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ABSTRACT

Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma that occurs on the
epithelium of nasopharynx. It is a common malignancy in south-east Asia countries
including Taiwan, Indonesia, Singapore, Malaysia, and Vietnam in addition to Hong
Kong and southern China. Environmental factors, Ebstein-Barr virus (EBV), and
genetic susceptibility are thought to play important roles towards the development of
NPC. The radiotherapy or concurrent chemoradiotherapy of NPC clinical treatment
may still occur local pathologic failure and distant metastasis in many patients despite
of some outcome improvements. Moreover, the radiotherapy with chemotherapy often
accompanies with acute side effects and long-term sequelae including secondary
malignancy. Pursue for novel approaches aiming at improving outcome and reducing
demand for conventional cytotoxic therapy seems thus to indicate immunotherapy as
of an attractive option under development. The crucial advantage of antigen-specific
immunotherapy is the ability to evaluate and monitor immune responses against
targeted antigens and to correlate the findings with clinical responses.

NPC shows strong association with EBV infection that attacks B-lymphocytes as
primary target towards resulted lifelong latent infection while and as well reveals an
observed inhibition on specified cytotoxic T lymphocyte (CTL) populations with EBV
antigenecity specificity. Notably, NPC latent infection case expresses only limited
EBYV viral antigens with less immunogenicity including EBV-encoded nuclear antigen
(EBNA1) and latent membrane protein 1 and 2 (LMP1 and 2) which is greatly unlike
that regular EBV latent infection case with expression of many EBV viral antigens in
symptomatic EBV-related diseases. Both LMP1 and LMP2 may serve potentially as
better vaccine targets due to the poor processing efficiency over with EBNA antigen
while in antigen-presenting cells (APC) as of the infected B lymphocytes. However,
LMP1 and LMP2 are with main shortages both in risky oncogenicity and as well in
weak immunogenicity by stringent class I major histocompatibility complex (MHC-I)
presentation in the host cell of infected B lymphocytes in order for cytotoxic T
lymphocyte (CTL) activations in which as a result shifts the balance towards flexible
class II-MHC (MHC-II) presentation of infected B lymphocytes in order for T helper
(Th) lymphocyte activations with subtle feedback network to enhance B lymphocyte
proliferations towards aberrant tumorigenesis.

Immunotherapeutic vaccination strategy with immunogenic vaccine polypeptides

of assembled multiple epitope set is thus preferred whereas the oncogenic full-length
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LMP1 and/or LMP2 are therefore not recommended. Promising progress in tumor
growth controlling has been exemplified in animal model studies with polyepitope
vaccines comprising MHC-I equivalent class I Human Leukocyte Antigen (HLA-I)
restricted CTL epitope peptides from LMP1 and LMP2 despite of being with notable
restriction in a relatively narrow spectrum of HLA-I alleles as of genetic susceptibility.
Thus, prevalent HLA-I alleles in NPC endemic regions as of HLA-A11, A24, B27,
and B57 should also be included in designing LMP-based vaccine polyepitopes along
with most common HLA-I alleles such as HLA-A2.

Likely, the restricted HLA spectrum of genetic susceptibility may indicate that the
overlooked anchoring agretopes of omega-shape vaccine peptide seems to be required
for crucial docking onto the MHC-I pocket sub-zones towards adequate antigen
presentation of peptide epitope on demonstrating immunogenicity. The design
strategy of MHC-I vaccine peptide thus seemingly demands both optimized agretopes
and immunogenic epitope to which additional peptide segments for improved APC
proteasome processing are attached at both flanking sides. The intended vaccine
peptide of epitope and agretope may be delivered in the format of “in silico DNA
vaccine” which is constructed with expression DNA sequence deduced from the
intended vaccine peptide sequence and as well with upstream control sequence of
LMP1/2 promoter sequence. The developed “in silico DNA vaccine” with intended
specific expression in EBV latent infection lymphocytes may be verified with NPC
cell line of EBV-latent infected B lymphocytes for immunogenic induction in order to
demonstrate the potential ability in shifting cell-mediated immunity (CMI) pathway
towards MHC-I CTL while away from MHC-II Th cell.

In this thesis, we verified structure-based immunoinformatic algorithms of
implemented in-house bmPDA tool in chapter 1 towards important application aspects
of vasopressin bio-mimicry peptide design of known structure, MHC-I binding
epitope peptide prediction of unknown structure, and EBV LMP1 related cancer
vaccine peptide design of combined structure with adequate agretope and epitope for
MHC-I presentation in designed delivery format likely as of DNA vaccine. The
implemented algorithm comprises three sections including constructed peptide
building blocks database, assembled peptide backbone model of building block
candidates, and predicted peptide surface model of functional peptides.

Basically, with the concept of tri-peptide fragment assembly in chapter 2, we
implemented an in-house tool of bio-mimicry peptide design algorithm (bmPDA-tool)
for modeling given peptide structure. With the extracted penta peptides (penta-pep,
PDB-5mer) from all entries of current protein data bank (PDB) in order for serving as
basic bmPDA building blocks, the segmental backbone angles of the 3rd alpha carbon
(defined as aC[3]) towards neighboring aC[2] and aC[4] as of the middle aC[2~4] in
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each aC[1~5] building blocks are analyzed and constructed into searchable
tri-peptides structure string (TPSS-3mer) database which is based on the “structure
alphabet” with putative 22 clusters according to the parameter values including
defined theta angle and edge distance, rotation axis, and rotation angle in order for the
k-mean clustering analysis with bootstrapping 10,000 data entries of tri-peptide
structures. With structure string alphabet of TPSS database, the mining task for
similar backbone structure of 9-mer vasopressin peptide simply takes less than 1
minute for searching exact matches in entire TPSS database transformed and indexed
from entire PDB.

First, to model bio-mimicry peptide structures similar to reference peptide with
known backbone structure in chapter 3, the matched aC[2~4] according to serial
reference penta peptide structures are mined from in-house penta-pep TPSS database
with bmPDA tool in order for assembling peptide structure contig. Specifically, two
mined aC[2~4] building blocks exemplified with KAV and VYN are assembled
towards KAVYN contig based on superimposing [N\aC/C] co-plane of both [aa]
tail-with-head amino acids between two mined aC[2~4] blocks in which the spatial
rotation of mined blocks is accomplished by Quaternion-based approach along with
the simple spatial shift to avoid potential structural hindrance. All fused peptide
conformations in respective block combinations of bio-mimicry structures are
evaluated based on minimal free energy (maximal stability) of each conformation or
based on maximal structure similarity to reference structure in order for ranking
optimal structures by Genetic Algorithm (GA) search strategy and/or third party
program such as ProCheck for instability and Ramachandran plot analysis. The yield
candidate peptide structures are converted to TPSS data in which vasopressin 9-mer
peptide with known backbone structure may normally yield about 400 TPSS data
entries. Second, the selected peptide model with surface structure is converted to
quantitative structure—activity relationship (QSAR) model which is constructed with
TPSS data and quantitative descriptors including peptide surface properties of amino
acids such as exposed surface, accessibility, flexibility, hydrophilicity, charge, and so
forth towards binary clustering based on structure similarity and/or binding affinity
with support vector machine (SVM) according to the surface structure of reference
peptide.

On the first algorithm validation in chapter 4 exemplified with known backbone
structure of reference peptide vasopressin 9-mer [1 YF4] CYF QNC PRG, our bmPDA
tool mines bio-mimicry aC[2~4] building blocks from constructed TPSS database
with qualified [theta/Ad] values in order for assembling candidate peptide
combinations with highly mimicking reference structure. The bmPDA-designed

bio-mimicry peptide backbone structures with different amino acid sequences from
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vasopressin are exemplified with annotated solution numbers (SN) of KGN SVL AIP
(SN.12), DGN SVL AIP (SN.36), and DGN SVL ADS (SN.37) taken from pooled
combinations of candidate peptides in which further requires massive computational
optimization with GA search strategy. The yield candidate peptide structures are
coded as TPSS data in which vasopressin 9-mer peptide with known backbone
structure may normally yield about 400 TPSS data entries in addition to the larger
epitope peptide TMB-355 with about 3,000 TPSS data entries. Thus, the structure
similarity evaluation on respective assembled structure combinations according to
reference structures of vasopressin backbone and surface is accomplished by
evaluating parameters with GA search strategy in physiochemical property, energy
stability, and docking fitness based on accounted reference peptide structures of
vasopressin backbone and surface.

On the second algorithm validation in chapter 5 exemplified with unknown epitope
structure of EBV LMP1/LMP2 peptide sequence, our bmPDA tool mines bio-mimicry
aC[2~4] building blocks from constructed TPSS database with qualified [theta/Ad]
values in order for predicting epitope peptide structure for which the pre-processing
filtering applies GA search strategy and/or ProCheck analysis in order to preliminarily
predict and select stable peptide structures from assembled massive candidate block
combinations and subsequently to be used for assembling runs until completion.
Again, the predicted candidate epitope backbone and surface structures of assembled
peptides are coded as TPSS data in order for full-size immunogenic epitope structure
evaluation by GA search strategy with grouped parameters including physiochemical
property, energy stability, docking fitness, and so forth. In that, our predicted peptide
structures of EBV LMP1/2 contain epitope structure regions which demonstrate high
consistency with epitope antigenecity index measured with NetCTL server, Kolaskar
and Tongaonkar antigenecity scale, and Bepipred program. Moreover, the peptide
design application for NPC cancer vaccine of likely omega shape MHC-I vaccine
peptide from EBV LMP1/LMP2 demands both immunogenic epitope of previous
session and as well optimal anchoring agretopes onto which respective peptide
segments for improving proteasomal processing in antigen presentation cell (APC) are
attached at either flanking sides towards integrated exogenous peptide expression in
DNA construct.

Along with prediction methods for LMP1/2 epitope structures in previous session,
the additional interactions between the potential docking sub-zones in HLA-I antigen
presentation pocket and the anchoring agretopes of predicted candidate vaccine
peptides are evaluated with converted QSAR models for accurate docking analysis by
Molegro Virtual Docker towards mining qualified HLA-specific agretopes. The
binding affinity between HLA docking sub-zones and peptide anchoring agretopes is
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evaluated with SVM based on the correlations among the docking scores and the
quantitative descriptors of amino acid properties. With the reference data set of the
used epitopes of NPC vaccines in previous studies, the comparison on the predicted
epitope and agretopes with our bmPDA tool of structural immunoinformatic
approaches reveals high consistency between the candidate agretope segments and the
predicted candidate epitope segments of EBV LMP1/LMP2. Moreover, the highly
potential epitope segment without effective agretope segments maybe replaced with
proper agretope segments in order to become highly immunogenic epitopes with
improved antigenecity index when compared to the original peptide structure as of
poor immunogenic epitopes.

In chapter 6, we collected approved drugs from Drugbank. Virtual screening was
done by docking with MHC receptor. Drugs with better binding affinity with MHC
receptor were collected as possible candidate for adjuvant immunotherapy. Epitopes
with better performance of antigenecity were collected by the same procedure in
chapter 5. Epitope structure prediction was done by modeling method in chapter 2.
MHC receptor and candidate drugs were docked with candidate epitopes. Drugs
which could enhance the binding affinity between epitope and MHC receptor were
identified. We suggest drugs with ACE (action complex enhancement) to be adjuvant
immunotherapy for NPC.

In conclusion, the in-house designed HLA-I cancer vaccine peptide of epitope and
agretope flanking with proteasomal processing peptide can be delivered adequately in
the likely practical format from “in silico DNA vaccine” which is constructed in
chapter 6 with expression DNA sequence deduced from the designed vaccine peptide
sequence and as well with upstream control sequence of active LMP1/2 promoter
sequence. The developed “DNA vaccine of MHC-I cancer peptide in silico” with
intended specific expression in EBV latent infection lymphocytes can be verified with
NPC cell line of EBV latent infection for immunogenic induction which may
demonstrate the potential CMI pathway shifting towards MHC-I Tc of CTL while
away from MHC-II Th cell.

Keywords: Nasopharyngeal carcinoma, Epstein-Barr virus, cell-mediated immunity,
class I human leukocyte antigen, latent membrane protein 1, agretope, action/agretope

complex enhancer.
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Chapter 1 Structural Immunoinformaticson
Modeling Epitope Variability and Agretope

Stability

Immune system is the defense mechanism of our body against infectious agents and other
foreign organisms in rather complicated process. Immunoinformatics is the computational
method focusing on immune-related interactions in consists of immune-related databases,

epitope prediction, vaccine design, and so forth.

In the past, vaccine development depends on biochemical and immunological
experiments, such as attenuation of the wild type pathogens by random mutations and serial
passages, X-ray crystallography studies of antibody/antigen structure, phage display library,
overlapping peptides, NMR, radioimmunoassay, immunofluorescence, ELISA, Western
blotting, and immunohistochemistry, which is very expensive, time-consuming, with low
immunogenicity and reversible.[1] In recent, high-throughput experiment and computational
advance progresses the understanding on immune system greatly. Assisted with epitope
prediction approach, we can reduce the spectrum of dry lab target proteins and reduce the

cost of wet lab experiments.

1.1 Background Review

1.1.1 Nasopharyngeal carcinoma (NPC)

Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma that occurs on the epithelium
of nasopharynx.[2] It is a common malignancy in south-east Asia countries including Taiwan,
Indonesia, Singapore, Malaysia, and Vietnam in addition to Hong Kong and southern
China.[3] Environmental factors, Epstein-Barr virus (EBV), and genetic susceptibility are

thought to play important roles towards the development of NPC.



The radiotherapy or concurrent chemoradiotherapy of NPC clinical treatment may still
occur local pathologic failure and distant metastasis in many patients despite of some
outcome improvements. Moreover, the radiotherapy with chemotherapy often accompanies
with acute side effects and long-term sequelae including secondary malignancy.[3] Pursue for
novel approaches aiming at improving outcome and reducing demand for conventional
cytotoxic therapy seems thus to indicate immunotherapy as of an attractive option under
development. The crucial advantage of antigen-specific immunotherapy is the ability to
evaluate and monitor immune responses against targeted antigens and to correlate the

findings with clinical responses.

1.1.2 Epstein-Barr virus (EBV)

Epstein-Barr virus (EBV) is a member of the herpesvirus family.[4] It has a double-stranded
DNA genome of 184-kb pairs in length, encoding nearly 100 proteins.[5] It was the first virus
to be associated to human cancer. EBV attack B-lymphocyte as primary target, resulting in
lifelong infection.[5] Presence of EBV genome is demonstrated virtually in most NPC cells
through oncogenesis process of EBV latent infections. Regardless of geographical origin,
EBYV is uniformly detected in patients with undifferentiated and poorly-differentiated NPC.[6]
The EBV-NPC oncogenesis process may equip both proliferation advantage and immune
evasion in order to overcome efficient anti-EBV immune clearance mechanisms of
antibody-mediated immunity (AMI) of antibody-dependent cell-mediated cytotoxicity
(ADCC) as well as cell-mediated immunity (CMI) of cytotoxic T lymphocyte

(CTL)-initiative cytotoxic apoptosis during either latent and/or regular EBV infection phases.

In spite of being a latent infection in B cells, inhibition by a population of EBV-specific
CTLs was observed.[7] Both in vitro and in vivo, these CTLs have been shown to have potent
antiviral activity. Growing evidence revealed that cytotoxic T lymphocytes-based
immunotherapy is effective in other EBV-linked malignancies, such as post-transplant
lymphoproliferative disorders (PTLD). The success of this therapy has encouraged

researchers to develop similar strategies for other EBV-positive tumors, such as NPC.

1.1.3 Latent membraneprotein 1 and 2 (LMPLLMP2)

Notably, NPC latent infection case expresses only limited EBV viral antigens with less
immunogenicity including EBV-encoded nuclear antigen (EBNA1) and latent membrane
protein 1 and 2 (LMP1 & LMP2) which is greatly unlike that regular EBV latent infection



case with expression of many EBV viral antigens in symptomatic EBV-related diseases.[8]
Both LMP1 and LMP2 may serve potentially as better vaccine targets due to the poor
processing efficiency over with EBNA antigen while in antigen-presenting cells (APC) as of

the infected B lymphocytes according to literatures in murine models.[9]

However, LMP1 and LMP2 are with main shortages both in strong oncogenicity and as
well in weak immunogenicity by stringent class I major histocompatibility complex (MHC)
presentation in the host cell of infected B lymphocytes in order for cytotoxic T lymphocyte
(CTL) activations due to that as a result may shift balance towards flexible MHC-II
presentation of infected B lymphocytes in order for T helper (Th) lymphocyte activations
with subtle feedback network to enhance B lymphocyte proliferations towards aberrant
tumorigenesis.[10] Specifically, the basic proliferation advantage is likely from encoding
EBYV latent infection membrane protein 1 (LMP1) with growth factor receptor-like activity
and as well the critical immune evasion is likely from ethnic class I human leukocyte antigen
(HLAT) difference with mutating EBV genome for poor immunogenicity responses at
AMI-antigen epitopes and CMI-antigen epitopes/agretopes within LMP1/LMP2 and/or
EBNA of EBV-encoded proteins.

1.1.4 Epitope variability and agretope stability

Epitope is a part of a protein antigen recognized by either a particular antibody molecule or a
particular T-cell/B-cell receptor of the immune system.[12] On the other hand, agretope is
histocompatibility complex (MHC) binding motif of a protein antigen.[13] Highly likely, the
EBV-NPC immune evasion on ultimatum agretope mutant of CMI maybe the most crucial
strategy for oncogenic negative selection against which the host immune system cannot
counter-act efficiently as opposed to that epitope mutants of AMI and CMI in oncogenic cells
maybe eventually removed with affinity maturations of B cell receptor (BCR) and T cell
receptor (TCR) by means of hyper mutations with gene rearrangements during the long-term

process of EBV-related NPC oncogenesis.

