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Abstract

Maintaining high production yield is important for efficiency in the milling process.
Chatter is a type of self-excited vibration that can occur during machining, and limits the
production yield in practice. In the past, many chatter detection methods were proposed
using different signal processing methods such as Fast Fourier transform (FFT), wavelet
packet transform (WPT), and Hilbert-Huang transform (HHT). Several classification
methods were also applied in chatter detection. Despite the large amount of researches
regarding chatter detection, it is unclear which of these proposed methods are better in

terms of accuracy and detection speed.

In this research, we test the signal processing methods and classification algorithms
against the entire dataset, with a wide range of spindle speeds and depth of cuts. A chatter
identification platform is developed to train models and evaluate their performance, using
combinations of signal processing methods and classification algorithms. The
classification methods include numerical threshold, k-nearest neighbors (K-NN), Naive
Bayes, support vector machine (SVM), local outlier factor (LOF), and artificial neural
network. K-NN proves to be the optimal method when using WPT and HHT for signal

processing, with an error rate of 2.2%.

Keywords: chatter, wavelet packet transform, Hilbert-Huang transform, k-nearest

neighbor, support vector machine
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1. Introduction

1.1 High-speed milling and chatter

Production yield is important for CNC machines. One way to increase production
yield is by increasing the spindle speed in the milling process. By increasing the spindle

speed, the material removal rate is increased proportionally, so is the production yield [1].

However, by increasing the cutting speed, new problem arises. Chatter is a
phenomenon caused by the mechanical interactions between the cutting tool and the
workpiece. This self-excited vibration [2] causes significant issues in machining, causing
large vibrations, which limits productivity and may produce poor surface finish on the
workpiece [3] [4]. Fig. 1 shows a comparison of surface finishes between chatter and
chatter-free cutting. Fig. 2 illustrates the effect of chip thickness in chatter development.
Vibrations in the cutting process causes variations in chip thickness, and certain
combination of spindle speed, feed rate, material, and cutting tool causes the chip

thickness to drastically fluctuate like Fig. 2 (c). This is the origin of chatter.

The cause of chatter and its mechanical models are well-studied. The cutting process
can be described with as a non-linear system [5], and a stability lobe diagram (SLD) was
used to indicate which cutting conditions cause chatter [6]. Fourier series was used to

obtain an analytical description of SLDs [7], and was later verified experimentally [8].
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Chatter marks

Fig. 1. Chatter leaving undesired marks on the surface of the workpiece [9]

Workpiece Workpiece Workpiece

(a) e =0 rad. (b) e = %w rad. (c) e = m rad.
Fig. 2. lllustration of how chatter develops due to abrupt change in chip thickness [2]

Many methods were proposed to calculate the SLD, including a previous research
using transfer functions [10], and a method using multi-frequency solution [11]. Semi-
discretization method was applied to solve the non-linear delayed differential equations
describing chatter stability [12], and had been verified as accurate approach for SLD
computations [13]. Fig. 3 shows a SLD with spindle speed on the x-axis and depth of cut
on the y-axis. The region above the black curve is the chatter region, i.e. any cutting

condition above the black curve is unstable.
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Fig. 3. An example of a stability lobe diagram [14]

1.2 Chatter detection

The most straightforward way to avoid chatter is to obtain the SLD [15] [16] [17],
and avoid cutting in the unstable range. However, several parameters have effects on the
SLD, including the vibration modes of the CNC machine, the cutting tool, the material of
the workpiece, and the wear of the cutting tool. In addition, cutting force signal is required
to calculate the SLD, which typically requires a dynamometer. In this research, we utilize

chatter detection methods that do not require a dynamometer.

In the past, many chatter detection methods were proposed using different signal
processing methods. FFT of vibration signals were used to calculate the optimal cutting
path [18]. FFT can also be calculated every 16 samples for quick detection [19]. Wavelet
transform is a signal processing method that was also applied to chatter recognition [20].

Wavelet packet transform (WPT) is an extension of wavelet transform to get better

14
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frequency resolution at certain frequency ranges, and was used in several previous works
[21] [22] [23] [24] [25] [26] [27]. R-value was also used to monitor chatter by measuring
the spindle drive current [28] [29]. Time domain cutting force signal [30], or its power
spectrum density [31] can also be utilized. Hilbert-Huang transform has also been proven
effective [32] [33] [34] [35] [36]. Fig. 4 (a) shows an example of FFT spectrum, and Fig.
4 (b) is the intrinsic mode functions (IMFs) decomposed from the time-domain vibration
signals. Machine vision was also applied in combination with short-time Fourier

transform (STFT) [37], or texture analysis using neural networks [38] [39].

6000, 20-2-z-IMF

50
IMFL g

50 n L L L s L L L s
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
12000-240-2-zfft 20 T T T T

7 : : : : Vg o
P il e S R bt i B
6+ - <,0_1000 2000 3000 4000 5000 6000 7000 80009000 10000
IMF3 ;
5} 0 =y
50 —— e,
SUU 1000 2000 3000 4000 5000 6000 7000 B000 9000 10000
a4l ]

IMF4 o il

at 1 ; 3 ; ; ; g : ; ; ;
ggn 1000 2000 3000 4000 5000 6000 7000 6000 9000 10000

20
1+ L l 4 1UU IDL'IJ 2000 3&)0 AUUO 5[1‘0 6000 7IIID &]OD QCIJCI 10000
iy

0 200 400 600 800 1000 -10
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IMF7 0 MAWWA/\/\/VJ\NM-W\

-20

L]
Force(N)

0 10!.'0 2000 3000 4000 50)3 BOOJ 7000 8000 9000 10000

(a) (b)
Fig. 4. (a) Spectrum of the vibration signal after FFT, (b) Intrinsic mode functions

(IMFs) obtained from Hilbert-Huang transform [40]

After features are extracted with one of the signal processing methods, some
researches set a fixed threshold as the boundary of chatter (unstable) and non-chatter
(stable) signals [21] [31] [41] [42] [43]. A classification algorithm may be used to train a

model to classify unstable and stable data for better accuracy. Well-known classification
15
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algorithms such as support-vector machine (SVM) [21] [44] [45] [46], k-means [31], local
outlier factor (LOF) [47], and artificial neural networks [41] [42] [43] were used in the
past and were proven effective. Fig. 5 (a) and (b) shows examples of dataset classified

with LOF and SVM, respectively.

Fig. 5. lllustrations of LOF and SVM

(a) Each data point is assigned a local outlier factor (LOF) and outliers of the dataset
can be identified [48]. (b) An illustration of data classified using support vector
machine (SVM). The solid lines are support vectors separating the two classes —

triangle and circle [49].

1.3 Aim of this research

Despite the large variety of existing chatter identification methods, there are two
main issues. The first is that in most researches, the dataset used to validate the proposed
method is small, usually consisting of less than 10 cuts. Comprehensive validation was

done only in rare cases, e.g. Zhehe Yao, et al. tested their detection method with a dataset

16
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consisting of 45 cuts [21]. Therefore, in most cases, the reader cannot obtain the actual
accuracy of the given method, and it is near impossible to compare the effectiveness of
different methods. For example, many researches claims that wavelet transform [50] [51],
wavelet packet transform [52], or Hilbert-Huang transform [53] is a superior method
compared to fast Fourier transform for chatter or machine fault identifications. However,
the claims are usually based on a theoretical or empirical argument with little or no
statistical evidence provided. We aim to resolve this issue by comparing different signal
processing methods using the same dataset and common parameters such as window size.
In fact, as will be shown in chapter 5, some of our findings are completely opposite to

such popular claims.

The second issue is that, even if a chatter identification method is tested on a large
dataset, and the accuracy is available for comparison, it is unfair to compare the accuracy
of two methods from different research teams. This is because the datasets used for
validation are different, and some datasets probably consists many data at the boundary

of stable and unstable region, and is thus more difficult to classify correctly.

With the rise of industry 4.0, the availability of large amount of data from
manufacturing processes should be utilized to help training models in order to improve
chatter detection accuracy. In this research, we will take advantage of the cutting data to
truly test the signal processing methods and classification algorithms against the entire
dataset, with spindle speed ranging from 4500 to 7000 rpm, and depth of cut from 0.2 to
1.0 mm. We believe this approach can help developing a standard procedure to train a

model, and evaluate the true accuracy of the model in a fair way.

17
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1.4 Structure of the thesis

This thesis consists of two main topics: feature extraction and classification
algorithms. Chapter 2 briefly introduces the signal processing methods that will be
compared in this research. Each signal processing method may generate one or more
feature(s), and will be further processed by one of the classification algorithms discussed
in chapter 3. Chapter 2 and 3 will mainly focus on the concepts, and the implementation
details will be described in chapter 4, which is focused on the software implementation

and optimizations of some of the algorithms.

Chapter 5 summarizes the results. Data collection procedure for the dataset used in
this research is explained in detail. Then, the classification algorithms are compared when
using the same feature extraction method. Since there are many parameters involved for
each signal processing method, their parameters will be optimized. After optimization is
completed within each signal processing method, all of the methods will be compared.
The amount of combination is large, because, for our model training platform developed
in this research, any extracted feature can be combined with any classification algorithm.
Finally, since both the error rate and detection speed are critical for chatter detection, we

will discuss how they are affected by window size, and the tradeoff involved.

Chapter 6 is the conclusion and we point out the potential direction for future
researches. There is an appendix showing all the results from different models we trained

which should make comparison easier.

18
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2. Signal processing methods and feature extraction

Four signal processing methods are used to in this research to extract features from
the vibration signals in our dataset. They include Fast Fourier transform (FFT), wavelet
packet transform (WPT), autocorrelation coefficient, and Hilbert-Huang transform

(HHT).

Since chatter is a phenomenon that can be identified via the vibrations at chatter
frequencies, it may be desirable to observe the vibration characteristics in the frequency
domain. FFT and WPT are such algorithms, which are widely used in many chatter
identification researches. Autocorrelation coefficient and HHT help us to look at the
problem from time-domain. Roughly speaking, the former calculates the periodicity of
the signal whereas the latter decomposes the signal into several intrinsic mode functions

(IMFs) in a specific way.

2.1 Fast Fourier transform (FFT)

FFT is a popular method for chatter detection [54] [55]. FFT is an implementation of
the well-understood Fourier transform, which transform discrete time domain data to
frequency domain. The time complexity of N-point FFT is O(NlogN), which makes it
quicker than WPT, autocorrelation coefficients, and HHT with our implementation. The
high performance, great theoretical foundations, and easy-to-interpret results make FFT
a great candidate for chatter detection. Fig. 6 shows the spectrum after applying FFT on
sound signal. The circles indicate the peaks at tooth pass frequencies and the asterisks
indicate peaks at spindle speed frequencies. FFT is a power tool for chatter recognition
due to its fast computation time,
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Fig. 6. Power spectrum density (PSD) obtained by applying FFT on the sound signal

during cutting. [56]

Several features can be extracted from the spectrum obtained with FFT, the following

ones will be investigated in this research:
(1) E1rpr: Relative energy between a frequency band and the entire spectrum. The

energy in a certain frequency band is defined as

= > o ®

fmins f <fmax

fminSmax

where |s(f)] is the magnitude of spectrum at frequency f, and the exponent p is
an adjustable parameter. The relative energy for an frequency band [foin finax] 1S
defined as

Efmin'fmax (2)

E = ,
1,FFT Eo /2
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where fs is the sampling rate. Therefore, E,f, , is the energy of the entire
frequency range after FFT.

In practice, fiuin and fiq are chosen to include the dominant chatter
frequency. Therefore, a higher E; ppr indicates a higher chance of chatter
occurring. Peaks at tooth pass frequencies should be filtered before calculating
E; ppr SO that those normal peaks are not incorrectly considered as an indication
of chatter. The DC component, i.e. amplitude at 0 Hz, is also set to zero.

In addition, it’s also possible to calculate E; prr by ignoring all but the n
highest peaks in the spectrum. The results will be discussed in chapter 5.

