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Abstract
In this article, we consider the local behavior of anon-trivia solution for the time-harmonic
Maxwell system with anisotropic media. The main result of this articleis the bound on the
vanishing order of the solution of the Maxwell system, which is a quantitative estimate of the strong
unique continuation property(SUCP). And the most important tool is Carleman estimate. Our
strategy in the proof is to derive doubling inequality through three-balls inequality.
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Quantitative uniqueness estimate of strong unique
continuation property for the Maxwell system with

anisotropic media

1. Introduction

The Maxwell system is firstly mentioned by James Clerk Maxwell in the pa-
per 7On Physical Lines of Force” which is published in 1861. He derived it from
Gauss's law, Faraday's law and Ampre's circuital law. Furthermore, he derived
electromagnetic wave equations in 1865 and claim that light is an electromagnetic
wave. In fact, he established the fundamental electrodynamics and had a significant

impact on modern physics.

1. Gauss's law: The total electric flux coming out of a closed surface is equal to

the total charge enclosed by that closed surface. Tt means that

gé(eoE-dA:Q

2. Gauss law for the Magnetic Fields: The total magnetic flux coming out of a

closed surface is always zero. It means that

3. Faraday's law: The line integral of electric field over a closed contour is equal
to the time rate of change of the total magnetic flux that goes through any

arbitrary surface that is bounded by the closed contour. It means that

0
j[E-ds:a//p,gH-dA

4. Ampre's circuital law: The line integral of magnetic field over a closed contour

is equal to the total current plus the time rate of change of the total electric
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flux that goes through any arbitrary surface that is bounded by the closed

contour. It means that

fitaem ([ 5102 [ oran

where F is the electric field, H is the magnetic field, J is the current density, @)
is the total charge, ¢ is the permittivity of vacuum, and pg is the permeability of

vacuulnl.

Actually, Maxwell system can describe more complicated physical phenomenon
in real life, so it has a general form, which is depending on the medium. Now we

assume J = 0 to simplify the problem.

So we can define that F = (Ey, Ey, E3) is the electric field, H = (Hy, Hs, H3) is
the magnetic field and w is the frequency in a domain 2. Denote the time-harmonic

Maxwell system with anisotropic media

curlll = |—iwiH

curlH = iwel

in © (1.1)

where  is an open subset of R* containing 0, w € C\ {0},and (), u(x) are two real

symmetric matrix-valued and positive-definite functions in €2 satisfying the following

property :

(a) £(0) = hu(0) where h is a constant.
(b) e C*(Q)

We can reduce the Maxwell system to a weakly coupled second order elliptic system.
Denote that

1 ,if (k,j,]l) is an even permutation of (1,2,3)
Yi =19 —Lif (k,j,1) is an odd permutation of (1,2,3)

0 ,otherwise



From the Maxwell system we can obtain that
OE = VE; —iwy*uH
OpH = VH, + iwy eFE
By simple calculation and (1.1), we know that
div(curlH) =0 div(eE) =0
div(curlE) =0 div(uH) =0
So we have that for k = 1,2, 3, the following formulas is called (1.2)

0 = Opdiv(cE) = div(eV E}) + div(Oye - E — iwey" uH)
0 = div(uV Hy,) + div(Opp - H + iwpry e E)

Now let P(z, D) Zaﬂk )D; Dy, be an elliptic operator in €2 such that a;;(0) is

a symmetric and posmve definite matrix and a;(z) € C? (Q) , so we can rewrite

(1.2)

3
Pi(z,D)E +2VE - dive + E-£ - Y _ div(iwey*uH) = 0
k=1
3

Py(x, D)H +2VH - divp + B - i+ Y _ div(iwpy*eE) =0
k=1

where

2513 z)D;D; , P3(z, D) = Zﬂkl ) DDy,

2,J=1 k=1
3 3
£ = Z Dy Dre() , ji = Z Dy Dy ju()
m,n=1 m,n=1

So it implies that

|P1(I,D)E’ S 041’E| —|—062|VE| —|—063|VH| S Oé4|U| + Oé5’VU|

(1.3)
|Py(z, D)H| < Bi|H| + 52| VH| + B3| VE| < Bu|U| + 35| VU]

where U = (E, H) is the non-trivial solution for the (1.1), «;, 5; are constants for
i =1,2,3,4,5, and by (1.3) we can assume that M; = max{ay, as} and My =
max{By, b5} =

