals can be displayed in one of the four ways, also known as montages: 

unipolar, bipolar, Laplacian, or average reference montage. In unipolar EEG montage 

scheme, a reference and a ground electrode are used and for each recording site an EEG 

amplifier electrode is placed. In Laplacian montage each channel represents the 

difference between an electrode and a weighted average of the surrounding electrodes. 

In average reference montage the outputs of all of the amplifiers are summed and 

averaged, and this averaged signal is used as the common reference for each channel. 

Bipolar EEG signal measures the action potential difference between pairs of electrodes, 

and can be calculated by subtracting between unipolar measurements. For n electrodes 

there are n!/(r!(n-2)!) possibilities for electrode pairs. However, for practical purposes 

of this study, only neighboring electrode pairs are compared. Bipolar EEG montage 

showing neighboring potential differences allows us to spot locales where neurons are 

firing differently than neurons at other locales. This could be very useful in detecting 

various epileptic waveforms. One of our focuses is the usage of bipolar EEG montage 

for extracting useful features for analysis of epilepsy.  
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2.1.2 Functional Magnetic Resonance Imaging (fMRI) 

Since EEG signal is derived directly from action potential of neurons, it offers very 

high temporal resolution. The drawback of EEG, due to superficial placement of 

electrodes, is poor spatial resolution. This is especially true when the locale of interest is 

deep inside the brain. Signals originating far from the surface where electrodes are 

placed decade fast and overlap with other signal origins, making it difficult to get a full 

understanding of brain activities. It is mathematically impossible to reconstruct a unique 

intracranial current source for a given EEG signal, as some currents produce potentials 

that cancel each other out. To complement for lack of spatial resolution, fMRI can be 

used synchronously alongside EEG. 

 In essence, fMRI measures metabolic activities of blood cells in the brain. It does 

not directly measure neuron activities; rather it measures the residual effects of neuron 

activities. The flow of blood within the brain differs according to the activity level of 

the individual sites; active sites use more energy and require more blood flowing 

through. From this knowledge, activities of the brain can be observed by getting 

readings on oxygen level of blood cells. We can map neural activity to changes in blood 

flow. fMRI scans provide 3 dimensional information of the brain activity and provides 

good spatial resolution that ranges from 4 to 5 mm to 1 mm per voxel*, which can give 

us detailed information of activities going on at different locales of the brain. Due to 

technology limitations and the time delay in metabolic activities, temporal resolution of 

fMRI is poor; often seconds pass by between scans. It is sometimes useful to use fMRI 

and EEG synchronously to achieve high spatial and temporal image of brain activity. 

However, the ultimate goal of this project is to develop a portable epilepsy seizure 

detection system and therefore we did not consider using fMRI as the fMRI machines 
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are not and most likely will not be portable in the near future. For future researches on 

the brain, the usage of fMRI, in combination with EEG could be considered. 

2.2 Machine Learning and Classification 

Classification is a common task of machine learning. The idea is to determine 

where new observations or instances, of any phenomena, belong. Machine learning 

could be either supervised or unsupervised. Supervised learning involves the usage of 

labeled instances for training, and as a result of training, classification models are 

constructed. Training sets are often paired with desired output result, which help guide 

training process. Classification models (also called classifiers) are inferred functions 

that should produce correct output from any valid input. Unsupervised learning, on the 

other hand, provides no labeled training guides to the learner. Unsupervised learning is 

often used to find hidden structures in data. Since we already know the different types 

of patterns we are looking for, for the classification of different epileptogenic patterns 

we use supervised training scheme.  

Among many machine learning techniques, one of the latest learning methods is 

the Support Vector Machine (SVM). SVM was developed by Vladimr N. Vapnik in the 

1990’s. SVM is a linear learning system aimed for classification and regression. The 

basic idea of SVM is to transform non-linear points (data instances) to higher dimension 

spaces so that the non-linear points become linear in the higher dimension space. Once 

the points are linear, they can be separated linearly by using a hyper plane. Since only 

one hyper plane is used, standard SVM can only classify between two classes. For our 

system, we attempt to classify three different epileptogenic wave forms. Therefore we 
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use a modified version of SVM for classification which can classify multiple classes. 

Details of SVM are discussed in Chapter 3.  
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Chapter 3 Methods 

3.1 System Architecture 

Our EEG epilepsy classification system consists of four major components: data 

preprocessing, feature extraction, classification, and post-classification spike matching. 

The first 3 three components have the same system architecture as [16]. Figure 3 shows 

the system architecture for the EEG epileptogenic pattern classifier. Components are 

designed separately and modularized. Within each component further modularization 

takes place. This is done so that each component can be used for other researches, and 

also this allows for easy upgrades and changes in the future. For instance, the feature 

extraction module contains various sub-modules that are useful for signal processing in 

general; sub-modules such as wavelet transformation can be used for purposes other 

than of this research. Another advantage for modularized approach is so that we can 

replace modules easily, which could allow us to experiment the impact of different 

classification techniques. For example, wavelet transformation module could be 

replaced with Fourier transformation module for comparison between the impacts of 

using different signal transformation schemes. Some of the more general modules that 

can be used for other applications are written as libraries and can be used for other 

research purposes.  
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Figure 3 System Architecture 

 

3.2 Data Acquisition 

The Department of Epileptology at the University Hospital of Bonn offers five 

open source EEG datasets for research. The complete dataset consists of five sets 

(denoted A-E) each containing 100 single-channel EEG segments. These segments were 

selected and cut out from continuous multichannel EEG recordings after visual 

inspection for artifacts such as eye movements. Sets A and B consists of EEG recordings 

carried out on five healthy volunteers using the International 10-20 electrode placement 

scheme. Volunteers were in a relaxed awake-state with eyes open (A) and eyes closed 

(B), respectively. Sets C, D, and E originated from EEG archive of pre-surgical 

diagnosis. Segments in set D were recorded from within the epileptogenic zone, and 

those in set C from the hippocampal formation of the opposite hemisphere of the brain. 