(2) E, rrr . Relative energy between the chatter frequency band and tooth pass
frequencies. First, the spectrum is obtained from the vibration signal. Then, n
peaks are chosen using the implementation described in section 4.2. Finally, the
calculation of relative energy is performed similarly to E; ppr.

(3) Esppr : Relative energy between non-tooth pass frequencies and the entire
spectrum. The calculation steps are similar to E; prr.

(4) Magnitude and phase of the spectrum: It is possible to recognize chatter from the
spectrum of the vibration signal due to the rise of chatter peak. However, there are
other spectral changes when chatter occurs, which are not easily identifiable
visually. Nevertheless, we can facilitate artificial neural networks (ANNSs) and use

the magnitude or phase of the spectrum as input, to obtain a classification model.

FFT can be used with a sliding window to calculate the spectrum at fixed intervals as
shown in Fig. 7. There are two parameters — window size and overlap. The window size
describes how much data is taken to perform FFT, and the overlap is the amount of time

21
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that two consecutive windows intersects. We will use this concept throughout this article,

and applying it to other signal processing methods, such as WPT and HHT.

+t

o

Vibration signal

I overla |
p

window size

Fig. 7. lllustration of window and overlap
2.2 Wavelet packet transform (WPT)

Despite the high performance and popularity of FFT, it only decomposes a function
into sines and cosines. Wavelet transform was developed to decompose a function into
other sets of functions called mother wavelets. There are many families of mother wavelets,
such as Daubechies (db), Haar, and dmey. Within each family, there can be one or more
types of mother wavelets. For example, Daubechies (db) family includes dbl, db2, db3,

etc. Fig. 8 shows three families of mother wavelets.

A potential advantage of using wavelet transform comes from Gabor uncertainty
principle, which shows that in a frequency analysis, the product of time resolution and
frequency resolution is never smaller than a constant [57]. Wavelet transform sacrifices
frequency resolution in favor of better time resolution compared to FFT. A better time

resolution means chatter can be possibly detected earlier. However, it should be noted that
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similar effects can be acquired by using FFT with a sliding window, which is called short-

time Fourier transform (STFT).

Wavelet transform splits the frequency domain into several bands as illustrated in Fig.
9. Since chatter occurs at certain frequencies, we can pick the band that contains the
dominant chatter frequency, and calculate the vibration energy within that band.
Intuitively, when the energy in the chatter frequency band is high, the probability of chatter

occurring is high as well. This concept will be used in our chatter detection strategy.

-1

db2 db3 db4 dbs dbé
db7

(a) (b)

bior1 .3 bior1 .5

bior2 2 bior2 4

% %‘ HL

bior2 6 ) " bior2 6 *

HHHE

o
4

bior31’" ' T T bior3s

(©)

Fig. 8. Various families of mother wavelets, including (a) Haar, (b) Daubechies (db),
and (c) biorthogonal (bior). [58]
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1§

high

A 4

Fig. 9. Wavelet transform produces lower frequency resolution at high frequencies

In addition to wavelet transform (WT), there is a modified version called wavelet
packet transform (WPT). The frequency resolution at high frequencies is lower than the
low frequencies for WT as shown in Fig. 9. WPT uses a series of low-pass and high-pass
filters to divide the signal into two parts as illustrated in Fig. 10. By doing this dividing
process repeatedly for n times, we get a wavelet packet tree of n levels. Each level
consists of nodes of coefficients, representing the vibration amplitude at its corresponding
frequency band. Since the wavelet packet tree is symmetric, the frequency resolution at
all frequencies are equal, which is more ideal than WT. Therefore, we use WPT in

research. The feature we extract from the signal is the relative energy

E
Ewpr = Cgazlter, (3)
a

where Ecpatter = |Cenatter|P @nd Eqyp = X5 |ci[P. Here copaieer 1S the wavelet coefficient
of the chatter frequency band and c; refers to the i-th wavelet coefficient at n-th level. p

and n are both adjustable. In this research, we choose n = 5, which splits the frequency
24
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domain (0 to 5000 Hz) into 2° = 32 bands. From experiment, the dominant chatter

frequency is in the 6" band, which is between 781.25 and 937.25 Hz.

signal

£3 ]
@

| | '

h(k) g(k) h(k) g(k)

o

h(k) g(k) h(k) g(k) h(k) g(k) h(k) g(k)

FEEO PO OE

Fig. 10. Wavelet packet transform and its corresponding coefficient tree for each

frequency bands [59]
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2.3 Autocorrelation coefficients

Autocorrelation coefficient is an indicator of the periodicity of the signal. Given

a series of displacements x(n), define autocorrelation function [60]
N-1

Rxx(m)= % z x(m)x(n + m) (4)

n=0

After standardization, we get the autocorrelation coefficient

%Zﬁ;& x'(n)x'(n +m)

Ryx(m) = 1 T ®)
(R B P St 2
where
1 N-1
X' () = x(k) - 5 Z x(n).
n=0

For example, for a perfectly periodic signal, x(n) = sin(2r - 0.01n) for1 <n < N, if
we choose m so that it is identical to the period of the signal, i.e. m = 100, then Rxx'(m) =
1 by (5). On the other hand, if mis equal to half of the period, i.e. m =50, then Rxx'(m) =

—1.

The motivation of using autocorrelation coefficient comes from the fact that stable
cutting signal is close to periodic, with period being the inverse of tooth pass frequency
[60]. In contrast, during unstable cutting, some chatter frequencies arise at the natural
frequencies of the spindle, and some arises above and below the tooth pass frequencies.
This can be seen from the vibration model of the milling process [5] [10] [61] [62], and

this property allows us to identify chatter with autocorrelation coefficients.

The steps to calculate autocorrelation coefficient is as follows:
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dx

Take a segment of vibration signal, which has to be at least as long as twice the
tooth pass period T1. This vibration signal can be of any form, e.g. acceleration,
velocity, or displacement. Call this signal x, and its length T.

Shift the signal in time by 7. Let the sampling rate be f;, then m = f;t. Repeat
thisstepfor0 <7 <T.

Since m o« T, we can write autocorrelation coefficient R, (m) as R, (7).
Calculate the R, (t) for each 7, where 0 < 7 < T.

Find the time between peaks in Ry, (t), call this Tx. This should be identical to
tooth pass period in stable cutting but not unstable cutting.

In stable cutting, T1 should be an integer multiple of Ty because the vibration
signal for every revolution of the spindle should be similar. Find the remainder of
T, divided by Ty, call this e. When € is very close to 0, we say the cutting

condition is stable. Otherwise, it is unstable.

T1: 1/ (tooth pass frequency)
Ty : Time between peaks
&: Phase difference

|g|] > 0: indication of chatter

Rxx* 11

Tx £
10 j T
AUTOCORRELATION /\ /'Y °
COEFFICIENT AN /\ A

TINE t

o

wawm ARAA .

TIME 1

Fig. 11. lllustration of the concept of autocorrelation coefficient [60]
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Step 4 above involves peak finding, which is non-trivial and the implementation is
outlined in section 4.2. Calculation of ¢ is required in step 5, which requires the concepts

of prominence of a peak discussed in section 4.2. The procedure is as follows:

1. Let the spindle rotation period be T,. Find all peaks in [0, 2T,].

2. For [0,T,] and [T,, 2T, ], select peaks with top x% prominence in each interval,
for some x € [0,100].

3. Among the peaks found in step 2, choose the peak just before T, and the one just
after T,. Name them C and D, and let their corresponding times be T, and T},.

4. Let the minimum value between C and D be y,,in = L max y(b).
cstsTp

5. Lety'(Ty) =y (To) = Ymin:» ¥Y'¢c = Yc = Ymin,» @A Y'p = Yp — Ymin.

6. Calculate
4y'(T,
¢ = cos™t <,y—(0’) - 1>, (6)
Yoty
For a cosine wave, y=cos(wt) , the above equation gives

4[cos(wTy) — 1]
242

¢(T,) = cos‘1< - 1> = cos™(cos(wTy)).

Therefore, cos(qb(TO)) = cos(wt) as expected.

In practice, the autocorrelation coefficient may differ significantly from one spindle
rotation to another. If we use the result from one period to predict whether the condition
is stable or unstable, incorrect prediction can occur frequently as the autocorrelation
coefficient fluctuates. Therefore, we split the input signal into windows, which is much
longer than spindle speed period, but small enough for chatter detection purposes, e.g. 0.2

seconds. This can reduce classification error rate. For each window, phase differences ¢
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is calculated for every two spindle speed periods. The extracted feature is the average of

£ in this window.

A theoretical advantage of using autocorrelation coefficients is that this is applied in
time domain. A frequency-domain signal processing methods involves gathering
sufficiently long signal before transforming into frequency domain to ensure good
frequency resolution. For example, at a sampling rate of 10 kHz, FFT needs
approximately 0.1 seconds of data to achieve a frequency resolution of 5 Hz, which is
required because of the proximity of chatter frequency and tooth pass frequency on our
CNC machine. On the other hand, autocorrelation coefficient method requires only a
spindle rotation period to perform a calculation, which is only 0.02 seconds if the spindle
speed is 6000 rpmand T = 2T;. Since we use windows, the window size may be adjusted
to exploit this theoretical advantage. This was tested and the results are shown in chapter

5.

2.4 Hilbert-Huang transform (HHT)

Hilbert-Huang transform is a signal processing method that is designed to analyze
non-stationary and non-periodic signals [63], and has been applied various fields of study

such as in medical, geophysics, and structure safety analysis [64]. HHT involves two steps:

1. Apply empirical mode decomposition (EMD) [65]. This decompose the input
signal into the sum of several time-domain functions, called intrinsic mode
functions (IMFs). A process called sifting is used to find the local maxima and
minima for the signal and decompose it according to a set of rules. The number
of IMFs a signal is decomposed into is determined by the signal itself. Contrary
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to sine and cosine functions used in Fourier transform, IMFs can vary in both time
and frequency.

2. Apply Hilbert transform to each of the IMFs. Hilbert transform is defined by [66]

1 [0/0)
HwO = [ 2

dr,

—00

which has the effect of shifting the phase of the negative frequencies of u(t) by g

and the phase of the positive frequencies by — %

Fig. 12 shows the 11 IMFs that are decomposed from a cutting signal. Fig. 13
shows that Hilbert transform extracts the envelope of the signal, as shown in the red dotted
curve. We can define Eyyr = |x,(t)/x(t)|? as the energy for the HHT result, where
x,(t) is the n-th IMF and x(t) is the original vibration signal. Fig. 14 is the time-
frequency visualization of the spectrum obtained using HHT. It’s also possible to extract
the chatter frequency band by applying WPT to the input signal, take the wavelet
coefficients from the chatter frequency band, and apply inverse WPT. Then the signal can
be processed with HHT to get the energy of each IMF. This approach has been shown to
be more effective than using HHT alone [32]. In this research, we set n = 1, which

implies Eyyr is high when the first IMF has large amplitudes.
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Fig. 12. IMFs of a cutting signal obtained using HHT

Modulated signal and envelope example from Matlab
15} a(t)

""""" Hilbert transform
= = =envelope

1 L 3 A il c.f

05F

amplitude

time

Fig. 13. Hllustration of Hilbert transform on vibration signal [67]

31

doi:10.6342/N'TU201903636



Hilbert Spectrum Hilbert Spectrum

5000 b 5000
4500 4500
4000 i 4000 l 3
=i I Ll =l e &
£ s000 , l'l‘“ 'lll“ m”'lll‘ | lf Ill i £3°°° \ l’ ’ I Il III‘“ 'I H I I 20
?2500 e 00 ‘l ) ’ ] ! ' L | | '
S | 40 §2500 | | |
Eoofl 1|1 o oo | s
1500 ! | I 1500 ' ' 10
| . |
1000 | I il “ 1000
s ' N 500 )
0

o
o
o
a
=]
=

015 02 025 03 035 04 0

Time (s) 0 005 01 015 02 025 03 035 04

Time (s)

Fig. 14. Hilbert spectrum of unstable (left) and stable (right) cutting signals calculated

and visualized with MATLAB
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3. Classification algorithms

After we obtain the feature vectors using the signal processing methods described in
the previous chapter, they will be put into a classification algorithm to train @ model. The
model will be able to predict whether a signal belongs to stable or unstable. Since our
dataset is labeled, we mainly focused on supervised learning. In this chapter, several

methods and classification algorithms are used, and their effectiveness are compared.

