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Abstract

In light of our previous discovery indicating the existence of a novel lignolytic
peroxidase in several wood brown rot fungi (Huang et al. 2009, Huang and Tzean, data
unpublished), study on the novel basal peroxidases (BaPs) of additional brown rot and
white rot Basidiomycetes was initiated. By degenerate primers, gene encoding the
putative novel peroxidase was cloned from Antrodia salmonea and Laetiporus
sulphureus. The coding sequences harbored 1,363 and 1,278-bp in length, respectively,
and both were interrupted by 10 introns. Further analysis of the BaP amino acid
sequence of L. sulphureus showed the high similarity to manganese peroxidase (MnP),
and also the presence of unpaired metal regulatory elements (MRESs) on the promoter
region. The result of quantitative RT-PCR (gqRT-PCR) revealed 3.5 times more BaP
transcripts while augmented with 180 uM Mn?* in the initial 24 hr compared with the
control. One copy of BaP was shown by Southern blot. Further phylogenetic analysis
of the class Il fungal peroxidases of 153 taxa represent in Agaricomycetes or
Ascomycete by maximum-likelihood (ML), Neighbor-joining (NJ) and Bayesian
inference (BI), indicated that BaP, which clearly separated from MnP, lignin peroxidase

(LiP) and versatile peroxidase (VVP) clades, not only present in the tested brown rot- (A.



cinnamomea, A. salmonea, L. sulphureus, Gloeophyllum trabeum and Fomitopsis

pinicola), but in a small group of white rot (Ganoderma lucidum, G. australe,

Phellinus noxius, Trametes versicolor, Agaricus bisporus and Pycnoporus sanguineus)

Agaricomycetes and even Ascomycete (Ophiostoma quercus). The phylogenetic tree

topology implicated the possible evolutionary route of BaP diverged toward MnP, LiP

and VP.

Keywords: wood rot fungi, class Il peroxidase, basal peroxidase, homologous

modeling, Maximum-likelihood, Neighbor-joining, Bayesian inference
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Introduction

Structure of wood

Wood, a basic structural component of forest ecosystems that supports diverse
organisms, also contributes important ecological and sociological benefits, such as
building material, fuel, soil composition, wildlife habitat, etc. Furthermore, forest-
derived wood provides an essential renewable natural resource for human use.
Lignocellulose, which constitutes wood biomass, contributes most renewable organic
resourse found on earth (Abbasi et al. 2010). Because of fossil fuel depletion and
concerns about global climate change, scientists continue to seek alternative energy
sources. Plants use solar energy to fix carbon to synthesize carbohydrates through
photosynthesis. The polymerized complex carbohydrates are further modified and
formed the lignocellulosic compounds (cellulose, hemicellulose, and lignin), that form
a thick wall layer around the plant cell (Rubin 2008).

The rigid structure of woody plants is mainly formed via the vascular cambium,
located between the phloem and xylem. The vascular bundles consist of inner xylem,
outer phloem, and cambium, which are arranged in cylindrical fashion around the
stem. Each woody plant cell is separated by the middle lamella, which is pectin, i.e.

lignin-rich structure. A thick primary cell wall and secondary cell wall are formed
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outside the plasma membrane that surrounds the cytoplasm. Most woody plants

generally contain a two-layer, cell-wall structure, with the exception of some conifers

that contain only a primary cell wall. Compared with the relatively simple primary cell

wall, the secondary cell wall is composed of three layers: S1, S2 and S3. These layers

possess different characteristics in chemical structure. The major components of cell

wall are cellulose, hemicellulose, and lignin. Cellulose constitutes approximately 40-

55% followed by approximately 25-40% hemicellulose and 18- 33% lignin of the mass

within plant cell walls (Eaton et al. 1993). Wood is typically classified as hardwood or

softwood, depending on the compositions of the cell wall as well as vascular structure.

Compared to softwoods, hardwoods have a more complex anatomical composition that

contains several cell types, such as vessels, parenchyma, and fibers. In contrast,

softwoods are predominately comprised of tracheids and transverse ray cells (Eaton et

al. 1993).

Wood rot fungi

In fungi particularly in Basidiomycota, in addition to a few bacteria, are the

dominant organisms able to degrade woods by chemical and physical mechanisms. The

cell wall, which surrounds the wood cell, consitutes a major barrier to wood

biodegradation. Especially of lignification for woody plants, providing a solid physical
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obstacle and a waterproof layer impede biotic and abiotic degradation (Hon et al.

2001). Microbes must penetrate the durable lignin matrix of the cell wall before

cellulose or hemicellulose can be efficiently hydrolyzed and accesled as a carbon

source. Wood-degradating fungi are generally classified as white-rot fungi or brown rot

fungi, depending on their capability to degrade lignin. White rot fungi, which have the

capacity to depolymerize and mineralize lignin, have a long history of exploration

(Goodell et al. 2003). It has been generally recognized that white rot fungi are capable

of depolymerizing lignin and gaining physical access to the cellulose. Although brown

rot fungi are evolutionarily related to white rot fungi, they lack the capacity to

mineralize lignin. To better understand the genes and enzymes involved in lignin-

degrading, whole genome sequencing of a model white rot fungus, Phanerochaete

chrysosporium was completed in 2004 for, using a shotgun strategy (Martinez et al.

2004).

Brown rot fungi

Brown rot fungi have been generally regarded as unable to degrade lignin,

although they maybe able to modify it slightly. These fungi possess of this compacity

belong to the phylum Basidiomycota, and are well-represented in the family

Polyporaceae (Schwarze et al. 2000). Compared with white rot fungi, wood degrading
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mechanisms of brown rot fungi remain relatively ill-defined. According to previous

studies shown that, brown rot fungi are active in wood decay of conifers, exclusively

(Gilbertson 1980, Hibbett et al. 2001). This phenomenon is especially interesting,

given that brown rot fungi are considered to have evolved repeatedly from white rot

fungi, which able to sustain on conifers and hardwoods as well (Hibbett et al. 2001).

Wood degrading mechanisms of brown rot fungi seem relatively simplied, in contrast

to white rot fungi innates diverse mechanisms to degrade wood. In order to breakdown

cellulose and hemicelluloses, growing hyphae must penetrate through the secondary

cell wall to gain access to the cellulose-rich S, layer inside. Preferential degradation

occurs to the S, layer because the lignin content of the S, layer is lower than that of S;,

Ss, and lignin-dense middle lamella (Sachs et al. 1963). Hemicelluloses surrounding

the cellulose are usually decomposed first, accompanied by partial lignin modification.

Subsequently, cleavage of cellulose takes place rapidly. Cellulose degradation by

brown rot fungi occur provided that other wood components i.e. hemicelluloses, lignin,

or even pectin are present in the vicinity (Enoki et al. 1988, Goodell 2003). After the

lignin-modificated, some phenolic derivatives are generated, that can play a key role in

Fenton-based reactions (Goodell et al. 1997). Because white rot fungi possess intrinsic

wood degrading enzymes that exceed the size of pores in the cell wall, wood

degradation can only occur from the outside. In contrast, brown rot fungi accomplish
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delignification through a low molecular weight decay system. Therefore, brown rot

fungi can cause rapid wood-strength loss, while white rot fungi cause a more gradual

loss of wood strength (Goodell 2003). Brown rot fungi produce little or no lignin-

degrading enzymes, so the remaining rotten wood is reddish-brown in color. Strong

evidence do support the existence of ligninase in brown rot fungi is generally lacking:

however, more recent study showed that the potential lignin peroxidase (LiP) activity

assay for Polyporus ostreiformis (Dey et al. 1994) and ligninolytic peroxidase activity

in Antrodia cinnamomea (Huang et al. 2009) accessed.

Lignin and lignin degrading oxidative enzymes

Lignin, which comprises complex amorphous phenolic biopolymers, is

composed of phenylpropane monomers. Of these phenylpropane monomers, coniferyl

alcohol is a primary lignin precursor in gymnosperms (softwoods), whereas, p-

coumaryl alcohol and sinapyl alcohol are primary lignin precursors in angiosperms

(hardwoods) and the Gramineae (Eriksson et al. 1990, Paterson et al. 1984, Sakakibara

1980). The complex structure of lignin is attributed to various linkages derived from

diverse reactions. More than two thirds of the phenylpropane monomers are linked by

ether bonds or ester bonds (C-O-C), and the remaining monomers are linked by C-C

bonds in random fashion. The major linkage type among lignin polymers is p-O-4
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ether bonds (Goodell et al. 2003, Terashima et al. 1997).

In addition to the linkages among the phenylpropane monomers themselves, the

polymerization of lignin also requires other functional groups, such as methoxyl,

phenolic hydroxyl, benzyl alcohol, carbonyl, etc. So far, the methoxyl group is the

dominant functional group in lignin of both softwood and hardwood (Sjostrom 1993).

As mentioned previously, white rot fungi have unique lignin-degrading, enzyme

systems to catalyze lignin biodegradation. In 2008, Levasseur classified the lignin

oxidative enzymes into two sub-families: lignin oxidase (LOs) and auxiliary enzymes

(LDAs), depending on whether the enzymatic role in lignin degradation is direct or

indirect. Relative to lignin oxidase, auxiliary enzymes, such as aryl-alcohol oxidase,

vanillyl-alcohol oxidase, glyoxal oxidase, etc., have low potential oxidative activity.

However, lignin oxidase is the primary focus of investigation in this study. Lignin

oxidase comprises three sub-families: LO1, LO2 and LO3 (Levasseur et al. 2008).

Among these enzyme sub-families, LO2, which contains lignin peroxidase (LiP),

manganese peroxidase (MnP), and more recently characterized versatile peroxidase

(VP), with being regarded as one the most important lignin-degrading enzymes due to

their high redox potential (Levasseur et al. 2008). Although white rot or brown rot

fungi can degrade or modify lignin with various mechanisms (LO1, LO2 or LO3), only

of the fungi that produce LO2 (true ligninase, fungal class Il peroxidase, PODs) are
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considered as white rot fungi.

Class Il peroxidase, ligninase, PODs

Ligninase of P. chrysosporium have been shown to share similar characteristics
with general peroxidase, in terms of enzyme kinetics and structure aspects (Kuila et al.
1985, Tien et al. 1986, Tien et al. 1987). As a member of the plant peroxidase
superfamily, LiP is a hemeprotein with single high-spin iron protoporphyrin IX active
site (Kuila et al. 1985) that is connected with two histidine units as proximal and distal
ligand residues involved in electron transfer (Dunford et al. 1976). The above structure
is conserved across most peroxidases classified (Conesa et al. 2002, Poulos et al. 1980,
Welinder 1992). For LiP of P. chrysosporium, distal His47/Arg43 and proximal His176
participate as axial ligands of the heme, and play critical roles in the oxidation of
H,O, , respectively (Poulos et al. 1980). Lignin degradation catalyzed by LiP is a
H,0,-dependent oxidation, and veratryl alcohol (3,4-dimethoxybenzyl alcohol, VA),
produced by P. chrysosporium, is another key substrate involved in the reaction. In the
LiP catalytic cycle, various non-phenolic compounds can also serve as the substrates.

The generalized LiP enzymatic reaction can be represented as follows:

Fe’ +H,0, - [Fe""=O]R’' (Compound I) + H,0 @
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[Fe**O]R' + substrate > [Fe*"=O]R (Compound I1) + oxidized substrate (2)

[Fe**O]R + substrate > Fe*" + H,0 + oxidized substrate (3)

Previous studies have shown that some phenolic compounds, which can inhibit
LiP activity, and VA produced by P. chrysosporium can act not only as mediators but
also as electron donors to reduce compound Il to compound 111 by reduction of H,0,
and after return LiP to its ground state. Moreover, the ability of LiP to oxidize phenolic
compounds relies indirectly on the presence of VA (Chung et al. 1995, Harvey et al.
1989, Koduri et al. 1994). In an early study of the VA-binding site, Trpl71, Cp-
hydroxylated tryptophan (Trpl71) could serve as “second substrate-binding site,”
which is different from other peroxidases (Choinowski et al. 1999). Spin-trapping as
well as peptide mapping provided more evidence for critical role of Trpl71 in redox

catalysis (Blodig et al. 1999).