Sets C and D contained only activity measured during seizure free intervals, set E only 

contained seizure activity. All EEG signals were recorded with the same 128-channel 
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amplifier system, using an average common reference. The EEG was acquired at a 

sampling rate of 173.61 Hz and a 12-bit analog-to-digital conversion. 

Aside from the open source data available, we also use data collected from subjects 

receiving routine EEG examinations and from long-term EEG monitoring at the 

Department of Neurology at National Taiwan University Hospital (NTUH). The 

research has been approved by the ethical committee of the NTUH. The subjects were 

divided into two groups. EEG data from 22 participants (11 women, and 11 men) whose 

ages range from 23 to 86 years were included in our research. Participants are either in 

the control group or in the patient group. The patient group consisted of 4 women and 6 

men who were diagnosed with temporal lobe epilepsy with abnormal focal or regional 

EEG signals. The control group consisted of 7 women and 5 men who were adults 

referred from outpatient clinic with normal EEG signals. These were subjects who 

complained about headaches or dizziness, but were not diagnosed with epilepsy or 

seizure disorders. The mean age for the patient group was 67.2 years and 43.58 years for 

the control group. The EEG signals were collected using 21 scalp Ag/AgCl electrodes 

placed according to the International 10-20 system. Signals were digitalized at a 

sampling rate of 200Hz with a dynamic range of 12 bits. The recorded EEG was 

classified into one of the three epileptogenic wave types, namely normal, ictal, and 

interictal.  

The EEG was collected from 21-channel scalp Ag-AgCl electrodes according to 

the 10-20 International System and was digitalized at a sampling rate of 200 Hz and a 

dynamic range of 12 bits. The recorded EEG was classified into normal EEG, ictal and 

ictal discharges and was segmented into 2-second epochs. Inter-ictal epileptiform 



 

 14 

discharges should meet the following conventional criteria [17]: (a) they must be 

paroxysmal; (b) they must include an abrupt change in polarity occurring over several 

seconds; (c) the duration of each transient should be less than 200 ms (spikes < 70 ms 

and sharp waves between 70 and 200 ms); (d) the discharge must have a physiology 

field. EEG abnormalities in patients with seizure disorders may be categorized as either 

specific or nonspecific patterns. The specific patterns include the spikes, sharp waves, 

spike-wave complexes, temporal intermittent rhythmic delta activity (TIRDA), and 

periodic lateralized epileptiform discharges (PLEDs), which are all potentially 

epileptogenic and provide diagnostically useful information [18] while the non-specific 

changes such as generalized or focal slow-wave activity do not. In this study we chose 

only those specific patterns for recognition.  

The electrographic onset of a seizure is characterized by a sudden change of 

frequency and appearance of a new rhythm. Focal onset of the electrographic seizure 

may evolve through several phases: (1) focal desynchronization or attenuation of EEG 

activity (≦10μV); (2) focal, rhythmic, low voltage, fast activity (≧13 Hz) discharges; 

and (3) progressive increase in amplitude with slowing that spreads to a regional 

anatomic distribution. Focal ictal discharges may be recorded as paroxysmal repetitive 

spikes, spike-waves (3 or more discharges in sequence) or rhythmic fast or theta activity 

[39, 40]. Since EEG experts may have different opinions on EEG classification. The 

EEG classifications of interictal and ictal activities were examined by two EEG experts 

(Chen and Chiu). We performed inter-rater reliability test between the two experts’ 

ratings. We found that the agreement rate was 82% for inter ictal activities (epileptiform 

discharges) and the agreement rate for ictal activities (seizure discharges) was 94%. We 
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only use signal segments where there is consensus in the interpretation from both 

experts. 

3.3 Data Preprocessing 

Physiologically meaningful EEG frequencies are below 60Hz. Frequencies over 

60Hz are usually generated from electromyographic signals (often generated from 

skeletal muscles) and electrical power lines. For the analysis of epilepsy, we are not 

concerned about signals originating from skeletal muscles. Therefore in the data 

preprocessing stage, we filter out artifacts generated from electromyographic signals 

and electrical power lines using a low-pass filter and a notch filter, respectively. The 

five primary EEG sub-bands: delta, theta, alpha, beta, and gamma span the 0–60 Hz 

frequency range. 

A low-pass filter is a filter that allows low-frequency signals to pass but reduces 

(ideally eliminates) the amplitude of signals with frequencies higher than the cutoff 

frequency. The actual amount of attenuation for each frequency varies from filter to 

filter. Signal filters can also be adjusted to allow high-frequency signals to pass and 

reduce the amplitude of signals with frequencies lower than the cutoff frequency. In 

short, a low-pass filter smoothes out signals by removing short-term oscillations, 

leaving only the long term trend. A high-pass filter, on contrary, filters out the long trend 

and leaves short term oscillations. Low-pass and high-pass filters can be used 

concurrently to obtain signals from a specific desired range of frequency. For our 

experiment, we use a low-pass filter set to filter out frequencies over 60Hz. The filtered 

signal has frequencies ranging from 1Hz to 60Hz, which contains the five primary EEG 

sub-bands: delta, theta, alpha, beta, and gamma. The next section discusses the 
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procedure of extracting the different EEG sub-bands for feature extraction. 