1.1.5 Immune evasion

Modulation of T-cell recognition is of crucial importance for EBV, because this herpesvirus
resides intracellularly for most of its life cycle. During the latent and lytic phase of EBV
infection, antigen presentation of host cell via MHC class I and class II is blocked by multiple

EBV gene products. Detection of cells harboring latent and replicating EBV by CD8+ and



CD4+ T lymphocytes is thus prevented. These so-called immune-evasive maneuvers prevent
the induction of programmed cell death and develop persistent infection and tumor growth
eventually. The NPC immune evasion of agretope maybe exemplified with the prevalence
difference on ethnic HLA1 spectrum along with EBV-LMP1 mutant assorts. The A*02:07
(common in Taiwan population) shows higher prevalence of EBV-NPC than A*02:01
(common in Caucasian population) while further with additional synergistic B*4601/B*14
and extended haplotype HLA A*3303- B*5801/2- DRB1*0301- DQB1*0201/2- DPB1*0401.

The EBV-NPC biopsies from Taiwan cases reveal variant NPC-related LMP1 (NLMP1)
{GenBank: X66863} of immune evasion which shares high amino acid sequence homology
prominently with prototype B95.8-LMP1 {GenBank: V01555} and CAO-LMP1 in China
population. Importantly, NLMP1 over-expression in Balb/c class I major histocompatibility
complex (MHCI1)-context towards regressing experimental murine EBV-NPC may be
resulted likely from regaining strong agretope presentation of NLMP1 in mice MHC1 context
in disregard of selected immune evasion of original NLMP1 in tumor microenvironment of
human HLA1 context that was with weak agretope binding in CMI antigen presentation and
with immune suppression in local immune suppressive cells. The ethnic A*02:07 difference
of genetic susceptibility to EBV-NPC may indicate that omega-shape NLMPInp in CMI
antigen presentation is required for crucial docking onto A*02:07 pit while with overlooked
under-side agretope of head-anchor and tail-anchor along with overstressed bulge-side
epitope in order for inducing adequate immunogenicity presentation towards effective
CMI-CTL induction.

1.1.6 Cancer immunotherapy

Despite recent treatment advances that have improved the quality of life of patients with
nasopharyngeal cancer, local regional failure and distant metastasis still occur in many
patients. Innovative therapies are therefore still under developed. Immunotherapy is an
attractive therapeutic option. There are several advantages to make use of the immune system
to fight cancer. First, the immune system has the natural ability to specifically identify and
kill neoplastic cells while sparing normal tissue. Second, the immune system demonstrates
potential to evolve with the cancer cells. Both humoral and cellular immune system involve
with cells with a vast array of clonally distributed antigen receptors. The diversity of these
receptors enables the immune system to recognize foreign and/or altered antigens and to
discriminate self, or normal cells, from non-self, or cancerous cells.[11]

The immunotherapeutic regime against EBV-NPC for instance may conveniently exploit
various aspects including AMI-ADCC with vaccine peptides, CMI-CTL with DNA vaccines,



and microenvironment immune suppression with in vitro cell activation towards in vivo
adoptive cell transfer. The current challenges except vaccine peptides still install obstacles
including weak HLA 1-binding agretope in host cell or dendritic cell, and specific delivery of
DNA vaccine to host cells without damaging innocent bystander cells. Immunoinformatics is
with remarkably high practical potential in feasible application of epitope/agretope binders
onto AMI-BCR and CMI-HLA/TCR towards mining putative anchor modified agretope
(Ama) and agretope complex enhancer (Ace) with reinforced binding affinity (BAff) of
NLMP1 agretope and A*02:07 pit in order to likely improve NPC-CMI specifically while

with low adverse cytotoxic effect due to non-specificity.

In this study, we implement bio-mimicry peptide design algorithm (bmPDA) comprising
peptide database construction of building blocks, peptide backbone modeling of building
block candidates, and quality evaluation on predicted nona-peptide structures. Our bmPDA of
structure-based immunoinformatic approach aims at designing EBV immunogenicity-related
omega-shape NLMP1 nona-peptide (NLMP1Inp) structures. We apply in-house bmPDA-tool
towards applications of predicting A*02:07-binding EBV-NLMP1np structures in order that
the verification on putative epitope and agretope quality may be accomplished with
outsourcing tools of NetCTL server and Molegro Virtual Docker (MVD) software. The BAff
with designed omega-shape NLMP1Inp and LMP Inp structures on docking both HLA pits of
A*02:07 {PDB: 30XS} and A*02:01 {PDB: 1BD2} may be evaluated with MDV tool
towards mining putative Ama and Ace candidates among which may be identified in
modified-anchor assorts and FDA-approval drugs based on stable BAff of NLMPInp
agretope and A*02:07 pit in order to specifically improve NPC CMI yet likely with low

adverse effect due to non-specificity.

1.2 Specific Aims

The aim of this thesis was to develop immunotherapy of NPC via CMI-epitopes and
AMI-agretopes by structural immunoinformatic approach. By our bmPDA algorithm and
fragment database construction, we hope to predict epitope structure correctly and finding out
mimic backbone of specific peptide. And depending on accurate docking software, we hope
to correctly predict binding affinity of antigen to MHC class I molecule (agretope), thus

better vaccine design and adjuvant drug for immunotherapy will be achieved.

1.3 Thesis Overview

This dissertation is organized as follows. In Chapter 2, we introduce an algorithm for peptide



structure prediction. There are many methods developed for protein structure prediction, and
this field is still in progress nowadays. However, there are relatively few methods for short
sequence peptide structure prediction. In the immunoinformatic field, epitope is primarily the
target of concern, which is consisted of about 8-12 amino acids. After prediction of peptide
structure from sequence was done, we need to extract the structural information from
predicted structures. Here we followed the concept of structure alphabet; we identified 22
states of the structural alphabet that represent pattern profiles of the backbone fragments

based on our block feature definition.

In chapter 3, we proposed a method for peptide block assembly and developed an

algorithm for peptide block modeling. Based on the peptide block assembly method and
peptide structure observation, features of a block of 3 amino acids were defined.
We developed a methodology to build QSAR models by using SVM. After prediction of
peptide structure from sequence was done, we need to extract the structural information from
predicted structures. With the concept of structure alphabet; we looked up 22 states of
structural alphabet that represent backbone pattern profiles based on defined block feature
definition. After the peptide model had been generated, it was converted to structural string
specifically.[14] Combined with other physiochemical properties (amino acid symbol,
hydropathy, polarity, side chain charge) of peptide blocks, the MHC binding affinity was
predicted by SVM.

In chapter 4, we develop a method called “bio-mimicry peptide design®. Follow the
concept of inverse folding search; we develop an approach to find possible sequence
combinations mimicking target structure. Evaluation on the structure similarity with target
peptide, physiochemical property, and structure stability of predicted solutions were done for

finding better potential candidates.

In chapter 5, we applied the above structural immunoinformatic approaches for
nasopharyngeal carcinoma (NPC) vaccine design. NPC is a common malignancy in southern
China, Hong Kong, and south-east Asia countries including Taiwan, Singapore, Malaysia,
Indonesia, and Vietnam. It is strongly associated with Epstein-Barr virus (EBV).
Immunotherapy for NPC is currently focusing on the tumor-associated antigens called LMP1
and LMP2. However, poor antigenecity of LMP1/LMP2 limited the efficacy of EBV vaccine
in NPC immunotherapy. We predicted the structure of every possible epitopes of
LMP1/LMP2 from sequence, docked them with MHC-I molecule, and compare the docking
result with predicted antigenecity of LMP1/LMP2 from several epitope prediction servers.
Epitopes with better performance of antigenecity were collected as candidates for polyepitope

regimen. According to the preference observation on known epitopes, residues on specific



position of the candidate epitopes were modified to become epitopes with even better
antigenecity. Agretope performance was evaluated by binding affinity prediction from
docking with MHC receptor. We suggest epitopes with better performance on epitope and

agretope to be candidates of polyepitope regimen on NPC immunotherapy.

In chapter 6, we collected approved drugs from DrugBank. Virtual screening was done
by docking with MHC receptor. Drugs with better binding affinity with MHC receptor were
collected as possible candidate for adjuvant immunotherapy. Epitopes with better
performance of antigenecity were collected by the same procedure in chapter 5. Epitope
structure prediction was done by modeling method in chapter 2. MHC receptor and candidate
drugs were docked with candidate epitopes. Drugs which could enhance the binding affinity
between epitope and MHC receptor were identified. We suggest drugs with ACE (action
complex enhancement) to be adjuvant immunotherapy for NPC.

Finally, in chapter 7, we presented summary and future perspectives.



Chapter 2 Peptide Structure Indexing with Tri-mer

Blocks and Structure Strings

2.1 Introduction

Description of 3D information of protein structures is the first step for structural
bioinformatics. Protein structure is defined by four distinct levels: primary, secondary, tertiary,
and quaternary structures. There are further description systems in each specific level. In this
chapter, we develop a protein backbone description system based on features of 3mers
peptide block. Fragment databases are constructed based on our method. Further simplified
description system called “structural alphabets” was developed. Based on structural alphabet
and other physiochemical properties of peptides, a structure-based epitope prediction was

also achieved.

2.1.1 Peptide structurefeatures

Description of local protein structures is essential for structural bioinformatics. Traditionally,
protein backbone structures can be described by secondary structure such as a-helix, B-strand
and coil. However, description of protein structures by only three states is oversimplified.
There are some other definitions developed for describe protein structure. Different strategies
had been used such as dihedral angle, backbone curvature and torsion. In this study, we

develop a protein backbone description based on features of 3mers peptide block.

2.1.2 Structure alphabet

By clustering certain features of protein structures in a chosen number of states, we can
define a prototype which is representative of the local structures in each cluster. These
libraries of local structures prototypes are called “structural alphabets”.[15] They complement
each other to form a ‘universal code’ of local conformations. There are several structural

alphabets being developed by different methods such as cluster analysis, Kohonen maps and



Hidden Markov Models.[16] By encoding protein structure as 1D sequence, structural
alphabets has been applied on many fields such as decoy generation, local structure
prediction, structural comparison, alignments, and mining, structure reconstruction from Ca,

and so on.[16]

2.2 Method

2.2.1 Defined structurefeatures of tri-peptide building blocks

Features of a 3mers block were defined as (1) theta angle: by Ca[-1]:Ca[0]:Ca[+1], (2) arm
distances between Ca[-1]:Ca[0] and Ca[0]:Ca[+1], (3) Rotation angle and rotation axis of
two planes formed respectively by Ca[-1]:N[-1]:C[-1] and Ca[+1]:N[+1]:C[+1] (Figure 2-1).

Fig. 2-1 Tri-peptide building blocks with defined features of theta angle and arm distances [tA/aD] of
middle aC[2~4] grouped into 22 clusters.

2.2.2 Basicideas of bio-mimicry peptide design algorithm (bmPDA)

For manipulate the peptide blocks, an algorithm for peptide blocks assembly was developed.
The basic principle is (1) make use of the actual existing structures as building blocks , (2)
use 3mers as building blocks and one more residue at both end as conformational limiting
constraint (3) replace the last residue of one block with the leading residue of another block.
Under the above principles, bio-mimicry peptide design algorithm (bmPDA) was developed.
Our implemented in-house bmPDA tool for modeling omega-shape nona-peptide structures
of class I HLA pit structure comprises two sectors: preparation of tri-peptide building blocks

and optimization of predicted candidate structures.



2.2.3 Construction of tri-peptide structure part (TPSP-5mer) library

Based on the concept of assembled penta-peptide from fusing identical tail and head residues
of serial tri-peptide candidates in realistic presence structures from protein data bank (PDB),
we implemented bmPDA tool for preparing required tri-peptide structure part (TPSP) denoted
as alpha carbon 2~4 (aC{2~4}) in order to show source templates of penta-peptide denoted as

aC{1~5} which are entirely extracted from all available protein structure entries in RCSB

PDB (www.pdb.org).

The aC{1~5} penta-peptide library at 40GB data size extracted from all known PDB
entries until 22 JAN, 2010 comprises 45,141,909 blocks with middle portion for preparing
middle segment aC{2~4} TPSP database. In addition, the applied TPSP features of
tri-alpha-carbon (3aC{-1~0~+1}) backbone are respectively annotated with convenient
parameters including theta-angle and arm-distances {tA/aD} and rotation index of bilateral

terminal residues.

2.2.4 Construction of tri-peptide structure string (TPSS-3mer) database

Following the concept of structure alphabet, we construct the tri-peptide structure string
(TPSS-3mer) database with identified 22 cluster states of the structural alphabet that
represent pattern profiles of tri-peptide backbone structures based on our building block
feature definition including theta angle, edge distances, and rotation angles and distances.
Having done with peptide structure prediction from peptide sequence, we convert all PDB
entries into structural alphabet strings in order for backbone searching or extracting blocks
from known PDB structure files (Table 2-1).

The tri-peptides structure string (TPSS-3mer) database comprising putative 22 “structure
alphabet” clusters is based on tA/aD values of respective aC{2~4} TPSP in order for
comparing structure similarity among given TPSP sets. The statistical analysis 1is
accomplished towards 22 k-mean clusters with about 223,050 tA/aD values of aC{2~4}
TPSP from applied penta-peptide blocks extracted from 1,000 protein structures randomly
selected from PDB. In that, the TPSS database of converted structure alphabet for entire PDB
structure entries may take at less than 50 MB data size based on compact 22 tA/aD cluster
values and may take 500MB data size with detailed annotation contents. The searching
performance of structure similarity on given nona-peptide structure through TPSS database of
entire PDB library may take less than 50 seconds with regular NoteBook PC for mining exact

match TPSS candidate structures within overall penta-peptide blocks.
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Reference epitope structures of omega-shape octa-peptides, nona-peptides, and
deca-peptides extracted from PDB as reference templates are converted as TPSS structure
sequences to become loose structure reference for inferring unknown structure epitopes
towards loose structure similarity models in order for subsequent virtual docking with HLA1
pit structure. The HLAT1 pit structures of both A*02:07 { 30XS} of Taiwan population and
A*02:01 {IBD2} of Caucasian population are converted as spatial regression axis to assist
the virtual docking with designed nona-peptide structure upon evaluation. Immune Epitope
Database (IEDB) inferred position-specific preference on HLA1-binding nona-peptide at
position {2nd; 9th} amino acids of agretope head-anchor and tail-anchor may indicate
respective preference with strong agretope anchor {L/M; I/L/V} rather than with tolerated
{/Q/V; A/IM}.

Table 2-1 TPSS database of 22 clustering matrix assigned in English alphabet characters except
[J.U.0.X] for structural string data conversion and illustrated with cluster distribution of percentage
and instance number.

Cluster C alphadistance  C alphadistance C alpha Ca-N vector planerotation Per centage Instance
symbol arm 1 arm 2 angle angle angle (%) Number
A 4.4187 4.4094 1.7115 2.1612 2.2219 3% 11998
B 3.8990 3.8913 1.5860 1.6774 1.8083 15% 59657
C 45855 4.4426 1.6357 0.7546 2.1371 2% 8779
D 3.8299 3.8295 2.0735 0.8649 1.0812 5% 20472
E 3.8967 3.8932 2.0996 1.6037 1.9411 3% 13310
F 4.0889 4.0638 1.6465 0.4079 15149 2% 8836
G 3.8370 3.8518 2.1091 1.0285 1.8692 4% 15751
H 4.3305 4.2964 1.6116 1.0598 1.2222 5% 17820
| 3.8564 3.8670 1.6132 1.8624 1.7653 15% 57255
K 3.8342 3.8502 2.2842 0.4272 2.0378 2% 8341
L 3.9041 3.9356 1.9001 0.5015 0.6959 5% 17972
M 3.9737 3.9763 2.3243 2.0920 1.4676 2% 8427
N 4.4889 45327 1.8651 2.1660 0.8041 2% 6727
P 3.8148 3.8132 2.2800 0.3220 1.3125 4% 14350
Q 4.1179 4.1199 1.6206 1.2939 1.8264 4% 13883
R 4.0264 3.9265 2.2301 2.3018 2.5706 2% 8121
S 3.8618 3.8670 2.1328 1.3833 1.2832 4% 17400
T 3.9361 3.9526 1.9107 0.3189 2.6691 2% 6858
\ 3.7942 3.7953 2.1049 0.1378 0.2468 6% 23338
W 4.1290 4.1868 1.6202 1.6354 1.2376 5% 19498
Y 4.1302 4.1443 1.6750 2.1397 1.4272 3% 13065
Z 3.8116 3.812 2.2908 0.3062 0.6892 5% 19261

2.3 Result

2.3.1 Penta-peptide (PDB-5mer) structurelibrary

The PDB-5mer Library at 40GB data size (data not shown) comprises 45,141,909 penta
peptide blocks extracted from all known PDB entries until 22 JAN, 2010. The tri-peptide of
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PDB-5mer mid blocks (shown in Figure 2-1) are annotated with theta angle and arm
distances [tA/aD] of middle aC[2~4] segment backbone in each aC[1~5] building blocks.

2.3.2 Structural alphabet

The aC[2~4] block backbones are analyzed and constructed into tri-peptides structure string
(TPSS) database with assigned “structure alphabet” characters for putative 22 clusters based
on aC[2~4] tA/aD values. The clustering analysis is accomplished towards 22 k-mean
clusters with about 223,050 PDB-5mer blocks extracted from randomly selected 1,000 PDB
sequences (Table 2-2).

Table 2-2 TPSS database implemented similarity distance matrix.