|Pi(x, D)E| < My|U| + M|VU|



2. The main theorems

Theorem 1 There exists a positive number R; < 1 such that if 0 < r; <1y <13 <

RQ and Tl/T‘g < 7”2/7”3 < Ry then

T 1-7
/ U de < C </ |U]2da:) (/ yUFdx)
|z|<re |z|<r |z|<rs

for U= (E,H) € (L*(Bg,))® where Bg, C  and U is the non-trivial solution for
the (1.1), where C depend on 11 /r3, ro/rs ,Pi(z, D) and Ps(z, D) and 0 < 7 < 1 is

only depending on ry/rs, ro/r3.

And then we want to show the quantitative estimate of strong unique continuation

property for the Maxwell system. The strong unique continuation means that

For all U = (E, H) € H}..(9) vanishes of infinite order at 0, then U=0 in

Theorem 2 gives the upper bound on the vanishing order of the solution of the
Maxwell system, and theorem 3 is the quantitative estimate of strong unique con-
tinuation property.

Theorem 2 If U = (E, H) € (L}

7 (£2))° is a non-trivial solution of Maxwell system,

then we can find a constant Ry depending on Py(z, D) , Py(x, D) and constant m;

depending on Pl(xv D)7 P2($a D) and ||U||L2(|$‘<Rg)/||U||L2(|.Z“<Rél) satisfying
/ \U|*dz > KR™
|z|<R

where R is sufficient small and the constant K depending on R, , U.

Theorem 3 Let U = (E, H) € (L},.(Q))° be a non-trivial solution to the Maxwell

loc

system. Then there exists positive constant Rs and C3 depending on Pi(x, D) |

Py(x, D) and m; such that if 0 < r < Rj,

/ |U!2dx§03/ \U|*dx
|x|<2r lz|<r

where m; is the constant obtained in theorem 2.



3. Proofs
Proof of the theorem 1

First we denote that pg = @s(|z|) = exp((g)(logm)z) and recall a Carleman

estimate [1]:

Lemma For any 5 > 0 large enough. Let S be a small neighborhood of 0, and
u: S\{0} C Q — R and that v € H*(S\{0}) with compact support. Then we have

ﬁ?’/go%]a:\”|u]2d1:—|—6/90%]:c|”+2|Vu|2dx < éo/gpgy$\"+4|P<x,D)u\2dx
(15)

for some positive constant C depending only on P(z,D). Now &, are C? func-

tions, and U = (E,H) € (L} () then U = (E,H) € (H..(Q))° [2] and us-

ing regularization, Friedrich’'s Lemma and ellipticity of P(z, D). We can see that

U=(E H) € (Hp(\{0}))".

Consider that 0 < ry < ry < R < 1, Bg C Q where R is a constant. Define a
cut-off function ¢(z) € C5°(R") satisfying 0 < ¢(z) < 1 and

0, if |z| < 2
i (&
o(x) =1 1, if 51 < |z| <ery

0, if |z| > 3rs

where exp(1) = e. And it is easy to know that for all multiindex o and C,Cy are
constants.

1

D) < Gy v 2 < pa <2
|D¢(x)| < Ciry o Slal<5 (16)

ID*p(x)] < Cary ', ¥ ery < |2] < 31y
We assume n = 3 in the lemma because of the domain Q € R* and then apply

(1.5) to ¢F and ¢H. Firstly, we consider ¢ FE and use (1.4),(1.5),(1.6) and Cauchy-

Schwarz inequality. We obtain

8 el PP 8 GRlel IV EPdz
r1/2<|xr|<ery

r1/2<|z|<era

< / Pl S Pde + B / S| Vo EPde
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< Gy / 3\|| Pr(x, D)(6E) Pz

éo{ / el @MU + 2M26VU P)da
r1/2<|z|<era

IN

+ 3|z P (CLU)? + Cola*|VU|?)da

ri/e<|z|<r1/2

+/ @%M3(Cl\U\2+Cgla:\2]VU\2)dx}
erg<|z|<3ra

<6 / A2 PP + o] |VUP)da
r1/2<|z|<ers

+

5l (U + |2 [VU ") do

r/e<|z|<r1/2

- Slal (U + |x|2|vv|2>dx}
erg<|z|<3ra
<6 / ([P + 2] L VU ) dz
r1/2<|z|<era

+riPgh(r/e) (U + e’ VU|*)dz

ri/e<|z|<ri/2
1358 ers) (U el TUR) s
era<|z|<3ra
(1.7)
where € = mam{ZCN’OMf, QC’OMQQ, ClCH C~’OC’2} and Ce® = G,
We introduce a corollary in [3]