3.4 Wavelet Transformation  

Wavelet transformation was developed to overcome the shortcomings of Fourier 

Transformation (FT). In general, FT only provides frequency information and not 

location information. This means that signal transformed using FT is susceptible to 

Heisenberg’s Uncertainty principle; information about the frequencies present in a 

signal could be obtained, but not where and when the occurrences took place. Wavelet 

Transform (WT) transforms signals in the time domain to a joint time-frequency domain. 

This allows the capture of both frequency and location information which is useful in 

analyzing continuous signals such as EEG, EKG, and other bio signals. For the 

detection of spike waves in epilepsy analysis this is a very useful feature. It allows us to 

pinpoint the exact locale of epileptic spike occurrence. 

Each discrete wavelet transformation operation takes input signal and decomposes 

the signal into low and high frequencies by passing the signal through a low-pass filter 

and high-pass filter convoluting with impulse response G. Filter masks vary depending 

on the purpose of application. The result of the operation yields two decomposed signals; 

high frequency signal and low frequency signal. The transform of a signal x (length n) 

with filters g (high-pass filter) and h (low-pass filter) is shown in Equations 1 and 2. 

The decomposition process halves the time resolution and removes half the frequencies 

of the signal, and therefore, according to Nyquist’s rule, half the samples can be 

discarded. The subsampling operator is used after each decomposition process. Since 

each decomposition process halves the signal sample size, the input signal must be a 

multiple of 2n where n is the number of levels. To further obtain lower frequency signal, 
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the low frequency output signal is used as input for next level of discrete wavelet 

transformation. 

𝑌𝑙𝑙𝑙[𝑛] = � 𝑥[𝑘]𝑔[2𝑛 − 𝑘]∞
𝑘=−∞  (1) 

𝑌ℎ𝑖𝑖ℎ[𝑛] = � 𝑥[𝑘]ℎ[2𝑛 − 𝑘]∞
𝑘=−∞  (2) 

Our research EEG data are sampled at 200Hz discretely. We take 2 seconds of EEG 

signals as one epoch which translates to 400 samples per epoch. It is possible to 

increase the longitude of sample epoch. We choose to use 2-second intervals to comply 

with the sampling requirement for 4-level decomposition process. Discrete wavelet 

transformation was used to decompose the signals into the five primary EEG sub bands. 

In practice, cascaded decomposition scheme with frequency reduced by half with each 

stage of decomposition is used to sequentially decompose the original signal, as shown 

in Figure 4. We decompose the signal four times to obtain the five major EEG 

sub-bands. Figure 5 shows an example of decomposed signal sample into the wanted 

sub-bands using Daubechies filter. 

 

Figure 4 Wavelet Decomposition Scheme for EEG Signals 
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Figure 5 The decomposition results using the Daubechies filter 

 The input signal for wavelet transformation has been filtered to contain only 

frequencies below 60Hz. The decomposed bands D1, D2, D3, D4, and A4, have 

frequencies ranging from 30-60, 15-30, 8-15, 4-8, and 0-4Hz, respectively. These 

frequency ranges are the five primary EEG sub-bands that researchers use. The results 

D1, D2, D3, D4, and A4 are the Gamma, Beta, Alpha, Theta, and Delta sub-bands.  

3.5 Feature Extraction 

Once the five primary EEG sub-bands are obtained, we extract features from each of 

them. After consulting with Dr. Chiu of National Taiwan University Hospital’s 

Neurology Department we devised series of features which doctors consider 

physiologically meaningful for the classification of epileptic waveforms. The goal of 

this research is to be able to distinguish between three classes of waveforms; normal, 

seizure, and spike. Ultimately, the aim is to be able to forecast seizure events. According 

to Dr. Chiu, the occurrences of spike events might shed light on understanding seizure 
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more in depth and may even be used to predict seizure events. So the focus for this 

research is to increase spike recognition rate. With this in mind, together with the help 

of Dr. Chiu, we designed features specifically targeting at increase of spike recognition 

rate. Some of standard statistical features are also used. The following section discusses 

the two features we use that we believe have the most impact on spike detection.  

3.5.1 Approximate Entropy (ApEn) 

In analyzing the regularity of time-series data, approximate entropy (ApEn) is 

often used. ApEn was initially developed for analyzing medical data such as heart rate 

and endocrine secretion. ApEn quantifies the regularity and predictability of time-series 

data. We believe this is the key to effectively distinguish between different EEG patterns, 

especially seizure. Seizure is defined as a transient symptom of "abnormal excessive 

or synchronous neuronal activity in the brain". The synchronicity of neuronal activity 

should be distinguishable from normal activity using ApEn. The calculation of ApEn 

process is listed in equations (3) to (5) with a signal S (finite length N) was performed 

by following step 1 through step 6. The parameter m represents the length of the 

sampling window, which was the dimension of the vector to be shifted, and r is the 

value of the threshold representing the noise filter level chosen in the range 0.1 to 0.9. 

Large ApEn values imply irregularity of a data sequence, whereas small values imply 

regularity. The section below describes the process of calculating ApEn for a vector of 

data sequence: 

(1) S = [x(1), x(2), …, x(N)] is the vector of data sequence. 

(2) x*(i) is a subsequence of S such that x*(i) = [x(i), x(i+1), …, x(i+m-1) ] for 1

≤  i ≤  N – m ＋ 1. 