A B C D E F G H | K L M N P QO R S T VvV W Y 7z

0 073 090 159 141 055 1.05 503 046 147 0.76 1.58 1.51 1.80 049 249 127 090 156 4.60 082 1.72
073 0 058 121 115 039 1.38 467 040 155 1.10 186 1.94 204 024 281 113 101 1.91 410 140 198
090 058 0 092 084 059 141 477 083 142 115 181 1.92 205 060 290 0.89 095 2.01 4.13 159 198
159 121 093 0 033 112 151 420 141 110 1.38 167 201 185 128 277 054 1.03 202 353 205 181
141 115 084 033 0 1.02 125 436 129 088 114 143 174 164 116 259 028 0.79 1.80 3.76 1.82 1.59
055 039 059 112 102 0 107 462 034 125 0.77 154 164 174 029 252 092 070 1.62 4.12 116 1.66
105 1.38 141 151 125 107 O 461 113 069 032 057 066 079 1.20 161 099 054 067 436 081 0.71
503 4.67 477 420 436 462 461 0 472 427 464 443 473 423 477 423 436 449 443 136 496 4.27
046 040 083 141 129 034 113 472 0 145 0.84 165 1.68 1.82 025 253 119 0.89 1.61 4.26 1.04 1.75
147 155 142 110 088 125 0.69 427 145 0 079 060 1.02 080 1.45 176 0.63 0.60 1.06 3.93 145 0.75
076 1.10 115 1.38 114 077 032 464 084 079 0 084 089 105 091 184 089 037 091 431 072 0.97
158 186 1.81 1.67 143 154 057 443 165 060 084 0 052 033 171 125 1.17 090 058 426 124 0.27
151 194 192 200 174 164 066 473 1.68 103 0.89 052 0 066 1.75 122 149 108 054 461 098 0.62
180 204 205 1.85 164 174 079 423 182 080 1.05 033 066 O 1.91 097 1.39 112 05 4.15 1.38 0.09
049 024 0.60 1.28 116 029 1.20 477 025 145 091 171 175 191 0 267 11 088 174 425 118 184
249 281 290 277 259 252 1.61 423 253 176 1.84 125 122 097 267 0 234 201 098 445 183 1.03
127 113 089 054 028 092 099 436 1.19 063 0.89 117 149 139 110 234 0 055 154 385 160 1.34
090 1.01 095 103 0.79 07 054 449 089 0.60 037 090 1.08 1.12 088 201 055 0 112 4.09 1.07 1.05
156 1.91 201 202 180 162 0.67 443 1.62 106 091 058 054 050 1.74 098 154 112 0 438 099 046
460 410 413 353 3.76 4.12 436 136 426 3.93 431 426 461 415 425 445 385 4.09 438 0 475 417
082 140 159 204 182 116 081 496 1.04 145 072 124 098 138 118 183 160 1.07 099 475 0 131
172 198 198 1.81 159 1.66 0.71 427 175 0.75 097 027 0.62 009 1.84 103 134 105 046 417 131 O

N<SE<AWITOUVZEIrXA—IOTMMOUO®m>

2.3.3 Tri-peptide structure string (TPSS-3mer) database

The TPSS database of converted structure alphabet for the entire PDB structure data entries
may take at less than 50 MB data size based on compact 22 tA/aD cluster values and may
take S00MB data size with detailed annotation contents. The searching performance on any
given 9mer peptide structure thru the TPSS database of entire PDB library may take less than
50 seconds with regular PC for mining TPSS-3mer exact match structures of overall
PDB-5mer candidate blocks.
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2.3.4 Application

Based on the Penta-peptide (PDB-5mer) structure library, Tri-peptide structure string
(TPSS-3mer) database, and structural alphabet, several tools were developed for
manipulating protein blocks (Table 2-3). Combining these different tools, we can fulfill many
structure-related tasks such as extract arbitrary protein blocks, search PDB for peptide blocks
with similar backbone structure of specific peptide, replace some part of protein with other
blocks, or even doing structure BLAST over PDB, like 3D-BLAST[14] does.

Table 2-3 Tools implemented for manipulating protein blocks in the initial parts of bmPDA.

No. Type Task Name of implemented tool
1 extractor peptide sequence Protein block extractor (by peptide sequence)
2 extractor structurestring Protein block extractor (by structure string)
3 sear cher peptide sequence Search PDB by peptide sequence
4 sear cher structurestring Search PDB by structure
5 calculator superimpose RM SD Block superimpose and RM SD calculation
6 aligner structure alignment Sructurealignment of proteins
7 mer ger block merging Protein block merging

2.4 Discussion

Knowledge of the 3D structure of proteins is important in clarifying their properties, behavior
and almost all biological condition mediated by proteins, including protein-ligand and

protein-protein interactions. It is also helpful in drug discovery and protein design.

Comparing with the rapid increasing number of reported protein sequences, protein
structure determination by experiment is far behind. Thus informational technology for

protein structure prediction and manipulation are necessary.[17]

Several structural alphabets system had been developed using different methods such as
cluster analysis, Kohonen maps and Hidden Markov Models. After encoding protein structure
into structure string, complicated 3D coordinate information is more easily manipulated for
machine learning or other analysis. The potential of structural alphabets has been shown by
application on decoy generation[18], local structure prediction[19-21], sequence-based
structural comparison[22], combined sequence-structure alignments[23], 3D structure
alignment[24], structure mining[25-29], structural reconstruction from Ca[30], fold
classification[26], fold prediction[31], structure generation[32], de novo prediction[33, 34],

de novo backbone design[35], and so on.[16]
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Chapter 3 Peptide Structure M odeling with
Backbone Quaternion-GA and Surface

QSAR-SVR

3.1 Introduction

3D protein structures are critical for understanding biology at both molecular and system
level. However, the speed of sequence publishing into databanks considerably exceeds that of
structure determination despite the advances in experimental structural biology. Protein
structure prediction has been a very challenging problem. There are two categories for protein
structure prediction: Ab initio method and Knowledge based method. Knowledge based
method can be further classified into comparative modeling, fold recognition and other new
fold methods. Comparative modeling and fold recognition method are sometimes being
called “template based modeling”.[36] In this study, we developed an algorithm for short

peptide structure prediction.

3.1.1 Quaternion (Q4)

Quaternion method was introduced by Hamilton in the mid-nineteenth century as an
extension of complex numbers and as a tool for manipulating 3-dimensional vectors.[37]
Quaternion is a convenient tool for handling spatial rotation problems. It has compact
representation of rotations, easy to maintain a quaternion’s unit normalization, and derive
many important results concerning rotations in a simple coordinate-free way. Compare with
other rotation methods, such as Euler axis system and rotation matrix, quaternion can avoid
gimbal lock in Euler system, has less floating-point round-off errors than matrix, and
normalizing a quaternion is computationally less expensive. It is widely used in

three-dimensional computer graphics and computer vision.
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3.1.2 Genetic algorithm (GA)

Inspired from the principles of biological evolutionary theory, genetic algorithm is a
stochastic computational model to solve optimization problems. GA model the natural
phenomenon of genetic inheritance based on the principle of “survival of the fittest”. GA had
been widely used to solve sequential decision process for function optimization, machine

learning and general optimization problems.[38]

3.1.3 Epitope and agretope prediction

In the past, vaccine development depends on biochemical and immunological experiment,
such as phage display library, overlapping peptides, ELISA, NMR, immunofluorescence,
radioimmunoassay, Western blotting, immunohistochemistry, X-ray crystallography studies
of antibody/antigen structure and attenuation of the wild type pathogens by random mutations
and serial passages, which is very expensive, time-consuming, with low immunogenicity and
reversible. Under the help of epitope prediction approach, we can narrow the spectrum of
target proteins, and reduce the cost of wet experiments.

The most predictable part of T cell epitope generation is peptide-MHC binding. MHC-I
and MHC-II genes are highly polymorphic, and the most of their variable part are located in
binding pockets that restrict peptide interactions to those with particular amino acids at
characteristic positions.[39]

There are four approaches being applied to predict epitopes: sequence-based methods,
structure based methods, hybrid methods and consensus methods.[1] The majority of epitope
prediction methods are currently data-driven sequence-based, and they are more reliable than
structure-based methods. On the other hand, there are several advantages for structured-based
methods. First, only a smaller dataset is necessary for training. Second, it can predict peptides
for alleles that have not been extensively studied. Third, discontinuous epitopes are only
possible to predict by structure-based method. Last, even sequence-based approaches depend
on structure information to make reliable predictions. However, the development of
structure-based approach is still greatly limited due to high computational cost, development

complexity and scarcity of 3D protein structures.[1]

3.1.4 Quantitative structure—activity relationship (QSAR)

The quantitative structure—activity relationship (QSAR) model combines structure alphabet
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string and physiochemical properties (amino acid symbol, hydropathy, polarity, and side

chain charge) of predicted peptide structures.

3.1.5 Support vector machine (SVM) / Support vector regression (SVR)

Support vector machine (SVM) is a supervised learning method that can be applied on
classification or regression. It was developed by Vapnik since 1963 based on the Structural
Risk Minimization Principle. LibSVM 1is an group of software for support vector
classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution
estimation (one-class SVM)[40].

(A)

(B)

Fig. 3-1 Spatial rotation and aligned fusion with mined TPSS-3mer within similar PDB-5mer
blocks. (A) rotation and shift for fusion at super-imposed tail-under-head residue thru
Quaternion and GA; and (B) assembled penta-peptide extended with two tri-peptide building
blocks.
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3.2 Method

3.2.1 Quaternion (Q4) spatial rotation and super-imposition shift to

assemble peptide from TPSP-5mer building blocks

For rotation of the blocks, we use Quaternion (Q4) calculation aiming at (1) avoiding gimbal
lock in Euler system, (2) reducing floating-point round-off errors than matrix, and (3)
normalizing a quaternion is computationally less expensive. For superimposing the identical
amino acid residue, firstly we matched two residues by matching Ca atom, alignment was
done with Ca-N vector, and then rotate with N-Ca-C plane matched (Figure 3-1A).

For modeling of a peptide sequence, the sequence was firstly transformed to contig
sequences based on overlapping amino acid subsequences, such as the KAV and VYN
towards KAVYN sequence contig. For each contig sequences, candidate building blocks were
identified by searching bmPDA 5mer building blocks database (PDB-5mers database) with
the middle 3mers of the penta-pep matched with the contig sequence. Modeling was done
with the building blocks assembled by our bmPDA tool (Figure 3-1B).

3.2.2 Peptide modeling

Epitope structure prediction was done by our modeling method of bmPDA-tool (Figure 3-2).
Specifically, we mined aC[2~4] building blocks exemplified with KAV and VYN are
assembled towards KAVYN contig based on superimposing [N\aC/C] co-plane of
tail-under-head identical residues between two mined aC[2~4] consecutive blocks in which
spatial rotation is accomplished by Quaternion-based approach along with simple spatial shift
to avoid potential structural errors. All merged peptide combinations of bio-mimicry
structures are evaluated either based on free energy of each conformation or based on
structure similarity to reference structure in order for ranking optimal structures by Genetic
Algorithm (GA) search strategy (Figure 3-2). [17,18,19] In that, the structure similarity
between reference structure and bmPDA-tool predicted peptide structures are further verified

with SuperPose in order to estimate root mean square deviation (RMSD). [20]
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3.2.3 Sructural mining on reference peptide TPSS-3mer conversion

Following the concept of structural alphabet by Yang, based on our block feature definition,
we identified 22 states of the structural alphabet that represent pattern profiles of the
backbone fragments. After the peptide model had been generated, it was converted to
structural string specifically (Figure 3-2). [14]

3.2.4 Conformation evaluation and GA optimization

The resulting decoy conformations are then evaluated according to free energy of each
conformation or structure similarity to target structure. Optimal solution is found by Genetic
algorithm (GA) search strategy. The similarity evaluation on merged structures with target
structure is accomplished by checking physiochemical property, energy stability, docking
fitness with counter-structures of target peptide (Figure 3-2).

3.2.5 Sructural QSAR descriptorsand data encoding
The QSAR descriptors comprise structure alphabet string and physiochemical properties

(amino acid symbol, hydropathy, polarity, and side chain charge) of predicted peptide
structures (Figure 3-2).

sequence
- Fragment library
£
Modeling
Structure String
M Database
Physiochemical Convertto
property structure string
SVR

Fig. 3-2 Work flow of epitope prediction by bio-mimicry peptide design algorithm (bmPDA)
based on QSAR.
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3.2.6 Support vector machine/ regression (SVM / SVR)

SVM was employed to predict the possibility of a sequence of 9 amino acids being an epitope
of MHC-I. SVM is a supervised learning method developed by Vapnik in 1963 based on the
Structural Risk Minimization Principle. [19,21,22] SVM had been applied widely in the field
of computational biology and is a promising technique for data classification. SVR (support

vector regression) is a version of SVM for regression (Figure 3-2).

The applied LibSVM software is an integrated version on classification or regression
software comprises support vector classification (C-SVC, nu-SVC), regression (epsilon-SVR,
nu-SVR) and distribution estimation (one-class SVM). [40]

3.2.7 Modeling omega-shape confor mation on HL A1-binding nona-peptide

structure

In this study, our bmPDA tool aims at designing omega-shape nona-peptide structures with
epitope-stemside bulge and agretope-rootside anchors from NLMPInp {X66863} and
LMPInp {VO01555} towards docking HLA1 pit structures of A*02:07 {30XS} and A*02:01
{1BD2}. Reference nona-peptide epitopes as of training dataset extracted from IEDB

(www.immuneepitope.org) contains 3,886 A*02:01-binding epitopes of biological binding
assay results. Our bmPDA tool models omega-shape nona-peptide epitope structure for
docking HLAT1 pit structure with both tri-peptide finding kernel (TFK) and geometric hashing
kernel (GHK) respectively for mining and fusing TPSP and for filtering and fitting designed
candidate structures.

3.2.8 Mining and fusing tri-peptide structure partsinto designed

combinatorial nona-peptide structures
To model nona-peptide epitope structures of NLMP1 and LMP1 with similar omega-shape

backbone to reference epitope structure in TPSS format, the TFK module of bmPDA tool
recursively mines the TPSP database for potential tri-peptide aC{2~4} building blocks
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according the penta-peptide aC{1~5} sliding window of amino acid sequence within NLMP1
and LMP1 genomes of EBV strain B95-8 in order for fusing into omega-shape nona-peptide
structure. Exemplified with NLMP 1np- 032/035: LLL-ALL FWL Y1V structure with number
032/035 indicating initial amino acid position, the bmPDA tool respectively mines all the
aC{1~5} penta-peptide structure candidates of 034: LAL LF and 036: LLF WL according to
structure similarity of reference epitope structures TPSS in order for retrieving and fusing all
the aC{2~4} TPSP structure blocks of 035: AL(L) and 037: (L)FW into potential aC{1~5}
structure combinations of 035: AL(L)FW. The indicated bmPDA design procedure of epitope
structure on HLAI1-binding nona-peptide may recursively process until completion of

structure modeling covering all serial nona-peptide segments within NLMP1 and LMP1.

For fusing the aC{2~4} TPSP blocks exemplified with 035: AL(L) candidates and 037:
(L)FW candidates into potential aC{1~5} combinatorial structure candidates of NLMP1 035:
AL(L)FW, our bmPDA tool applies quaternions (Q4) approach for spatial rotation and shift
towards tail(L)-under-head(L) superimposition 035: AL(L)FW based on co-planar
overlapping of {N\aC/C} amino acid plane with Q4-based spatial processing to avoid
potential deadly error with Euler angles such as gimbal lock while loss of a degree of
freedom during spatial rotation. Fused nona-peptide structures with every TPSP blocks in
numerous combinatorial structure candidates onto converted TPSS format are evaluated
either based on free energy of each designed structure or based on structure similarity to
reference structure of omega-shape epitope templates in TPSS format in order for ranking
optimal structures by genetic algorithm (GA) search strategy. Inspired with biological
evolutionary principles, GA is a computational stochastic model to solve optimization

problems.

Specifically, our Q4-GA module of bmPDA tool evaluates structure similarity on
respective combinations of merged nona-peptide structure based on collective TEDB
omega-shape epitope templates in TPSS structure clusters which is accomplished by
verifying parameters with GA search strategy upon physiochemical property, energy stability,
and docking fitness according to backbone and surface structure of reference epitope
templates. In that, the structure similarity between reference structure and predicted
nona-peptide structures are further verified with Q4-GA based on SuperPose server in order
to estimate root mean square deviation (RMSD). Thus, Q4-GA module of bmPDA tool
complies with natural phenomenon of genetic inheritance based on “survival of fittest”
principle which is widely applied in solving sequential decision process for function

optimization, machine learning and general optimization problems.

3.2.9 Filtering and fitting designed candidate structuresinto putative
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omega-shape nona-peptide structures

To evaluate nona-peptide epitope structures of NLMP1 and LMP1 with optimal omega-shape
epitope structure with reference template in detailed TPSS format, the GHK module of
bmPDA tool filters and fits selected cases of predicted nona-peptide structures in detailed
TPSS format of quantitative structure—activity relationship (QSAR) model for support vector
regression (SVR). The evaluation in all the predicted HLA1-binding nona-peptide structures
of NLMP1 and LMPI1 to A*02:07 and A*02:01 pit structures depends upon optimal
omega-shape conformation with two agretope-rootside anchors at either end and as well one

epitope-stemside bulge at middle segment.