In addition to LiP, H,O,-dependent oxidase has been found in P. chrysosporium
by chromatography on blue agarose in 1984 (Kuwahara et al. 1984). This oxidase has
almost the same reaction mechanism as LiP, but in this instance, Mn®" acts as the
reductant rather than VA, as shown in the following catalytic cycle: native MnP -

compound I = compound Il - native MnP. The H,0,-dependent oxidase is capable
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of oxidizing various substrates including both non-phenolic and phenolic or non-
phenolic compounds. Similar to the role played by VA in the LiP-catalyzed reaction,
Mn?* can foster the reduction of compound | to compound I1, coupling by oxidation of
a phenolic compound. Subsequently, Mn (I1) in its activated oxidized state could
further trigger oxidation of lignin-related compounds, such as guaiacyl and syringyl

(Hammel et al. 1989, Wariishi et al. 1988).

Based on crystallographic structure, the MnP has a 43% amino acid sequence
identity with LiP isozyme 2 (LiP2). For forming the heme activation site, MnP also has
distal His46/Arg42 and proximal His173 similar to other plant and fungal peroxidases.
Besides these conserved features, the unique manganese-binding site is formed by
three residues: Glu35, Glu39 and Aspl79. Based on crystallographic methods
(Sundaramoorthy et al. 1994) and site-directed mutagenesis (Kishi, Kusters-van
Someren et al. 1996), Mn®" is linked to the pocket through the carboxylate oxygen of
these residues, heme propionate oxygen, and two oxygens of water. As shown from
E35Q, E39Q and E35Q-D179N mutants, the first-order rate constants were reduced
dramatically relative to the wild type (Kishi et al. 1996). Furthermore, a similar study
performed in the Escherichia coli heterologous expression system also supported the

same conclusion (Whitwam et al. 1997).



Previous studies have also focused on how P. chrysosporium regulates LiP and

MnP activity. The presence of Mn was shown to influence the quantity of VA in P.

chrysosporium. Mn indirectly regulates LiP activities by influencing endogenous VA

production (Mester et al. 1995). Furthermore, it was reported that VA prevents the

inactivation of LiP by H,O, (Tonon et al. 1988, Valli et al. 1990). It was suggested that

Mn may play a role in stabilization of LiP instead of acting as an inducer (Cancel et al.

1993).

In contrast to typical LiP and MnP, a novel type of fungal class Il peroxidase

(PODs) called versatile peroxidase (VP) was found in Pleurotus eryngii (Martinez et

al. 1996, Ruiz-Duenas et al. 2001, Ruiz-Duefias et al. 1999) and Bjerkandera spp.

(Mester et al. 1998). Because its Mn-binding site comprises Asp175, Glu40 and Glu36,

it has the capacity to oxidize Mn(I1) to Mn(I11). And VP also with Trp164 (in the same

position as Trpl71 in P. chrysosporium) is able to use VA as substrate through the

electron-transfer pathway as well. However, relative to MnP, VP oxidizes Mn(Il) with

a lower Ky, value, which indicates that VP has higher substrate affinity than typical

MnP (Heinfling et al. 1998). Above all, VA has two substrate binding site innated by

LiP and MnP respectively.
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With respect to influences of the nutritional aspects of peroxidase gene regulation,

were numerous investigations have been carried out. A nitrogen-limited medium can

trigger lip gene expression at the transcriptional level (Li et al. 1994), and it was

confirmed that nitrogen-related compounds suppress the VA production (Fenn et al.

1981). Moreover, nitrogen nutrition also influences MnP expression as well (Pribnow

et al. 1989). In another aspect, as a Mn-related enzyme, MnP activity is dependent

upon manganese concentration within nitrogen-limited or carbon-limited culture; the

same carbon or nitrogen resource-dependent status also found in LiP (Bonnarme et al.

1990, Gettemy et al. 1998, Pease et al. 1992). Thus, it has been suggested that

availability of nutrients plus Mn(ll) plays a important regulatory role for lignin-

degrading enzymes. Based on promoter analysis of the MnP gene in P. chrysosporium,

putative metal response elements (MREs) located within the promoter region are

correlated with the activity of MnP. The existence of MREs could account for the

correlation between MnP expression and Mn(ll) (Brown et al. 1990, Brown et al.

1991). However, more research is needed to confirm the role of MREs in the

regulation of lignin-degrading enzymes.

Phylogenetic studies of class Il peroxidase, PODs
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More recently, many studies focused on PODs, such as molecular

characterization, enzymology, investigative tool development (e.g. transformation

system), and even industrial applications, have been established (Cullen et al. 2004),

however of them only few studies have focused on PODs for examining phylogenetic

relationships among white and brown rot fungi. Until recently, most evolutionary

research on fungi have been based on morphological data. As molecular tools have

become better developed, molecular markers, especially those based on the rRNA gene

cluster and mitochondrial DNA or collaborate with ecological and genetic multiple

genes, have been applied for phylogenetic analyses (Bridge et al. 2005).

Preliminary phylogenetic relationship of PODs family has been assessed via

nucleotide or amino acid sequence-based methods (Morgenstern et al. 2008). Analysis

of phylogenetic trees derived from maximum parsimony and Bayesian inference

methods, implicated that PODs clustered within a monophyletic clade. Furthermore,

LiP, present in Polyporales, appears descendent from MnP. VP, whereas a multi-

substrate compatible enzyme, may have evolved independently within an single clade

(Morgenstern et al. 2008).

More recently, “Basal peroxidases” (BaP) represent a novel group peroxidases has
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been found in Postia placenta and A. cinnamomea, additionally the peroxidase

produced by Coprinopsis cinerea that was also recently regarded as BaP (Martinez et

al. 2009, Morgenstern et al. 2008, Morgenstern et al. 2010). These studies revealed that

BaP clade has been split from the class 111 plant peroxidase family earlier than the MnP

and LiP lineages (Morgenstern et al. 2010). Nevertheless, more comprehensive studies

are badly needed to gain a better understand of the phylogeny of BaP.

The objectives of this study were to characterize the DNA sequences and

phylogenetic relationships among novel basal peroxidases in white rot fungi and brown

rot fungi.
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Materials and Methods

Fungal isolates, culture conditions and cultures preservation

All wood rot fungi used in this study are listed in Table 1. The fungi selected for
investigation include five species of brown rot fungi, six species of white rot fungi, and
one Ascomycetes. All fungal strains were routinely maintained on potato dextrose
agar (PDA) at 25°C. Species identity was validated by PCR using ITS primers (Table
2). Fungal strains was achieved within cryogenic vials containing 10% glycerol mixed

with 5% lactose maintained at -80°C.

Cloning of wood decay fungi partial putative BaP gene

Degenerate primers (Table 2) were designed based on the conserved regions in
the amino acid sequence of class Il peroxidases. The asymmetric PCR was performed
using Ex Taq DNA Polymerase (Takara Bio Inc., Shiga, Japan) and the reaction
mixtures compsed of 2.5 ul 10x reaction buffer, 1 ul genomic DNA of target fungi, 0.5
pl 10 mM dNTP, 1 ul 20 uM of each primer (lips_1and lipr_4), 18.7 ul ddH,O and 2 ul
Ex Taq DNA polymerase. The amplification was performed using C1000 thermal
cycler (Bio-Rad Laboratories, Hercules, CA, USA) with 94°C for 10 minutes, 30

cycles at 94°C for 30 seconds, gradient annealing temperature from 42°C to 54°C for
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45 seconds, 72°C for 90 seconds and followed by 72°C for 10 minutes. The PCR

products were cleaned up using DNA Clean / Extraction Kit (GeneMark, Taipei,

Taiwan) prepared for a second-round of PCR using nested degenerate primers. The

nested PCR was carried out using Sul aliquots of the first-round PCR product, 2.5 pl

10x reaction buffer, 0.5 pul 10 mM dNTP, 1 pl 10 uM of each primer (lips_2 and

lipr_3), 14.7 pl ddH,0, and 0.3 ul Ex Tag DNA polymerase in a final 25-ul reaction

volume. The PCR parameters were as follows: 94°C for 3 minutes, 30 cycles at 94°C

for 30 seconds, 52°C for 30 seconds, 72°C for 40 seconds, and a final extension at

72°C for 3 minutes. The amplification products were purified as previously described

and cloned into pGEM-T vector system according to the instruction manual (Promega,

Madison, WI, USA).

Genomic DNA extractions

Fungal mycelia (Table 1) harvested and ground in liquid nitrogen using 0.1 g

grinding powder added to 500 ul CTAB buffer (2% CTAB, 1.4 M NaCl, 20 mM

EDTA, 100 mM pH 8.0 Tris, 2% PVP-40) and 3 ul 2-mercaptoethanol preheated to 65°

C. The DNA extraction mixture was incubated at 65°C for 15 minutes. An equal

volume of chloroform / isoamyl alcohol (24:1) was added to each sample, and mixed

gently before centrifugation at 13,200 rpm for 5 minutes. After transferring the
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supernatant to a new tube, add 2/3 volume pre-chilled (-20°C) isopropanol, and

incubated at -20°C for 20 minutes. The mixture was centrifuged at 10,000 g for 10

minutes to precipitate DNA, the pellet was washed twice in 75% ethanol, and air-dried

for 20-30 minutes. Each DNA sample was resuspended in TE buffer (0.1 M Tris pH

8.0 and 0.01 M EDTA) treated with 0.5 ul RNase A (10 mg/ml) overnight at RT.

RNAase-treated DNA was subject to Southern blot and PCR analysis.

L. sulphureus BaP cDNA: full-length cloning and analysis

RNA extraction and rapid amplification of cDNA ends

RNA extraction was performed by using TRIzol reagent (Invitrogen, USA),

following the protocol of the manufacturer. Mycelia (0.1-0.3 g) of A. salmonea and L.

sulphureus were collected were ground to powder in liquid nitrogen, and added to 500

ul TRIzol reagent (preheated to 65°C) within tubes. The samples were gently mixed by

inversion several times and then incubated at 65°C for 15 minutes, followed by

centrifugation at 10,000 g for 15 minutes at 4°C. The supernatant was transferred to a

new tube, and add 1/5 volume chloroform was added. The mixture was incubated at

room temperature for 3-5 minutes, and subsequently centrifuged at 10,000 g for 10

minutes at 4°C. The mixture after centrifugation was separated into 3 phases; transfer

the upper aqueous phase to a new tube, meanwhile carefully avoid disturbing the
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interphase and lower phase. To the upper phase, 1/2 volume isopropanol containing 0.8

M sodium citrate and 1.2 M NaCl was added, and kept at 4°C for at least 30 minutes.

The mixture was centrifuged at 10,000 g, 4°C for 10 minutes, discard the supernatant,

washing the pellet twice with 75% ethanol and air-drying for at least 10 minutes. The

RNA was suspended in DEPC-treated water or TE buffer. RNA quality was checked

by denaturing gel electrophoresis. The denaturing gel contained 1/5 volume

formaldehyde in1x MOPS (20 mM MOPS pH 7.0, 5 mM sodium acetate, 1ImM EDTA)

and 0.8% agarose. Before loading, RNA samples were mixed with 0.5-3X volumes

formaldehyde loading dye (495 pl formaldehyde loading dye composition: 60 pl 10X

MOPS, 105 pl formaldehyde, 300 ul formamide, 30 pg/30 ul ethidium bromide),

incubated at 70°C for 20 minutes, and immediately chilled on ice. Electrophoresis was

conducted using 1X MOPS as running buffer at 100 volts for 90 minutes. The RNA

sample was used for rapid amplification of cDNA ends.