(3) Let r = k × SD for k = 0.1 to 0.9, where SD is the standard deviation of S. 

http://en.wikipedia.org/wiki/Neural_oscillation
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(4) For each 1 ( ) ( ) 1x* , x*i j N m≤ ≤ − + , i ≠ j, d [ ] is the Euclidean distance 

operator. 
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Finally, the ApEn is defined as follows:  
1( ) ( )m mApEn r r+= Φ −Φ            (5) 

  

3.5.2 Total Variation 

In mathematics, total variation can have meanings and interpretations depending 

on usage. Total variation is used mainly in de-noising image, and differential equation 

analysis. The concept of total variation for a real-valued continuous function can be 

viewed as an integral involving the function on a defined domain. For complex 

measures total variation has different definition. Equation 6 shows the definition of total 

variation for single-measure (real values) functions.  

𝑉𝑏𝑎(𝑓) = ∫ |𝑓′(𝑥)|𝑑𝑑𝑏
𝑎  (6) 

The definition of total variation can be interpreted as the sum of “acceleration” of a 

given function. A large value of total variation implies faster value fluctuation of values 

over the defined interval, and vice versa. After examining real examples of different 

EEG activities, we believe that total variation could be used as an indicator for spike 

detection.  
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3.5.3 Feature Extraction Summary 

Aside from ApEn and total variation, we also included three other commonly used 

features for the analysis of bio signals, namely, energy, skewness, and standard 

deviation. Skewness measures the asymmetry of a distribution, energy measures the 

total energy displacement of neurons, and standard deviation measures the dispersion 

variation of the EEG waves. Each 2-second epoch consists of signals from all 16 

channels. One of our main focuses is to study the effectiveness of using bipolar montage 

in the detection of epileptic waveforms. Therefore, 16 bipolar montage signals are 

calculated using the 16 unipolar montage signal values. The 4-stage wavelet 

transformation decomposes the filtered signal into 8 sub frequency ranges, among them 

are the five primary EEG sub-bands. The 8 decomposed signal parts go through the 

feature extraction process. Entropy, total variation, standard deviation, skewness, and 

energy are the five feature types that can be extracted from each decomposed signal. 

Then each feature type extracted from each channel’s decomposition bands are taken for 

calculation of statistical features; sum, max, min, and average. The statistical features of 

different feature types might help us distinguish different epileptic states. If there is any 

abnormal activity across all EEG sub-bands, then the statistical features might magnify 

the anomaly.  

Since bipolar EEG shows the potential difference in neighboring electrodes. A 

clinically defined spike is more clearly shown to neurologists under bipolar EEG 

montage. Therefore, theoretically, it is possible to use bipolar EEG montage directly 

without using wavelet transform for detection of spike waves. We test this hypothesis by 

also directly extracting features from bipolar EEG signal values. Table 1 summarizes all 

the possible features our system can extract from a 2-second EEG epoch. In total 1700 
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features can be extracted. We choose all or a subset of these features for experiment 

which is discussed in detail in the experiment design section. 

Table 1 Feature Extraction Summary 

Feature 
type 

Data Type 
Total 
Variation 

Standard 
Deviation 

Approximate 
Entropy Skewness Energy 

Unipolar Montage 
(With WT) 

160 160 160 160 160 

Bipolar Montage 
(With WT) 

160 160 160 160 160 

Bipolar 
(Without WT) 

20 20 20 20 20 

 

3.6 Feature Selection 

3.6.1 Fisher Score 

Classification of instances can be done very accurately if there exist enough 

differences in some feature between classes. Often we do not know the degree of 

difference that exist across different classes in different features. The fisher score ranks 

the difference rate of the feature between different classes. It can determine the most 

relevant features for classification. This is done using discriminative methods and 

generative statistical models. Fisher score uses the fisher function to rank the feature 

value and sets the importance of the features. Features are iteratively tested to achieve 

high accuracy.  

For example, assume that there are n training samples for a class, and each training 
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sample has h types of features. The training sets of the two classes for 𝛺𝑎,𝑏 are denoted 

𝐶𝑎 = �𝑉𝑎,1,𝑉𝑎,2,𝑉𝑎,3, … ,𝑉𝑎,𝑛�  and 𝐶𝑏 = {𝑉𝑏,1,𝑉𝑏,2,𝑉𝑏,3, … ,𝑉𝑏,𝑛} , where a training 

vector 𝑉𝑖,𝑗  initially contains h feature values that can be represented as 𝑉𝑖,𝑗 =

[𝑣𝑖,𝑗,1, 𝑣𝑖,𝑗,2, … , 𝑣𝑖,𝑗,ℎ]. The discriminant ratio 𝐼𝑎,𝑏,𝑘 of the k-th feature can be evaluated 

using (6) for a hyper-plane 𝛺𝑎,𝑏. Equation (7) aims to evaluate the level of separability 

between the two classes (a and b) as well as the stability in the same class for the k-th 

feature value. 

𝐼𝑎,𝑏,𝑘 = (𝜇𝑎,𝑘−𝜇𝑏,𝑘)2

𝜎𝑎,𝑘
2 +𝜎𝑏,𝑘

2                          (7) 

where 𝜇𝑖,𝑘 and 𝜎𝑖,𝑘 denote the mean and standard deviation values, respectively, of 

the k-th feature for all training samples in class i, which can be evaluated using 

equations (8) and (9), respectively. 

𝜇𝑖,𝑘 = 1
𝑛
∑ 𝑣𝑖,𝑗,𝑘
𝑛
𝑗=1                           (8) 

𝜎𝑖,𝑘 = � 1
𝑛−1

∑ (𝑣𝑖,𝑗,𝑘 − 𝜇𝑖,𝑘)2𝑛
𝑗=1                    (9) 

For a hyperplane, the discriminant ratio of a feature type needs to be evaluated first. 

They are then sorted in descending order. The k-th feature in the sorted list corresponds 

to the k-th best feature for a hyperplane. The training problem thus becomes the finding 

the m best features from the feature set and then forming the feature vectors. 