Based on the concept of “structure alphabet” in detailed TPSS conversion format, the
QSAR-SVR module of bmPDA tool encodes QSAR descriptors of peptide surface properties
of amino acids such as exposed surface, accessibility, flexibility, hydrophilicity, charge, and
so forth towards binary clusters on structure similarity and/or binding affinity along with
SVR evaluation according to the reference nona-peptide surface structure. The applied
LibSVM software set as of a supervised learning method on classification or regression
comprises support vector classification (C-SVC, nu-SVC), support vector regression
(epsilon-SVR, nu-SVR) and distribution estimation of support vector machine (one-class
SVM). Basically, Vapnik developed SVM in 1963 while based on the structural risk

minimization principle.

Table 3-1 Structural RMSD difference between bmPDA predicted structures and reference structures
of HLLA 0201 epitopes based on TPSS similarity distance matrix..

Epitope Sequence Complex PDB ID Chain RMSD (superpose)
ALWGFFPVL 1LP9 C 0.27
ALWGFFPVL 1BOG C 0.35
FAPGFFPYL 1I7R C 0.05
GILGFVFTL 1BOR C 0.87
GILGFVFTL 2VLR C 0.39
GILGFVFTL 2VLK C 0.19
GILGFVFTL 1HHT C 0.38
GLMWLSYFV 316G C 2.52
ITSAVVGIL 10R1 C 0.76
TILKEPVHGV 1P7Q C 1.06
ILKEPVHGV 1HHJ C 1.00
ILSALVGIL 1EEZ C 1.55
ILSALVGIV 1EEY C 2.73
TIMDQVPFEFSV 1TVH C 0.15
ITDQVPEFSV 1TVB C 0.15
LLFGKPVYV 2GIT C 0.73
LLFGKPVYV 2GJ6 C 1.06
LLFGYAVYV 10RN C 0.13
LLFGYPRYV 1Q0SE C 0.16
LLFGYPVAV 1QSF C 0.18
LLFGYPVYV 1A07 C 0.15
NLVPMVAAV 3GSW P 2.25
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NLVPMVATV 3GSO P 0.30
NLVPMVAVV 3GSX P 0.83
NLVPQVATV 3GSV P 0.54
NLVPSVATV 3GSQ P 0.96
NLVPTVATV 3GSU P 0.67
NLVPVVATV 3GSR P 0.89
RQASLSISV 3BGM C 2.20
SLLMWITQA 159X C 0.92
SLLMWITQC 2F53 C 0.58
SLLMWITQS 159y C 0.90
TLTSCNTSV 1HHG C 1.12
VLHDDLLEA 3FT3 P 0.70
Average 0.814412

3.3 Result and Dataset

3.3.1 Epitopestructure prediction by bmPDA

Epitopes with known structure of HLA A*0201 were collected from IEDB (Immune Epitope
Database) and PDB databases. Peptide structures predicted by bmPDA were compared with
the actual structures from PDB. Alignment was done by Superpose and RMSD score was
calculated. Table 3-1 shows the comparison results from SuperPose.[41] An alignment
example was illustrated in Figure 3-3.

SuperPose Version 1.0

SuperPoss Cutput for 4(7R chain ‘G and POBA chain ‘&

SuperPose Cutput Images

" SuperPose Cutput Text Files

Acknowledgements:

Figure 3-3 Tllustrated comparison of SuperPose alignment between bmPDA predicted structure and
reference structure.

Peptide structures predicted by Pepstr were also compared with the actual structures
from PDB (Table 3-2). Alignment was done by Superpose and RMSD score was calculated.

Table 3-2 Structural RMSD difference between Pepstr predicted structures and reference structures of
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HLA 0201 epitopes.

Epitope Sequence Complex PDB ID Chain RMSD
ALWGFFPVL 1LP9 C 3.01
FAPGFFPYL 1I7R C 5.97
GILGFVFTL 1BOR C 4.35
GILGFVFTL 2VLR C 4.81
GLMWLSYFV 316G C 3.29
ITISAVVGIL 10R1 C 5.20
TLKEPVHGV 1P7Q C 3.02
TLKEPVHGV 1HHJ C 3.14
ILSALVGIL 1EEZ C 5.23
ILSALVGIV 1EEY C 6.06
IMDQVPFEFSV 1TVH C 5.37
ITDQVPEFSV 1TVB C 3.60
LLFGKPVYV 2GIT C 5.45
LLFGKPVYV 2GJ6 C 5.66
LLFGYAVYV 10RN C 4.37
LLFGYPRYV 1Q0SE C 5.83
LLFGYPVAV 1QSF C 6.08
LLFGYPVYV 1A07 C 2.26

Average 4.594444

SuperPose Version 1.0

SuperPose Cutput for POBA modal 't and 1078 shain 'S

SuperPose Quiput Images

" superPose Quiput Text Files

Figure 3-4 Illustrated comparison of SuperPose alignment between Pepstr predicted structure and
reference structure.

The RMSD between structure predicted by bmPDA and actual structure was 0.81 (Table
3-1). The RMSD between structure predicted by Pepstr and actual structure was 4.59(Table
3-2). The performance of bmPDA is better than Pepstr (Figures 3-3 & 3-4).
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3.3.2 Prediction efficiency of bmPDA on HL A1-binding omega-shape

nona-peptide structures

We extract MHC-I HLA binding data from IEDB (Immune Epitope Database) as our training
dataset.[42] It contains 3886 binding assay results about HLA-A*0201. The ROC analysis
results are shown in Figures 3-5, 3-6, and 3-7. The difference between our QSAR-SVR
model and NetCTL is shown in Table 3-3. Compared with other current epitope prediction
NetCTL servers which ROC curves shown in Figures 3-8, the performance of our
QSAR-SVR is statistically no difference with NetCTL (P>0.05).

SVR_predict_result
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Fig. 3-5 Epitope prediction efficiency of bmPDA QSAR-SVR measured with ROC curve.
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Fig. 3-6 Epitope prediction efficiency of NetCTL server measured with ROC curve.
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Fig. 3-7 Pairwise comparison on epitope prediction efficiency with ROC curves of bmPDA
QSAR-SVR and NetCTL server.

Table 3-3 Summary of pairwise comparison on epitope prediction efficiency with ROC curves of
bmPDA QSAR-SVR and NetCTL server.

Areaunder curve Standard Error 95% Corgfidencelnterval

ac

AUC SE 95% ClI
bmPDA QSAR_SVR 0.924 0.00461 0.915t0 0.932
NetCTL server 0.932 0.00436 0.923t0 0.940
Difference of pairwise AUC 0.00804 0.00453 -0.000839 to 0.0169
Z statistic 1.775
Significance level P =0.076
a Hanley & McNeil, 1982
b Binomial exact
¢ Hanley & McNeil, 1983
]. T T T | T
NetCTL
r = MHCpathway | |
EpiJen
0.8~ — WAPP
MAPPP
]. T T
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Fig. 3-8 Collective comparison on epitope prediction efficiency among five ROC cur ves of
various web serversbased on 41 A3 restricted epitope-protein pairsfrom the HIV dataset. [43]
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The prediction efficiency of bmPDA QSAR-SVR tool and NetCTL server is respectively
measured with statistical receiver operating characteristic (ROC) curves based on 3,886
A*02:01-binding assay results from IEDB as of the training dataset. The {bmPDA, NetCTL}
pairwise comparison of ROC curves with pairwise values of sensitivity {90.3, 86.6},
specificity {80.0, 86.8}, criterion {> 0.4368, > 0.6330}, AUC {0.924, 0.932} of area under
curve, SE {0.00461, 0.00436} of standard error, and 95% CI {0.915~ 0.932, 0.923~ 0.940}
of 95% confidence interval as well as with pairwise difference value of AUC: 0.00804, SE:
0.00453, and 95% CI: (-0.000839~ 0.0169) in order for inferring without pairwise
performance difference between bmPDA and NetCTL based on resulted significance level in
P value at 0.076 and z statistic value at 1.775, .

3.4 Discussion

There are four major categories for the method of epitope prediction: sequence-based
methods, structure based methods, hybrid methods and consensus methods.[1] The majority
of epitope prediction methods are currently data-driven sequence-based, and they are more
reliable than structure-based methods. However, there are several advantages for
structured-based methods. First, only a smaller dataset is necessary for training. Second, it
can predict peptides for alleles that have not been extensively studied. Third, discontinuous
epitopes is only possible to predict by structure-based method. Last, even sequence-based
approaches depend on structure information to make reliable predictions. However, the
development of structure-based approach is still greatly limited due to high computational

cost, development complexity and scarcity of 3D protein structures.[1]

In this study, we developed a method to predict MHC-I binding based on SVM. The
prediction accuracy by ROC analysis is comparative as the best sequence-based method. In
our method, relative small training set was employed, while other sequence-based method
usually based on a huge data-mining process. However, the time-consuming peptide
modeling process was the rate-determine step in our method. Because the relatively low
demand for training dataset, our method may apply to other field such as MHC-II epitope

prediction, IgE epitope prediction, etc.

The prediction efficiency of bmPDA with pairwise ROC comparison to NetCTL may
suggest the compatible performance as outstanding discriminators in which our bmPDA may
show slightly better sensitivity yet with slightly compromised specificity. In extension to
NetCTL server capabilities, our bmPDA tool of structural prediction on omega-shape

nona-peptide conformation and BAff value may offer appropriate power to assay simulated
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binding onto HLA1 pit among nona-peptide candidates without public known structure
information. Likely, our bmPDA tool may act as an extension tool for mining HLA1-binding
peptides within NetCTL server related collaborative style despite that NetCTL server has
established best performance efficiency with ROC analysis while among same category
servers in efficiency order including MHC-pathway, EpiJen and MAPPP, and WAPP servers.
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Chapter 4 Bio-mimicry Peptide Design on Reference

Peptide Structure Modeling

4.1 Introduction

To design bio-mimicry peptide at functional portion of bioactive protein is an important
bioinformatic task towards intended clinical applications with either agonistic or antagonistic
activities. Traditional algorithms compare object surface structure at free rotations which may
cause great time complexities through mining many putative structures that may not even
exist. Instead, we develop a mining approach in this study based on existing known PDB

peptide structures.

4.2 Method

The peptide structure generator software (Figure 4-1) is based on our implemented bmPDA
tool of conformational anchor spacer hinge (CASH) algorithm in which bmPDA tool
penta-pep (penta peptides, Smer) database of is constructed from retracing segmental Smer
structures of all current PDB (protein data bank) entries as of basic building blocks of
bmPDA tool database. Further, the segmental backbone angle of Smer building blocks is
exemplified with the aC[3] (alpha carbon 3rd) angle towards neighboring aC[2] and aC[4] as
of the middle 3mer in each Smer building blocks.

With reference 12mer oligo peptide for finding candidate peptides with mimicking
structure of different sequences, the serial penta peptides from reference oligo peptide are
generated for calculating the described aC[3] angle. Importantly, both frontal and coda aC|[3]
angle are respectively replaced with aC[2] angle and aC[4] angle. All aC[n] angles of
reference penta peptides are applied for searching bmPDA Smer building blocks with similar
aC|[n] angle of backbone yet with different amino acid sequence. The resulted bmPDA Smer
building blocks with serially similar aC[n] angles to reference penta peptides are accordingly
assembled to form contig sequences based on overlapping amino acid subsequences, such as
the KAV and VYN towards KAVYN sequence contig.
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For forming structural contig based on sequence contig, the identified bmPDA Smer
building blocks within different coordination systems are unified into identical coordination
system by means of shift and rotation as of Quaternion system yet with no rescaling due to
constant atom distances. The exemplified KAVYN merge from the described KAV and VYN
with most similar backbone structure with reference oligo peptide is accomplished on
superimposing both amino acids of both KAV and VYN efficiently by means of matching at
3 points including N[n], aC[n], and C|[n].

Towards mimicking structure of bmPDA structural contig versus reference peptide based
on similar backbone structure, the distance between side chain and backbone aC[n] as of
conformational index is subsequently applied for mining best contig structures. The similarity
evaluation on merged structures with reference structure is accomplished by checking
physiochemical property, energy stability, docking fitness with counter-structures of reference

peptide.

The overall workflow of bio-mimicry peptide design algorithm is shown in Figure 4-1.

Structure ‘
04
Analyze Backbone ‘ Fragment library
(P approximate
Assembly
<
verification

Fig. 4-1 Workflow of bio-mimicry peptide design algorithm (bmPDA).

4.3 Result

The implemented in-house bio-mimicry peptide design algorithm tool (bmPDA-tool)
comprises three sections including constructed peptide building blocks database, assembled

peptide model of building block candidates, and predicted peptide model of functional
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peptides.

4.3.1 Bio-mimicry peptide structure design: Reference vasopressin

Part of Bio-mimicry prediction results of vasopressin (Figures 4-2) is listed in Table 4-1.
Ilustrations of the structure of better solutions from bmPDA-prediction are shown in Figures
4-3 and 4-4. The backbone distance of Solution no. 12 (KGN-SVL-AIP) is 1.736.

The backbone distance of Solution no. 12 (KGN-SVL-AIP) is 1.736. The backbone
distance of Solution no. 37 (DGN-SVL-ADS) is 2.300. The structure of solution no. 36
(DGN-SVL-AIP) and no. 279 (SEA-SKQ-TAA) are also shown in Figures 4-5 and 4-6.

Table 4-1 Bio-mimicry peptide sequences of bmPDA designed vasopressin structure sorted in
backbone distance order along with appropriate peptide values of Morris class and G-factor.

Solution no. Structure Sequence Backbone Distance Morris class G-factors
@289 CYF-QNC-PRG 0 2 31 0.17

3 GEA-SGS-SQV 1.723 4 1 1 0.08

*12 KGN-SVL-AIP 1.736 111 0.24

13 KGN-SVL-ADS 1.755 111 0.23

221 WKG-RTW-EPA 1.852 1 31 -0.19

278 SEA-SGS-SQV 2.148 4 1 1 0.12

272 SEA-SGS-STP 2.233 4 1 1 -0.10

*37 DGN-SVL-ADS 2.300 111 0.13

36 DGN-SVL-AIP 2.306 111 0.13

Fig. 4-2 Actual reference peptide structure of vasopressin 9-mer [1YF4] CYF-QNC-PRG in bar.
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Fig. 4-3 Bio-mimicry reference peptide structure of vasopressin 9-mer [1YF4] CYF-QNC-PRG
with selected bmPDA designed solution number 12 in ball-stick format aligned with Vasopressin
overall structurein bar.

Fig. 4-4 Bio-mimicry reference peptide structure of vasopressin 9-mer [1YF4] CYF-QNC-PRG
with selected bmPDA designed solution number 37 in ball-stick format aligned with Vasopressin
overall structurein bar.

Fig. 4-5 Bio-mimicry reference peptide structure of vasopressin 9-mer [1YF4] CYF-QNC-PRG
with selected bmPDA designed solution number 36 in ball-stick format.
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Fig. 4-6 Bio-mimicry reference peptide structure of vasopressin 9-mer [1YF4] CYF-QNC-PRG
with selected bmPDA designed solution number 279 in ball-stick format.

4.3.2 Antibody vaccine peptide design: TM B-355 bio-mimicry epitope

TMB-355 is a monoclonal antibody for treatment of HIV. Structure of light chain of
TMB-355 is shown in Figure 4-7 and 4-8. Part of Bio-mimicry prediction results of Fab
region of TMB-355 is listed in Table 4-2. Actual reference peptide structure of TMB-355
light chain (QYY-SYR-TFG-GGT) is shown in Figure 4-9. The bmPDA-predicted peptide
structure of solution no. 2765 (YIGSGKKTAGAG) and no. 957 (QIGSGKKASG) are shown
in Figures4-10 and 4-11.

Fig. 4-7 Actual reference peptide structure of TMB-355 light-chain in bar.
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Fig. 4-8 Actual reference peptide structure of TMB-355 light-chain with green dotsindicating
thetarget structure at hypervariableregion.

Table 4-2 Bio-mimicry peptide sequences of bmPDA designed structure solutions of TMB-355
light chain Fab region [QYY-SYR-TFG-GGT] sorted in backbone distance order along with
appropriate peptide values of Morris classand G-factor.

Solution no. Structure Sequence Backbone Distance Morris class G-factors
3053 YSERQLTTFGDK 2.7311 3 1 4 -0.05
3692 ESEKLKYKVLAS 2.7845 2 2 4 0.05
3384 DSERQLTTFGDK 2.8166 311 -0.01
3794 HPAAGVADGSRR 3.1078 3 2 3 -0.02
3680 CNYTDKKPVLRS 3.3344 3 41 -0.22
3681 CNYTDKKPVLRT 3.3522 3 41 -0.20
3712 ONGTVLEGPTTG 3.4233 2 2 4 -0.19
2765 YIGSGKKTAGAG 3.4457 2 11 0.12
2511 VNTVLNGGIRKI 3.4905 4 1 1 -0.10

Fig. 4-9 Actual reference peptide structure of the target structure at TMB-355 light chain
hypervariableregion as shown in Figure 4-8 in green dots.
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Fig. 4-10 Bio-mimicry target peptide structure of TMB-355 light chain Fab region with bmPDA
designed structure of solution number 2765 in ball-stick format aligned with overall Fab
structurein bar.

Fig. 4-11 Bio-mimicry target peptide structure of TMB-355 light chain Fab region with bmPDA
designed structure of solution number 957 in ball-stick format aligned with overall Fab
structurein bar.

4.4 Discussion

Based on our approach, we can perform an inverse folding search on bioactive peptides.
Toward peptide backbone alignment, accompanied with physiochemical properties of

residues, we can search bio-mimicry peptides more efficiently and accurately.
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Chapter 5 Vaccine Peptide Evaluating towards

Epitope and/or Agretope Plastic Modeling

5.1 Introduction

Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma that occurs on the epithelium
of the nasopharynx.[2] It is a common malignancy in southern China, Hong Kong, and
south-east Asia countries including Taiwan, Singapore, Malaysia, Indonesia, and Vietnam.[3]
Genetic susceptibility, environment factors, and Epstein-Barr virus (EBV) are thought to play

roles in the development of NPC.