Primer design

After cloning of the putative BaP genes from genomic DNA, a Blastx was

performed based on the non-redundant protein sequence database. The translated

nucleotide query sequence was aligned with other subject protein sequences. In the

alignments, intron regions of putative BaP sequences were considered as gaps for
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subject comparisons. These alignments were used to design primers for rapid

amplification of cDNA ends.

Rapid amplification of cDNA ends (RACE)

Before RACE, 1 ng of total RNA of L. sulphureus and A. salmonea were treated

using a Turbo DNA free kit (Ambion, Austin, TX, USA) to eliminate the DNA. The

SMARTer™ RACE cDNA Amplification Kit (Clontech Inc., Palo Alto, CA, USA) and

gene-specific primers (Table 2) were used for 3’Ends amplification. First-round PCR

was conducted with 94°C for 30 seconds, 30 cycles at 94°C for 30 seconds, 68°C for

30 seconds, 72°C for 3 minutes, and 72°C for 7 minutes for final extension. Nested

PCR with nested primers was performed to help reduce non-specific reactions. GSP

(Table 2) was used to perform 5° Ends amplification, based on the following PCR

conditions: 94°C for 3 minutes, 30 cycles at 94°C for 30 seconds, 52°C for 45 seconds,

72°C for 90 seconds, followed by 72°C for 10 minutes.

Promoter region of MnP gene cloning and analysis

To acquire information about the unknown region outside the 5’ of BaP sequence,

a tail-PCR strategy was used. According to the approach of Terauchi and Kahl

(Terauchi et al. 2000), a series of reverse primes were designed within known
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sequences of BaP. First-round PCR amplification was conducted in a 25-ul reaction

volumes, containing: 2.5 pl 10X reaction buffer, 5 pl genomic DNA, 5 ul 1 mM dNTP,

5 ul 10uM primer Ls_t5_A, 5ul 10 uM 10-mer arbitrary primer, 2 pl ddH,0, and 0.5 ul

Ex Tag DNA polymerase. The detailed PCR parameters and conditions are shown in

Table3. For second round PCR amplification, 1 pl 1/50 dilution of first-round PCR

product was used as template. Second-round PCR-mixture composition was the same

as the first round, except that primer Ls_t5 A was replaced with Ls_t5 B. Third-round

PCR mixtures contained 5 pl of 1/10 dilution of second-round PCR product as

template, 2.5 pl 10X reaction buffer, 5 pul 10uM 10-mer arbitrary primer, 5 ul 1 mM

dNTP, 2 pl ddH-0, and 0.5 pl Ex Taqg DNA polymerase. Separate amplifications were

performed using 5 pl gene-specific primer 10 uM Ls_t5 C1-C3, independently.

The putative transcription factor binding sites (TFBS) were systematically analyzed

using  Genomatix  Matlnspector  (http://www.genomatix.de/matinspector.html,

Genomatix Software, Munich, Germany) (Cartharius et al. 2005).

Gene copy number determination: Southern blot analysis

Isolation of L. sulphureus genomic DNA was conducted as described previously.

DNA was digested with Pstl, HindlIl, Aflll / Pstl, EcoRV / Hindlll and Pstl / EcoRV
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(New England Biolabs, Beverly, MA, USA) and separated on 0.8% (w/v) agarose gel.
Electrophoresis was conducted at 50 Volts for 6 hours. Before DNA transfer, the gel
was first incubated in 0.25 N HCI at room temperature for 30 minutes, and rinsed twice
with ddH,0. The gel was immersed in denaturating solution (1.5 M NaCl, 0.5 N
NaOH) for 20 minutes and repeated once, before incubating in neutralization solution
(3 M NaCl, 0.5 M Tris base, 70.2 g Tris-HCI per liter) for 30 minutes. The capillary
transfer apparatus was prepared using 20 X SSC (3 M NaCl, 0.3 M NasCitrate, 1 M
HCI, pH 7.0) as transfer buffer, and Hybond™-N+ nylon membrane (GE healthcare
Bioscience, Piscataway, NJ, USA) as the blot membrane. After transfer process was
conducted overnight, the membrane was rinsed with 2X SSC for 5 minutes, and DNA
on the membrane was cross-linked with an XL-1000 UV crosslinker (Spectronics,
Westbury, NY, USA) using120 mJ / cm?. Hybridization was performed using an LsbaP
probe generated by PCR with primers A0427 forward and A0902_R. To label the
probe, Roche DIG DNA labeling kit (Roche Molecular Biochemicals, Mannheim,
Germany) Dig-labelled dNTP was used instead of dNTPs during PCR amplification.
The membrane was prehybridized with hybridization buffer (50% deionized
formamide [w/v], 0.25 M NaH,PO,4, 50 mM NaCl, 1 mM EDTA, 0.005% sperm DNA
[wiv], 3.5% SDS [wi/v])for 5 hours. Hybridization was conducted in a rotatory glass

tube overnight at 55°C, then the membrane was washed in 2X SSC / 0.1% SDS at
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room temperature for 15 minutes; re-washed at 62°C in 25 mM NaH,PO, / 1 mM
EDTA/0.1% SDS and 25 mM NaH,PO, /1 mM EDTA/ 1% SDS, respectively. After
stringency washing, the membrane was equilibrated with 0.3% Tween 20 maleate
buffer (0.1 M maleic acid, 0.15 M NaCl pH 7.5) and incubated with blocking solution
(1-2% blocking reagent; Roche Molecular Biochemicals) for 30 minutes. The Dig-
labeled probe was conjugated with Anti-Digoxigenin-AP Fab fragments (Roche
Molecular Biochemicals) and the signal detected on Super RX X-ray film (Fujifilm,
Tokyo, Japan) via the presence of chemiluminescent substrate CDP-Star® Nucleic Acid

Chemiluminescence Reagent (PerkinElmer, Boston, MA, USA).

Induction for MnP gene expression and analysis
Culture conditions of L. sulphureus

First, L. sulphureus was grown in PDA Petri plates at 25°C for 7 days, and ground
mycelium collected was subcultured in PDB liquid medium at 25°C for 7 days at 150
rpm. The yielded mycelia were washed twice with ddH-0O, then transferred to a basal
medium that developed for P. chrysosporium with slight modification (Kirk et al.
1978). The basal medium is comprised of 0.2 g KH,PQO,, 0.05 g MgSO,4-7H,0, 0.01 g
CaCl,, 0.001 g thiamine, 20 g glucose (carbon source), 2.2 g ammonium tartrate (12

mM), 9 g sodium succinate (20 mM) pH 4.5, 0.1 ml mineral solution, which consists of
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1.5 g nitrilotriacetate, 3 g MgSQO,-7H,0, 1 g NaCl, 100 mg FeSO,4-7H,0O, 100 mg

Co0S0Qq4, 82 mg CaCl,, 100 mg ZnSOy, 10 mg CuSO,-5H,0, 10 mg AIK(SO4),, 10 mg

H3BO3, 10 mg NaMoOQO, and 0.05 ml vitamin solution (2 mg biotin, 5 mg riboflavin, 5

mg pyridoxine-HCI, 10 mg cyanocobalamine, 0.1 mg nicotinic acid, 5 mg DL-calcium

pantothenate, 5 mg p-aminobenzoic acid, and 5 mg thioctic acid per | H,O). After

culture for 24 hours, different concentrationsof MnSO, and veratryl alcohol (3,4-

dimethoxybenzyl alcohol, VA) were added for different induction conditions. For the

low Mn ion sample, 18 uM Mn final concentration was used; for high Mn ion sample,

180 uM Mn was used; for the veratryl alcohol-treated sample, 0.5 mM veratryl alcohol

was used. All solutions and media were filtered through 0.22 uM-milipore filter before

use.

Extraction of RNA under different incubation conditions and time course

After induction with different concentrations of MnSO, and VA, mycelia were

harvested after incubation for 24, 48, and 72-hour, respectively. The mycelia was

filtered using a Buchner funnel with qualitative 70-mm filter (Whatman International,

Ltd., Maidstone, UK), and connected to Buchner flask by a neoprene adapter and a

vacuum pump. RNA extraction was performed using the Plant Total RNA Extraction

Mini kit (Viogene, Taipei, Taiwan), following the protocol provided by the
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manufacturer. DNA was eliminated and denaturing gel electrophoresis of RNA was

carried out as mentioned previously. All RNA samples were stocked at -20°C until

further analysis.

Reverse transcriptase-polymerase chain reaction (RT-PCR)

RT-PCR was conducted with superscript Il reverse transcriptase (Invitrogen, Life

Technologies, Inc., Rockville, MD, USA). In each reaction mixture, 1 png RNA of L.

sulphureus, 1 pl 10 mM dNTP mix, 1 pl 10 uM Oligo-dT;s were added to DEPC-

treated ddH,O for a total reaction mixture volume of 12 ul, and incubated at 65°C for 5

minutes. After chilling on ice, added 4 ul 5X first-strand buffer and 2 ul 0.1 M DTT to

the mixture, incubated at 42°C for 2 minutes. Next, add 1 pl (200 U) superscript Il

reverse transcriptase, and RT was executed at 42°C for 50 minutes, and then

terminated at 72°C for 15 minutes. An RT-minus control was also conducted to verify

the absence of contaminated DNA. After RT-PCR, cDNA products were stored at -

20°C until further use.

Real-time quantitative PCR (gPCR) analysis

To assess differential expression of LsBaP affected by different induction factors

(VA, high Mn, low Mn), the housekeeping gene glyceraldehyde-3-phosphate
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dehydrogenase (gapdh) was used as an internal control using qGA _F and qGA R

primers. For analysis of BaP expression Real-time PCR was conducted using the BaP-

specific primers1018F and 1018R. In each experiment, biological trireplicates were

performed using the StepOnePlus™ Real-Time PCR System (Applied Biosystems,

Inc., FosterCity, CA) with Power SYBR® Green PCR Master Mix (Applied

Biosystems). Each reaction mix (5 pl 2X master mix, 1 pl 1/10 diluted cDNA

preparation, 0.2 pl 10 uM primer C, 0.2 pl 10 uM primer D, and 3.6 pl ddH,0O) was

loaded into the MicroAmp® Fast 8-Tube Strip (Applied Biosystems), 0.1 ml covered

with MicroAmp® Optical 8-Cap Strip (Applied Biosystems). Conditions for gPCR

were as follows: 95°C for 10 minutes, followed by 40 cycles at 95°C for 15 seconds,

60°C for 1 minute. The specificity of primers was confirmed by melting-curve

analysis. Data collection and analysis was performed using StepOne™ software v2.2.2

(Applied Biosystems) and Microsoft Office Excel 2010 (Microsoft Corp., Redmond,

WA, USA).

Modeling the 3-D molecular structure of basal peroxidase

Protein 3-D molecular homology modeling with deduced LsBaP amino acid

sequence  was  implemented using the  SWISS-MODEL  workspace

(http://swissmodel.expasy.org), which is linked to protein data bank, RCSB PDB
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(http://www.rcsb.org/pdb/home/home.do). Automated mode was chosen as the

processing mode, the query sequence was aligned with PDB sequences, and 3-D

molecular model prediction conducted automatically on the server. Further analysis

and comparison with versatile peroxidase and basal peroxidase were performed using

PyMOL software (DeLano 2002) and 3D molecule viewer (Informax Inc., Invitrogen,

Carlsbad, CA, USA).

BaP sequences alignment and phylogenetic tree construction

Sequences collection and alignment

In addition to partially deduced amino acid sequences of the cloned putative

peroxidases, additional class Il peroxidase sequences, primarily from a modified data

set from Morgenstern et al.(2010), were in cooperated for comparison. Table 4 lists all

sequences and reference that were used in this analysis.

Multiple sequence alignments were performed using ClustalX2 (Larkin et al.