The process of feature selection for a hyperplane 𝛺𝑎,𝑏 is stated as follows: The 

discriminant ratios for all features are first arranged as an 

array 𝐼𝑎,𝑏 = [𝐼𝑎,𝑏,1, 𝐼𝑎,𝑏,2, … , 𝐼𝑎,𝑏,ℎ] . The elements in array 𝐼𝑎,𝑏 are first sorted in 

descending order. We select the feature according to the value of 𝐼𝑎,𝑏, then evaluate the 
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accuracy of the two classes. The overall architecture of Fisher Score is shown in Figure 

6. 

 

Figure 6 Fisher Score Architecture 

3.6.2 Genetic Algorithm 

Genetic algorithm (GA) is a search heuristic that aims to generate optimizations 

and solutions to search problems. The algorithm was proposed by Prof. John Holland. 

The idea behind GA was to mimic natural selection process, which involves mutations, 

inheritance, crossover, and selection. In nature, the selection process yields the fittest 

subjects; the survivors. For search problems, such as the problem of finding optimal 

parameters for an operation, the selection process tests the “fitness” of parameters and 

finds optimal parameters. GA simulates cells in nature, with its main component 

elements being genes, chromosomes, group, and fitness function. For each generation, 

fittest cells have the best current chromosomes and are the survivors. The surviving 

cells evolve generation to generation attempting to become better adapted to the 



 

 25 

environment. GA starts by creating a population of randomly generated individuals 

represented in binary strings consisting of 0s and 1s. The fitness of each individual is 

evaluated for each generation and the fittest individual is selected. Surviving individuals 

can mutate, recombine, and mate with each other to generate the next genetic generation. 

Then the algorithm checks if the termination condition has been achieved or not. If the 

termination condition is not met, the selection process goes on until termination 

condition is achieved. Figure 7 illustrates the architecture of GA. 

 

Figure 7 Genetic Algorithm flow diagram 

3.1.1.1 Chromosome 

A chromosome in a population represents a possible solution to the problem. Each 

chromosome is encoded with a binary string consisting of 0s and 1s. Each bit represents 

some characteristic to the solution. The longer the chromosomes, the more difficult the 

problem is as the number of possible solutions exist, leading to more generations 

required to obtain an optimal gene. In practice, it is possible for overly long 

chromosomes to lead to premature termination as sometimes, due to machine or time 
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limitations, convergence is forced and global solution is not obtained. In such case, 

accuracy of GA results would be negatively affected. 

3.1.1.2 Fitness Function 

A fitness function is a particular type of objective function that prescribes the 

optimality of a solution in a genetic algorithm so that the particular chromosome may be 

ranked against all the other chromosomes. It can evaluate whether the chromosomes are 

suitable for the environment. It can also select the best individual by ranking all 

chromosomes from the generation. Individuals are ranked and assigned expectation 

values depending only on their ranking, not on absolute fitness. Each individual is 

assigned a rank based on its fitness. Assuming that the best individual in a population is 

ranked as first, the probability of selecting an individual is calculated as follows in 

equation (6): 

𝑃𝑖 =
𝑛𝑚𝑚𝑚−

�𝑛𝑚𝑚𝑚−𝑛𝑚𝑚𝑚�(𝑖−1)
𝑁−1

𝑁
𝑤ℎ𝑒𝑒𝑒  𝑛𝑚𝑚𝑚 + 𝑛𝑚𝑚𝑚 = 2 𝑎𝑎𝑎 𝑛𝑚𝑚𝑚 ≥ 𝑛𝑚𝑚𝑚 ≥ 0             (6) 

3.1.1.3 Operators 

A. Crossover 

A crossover is a genetic operator used to vary the configuration of a chromosome or 

chromosomes from one generation to the next. A crossover selects genes from parent 

chromosomes and creates a new offspring with new genes. Several types of crossover 

exist; the section below describes three commonly used crossover methods. 

i. One-Point Crossover 

A one-point crossover picks two mating individuals as parents, then picks a random 

locale in the chromosomes, known as crossover point and all data beyond that point in 
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either organism string is swapped between the two parent organisms. 

ii. Two-Point Crossover 

This is roughly the same as the one-point crossover, but it has two crossover points 

and swaps the middle part between two crossover points. 

iii. Cut and Splice 

Cut and splice means that parts with different lengths can be swapped between the two 

parents. 

B. Mutation 

In genetic algorithms, mutation is a genetic operator used to maintain genetic diversity 

from one generation of a population of algorithm chromosomes to the next. Mutation alters 

one or more gene values in a chromosome from its initial state. It can result in entirely new 

gene values being added to the gene pool. Mutation occurs during evolution according to a 

user-definable mutation probability. It can help to prevent the population from stagnating at 

any local optima. 

3.7 Classification 

3.7.1 Support Vector Machines 

On the basis of characteristics, sometimes we would like to divide some of the data 

in a group of data into two groups. There are many methods that have good results for 

data classification. These include nearest neighbor, neural networks, decision trees, and 

support vector machines. The average accuracy rate of these methods is not much 

different; however, support vector machine has the advantage in that it is easy to use. 

The original idea of SVM classification is to use a linear separating hyperplane to create 
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a classifier. The vector that effects separation is called a “support vector”. 

Support Vector Machines (SVMs) is a new technique for data classification. It is a 

relatively new learning process that is highly influenced by advances in statistical 

learning theory and a sufficient increase in computer processing power in recent years. 