The treatment nowadays is based on radiotherapy and concurrent chemoradiotherapy. In
spite of improvement of treatment outcomes, local regional failure and distant metastasis still
occur in many patients.[3] Moreover, acute side effects and long-term sequelae including
secondary malignancy are often accompanied with radiation and chemotherapy. Therefore,
novel approaches aiming to improve outcome and reduce the need for conventional cytotoxic

therapies are under developed.

Eradication of local regional microscopic and micrometastatic disease with associated
minimal toxicity to surrounding normal cells is one of the goals of adjuvant cancer
therapy.[11] Immunotherapy is therefore an attractive option. However, the major obstacle of
immunotherapy to cancer is absence of suitable molecularly characterized tumor antigens.[44]
Before the human tumor-associated antigens (TAA) were identified, immunotherapists were
forced to use undefined tumor antigens derived from tumor cell lines, tissues or their
corresponding lysates.[11] With the identification of a large series of TAAs and advancement
of molecular genetics, antigen-specific immunotherapy became possible in these years. The
main advantage of antigen-specific immunotherapy is the capability to evaluate and monitor
immune responses to targeted antigens and correlate these findings with clinical

responses.[11]

EBYV is a member of the herpesvirus family.[4] It has a double-stranded DNA genome of

184-kb pairs in length, encoding nearly 100 proteins.[5] It was the first virus to be associated
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to human cancer. EBV attack B-lymphocyte as primary target, resulting in lifelong
infection.[5] In spite of being a latent infection in B cells, inhibition by a population of
EBV-specific cytotoxic T lymphocytes (CTLs) was observed.[7] Both in vitro and in vivo,

these CTLs have been shown to have potent antiviral activity.

There are many viral antigens being expressed during EBV latent infection. Unlike other
EBV-associated diseases, NPC expresses only some less immunogenic viral antigens,
including EBNA1, LMP1, and LMP2.[8] According to literatures, EBNA antigens are poorly
processed by antigen-presenting cells, so LMP1 and LMP2 are better potential targets.[9]
However, according to assays about these sequences, LMP1/LMP2 is not only highly
oncogenic but also seems to be poorly immunogenic in murine models.[10] Vaccination or
immunotherapy based on full-length LMP1 is therefore not recommended, and polyepitope
vaccine based on multiple immunogenic epitope is a preferred strategy. Fortunately, based
upon the virus isolations from different geographic regions of the world, sequence analysis
revealed that most of these epitopes are highly conserved and are efficiently recognized by
individuals of diverse ethnic origin.[9] By using polyepitope vaccine comprising HLA class
I-restricted CTL epitopes from LMP1 and LMP2, some studies makes promising progress in
controlling tumor growth in animal model.[10, 45]However, the epitopes being used in
previous studies were restricted in a relatively narrow spectrum of HLA class I alleles.
Although HLA A2 is one of the most common HLA class I alleles, other HLA class I alleles
prevalent in NPC endemic regions of the world (HLA A11, A24, B27, and B57) should also
be included in LMP-based polyepitope vaccine design.[10]

In this study, we reviewed the epitopes being used in previous studies and compared
with the prediction result of bioinformatic approach, and try to make additional suggestion

about other potential epitopes which can be helpful for NPC vaccine design.

All nucleated cells present a selection of the peptides contained in their proteins on the
cell surface in complex with MHC-I. Cytotoxic T lymphocytes (CTL) can then differentiate
between healthy cells and infected cells. However, there are only a small fraction of the
peptides in a pathogen proteome being able to induce a CTL response. This is primarily due
to the selection process in the antigen-processing steps preceding the CTL response. There is
only 1 out of 2000 potential peptides will be immunodominant for each MHC-I allele.[46]

Generation of peptides from their precursor polypeptides is necessary for the induction
of a CTL response. Proteasome is the major cytosolic protease associated with the generation
of antigenic peptides. After proteasomal cleavage the peptides may be trimmed at the

N-terminal end by other peptidases in the cytosol. The next step is transporting of the

36



peptides from the cytosol to the interior of the ER. Binding of the peptides to TAP can

facilitate the transportation.

Further N-terminal trimming of the peptides then proceeds inside the ER, and binding of
some of the peptides to MHC-I is also done. The MHC-I:peptide complex is then transported
to the surface of the cell, where it may be recognized by CTL. Binding to MHC-I is the most
restrictive step in antigen presentation. Estimation for the selectivity showed that about only 1
out of 200 peptides will bind a given MHC-I allele with sufficient strength to elicit a CTL
response. However, the proteasomal cleavage and the TAP transport efficiency play some
roles.[46]

The most predictable part of T cell epitope generation is peptide-MHC binding. MHC-I
and MHC-II genes are highly polymorphic, and the most of their variable part are located in
binding pockets that restrict peptide interactions to those with particular amino acids at

characteristic positions.[39]

In the past, vaccine development depends on biochemical and immunological
experiment, such as phage display library, overlapping peptides, ELISA, NMR,
immunofluorescence, radioimmunoassay, Western blotting, immunohistochemistry, X-ray
crystallography studies of antibody/antigen structure and attenuation of the wild type
pathogens by random mutations and serial passages, which is very expensive,
time-consuming, with low immunogenicity and reversible.[1] Under the help of epitope
prediction approach, we can narrow the spectrum of target proteins, and reduce the cost of

wet experiments.

There are four approaches being applied to predict epitopes: sequence-based methods,
structure based methods, hybrid methods and consensus methods.[1] The majority of epitope
prediction methods are currently data-driven sequence-based, and they are more reliable than
structure- based methods. On the other hand, there are several advantages for
structured-based methods. First, only a smaller dataset is necessary for training. Second, it
can predict peptides for alleles that have not been extensively studied. Third, discontinuous
epitopes is only possible to predict by structure-based method. Last, even sequence-based
approaches depend on structure information to make reliable predictions. However, the
development of structure-based approach is still greatly limited due to high computational

cost, development complexity and scarcity of 3D protein structures.[1]
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5.2 Method

There are many viral antigens being expressed during EBV latent infection. Unlike other
EBV-associated diseases, NPC expresses only some less immunogenic viral antigens,
including EBNA1, LMPI1, and LMP2. According to literatures, EBNA antigens are poorly
processed and presented by antigen-presenting cells, so LMP1 and LMP2 are better potential
targets. Cytotoxic T lymphocytes have been thought to play the key role in the generation of

antitumor therapeutic effects, so we focus on the antigenecity of CTL.

5.2.1 Collections of protein sequences and structures

Protein sequence of EBV LMPI1 and LMP2 were collected from National Centre for
Biotechnology Institute (NCBI) database. Prevalent HLA class I locus of the southern Han
Chinese population are A2, Al11, A24, A33, B13, B15, B38, B40, B46, B58, C1, C3, C7, and

C8. Structure files of MHC class I molecules were collected from PDB.

5.2.2 Modeling of predicted epitopes

The models of each predicted epitope were done by our peptide modeling method described

in chapter 2. Instability and Ramachandran Plot Analysis were done by Pro-Check program.

5.2.3 NetCTL

NetCTL is a server who integrates predictions of proteasomal cleavage, transporter associated
with antigen processing (TAP) transport efficiency, and MHC-I binding affinity into a MHC-I
pathway likelihood score. All MHC-I molecules predictions were done by the NetCTL with
known protein sequence and predictions for 8-, 9-,10-, and 11-mer peptides were also
achieved. Optimization was done to achieve high specificity in order to maintain a low false

positive rate.

The web-based NetCTL tool models human CTL epitopes in any given protein by integrating
predictions of proteasomal cleavage, TAP transport efficiency, and MHC1-binding affinity. In
addition, the web-based SYFPEITHI tool evaluates human CTL epitopes by the scoring
system on given epitope peptide at individual amino acids respectively assigns arbitrary

positive value within {+1, +15} range based on the preference scale from minimal to optimal
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despite that the position-specific dislike of amino acids may be assigned with arbitrary
negative value within {-1, -15} range. The arbitrary values are allocated on frequency of

respective amino acid in natural ligands, T-cell epitopes, or binding peptides.

With bmPDA tool of TPSS and QSAR-SVR in addition to NetCTL server on integrated
antigenecity score, the respective epitope prediction efficiency of NLMP1 and LMPI is
tested with statistical approach of receiver operating characteristic (ROC) curve for
determining the discrimination power with respective efficiency based on derived values of
area under curve (AUC), sensitivity, specificity, and criterion along with pairwise difference

of prediction performance based on derived significance level in P value.

5.2.4 Residue Preference of Epitope

Based on the concept of each MHC molecule potentially presents a distinct set of antigenic
peptides to the immune system, effort had been made to predict binding motif of different
MHC alleles. Preferred residue of HLA-A*02:01 (from IEDB) on specific positions is shown
in Figure 5-1. With hypothesized immune evasion at weak viral agretope anchors, our
bmPDA tool selects putative NLMP1 nona-peptide structures with weak BAff on docking
A*02:07 pit while compared with A*02:01 in order for evaluating BAff improvement on
Ama candidates towards making in vitro DNA vaccine.

The anchor plastics strategy for Ama candidate is based on inferred preference as of
A*02:01 case at respective positions {2nd; 9th} of nona-peptide with strong anchor {L/M;
I/L/V} rather than with tolerated anchor {I/Q/V; A/M} in addition to an extra preference at
position {3rd} with {D/P} as with A*02:07 case only.

Preferred FY Position FM W WY FW C-terminal
Position 1 2 3 4 5 6 7 8 9
Deleterious DEP Anchor EKR KR GKR Anchor
Preferred Preferred
LM 1LV
Tolerated Tolerated
1QV AM

Fig. 5-1 Reference HLA-A*02:01 binding nona-peptides with anchor residue preferences in
respective agretopes from experiment verified IEDB data in part showing high consistency with
bmPDA identified LMP1 agretope candidates exemplified with VM SD in order for serving as
strong agretope substitution into weak agretope segment while attached with strong
immunogenic epitope segment.
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5.2.5 Molecular Docking

The interactions between the predicted peptide models and MHC-I are evaluated by Molegro
Virtual Docker (MVD). [47] Center of MHC-I groove is identified as potential docking site to
achieve more accurate docking result. In MVD, a heuristic search algorithm named MolDock
is used for accurate molecular docking. For further docking accuracy improvement, a
re-ranking scoring function is then introduced. They are useful for evaluation between
different poses of the same ligand. However, the MolDock and rerank score in MVD are not
expressed in chemically relevant units. For comparison between multiple ligands, we use a
regression model for binding affinity estimation. Followed by ‘Tabu clustering’, more

favorable binding result is achieved in an efficient way.[48]

Optimized NLMPInp {X66863} and LMPlnp {V01555} structures towards docking
A*02:07 {30XS} and A*02:01 {1BD2} pits are evaluated with regression model of Molegro
Virtual Docker (MVD) on docking free energy as of binding affinity (BAff) with Tabu
clustering score in order to avoid sub-optima and local optima along with NetCTL and

SYFPEITHI web-servers on putative CMI antigenecity with appropriate serve scores.

5.3 Reault

5.3.1 Putative omega-shape nona-peptide structure predicted with TPSP

library and TPSS database

The optimal omega-shape conformation of NLMPInp structure is mined from massive
combinatorial candidates in which are modeled with TPSP candidates through computation
process with both bmPDA modules of Q4-GA and QSAR-SVR towards the similar structure
of positive reference templates extracted from PDB dataset. Epitope prediction results from
NetCTL for LMPI1 were plotted in Figure 5-2. Epitope prediction results from SYFPEITHI
for LMP1 were listed in Figure 5-3. Better epitopes of LMPI is listed in Table 5-1. The
predictions were compatible with experiment data from IEDB (Figure 5-4).
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Fig. 5-2 Overall LMP1 epitope antigenecity of bmPDA predicted peptide structures analyzed by
NetCTL antigenecity score server towards HL A A*0201.
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Fig. 5-3 Overall LM P1 epitope antigenecity of bmPDA predicted peptide structures analyzed by
SYFPEITHI antigenecity score server towards HL A A*0201.

Table 5-1 Top ranking epitope segments of LMP1 selected by NetCTL and SYFPEITHI towards HLA
A*0201 with MVD binding affinity attached.

number seqguence MVD binding affinity NetCTL SYFPEITHI
125 YLLEMLWRL -13.3300 1.5637 30
35  ALLFWLYIV -13.4630 1.4636 28
167 LLVDLLWLL -13.8151 14324 28
32 LLLALLFWL -12.5441 1.3659 29
92 LLLIALWNL -16.1708 1.3255 28
148 FLDLILLII -18.5444 1.2840 24
86  LLLMITLLL -3.28964 1.2779 27
112 FIFGCLLVL -13.6547 1.2517 27
144 FLAFFLDLI -16.0035 1.2339 25
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Export al resutts: [3] (compact | ful)

Antigen MHC
nt Reference Epitope Host Immunization Assay Antigen Egitaope Restriction ‘Dm"mion
tion
YLLEMLWRL . YLLEMLWRL
R Khanna; Latent membrane gg;“:!’;:irf:fﬁ’i’;{?ﬂ;#ﬁ:rent) Latent membrane 51 chromium release
1377922 Eur ] Immunol protein 1 (125-133) Homo sapiens wtﬁnut evidence for disease protein 1 (125-133) Epitope HLA-A2 cytotoxicty
1998 Human herpesvirus 4 folowed by restimulation n viro | TUTEN erpesvius 4 Positive
(strain B95-8) v (strain B95-8)
Latent membrane
YLLEMLWRL
. Immune reactivity to Human protein 1
R Khanna; Latent membrane P T e T T 51 chromium release
1377923 Eur J Immunal protein 1 (125-133) Homo sapiens i e o proten 1 Source Antigen HLA-A2 cytotoxicity
L Humzn herpesvirus 4 followed by restimulation in vitro  Human herpesvirus 4 Bosthe
(strain B95-8) (stran B95-8)
YLLEMLWRL .
. Immune reactivity to Human Hurman herpesvirus 4
— EKhanna, Latent membrane herpesvirus 4 (Taxanomic Parent) (strain B35-8) 51 chromium release
ur J Immunol protein ; (125-133) Homo sapiens without evidence for disaase Hurmzn herpesvirus 4 Source Organism HLA-AZ cytotoxicity
1998 Human herpesvirus 4 A I Positive
(strain 895-8) followed by restimulation in vitro  (strain B95-8)
YLLEMLWRL . YLLEMLWRL
R Khanna; Latent membrane m;ﬂ:g;"u?ﬁvﬁ;gﬁ:mu‘rcn?,:’ent) Latent membrane 51 chromium release
1377925 Eur ] Immunol protein 1 (125-133) Homo sapiens wrtﬁout ey g e protein 1 (125-133) Epitope HLA-A*02:01 cytotoxicity
1998 Hurman herpesvirus 4 folowed by restimubition in vitro Hurman herpesvirus 4 Positive
(strain B95-8) v (strain B95-8)
YLLEMLWRL .
’ Imrmune reactivity to Human Human herpesvirus 4
J— EKhanna, Latent membrane herpesvinus 4 (Taxonomic Parent)  (stran B95-8) . 51 chromium release
ur J Immunol protein 1 (125-133) Homo sapiens without evidence for disease Human herpesvirus 4 Source Organism HLA-A*02:01 cyto_tgchrty
1998 Hurnzn herpesvirus 4 followed by restimulation in vitro  (strain B95-8) Positive

(strain B95-8)

Fig. 5-4 Reference HLA-1 antigenic peptides of LMP1 selected from experiment verified IEDB
data in part showing high consistency with our bmPDA designed LMPL1 vaccine peptide
candidates.

5.3.2 HLA1 vaccine peptide design: L M P1 agretope prediction
Agretope docking result from our method for LMP1 is plotted in Figure 5-5. Better agretopes

of LMP1 is listed in Table 5-2. According to NetCTL, SYFPEITHI, and the docking result of

our method, the preferred epitope for vaccine design were listed in Table 5-3.
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Fig. 5-5 LMP1 agretope docking scores of bmPDA predicted peptide structures onto HLA
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A*0201 pocket sub-zones evaluated by Molegro Virtual Docker software.
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Table 5-2 Top ranking agretopes to HLA A*0201 of LMP1 selected by MVD binding affinity.

number sequence MVD binding affinity NetCTL SYFPEITHI
173 WLLLFLAIL -55.6000
159 YLQQNWWTL -34.6364
64 [HILIFIF -34.1266
171 LLWLLLFLA -33.6373
222 GRHHLLVSG -31.5068
36 LLFWLYIVM -30.4040
135 ATIWQLLAF -29.8328
149 LDLILLIIA -29.0841
137 IWQLLAFFL -28.9083
180 ILIWMYYHG -28.6749

Table 5-3 The bmPDA-designed priority LMP1 vaccine peptide candidates towards HLA A*0201
sorted by [agretope — epitope — agretope] docking scores of MVD binding affinity in comparison
among antigenicity scores of NetCTL and SYFPEITHI.

position segquence MVD Binding Affinity NetCTL SYFPEITHI
173 WLLLFLAIL -55.59999686 0.9859 29
159 YLQONWWTL -34.6364165 1.2840 24
64 [HILIFIF -34.12661984 0.4515 16
171 LLWLLLFLA -33.63727296 1.0874 22
222 GRHHLLVSG -31.50681184 0.0081 10
36 LLFWLYIVM -30.4039776 1.0005 18
135 ATIWQLLAF -29.83278843 0.3298 14
149 LDLILLITA -29.08412344 0.0862 13
137 IWQLLAFFL -28.90825584 0.2581 13
180 ILIWMYYHG -28.67487832 0.2667 15

5.3.3 Putative LM P1 nona-peptide structures of assorted anchorsonto

docking A*02:01 pit

Based on the existing experimental data, many methods had been developed for predicting
MHC binding motif. Information about preferred residues on specific position was also
integrated into IEDB. According to peptide MHC binding motif data from IEDB, substitution
of residue on position 2 and C-terminal anchors of potential HLA-I: A*02:01-binding
epitopes was done. After structure prediction by bmPDA and docking by MVD, binding
affinity result summary is shown in Table 5-4.