Corollary For 0 < a3 < a; < ay < a4 such that B,,, C €2, we can show the follow-

ing inequality

/ 2] DouPdz < c’/ lufdz
arr<|z|<asr azr<|z|<asr

where C" is a constant independent of r and |a| < 2.
So by the corollary, it implies (1.8)

5% / o kel E e+ 8 P2V EPdz
r1/2<|x|<ers

r1/2<|z|<ers

< @3{ / e P + 2] VU
r/2<|z|<era

+7‘1_3<,0%(r1/e) / |U|?dx + 7“2_390%(67"2) /

r/4<|z|<ry 2ro<|z|<4re

|U\2d:c}

where Cy,C5,C5 are independent of 71,75.

And we have the same conclusion for the ¢H, so we obtained

5% / o P 2| YV H[*d
r1/2<|x|<ers

r1/2<|z|<ers



< @3{ / e + 2] VU
r1/2<|z|<ers

+r1 %05 (r1/e) / \UPdx + ry° o5 (ers) /

r/4<|z|<ry 2ro<|z|<4re

\U\?dx}
(1.9)

Therefore, we can combine the inequality (1.8) and (1.9) such that

63//2 i Gl (B + |H[?)dw + B Al (VEP + [VHP)da
r1/2<|x|<er2

r1/2<|z|<erz

_ / o Gl U+ 8 2|V U Pde
r1/2<|x|<ers

r1/2<|z|<er:

<26, / (|2 U R + | VU P)da
r/2<|z|<ers

e [

r1/4<|z|<ry

|U|?dx + 7"2_390%(67"2) /

2ro <|x|<4ra

|U\2dx}

Now let By > 1 and 3° > 8 > B, > 3C}, then we can get another inequality (1.10)

/ c,oé\:c!3!U|2dx+/ o3lz|= VU dz
r1/2<|z|<erz r1/2<|z|<era
e {Tf?’s@%(ﬁ/e) / e+ 15 i) [ |U|2dx}
r1/4<[z|<r1 2ro<|z|<drs

where Cy = 1/C5, and it is easy to get that

r % () / UPde < / e[|V da < / e[ |Uda
r1/2<|z|<r2 r1/2<|z|<r2 ri1/2<|z|<erz

<{rene [P e [ s

r/4<|z|<r1 2ro<|z|<4ra

Dividing the term 7"2_3@%(7”2), we obtain

/rl/2<|x<r2 |U|"dz < 04{(7“2/7"1) [S%(ﬁ/e)/apﬂ(rg)]/ U |2dx

T1/4<|$‘<T1

+ihlers)/(ra) | |U\2da:}

2ro<|z|<dre

< C{ o/l o) [ s

|z|<ry

~ T(Tz/ﬁ) [P (era)/@is(r2)] /|I|<4T2 U] dx} (1.11)
where C5 = max{Cy, 1}

By choosing such Cs, we know that

Cs(r2/r1)’ 93 (r1/e) /¢h(ra)] > 1



for 0 <ry <ry <1.

Adding / |U|*dz to the both sides of (1.11) and 7 < 1/4, and then we have
lz|<ri/2

/I:c<r2 ‘Ude < 05{(TQ/TI)S[¢%<T1/6>/90?3(T2)]/I ‘U|2d:€

z|<r

(/)[R (er2) /% ()] / |U|2das}

lz|<1

G/l /€) /()] / U Pdz

lz|<ri/2

< 265{m/m?’[wé(rl/emoé(rz)] [ wrd

|z|<ry

+rafriFlglers) )] [ rUde}

lz|<1

Assume A = (logr; — 1)* — (logry)?, B = —1 — 2logry, and A > 0,B > 0 by

simple computation. Therefore, the above inequality becomes

UPda + cap(—BB) /

lz|<1

|U|2dx}
(1.12)