Support vector machines use the given training sample sets to build the categories and 

train the model to predict unknown data. Each training sample data maps into the 

hyperplane and becomes the classification point. Support vector machines construct a 

hyperplane, or set of hyperplanes, in a high-dimensional or infinite-dimensional space, 

which is used for classification. We usually hope that the hyperplane will divide the data 

into two groups, with the same type of data being grouped onto the same side of the 

hyperplane. However, it is often the case that the data is far from linear and the datasets 

are inseparable. To allow for this, kernels are used to non-linearly map the input data to 

a high-dimensional space (feature space). The new mapping is then linearly separable. A 

simple illustration of this is shown in Figure 8. 

 

Figure 8 High-dimensional mapping 

 A classification task usually involves training and testing data consisting of some 

data instances. Each instance in the training set contains one class label and several 

values. The goal of an SVM is to produce a model that predicts the target value of data 

instances in the testing set given only the attributes. To use an SVM, we may need to 
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map the input space into a high dimensional feature space to realize the linearity of the 

classifier. By feeding the algorithm with a set of training data, it can determine a 

classifier or an optimal hyperplane. We can then use it to classify test data in order to 

observe the accuracy of the classification. If the accuracy is over a certain threshold, we 

use the classifier to classify the incoming unknown data. This is the goal of the 

development of the SVM. It has good performance in a wide variety of applications, 

such as text categorization, image recognition, hand-written digit recognition, and the 

determination of cancer cells. 

 

 

Figure 9 Support vector and separating hyperplane 
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𝑤𝑇𝑥+ + 𝑏 =  +1 

𝑤𝑇𝑥− + 𝑏 =  −1 

𝑥+ = 𝑥− + 𝑡𝑡 

𝑤𝑇(𝑥− + 𝑡𝑡) + 𝑏 = 1 

−1 +  𝑤𝑇𝑡𝑡 = 1 

t = 2
𝑤𝑇𝑤�  

We then try to maximize t = 2
𝑤𝑇𝑤� , which is equal to minimize 𝑤

𝑇𝑤
2� . 

 

Figure 10 An example that is not linear separable 

However, a practical problem may not be linearly separable, as illustrated by the 

example shown in Figure 10. In this situation, it is called “infeasible”. 

3.8 Post-Classification Spike Matching 

According to Dr. Chiu and our careful observation on real EEG data, spike 

occurrences often happen in “clusters”, that is, they appear to occur in groups with little 

time interval in between each other. This leads us to speculate that these spike clusters 

might be linked to seizure episodes. Our SVM classifier performs best at distinguishing 

between normal and seizure wave forms, which is not the main focus of this research. 
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We wish to improve spike recognition even further by examining normal outputs from 

our classifier. To do so we proposed the spike matching method. As far as we are 

concerned, no other research has added a post-classifier filter to further attempt to 

capture epileptic spikes.  

Due to the idiosyncrasy of individuals with epilepsy, there is no one universally 

accepted definition for spike. Researches and neurologists generally have their own 

specific definitions for spike. In general, the definition of a spike is a short burst of 

electrical discharge, which is often followed by a slow “recovery” wave in which the 

neuron regenerates. Figure 11 shows an example of a classical definition spike. The 

trouble with defining a universally accepted spike is in defining 1) the magnitude of 

burst, 2) and the longevity of the burst and recovery. Figure 12 shows another real life 

example of spike which does not appear to conform to the general definition of a spike.  

 

Figure 11 Real example of a classical spike. 
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Figure 12 A case of a spike that is not so apparent and easy to spot. 

Typically when a spike occurs, the opposite neighboring EEG readings show 

opposite signs. This is also called phase-reversal. Short pulse discharges alone does not 

imply spike, and neither does phase reversal. After consulting with Dr. Chiu, we 

designed the spike matching program to detect spike in two stages. The first stage 

detects short pulse of discharges. The second stage checks for phase-reversal. If an EEG 

segment passes these two criteria, then we consider it a spike.  

The spike matching method alone is a poor tool to find spike segments given that 

real life EEG readings vary to a high degree from patient to patient and there are often 

other uncertainties such as signal noise and pure coincidences which would might lead a 

normal reading of EEG to be recognized as spike. This is why most researches turn 

away from using spike matching programs to spot spikes. 

 Since our main focus is to find clusters of spikes that occur within a short time 

frame, we are more meticulous in the short time frame following a spike confirmed by 
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SVM classifier. Once the SVM classifier classifies an EEG epoch as a segment 

containing spike(s) the following 10 seconds of EEG are not only screened by the 

classifier but also by the spike matching block. Spike matching is more lenient than the 

SVM classifier and therefore is only used right after a spike has been found by SVM. If 

the classifier classifies any 10-second segment after a spike normal, then the follow-up 

SVM-classified normal segment will get reexamined by the post spike matching block 

to ensure that no spike pass by undetected; this would improve spike detection rate. 

There is, however, a disadvantage where the overall normal recognition rate would drop; 

increasing false alarm rates. Tolerable rates of false forecast of epileptic seizure in 

exchange for higher sensitivity would not cause a big problem in patients with epilepsy. 

In a real-life scenario, a patient upon receiving a seizure warning only has to stop 

whatever he or she is doing and make sure that no potential danger is around should he 

or she lose control of his body temporarily due to a seizure episode. In contrast, if a 

seizure is not forecasted, the patient would be in danger of potential threats from seizure 

episodes. Activities even as simple as walking stairs could lead to severe injury.  

3.9 Experiment Design 

Once we had our system implemented, we test different feature configurations 

hoping to achieve an acceptable classification rate using the most effective feature 

extraction scheme. Since the ultimate goal of this research is to one day be able to 

forecast seizure occurrence, Dr. Chiu, the neurologist we collaborate with, suggests that 

it is more practical for the nature of this research to focus more on the recognition of 

epileptic spikes rather than seizures.  