Table 5-4 The bmPDA-designed LMP1 priority vaccine peptide candidates with improved
[agretope — epitope — agretope] HLA-I A*02:01 docking scores in comparison with improved NetCTL
and SYFPEITHI antigenecity scores in which original bmPDA-predicted peptide structures in weak
agretope group I/Q/V and A/M are modified towards new bmPDA-predicted peptide structures with
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substituted strong agretope group L/M and I/L/V.

Sequence NetCTL SYFPEITHI MVD binding affinity
YLLEMLWRL 1.5754 30 -10.2532
YMLEMLWRL 1.5857 28 -18.4164
YLLEMLWRI 1.5376 28 -13.6425
*  YLLEMLWRV 1.5570 30 -33.7690
YMLEMLWRI 1.5349 26 -19.1742
YMLEMLWRV 1.5595 28 -13.0074
ALLFWLYIV 1.4500 28 -20.5003
AMLFWLYIV 1.5000 26 -30.8523
ALLFWLYII 1.3600 26 -25.0526
*  ALLFWLYIL 1.4000 28 -38.8726
AMLFWLYII 1.4000 24 -17.3758
AMLFWLYIL 1.4500 26 -28.7211
LLVDLLWLL 1.4700 28 -11.1361
LMVDLLWLL 1.4936 26 -9.32915
* LLVDLLWLI 1.4374 26 -13.2684
LLVDLLWLV 1.4664 28 -5.6147
LMVDLLWLI 1.4464 24 -11.1991
LMVDLLWLV 1.4837 26 -10.3239
LLLALLFWL 1.4195 29 -13.1378
LMLALLFWL 1.4403 27 -22.6202
LLLALLFWI 1.3509 27 -13.7874
LLLALLFWV 1.4105 29 -12.4064
LMLALLFWI 1.3649 25 -17.6992
* LMLALLFWV 1.4302 27 -35.1014
LLLIALWNL 1.3461 28 -16.6802
LMLIALWNL 1.3932 26 -20.0396
LLLIALWNI 1.2997 26 -10.9213
LLLIALWNV 1.3755 28 -13.8491
LMLIALWNI 1.3230 24 -18.0534
LMLIALWNV 1.4087 26 -26.6008
FLDLILLII 1.3504 24 -24.3467
FMDLILLII 1.3486 22 -14.3563
FLDLILLIL 1.3256 26 -8.5435
FLDLILLIV 1.4062 26 -17.9722
FMDLILLIL 1.3934 24 -7.9018
FMDLILLIV 1.4400 24 -16.6111
LLLMITLLL 1.3029 27 -13.1837
*  LMLMITLLL 1.3564 25 -20.2986
LLLMITLLI 1.2659 25 -9.8575
LLLMITLLV 1.3428 27 -12.3941
LMLMITLLI 1.3035 23 -15.3174
LMLMITLLV 1.3924 25 -10.4206
FIFGCLLVL 1.3194 27 -13.8768
FLFGCLLVL 1.4435 29 -26.7132
FMFGCLLVL 1.4676 27 -26.5304
FIFGCLLVI 1.2739 25 -11.8059
*  FIFGCLLVV 1.3658 27 -27.2390
FLFGCLLVI 1.4128 27 -13.2616
FLFGCLLVV 1.4587 29 -21.5721
FMFGCLLVI 1.4262 25 -15.5724
FMFGCLLVV 1.4768 27 -25.2802

After residue substitution, we collected more peptides with relative better NetCTL and
SYFPEITHI antigenecity scores on HLA-I A*0201. Binding affinity was then predicted by
MVD. List of epitopes with good epitope score (NetCTL and SYFPEITHI antigenecity scores)
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and agretope score (MVD binding affinity) is shown in Table 5-5. Initially, the bmPDA tool
designs omega-shape nona-peptide structures only upon the top 8 ranking candidates
including 1/125 (1.570), 2/167 (1.470), 3/035 (1.450), 4/032 (1.420), 5/148 (1.350), 6/092
(1.346), 7/112 (1.319), and 8/086 (1.303) of original LMPInp structures which are
conveniently selected on the NetCTL and/or SYFPEITHI antigenicity scores after performing

nona-peptide scanning throughout full length LMP1 amino acid sequence.

The appropriate omega-shape conformation of nona-peptide structures for docking
A*02:01 pit including top 8 LMPInp candidates are selected from massive combinatorial
structures which are modeled with TPSP candidates through computation process with both
bmPDA Q4-GA and QSAR-SVR modules according to the positive reference template
structures extracted from PDB dataset. For docking onto A*02:01 pit structure, the applied
LMP1Inp structures based on the above LMPInp order of NetCTL score ranking may show
rather inconsistent ranking order along with greater difference in simulated MDV BAff
values as of 8/125 (-10.253), 7/167 (-11.136), 2/035 (-20.500), 6/032 (-13.138), 1/148
(-24.347), 3/092 (-16.680), 4/112 (-13.877), and 5/086 (-13.184) with BAff ranking indicated.

Table 5-5 LMP1 candidate epitopes with good epitope score and agretope score
Modified Epitopes
YLLEMLWRV
ALLFWLYIL
LLVDLLWLI
LMLALLFWV
LMLIALWNV
FLDLILLII
LMLMITLLL
FIFGCLLVV
FMAFFLDLI
LMVLYSFAI

5.4 Conclusion and FutureWorks

Knowledge of the 3D structure of epitopes is essential in structural immunoinformatics. With
the structure of peptides binding to MHC molecules, further elucidation about immune
reactions such as epitope-MHC molecular interactions can be done. There are many methods
developed for protein structure prediction, however, there are relatively few methods for
short sequence peptide structure prediction. In the immunoinformatic field, epitope is
primarily the target of concern, which is consisted of about 8-12 amino acids. There is little

previous effort for structural prediction of peptides binding to MHC Class I molecules.[49]
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The bmPDA structure prediction result of epitope revealed our method was good at
predicting structure of short sequence of peptide such as epitope. This is compatible with the
previous experience that protein threading method is more accurate in short sequence of

protein than homology modeling.

Based on the structure prediction result, we can actually simulate the binding between
peptide and MHC molecules, instead of other indirect method. For binding affinity evaluation
between peptide and MHC class I molecule, docking is done with MVD regression model

based on tabu clustering in order to avoid GA sub-optima and GA local optima.[48]

The intended vaccine peptide of epitope and agretope may be delivered in the format of
“in silico DNA vaccine” which is constructed with expression DNA sequence deduced from
the intended vaccine peptide sequence and as well with upstream control sequence of
LMP1/2 promoter sequence. The developed “in silico DNA vaccine” with intended specific
expression in EBV latent infection lymphocytes may be verified with NPC cell line of
EBV-latent infected B lymphocytes for immunogenic induction in order to demonstrate the
potential ability in shifting cell-mediated immunity (CMI) pathway towards MHC-I Tc cell of
CTL while away from MHC-II Th cell.

The BAff evaluation of predicted nona-peptide agretope structure towards docking
HLAT1 pit structure exploits MVD regression model with tabu clustering parameter in order to
avoid sub-optima and local optima with GA method. In that, the HLA1 BAff of predicted
activity with tabu clustering parameter may show good correlation with experiment activity
and as well may show better reproducibility of computation result when compared with
default rerank score of MVD regression model. The BAff computation time with
nona-peptide structure on docking HLA1 pit structure is respectively 150 minutes or 40
minutes in average with default parameter or tabu clustering parameter in MVD regression

model.

In addition to antigenecity priority on LMP1np epitope candidates in original amino acid
sequence, the LMP1 agretope anchor plastics candidates based on bmPDA structure modeling
may comply with inferred position-specific preference on A*02:01 pit binding nona-peptide
at positions {2nd; 9th} with {L/M; I/L/V} towards improving MVD BAff vale while in
disregard of tolerated {I/Q/V; A/M}. Notably, putative LMPInp structures of bmPDA
prediction match with compatible biological experiment verified IEDB entries of A*02:01
epitopes ID 1377922~1377926 from Herpesvirus 4 Strain B95-8 with LMP1np-125(~133)
published by Khanna R et al. in 1988. Despite of top ranking antigenecity scores with
NetCTL and SYFPEITHI severs with LMP1np-125 {L; L} within preferred {L/M; I/L/V}

46



anchor group, the MDV BAff value of LMPInp-125 structural docking appears at the last
ranking position within the indicated group in original amino acid sequence whereas the
LMPInp-125 {L; V}.

With the priority LMP1 epitope candidates for HLA1 predicted with the antigenicity scores
of NetCTL and/or SYFPEITHI servers, our bmPDA designed nona-peptide structures may
further contribute on the need of structural evaluation in order to move on the diligence in
practical feasibility towards application direction of mining Ama candidates of in vitro DNA
vaccine for in vitro cell activation and Ace candidates of in vivo twin adhesive for in vivo
subject therapy based on MDV BAft values. Despite of accords in good antigenicity scores
level of NetCTL and SYFPEITHI, NetCTL score rankings within Ama group of {L/M; I/L/V}
seem to be more consistent with MVD BAff value rankings of our bmPDA designed
LMPInp:Ama structures while at noticeable inconsistency with SYFPEITHI score rankings.
Moreover, high NetCTL antigenicity scores of top 8 candidates with the distribution range
from 1.575 to 1.303) may fail to offer adequate {L/M; I/L/V} intra-group resolution as in
contrast to the distribution range of low score antigenicity cases; whereas BAff value range
from -24.347 to -10.253 of top 8 candidates may offer appropriate power for differentiation
among LMPInp:Ama candidates as to be a supplemental indicator for analyzing

HLA1-binding nona-peptides.

Instead of external delivery in vaccine peptide towards regular AMI induction, the intended
vaccine peptide of HLA1 binder epitope and agretope for CMI induction shall in future take
internal delivery strategy in the format of DNA vaccine which is constructed with coding
sequence DNA insert deduced from intended HLA1 binder peptide sequence and as well with
upstream control sequence of appropriate promoters. The intended CMI vaccine peptide thus
in the format of in vitro DNA vaccine may serve good application for in vitro cell activation
towards in vivo adoptive cell transfer with mixed lymphocyte reaction (MLR) plate separated
with dialysis membrane from host cell and antigen presenting cell (APC), T cytotoxic (Tc)
cell, and T helper (Th) cell. The in vitro DNA vaccine is hypothesized with practical
feasibility while bypassing immune suppression within in vivo tumor microenvironment and
while avoiding adverse clinical cytotoxicity on innocent bystander cells due to in vivo

non-specific delivery of DNA vaccines.
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Chapter 6 NPC-CM1 Peptide Evaluating towar ds

HLA1 and Agretope Complex Enhancements

6.1 Introduction

Nasopharyngeal carcinoma (NPC) at nasopharynx epithelium of squamous cell origin is
common in south-eastern Asia countries including Taiwan, Indonesia, Singapore, Malaysia,
and Vietnam in addition to Hong Kong and southern China.[2] Genetic susceptibility,
environmental factors, and Epstein-Barr virus (EBV) infections comprises the important
interplays towards NPC oncogenesis. [4] The EBV of herpesvirus family with 184-kB
double-stranded DNA genome for encoding nearly 100 viral proteins often attacks the
primary target of B lymphocytes and often results in lifetime latent infection.[7] Presence of
EBV genome is demonstrated virtually in most NPC cells through oncogenesis process of
EBV latent infections.

In background review, the EBV-NPC oncogenesis process may equip both proliferation
advantage and immune evasion in order to overcome efficient anti-EBV immune clearance
mechanisms of antibody-mediated immunity (AMI) with antibody-dependent cell-mediated
cytotoxicity (ADCC) as well as cell-mediated immunity (CMI) with cytotoxic T lymphocyte
(CTL)-initiative cytotoxic apoptosis during either latent and/or regular EBV infection phases.
[7] Specifically, the basic proliferation advantage is likely from encoding EBV latent
infection membrane protein 1 (LMP1) with growth factor receptor-like mutants and as well
the critical immune evasion is likely from mutating EBV genome for poor immunogenicity
responses at AMI-antigen epitopes and CMI-antigen epitopes/agretopes within LMP1/LMP2
and/or EBNA of EBV-encoded proteins.[8] Highly likely, the EBV-NPC immune evasion on
ultimatum CMI-agretope mutant maybe the most crucial strategy for oncogenic negative
selection against which the host immune system cannot counter-act efficiently despite that the
other EBV-NPC immune evasions on AMI-epitopes and CMI-epitopes in oncogenic cells
maybe eventually removed with affinity maturations of B cell receptor (BCR) and T cell
receptor (TCR) through gene hyper mutations during the entire long-term process of
EBV-NPC oncogenesis.[8]
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The EBV-NPC immune evasion of CMI-agretope mutant maybe well exemplified with
the interplay case of ethnic prevalence difference on class I human leukocyte antigen (HLA1)
spectrum with additional LMP1 mutant assorts. The HLA A*0207 (common in Taiwan
population) shows higher chances of EBV-NPC than the A*0201 (common in Caucasian
population) even further with additional synergistic B*4601/B*14 and extended haplotype
HLA A*3303- B*5801/2- DRB1*0301- DQB1*0201/2- DPB1*0401. [11,12] The EBV-NPC
biopsies in Taiwan population select LMP1 variants of immune evasion NLMP1 which
shares high amino acid sequence homology prominently with prototype B95.8-LMP1 and
CAO-LMPI1 in China population. Importantly, the NLMP1 over-expression in Balb/c class I
major histocompatibility complex (MHC1)-context towards regressing the experimental
murine EBV-NPC of NLMPI1 expression may result from regaining strong CMI agretope
presentation of NLMP1 in mice MHC1 context in disregard of the original selected immune
evasion of NLMP1 in human HLAI context likely with weak agretope binding
presentation.[11,12,13] The restricted HLA1 spectrum of genetic susceptibility may indicate
that the overlooked anchoring CMI-agretope of omega-shape nona-peptide is required for
crucial docking onto HLAIl-cleft in order for adequate CMI-epitope immunogenicity

presentation towards effective CMI induction.

Immunoinformatics is with remarkably high practical potential in application aspect of
epitope/agretope peptide binders with AMI-antibody and CMI-HLA1/2 towards screening the
putative agretope complex enhancement (Ace) molecules with increased binding affinity
(BAff) of NLMP1 agretope and HLA A*0207 in order likely to specifically improve
EBV-NPC CMI with low non-specific adverse. Our structure-based immunoinformatic
approach aims at EBV-LMP1 immunogenicity-related omega-shape nona-peptide design.[1]
The bio-mimicry peptide design algorithm tool (bmPDA-tool) implements three sections
including peptide building blocks database construction, peptide backbone modeling of

building block candidates, and quality evaluation of predicted nona-peptide structures.|[1]

Considerably, the restricted HLA spectrum may indicate the crucially overlooked
agretopes of vaccine peptide for anchoring onto both ends of antigen pit in MHC-I with
which seems to be required for adequate antigen presentation on peptide epitope towards
good immunogenicity. The design strategy of MHC-I vaccine peptide thus seemingly
demands both optimized agretopes and immunogenic epitope to which additional peptide

segments for improved APC proteasome processing are attached at both flanking sides.
The immunotherapeutic regime against EBV-NPC for instance may conveniently exploit

various aspects including AMI-ADCC with vaccine peptides, CMI-CTL with DNA vaccines,

and microenvironment immune suppression with in vitro cell activation towards in vivo
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adoptive cell transfer. The current challenges except vaccine peptides still install obstacles
including weak HLA 1-binding agretope in host cell or dendritic cell, and specific delivery of
DNA vaccine to host cells without damaging innocent bystander cells.[15,16,17,18]
Immunoinformatics is with remarkably high practical potential in feasible application of
epitope/agretope binders onto AMI-BCR and CMI-HLA/TCR towards mining putative
anchor modified agretope (Ama) and agretope complex enhancer (Ace) with reinforced
binding affinity (BAff) of NLMP1 agretope and A*02:07 pit in order to likely improve
NPC-CMI specifically while with low adverse cytotoxic effect due to non-specificity.

In this study, we implement bio-mimicry peptide design algorithm (bmPDA) comprising
peptide database construction of building blocks, peptide backbone modeling of building
block candidates, and quality evaluation on predicted nona-peptide structures. Our bmPDA of
structure-based immunoinformatic approach aims at designing EBV immunogenicity-related
omega-shape NLMP1 nona-peptide (NLMP1np) structures. We apply in-house bmPDA-tool
towards applications of predicting A*02:07-binding EBV-NLMP1np structures in order that
the verification on putative epitope and agretope quality may be accomplished with
outsourcing tools of NetCTL server and Molegro Virtual Docker (MVD) software. The BAff
with designed omega-shape NLMPInp and LMP1np structures on docking both HLA pits of
A*02:07 {PDB: 30XS} and A*02:01 {PDB: 1BD2} may be evaluated with MDV tool
towards mining putative Ama and Ace candidates among which may be identified in
modified-anchor assorts and FDA-approval drugs based on stable BAff of NLMPInp
agretope and A*02:07 pit in order to specifically improve NPC CMI yet likely with low

adverse effect due to non-specificity.