/|x P < 205(7‘2/7“1)3{6:61?(/16) /|

z|<ry

By standard argument, we consider two cases
Casel : If exp(AﬁO)/ |UPdz < exp(—ﬁoB)/ |U|?dx and pick 3 > B, such

|z <r1 Jz|<1
that

i) |

lz|<ry

]U|2da;:exp(—ﬁB)/ U2 de

|z|<1
so we have the following important inequality

/ U2dz < ACs(ra /11 eap(AB) / U2 de
|z[<r2

|z|<r1

:46’5(r2/rl)3<exp(145)/| |U|2dI)A+B<exp(—BB)/| |U|2da:)A+B
z|<r1 r|<1

B A
— 4Cs(ry/r1)? Ulde ) Ulde )
= 4C5(ry/m1) \U|"dx | | L
|z|<ry |z|<1

Case?2 : If exp(Apy) \U|*dx > e:vp(—[i’oB)/ |U|*dz, then we have

|z|<ry || <1

i e
/ |UPda < (/ \U\zdx) (/ yU|2da:>
|z|<rs |z|<1 lz|<1
_B_ _A
A+B A+B
< expwoB)( / \U\?dx) ( / rUFd:c)
|z[<r1 |z|<1

By the arguments, we can take Cs = maz{exp(6yB), 46’5(r2/r1)3} and get that



N Fea T
/ \U|*dz < 06(/ |U|2d:v) (/ |U|2da:> (1.13)
x| <ra |z <r1 lz]<1

For the general case, we can assume that R} < 1/4 and 0 < r; < ry < r3 < Ry with
Tl/T‘g < 7”2/7”3 < 1/4

By scaling, U(y) = Ul(rsy) , €;5(y) = ei5(rsy) , 1i5(y) = paj(rsy) We can have the

same conclusion by above argument and obtain

T 1-1
/ U [dx < c</ |(7|2dx) (/ |U|2dx) (1.14)
lyl<r2/rs lyl<ri/rs lyl<1

where 7 = B/(A+ B) and C = max{exp(ByB), 4C5(r2/11)*}

A = (log (ri/rs) — 1)2 — (log (rz/r3))2
B =—1—2log (ry/r3)

Providing 3 < 1 and Cj can be chosen independent of 3. So undoing the change

of variable of (1.14), we have

T l—T
/ \UPdx < c(/ |U]2da:) </ yw%) (1.15)
|z|<re || <r1 |z|<rs

The proof is now complete.

And then we are going to prove that the Maxwell system have the strong unique

continuation property, so we have to prove the two theorems by using theorem 1.



Proof of the theorem 2 and theorem 3

Without loss of generality, we can use the change of coordinates and property (a)
to obtain that ;
Pi(0,D) =Y e(0)D;D; = A
]

2,

P(0,D) A
h

3
P5(0,D) = Y pu(0)D;D; = — =
ij=1

So we recall another Carleman estimate[1] : For any u € H2_(R™\{0}) with compact
1
support and for any m € {j + §|j € N} we have that
m2—2\o¢| T —2m+2|a|—n D% de <C T —2m+4—n Au de 21
2 <
<2

where C only depends on the dimension n.

And from the previous description, we know that U = (B, H) € (HZ (Q\{0}))°,
so we can use the Carleman estimate for U.

Define a cut-off function x(x) € C§°(R") satisfying 0 < x(z) < 1 and

J
0% [EN< -
o] < 3

0, if |z| > 2ryR

where § < R5R/4 , Ry > 0 is a small number and it will be determined later, and
R is sufficiently small satisfying 0 < R < Ry. Using the (2.1) for yE and yH. Now

for xE, we can derive that

Z m272|a| / |$|72m+2|a|73’DaE‘2dx

la|<2 6/2<|z|<raR

< Z m2_2“|/\x]_2m+2|a_3|D”(XE)\2dx

lor| <2

<C [ ol 2 AGE) P
< C/ |z| 2" AE|?dr + C’/ 2| 2" A (X E)|Pde
6/2<|z|<rsR |z|>raR

+C 2|2 A ( ) |d (2.2)
5/3<|w|<5/2

10



On the right hand side of (2.2), the first term we use the triangle inequality (2.3)

(J/ |z| " |AE — Pi(z, D)E + Py(v, D)E|*dx
§/2<|z|<r4R

<C |z| ™" AE — Pi(z, D)E*dx
6/2<|z|<r4R
+C |z| 2™ Py (2, D)E|*dx

§/2<|z|<raR

and the first term of the right hand side of (2.3), we can find out that
C/ 2| "> AE — Py(z, D)E|*dx
6/2<|z|<rsR

=C 2| 7> (P (0, D) — Pi(z, D)) E|*dx
§/2<|z|<r4R
3
—c [ I E0) - sy (e) DD,

3
<c [ (sl @) el Y DD, B
§/2<|z|<rsR

Ak

< ZTERQ/ | 1= D>E iz (2.4)

2 §/2<|¢|<r4R

since g;;(x) is C?*-function and C,C" are constants.