2007) with the following parameters: gap opening penalty = 10, gap extension penalty

= 0.01, score matrix = Gonnet250; and pairwise alignment parameters were as follows:

gap opening penalty = 10, gap extension penalty = 0.1, score matrix = Gonnet250. The

final alignments were adjusted by visual check. Due to length disparities among the
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aligned sequences, all sequences beyond the alignment region were deleted. The

alignment arrangement was executed by MEGA 5 (Tamura et al. 2011).

Whole-sequence alignments were subject to Maximum likelihood tree analysis.

Another selected dataset produced from the same alignment procedure was also subject

to analysis by neighbor-joining and Bayesian inference methods.

Phylogenetic tree construction by Maximum likelihood (ML) method

Prior to tree construction, the WAG substitution matrix was determined to be the

most suitable for analysis, based on the model test of MEGA 5. The ML tree was

constructed by RAXML using a rapid bootstrap algorithm (Stamatakis et al. 2008) and

bootstrapping was automatically limited by RaxML default settings .

Phylogenetic tree construction by Neighbor-joining (NJ) method

NJ tree based on a minimum evolution concept was also constructed using MEGA

5 with a JTT substitution model, and phylogeny analysis was performed with1000

bootstrap replications. All gaps in the sequences were treated by complete deletion.

Phylogenetic tree construction by Bayesian inference method
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According Bayesian theory, the following formula is used to describe the

relationship between probabilities of two events and their conditional probabilities:

P(B|A)P(A)

P(A|B) = P(B)

P(A|B), which refer to posterior probability of A, is probability of P(A) as B
occurs. In relation to phylogenetic tree construction, basically the Bayesian inference
(BI) method is similar to the Maximum likelihood method except for prior distribution
which is based on various given trees. Through MCMC runs, the initial chain is
defined based on particular substitution model, rate variation... etc. According

Bayesian theorem, the posterior probability (Pr) is defined as follows:

Pr(Data|Tree)Pr(Tree)

Pr(Tree|Data) = Pr(Data)

Anew tree is generated and given a ratio of probilities from a previous state.

_ Pr(Treej)Pr(Datal|Treej)
~ Pr(Treei)Pr(Data|Treei)
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Simultaneously, the generated tree with R value higher than 1 could be retained
or another tree would regenerate. After many generations, the state becomes stabilized
and approximates the real condition. Meanwhile, several chains typically containing at
least one cold chain are also incorporated in the run avoid suboptimal fixation of the
chains fixing. The swapping would occur if chains got stuck in distributions of relative
lower probability (Hall 2007). The consensus tree optimization was performed by
Markov chain Monte Carlo (MCMC) chains with 4 chains, including 1 cold and 3
heated chains for 1 million generations, with samples taken every 100 generations. All

approaches were performed using MrBayes v 3.1.2. (Huelsenbeck et al. 2001).
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Results

Cloning and characterization of putative PODs genes

According to previous studies, none of class Il fungal secretory peroxidase genes
have been cloned and characterized except for ligninolytic peroxidase of A.
cinnamomea (AcLnP)(Huang et al. 2009). That result from A. cinnamomea might
imply that PODs orthologs exist in genomes of brown rot fungi. Several amplicons
derived from different brown rot fungi were amplified using degenerate primers and
varied PCR conditions (Fig. 1). Sequences of PCR-product were identified by blastx,
indicating these partial cDNA fragments were homologous to AcLnP, and they also
have higher similarity to MnP rather than LiP and VP. Besides, the fragments were
identified as PODs as the existence of two characteristic features of PODs: heme-

binding site and calcium-binding site within the fragments.

Putative class Il peroxidase gene sequences from the brown rot fungi L. sulphureus and
A. salmonea were similar to each other and being selected for further analysis. Full-
length cDNAs from these two fungi were obtained by rapid amplification of cDNA
ends (RACE) (Fig. 4). After RACE, new primers to amplify complete sequences of

putative LsBaP and AsBaP genes were designed and PCR was performed.
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The amplicons harbored full-length cDNAs of 1,278 bp and 1,363 bp for LsBaP and

AsBaP, respectively. Based on in silicon analysis using  Spidey

(http://www.ncbi.nlm.nih.gov/spidey) the exon/introns sites were mapped. The

resulting map (Fig. 4) shows that the full-length of LsBaP gene is 1,950 bp, which

contains 10 introns and 11 exons. Furthermore, results from the Southern Blot

indicated that the L. sulphureus genome contains only a single copy of LsBaP (Fig. 4).

The deduced amino acid sequences of LsBaP are shown in Fig. 5. The full-length

cDNA sequences indicating that LsBaP encodes a protein comprises 340 amino acids,

with the characteristic features of a class Il peroxidase, including a heme-binding site

and calcium-binding sites. Cleavage of the 20-amino-acid signal peptide congenerates

the mature protein.

Comparison of exon/intron distribution in LsBaP and AsBaP with secretory

peroxidases from Basidiomycetes fungi

Compared with LsBaP and AsBaP, exon/intron distribution within basal

peroxidase genes from Postia placenta Pp 44056 (Martinez et al. 2009), Coprinus

cinerea peroxidase CiP (Baunsgaard et al. 1993, Stajich et al. 2010), Phanerochaete
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chrysosporium basal peroxidase Pchl 6250 (Martinez et al. 2004), Lentinus edodes

manganese peroxidase LeMnP2 (Sakamoto et al. 2009), Phanerochaete chrysosporium

lignin peroxidase PcLiP (Naidu et al. 1990), Arthromyces ramosus peroxidase ArP

(Sawai-Hatanaka et al. 1995), and Phanerochaete chrysosporium lignin peroxidase H8

PcLiP H8 (Andrawis et al. 1989) were subject to the analysis. In contrast to many

lignin peroxidase genes with a typical exon/intron pattern, unusually small exons were

found on or in close proximity to the 5’ terminal, and relatively larger exons were

located on 3’ terminal of AsBaP, LsBaP, CiP, Pp 44056, Pchl 6250 and LeMnP2.

Exon distribution appeared to be remarkably conserved among AsBaP, LsBaP, and

CiP. Furthermore, introns of Pclip and Pclip H8 generally followed the GT-AG rule,

except for the intron located at or near to the 5’ terminal of AsbaP, LsbaP, CiP, and Pp

44056 (Fig. 6).

Promoter analysis of LsBaP

After tail-PCR (Terauchi et al. 2000), about 3,000 bp of the 5’-flanking region of

LsBaP was amplified (Fig. 7). Analysis of LsBaP 5’ flanking region revealed the

presence of two metal regulatory element factors, two yeast heat-shock factors, RNA

polymerase Il transcription factor 1l B, and three carbon source-responsive elements

(Figs. 5 and 7). The putative TATA box was identified 46 bp upstream from the
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transcription start site, followed by core promoter motif ten elements at 10 bp

downstream.

Comparison of LsBaP expression under different culture conditions

Real-time quantitative RT-PCR (qPCR) was performed to measure transcript

abundance of LsBaP. The RT-PCR and melting curve test taken place ensured the

validity of this gene expression study. After induction with 180 uM Mn ion, LsBaP

transcripts were increased 3.5-fold relative to the non-induced control on day 1,

however, transcript induction was not noticeable at day 2 and thereafter. With the VA

treatment, the transcript level showed a slight down-regulation. Inexplicably,

transcription level of the control, which was cultured in manganese-free medium,

appeared to increase slightly over time, compared to cultures treated with either VA or

MnSQ;. (Fig. 8)

Modeling the 3-D molecular structure of basal peroxidase

Alignments and analysis of the queried sequence and other database sequences

indicated that Coprinus cinereus peroxidase (PDB ID: 1LY8) (Houborg et al. 2003)

was the most appropriate basis for homology modeling . The amino acid sequences

start from 20 - 340 were used for modeling, because amino acid sequences 1 - 20 could
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constitute a signal peptide region that undergoes alternative splicing during translation

(Fig. 5). LsBaP and template (CiP) exhibit 47.37% sequence identity and 0.00e-1 E-

value. Several statistic potential parameters were used to estimate the reliabilities of

modeling: c_ A interaction energy, all-atom pairwise energy, solvation energy, and

torsion angle energy. These factors contribute to QMEAN4 score calculation. The

QMEAN score was normalized to QMEAN Z-score through reference structures of

similar size with the query (+/- 10%) determined by X-ray crystallography. The

QMEAN 4 raw score and QMEAN Z-score for our modeling were 0.7 and -1.25,

respectively.

Comparison between protein structure of LsBaP and VP

Certain key amino acid residues of LiP and MnP, such as Trp171 in LiP or Glu35,

Glu39 and Asp79 in MnP1, attributes to VA- and manganese-binding sites,

respectively, in P. chrysosporium also in versatile peroxidase of P. eryngii. As shown in

Fig. 10, the search for residues corresponding to the VA-binding site in basal

peroxidase from L. sulphureus suggest that it is a typical heme-binding site with distal

and proximal histidines (His48 and His176) within the core of whole protein, as was

predicted. However, the mediator VA-related residue tryptophans, which should

correspond with one side of the heme-binding site, do not appear in the appropriate
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dimensional location for BaP. Moreover, the Mn-binding pocket, composed of Glu36,

Glu40 and Aspl175 in VP also appears atypical in BaP, which contains three distinctive

amino acid substitutions (Glu20, Gly32 and Asn120) in the approximate placement of

the essential amino acids.

Phylogenetic analysis usingn method of Maximum likelihood, Neighboring-

joining and Bayesian inference

The phylogenetic tree was generated by Maximum likelihood analysis of basal

peroxidase genes from 153 fungal taxa, including basidiomycetes white-rot fungi,

brown-rot fungi, and even species of Ascomycota. The topology of the phylogenetic

tree shows that all taxa are distinctly clustered within a single clade, with the class Il

peroxidase family at the base (Fig. 11). Phylogenetically, the CiP and peroxidase from

Coprinellus disseminatus appear close to the BaP cluster. Interestingly, Phchrl 6250

and PP (AAU 82081) from P. chrysosporium, which are both considered basal

peroxidases, are contained within LiP family subclade. Overall, this phylogenetic

analysis strongly indicates that basal peroxidase is paraphyletic with respect to MnP,

VP, and LiP.
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In an attempt to increase support values for phylogenetic analysis, the neighbor-

joining method was used to construct another phylogenetic tree based on a smaller

dataset that contained 86 taxa. However, the resulting bootstrap values for basal

branches of the NJ tree were still less than desirable (Fig. 12). Most noteworthy is that

trees derived from the ML and NJ trees exhibited similar topologies; and NJ analyses

placed Phchrl 6250 and PP from P. chrysosporium close to the BaP clade, in

congruence with result of Bayesian analysis and previous studies (Morgenstern et al.