The simplest method is to set a fixed threshold value to distinguish stable data from
the unstable ones. A statistical method — Naive Bayes was tested in 3.2. Some commonly
used classification algorithms, such as local outlier factor (LOF), support vector machine
(SVM), and k-nearest neighbor (k-NN), were applied to our dataset. Finally, we utilized

artificial neural network (ANN) to obtain models for prediction.

3.1 Numerical threshold

Using a fixed threshold as the boundary of stable and unstable region is one of
the simplest and most straightforward method. This method relies on the distribution of

a feature to be separable by a single threshold. The calculation steps are as follows:

1. Choose a feature that is represented by a single numerical value, e.g. the relative
energy after FFT of the x-axis signal.

2. Compute the values of this feature for the entire dataset to obtain the distribution
of both stable and unstable data.

3. Let there be m stable data points and n unstable data points. Since relative
energy is larger for unstable data points, choose the m-th smallest value in these
m + n data points. This is the selected threshold. A data point is considered

stable if and only if its value is below this threshold.
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3.2 Naive Bayes

Naive Bayes is a probabilistic classifier based on Bayes’ theorem, widely used in
machine learning [68] [69] [70]. The general idea is as follows. Given a set of features,
such as the energy ratios of x-, y-, and z-axis, we know the distribution of each feature for
both unstable and stable data. Then, we fit the distribution curve with, e.g. Gaussian
distribution. Now, given a new data point, we can estimate its probability of being
unstable based on the fitted distribution and its energy ratio from x-axis. Same can be

done with y- and z-axis.

Given a feature vector x = (xy,...,x,), and classes {C,}, we want to calculate
p(Ci|x4, ..., x,), the probability that x belongs to Ck , for each k. To determine which
class x belongs to, we want to find k that maximizes p(Cy|x4, ..., x,). Assume all features

X1, ... , Xn are independent. By Bayes' theorem,

p(C)p(x|Cy)

p(Crlx) = (%)

By chain rule,

p(Cx|x) X p(Cy, x4, ..., X) = P(X|Cy) = p(Ci)p(x1|Cy) ... D(x | Ci),

where p(Cy) is called prior probability, or simply prior. For our application, we set
p(Cy) = 1/k forall k. p(x,|C}) depends on the model fitting methods, such as Gaussian

or Bernoulli.
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3.3 Local outlier factor (LOF)

LOF is an algorithm to distinguish outliers from clusters of data points, and has been
used in audio and image recognition [71]. Previous work used LOF to classify relative
wavelet packet entropy [72]. To use this method in this research, it is required to limit the
ratio of unstable data points so that they are significantly less than the stable once. This

is because LOF finds the outliers, i.e. the points far away from other points.

Define k-distance k(A) be the k-th nearest neighbor of point A. Denote the distance

between two points A and B as d (A4, B). Define reachability distance as

Tk(A, B) = max{k(B), d(AI B)}
The reason to use reachability distance instead of the distance between A and B is to get
more stable results in computations. Furthermore, define local reachability density as

[Nk (A)]

lrdk (A) = )
ZBENk(A) 1e(4,B)

where N, (A) is the k nearest neighbors of A. Roughly speaking, local reachability density

is the reciprocal of the average distance between A and its neighbors. The local outlier

factor is
oy L)
LOF, (4) = BENK(D) Ird(A) Ygen, ) lrd(B)
k Nk (D] IN (D) - lrd (A)
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Fig. 15. An example of visualized local outlier factors

3.4 Support vector machine (SVM)

SVM is a well-known method to separate two classes of data points [73] [74], and

has the advantage of good performance because the equations can be written in linear

form. SVM has been used for chatter recognition when combined with information

entropy [75], WPT [76], and Q-factor [77].

There are two types of SVMs, linear and non-linear. For linear SVM, suppose there

are n points (x1,¥1), ... » (Xn, ¥n), Where y; = +£1, SVM attempts to separate the points

with y; = 1 from the ones with y; = —1 using a hyperplane w - x — b = 0 with some

vector w, called support vector. This is illustrated in Fig. 16 (a). In practice, there are

cases when the points cannot be separated by a hyperplane as in Fig. 16 (b). In such cases,

the points are mapped to higher dimensional space using a kernel function such as
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polynomial, RBF, and sigmoid. The mapped points may be easily separable with a

hyperplane.

o Class 1

c w‘g&-‘p" o + Class 2‘

w
T

(b)

% o Class 1
. + Class 2

Fig. 16. (a) Hllustration of linear SVM for a linearly-separable dataset [78] (b) Non-

linear SVM with RBF kernel [79]
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3.5 K-nearest neighbor (k-NN)

K-NN is a simple classification algorithm based on votes from the neighbors [80].
Suppose we have a data point A without knowing whether it is stable or unstable. We find
k-nearest neighbors of A for some k. Let’s say k = 5, and there are 3 of them are stable,

and 2 are unstable. Since 3 > 2, k-NN classify A as stable.

It is easy to add a weight function w(r) for each neighbor. For example, let the k
neighbors of A be p,, ..., px, and the first m points are stable while the rest are unstable.

Let the distance between A and p; be r; for all i. Then, define the scores

m
score(stable) = Z w(r;)
i=1

K
score(unstable) = z w(r;)

i=m+1

If score(stable) > score(unstable), then A should be classified as stable, and
vice versa. Some common weight functions w(r) are 1 (uniform), r=%, and e~¢, for some

a>0.
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3.6 Artificial neural network (ANN)

Using ANN in chatter recognition has the advantage that a detailed model is not
required and reasonable accuracy may still be achieved without manually select an
optimal feature as input. For this reason, we will use the entire frequency spectrum as the
input of the ANN. The vibration signal will be converted into frequency domain using
FFT, and ANN should be able to distinguish the stable data from unstable data since
chatter is more easily recognizable in frequency domain. The architecture and training

parameters will be manually tuned to obtain a good accuracy.
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4. Implementation

4.1  Architecture of the data analysis and model training

platform

Fig. 17 shows the architecture of the model training platform developed in this
research. This platform makes it easy to change the feature or classification algorithm to
use, adjust the corresponding parameters, and quickly obtain a validation report
indicating the effectiveness of the trained model. Any combination of the mentioned
features and classification algorithms can be used, along with several modes for tool

entry/exit detection, data selection, etc.

The blocks with solid lines in Fig. 17 indicates a data processing or calculation
step. A block with dashed lines represents an optional step. First, vibration data from the
accelerometer, along with their labels, are loaded from files. Then, the tool entry and
exit parts of the vibration signals are excluded to ensure the data being trained are valid
cutting data. Certain tooth pass frequencies that are too close to chatter frequencies are
filtered out to prevent misidentifications. Features are then computes according to the
specified parameters, and saved into a cache file so that if the same feature is to be used
again with another classification algorithm, we can simply load all features from cache.
This can drastically reduce the computation time. Therefore, we have two data sources:

from file (option 1) and from cache (option 2).

The dataset, consisting of feature vectors and labels, is then split into training and
test datasets randomly. Models are trained and validated using stratified k-fold
validation. Some hyperparameters are automatically tuned to minimize error rate. The

validation report of the final model will be shown to summarize the results.
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Fig. 17 Architecture of model training platform for chatter identification
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4.2 Implementation details

This section will describe the techniques used to implement the model training
platform shown in Fig. 17. The entire program is written in Python 3. The main libraries

that was used is listed in Table 1.

Table 1. Major libraries used to implement the platform

library Main usage in our platform
numpy High performance numerical computations
scipy FFT, filters
PyWavelets WPT
pyhht HHT
matplotlib Data visualizations
scikit-learn LOF, k-NN
keras ANN
tensorflow ANN

4.2.1 Zero-padding before FFT

Our program uses numpy for FFT computations. For some testing data,
performance issues were observed. After some investigations, the conclusion is the
implementation of numpy’s fft.rfft() function is the cause of the issue. When the length
of input array is not an integer power of 2, it tries to factor the length and split the
computation into chunks. However, when the length is a prime number, the computation
slows down drastically. As we can see in Table 2, the computation time when the array
length is 16384 (= 2'4) is better than 12581 (= 23x547) and 12584 (= 23x11?x13), and

more than 50 times better than 12583, which is a prime number.

A technique called zero-padding can be applied to resolve this issue. We zero-
pad the original vibration signal to so that the total length is an integer power of 2. For
example, if the vibration signal has 12583 samples, we add zeros to the array until the

length is 16384. This can significantly improve performance while not negatively
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affecting the frequency spectrum of the FFT output. In fact, zero-padding improves the

frequency resolution of the output spectrum. Note that when window function is used,

the signal should be zero-padded before applying a window function.

Table 2. Performance test on numpy.fft.rfft()

Input array length Computation time (sec)
12581 0.01698
12582 0.00898
12583 0.48424
12584 0.01039
16384 0.00937
32768 0.01051
65536 0.01897

4.2.2 Computing autocorrelation coefficients

The time complexity of direct computation of autocorrelation coefficients from

(4) is O(N?). However, this can be improved to O(N log N) using FFT because (4) is

similar to the equation of discrete convolution

N
(@l = ) flmlgln —m]
n=-N

Fig. 18 shows how discrete convolution can be computed in O(N log N) instead of O(N?)

for the direct approach. We show the connection between (4) and the equation above

below.
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Fig. 18. lllustration of the computation of discrete convolution

Proposition Given two 0-indexed arrays x and y, of length Nx and Ny respectively.
Define discrete convolution as

Ny-1

(x*y)m] = Z x[n]y[m —n] form € [0, Ny + N, — 2], )

n=0

and assume x[i] = y[i] = 0 for i < 0. Let z be the reversed array of x, i.e. z[i] = x[N, —

i — 1] for all i. Then,

(zxx)[m+N—-1] = x[n]x[m + n], (8)
n=0
proof
(z xx)[m]
Ny—-1
= zlnlylm —n] (by ()
n=0
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Ny-1

= Z z[N,—1-ply[m+p+1-N,] (p=N,—-1-n)

Il
=
i)
=
3
+
=
+
[E
I
=

x[n]y[(m+1—N) +n]

Substituting m with m+N-1, we get (8).

(by (2), and let N = N,, = N,))

The above proposition can be directly applied because (7) matches the

implementation of scipy’s fftconvolve. Specifically, (x = y) = fftconvolve(x, y,

mode='full’).

4.2.3 Peak finding

Peak finding is used in parts of the program, e.g. finding n-highest peaks in the

spectrums after FFT, and finding peaks in autocorrelation coefficient plot. We used

scipy.signal. find_peaks to implement these parts of the program. The parameters

used include the minimum horizontal distance between peaks, and prominence.

When trying to find peaks within a graph, e.g. a spectrum, the minimum horizontal

distance between peaks is set to ensure that two peaks very close to each other won’t be

both included in the result. Suppose 20 peaks should be selected from a vibration signal

spectrum, there may be 3 peaks near one tooth pass frequency. The unintended
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consequence is that probably only 7 tooth pass frequencies are included in the 20 peaks

that the algorithm found, instead of 20.

Prominence is a property of a peak, describing the height of a peak relative to the

neighboring values. The calculation of prominence is as follows:

(1) Draw a horizontal line, crossing the peak in discussion, until it intersects the signal
or the window border. This is illustrated by the green lines in Fig. 19.

(2) For the left and right sides of the peak, find the minimum of each side, these are
the bases of the peak as shown in red dots in Fig. 19.