So by (2.2),(2.3),(2.4) and (1.4) we obtain
Z m2—2|a| / |J}|_2m+2la|_3|DaE|2dl’

<oy i | 2] 2| D B 2da
a=2 6/2<|z|<rsR
+20 M2 / 2|2 | U P20 M2 / 22 VU2
0/2<|z|<rsR 6/2<|z|<rsR
+C 2| 72" A E)|*de+C 2| 72" A} E)|?dx (2.5)
(wl>r4R 5/3<z|<8/2

And we can have the same argument for yH to get that
Z m2—2|a| / |£L’|_2m+2|a|_3|DaH‘2dl’

< O'ZTZW/ ||~ D H *dx
=2 6/2<|z|<rsR
1202 / 2|2 | U Pdat2C M2 / 22V 2
0/2<|z|<rsR 0/2<|z|<rsR
+C |rc|‘2m“|A(xH)l2dw+@/ [ 7 A H) [P dz(2.6)
|z|>ra R 6/3<|z|<d/2

And then we can derive (2.7) from (2.5),(2.6)

11



Z m2—2|a|/ |£If|_2m+2|a|_3’DaU|2d£L’

lal<2 §/2<|z|<rsR

S C//ZTERQ/ |l’|_2m+1|DaU|2d$
a=2 5/

2<|z|<ra R

—l—CM/ |z| ™ U P dx + CM/ |z| 2™V U P de
§/2<|z|<rsR §/2<|z|<rsR

+C 2|72 A (YU)2dz+C 2| 2T A(YU)|Pda (2.7)
|z|>raR 6/3<|z|<46/2

where " = C' 4+ C', Cyy = 2((C + C)M? + (C + C)M2) and C = C 4+ C
By choosing

1 2 pe  R§(Ro+1)°
=ve ™ e g
R:(Ry+1)* 1
Choosing Ry < 1 (such that O(f—;—) < 5) and m = m(Ry) large enough such
that
Z m2—2|a|/ |£L"_2m+2|a|_3lDaU|2d£B
o] <2 §/2<|z|<rsR

<20 / 2|27 Y A (O [Pda+-2C / 2|2 A U) 2 (2.8)
0/3<|z|<5/2 rqR<|z|<2rsR

The first three terms on right hand side of (2.7) is absorbed by the left hand side
when the |z| is small enough.

And then by the definition of y, it is easy to obtain that for all multiindex «

) 0
D® < Ol Z < xl < =
|D*x(x)| < C567', ¥ A7 2] < 5 (2.9)

|DYx(z)| < C4(T4R)_|O“, V R <|z| <2ryR

where C3,Cy are constants. Now we provide Ry < 1/16 such that RS < ry, so by
the corollary in theorem 1 and (2.9), we can derive (2.10) from (2.8)
m?(26)2m3 / \U|*dx +m?(R3R) "3 \U|?dx

§/2<|x|<28 26<|z|<R2R
< § :m2—2|a|/ |$|_2m+2|a|_3|DaU|2dl‘

<2004 Z §4+2|a|/ ’x‘72m+1|DaU‘2d:€

la|<2 6/3<|z|<6/2

+2CC, Y (raR) 2 / 2|72+ DU [P da

<2 raR<|z|<2r4R

< C4(5/3)"2m=3 / U2 da+C(ryR) 23 / UPdz (2.10)

|| <6 |z|<RoR

where C3,C} are independent of Ry,R and m.