2010). Furthermore, the phylogenetic tree resulting from Bayesian analysis also

exhibits topology similar to the ML and NJ trees (Fig. 13). Although a few polytomies

occurs near some terminal nodes, the key basal nodes are supported more strongly by

posterior probability values (> 0.9), compared with the ML and NJ trees. These

analyses all came up to a similar conclusion: basal peroxidase is a specific type of

protein that shows similarities with CiP, but is distinct from other class Il peroxidases.
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Discussion

Potential ligninolytic activities in brown rot fungi

Secretory fungal peroxidases have been regarded as the most important enzymes
in the lignin degrading process due to their higher redox potential compared to other
oxidative enzymes. Several types of peroxidases have been identified and cloned from
various white-rot fungi, especially in P. chrysosporium, which is a model system for
class Il peroxidase. Based on the discoloration test, low laccase activity was detected
in the brown rot fungus Oligoporus fragalis and Mn-dependent peroxidase activity was
found in another brown rot fungus Piptoporus betulinus (Szklarz et al. 1989, Worrall et
al. 1997). However, gene sequence information is needed to confirm the existence of
class 1l peroxidases in brown rot fungi. The recent isolation of a novel ligninolytic
peroxidase gene (LnP) from A. cinnamomea, a medicinal fungus in Taiwan, provides
an example of lignin degradation related peroxidase gene cloning and characterization.
The function of A. cinnamomea LnP was confirmed with on various dye discoloration
tests (e.g., Bromophenol blue, 2,6-dimethoxyphenol and guaiacol) and heterologous
expression (Huang et al. 2009). In contrast to traditional conceptuals, the results
implicated the existence of class Il peroxidase in brown rot fungi and revived further

study.
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Basal peroxidase of L. sulphureus represents a class Il peroxidase based on
sequence characteristics

In our investigation, we chose a fast-growing Basidiomycota L. sulphureus
(Basidiomycota, Polyporaceae) as a model poroid organism, which was characterized
with wide host range and capable to colonize to both conifers and hardwoods. Our
PCR results further revealed the existence of that LnP-like genes in several brown rot
fungi (Fig. 1). Furthermore, the deduced amino acid sequences showed higher
similarity to LnP of A. cinnamomea than other types peroxidases by blastx. The
nucleotide sequences of the amplicons were highly conserved across immense member
of taxa, which further indicates that these genes derived from different species are
homologous. To further establish the identity of putative LiPs, the blastx approach was
combined with the conserved domain database (CDD) to analyze the class Il
peroxidase (Fig. 3). Besides the heme-binding site, a conserved feature among most
peroxidases, additional crucial factor for extracellular peroxidase is the structure
calcium which stabilizes enzyme structure under thermal pressure (Sutherland et al.
1996). Actually via the CDD-based approach the existence of Ca®*-binding sites within
LiPs fragments was demonstrated. Based on these results disclosed, the putative LiPs

should be classified as class 1l peroxidases.
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Expression of LsLnP is induced by MaSQO,, but much less than typical manganese
peroxidase.

According to previous studies on P. chrysosporium, many factors, such as the
limitation of carbon or nitrogen source, can influence gene expression and enzyme
activity of class Il peroxidases (Faison et al. 1985, Jeffries et al. 1981, Keyser et al.
1978, Pease et al. 1992). In addition, some trace elements, i.e. calcium and manganese,
can also maneuver the ligninase activity and gene expression (Gettemy et al. 1998,
Jeffries et al. 1981). The expression of three mnp isogenes in the genome of the P.
chrysosporium model system is regulated by manganese under conditions of nitrogen
defiency at the transcriptional level (Brown et al. 1990, Brown et al. 1991). Due to the
high similarity to MnP shown in the blastx result, we suggested that the putative
ligninolytic peroxidase gene of L. sulphureus (hereafter referred to as pMnP) was an
orthologue of MnP in P. chrysosporium. The assumption was further verified by real-
time RT-PCR of pmnp expression enhanced by manganese. pmnp expression actually
could be triggered by 180 uM MgSOQO,, though no response at 18 uM MgSO, and
unexpectedly VA down regulated the expression slightly (Figure 8). P. chrysosporium
and Fomitiporia mediterranea showed relatively high levels expression of mnp
(Morgenstern et al. 2010). The expression of pmnp of L. sulphureus was notably lower

compared to mnp of P. chrysosporium and F. mediterranea when activated by MnSQOs,.

38



These results perhaps may attribute to suboptimal conditions for pmnp expression, or

regulatory mechanisms of pmnp are different from typical mnp. Thus, it’s essential to

understand that relationship between manganese and mnp.

Previous studies on P. chrysosporium showed that, paired MREs located within

the promoter region of MnP (Godfrey et al. 1990, Mayfield et al. 1994), which

correlated with the high expression of mnpl and mnp2 (Cullen et al. 2004, Gettemy et

al. 1998). Analysis of the pmnp promoter region of L. sulphureus in this study also

revealed the existence of two unpaired putative MREs (Fig. 4). Interestingly, the mnp3,

an isogene within the mnp family of P. chrysosporium, also harbored two unpaired

MREs in the promoter region, but not strongly regulated by Mn (Alic et al. 1997,

Gettemy et al. 1998). The homologues of the unpaired MREs in mnp3 and pmnp may

account for relatively low up regulation of pmnp by Mn, compared with mnpl and

mnp2. Additional, in subsequent mutation study by disruption mnpl and an egfp

marker to examine the function of MRE sequences, promoter analysis of P.

chrysosporium mnpl suggested that a novel 33-bp sequence, a highly homologous

sequence among genes encoding mnp isozymes, could be a critical induction factor in

response to Mn. The results suggested that paired MREs may not play a major role in

mnpl regulation (Ma et al. 2004). Likewise, up regulation of mnp2 gene by Mn(ll) in

39



Trametes versicolor can occur without MREs (Johansson et al. 2002). Conclusion

came up from these investigation totally imply the necessity to clarify the role of

MREs in the mnp regulatory mechanism and the attempt in another angle was applied

to intensify that pmnp of L. sulphureus is actually a member of the class Il peroxidase

family.

Virtual protein structure modeling analysis of pMnP

Since it has a heme- and a calcium binding site within the deduced amino acid

sequence of pMnP (Fig. 3); an alternative homologous modeling approaches was

enforced by using putative crystallographic modeling analysis using LiP and MnP from

P. chrysosporium and Pleurotus eryngii as a modeling system. (Choinowski et al. 1999,

Poulos et al. 1993, Ruiz-Duefias et al. 1999, Sundaramoorthy et al. 1994). Using

Swiss-Model structure modeling, the modeling template can be selected based on an

optimization process for protein, gapped blast. The program selected the Coprinus

cinereus peroxidase (CiP, PDB id:1LY8) (Houborg et al. 2003) as the optimal template.

To further characterization of pMnP, the 3-D structure of pMnP was superimposed with

versatile peroxidase from Pleurotus eryngii (PDB id: 3FM1, to be published). This

comparison between VP and pMnP was under the parameter in consideration for the

duality of versatile peroxidase, which contains both Mn- and VVA-binding sites. Similar
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comparison with VP from P. eryngii and peroxidase from P. placenta (PP) (Martinez et

al. 2009), heme cofactor of pMnP is located internally in typical fashion as other class

Il peroxidases; whereas residues correlated to the Mn-binding site and VVA-binding site

are not typical. In the structure of VP from P. eryngii, the Mn-binding site consists of

three residues, Glu36, Glu40 and Aspl75, however, in the case of pMnP of L.

sulphureus the residues were substituted by Glu20, Gly32 and Trpl8 (Fig. 10).

Moreover, the VA pocket found in VP is not present in pMnP. The configuration

suggests that crystallographic structure of pMnP is similar to PP, because both lack the

notably catalytic activity of LiP and MnP. The results suggest that pMnP, hereafter

referred to as BaP, may be an analogue of PP rather than a typical ligninolytic

peroxidase.

Ligninolytic activities beyond white rot fungi

To further clarify the possible evolutionary route of BaP, three different

phylogenetic analyses were performed. More recently, a systematic and comprehensive

analysis of wood decay mechanisms, substrate preference, host range and mating types

carried out by Hibbett (2001). The study indicated that brown rot fungi exclusively

colonized and degraded conifer wood, in mating system, heterothalics evolved towards

homothalics by repeatedly gaining and losing mating genes (Hibbett et al. 2001).
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Moreover, they hypothesized that brown rot fungi were evolved repeatedly from white

rot fungi, may have lost but retained some genes related to wood degradation (Hibbett

et al. 2001). Currently, a few ligninolytic activity within brown rot fungi has been

demonstrated in a few Basidiomycetes as well as Ascomycetes (Enoki et al. 1988).

More recently, evidence derived from molecular study has indicated the limited lignin

modification capability, an essential trait for brown rot Basidiomycetes to access the

integrated cellulose or hemicellulose in the wood as exemplified in A. cinnamomea, G.

trabeum, P. placenta (Dey et al. 1994, Enoki et al. 1988, Huang et al. 2009,

Niemenmaa et al. 2008).

Phylogenetic analysis: Likelihood of BaP as a novel class 11 peroxidase

However, our preliminary study implicated an array of brown rot Basidiomycetes

and Ascomycetes may employ this attribute to sustain on substrate for survival. It is

meaningful, in terms of nutrient recycling and ecology. Results from our sequence

alignments, qPCR, and putative protein structure analysis all indicate that BaP class 1l

peroxidase is quite distinct from previously characterized fungal peroxidases,

ligninase. Furthermore, outcome of the phylogenetic analysis supports the assumption

that BaP is a monophyletic gene family within the fungal peroxidase genes, and

particularly noteworthy that BaP not only occurs in many taxa of Basidiomycota but
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also in some wood-inhabiting Ascomycota (Fig. 11). Furthermore, result also indicated

Coprinus cinerea peroxidase (CiP), the closest peroxidase relative of BaP also

juxtaposed at the base of the class Il peroxidase clade. Nevertheless, CiP has the

capacity to oxidize some phenol or dyes (Kjalke et al. 1992), which could account for

the positive decoloration assays shown in A. cinnamomea and other brown rot fungi

(Huang 2008). On perspective, to precisely define the function of ligninolytic

peroxidase, via gene insertion or disruption to gain or loss the function of this BaP in

brown rot fungi is needed.

The consensus trees constructed by MP, NJ, and Bayesian analyses showed highly

congruency in terms of tree topologies (Fig. 11.12.13). Comparison between BaP part

of gene tree and evolutionary tree of Basidiomycetes (Appx Fig. 2) (Hibbett 2006)

reveal no complete consistency no matter for ML, NJ or Bl tree. However, in the BaP

part of whole peroxidase gene tree express different topologies among ML, NJ and BI

tree. It might be caused by deficient sequence information or inappropriate

evolutionary marker gene usage for bap. Similar result derived from higher level of

class Il peroxidase gene tree in previous report. Location of Polyporales on the latest

lineage of class Il peroxidase gene tree instead of Agaricales in the evolutionary tree

(Morgenstern et al. 2008, Morgenstern et al. 2010) could be regard as that evolution of
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PODs is not entire parallel with species themselves. The latest generated organismal

phylogeny (chronogram) using BEAST shows better linkage between PODs tree and

evolutionary tree (Floudas et al. 2012).

In agreement with previous studies, our phylogenetic analyses indicate that fungal

secretory peroxidases, except BaPs, only occur within Basidiomycetes that evolved

after the separation of Basidiomycetes and Ascomycetes. (Morgenstern et al. 2008).

Notably, BaPs exist in diverse families of Gloeophyllales, Polyporales,

Hymenochaetales, Agaricales, and even Ophiostomataceae (Ascomycete). Does BaP

actually normally exist across the phylum of Basidiomycota and Ascomycota is an

intriguing puzzle to be resolved. Nevertheless, based on the phylogenic topology BaP

appears to have evolved much earlier than other class 11 peroxidases.

Morgenstern (2010) suggested that the class Il peroxidase family, LiPs evolved

from VPs or MnPs by gene loss events. Accordingly, the member in Polyporales, no

matter white rot or brown rot, may possess basal peroxidases. Because BaP may be

found in Ascomycetes, a polyphyletic assemblage that appears evolutionarily older

than Agaricomycetes, implications are that BaPs is perhaps comprised within a larger

group that extends beyond what is currently known. BaPs is likely the ancestor of
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DOPs and have no capacity of lignin degradation due to lack of Mn-binding site and

Trpl71. It implies that lignin degradation mechanism is a unique ability belongs to

some Basidiomycetes. Furthermore, the diversification of white rot and brown rot is

caused by series of contractions in PODs (Floudas et al. 2012) except for BaP.

Although the proximal node the bootstrap and posterior probability values for the

branches of the phylogenetic trees are not high, all three phylogenetic analyses are

congruent with previous studies (Martinez et al. 2009, Morgenstern et al. 2008,

Morgenstern et al. 2010). A focus on relationships among BaPs and LiPs, MnPs, VPs,

demonstrates that LiPs and MnPs are both derived from BaPs (Martinez et al. 2009).