(3) The prominence is the difference between the height of the peak and the higher

value of the bases.

Therefore, it is possible to find n most prominent peaks from a graph by ordering the
prominences of all peaks, and take the largest n results. This concept is used in the

implementation of autocorrelation coefficients.
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Fig. 19. Hlustration of the peak finding procedure and the calculation of prominence

of a peak
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4.3 Validation

In machine learning, training and test datasets must be separated. Otherwise, it is
trivial to obtain a model that achieves 100% accuracy for supervised learning — simply
memorize all data and their labels and build a lookup table. To evaluate the true accuracy
of a model, we use one of the standard approaches — stratified k-fold validation. The
concept is shown in Fig. 20 for the case k = 3, where the dataset is split into 3 parts. There
are k rounds of validations. For the first round, the first 1/k data are used for training
while the rest are used for testing. Note that each the ratios of A and B classes in each 1/k

part should be identical.

In this research, the dataset consists vibration data from 143 cuts. Each cut may result
in many data points due to the sliding window we use. However, during the learning and
validation process, if a cut is used for training, all data points in that cut are used as training,

and vice versa. This ensures the result is fair and minimizing overfitting.

75% A class & 25% B class
I

I
First validation [ q . .
: A class data
@ : B class data
Second validation . . O

: training dataset
I
Third validation . q q
|
1

(] : test dataset
Fig. 20. llustration of stratified k-fold validation [47]
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5. Results and discussion

5.1 Data collection and labeling

The experiment data of this research comes from previous work of our laboratory
[47]. Since the goal of this research is chatter identification, a sufficient number of
experiment data is required as inputs for classification algorithms. Our dataset contains
vibration signals from a CNC milling machine, while cutting at different spindle speed,
depth of cut, and feed rates. Stability lobe diagram (SLD) of the CNC machine was
obtained by the traditional method - modal test and cutting force coefficients
measurement. The cutting conditions, which includes spindle speed, depth of cut, and
feed rate, were chosen so that it is near the stability boundary of the SLD. SLD is not
necessary, but it makes it easier to search for cutting conditions that is in the stable or

unstable region.

We used a CNC milling machine to perform the cutting experiment. The
experiment setup is shown in Fig. 21. A tri-axial accelerometer was mounted on the
spindle housing, and N1-9234 DAQ was used at sampling rate of 10240 Hz to acquire the
vibration signals. 143 straight cuts were performed and each cut lasts around 5 seconds,
excluding tool entry and exit phase. These 143 cuts contain at least 110 spindle speed and
depth of cut combinations, so we have good variety in our dataset. While conducting the
experiment, we labeled whether chatter occurs during this cut by listening to the sound.
There are 3 possible values for this label — entirely stable, entirely unstable, and partially
unstable. Therefore, the dataset consists of vibration signals from 143 cuts, along with a

label.
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accelerometer

spindle

),

DAQ
NI-9234

Fig. 21 Experiment setup when gathering the dataset

Accelerometer was installed on the spindle housing, and a NI DAQ was used to acquire

the signal. [47]

5.2 Comparisons of classification algorithms

In this section, different classification algorithms are compared using the same
feature. The feature used is FFT energy ratio, E; prr, With window size of 1.2 seconds,
no overlap, exponent of 2.75, and all three axes. Since the window and overlap are fixed,
the number of data points used to train the models are identical, giving a fair comparison

of different classification algorithms.
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The numeric threshold method yields an error rate of 6.579%, with false alarm
and missing alarm rates both being 3.289%. Naive Bayes produces error rates of 5.263%

and 5.482% using Gaussian and Bernoulli Naive Bayes, respectively.

Fig. 22 shows the testing cost when using LOF as the classifier. Using stratified
k-fold validation with k = 3, the cost of 3 test datasets are shown, with the average at the
bottom-right corner. In terms of error rate, the optimal amount of neighbors is
approximately 150. The cost varies between 0 to 1, with 0 meaning all data points are
correctly classified, and 1 meaning all are incorrectly classified. Also, since the unstable
data point ratio is an adjustable parameter, the relation between it and error rate is listed

in Table 3, where using 15% of unstable data is optimal with an error rate of 8.53%.

test dataset 1 test dataset 2
i i i i i i i i i i
: : : : : 06T\ . . ro !
0.6 +7--\---- === Fo=m==-- === T | i i i i
i i i i i i i i
o i i e 0.4t " il it 1
© 0.4 ri---y-- ettt ity et 1 o i i i i
O 1 1 1 O 1 1 1 1
i i i i i i i
0.2 +#----\-- I Y S : 0.2 -~~~ i T T T
i i i i i i i i i i
i : i : i i | : : i
0 50 100 150 200 0 50 100 150 200
neighbors neighbors
test dataset 3 average (dataset 1-3)
0.6 -+ --—--- m e b e e + i i i i i
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Fig. 22. Test costs of LOF for each of the three test datasets, and the average costs
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Table 3. Classification error rates using FFT (E; rpr) and different unstable data point

ratio in LOF
Unstable data point ratio (%) ER (%)
10 10.4 (14.8)
15 8.53 (14.4)
20 9.01 (18.1)

Feature: [window=1.2, overlap=0, exp=2.75, bw=10, xyz], classification: [LOF, auto[1-200], weight

1/r3]

Fig. 33 shows the error rates on three test datasets and the average using k-NN as
the classifier. Table 4 shows the error rates with different weights, including uniform,
r~%, and e~%" with some a. The lowest error rate is 5.21% while the highest is 6.061%.
The difference is small, which leads to the conclusion that the weight does not affect the

error rate significantly.

Fig. 24 sums up this section with all optimal error rates from each classification
method compared. K-NN is the best one at 5.21%, almost matched by Naive Bayes at
5.263% and SVM at 5.647%. Numeric threshold and LOF are the worse ones. Incidentally,
an error rate of 7.12% is achieved using ANN, placing it as the 5th best feature. However,
since the methodology of it is quite different to other classification methods, it is best to

not make direct comparison.
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Table 4. Classification error rates using k-NN and different weights

Weight FA (%) MA (%) ER (%)
uniform 0.646 (1.258) 5.222 (6.918) 5.868 (8.176)
-1 1.065 (2.516) 4.564 (6.289) 5.629 (8.805)
-2 1.275 (3.145) 4.354 (5.66) 5.629 (8.805)
-3 1.485 (3.774) 4.576 (5.66) 6.061 (9.434)
- 1.48 (3.774) 4.349 (5.66) 5.829 (9.434)
0T 0.646 (1.258) 5.222 (6.918) 5.868 (8.176)
o-2r 0.646 (1.258) 5.222 (6.918) 5.868 (8.176)
=57 0.646 (1.258) 4.773 (6.918) 5.419 (8.176)
- 107 0.8557 (1.887) 4.354 (5.66) 5.21 (7.547)
o—1007 2.096 (6.289) 3.691 (5.031) 5.787 (11.32)

Feature: [window=1.2, overlap=0, exp=2.75, bw=10, xyz], classification: [knn, auto[1-200], weight

1/r73]
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Fig. 24. Error rates when different classification methods are used with the same

feature (FFT relative energy)

5.3 Parameters optimizations

This section is focus on parameter optimization for each feature extraction method.
For example, the parameters involved in WPT includes mother wavelet, window and
overlap sizes, and exponent used to compute the energy. We will find the optimal values
for these parameters to obtain the best error rate for WPT, and in later sections this error
rate can be compared to other feature types, such as autocorrelation coefficients, to give

a fair comparison of the effectiveness of different features.
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5.3.1 Fast Fourier transform (FFT)

This section describes the classification results when using FFT-related features,
and FFT parameter optimizations will be discussed. The first feature we investigate is the
relative energy E; rpr. The exponent p in (1) is an adjustable parameter, and can take any
value in (0, ). Fig. 25 illustrates the spectrum amplitudes |S(f)|? for p = 0.5, 1, 2.75,
and 8. Top right figure is for p = 1, i.e. the original FFT spectrum. The highest peak at
around 900 Hz is the chatter frequency of the machine. There are several smaller peaks
at tooth pass frequencies. In addition, the noise is can be clearly seen in the spectrum as
well, especially in the frequency range of 2000 to 3500 Hz. These unwanted noise is
sometimes unavoidable and may negatively impact the detection of chatter. We argue that

the parameter p can reduce the effect of noise.

When we increase the value of p to 2.75, the smaller peaks become smaller
relative to the dominant chatter peak. Due to their smaller amplitudes, the noise between
2000 to 3500 Hz become significantly lower relative to the chatter and tooth pass
frequency peaks. If p is further increased to 8 as shown in the bottom right figure, only 2
largest peaks are visible. This is not ideal because most of the information in the spectrum
is lost, and classification error rate will increase. On the other hand, using p < 1 increases
the influence of smaller peaks and amplifies the noise. In summary, there are adverse

effects when p is too large or too small. We aim to find an optimal value.
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Fig. 25. FFT spectrum raised to exponent p for p = 0.5, 1, 2.75, and 8

Fig. 27 illustrates the effect of p on the distribution of E; prr. Fig. 27 (a) is the
scatter plot of E; ppr(y) and Ey prpr(2) for p = 0.5. The top-right is a large area where
the unstable and stable data points overlap. As p increases to 1 and 2.75, the overlapping
significantly reduces, as can be seen from Fig. 27 (b) and (c), respectively. Fig. 27 (d)

shows that when p is too large, some data points will be pushed to the edge of the graph.

Fig. 26 shows the error rates of trained models using different values of p from
0.5 to 10. K-NN is used with weight =3 and the optimal k is chosen between 1 to 200.
The dotted line is the false alarm (FA) rate, the slightly higher dashed line is the missing
alarm (MA) rate, and their sum is the total error rate (ER). As we can see, the error rate
is really high when p < 1. This may be due to the noise being amplified. Then, the error
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rates decrease as p increases. The lowest error rate of 6.875% is reached when p = 2.75.
After this point, the higher peaks in the spectrum dominates, and the information of
smaller peaks start getting overlooked. This causes an slight upward trend in error rates

from p = 2.75 to 10.

@ FA (%) — @ -MA (%) —e—ER (%)
25

20

15

Percentage

10

Exponent

Fig. 26. Effect of exponent p on classification error rates

Feature: [window=1.2, overlap=0.8, bw=10, xyz]
classification: [KNN, auto[1-200], weight 1/r3]
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Fig. 27. FFT relative energy plots for (@) p = 0.5, (b)) p=1,(¢) p =
2.75,and (d)p =8

The effect of filter bandwidth is shown in Table 5. There is no clear relationship

between the filter bandwidth and error rate. In theory, if the bandwidth is too large, the

chatter peak may be also eliminated due to the proximity of tooth pass frequency and

dominant frequency for out machine. However, the testing results do not show this trend.

This might indicate there is another factor playing a role.
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The effect of window and overlap sizes is shown in Table 6. The error rate
increases as the window size decreases. This is possibly due to the fluctuation of E; rpr
within a window. A high value of E; zrr may appear during a stable cut, causing incorrect
label and higher error rates when the window size is too small to average out the
fluctuations in E; prr. The overlap does not notably affect the error rate, possibly because

the overlap does not increase the total amount of information for model training.