12



Adding m2(25)2m_3/ |U|*dz to both sides of (2.10), we can get the left hand

|z|<d/2
side
m?(25)~2m / U2dz + m2(R2R)~2m=3 / U2 de
|x|<26 26<|z|<RZR
1 1
= —m?(26)" 23 / U 2dz + —m?2(28) 23 / U 2da
2 2l <20 2 jal <25
+m?(RIR) >3 \U|*dx
20<|z|<R3R
1
> —m?(26)72m? \U|*dx + mQ(R(Q)R)_Qm_?’/ \U|*dx
2 lo|<26 j2|<25
+m?(R3R) 2™ ? \U|2da
26<|z|<RZR
1
= —m?(26)72m3 \U|Pdz+m?*(R3R) >3 / \U|2dz(2.11)
2 ja|<28 e|<R3R

Combine (2.10) and (2.11), it implies that

1
L n2(26)-2m=3 / \U2de +m2(RIR)~2m=3 / U da
| <26

2 |z|<RZR

< (Cy 4 miP)(§/3)2m= /

|z|<é

|U|2da:+Cfl(r4R)_2m_3/ \U|?dx
|lz|<RoR
R2
We can rewrite C(ryR) 2" 73 and get m?(R3R) ™ 2C)m (=2 )?™*3.
T4
Therefore,

C«Z/lm—2(ig>2m+3 _ Cgllm_2( 4R0

r4 By T 1)2m+3 < Cim~*(4Ro)*™** < exp(—2m)

For all Ry < 1/16 and m?* > (. Thus, we can derive

1
—m?(26)72m3 / \U|*dz +m*(RgR) >3 / \U|?dx
2 || <24 |z|<R2R
< (Clrm?)(5/3)~2m=3 / (U2dz-+m2(R2R)~2m—3e—2m / U[2dz
|z| <6 lz|<RoR

The above argument is valid for all m = m(Ry) = j + 1/2 with j € N, and m large
enough. So we can assume a j, which depends on Ry, and R; = (VC”(j +1/2))7".
For all 7 > jo, we have the following inequality (2.12)

1
L n2(26)-2m=3 / U2de + m2(R2R;) " / U2da
2 jo|<26 |e|<R3R;
—2¢
< (Crm(6/3) 2 [ Pt (RER) P [ jupds
|z[<8 |z|<RoR;

1

where ¢ =

Vel

We can observe that R;11 < R; < 2R;4, for all j € N by simple calculation. If we
can find a R such that R;;; < R < R;, it implies RyRR; < 2Rj+1/16 < Rj4; since

Ry < 1/16 and then we have such relation RyR; < Rj1+1 < R < R; < 2Rj41. So we

13



can get a conclusion

[ wpars [ P
la|<R3R |zl <R3 R; (2.13)

e’ \UPdx < e \U|*dx
|z|<RoR; |z|<R

If there exists a s € N such that
Rj1 < R < R; for some j > jo (2.14)

It is just replacing R by R3* on the above description. By (2.12) and (2.13), we can
obtain (2.15)

1
—m?(26)72m3 / \U|Pdz +m*(R3R;)~>™ / \U|*dx
2 jo]<26 le|<R25+2
< (Crm?)(o/3) 2 [ U AR Ceap(-cRy®) [ UPda
|z|<o || <RZs

So now our goal is to find a appropriate s and Ry to claim an inequality which
is

e |

|| <R3

}
U |2dw < —/ \U|2dx (2.16)
2 Jjol<R2+

By theorem 1, we assume r; = Ra¥"% ry = Rg® and rs = RS2 where s > 1.

1-7
And 71 /r3 < ry/rs < R5 < 1/4, then we divide (/ |U|2da:> to both sides
|

z|<R3®

of (1.15)

T T 1—7
(/ yU|2da:> SU(/ yU|2da:> (/ yUPdaz// \U|2dx)
|z|< R3¢ |z|<R25 T2 |z| <R32 |z|<R3®

and it implies (2.17)

/ |U|2d93// |U|2dg;g€1”(/ |U|2d:r// |U|2da:)
|z|<R2® || < R25+2 |z|< R25 2 |z|<R2®

where C' = maz{exp(By(—1 — 4logRy)), 4(75(]%0)’6}

1— Al —1)2 — (2 ?
a= T_ (4loghy = 1)” = (2log Fo) by definition of 7 in the proof of theorem 1.
T —1 — 4log Ry

We can see that
1< 6 < ég,RSﬂl
2 <a < —bdlogRy

(2.18)
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where 3 = maxz{6,405}.
Because exp(fo(—1 — 4logRe) = e ™ R;*™ and Cj > 1, we have first inequality.