Our result further boosted that BaPs present in Basidiomycetes and Ascomycetes also

implicated that BaPs in Ascomycetes or Basidiomycetes are evolutionary predecessors

of LiPs and MnPs; also the speciation, gene duplication , and ligninase gene loss

events (Floudas et al. 2012, Martinez et al. 2009) appear to have occurred before the

evolutionary split of brown rot and white rot fungi; the evolution of MnPs and LiPs

appears to have occurred independently from BaPs.
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Table 1. Fungal species used in basal peroxidase gene cloning and characterization.

Family Species Strain Other Collection No. Source E/?)tea
Gloeophyllales  Gloeophyllum trabeum BCRC31614 (= ATCC 32084 ;DSM  Canada B
1398)
Polyporales Laetiporus sulphureus BCRC36870 (= CBS 608.74) Netherlands B
Polyporales Antrodia salmonea TFRI B147 Hsinchu County, B
Taiwan
Polyporales Antrodia xantha B
Polyporales Fomitopsis pinicola BCRC35664 Taichung, Taiwan B
Polyporales Ganoderma australe BCRC35394 (= TFRI 17) Pingtung, Taiwan W
Hymenochaetales Phellinus noxius BCRC35248 (= ATCC 200093) Kaohsiung, Taiwan W
Polyporales Trametes versicolor w
Polyporales Phanerochaete chrysosporium BCRC36200 (= ATCC 24725;=CBS W
481.73 ; = CMI 174727 ;
= NRRL 6361)
Agaricales Agaricus bisporus BCRC36219 W
Polyporales Pycnoporus sanguineus BCRC35298 Nantou, Taiwan W
Ophiostomatales Ophiostoma quercus® OPH110 Taichung, Taiwan -

a. B: brown rot fungi; W: white rot fungi

b. Ascomycetes
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Table 2. Primers used in this study

Name Sequence (5’2 3’) Application

lips_1° CATGAAGTCAGCTAYGGNGAY BaP cloning

lips_2° GAATGGCAGAYGCNGGNTTY BaP cloning

lipr_3? GTCGTGCCCTTGRTTNGCNARYTT BaP cloning

lipr_4° GGGTATGACRAANSWRCARTC BaP cloning

Aslnp_RS AGACGCTGGGTTCAACGCGGGAGATAC RACE”

Aslnp_RR GAGTGTCGAATATTTTGGGGGTGCTGTC RACE®
Southern blot
probe

ITS4 TCCTCCGCTTATTGATATGC Identification

ITS5 GGAAGTAAAAGTCGTAACAAGG Identification

Lslnp_RS CTCATGGCAGCGCACTCGGTCGCCGTAC  RACE®

Lslnp_RR CGCTCTTGATCGACGAACGCTTCCCAGTA RACE’

Lslnp_FS GGCACATACATCCAGAGCGGATCAA LsBaP cloning

Lslnp_FR CCCGCCATCAAATCTAAGCATCGCA LsBaP cloning

Ls t5 A GGCACTTGCCTGCACCTCCTCC Tail-PCR

Ls t5 B TTCCTGGCTGGATCGCCGCATTTC Tail-PCR

Ls t5 C1 TCCCGCCATCAAATCTAAGCATCG Tail-PCR

Ls t5 C2 TGTTTTTCGTCACAAGAAGCCAGC Tail-PCR

Ls t5 C3 ACCAGCGGTTGCACTGAGAGATTG Tail-PCR

G0427F TGCTGGAGCTGTGGCCCTCTCGAACTGTC  Southern blot
probe

qGA _F CCACGACCGAGACATCAAT gPCR

qGA R CAGTCGGCAACAACATCATC gPCR

1018F GGTTCACAGCGGAGGACAC gPCR

1018R ACTGCGAGTCAAAGGCTTCC gPCR

® o0 o

degenerate primer

gene specific primer for A. salmonea 5’ RACE
gene specific primer for A. salmonea 3’ RACE
gene specific primer for L. sulphureus 5 RACE
gene specific primer for L. sulphureus 3’ RACE
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Table 3. Reaction parameters for the tail-PCR

PCR Primers | Cycle parameters
Round
1% round Ls t5_ A | 93°C, 1 min; 95°C, 1 min for 1 cycle
94°C, 30 s; 62°C, 1 min; 72°C, 2.5 min for 5 cycle
94°C, 30 s; 25°C, 3 min; 72°C 3 min; 72°C, 2.5 min; 94°C,
10's; 29°C, 1min; 72°C, 2.5 min for 15cycle
72°C, 5 min for 1 cycle
2" round Ls t5 B | 94°C,10s;64°C, 1 min; 72°C, 2.5 min; 94°C, 10 s; 64°C, 1
min; 72°C, 2.5 min; 94°C, 10 s; 29°C, 1 min; 72°C, 2.5 min
for 12 cycles
72°C, 5 min for 1 cycles
3 round Ls t5 C1 | 94°C, 155; 29°C, 30 s; 72°C, 2 min for 20 cycles
Ls_t5_C2 | 72°C, 5 min for 1 cycle
Ls t5 C3
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Fig. 1. Putative basal peroxidase gene cloned from brown rot and white rot

fungi by degenerate primers.

(A) Brown rot fungi. Lane 1: Gloeophyllum trabeum; Lane 2: Antrodia salmonea;
Lane 3: A. xantha; Lane 4: A. oleracea; Lane 5: Laetiporus sulphureus; Lane 6:
Fomitopsis pinicola. (B) White rot fungi. Lane 1: Trametes versicolor; Lane 2:
Phellinu snoxius; Lane 3: Pycnoporus sanguineus; Lane 4: Ganoderma australe;
Lane 5: Phanerochaete chrysosporium; Lane 6: Agaricus bisporus.
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Fig. 2. Putative basal peroxidase gene cloning from Ophiostoma quercus by
degenerate primers.
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IMADAGFIAEDTVALMAAHSVAVQKT I DPSIYIAP L DSTPEAFDSQFY LEJLLRGTSYPGKGRIAAEAK SPVEHEEREASDAALARH[ES TACWERF VS
MADAGENAGDTVALLAAHS I AVQKT IDPSEPDSPLDSTPREFDTQFYLETLLRGTHYPGKGRIGPAQSKSP I EHEEREASDAA I ARHESTACEWQSF I B]N0)
MADAGENAGDTVALLAAHS I AVQKT IDPSIEPDSPLDSTPKIFDTQFYLETLLRGTYPGKGRIPAQSKSPLEHEEREASDAA I ARHSTACEWQSF I SN
MADAGENAGDTVALLAAHS I AVQKT I DPSIEPDSPLDSTPKIFDTOFYLEMLLRGTEYPGKGRIPAQSKSPLEHEEREASDAA I ARHTSTACEWQSF 1 UM
MADAGENAGDTVALLAAHS TAVQKTTDPSEPDSPLDSTPRIFDTQFYLETLLRGTYPGKGREPAQSKSP I EHEEREASDAA I ARHESTACEWQSF I I
D §C O ———— S | A\/QK T I DPSIBDSPLDSTPKEFDTQFYLETLLRGTEYPGKGRIPAQSKSPLEHEEREASDAA I ARHSTACEWQSF I BINo)
MADAGENAGDTVALEEAAHS I AVQKT I1DPSEPDSPLDSTPRIFDTQFYLETLLRGTRYPGKGREPAQSKSP I EHEERIEASDAA I ARHESTACEWQSF 1 DI
MADAGENAGDTVALLAAHS I AVQKT IDPSEPDSPLDSTPKIFDTQFYLETLLRGT(]YPGKGRPAQSKSPLEHEERFASDAA I ARHESTACEWQSF I NS
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MADAGENAGDTVALLAAHS I AVQKT I DPSIEPDSPLDSEPKIFDTQFYLETLLRGTEYPGKGRMPAQSKSPLEHEERFASDAA I ARHESTACEWQSF 1 DIYM
maDaGfnagdtval aaHS6AVQKTIDPSipdsPLDStP iFD3QFYLEtLLRGT YPGKGR pA2sKSP6eHEFRIASDAAGARHtSTACeW2SF6

Figure 3. Traits of cloned basal peroxidase gene in target fungal species.

The characteristic domains were identified by blastx with conserved domain database (CDD), including heme binding site and calcium binding

site within the deduced amino acid sequences.[Theme binding site; A calcium binding site.
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Fig. 4. The gene structure of Laetiporus sulphureus (Ls) LsBaP.

(A) Lane 1 and Lane 2 are 5” and 3 RACE amplicons amplified using Lslnp_RS
and Lsinp_RR as primers respectively. The amplicon was analyzed by 1.5 %
agarose gel. Lane3: LsBaP cDNA full length amplified by gene specific primers
Lsinp_FS and Lslnp_FR. (B) Southern blot analysis of genomic DNA of LsBaP.
Lane 1. digested by Aflll; Lane 2: digested by Pstl; Lane 3: digested by EcoRV;
Lane 4: digested by Hindlll; Lane 5: digested by Pstl and Aflll; Lane 6: digested by
EcoRV and Hindlll; Lane 7: digested by Aflll and EcoRV; Lane 8: digested by Pstl
and EcoRV. The hybridization was performed using probe generated by Asinp_RR
and G0427F primers.
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ggcacatacatccagagcggatcaaccagtcgtacgac

ggggggaacacaccatgctgaagatcacaggcatcatgttcagectcgacatggatttgtggtggtacacatga
CSRE
gtaacccatgtccggtccaggggtatcaggeggeccgtgtcgaccgtgegegtgaagatgttctccgggacy
MRE

aagacacccttattccacagcaaaatctgttccttgcgggcattegtgttcgcagegtgtegtcgetcgeggacy
CSRE

cgctgaaaccggtcgtagtaggcatcgggacgatggggtcgcetcaagcecatttgttgatgagaaggtetgteg

catcgttgtcgagcttctggcaaactagcetcgctcatggaaaggcetggggggtatgaacttggagtaataacga

ccaggcatggcgacggtggtgaggtgaggtcagggagagaaatgggetcagegcetggagtegegetgeaa
MRE
aagcacgctaatagacgatcagccagaagggtcgctaaccggagttgggegtctagaccgttaacgctaaaa
TF1IB TATA box MTE

atccgcgecgagacgcgaaaaagcectcccctaaactatatgecatcacgtgccaatacgegtctcgetcgeac
v

gcgcectgeggcetggaagegtetegegtgtttegtttattcccatetagettagattctgataatacatcacactcttt
M FY A Y W A AL L F L T H L
ATGTTTTACGCGTATTGGGCTGCTCTACTTTTCCTGACGCATTTGT
Y D C C V A S intron |
ATGATTGCTGTGTAGCCTCAAgtgcggcgcatttcgettcgtctgtttccegtttacgctgactt
T v H T E HS A A P S
cgcttgctacccaGCTGTACACACTGAGCATTCTGCAGCGCCATCAgtgagtage
intron 11 C N R W F E
attattcaggatatatttatcttgtaagccagtattcaatctctcagTGCAACCGCTGGTTCGAAgt
intron 11 I L D D L
gcgtgtgtttgtgetggcttcttgtgacgaaaaacaatgaatcgetgectagAT TCTGGACGATCTT
Q S N V intron 1V F
CAATCCAACGTgtaaacttatcaaactcgaaacggtttt%gcataigttgaatgcgiltgciagATTT
D G G K C GG D P AR K A L R L
GATGGCGGGAAATGCGGCGATCCAGCCAGGAAGGCACTTCGACTC
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L S ¢
T F HD G I G R S A AL K A S G