6.2 Method

The overall workflow is shown in Figure 6-1.
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Fig. 6-1 Work flow of identification towar ds action/agretope complex enhancement (Ace) drugs.

6.2.1 Material preparation

LMP1 epitopes with good epitope score (NetCTL and SYFPEITHI antigenecity scores) and
agretope score (MVD binding affinity) were collected as method in chapter 5. Structure files
of HLA A*0201 and HLA A*0207 MHC class I molecules were collected from PDB.
Structure files of FDA approved drugs were collected from DrugBank.

6.2.2 virtual screening for approved drugs
Virtual screening deals with large number of ligands against a receptor in reasonable time.
The interactions between the drugs and MHC-I molecules are evaluated by Molegro Virtual

Docker (MVD)[47]. Virtual screening was done for finding drugs with better binding affinity
to HLA A*0201/HLA A*0207.
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6.2.3 identification of action/agretope complex enhancement (Ace) drugs

After virtual screening, MHC-drug complex were docked with peptides for better epitope and
agretope performance. Binding affinity was evaluated and compared with the original binding
affinity without drugs. If the binding affinity increases, the drug will be viewed as
action/agretope complex enhancement (Ace) molecule for improving binding affinity of
predicted nona-peptide structures.

With hypothesized immune evasion at weak viral agretope anchors, our bmPDA tool
selects putative NLMP Inp structures with weak BAff value on docking ethnic A*02:07 and
A*02:01 pit structures in order for evaluating BAff improvement on Ace candidates towards
making in vivo twin adhesives. The twin adhesives strategy for Ace candidate is based on
A*02:07 pit with better BAff on docking while at the presence of small chemical molecules
from DrugBank of 1,435 FDA-approval drugs. With internal delivery in medication towards
regular CMI induction, the intended Ace candidates for agretope anchors may in future take
internal delivery strategy for CMI induction in the format of in vivo twin adhesive towards
therapeutic drug for new indications.

The Ace candidates from FDA-approval drugs to in vivo twin adhesive thus in disease
treatment format may serve good application for in vivo subject therapy towards likely in
vivo NPC-CMI activation against latent infection phase NPC host cells with MLR in tumor
microenvironment including in vivo adoptive cell transfer of in vitro activation cells and from
local APC, Tc, Th, and myeloid derived suppressor cells (MDSC). The in vivo subject
therapy towards likely NPC-CMI improvement with Ace candidates are speculated with
practical feasibility while inducing specific cytotoxicity only upon NPC cells with in vivo
specific presence of targeted weak NLMPInp anchors despite of in vivo non-specific

distribution of Ace candidates.

6.3 Result and Dataset

Along with NetCTL antigenicity scores for HLAI epitopes, our bmPDA-designed
nona-peptide structures may move onto structural evaluation in feasible application practice
of mining Ama candidates of in vitro DNA vaccine for in vitro cell activation and Ace
candidates of in vivo twin adhesive for in vivo subject therapy based on MDV BAff values.
For immune evasion likely towards tumorigenesis, the optimal NLMPInp structures of
omega-shape conformation which are hypothesized to dock differently on A*02:07 and
A*02:01 may have been somehow revealed with our bmPDA tool based on BAff value. The

feasible applications of mining Ama candidates of in vitro DNA vaccine for in vitro cell
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activation and Ace candidates of in vivo twin adhesive for in vivo subject therapy may have
been somehow revealed again with preliminary results on the case of NLMPInp structures
and A*02:07 pit structure.

6.3.1 Putative NL MP1 nona-peptide structures onto docking ethnic

A*02:01 versusA*02:07 pits

Better epitopes of LMP1 to HLA A*0201 is shown in Table 6-1. Virtual Screening Result for
Drug on better epitopes of LMP1 to HLA A*0201 is shown in Table 6-2. Binding affinity

evaluation between epitopes, HLA A*0201 MHC molecules, and adjuvant drug is shown in
Table 6-3.

Table 6-1 The bmPDA-designed priority LMP1 nona-peptide agretopes to HLA A*0201 sorted with
[agretope — epitope — agretope] docking scores in comparison among NetCTL and SYFPEITHI
antigenicity scores.

position seguence Binding Affinity NetCTL
125 YLLEMLWRL -13.3300 1.5637
35 ALLFWLYIV -13.4630 1.4636
167 LLVDLLWLL -13.8151 1.4324
32 LLLALLFWL -12.5441 1.3659
92 LLLIALWNL -16.1708 1.3255
148 FLDLILLII -18.5444 1.2840

Table 6-2 Virtual screening for Ace drug candidates on the bmPDA-designed priority LMP1
nona-peptide agretopes to HLA A*0201.

ID DrugBank 1D Name Binding Affinity
Drug_868 DB00863 Benzonatate -848.723
Drug_770 DB00770 Alprostadil -570.985
Drug_442 DB00442 Entecavir -525.688
Drug_585 DB00585 Nizatidine -509.538
Drug 927 DB00927 Famotidine -502.321

Table 6-3 Binding affinity evaluation with Ace drugs towards bmPDA-designed priority LMP1
nona-peptide agretopes onto HLA A*0201.

LMP1 original DB00868 DB00770 DB00442 DB00585 DB00927

2#3]'23 Benzonatate  Alprostadil Entecavir Nizatidine Famotidine

YLLEMLWRL -13.3300 -8.6442 -7.91187 -25.7789 -12.0708 -14.1084
ALLFWLYIV -13.4630 -18.4250 -18.1605 -52.6991 -26.3374 -17.1538
LLVDLLWLL -13.8151 -20.1659 -3.61057 -7.4801 -18.7837 -9.9925
LLLALLFWL -12.5441 -36.6455 -16.4207 -17.3280 -12.8342 -9.5650
LLLIALWNL -16.1708 -6.8241 -11.333 -11.7121 -17.9643 -10.0029
FLDLILLII -18.5444 -10.8383 -7.2318 -12.4783 -23.4822 -11.4594
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Epitope Docking Result for LMP1 is shown in Table 6-4. Antigenecity was decreased in
HLA A*0207 than HLA A*0201. Binding affinity was also decreased in HLA A*0207. Both
epitope and agretope were decreased in HLA A*0207 than HLA A*0201 (Table 6-4).
Binding affinity of NLMP1 also weakened in binding with HLA A*0207 (Table 6-5).

Table 6-4 The bmPDA-designed priority LMP1 nona-peptide agretopes towards HLA A*0201 and
A*0207 sorted with [agretope — epitope — agretope] docking scores in comparison among NetCTL
antigenicity score.

HLA A*0201 HLA A*0207

position sequence NetCTL score Binding Affinity Binding Affinity
125 YLLEMLWRL 1.5637 -13.3300 -14.4478
35 ALLFWLYIV 1.4636 -13.4630 -11.1488
167 LLVDLLWLL 1.4324 -13.8151 -12.3144
32 LLLALLFWL 1.3659 -12.5441 -15.2408
92 LLLIALWNL 1.3255 -16.1708 -12.5091
148 FLDLILLII 1.2840 -18.5444 -12.5585
86 LLLMITLLL 1.2779 -3.2896 -5.7820
112 FIFGCLLVL 1.2517 -13.6547 -22.2827
144 FLAFFLDLI 1.2339 -16.0035 -22.1579

Table 6-5 The bmPDA-designed priority NLMP1 nona-peptide agretopes towards HLA A*0201 and
A*0207 sorted with [agretope — epitope — agretope] docking scores in comparison among NetCTL
antigenicity score.

HLA A*0201 HLA A*0207

position sequence NetCTL Binding Affinity Binding Affinity
35 ALLFWLYIV 1.4606 -23.8611 -15.6310
166 LLVDLLWLL 1.4140 -16.7493 -5.8554
32 LLLALLFWL 1.3495 -15.0933 -18.9673
92 LLLIALWNL 1.3190 -14.6203 -9.7118
112 FIFGCLLVL 1.2954 -14.8420 -19.5422
86 LLLMITLLL 1.2798 -14.0656 -6.3505
158 YLQONWWTL 1.2788 -26.0066 -29.4955
142 FILAFFLAI 1.2690 -19.0063 -17.4068
147 FLAIILLII 1.2620 -17.7329 -9.1896
61 MLITITLITI 1.2355 -14.9290 -19.4790

On immune evasion likely towards tumorigenesis, optimal NLMPIlnp structures
{X66863} of omega-shape conformation may be somewhat revealed on docking unstably
with A*02:07 {30XS} pit of Asian and Taiwan population for evading CMI in contrast to
A*02:01 {IBD2} pit of Caucasian population may be versified with our bmPDA tool based
on BAff value. With exclusion on NLMP1np-125, the NLMP1np candidates of top ranking
NetCTL antigenecity scores are similar to LMP1np case {V01555} in which both NLMP 1np
and LMPInp comply with inferred position-specific preference on HLAI-binding
nona-peptide at positions {2nd; 9th} in {L/M; I/L/V} as of A*02:01 case in addition to an
extra preference at position {3rd} in {D/P} as of A*02:07 case only.[38] The listed
NLMPInp candidates with top ranking NetCTL antigenecity scores may all comply with
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stated preference {L/M; I/L/V} except NLMPInp-112/142 with tolerated {I, L}. In general,
the resulted BAff values of agretope complex with HLA1 {A*02:07, A*02:01} pit structures
and NLMP1np agretope structures seem to suggest that N-LMP1np structures show greater
loss of BAff value especially in A*02:07 docking case which may lose on CMI antigen

presentation likely for immune evasion.

Based on available NetCTL score difference of A*02:07 on A*02:01, the rankings of
NLMP1np structures are as of 1/035 (+0.011), 2/086 (-0.023), 3/112 (-0.024), 4/092 (-0.027),
5/166 (-0.056), 6/032 (-0.071), and 7/142 (-0.088) with position number of initial amino acid
indicated. Further based on available BAff value difference of A*02:07 on A*02:01, the
rankings of NLMPInp structures are as of 1/166 (+10.89), 2/147 (+8.54), 3/035 (+8.23),
4/086 (+7.72), 5/092 (+4.91), 6/142 (+1.60), 7/158 (-3.49), 8/032 (-3.87), 9/061 (-4.55), and
10/112 (-4.70). Despite of narrow NetCTL score gaps with losing antigenecity tendency
among applied NLMPInp except NLMP 1np-035 structures, ethnic BAff value differences of
A*02:07 on A*02:01 in docking NLMP1np structures seem in general to suggest a greater
tendency of increasing BAff values which may indicate loss of docking stability upon
NLMPl1np-166 (#2), 147 (#9), 035 (#1), 086 (#6), and 092 (#4) as in contrast to a moderate
tendency of decreasing BAff values which may indicate gain of docking stability upon
NLMPI1np-158 (#7), 032 (#3), 061 (#10), and 112 (#5) with NetCTL rankings numbers
attached.

The above results seem suggest that A*02:07 pit structure of Asian population may lose
greater binding stability with NLMP1np structures especially from top ranking antigenecity
candidates based on NetCTL scores. Particularly, NLMPInp-035/166 structures of top
Ist/2nd NetCTL antigenecity score may lose the most binding stability with A*02:07 pit
structure of Asian population which may likely take place in EBV latent infection host cells
with LMP1 proliferative effect at the point of exploiting less efficient antigen presentation to
Tc-TCR for immune evasions with survival advantages. The survival advantages disclosed
possibly in EBV latent infection host cells towards NPC tumorigenesis of long-term selection
process may zoom into negative selection track at certain stage on mutating agretope anchors
in order for immune evasion onto less efficient CMI clearance while still with original

epitope bulge of excellent antigenecity.

With this regard, possible remedy for reverting the indicated immune evasion upon
ethnic difference of HLA1 pits and mutant agretopes of excellent epitope context may
apparently require to assist ethnic pit and mutant agretope on increasing binding stability in
that we propose efforts on mining Ama and Ace candidates for intended practical

applications despite that we not yet put attention on the opposite case of ample
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HLA1-binding blockers as with excellent agretopes yet with bad epitope. To intended
practical applications, our bmPDA tool may specifically mine Ama candidates of putative
NLMPI1np structures with lower BAff value of better docking stability towards making in
vitro DNA vaccine of intracellular expression in order for in vitro cell activation onto in vivo
adoptive cell transfer while bypassing in vivo immune suppression within tumor
micro-environment and while avoiding in vivo adverse cytotoxicity upon innocent bystanders
due to in vivo non-specific delivery of DNA vaccines. Further, our bmPDA tool may mine
Ace candidates among FDA-approval drugs with lower BAff value of better docking stability
towards making in vivo twin adhesive between weak ethnic pit of A*02:07 structures and
weak agretope anchor of NLMPI1np structures in order for in vivo subject therapy while
inducing specific cytotoxicity only upon NPC cells with in vivo specific presence of weak

ethnic pit and weak agretope anchor despite of in vivo non-specific distribution of Ace drugs.

6.3.2 Mining anchor-modified agretope for NL M P1 nona-peptide on

docking A*02:07 pit structure

The feasible application of mining Ama candidates for in vitro DNA vaccine of cell
activation is pursued on the case of NLMPInp and A*02:07 while with assorted anchors
which may comply with inferred position-specific preference at respective position {2nd; 9th}
with {L/M; I/L/V} for A*02:07 and A*02:01 in addition to position {3rd} with {D/P} for
only A*02:07 towards improving MVD BAff value. On docking A*02:07 pit structure,
NLMPI1np-035 ({L; V}; {M; V}) respectively without or with anchor modification gives
MVD BAff values (-15.6310; -35.9599) in which notable difference value of 20.33 may
represent the improvement level. The visualization of agretope complex of NLMP1np-035
({L; V}; {M; V}) with A*02:07 pit structure seems to shift from slant docking towards
balanced docking at good improvement of complex stability. On docking A*02:01 pit
structure, same LMP1np-035 ({L; V}; {M, V}) gives respective MVD BAff values (-20.5003;
-30.8523) while merely moderate 10.35 of derived difference value.

To this point, the Ama candidates of putative NLMP Inp structures may subsequently be
verified in the same A*02:07 genetic background with in vitro mixed lymphocyte reaction
(MLR) comprising host cells transfected with constructs of NLMP1np candidates, Tc cells,
and Th cells for analyzing CTL activity according to the practical application of making in
vitro DNA vaccine of intracellular expression in order for in vitro cell activation onto in vivo

adoptive cell transfer while bypassing in vivo immune suppression within tumor
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micro-environment and while avoiding in vivo adverse cytotoxicity upon innocent bystanders

due to in vivo non-specific delivery of DNA vaccines.

6.3.3 Mining agretope complex enhancer for NL M P1 nona-peptide on

docking A*02:07 pit structure

HLA alleles are important in the pathogenesis of virally induced tumors. HLA A*0207 is
more prevalent in Taiwan. Consistent association was found between HLA-A*0207 (common
among Asian but not among Caucasians) and NPC but not between HLA-A*0201 (most
common HLA-A2 allele in Caucasians) and NPC [50]. NLMP1 is an EBV strain prominent
in Taiwanese population.[51] Antigenecity prediction by NetCTLpan for NLMP1 in HLA
A*0201 and HLA A*0207 is shown in Figure 6-2. NLMP1 Epitopes with good antigenecity
were selected for candidate epitopes (Table 6-6).
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Fig. 6-2 Overall NLMP1 epitope antigenecity of bmPDA predicted peptide structures analyzed
by NetCTL pan antigenecity score server towar ds both HLA A*0201 and A*0207.

Table 6-6 Top ranking agretopes of NLMP1 towards HLA A*0207 selected by MVD binding affinity.

position seguence
35 ALLFWLYIV
166 LLVDLLWLL
32 LLLALLFWL
92 LLLIALWNL
112 FIFGCLLVL
86 LLLMITLLL
147 FLAIILLII

Virtual Screening Result of FDA approved drug for NLMP1 on HLA A*0207 is shown
in Table 6-7. Docking result summary is shown in Table 6-8. Entecavir, Nizatidine,
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Famotidine performed better, so they were viewed as Ace drugs. The feasible application of
mining Ace candidates for in vivo subject therapy is pursued on the case of NLMP1 and
A*02:07 while with available DrugBank (www.drugbank.ca) chemicals of 1,435

FDA-approval drugs and while upon proposed new indication of which aims at improving

weakened binding of variant NLMP1 agretope and HLA1 pit for reverting in vivo immune
evasion and at lifting CMI reactivity towards tumor cell removal gain which maybe likely to
take place at in vivo NPC microenvironment. With the exclusion of NLMPInp-061, 142, and
158, the rest NLMP 1np structures are evaluated including NLMP 1np-166 (#2), 147 (#9), 035
(#1), 086 (#6), and 092 (#4) of greater loss on docking stability with top NetCTL rankings
attached and NLMP1np-158 (#7), 032 (#3), and 112 (#5) of moderate gain on docking
stability.

Among 1,435 FDA-approval drug structures from DrugBank, the harvest of mining Ace
candidates may be exemplified with DB585 Nizatidine, DB868 Benzonatate, DB442
Entecavir, DB927 Famotidine, and DB770 Alprostadil according to docking stability gain of
less BAff value while docking NLMP1np structures onto A*02:07 pit structure. Moreover,
Ace candidates are in general class of Histamine-2 receptor antagonist (H2-blocker) with
literature reports showing CMI enhancement effects for supplementing cancer therapy
additionally exemplified with an especially interesting Ace candidate {Entecavir} for clinical

indication of treating HBV chronic infection that has concluded clinical trial in Taiwan.

Table 6-7 Virtual screening for Ace drug candidates on the bmPDA-designed priority NLMP1
nona-peptide agretopes to HLA A*0207.