For the second inequality, we consider that

_ —4logRy 42 — 1/4logRy + log Ry
B 1/4logRy + 1
—3logRy — log Ry
—5logR
1—1/5 gt

> —3logRy +2 > 2

And we use (2.17) recursively

/ \U]de// U|2dx 361”( U] dx// ]U|2dx)
|z|<R2® |z|<R35H2 |z|< RS2 \z|<R25
<T@ < |U]| das// ]U|2da:) (2.19)
|z| < R2 |z| <R3

For all s € N. And by definition of a we know that 7 = 1/(a + 1), from (2.18) we

have
G ek D(e7N1)
7(a —[1) & vl n

Then we derive the following inequality from (2.19)

/ |U|2dx// U 2d < 63(‘5“9]%0)“( |U|2d;r:// U] da:>
|z|<R2® |z| <R32 |z|<R2 |z|<R3
(C3R_3ﬁ1) —5logRo)°~ 1</ U dﬁ// \U| dzn)
|z| <R3 x| <R3

Multiply exp(—cRy>*) on both sides, we obtain (2.20)

exp(—cRO_QS)/ |U|2dx// . \U|*dx
|lz|<R2® |z|< R25T2
< cap-cg2) @3y ([ wpae ) [ wias)
|z|<R§ || <R

Let k = —logRy, and compute log(CE Ry ") () — (56)* " H(logC? + 36:k).

So we can find out that if Ry small enough, it means that s sufficient large, then we

have (2.21)
R—Zs B _ o R—Zs 1 R—Qs
0 > (55)" (logC + 381k) = (CER,*™)™"™ < eap(—2—) < Jeap(—3—)

The (2.21) holds for all s € N, and now we should fix Ry such that (2.21) holds and
the m(Ry) and j(Ry) are fixed as well. Fixing Ry, we can derive from (2.20)

15



s—1

1 —cRy* ¢
ea:p(—cROQS)/ \UPdz < 561‘]9( 020 )(/ ]U|2dx// |U|2dx> X
|z| <R3 |z| <R3 x| <Rj

\U|?dx
|x\<R23+2
0 s—1

Our goal is (2.16), so coping with the term (/ |U|2dx// |U|2da:)
) || < RZ lz| <R}
If we have an estimate that

s—1

(/ |U|2dx// |U|2dx> < exp(cRy*/2) (2.22)
jal <R3 2l <R3

Then (2.16) is proved for appropriate s. So now we have to find s such that (2.22)
holds.

Assume N = (/ |U|2dx// |U|2dx>, take loglog for (2.22), we have
|| <R3 |z| <R

log2 — log(ac) + loglogN < s(—2logRy — loga)

By (2.18), we know —2logRy —loga > 0 for all Ry < 1/16, so we can define a number

Sp as
so = min{s € N|s > (log2 — log(ac) + loglogN)(—2logRy — loga)™'}

So the claim (2.16) holds for all s > s.

But now s should also be chosen to assure (2.14) holds.

Let s; be the smallest positive integer such that Rgsl < Rj,, then we can find a
J1 € N with j; > jo such that R; ;1 < Rgsl < R;,. We now can define s, depending
on P (z,D) , Py(x,D) and N as

sp = max{so, 51}

1
For this s,, (2.14),(2.21),(2.22) hold. Thus, we set m = j; + 3 and m; = 3+ 2m
plus into (2.15).
-3 my — -3 my
(e s [ P (MR ARR) A [ s
|lz|<26 lz|<R
mj1—3

8 8 25p+2
-3
< (@ + (" [ _|UFde (2:23)

0
So consider the second term of the left hand side of (2.23)

1 oy , my—3 iy
—(my — 3)*(R3R;,) / L UPdz < (G + (—5—)7)(6/3) / \UPdz
8 | <R2P 2 l|<6
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then it implies

(m1—3)2 2 - / 2 - / 2
3R:R; )™ Ultde < ()™ Ul“d 2.24
SO, SRR [ 0P S () UPdr (224

0 x| <6

(2.24) is valid for all & < R2*?/4 because of the definition of §. So the proof of
theorem 2 is complete with Ry, = Ry. And the first term of the left hand side of
(2.23)

s —32ee ™ [P <@ (M RE ™ [ ks

|| <26 2 |z| <6
then it implies
8CH + 2 —3)?
/ UPde < 35T 2m=3) 6m1/ U2 de (2.25)
| <25 (m1 — 3) e <6

(2.25) is valid for all § < R-"?/4 because of the definition of 4. So the proof of
8C5 + 2(my — 3)26”“
(my — 3)? .

theorem 3 is complete with R3 = R§Sp+2 /4 and C5 =
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