ACGTTTCATGACGGAATAGGTCGTTCTGCTGCTTTGAAAGCTTCTGG
intron V
Gagatttccgtgcegtattcaaatacttaggcacactatcgtatggctcaacaacaagtagtggaggaggtgcea
R F P G G G
ggcaagtgccattgtctggtcagtacgcacggaaagctcacatatgAGATTTCCTGGAGGAGG
A D G S I I K F A DV E L E D
TGCAGACGGCAGCATCATCAAGTTTGCAGATGTCGAGCTAGAAGAC
intron VI P A N | G
cgtatgtacgtgtcatcgtcgatatatcccgactcatcggaaatcgtagCCGGCAAACATAGGCC
L E 6 I vY VvV L R S L A D G H G
TGGAAGGCATAGTGTATGTTCTCAGATCTCTGGCCGATGGTCACGGT
v S Y G D | intron VII
GTGAGCTACGGCGACATgtgcgtattgtcgcttaatcgeggtcgcttaatccatgcgacctcage
If Q ExA.“\ G A V A L S
gcatatactgaccagtggatgaagCATACAAT TTGCCGGAGCCGTGGCTCTGTCC
N C P G!SI~HIRa WA .F Y A G R A
AACTGTCCCGGAAGCCCTCGCCTCGCCTTCTACGS:(TG%ACETGCCG
E A | A P S&&asP—/ WKL A P L P T
AGGCGGATTGCCCCC(iCTCCACCTAAGCTGGCCCCATTACCGACGG
D S A E T I L S R M A DA G F T
ATTCGGCGGAAACGATATTGTCTCGGATGGCAGATGCAGGGTTCAC
P EDTVALMAANLESs VAV
ACS,(AGQGGQCA’\(CGGTCGCGCTCATGGCAGCGCACTCG%(TCGCCGT
Q K T I DP S AV G A P L D s
ACAAAAGACTATCGATCCTAGCGCAGTTGGCGCACCGTTGGACAGC
T P E V F D S Q F Y L E
ACGCCGGAAGTCTTTGACTCGCAGTTCTACTTGGAGggtatgttgagagcgaca
intron VI M L L R G T S Y
tgcgaagctccgcetaacctaatctecttgacgaGATGCTCCTTAGGGGCACCAGCTACC
P G K G R S A A E A K S P V K
CCGGTAAAGGGAGATCAGCGGCGGAGGCGAAGTCACCTGTGAAGC

* *
H E F R L A S D AA L A R HK S
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266
1307
275
1365
280
1429
295
1474
311
1521
326
1567
331
1633
1687
1763
1836

ACGAATTCCGACTGGCATCGGATGCCGCGCTTGCACGGCATAAAAG
T A C Y W E A F V
CACCGCTTGCTACTGGGAAGCGTTCGTCggtgagttccgaatatccegtgtacaagat
intron 1X G D Q E R
caactggtgggaatacctcgttgtcctgacgtgactgecgegegtacaGGTGATCAAGAGCGTA
MRGSFRKAﬁEKLANQ
TGCGCGGATCCTTCCGAAAAGCCATGGAGAAGCTCGCGAATCAGG
G H S NLADT GCS SV I PV P K
GCCATTCAAATCTCGCCGATTGTTCGTCTGTCATTCCCGTTCCGAAA
P W S R P P T L P R G K N I S
CCTTGGAGCCGCCCGCCTACGTTGCCTCGAGGCAAGAACATCTCGG
D I E Q T intron X
ATATCGAACAGACT gtgagtcgtttgcgcectcgcaggcatcectgacacctecgecctatgetgat
C T A Naw@iskE P P L A*
ggacgccgtagTGTACGGCAGTCCAATTCCCCCCTCTAGCCTAACcccctgcaca
tcgctacacagctgtcccggcecctatgtcggaggacttctcatgcagcttttcttcattattgctatgtcccacgt
gaatgccaaatcctagcattaatgtgattgtgtcgegtgtctgtaaatgccaatttgaggattcaggaggagce

agtgtga

Fig. 5. Nucleotide and translated amino acid sequences of basal peroxidase
gene of L. sulphureus (LsBaP).

Exons indicated by upper case letter and introns I-X in lower case letter letters.

Beginning of the transcript is shown in V¥and the stop codon is marked with *. 5’

promoter sequence is numbered negatively from transcriptional starting site. Amino
acids are numbered in boldface. 3’ UTR is marked in italics. The putative signal
peptide is marked with shading block. The asterisk indicate heme binding site
including proximal and distal histidine. Putative transcription factor binding sites

are underlined. MTE: Core promoter motif ten elements; TFIIB: RNA polymerase
Il transcription factor 11 B; MRE: Metal regulatory element factor; CSRE: Carbon
source-responsive elements.
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LsBaP
AsBaP
CiP
PchBaP
PpBaP
LeMnP2
ArP
PcLiP
PcLiP H8

L

Fig. 6. The exon / introns distribution of basal peroxidase, lignin peroxidase,
manganese peroxidase, CiP and ARP in nine white and brown rot
Basidiomycetes:

Figure were drawn in proportion to gene length. Black boxes and line fragments
represent exon and introns respectively. The exon / introns distribution are
conserved between LsBaP and AsBaP. In contract to lignin peroxidase gene PcLiP
and PcLiP H8, several small exon in size about 25-50 bp in size located within near
5" terminal region of LsBaP, AsBaP, CiP, PchBaP, PpBap and LeMnP2.
Abbreviations: Laetiporus sulphureus (LsBaP), Antrodia salmonea (AsBaP),
Coprinus cinerea (CiP), Phanerochaete chrysosporium (PchBaP, PcLiP, PcLiP H8),
Postia placenta (PpBaP), Lentinus edodes (LeMnP2), Arthromyces ramousus (ArP).
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Fig. 7. The analysis of LsBaP promoter.

(A) 5” unknown region amplified by tail-PCR. The bold arrow indicate
predicted product (~ 3.0kb); arrow heads indicate nucleotide base pairs. (B)
Two important transcription factor binding sites. Illl : metal regulatory element
factors (MRES); : carbon source-responsive elements; I_1: TATA box.
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Fig. 8. The quantitative RT-PCR analysis of LsBaP.

The prevalence of transcript of LsBaP under different culture conditions: Mn-free
(control), Mn-free with VA, 18 uM Mn and 180 uM Mn medium at dayl (D1) and
day 2 (D2). The gRT-PCR was performed using GAPDH as internal control.
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Fig. 9. The comparison of backbone structure between putative of LsBaP
(up) and versatile peroxidase of P. eryngii (down) .

The protein structure of P. eryngii was retrieved from Protein Database Bank
(PDB). (PDB id: 3FM1). (A) The putative modeling structure of LsLnP.
Unclassical manganese binding site composed of Glu20, Glu32 and Asn120 is
marked in red. Distal histidine (His48), proximal histidine (Hisl76) and
inappropriate locations of two tryptophan residues (Trpl8 and Trp251) are
marked in blue and purple respectively. (B) The protein structure of P. eryngii.
Classical manganese binding site composed of Glu36, Glu40 and Aspl75 are
marked in red. Distal and proximal histidine (His47 and His169) are marked in
blue; tryptophan residues (Trp244 and Trp251) constituting VA binding site are
marked in pruple.
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Fig. 10. The comparison of ligand binding site between P. eryngii versatile
peroxidase and the L. sulphureus novel peroxidase.

(A) Versatile peroxidase of P. eryngii: Detail structure of heme pocket, a heme
cofactor with distal histidine (His47, blue) and proximal histidine (His169, blue).
Mn-oxidation site consist of Asp175, Glu36 and Glu40 (all in red) and Trpl64
and Trp244 within VA binding site. (B) Detail structure of LsBaP. Heme pocket is
composed of distal histidine (His48, blue) and proximal histidine (His176, blue).
LsBaP lack of Mn binding site, two residues substituted by Asn120 (light blue)
and Gly32 (gray). Trp18 and Trp251 (purple) are located on the sides of heme
cofactor, lack VA binding site.
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Figure 10. (part II)

96

57

Fig. 11. Phylogenetic tree revealed by
Maximum likelihood (ML) method.

ML bootstrap values above 50 are indicated.
The Ascomycota out group is shaded by
purple, basal peroxidase clade is shaded by
red. Among BaP clade, brown rot and white rot
species are shown in dark red and light red
respectively; and Ascomycetes marked by red
frame. MnP clade and LiP clade are shaded by
green and blue, respectively. The overlapping
zone represents VP clade.
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Figure 12. The Phylogenetic tree disclosed by Neighbor-joining (NJ) method.

NJ bootstrap values above 70 are indicated. Ascomycota out group is shaded by
purple, basal peroxidase clade by red. Among BaP clades, brown rot and white rot
species are shown in dark red and light red; MnP clade and LiP clade by green and
blue, respectively. The overlapping zone represents VP clade.
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Figure 13. The phylogenetic tree showed by Bayesian inference (BI) method.

Bayesian posterior probability is indicated. Ascomycota out group is shaded by purple, Basal peroxidase clade by red. Among BaP clades,
brown rot and white rot species are shown in dark red and light red, MnP clade and LiP clade by green and blue, respectively. The overlapping

zone represents VP clade.
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Appx Table 1. Sequence used in the phylogenetic analysis

Appendix

Accession Species Order Group  Source
no.
CAL37349 Phlebia tremellosa Polyporales LiP GenBank
CAA32616 Phlebia radiata Polyporales LiP (Saloheimo et
al. 1989)
Pch1131738 Phanerochaete Polyporales LiP (Martinez et al.
chrysosporium 2004)
Pch1131709 Phanerochaete Polyporales LiP (Martinez et al.
chrysosporium 2004)
BAG85350  Phanerochaete Polyporales LiP (Sugiura et al.
sordida 2009)
Pch1122202 Phanerochaete Polyporales LiP (Martinez et al.
chrysosporium 2004)
CAL37350 Phlebia tremellosa Polyporales LiP GenBank
AAW59419  Phlebia radiata Polyporales LiP (Hilden et al.
2006)
Pch1121806 Phanerochaete Polyporales LiP (Martinez et al.
chrysosporium 2004)
Pchl 8895 Phanerochaete Polyporales LiP (Martinez et al.
chrysosporium 2004)
Pch111110 Phanerochaete Polyporales LiP (Martinez et al.
chrysosporium 2004)
Pchl 121822 Phanerochaete Polyporales LiP (Martinez et al.
chrysosporium 2004)
Pchl Phanerochaete Polyporales LiP (Martinez et al.
6811 chrysosporium 2004)
BAG85349  Phanerochaete Polyporales LiP (Sugiura et al.
sordida 2009)
Pchl Phanerochaete Polyporales LiP (Martinez et al.
10957 chrysosporium 2004)
ABT17225 Phlebia chrysocreas Polyporales MnP1  (Morgenstern
et al. 2008)
AAF31330 Dichomitus squalens  Polyporales MnP1  (Lietal. 1999)
AAO061784  Ceriporiopsis Polyporales MnP1  (Sue Yaver et

subvermispora

al. 2003)
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ABB83812
ontinued

BAC06187

ABT17210

Pchi

878

ABT17219

ABT17215

ABT17235

ABT17233

AADA45725

ABT17236

ABT17228

AAC05222

ABT17227

ABT17234

AAB92247

AAF31329
ABT17214

ABT17211

ABT17213

ABT17224

ABT17226

Ceriporiopsis rivulosa

Phanerochaete
sordida
Hapalopilus rutilans

Phanerochaete
chrysosporium
Phlebiopsis gigantea
Pulcherricium
caeruleum

Cytidia salicina
Cytidia salicina
Ceriporiopsis
subvermispora
Cytidia salicina
Phlebia chrysocreas
Ceriporiopsis
subvermispora
Phlebia chrysocreas

Cytidia salicina

Ceriporiopsis
subvermispora
Dichomitus squalens
Cryptoporus volvatus
Cryptoporus volvatus
Cryptoporus volvatus

Phlebia chrysocreas

Phlebia chrysocreas

Polyporales

Polyporales

Polyporales
Polyporales
Polyporales
Polyporales
Corticiales
Corticiales
Polyporale
Corticiales
Polyporale
Polyporales
Polyporales
Corticiales

Polyporales

Polyporales
Polyporales

Polyporales
Polyporales
Polyporales

Polyporales

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1
MnP1

MnP1

MnP1

MnP1

MnP1

(Hakala et al.
2006)