Table 5. Classification error rates using FFT (E; rpr) and different filter bandwidths

Filter bandwidth (Hz) FA (%) MA (%) ER (%)
2.5 1.449 (3.58) 5.216 (7.635) 6.665 (7.635)
5 1.801 (2.837) 5.528 (7.565) 7.329 (10.4)
10 1.808 (2.778) 5.067 (6.921) 6.875 (9.069)
20 3.439 (5.314) 5.172 (7.488) 8.611 (12.8)
40 1.621 (3.095) 4.831 (6.112) 6.451 (7.857)

Feature: [window=1.2, overlap=0.8, exp=2.75, xyz], classification: [KNN, auto[1-200], weight 1/r*3]
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Table 6. Classification error rates using FFT (E; rpr) and different window

sizes
Wingfé\éV)Size OE’SZVC';‘F’ pDO?;";‘S FA(%) | MA(®%) | ER (%)
12 08 | 1216 é?% (gjggi) (g:ggg)
09 06 | 1736 é}% (?gié) (;?;g)
0.6 0.4 | 2780 é:igg) (Sjiéf) (513'12.;2)
03* 0.2 5895 (g:iié) (Ifgg) (i%:gz)
1.2 0 456 (1:223) (6%56739) (3322%
0.9 0 608 | 3o1) | @aen | (1049)
06 0 972 é:%?) (g:gég) (?fgi)
0.3 0 | 2010 (2;212) (573:382) (g:gg)
0.1 0 | 6169 (2;833) (géig) (14212?2)
0.05 ** 0 | 12338 (fij?%) (2'08.32) (1135-742)

Feature: [exp=2.75, bw=10, xyz], classification: [KNN, auto[1-200], weight 1/r"3]

* classification: [KNN, auto[1-500], weight 1/r"3]
** classification: [KNN, auto[1-2000], weight 1/r*3]

Table 7 shows the result using E; zpr, by ignoring all but n highest peaks in the
spectrum. Here, d is the minimum frequency difference between two consecutive peaks.
If there are two peaks with whose frequency difference is less than d, the latter one will
be ignored. The optimal error rate of 6.441% is achieved at d = 50 Hz,n = 30, closely
followed by 6.511% is achieved at d = 50 Hz,n = 5. It’s worth noting this is only
slightly worse than 6.335% shown in Table 7 with windows size of 1.2 seconds and no

overlap.
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Table 7. Error rates using E; grr, by ignoring all but n highest peaks

d 10 Hz 50 Hz 100 Hz
5 7.813 (11.14) 6.511 (8.92) 7.479 (10.9)
10 8.226 (10.55) 7.436 (10.36) 12.84 (18.1)
30 7.829 (8.458) 6.441 (12) 6.991 (7.214)

Table 8 shows the error rates using E, rrr and different number of peaks (n). The

an error rate of 6.34 %, with E, gy close behind.
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error rate is slightly higher when n is small (n = 5), but there is no significant difference
from n = 10 from n = 30. Table 9 shows the error rates for E3 gpr. Similar to E; gy, the
parameter n has no significant effect for n > 10. Fig. 28 summarized the best results
from E; ppr, E; per, and E5 ppr. The data come from the minimum error rates from Table

6, Table 8, and Table 9, respectively. E; gy is the superior feature among the three with
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Table 8. Classification error rates using FFT (E; rpr) and different number of peaks

Number of peaks (n) FA (%) MA (%) ER (%)
5 3.53 (3.991) 6.466 (7.277) 9.996 (11.27)
10 2.251 (4.481) 6.107 (10.61) 8.358 (10.86)
20 3.081 (5.213) 5.515 (6.733) 8.596 (10.19)
30 2.295 (2.716) 6.154 (7.092) 8.449 (9.456)

Feature: [window=1.2, overlap=0.8, exp=2.75, range=5, xyz], classification: [KNN, auto[1-200],

weight 1/r"3]

Table 9. Classification error rates using FFT (E; rpr) and different number of peaks

Number of peaks (n) FA (%) MA (%) ER (%)
5 6.524 (9.39) 8.713 (11.06) 15.24 (17.84)
10 6.07 (11.37) 8.051 (8.294) 14.12 (19.67)
20 6.819 (7.769) 8.049 (8.772) 14.87 (16.54)
30 6.618 (8.983) 8.203 (9.456) 14.82 (18.44)

Feature: [window=1.2, overlap=0.8, exp=2.75, range=>5, xyz], classification: [KNN, auto[1-200],

weight 1/r"3]
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Fig. 28. Comparison of error rates with different FFT related features

5.3.2 Wavelet packet transform (WPT)

Fig. 29 shows the comparison of error rates within each mother wavelet family.
Here, we tested Daubechies (db), Coiflet (coif), Symlet (sym), biorthogonal (bior), reverse
biorthogonal. The best mother wavelets in each family are db20, coifl, sym2, biorl.5, and
rbiol.3. Note that not all mother wavelets are tested. For instance, only db1 to db4, db10,
db15, db20, and db30 are tested for Daubechies wavelets. The reason is that testing all
wavelets is impractical given the large number of choices. More lower-numbered
wavelets are tested compared to the higher-numbered ones because the difference
between db3 and db4 is much more significant than db19 and db20 in terms of the shape

of the wavelet function. Also, db1l, biorl.1, and Haar refer to the same wavelet.

The error rates are typically within 6 to 10 % showing that the variation is not
large regardless of which wavelet we choose. As shown in the figure, there is no clear
way to pick a wavelet within a family. Fig. 30 is a comparison of error rates across
different families with the lowest error rate in each family chosen as a representation.
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Daubechies (db) wavelets performs best with an error rate of 6.019%, followed by bior
and rbio at around 6.6%, whereas dmey is the worst at 9.3%. However, since the
difference in error rates is not too significant between the best and the worst wavelets, it
is difficult to judge whether the same conclusion can be reached using another machine.
Nevertheless, the main point is that among the wavelet families we tested, there should

not be a large difference regardless which one is used.

Fig. 31 shows the error rates when different axes are used as feature. Since we use
a tri-axial accelerometer to acquire data, there are 6 possible combinations. We can use
only one axis: X, y, or z. We can also use a combination of them: xy, xz, yz, or xyz. The
error rate when only one axis is used is substantially higher, between 13.52 to 18.11%.
Using two axes produces error rates between 10.81 to 11.3%. The optimal result of
6.019% is obtained by using all three axes. It is interesting to know that even if the
direction of cutting is y-axis, x- and z-axis both contribute heavily towards the final

classification model.
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Fig. 30. Comparison of average error rates within each mother wavelets family

Feature: [window=1.2, overlap=0.8, exp=2.75, bw=10, xyz], classification: [KNN, auto[1-200], weight
1/r"3]
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Fig. 31. Comparison of average error rates when different axes are used as feature in
k-NN classifier

Feature: [window=1.2, overlap=0.8, exp=2.75, db20, bw=10], classification: [KNN, auto[1-200],
weight 1/r"3]
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Table 10 shows the error rates when different window sizes are used. Two

observations can be made from this table. The first is that the effect of overlap is marginal,

improving the error rates by at most around 1%. The second is that larger window size

decreases the error rates significantly, with a difference of more than 4% between 1.2 and

0.3 seconds. Fig. 32 shows the distribution of normalized relative energy. The stable data

points lie in a relatively small region, i.e. the orange box.

Table 10. Classification error rates using WPT and different window sizes

WingvaV) size OZ/SZFC';J‘P pDo?rtjs FA (%) MA (%) ER (%)
12 08 | 1216 (21_'11138) (éé8294) (2:8411?)
0.9 0.6 | 1736 (2;22‘1‘) (96.61853) (iozgg)
0.6 04 | 2780 (3;228) (gggé) (ifg)
0.3* 0.2 5895 é:g;i) (gfg;% (12:?)
12 0 56 | e .05 0375
0.9 0 608 é;?iﬁ) (gfgéé) (91?47)
0.6 0 72 | (doon) (759 (o
03 0 2000 | e (1053 280
0.L* 0 6169 (g;ii% (2'1922) (ﬂgg)

0.05 ** 0 12338 (2122411) (Bigé) (13:2;1)

Feature: [exp=2.75, db20, bw=10, xyz], classification: [KNN, auto[1-200], weight 1/r*3]
* classification: [KNN, auto[1-500], weight 1/r3]
** classification: [KNN, auto[1-2000], weight 1/r"3]
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Feature: [window=1.2, overlap=0.8, exp=2.75, haar, xyz], classification: [KNN, auto[1-200], weight

1/r73]
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5.3.3 Autocorrelation coefficients

Fig. 33 shows the autocorrelation coefficient for acceleration signal under stable
cutting conditions. The left side shows the signal from accelerometer. The length
acceleration signal is approximately 9.4 ms, which is equal to two spindle rotation periods.
In order to find Ty, during peak finding, the peaks with top 50% prominence is chosen.
The right side is the autocorrelation coefficient calculated from (5), with time delay 7 as
the x-axis. The vertical blue line indicates the position of T1 and it coincides with a peak

in autocorrelation coefficient as expected.

Fig. 34 shows the result of an unstable cut. The blue line does not coincide with a
peak in autocorrelation coefficient as expected. In fact, the blue line coincides with a local
minimum, indicating there is significant vibration in frequencies other than tooth pass

frequencies.

Fig. 35 is the autocorrelation coefficients of acceleration, velocity, and
displacement. The DC component of the measured acceleration signal is subtracted, and
then we integrate the signal with respect to time to obtain the velocity. Similarly,
displacement can be calculated. Peaks in autocorrelation coefficients are clearly visible
when t is equal to spindle rotation period, which is the expected behavior. However,
when we integrate the signal, the finer vibration details are lost. The vibrations caused by
each tooth is visible in the acceleration graph, barely recognizable in the velocity graph,

and completely disappeared in the displacement graph.
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Fig. 37 shows the phases differences e calculated from autocorrelation
coefficients. A large amount stable and unstable data points overlap, which can be also

seen in the distribution charts in Fig. 36 and is not ideal. This pattern can be observed
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regardless of the window size, overlap, or prominence parameter. Phase differences is
often smaller for stable cuts compared to the unstable ones, but sometimes the phase

difference of unstable cuts are small as well.

Table 11 is a comparison of different window sizes and overlap lengths. As we
can see, the error rate increases from 16.93% to 22.8% as the window size decreases from
1.2 seconds to 0.05 seconds. Because the characteristics of vibration signal fluctuates with
time, we cannot expect the phase difference ¢ to remain the same even during a single cut.
The fluctuations in & averages out when a larger window size is used, and produces a
more representative feature and overall better accuracy. The effect of overlap in error
rates far less significant. Despite the increase in number of data points when the overlap

is larger, the extra data points contributes little to the trained classification models.

Table 12 shows how the prominence parameter affect the error rates. A value
between 70% to 90% is marginally better in terms of the results. Data from Table 13
indicates that the velocity is a marginally better feature, having a 16.42% error rate

compared to 17.93% and 17.96% for acceleration and displacement respectively.
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Window size is 1.2 seconds with overlap of 0.8 seconds. Data is acceleration signal.
Peaks with prominence in top 50% are considered. The phase is in degree, with a period

equaling to spindle speed period.
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Table 11. Classification error rates using autocorrelation coefficients and different

window sizes

Wingfé\éV)Size OE’SZVC';‘F’ pDo?r:?S FA(%) | MA(%) | ER (%)
12 08 | 1216 (?fgé) (ﬂigé) (Eg)
0.9 0.6 | 1736 (sz.ii) (igigi) é?jg?)
0.6 04 | 2780 (18:23) (1411:?21) (igj?g)
0.3 02 | 5895 (giggg) (1(13223) (gﬁ:g‘?‘)
1.2 0 456 ((13'38.2513) (12133) (ig:gi)
0.9 0 608 (ifgg) &5233) ég:zlai)
0.6 0 L (833%) (12%) égigg)
03 0 | 2010 (8;822) (ig:gg) (g:g%
0.1 0 6169 (g:ggi) (ii:gg) (13;3)
0.05 * 0 | 12338 (811983) (1451:%) (2232.685)

Feature: [prominence=50%, a, xyz], classification: [KNN, auto[1-200], weight 1/r*3]
* classification: [KNN, auto[1-2000], weight 1/r*3]
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Table 12. Classification error rates using autocorrelation coefficients and different

prominence percentages

Prominence FA (%) MA (%) ER (%)
10% 7.137 (14.01) 11.45 (16.99) 18.58 (21.59)
30% 7.39 (9.591) 11.58 (14.12) 18.97 (19.79)
50% 7.258 (10.44) 10.79 (14.54) 18.05 (21.37)
70% 6.805 (10.05) 10.66 (13.38) 17.46 (17.99)
90% 6.16 (10.12) 11.77 (14.59) 17.93 (18.8)

Feature: [window=0.9, overlap=0.6, a, xyz], classification: [KNN, auto[1-200], weight 1/r"3]

Table 13. Comparison of classification error rates between acceleration, velocity, and

displacement using autocorrelation coefficients.