In theory, Fisher Score and Genetic Algorithm should be able to derive the best 
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features for classification and there is no need to use only a subset of all possible 

features. However, due to time, complexity, and memory limitations of computing, 

often premature convergence is forced and only local optimum of a solution is found 

instead of a global optimum. It is possible to obtain better results using only a subset of 

all features. Therefore, we conduct a series of experiments using different feature 

subsets for training and prediction and try to find an efficient feature extraction 

configuration.  

For all our experiments, we use the same set of raw EEG data obtained from 

NTUH. The data consists of 83 minutes of selected EEG data which were annotated by 

neurologists. We first test with all the 1700 features described in feature extraction 

summary section. The results from using all features were used as benchmark for 

comparison.  

From the benchmark classification run we obtain the list of top most important 

feature types provided by Fisher score and genetic algorithm. Using that list, we then 

proceed to test classification using only the feature types within. The first experiment is 

to compare classification results between using all features and using only the most 

important feature types.  

The second experiment we conducted was to test our hypothesis about the 

effectiveness of using bipolar EEG montage for feature extraction. For this experiment, 

we use unipolar montage related features for classification.  

Our third experiment was to test the effectiveness of the post-classification spike 

matching. We employ the post-classification spike matching module and assess the 

classification results. Ideally we want to increase sensitivity even further without 

suffering too much specificity.  
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Chapter 4 Experimental Results 

4.1 Seizure and Spike Detection 

4.1.1 All Features (Unipolar and Bipolar Montage) 

The annotated short term EEG records we obtained includes 1939 2-second epochs 

of normal activity, 436 2-second epochs of spike activity, and 444 2-second epochs of 

seizure activity. Notice that the proportions of different waveforms do not reflect 

real-life occurrence rates of these waveforms. Spikes and seizure do not occur 

frequently out of the norm. However, these two waveforms are upmost detection 

priority and therefore more samples are needed for a strong prediction model.  

Half of the 2-second epochs are taken for training, and the other half are taken for 

prediction. In total, our system currently can output 1700 features for each 2-second 

epoch. We use these 1700 features together to obtain an initial classifier. This classifier 

is also used as benchmark for other future configurations. Table 2 shows the recognition 

rates of classifier using all features. 
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Table 2 Recognition rates of classifier using all features 

Input 
Output 

Normal 
Total: 969 

Spike 
Total: 218 

Seizure 
Total: 222 

Normal 908 35 0 

Spike 61 181 0 

Seizure 0 2 222 

Recognition Rate 93.7049% 83.0275% 100% 

 

It can be seen from Table 2 that recognition rate for seizure is high. Seizure 

activities usually last for a few seconds to a few minutes and display wave patterns that 

are very distinguishable from normal wave patterns. The problem of classifying 

between normal and seizure waveforms has practically been solved by other previous 

researches. A research at MIT constructs patient-specific classifiers that detect the onset 

of an epileptic seizure through analysis of the scalp EEG shows promising results in 

detection of real-time EEG seizure detection applications. What is worth noticing is that 

there seems to be a difficulty in distinguishing between spike and normal waves. This is 

of no surprise since a typical spike only lasts for about 70 milliseconds with no 

noticeable signs ahead. Our feature extraction takes 2-second epochs; statistical features 

easily masquerades intrinsic characteristics of a spike, contributing to the lower 

recognition rate for spike.  

4.1.2 Most Influential Features 

From the first classifier with GA and Fisher Score we obtained a feature 
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importance list where the impact of feature is listed. The list not only reveals the 

effectiveness of features but as well as shows us what we should focus on in terms of 

feature extraction. Table 3 shows the top 5 ranked feature types. The table shows us the 

type of feature and which sub band the feature type was used. A feature type represents 

a range of features using same feature extraction function. The top five features types 

represent about 80% of top 100 features out of 1700 features.  

Table 3 Top ranked feature types 

Sub-band Feature Type 

Delta ApEn 

Theta Total Variation 

Alpha ApEn 

Alpha Total Variation 

Theta ApEn 

 

 The top most common and influential features, as shown in Table 3, all have two 

things in common; 1) they all derived from lower frequency bands, 2) They are all 

either entropy or total variation related. We have yet to consult experts in epilepsy about 

the first phenomenon. The second phenomenon confirms our hypothesis about the 

effectiveness of using ApEn and total variation for detection of spikes and seizures.  

 Given the top ranked feature types are mostly ApEn and total variation related, we 

test the effectiveness of a classifier using solely these two types of features. A classifier 

with only these two feature types was created. The total number of features for this 

classifier was 740. Results are shown in Table 4. 
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Table 4 Recognition rates of classifier using only ApEn and total variation 

Input 
Output 

Normal 
Total: 969 

Spike 
Total: 218 

Seizure 
Total: 222 

Normal 914 34 1 

Spike 55 184 1 

Seizure 0 0 220 

Recognition Rate 94.324% 84.4037% 99.0991% 

 

The classifier using only ApEn and total variation showed slightly better 

recognition rates for spike and normal. Although the result is in accordance with our 

hypothesis about ApEn and total variation being the major feature types that could be 

used to tell apart spike and other waveforms, the improvement is still not enough for 

spike recognition rate to increase to a good level. Since spike recognition is the main 

focus of this study, we employ other methods to increase spike recognition rate which is 

described in detail in the post-classification spike matching at section 4.1.4. 

4.1.3 Feature Extraction Using Unipolar Montage Values 

As far as we are concerned, not many researches use bipolar montage for analysis. 