ID DrugBank 1D Name Binding Affinity
Drug_868 DB00868 Benzonatate -858.24
Drug_770 DB00770 Alprostadil -535.50
Drug_927 DB00927 Famotidine -507.71
Drug_442 DB00442 Entecavir -505.93
Drug 585 DB00585 Nizatidine -490.57

Table 6-8 The bmPDA-designed priority NLMP1 nona-peptide agretopes towards HLA A*0207
sorted with [agretope — epitope — agretope] docking scores in comparison among NetCTL antigenicity
score.

NLMP1 original DB00868 DB00770 DB00927 DB00442 DB00585
I?;frf]:jn'ns Benzonatate Alprostadil Famotidine Entecavir Nizatidine

ALLFWLYIV -15.6310 -17.4564 -20.3148 -15.2905 -32.6494 -17.8726
LLVDLLWLL -5.8553 -13.8805 -10.5714 -10.6011 -17.3471 -9.4336
LLLALLFWL -18.9673 -15.3687 -9.9673 -8.3331 -22.0679 -12.6647
LLLIALWNL -9.7116 -36.4624 -7.3806 -17.4920 -9.2982 -7.7141
FIFGCLLVL -19.5422 -18.3895 -23.8061 -21.4551 -36.7102 -36.2241
LLLMITLLL -6.3505 -8.2676 -9.5218 -15.7051 -7.1375 -8.7732
FLAIILLII -6.8421 -15.6089 -6.6913 -13.5632 -10.6795 -20.8778
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To this point, Ace candidates of FDA-approval drugs may subsequently be verified in
genetic background of ethnic A*02:07 on A*02:01 with in vitro mixed lymphocyte reaction
(MLR) comprising host cells such as tissue cells and/or dendritic cells transfected with in
vitro DNA vaccine constructs of NLMPInp candidates, Tc cells, and Th cells in order for
analyzing CTL activity without or with in vitro Ace candidate treatment as of simulating
practical application of making in vivo twin adhesive between A*02:07 pit structure and
weak agretope anchor of NLMPI1np structures in order for in vivo subject therapy while
inducing specific cytotoxicity only upon NPC cells with in vivo specific presence of
intracellular responsive NLMP1np structures despite of in vivo non-specific distribution of

Ace drugs within host cells of none NLMP1 existence.

On docking A*02:07 pit structure, NLMP1np-035 {L; V} without or with Ace drug
DB442 Entecavir gives MVD BAff values of (-15.6310 without Ace; -32.6494 with Ace) in
which notable value difference of 17.02 may represent improvement level. Visualizing
agretope complex of NLMPInp-035 {L; V} structure with A*02:07 pit structure seems to
show slant docking towards extending anchor at good improvement of complex stability upon

trial conditions of without or with Ace drug treatment.

Despite of potential structural difference between parallel Ama and Ace applications
while with good improvement level of complex stability, the epitope-bulge structures
between Ama and Ace cases respectively of NLMP1np-035 {M; V} on A*02:07 pit structure
of balanced docking and of NLMP1np-035 {L; V} on A*02:07 pit structure of slant docking
at anchor extension may indeed exist minor RMSD structure difference based on SuperPose
server. Anyhow, minor difference at epitope-bulge of TCR binding may not cause major
trouble upon practical applications due to that versatile TCR may exist adequate cross
reactivity and as well flexible TCR may generate adequate variant conformations for
improving specific binding with different epitope-bulges as of TCR affinity maturation via

genetic processes of gene rearrangements and so forth.

6.4 Conclusion and FutureWorks

HLA alleles are important in the pathogenesis of virally induced tumors. HLA A*0207 is
more prevalent in Taiwan. Consistent association was found between HLA-A*0207 (common
among Chinese but not among Caucasians) and NPC but not between HLA-A*0201 (most
common HLA-A2 allele in Caucasians) and NPC. Within the HLA A2 group, only

HLA-A*0207 alleles (a genotype common among individuals of Chinese descent but rare
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among Caucasians) is related to NPC risk, although the HLA-A*0201 allele (a genotype
common among Caucasians) is not associated with NPC. T-cell epitopes of LMP1 and LMP2
are efficiently presented by HLA-A*0201. Data suggest that the HLA-A*0207 allele is less
efficient than the HLA-A*0201 allele at inducing cytotoxic T-lymphocyte responses.[50]

Our research result is consistent with previous studies. In our study, both epitope score
and agretope score were decreased in HLA A*0207 group than in HLA A*0201 group. Based
on the observation, we can postulate immune reaction of EBV should be weaker in HLA
A*0207 group. Latent infection may be more prevalent and lead to NPC eventually. That

could partly explain why NPC is more prevalent in Taiwan compared with western country.

Peptide-based vaccines are safe, stable, and easy to produce in large scale. Specific
immune responses can also be monitored easily and correlated with clinical responses.
However, Peptide-based vaccines need to identify the immunogenic epitope of the
tumor-associated antigen. Most peptide-based vaccines focused on antigenic peptides which
bind the HLA-A2 molecule due to its high frequency of expression in up to 50% of the
Caucasian. Compared to bacterial or viral vaccine vectors, immunogenicity of peptide
vaccines are relatively poor. Researchers in this area had focused on finding adjuvant
immune-enhancing agents such as chemokines, cytokines, and co-stimulatory molecules to
enhance the potency of the peptide vaccine. For maximizing the immunological responses
elicited from peptide-based vaccines, it is important to identify the appropriate adjuvants and
route of administration[11]. In our study, we demonstrated a method for searching preexisting
FDA approved drug as adjuvant agent. In adoptive immunotherapy for autologous CTLs

transfer, our method may be applied in similar way.

In our study, Entecavir, Nizatidine, Famotidine were viewed as ACE (agretope complex
enhancement) drugs. Entecavir is an antiviral drug used in the treatment of hepatitis B
infection. Our result implied that it may have some immune regulatory effect besides antiviral
function. Surprisingly, Nizatidine and Famotidine enhance agretope complex in our study.
These histamine-2 antagonist are used for treatment of peptic ulcer for a long time. However,
there are some studies mentioned about their immune-related function.[52-57] Other than
effect on histamine receptor, these drugs may have role in cell-mediated immunity. It is very

interesting for further investigation.

60



Chapter 7 Summary and Future Works

In this thesis, structural bioinformatics are applied to solve problems of EBV-related
immunotherapy. Our system can be applied on both two important aspect of immune reaction:
AMI-Epitopes and CMI-Agretopes. We applied structure-based immunoinformatics methods
of in-house bmPDA tool for practical applications of immunotherapy that specifically covers
the case of designing NLMP Inp structure and docking HLA1 A*02:07 pit structure in order
for mining intended Ama and Ace candidates. Our preliminary results of bmPDA tool that
designs putative structures unknown for nona-peptides and measures binding stability of
action complex may likely be a supplementing extension for NetCTL server of antigenecity
score.

With the intention to explore the possibility of differential agretope binding stability as a
pathway of immune evasion among ethnic populations, our results may at least shed some
light on the predisposing mechanism towards NPC formation due to ethnic difference of
A*02:07 versus A*02:01 in which NPC-related NLMPInp structures may lose greater
agretope binding stability especially among top antigenecity NLMP1np structures of high
NetCTL scores while still as of defective binders of HLA1 A*02:07 pit structure. Without
even doing detailed analysis on the defective HLA1 binders of octa-peptide and deca-peptide
structures and on the effective HLA1 blockers of oligo-peptide structures with strong
agretope binding stability yet with rather inadequate epitope antigenecity, we still feel
educational with the stated shedding of light in which we feel the need of Ama and Ace
candidates to be the remedy for reverting inefficient agretope binding while with appropriate

formats of practical application in future.

The NLMP1 agretope-oriented immune evasion for negative selection on HLA1 A*02:07
host cell with survival advantage for advancing oncogenesis may simply due to the innate
agretope inefficiency and as well the mutant agretope inefficiency on docking A*02:07 pit
structure for CMI induction after latent infection stage. On the opposite case, the NLMPI
epitope-oriented immune evasion may simply be successful merely in a short term manner
due to the innate adaptive variation mechanism of BCR and TCR genes within proliferative
lymphocytes towards selecting affinity maturation for efficient immune removal while

comparing to the less efficiency on innate adaptive variation of HLA1 genes.

Specifically, it is likely that the ethnic difference between A*02:07 and A*02:01 pit
structures on docking NLMPInp structures does render the host cell of A*02:07 genetic
background with survival advantage for negative selection from efficient CMI removal as of

immune evasion especially until latent infection stage with merely NLMP1 and EBNA

61



expression and whereas without survival advantage for negative selection from efficient AMI
removal while during regular infection stage with many viral envelop proteins expressed on
host cell membrane. Subsequently, it is likely that the survival advantage for negative
selection favors NLMPInp agretope mutants of further less efficient binding onto A*02:07
pit structure in which may render the host cell even greater ability of immune evasion from
efficient CMI removal.

Our proposed remedy of Ama and Ace candidates for abolishing the suggested immune
evasion on reverting the NLMP1 agretope inefficiency on docking A*02:07 pit structure may
likely be the practical applications of in vitro DNA vaccine and in vivo twin adhesive.
Detailed computational study may need to be done with preliminary Ace drugs as of true
positive cases on agretope complexes in order for verifying the complete exclusion on being
intermediate complex enhancer (Ice) as of false negative cases along the antigen presentation
pathway of class I MHC pertaining to intermediate complexes exemplified with calnexin and
Tapasin and so forth. Meanwhile, the Ama and Ace candidates either in respective or cocktail
format may subsequently be verified in same A*02:07 genetic background with in vitro
mixed lymphocyte reaction (MLR) of Th cells, Tc cells, and host cells transfected with in
vitro DNA vaccine of NLMPInp Ama candidates in order for analyzing CTL activity without
or with treatment of Ace candidates.

Interestingly, the Ace candidates from available DrugBank chemicals of 1,435
FDA-approved drugs towards potential clinical indications have come out to be in general
classes of Histamine-2 receptor antagonist (H2-blocker) and anti-HBV drug Entecavir with
literature reports showing CMI enhancement effects for cancer therapy supplements. Notably,
the clinical indication of Entecavir for improving histological inflammation on treating HBV
chronic infection may be with subtle supportive linking with our initiative exploration in
recent progress which is to investigate whether or not that Entecavir may enhance HBeAg
agretope binding to HLA1 for improved HBeAg-CMI efficiency towards reducing chronic
infection and as well may in turn assist HLA1 in abolishing immune evasion of HBeAg
agretope towards reducing HBV HCC oncogenesis potential as of the common remedy

similarly proposed on EBV NPC case.

We summarize the results of previous chapters in the following sections.

7.1 Summary

In this dissertation, we try to apply structural bioinformatics in NPC immunotherapy. NPC is

strongly related with EBV, so we mainly focus on EBV-related immune responses.

62



In the chapter 1 of this dissertation, we reviewed the carcinogenesis of NPC and
EBV-related immune response, and problems of immunotherapy. We try to solve them by

structural immunoinformatics.

In the chapter 2 of this dissertation, we developed a block feature definition system for
describing protein structures. Followed the concept of structure alphabet, we extract the
structural information from protein structures and identified 22 states of the structural
alphabet that represent pattern profiles of the backbone fragments based on our block feature
definition. Basic structural immunoinformatic databases were then constructed, such as Smers

fragment library and TPSS. Several tools are also developed for peptide block manipulation.

In chapter 3, we proposed a method named bmPDA for peptide block assembly and
developed an algorithm for peptide block modeling by genetic algorithm. Epitopes with
known structure of HLA A*0201 were collected from IEDB(Immune Epitope Database) and
PDB databases. Peptide structures predicted by our bmPDA method were compared with the
actual structures from PDB. Alignment was done by Superpose and RMSD score was
calculated. The result is good compare to the result of other short peptide structure prediction
server. After prediction of peptide structure from sequence was done, we extract the structural
information from predicted structures as structure alphabet and build a QSAR model for
epitope prediction by using SVR. ROC analysis revealed our QSAR-SVR model is

comparable with the best sequence-based epitope prediction server NetCTL.

In chapter 4, we develop a method called “bio-mimicry peptide design®. Follow the
concept of inverse folding search, we develop an approach to find possible sequence
combinations mimicking target structure. Evaluation on the structure similarity with target
peptide, physiochemical property, and structure stability of predicted solutions were done for
finding better potential candidates. We exemplify our method on two targets: vasopressin and
a monoclonal antibody TMB-355.

In chapter 5, we applied the above structural immunoinformatic approaches for
nasopharyngeal carcinoma (NPC) vaccine design. NPC is a common malignancy in southern
China, Hong Kong, and south-east Asia countries including Taiwan, Singapore, Malaysia,
Indonesia, and Vietnam. It is strongly associated with Epstein-Barr virus (EBV).
Immunotherapy for NPC is currently focusing on the tumor-associated antigens called LMP1
and LMP2. However, poor antigenecity of LMP1/LMP2 limited the efficacy of EBV vaccine
in NPC immunotherapy. We predicted the structure of every possible epitopes of
LMP1/LMP2 from sequence, docked them with MHC-1 HLA A*0201 molecule, and compare
the docking result with predicted antigenecity of LMPI1/LMP2 from NetCTL and
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SYFPEITHI prediction servers. Epitopes with better performance of antigenecity were
collected as candidates for polyepitope regimen. According to the preference observation on
known epitopes, residues on specific position of the candidate epitopes were modified to
become epitopes with even better antigenecity. Agretope performance was evaluated by
binding affinity prediction from docking with MHC receptor. We collected epitopes with
better performance on epitope and agretope to be candidates of polyepitope regimen on NPC

immunotherapy.

In chapter 6, we collected approved drugs from DrugBank. Virtual screening was done
by docking with MHC receptor. Drugs with better binding affinity with MHC receptor were
collected as possible candidate for adjuvant immunotherapy. Epitopes with better
performance of antigenecity were collected by the same procedure in chapter 5. Epitope
structure prediction was done by modeling method in chapter 3. MHC receptor and candidate
drugs were docked with candidate epitopes. Drugs which could enhance the binding affinity
between epitope and MHC receptor were identified. We suggest drugs with ACE (action site

enhancement) to be adjuvant immunotherapy for NPC.

7.2 FutureWorks

Our peptide modeling method is based on genetic algorithm and bmPDA block assembly
method. The performance is good locally but not so good in large molecules. Application on
the structure prediction of epitopes is perfect, because they are consisted of about 8-12 amino
acids. But if we want apply our method on structure prediction of large proteins, the impact

of protein folding still need to be considered.

Despite the good accuracy of our QSAR-SVR epitope prediction method, the
time-consuming peptide modeling process was the rate-determine step in our method. The
block picking process during genetic algorithm may be speedup by block clustering.

Docking is a time-consuming process. Compare to other docking software, the Molegro
Virtual Docker is more accurate and fast. However, if there is a faster and accurate docking

software, the process can still be speed-up.

There are several directions for future research:
1. More peptide Segment sizes: Our epitope modeling method is limited to predict 9mers
peptides till now. It can be applied to prediction on arbitrary length of protein. However,

accuracy is still our concern.
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Structure clustering on FluV neutralization epitopes and predictive immune evasions on

FluV neutralization epitope
Extend the viral oncogenesis model of HLAI immune evasion at agretope on

miscellaneous viruses such as HBeAg
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“Implement Web-version Bio-mimicry Peptide Design Algorithm from Trimer Alpha-carbon
Mining towards Tri-peptide Fusing”. Symposium on Cloud and Services Computing 2012.

Chun-Fan Chang, Chen-Chieh Fan, and Cheng-Yan Kao (2012): “Improve NPC CMI Likely
on HLA-Agretope Docking in EBV-LMP1 Antigen of Putative Nona-peptide Structure from
Peptide Design Algorithm Based on Tri-alpha-carbon Mining towards Tri-peptide Fusing”.
11th International Conference in Bioinformatics (submitted)

Hsueh-Ting Chu, William W. L. Hsiao, Theresa T. H. Tsao, Ching-Mao Chang, Yen-Wenn
Liu, Chen-Chieh Fan, Han Lin, Hen-Hong Chang, Tze-Jung Yeh, Jen-Chih Chen,
Chaur-Chin Chen and Cheng-Yan Kao (2012): “Quantitative assessment of mitochondrial
DNA copies from whole genome sequencing as a biomarker of aging” 11th International
Conference in Bioinformatics (submitted)

Chun-Fan Chang, Chen-Chieh Fan and Cheng-Yan Kao (2012): “Improving CMI Likely
from Docking HLA-1 Pit and Putative Agretope towards Mining Anchor- modified DNA
Vaccine for in vitro Cell Activation and Action Complex Enhancement Drugs for in vivo
Subject Therapy”. Translational Bioinformatics Conference 2012 (submitted)
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Patent Applications:

USA provisional patent:

Chun-Fan Chang, Cheng-Yan Kao, Thai-Yen Ling, Chen-hsiung Chan, Sheng-An Lee,
Yu-Lun Kuo, Chen-chieh Fan, Fan-Chiang Sung (2009): CMI-inhibitory and/or
CMI-stimulatory Modulators on AMI-naive and/or AMI-miscellaneous Status (Application
No. 61/180,127; Filing Date: May 20, 2009)

USA utility patent:

Chun-Fan Chang, Wen-Chieh Chang, Tsung-Jui Chen, Chen-Chieh Fan, and Cheng-Yan
Kao (2012): Method of restoring composite counter-balancing waveform compartments and
extracting decomposite action waves from a composite waveform measurement and/or
compartment derivatives of a corresponding operation system. (Application No. 13/526,525;
Filing Date: June 18, 2012)

Taiwan
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