Feature pDO?rt]‘:‘S FA (%) MA (%) ER (%)
acceleration 1736 | 6.16(10.12) | 11.77 (1459) | 17.93 (18.8)

velocity 1736 | 7.548 (10.55) | 8.868 (11.05) | 16.42 (20.18)
displacement 1736 8.846 (9.615) 9.11 (9.464) 17.96 (18.71)

Feature: [window=0.9, overlap=0.6, prominence=50%, xyz], classification: [KNN, auto[1-200], weight

1/r3]
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5.3.4 Hilbert-Huang transform (HHT)

Fig. 38 shows the distribution of relative energy Eyyr in the y- and z-directions.
The top figure is the result with HHT only, and the bottom one is first processed by WPT.
It is interesting that the two distributions are opposite. When using HHT only, Eyyr IS
higher for the stable data points. That implies in stable conditions, the amplitude of the
first IMF is high. However, the pre-processing using WPT reverses the trend. Table 14
gives a comparison between the error rates between the two approaches. It is clear that
WPT+HHT is better than using HHT only, as suggested by a previous research [53]. Fig.
39 shows the error rates when using different axes as feature. Surprisingly, using only x-
and z-axis is slightly better than using all three axes. Nevertheless, using all three axes is

still much more robust compared to using one axis.
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Table 14. Classification error rates using only HHT, and WPT+HHT

Feature FA (%) MA (%) ER (%)
HHT only 4.18 (5.952) 8.043 (9.383) 12.22 (14.05)
WPT + HHT 2.049 (3.465) 2.907 (5.437) 4.957 (7.092)

Feature: [window=1.2, overlap=0.8, xyz], classification: [KNN, auto[1-200], weight 1/r"3]

30

N
o
I

10 A

error rate (%)

0 -

X y Z Xy Xz yz Xyz
Fig. 39. Comparison of average error rates when different axes are used as feature

5.3.5 Frequency spectrum (with artificial neural network)

The ANN in our platform is implemented using tensorflow. Some simple neural
networks architectures were attempted, including fully connected layers and dropout

layers. The input is a vector consisting of the magnitude of the spectrum after FFT. Since

the sampling rate is 10 kHz, the length of the input vector is 10(2)00 + 1 = 5001. The input

vector is normalized for optimal results. The output is a single number indicating whether
it is stable or unstable. The number of layers, number of units in each layer, activation
function, dropout rate, and batch size are varied to find the optimal test accuracy. The

dataset is split into 2 parts, with 70% used for training, and 30% used for testing.
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92.88% test accuracy is achieved using two fully connected layers with 20 and 10
units, respectively. The activation functions for both layers are relu. Loss function is
binary cross-entropy, optimizer is adam, and batch size is 200. 92.88% accuracy is
achieved with 10 epochs. In general, the training accuracy is higher than test accuracy,

and the parameters above is mainly selected to avoid overfitting.

5.4 Comparison of features

Fig. 40 is a collection of probability density functions from each feature. For each
plot of the figure, the parameters used are the ones that process the lowest error rate. Only
the distribution of y-axis is shown since it is the direction of feed. A feature is a good
chatter indicator if the overlap between the stable and unstable distributions is small. For
example, the overlap is large for the phase difference e from autocorrelation coefficient,
which indicates that it is not a good feature. This is evident from its classification error
rate, which is the highest amongst the six. The first two FFT-related features, E; ppr and
E, rrr, both show a high peak for the stable curve, which implies a large amount of stable
data points have low E; gpr O E, ppr. However, the unstable data points distribute

relatively evenly.

80

doi:10.6342/NTU201903636



—— stable
unstable
LL
[a)
o
0.0 0.2 0.4 0.6 0.8 1.0
(a)
0.4 1+ —— stable
unstable :
0.3 1 :
n
[a)] A
o :
6
0.6 - —— stable
: unstable
W 0.4+ ]
o : E
o : E
0.2 // :
0.0 15 . . . + i
-2 -1 0 1 2 3
(e)

PDF

PDF

LL
&)
o

—— stable
unstable
2.5 5.0 7.5 10.0
(b)
—— stable
unstable
I N
0 2 4 6
: —— stable
30+ unstable
201+
“1 \\\
0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

(f)

Fig. 40. Probability distribution function (PDF) of the y-axis features used in this

research, for both stable and unstable categories, including (a) E; rrr, (D) E2 prrs

() E3, prr, (d) Eypr, (€) € from autocorrelation coefficient, and (f) Eypr

81

doi:10.6342/NTU201903636



Fig. 41 shows the lowest error rates for each type of feature. HHT, when used
with WPT, has the best performance in terms of error rate, at 4.856%. WPT and E; rpr
are the second and third, at 6.019% and 6.335% respectively. Phase difference from
autocorrelation coefficient is the worst, with an error rate of 16.42%, which is more than
3 times of the best error rate. For all six features, HHT is the only one that is based on
empirical formulas and does not have a convincing theoretical background for chatter

identification. It is surprising that it beats other methods with good theoretical foundations,

although by a very small margin.

error rate (%)

Eirrr Ezrrr Esprr WPT auto- HHT +
correlation WPT
coeff.

Fig. 41. Comparison of error rates of all features
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5.5 Effect of window size

As discussed previously in the sections regarding parameter optimization of FFT,
WPT, and autocorrelation coefficient, the error rate generally decreases with increased
windows size. This is likely due to the fluctuation of the feature within a window. E.g. a
high value of energy ratio may appear promptly during a stable cut, causing it to be
incorrectly classified as unstable. This can result in higher error rates when the window
size is too small. However, a lower window size might have the benefit of quicker
detection time in real-time chatter detection applications. This is a trade-off between error
rate and detection time. In this section, the effect of window size on error rates and
detection speeds is discussed, and the detection speeds of models trained with different

features will be compared.

5.5.1 Error rates

Fig. 42 shows the relation between window size and error rate for 4 features, FFT,
WPT, autocorrelation coefficient, and HHT. The window size varies from 0.05 seconds
to 1 second and overlap is set to 50% of the window size for both training and test data.
K-NN is used as the classification method with weight »~3 and the optimal k is selected
between 1 and 200. The trends of the four figures are similar where the error rate is high
when window size is below 0.2 seconds, and quickly decreasing as the window size
increases to 0.3 to 0.5 seconds. It is worth noting that the error rate for HHT drops to

2.2% at window size of 0.37 seconds.
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5.5.2 Detection speed

Fig. 43 show the variation of detection speeds with different window sizes. The
data points are the average detection speeds for all cuts, and the error bar indicates one
standard deviation. The detected time is relative to the time where window size is 0.05
seconds, and lower value is better. Surprisingly, the detected time in general decreases as
window size increases. We explain this using WPT as an example, with a small window
size. During the training process, due to the inevitable fluctuations, the energy ratio
feature needs to be high enough for the model to be considered as unstable. During testing,
we must wait longer for the energy ratio to rise above the stable-unstable boundary so
that the model identifies it as unstable. This may be the cause of slower detection for

small window sizes.

Detected times between different features are also compared in Fig. 44.
Autocorrelation coefficient produces the fastest detected time at window size of 0.47
seconds. HHT results in a slower detection, typically 0.2 to 0.3 seconds behind other three
features. These detected times are the average of the entire dataset. For each unstable cut
in the dataset, we simulate the time when the chatter would be detected using a trained
model. These times are then averaged and compared with another model. Therefore, these

detected times are relative, and is unrelated to the actual time of chatter occurrence.
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6. Conclusions and future work

In this research, a chatter identification platform is developed to train models and
evaluate their performance, using combinations of signal processing methods and
classification algorithms and a dataset consisting of 143 cuts under various cutting
condition. We compared several classification methods in terms of their performance on
chatter identification after parameter optimization for each classifier. K-NN, Naive Bayes,
and SVM are the superior methods, with error rates from 5.21% to 5.647%. The effect on
accuracy of feature selection is far more significant compared to classifier selection.
Efforts are put into parameter optimizations for each of these features. Using the optimal
classifier, k-NN, and window size of 1.2 seconds and no overlap, the optimal error rate is
achieved by using HHT and WPT together, at 4.856%. The rest are Ey,pr, E1 prr, Eo prr)
E3 ppr, and autocorrelation coefficient, ordered by error rate, from low to high.
Autocorrelation coefficient proves to be the least effective, with an error rate of 16.42%.
Incidentally, using all three axes as feature is shown to be much better than using only 1
or 2 axes in some circumstances. Finally, the effect of window size on error rates and
detection speeds is also investigated using the platform we developed. A window size
around 0.3 to 0.5 seconds is optimal in terms of error rate, and the best error rate of 2.2%
was found using a window size of 0.37 seconds with HHT+WPT. However, HHT+WPT
results in a marginally slower chatter detection compared to other features, and what

comes as a surprise is that smaller window size does not lead to faster chatter detection.

There are some potential directions for future researches. Due to the large amount
of possible variations in ANN architectures, it is not explored fully in this work and may
be worth investigating. Another optimization opportunity is to use different window sizes

for training and testing, and observe the trend of error rate and detection time.
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Appendix A. List of cutting conditions in the dataset

Note: The chip load is fixed at 0.1 mm/tooth.

Experimentally stable cutting conditions:

Spindle speed (rpm) Depth of cut (mm) Spindle speed (rpm) Depth of cut (mm)
4500 0.2 6100 0.5
4500 0.3 6100 0.6
4600 0.2 6200 0.2
4900 0.3 6200 0.3
5000 0.2 6200 0.4
5000 0.3 6200 0.5
5000 0.4 6200 0.6
5000 0.5 6200 0.7
5000 0.6 6200 0.8
5000 0.7 6200 0.9
5000 0.8 6200 1
5000 0.9 6300 0.2
5000 1 6300 0.3
5100 0.2 6300 0.4
5100 0.3 6300 0.5
5100 0.4 6300 0.6
5100 0.5 6300 0.7
5100 0.6 6400 0.2
5200 0.2 6400 0.3
5200 0.3 6400 0.4
5200 0.4 6400 0.5
5300 0.2 6400 0.6
5300 0.3 6500 0.2
5400 0.2 6500 0.3
5500 0.2 6500 0.4
5500 0.2 6500 0.5
5600 0.2 6500 0.6
5700 0.2 6600 0.2
5800 0.2 6600 0.3
5900 0.2 6600 0.4
5900 0.3 6700 0.2
6000 0.2 6700 0.3
6000 0.3 6700 0.4
6000 0.4 6800 0.2
6100 0.2 6800 0.3
6100 0.3 6900 0.2
6100 0.4 7000 0.2
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Experimentally unstable cutting conditions:

Spindle speed (rpm) Depth of cut (mm) Spindle speed (rpm) Depth of cut (mm)
4500 0.32 5900 0.4
4500 0.4 5900 0.5
4600 0.3 6000 0.5
4700 0.2 6000 0.6
4700 0.3 6100 0.7
4800 0.2 6100 0.8
4800 0.3 6200 1.2
4900 0.4 6300 0.8
5000 11 6300 0.9
5100 0.7 6400 0.7
5200 0.5 6500 0.6
5200 0.6 6500 0.62
5300 0.3 6500 0.7
5300 0.4 6600 0.5
5400 0.3 6700 0.4
5500 0.3 6700 0.5
5600 0.3 6800 0.3
5700 0.2 6800 0.4
5700 0.3 6900 0.3
5800 0.3 7000 0.3

101

doi:10.6342/NTU201903636



Appendix B. Model training and validation results

Note: The number in the parenthesis indicates the maximum error rate of the 3 validation datasets (in

stratified k-fold validation with k=3). The other number is the average error rate of the three datasets.