Mathematically, different EEG montages are merely different ways of presenting the 

same data. From unipolar montage, values of other montage types can be calculated 

easily by either obtaining differences between channels or averaging neighboring 

channels. However, the doctors we collaborate with use bipolar montage when they 

screen patients’ EEG. We try to design algorithm for classification by understanding 
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how doctors screen EEG. Figure 13 shows the same segment of EEG under unipolar 

and bipolar montages. The figure on the left is the segment of EEG displayed using 

unipolar montage. The figure on the right is the same segment of EEG but displayed 

using bipolar montage. Notice the spike present under bipolar montage is much clearer 

than under unipolar montage due to the visibility of phase reversal wave pattern under 

bipolar montage.  

 

Figure 13 Example of EEG segment displayed under different montage configurations 

 The improvement of incorporating bipolar montage values for feature extraction 

and for classification is shown in Table 5. The table shows recognition rates of a 

classifier using only unipolar values. We can see that recognition rates for spike and 

normal are lower than the other classifiers we used for this research, which all included 

bipolar montage values. From the table we can also see that recognition rate for seizure 

is high. For classifiers only needing to distinguish between seizure and normal, using 

unipolar montage values is good enough. The main reason for usage of bipolar montage 

is try to magnify intrinsic characteristics of spike. 
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Table 5 Recognition rates of classifier using unipolar montage values only 

Input 
Output 

Normal 
Total: 969 

Spike 
Total: 218 

Seizure 
Total: 222 

Normal 898 44 0 

Spike 71 174 0 

Seizure 0 0 222 

Recognition Rate 92.6729% 79.8165% 100% 

 

4.1.4 Increasing Spike Recognition Rate Using Post-Classification 

Spike Matching 

The post spike matching program takes bipolar montage values as input (not 

features) and checks for phase reversal and also checks for any EEG segments with 

template spike waveforms. The matching algorithm is not used alone due to the 

existence of artifacts, noise, and the fact that spike waveforms differ from person to 

person. As mentioned before, the spike matching program offers high sensitivity but low 

specificity. Nevertheless, we decided to use a spike matching program to try to find 

spike clusters. When the classifier takes features of an EEG epoch and classifies the 

segment spike, the spike matching program is then used for the following 10 seconds of 

EEG input. The idea is that spikes occur in clusters and once one spike has been spotted, 

the probability of spikes occurring within the follow-up short time frame increases. 

Standalone spikes pose relatively lower threat than spike clusters. The 10 seconds of 

EEG following a classifier-labeled spike is screened by the spike matching program as 
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well as being classified by the classifier. If either the classifier or the spike matching 

program labels any of the following 5 EEG epochs (10 seconds) spike, then we consider 

the corresponding epoch(s) as segments containing spike.  

We employ the post-classification spike matching program on our classifier with 

the best performance, which is the one using only ApEn and total variation-type features. 

Table 6 shows the recognition result of using our post-classification spike matching 

program to further increase recognition rate for spike. Indeed, the spike recognition rate 

increased. However, it only increased by 2% at a cost of 5% decrease in normal 

recognition rate. Normal recognition rate dropped to about 91%, which might not be 

practical since this might translate to too many false alarms, disturbing patients’ daily 

life.  

Table 6 Recognition rate of classifier with post-classification spike matching 

Input 
Output 

Normal 
Total: 969 

Spike 
Total: 218 

Seizure 
Total: 222 

Normal 878 29 1 

Spike 91 189 1 

Seizure 0 0 220 

Recognition Rate 90.6089% 86.6972% 99.0991% 

 

We designed the spike matching program to analyze bipolar montage EEG values. 

We used derivatives to measure the speed of ascend of a spike. Sometimes doctors look 

for phase-reversal when screening for spike. Figure 14 shows an ideal depiction of 
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phase reversal. When a spike occurs, the discharge spreads out to the neighbors much 

like water ripples caused by water droplet. Again, we use derivatives to look for phase 

reversal. Opposite but same magnitude derivatives between two electrodes imply a 

spike has occurred exactly in the middle between the two electrodes. Opposite but 

different magnitude derivatives between two electrodes imply that a spike took place 

between the two electrodes, but not at the midpoint of the two locations. In such case, a 

phase lag also occurs where the discharge travels to the closer electrode first then to the 

other neighbor electrodes. When a spike has occurred and phase lag is present due to the 

location of the spike, it is difficult to tell between existence of phase reversal or just a 

coincidence exist in which derivatives happen to be opposite. We have yet to solve the 

phase lag problem and to come up with a better post classification spike-matching 

algorithm. It can be said that our approach for spike matching is a failure. However, we 

believe that adding a post-classification spike matching program could be a good 

solution to finding spike clusters. More studies need to be conducted to design a good 

post-classification spike-matching system.  

 

Figure 14 Phase reversal 
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Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

The usage of EEG for diagnostic for epilepsy and other brain-related diseases has 

great potentials for helping people with brain disorders as EEG machines become 

cheaper and more portable. This thesis presents a classification system for seizure and 

spike detection, which might one day be made into products helping people with 

epilepsy in a real-time fashion. The system was tested using real data from NTUH and 

obtained good preliminary results. The results of this research mainly come from the 

collaboration of experts in neurology. This research, alongside with others of the same 

field, may serve as foundation to many brain-related applications.  

5.2 Future Work 

The first thing that we aim to improve is the design of post-classification spike 

matching system. We believe the overall system architecture for our classification 

system makes rational sense in that it complies with the way doctors screen EEG. We 

need to, however, find ways to overcome some fundamental problems such as the 

detection of phase reversal from bipolar montage. With a good post-classification spike 

matching module we can achieve high spike recognition rate. With high spike 

recognition rate, the next research will be finding correlation between spike and seizure, 

eventually leading to a seizure forecasting system; the ultimate goal of this research. 
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