GenBank

(Morgenstern
et al. 2008)

(Martinez et al.
2004)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

(Tello et al.
2000)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

(Lobos et al.
1998)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

GenBank

(Lietal. 1999)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)
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Cé@@%ﬁ%@%d Phlebia radiata Polyporales MnP1  (Hildén et al.
2005)
BAG72079 Lentinula edodes Agaricales MnP1  (Sakamoto et
al. 2009)
ABT17223 Phlebia chrysocreas Polyporales MnP1  (Morgenstern
et al. 2008)
ABT17222 Phlebia chrysocreas Polyporales MnP1  (Morgenstern
et al. 2008)
ABT17212 Cryptoporus volvatus  Polyporales MnP1  (Morgenstern
et al. 2008)
ADK60890  Fomitiporia Hymenochaetales MnP1  (Morgenstern
mediterranea et al. 2010)
ADK60896  Phylloporia ribis Hymenochaetales MnP1  (Morgenstern
et al. 2010)
ADK60894  Hymenochaete Hymenochaetales MnP1  (Morgenstern
corrugata et al. 2010)
ADK60895  Hymenochaete Hymenochaetales MnP1  (Morgenstern
corrugata et al. 2010)
ADK60892  Inonotus hispidus Hymenochaetales MnP1  (Morgenstern
et al. 2010)
ADK60889  Fomitiporia Hymenochaetales MnP1  (Morgenstern
mediterranea et al. 2010)
ADK60891  Fomitiporia Hymenochaetales MnP1  (Morgenstern
mediterranea et al. 2010)
ADK60898  Steccherinum Polyporales (Morgenstern
fimbriatum et al. 2010)
ADKG60899  Steccherinum Polyporales (Morgenstern
fimbriatum et al. 2010)
ADKG60900  Grifola frondosa Polyporales (Morgenstern
etal. 2010)
BAA88392  Ganoderma Polyporales GenBank
applanatum
ABB77244  Ganoderma australe  Polyporales GenBank
BAE46585 Trametes cervina Polyporales GenBank
ABB77243 Ganoderma Polyporales GenBank
formosanum
ACA48488  Ganoderma lucidum Polyporales GenBank
AAUB82081  Phanerochaete Polyporales NoP (Martinez et al.
chrysosporium 2004)
Pchl Phanerochaete Polyporales BaP (Martinez et al.
6250 chrysosporium 2004)
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AY 243868

ontinued

CAG32981

AAWG66483

ABT17207

ABT17206

ABT17208

ADKG60913

ABT17203

1906181A

ADKG60911

ADK60912

AAA34049

CAAS53333

ADK60909

ADKG60910

JQ1190

CAAB83147

Lb1191903

Pch1140708

Pchl 8191

ABT17217

Pycnoporus coccineus
Trametes versicolor
Phlebia radiata
Phlebia chrysocreas
Phlebia tremellosa
Phlebia chrysocreas
Trametes cinnabarina
Phlebia radiata
Bjerkandera adusta
Trametes cinnabarina
Trametes cinnabarina
Trametes versicolor
Trametes versicolor
Trametes cinnabarina
Trametes cinnabarina
Trametes versicolor
Trametes versicolor
Laccaria bicolor
Phanerochaete

chrysosporium

Phanerochaete
chrysosporium

Pulcherricium

Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Polyporales
Agaricales

Polyporales
Polyporales

Polyporales

LiP

LiP

LiP

LiP

LiP

LiP

LiP

LiP

LiP

LiP

LiP

LiP

LiP

LiP

LiP

LiP

PP?

MnP1

MnP1

MnP1

(Pointing et al.
2005)

(Kim et al.
2005)

(Hilden et al.
2006)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2010)

(Morgenstern
et al. 2008)

(Kimura et al.
1991)

(Morgenstern
et al. 2010)

(Morgenstern
et al. 2010)

(Jonsson et al.
1992)

(Jonsson et al.
1994)

(Morgenstern
et al. 2010)

(Morgenstern
et al. 2010)

(Black et al.
1991)

(Johansson et
al. 1995)

(Martin et al.
2008)

(Martinez et al.
2004)

(Martinez et al.
2004)

(Morgenstern
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ABT17209
Cont?nued

ABT17220

ABT17221

ABT17218

BAC06185

Pch13589

BAC06186
BAF74785

AATI0348
AAY41062

CAB51617

AAX40734

AAD54310

CC1G02104
AAZ14938

AAY 89586

Ppl144056

caeruleum
Hapalopilus rutilans

Phlebiopsis gigantea
Phlebiopsis gigantea
Phlebiopsis gigantea

Phanerochaete
sordida

Phanerochaete
chrysosporium

Phanerochaete
sordida

Pleurotus
pulmonarius
Trametes versicolor

Pleurotus
pulmonarius
Pleurotus ostreatus

Pleurotus
pulmonarius
Pleurotus eryngii

Gloeophyllum
trabeum®

Agaricus bisporus
Fomitopsis pinicola®
Phellinus noxius
Coprinopsis cinerea

Coprinellus
disseminatus

Bjerkandera adusta
Antrodia xantha®

Laetiporus
sulphureus®

Ophiostoma quercus®
Postia placenta®

Polyporales
Polyporales
Polyporales
Polyporales

Polyporales

Polyporales

Polyporales
Agaricales

Polyporales
Agaricales

Agaricales

Agaricales

Agaricales
Gloeophyllales

Agaricales
Polyporales
Hymenochaetales
Agaricales

Agaricales

Polyporales
Polyporales
Polyporales

Ophiostomatales
Polyporales

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1

MnP1
VP1

MnP3
VP1

VP1

VP1

VP1

pBaP

pBaP
pBaP
pBaP
BaP

BaP

VP3
pBaP
pBaP

pBaP
BaP

et al. 2008)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

(Morgenstern
et al. 2008)

GenBank
(Martinez et al.
2004)
GenBank

GenBank

GenBank
GenBank
(Giardina et al.
2000)
GenBank
(Camarero et
al. 1999)

This study

This study
This study
This study

genome
site

(James et al.
2006)

GenBank
This study
This study

This study
(Martinez et al.
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AEShtinen

CAA91043
AAT90350

AAO47909

ADKG60904
CAA54398

AATI0351
CAG33918
AC092620

ADKG60905
ADKG60907
ADKG60906

AAZ16493
CAD92855

CAAB83148
ADKG60908

BAE79812
ADKG60902

ADK60901

Ceriporiopsis rivulosa

Trametes versicolor
Trametes versicolor
Trametes versicolor
Bjerkandera sp.

Pycnoporus
sanguineus

Antrodia salmonea®

Antrodia
cinnamomea®

Grifola frondosa
Trametes versicolor

Trametes versicolor
Trametes versicolor

Pseudotrametes
gibbosa
Trametes cinnabarina

Trametes cinnabarina

Pycnoporus
cinnabarinus

Coriolopsis gallica
Phlebia radiata

Trametes versicolor
Pycnoporus
cinnabarinus

Spongipellis.
Grifola frondosa

Grifola frondosa

Polyporales

Polyporales
Polyporales
Polyporales
Polyporales

Polyporales

Polyporales
Polyporales

Polyporales
Polyporales

Polyporales
Polyporales
Polyporales

Polyporales
Polyporales
Polyporales

Polyporales
Polyporales

Polyporales
Polyporales

Polyporales
Polyporales

Polyporales

MnP3

MnP4
MnP4
pBaP
VP3

BaP

BaP
BaP

VP2

MnP3

MnP4
MnP4
MnP4

MnP4

MnP4

MnP4

MnP4
MnP4

MnP4

MnP4

VP2
VP2

VP2

2009)

(Hakala et al.
2006)

GenBank
GenBank
This study

(Moreira et al.
2005)

This study

This study
This study

(Morgenstern
et al. 2010)

(Jonsson et al.
1994)

GenBank
GenBank
GenBank

(Morgenstern
et al. 2010)

(Morgenstern
et al. 2010)

(Morgenstern
et al. 2010)

GenBank

(Hildén et al.
2005)

(Johansson et
al. 2002)

(Morgenstern
etal. 2010)

GenBank

(Morgenstern
et al. 2010)

(Morgenstern
et al. 2010)
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ADK®60903
PEontinued

AAAB4396

AAZ04666
AAD01404

CAJ01576
AAY 42945

BAA33449

ADKG60893

CAG27835

Pch1131707

Pch14636

MGGO07790

MGG14940

Grifola frondosa
Lentinula edodes
Pleurotus ostreatus

Pleurotus eryngii
Pleurotus eryngii

Pleurotus sapidus

Pleurotus
pulmonarius
Pleurotus ostreatus

Inonotus hispidus
Agaricus bisporus

Phanerochaete
chrysosporium

Ganoderma australe

Phanerochaete
chrysosporium

Magnaporthe grisea”

Magnaporthe grisea”

Polyporales
Agaricales
Agaricales

Agaricales
Agaricales

Agaricales
Agaricales

Agaricales
Hymenochaetales
Agaricales
Polyporales

Polyporales
Polyporales

Magnaporthales

Magnaporthales

VP2

MnP3

VP1

VP1
VP1

VP1
MnP2

MnP2

MnP3

MnP2

LiP

pBaP
MnP1

PP

PP

(Morgenstern
et al. 2010)

(Nagai et al.
2007)

(Asada et al.
1995)

GenBank

(Ruiz-Duefias
et al. 1999)

GenBank
GenBank

(Irie et al.
2000)

(Morgenstern
et al. 2010)

(Lankinen et
al. 2005)

(Martinez et al.
2004)

This study

(Martinez et al.
2004)

(Dean et al.
2005)

(Dean et al.
2005)

a. Brown rot fungi
b. Ascomycetes
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H,0
H,0
RH 2
2H*
::::::{j "”Q
LiPII/MnRPII LiPl/MnPI
R- RH

Fe3+ + H202 -->[Fe4+=0]R' (Compound I) + H20
[Fe4+O]R' + substrate --> [Fe4+=0]R (Compound II) + oxidised substrate

[Fe4+O]R + substrate --> Fe3+ + H20 + oxidised substrate

Appx Fig. 1. The oxidation mechanism of LiP and MnP
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A. Major clades of Agaricomycotina

Data from Matheny et al (2006c;
18S, 258, 5.8S rRNA, rpb1, tef1
6603 bp, 146 spp), except:

FO1 = Fell et al (2001)

HO1 = Hibbett and Donoghue (2001)
L04 = Lutzoni et al (2004)

HO06 = Hosaka et al (2006)

Atheliales (1)

‘108 Boletales (11) G

178 Agaricales (51) G

198 Russulales (8)

1 .
% Corticiales (2)

XX = bootstrap
X.X = posterior probability

Los 0.7 HU19nZ Gloeophyllales (0) @+on G

70 1—8_8 Polyporales (16) G

1.0] 100
1.0

108 Hymenochaetales (7)

Thelephorales (2)

1.0
(XX) = no. species sampled
G = genome or EST projects
1.0
1.0
Hoe 98
Hoe 1.0

Hoe 59

1108 Trechisporales (2)

84
100 Gomphales (2)

0 phallales (1)

Hos 98 Phallomycetidae

—=5 Hysterangiales (0)

(98 HOB)

10 Geastrales (0) 1 +Hos)

90

10 Auriculariales (3)

69

0 Cantharellales (11)

170_8 Sebacinales (2)

100

10 Dacrymycetales (4)
Fo1 96

F‘—”‘j Filobasidiales (0) (o1 34)
1198 Tremellales (2) G

Fo1 83
na

Cystofilobasidiales (Q) (o1 1e)
100

1.0
100

1.0
100

1.0

Agaricomycetidae

Agaricomycetes

Dacrymycetes

Tremellomycetes

Appx Fig. 2. Higher-level phylogenetic relationships of Agaricomycotina

Reference: Hibbett, D. S. (2006). A phylogenetic overview of the Agaricomycotina.

Mycologia. 98(6): 917-925.
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