Examples:

@)

(b)

©

Auto. Coeff., window=1.2, overlap=0.8, prominence=50%, a, xyz: The feature is autocorrelation

coefficient, window size 1.2 sec, overlap 0.8 sec, prominence 50%, using x-, y-, and z-axes acceleration as

feature.

kNN, k=auto[1-200], weight 1/r*3: The classification method is k-nearest neighbors, with k automatically

selected between 1 to 200 for the lowest error rate, with weight 1/r3.

FFT, exp=2.75, n=5, d=100, bw=10: exponent 2.75, tooth pass filter bandwidth 10Hz, only 5 highest peaks

are used, with the minimum distance between peaks being 100 Hz.

Feature Classification dqta FA (%) | MA%) | ER (%)
points

Auto. | window=1.2, overlap=0.8, KNN k=auto[1-200], 1216 6.961 11.01 17.97
Coeff. | prominence=50%, a, xyz weight 1/r*3 (11.03) | (14.96) | (18.97)
Auto. | window=0.9, overlap=0.6, KNN k=auto[1-200], 1736 7.258 10.79 18.05
Coeff. | prominence=50%, a, xyz weight 1/r*3 (10.44) | (14.54) | (21.37)
Auto. | window=0.6, overlap=0.4, KNN k=auto[1-200], 2780 6.1 11.24 17.34
Coeff. | prominence=50%, a, xyz weight 1/r*3 (10.53) | (14.62) | (19.78)
Auto. | window=0.3, overlap=0.2, KNN k=auto[1-200], 5895 6.493 11.48 17.97
Coeff. | prominence=50%, a, xyz weight 1/r*3 (9.336) | (16.49) | (23.54)
Auto. window=1.2, overlap=0, KNN k=auto[1-200], 456 6.895 10.03 16.93
Coeff. | prominence=50%, a, xyz weight 1/r*3 (13.51) | (13.42) | (18.24)
Auto. window=0.9, overlap=0, KNN k=auto[1-200], 608 6.806 12.33 19.13
Coeff. | prominence=50%, a, xyz weight 1/r*3 (11.68) | (13.43) | (22.84)
Auto. window=0.6, overlap=0, KNN k=auto[1-200], 972 6.361 12.57 18.93
Coeff. | prominence=50%, a, Xyz weight 1/r*3 (9.873) | (16.41) | (23.53)
Auto. window=0.3, overlap=0, KNN k=auto[1-200], 2010 6.357 10.96 17.31
Coeff. | prominence=50%, a, xyz weight 1/r3 (9.035) | (12.59) | (17.57)
Auto. window=0.1, overlap=0, KNN k=auto[1-2000], 6169 6.654 12.08 18.74
Coeff. | prominence=50%, a, Xyz weight 1/r3 (8.674) | (14.57) | (19.79)
Auto. window=0.05, overlap=0, KNN k=auto[1-2000], 12338 8.793 14.01 22.8
Coeff. | prominence=50%, a, xyz weight 1/r3 (11.8) (15.78) | (23.05)
Auto. | window=0.9, overlap=0.6, KNN k=auto[1-200], 1736 7.137 11.45 18.58
Coeff. | prominence=10%, a, Xyz weight 1/r3 (14.01) | (16.99) | (21.59)
Auto. | window=0.9, overlap=0.6, KNN k=auto[1-200], 1736 7.39 11.58 18.97
Coeff. | prominence=30%, a, Xyz weight 1/r*3 (9.591) | (14.12) | (19.79)
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Auto. | window=0.9, overlap=0.6, KNN k=auto[1-200], 1736 6.805 10.66 17.46
Coeff. | prominence=70%, a, Xyz weight 1/r*3 (10.05) | (13.38) | (17.99)
Auto. | window=0.9, overlap=0.6, KNN k=auto[1-200], 1736 6.16 11.77 17.93
Coeff. | prominence=90%, a, xyz weight 1/r*3 (10.12) | (14.59) (18.8)
Auto. | window=0.9, overlap=0.6, KNN k=auto[1-200], 1736 7.548 8.868 16.42
Coeff. | prominence=50%, v, xyz weight 1/r*3 (10.55) | (11.05) | (20.18)
Auto. | window=0.9, overlap=0.6, KNN k=auto[1-200], 1736 8.846 9.11 17.96
Coeff. | prominence=50%, X, Xyz weight 1/r*3 (9.615) | (9.464) | (18.71)
window=1.2, overlap=0.8, k=auto[1-200], 8.539 12.25 20.79
FET | exp=0.5, bw=10, xyz KNN- " eight 1n3 | 1218 | (9.560) | (14.25) | (21.77)
window=1.2, overlap=0.8, k=auto[1-200], 6.389 12.07 18.46
FET | exp=0.75, bw=10, xyz | NN | “weight s | 1218 | (1167) | @4a29) | 20.70)
window=1.2, overlap=0.8, k=auto[1-200], 4.007 8.993 13
FFT exp=1, bw=10, xyz KNN- | eight 13 | 1218 | (g235) | (115) | (15.53)
window=1.2, overlap=0.8, k=auto[1-200], 3.228 6.969 10.2
FFT exp=1.25, bw=10, xyz kNN weight 1/r*3 1216 (6.921) | (8.685) | (14.32)
window=1.2, overlap=0.8, k=auto[1-200], 1.846 6.136 7.982
FFT exp=1.5, bw=10, xyz kNN weight 1/r*3 1216 (4.513) | (7.601) | (12.11)
window=1.2, overlap=0.8, k=auto[1-200], 1.601 5.777 7.379
FFT exp=1.75, bw=10, xyz kNN weight 1/r*3 1216 (3.294) | (8.706) (12)
window=1.2, overlap=0.8, k=auto[1-200], 2.01 5.439 7.449
FFT exp=2, bw=10, xyz kNN weight 1/r*3 1216 (4.245) | (6.667) | (8.726)
window=1.2, overlap=0.8, k=auto[1-200], 2.318 5.525 7.843
FFT exp=2.25, bw=10, xyz kNN weight 1/r3 1216 (5.176) (7.5) (9.647)
window=1.2, overlap=0.8, k=auto[1-200], 2.332 5.93 8.262
FFT exp=2.5, bw=10, xyz kNN weight 1/r3 1216 (5.489) | (6.361) | (10.98)
window=1.2, overlap=0.8, k=auto[1-200], 1.808 5.067 6.875
FFT exp=2.75, bw=10, xyz kNN weight 1/r3 1216 (2.778) | (6.921) | (9.069)
window=1.2, overlap=0.8, k=auto[1-200], 2.441 4,953 7.393
FFT exp=3, bw=10, xyz kNN weight 1/r3 1216 (3.505) | (9.813) | (13.32)
window=1.2, overlap=0.8, k=auto[1-200], 2.643 4.334 6.977
FFT exp=3.5, bw=10, xyz kNN weight 1/r3 1216 (6.161) (5.45) (11.61)
window=1.2, overlap=0.8, k=auto[1-200], 3.22 4.45 7.67
FFT exp=4, bw=10, xyz kNN weight 1/r3 1216 (7.399) | (5.303) | (11.46)
window=1.2, overlap=0.8, k=auto[1-200], 2.201 4.72 6.92
FFT exp=5, bw=10, Xy KNN - eight 3 | 1218 | 3066) | (55) | (7.25)
window=1.2, overlap=0.8, k=auto[1-200], 2.089 4.628 6.717
FFT exp=6, bw=10, xyz KNN- 1 “eight 1~ | 1218 | (4.205) | (5.736) | (7.746)
window=1.2, overlap=0.8, k=auto[1-200], 2.743 5.375 8.118
FFT exp=8, bw=10, xyz KNN- 1 “eight 13 | 1218 | 5.201) | (8312) | (9.848)
window=1.2, overlap=0.8, k=auto[1-200], 3.506 4.78 8.286
FFT exp=10, bw=10, xyz KNN - eight 1n3 | 1218 | (5.742) | (5.955) | (9.569)
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window=1.2, overlap=0.8, k=auto[1-200], 1.449 5.216 6.665
FET | Texp=275,bw=25,xyz | NN | “weightma | 1218 | (3s8) | (7:635) | (7.635)
window=1.2, overlap=0.8, k=auto[1-200], 1.801 5.528 7.329
FFT | exp=2.75. bw=5, xyz KNN - " eight 1~ | 1218 | (2.837) | (7565) | (104)
window=1.2, overlap=0.8, k=auto[1-200], 3.439 5.172 8.611
FET 1 exp=2.75, bw=20, xyz | NN | “weight 13 | 1218 | (5.314) | (7.488) | (128)
window=1.2, overlap=0.8, k=auto[1-200], 1.621 4.831 6.451
FET 1 exp=2.75, bw=40, xyz | NN | “weight 3 | 1218 | Glo9s) | (6.112) | (7.857)
window=0.9, overlap=0.6, k=auto[1-200], 1.721 5.851 7.572
FET 1 exp=2.75, bw=10, xyz | NN | “weight 1z | 1738 | @as2) | (7.719) | (8.772)
window=0.6, overlap=0.4, k=auto[1-200], 2.455 5.818 8.273
a exp=2.75, bw=10, xyz kNN weight 1/r*3 2780 (3.459) | (8.491) | (11.95)
window=0.3, overlap=0.2, k=auto[1-500], 3.582 7.484 11.07
FFT exp=2.75, bw=10, xyz kNN weight 1/r*3 5895 (5.143) | (11.05) | (12.51)
window=1.2, overlap=0, k=auto[1-200], 1.705 4.63 6.335
FFT exp=2.75, bw=10, xyz kNN weight 1/r*3 456 (4.459) | (6.579) | (7.237)
window=0.9, overlap=0, k=auto[1-200], 1.94 5.862 7.802
FET | Cexp=2.75 bw=10,xyz | "N | “weignturmz | %8 | @381) | 8867) | (1048)
window=0.6, overlap=0, k=auto[1-200], 2.679 5.614 8.293
FFT exp=2.75, bw=10, xyz kNN weight 1/r*3 972 (3.481) | (8.358) | (11.04)
window=0.3, overlap=0, k=auto[1-200], 2.917 7.107 10.02
FFT exp=2.75, bw=10, xyz kNN weight 1/r*3 2010 (4.512) | (8.006) | (12.52)
window=0.1, overlap=0, k=auto[1-500], 3.803 9.124 12.93
FFT exp=2.75, bw=10, xyz kNN weight 1/r3 6169 (5.082) | (9.545) | (14.16)
window=0.05, overlap=0, k=auto[1-2000], 3.827 9.895 13.72
FFT exp=2.75, bw=10, xyz kNN weight 1/r3 12338 (4.573) | (10.83) (15.4)
window=1.2, overlap=0.8
' ' k=auto[1-200], 2.906 4.907 7.813
FFT exp=2.75, n=5, d=10, kNN - n 1216
bw=10, xyz weight 1/r*3 (5.45) | (6.234) | (11.14)
window=1.2, overlap=0.8
' ' k=auto[1-200], 2.531 3.98 6.511
FFT exp=2.75, n=5, d=50, kNN - 1216
bw=10, xyz weight 1/r*3 (3.286) | (5.634) | (8.92)
window=1.2, overlap=0.8
' : k=auto[1-200], 3.108 4371 7.479
FFT exp=2.75, n=5, d=100, kNN - 1216
bw=10, xyz weight 1/r*3 (3.791) | (7.109) (10.9)
window=1.2, overlap=0.8
' ' k=auto[1-200], 3.581 4.645 8.226
FFT exp=2.75, n=10, d=10, kNN - 1216
bw=10, xyz weight 1/r*3 (5.164) | (8.291) | (10.55)
window=1.2, overlap=0.8
_ - T k=auto[1-200], 3.565 3.871 7.436
FFT eXp‘%Zvi’l%‘i%Zd“r’o* KNN -1 eight 13 | 1218 | (7.952) | (5.911) | (10.36)
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window=1.2, overlap=0.8

ow=1.2, overlap=0, k=auto[L-200], 8539 | 4207 | 1284

FFT ex"‘%ﬁ;i‘al%,f‘loo' KNN- 1 eight s | 1218 | (15.71) | (6.683) | (18.1)
window=1.2, overlap=0.8

w=1.2, overlap=0.8, k=auto[L-200], 2811 | 5017 | 7.829

FFT eXp‘%Zvil%‘i%Zd‘m’ KNN | eight 13 | 1216 | (5.647) | (7.214) | (8.458)
window=1.2, overlap=0.8

w=1.2, overlap=0.8, k=auto[L-200], 2003 | 4437 | 6.441

FFT eXp‘%Zvil%‘i%Zd‘E’o’ KNN -1 “eight 13 | 1218 | (a235) | .765) | (12)
window=1.2, overlap=0.8

ow=1.2, overlap=08, k=auto[1-200], 1926 | 5065 | 6.991

FFT EXP‘ZE)?VS':;‘(;B)%/S‘NO' NN eight 13 | 1218 | as02) | (7.214) | (7.214)
window=1.2, overlap=0.8

dow=1.2, 08, k=auto[L-200], 2205 | 6.154 | 8.449

cftp | exp=2.75, Il NN eight s | 1218 | (2716) | (7.092) | (9.456)
window=1.2, overlap=0.8

dow=1.2, 08, k=auto[L-200], 3081 | 5515 | 8.596

cltp | exp=2.75, r;(;zzo range=5, | KNN | " eight 3 | 1218 | 5213) | (6.733) | (10.19)
window=1.2, overlap=0.8

dow=12, 08, k=auto[1-200], 2251 | 6107 | 8.358

Cftp | exp=2.75, ';(‘ylzo range=5, | KNN | “eignt g | 1216 | (4a81) | (10.61) | (10.86)
window=1.2, overlap=0.8

low=1.2, 0.8, k=auto[1-200], 353 | 6466 | 9.996

c/tp EXp‘2'75’Q;Z5' range=5, | kNN | "\ eighe g | 1218 | (3901) | (7277) | @127
window=1.2, overlap=0.8

low=12, ¢ 0.8, k=auto[1-200], 6524 | 8713 | 15.24

/all EXP‘2'75'Q;Z5’ range=5, | kNN | “yeight 1rng | 1218 | (939) | (11.06) | (17.84)
window=1.2, overlap=0.8

dow=1.2, 08, k=auto[1-200], 607 | 8051 | 1412

nall | exp=2.75, 2&120 range=5, | kNN | " eight 3 | 1218 | (1137) | (8294) | (19.67)
window=1.2, overlap=0.8

dow=1.2, 08, k=auto[1-200], 6.810 | 8049 | 1487

nall | exp=2.75, r;(—yZZO range=5, | kNN | " eight 3 | 1218 | (7.769) | 8.772) | (16.54)
window=1.2, overlap=0.8

dow=1.2, 08, k=auto[1-200], 6.618 | 8203 | 1482

n/all exp=2.75, r;(—y320 range=5, kNN weight 1/r3 1216 (8.983) | (9.456) | (18.44)
window=1.2, overlap=0.8

ow=1.2, =08, k=auto[L-200], 1934 | 519 | 7.124

WPT eXp‘2'75’:‘;;r’ bw=10, | kNN | “yeight g | 1218 | (3318) | (6.923) | (9.242)
window=1.2, overlap=0.8

low=1.2, overlap=0.8, k=auto[L-200], 225 | 4953 | 7.204

WPT exp—2.75,)c(§)/|zfl, bw=10, | kN | RO | ate | PR e | diss)
window=1.2, overlap=0.8

low=1.2, overlap=0.8, k=auto[L-200], 280 | 6084 | 8974

WPT exp—2.75,)c(§)/|zf2, bw=10, | kN | RO | ase | 200 S0 | d2se)
window=1.2, overlap=0.8

low=1.2, overlap=0.8, k=auto[L-200], 2649 | 5475 | 8.125

WPT eXp‘2'75')°(§'Zf3’ bw=10, | kNN | " eight 3 | 1218 | (5.674) | (6.856) | (12.53)
window=1.2, overlap=0.8

low=1.2, overlap=0.8, k=auto[L-200], 3245 | 6229 | 9.473

WPT eXp‘2'75')°(§'zf4’ bw=10, | kNN " eight g | 1218 | (5.226) | (7.601) | (12.83)
window=1.2, overlap=0.8

low=1.2, overlap=0.8, k=auto[L-200], 3066 | 6.095 | 9.162

WPT exp‘2'75'§§'zf8’ bw=10, | kNN | " eight g | 1218 | (5.938) | (9.181) | (11.17)
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window=1.2, overlap=0.8

_ i o k=auto[1-200], 2.955 6.066 9.021

WPT | exp=2.75, ‘3;’;;12' bw=10, | kNN | “eight1ma | 1218 | (6.047) | (6512) | (12.56)
window=1.2, overlap=0.8

_ ' PPN k=auto[1-200], 1.917 5.327 7.244

WPT | exp=2.75, f({/’;z bw=10, | kNN | *eight 3 | 1216 | (3e81) | (6.089) | (10.07)
window=1.2, overlap=0.8

_ ' A k=auto[1-200], 2.651 4.955 7.606

WPT | exp=2.75, f&’/’;ﬁ bw=10, | kNN | *eight g | 1218 | (514) | (75557) | (11.68)
window=1.2, overlap=0.8

_ ' A k=auto[1-200], 2.415 5.671 8.085

WPT | exp=2.75, f&’/’;“"' bw=10, | kNN | " eight g | 1218 | a717) | (8255) | (12.97)
window=1.2, overlap=0.8

_ ' A k=auto[1-200], 1.232 6.517 7.749

WPT | exp=2.75, 2’/’;‘5 bw=10, | kNN | " ight 3 | 1216 | (isa6) | (8:837) | (10.23)
window=1.2, overlap=0.8

~ ' Sbots k=auto[1-200], 3.122 5.1 8.222

WPT | exp=2.75, f(’)’/rZ”G bw=10, | kNN | " eight 13 | 1216 | (7.857) | (7.658) | (11.67)
window=1.2, overlap=0.8

_ ' i k=auto[1-200], 2.301 5.659 7.96

WPT | exp=2.75, s))(/)r);lo, bw=10, kNN weight /3 1216 (2.709) | (6.888) | (9.026)
window=1.2, overlap=0.8

_ ' o k=auto[1-200], 2.706 5.927 8.633

WPT | exp=2.75, s))(/)rEZO, bw=10, kNN weight /3 1216 (6.604) (6.7) (12.03)
window=1.2, overlap=0.8

- ! e k=auto[1-200], 2.958 5.492 8.45

WPT | exp=2.75, b)ug/rzl.s, bw=10, | kNN weight 1/r3 1216 (7637) | (6.931) | (1337)
window=1.2, overlap=0.8

_ iy i k=auto[1-200], 1.393 5.279 6.672

WPT | exp=2.75, b)l(())/rzl.S, bw=10, kNN weight 1/r"3 1216 (1.733) | (7.765) | (9.176)
window=1.2, overlap=0.8

_ iy el k=auto[1-200], 2.683 5.719 8.402

WPT | exp=2.75, b)l(())/rzz.z, bw=10, kNN weight 1/r"3 1216 (7.277) (7.96) (13.38)
window=1.2, overlap=0.8

_ iy i k=auto[1-200], 3.781 5.958 9.739

WPT | exp=2.75, b)l(())/l’22.4, bw=10, kNN weight /3 1216 (9.33) (7.379) | (3.16)
window=1.2, overlap=0.8

_ - o k=auto[1-200], 3.06 6.786 9.845

WPT | exp=2.75, b)l(c;/rz?;.l, bw=10, kNN weight 1/rA3 1216 (4.976) (9.61) (13.03)
window=1.2, overlap=0.8

-~ ! e k=auto[1-200], 2.432 5.484 7.916

WPT | exp=2.75, rg;f)zl.3, bw=10, kNN weight 1/r"3 1216 (4.481) | (8.019) (12.5)
window=1.2, overlap=0.8

-~ ! e k=auto[1-200], 2.773 5.071 7.844

WPT | exp=2.75, rgu;yzl.s, bw=10, | kNN weight 1/r\3 1216 (7.059) | (6.203) | (9.882)
window=1.2, overlap=0.8

-~ ! e k=auto[1-200], 3.13 5.137 8.267

WPT | exp=2.75, rgujzz.z, bw=10, kNN weight 1/rA3 1216 (9.39) (7.463) | (12.44)
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window=1.2, overlap=0.8

d ! 038, k=auto[L-200], 1218 | 6.116 | 7.334

WPT | exp=2.75, r)tz;;)ZZA, bw=t0, | kN | SRR | ate | oTe | %6 |
window=1.2, overlap=0.8

d ] 038, k=auto[L-200], 1747 | 4887 | 6634

WPT | exp=2.75, r)tzl)?z&l, bw=t0, | kN | RO | 1216 | 2RO | Goon | diad)

window=1.2, overlap=0.8, k=auto[1-200], 2.255 5.616 7.871

WPT | exp=2.75, b1, bw=10, xyz | NN | “weight 3 | 1218 | (5.516) | (8.148) | (8.889)

window=1.2, overlap=0.8, k=auto[1-200], 3.461 5.611 9.072

WPT | exp=2.75, db2, bw=10, xyz | KNN | “weight 3 | 1218 | (7.320) | (7.731) | @1.58)

window=1.2, overlap=0.8, k=auto[1-200], 3.01 5.739 8.749

WPT | exp=2.75, db3, bw=10, xyz | NN | “weight /a3 | 1216 | (7.009) | (6.983) | (12:85)

window=1.2, overlap=0.8, k=auto[1-200], 2.477 5.992 8.469

WPT | exp=2.75, dba, bw=10, xyz | “NN | “weight1ma | 10 | (5.024) | (6.818) | (1256)
window=1.2, overlap=0.8

low=1.2, =08, k=auto[1-200], 1935 | 5156 | 7.001

WPT EXp‘2'75'35210’ bw=10, | kNN | “eignt s | 1218 | 3271) | (e:879) | (12.15)
window=1.2, overlap=0.8

low=12, =038, k=auto[1-200], 2929 | 5539 | 8.468

WPT EXp‘2'75'33215' bw=10, | kNN | “eight 3 | 1218 | (7.26) | (8.586) | (11.48)
window=1.2, overlap=0.8

low=12, =038, k=auto[1-200], 113 | 489 | 6019

WPT EXp‘2'75'35220’ bw=10, | kNN | “eignt s | 1218 | (2118) | (6.824) | (8.941)
window=1.2, overlap=0.8

low=12, =0.8, k=auto[1-200], 3089 | 587 | 8.958

WPT EXP‘2'75'SS§’°’ bw=10, | kNN | “eight 13 | 1218 | (ga01) | (7.235) | (13.68)
window=1.2, overlap=0.8

low=1.2, =08, k=auto[1-200], 2989 | 6321 | 9.311

WPT | exp=2.75, f'(?zey' bw=10, | kNN | “eight 13 | 1218 | (5a25) | (6.84) | (12.26)
window=0.9, overlap=0.6

low=0.9, =06, k=auto[1-200], 3004 | 615 | 9.244

WPT EXP‘2'75'33220* bw=10, | kNN | eignt 1mg | 1738 | (6.811) | (9.683) | (10.63)
window=0.6, overlap=0.4

low=0.6, =04, k=auto[1-200], 3266 | 6391 | 9.657

WPT eXp‘2'75'33220’ bw=10, | kNN | “eignt 1mng | 2780 | (7.239) | (8.705) | @1.27)
window=0.3, overlap=0.2

low=0.3, =02, k=auto[1-500], 3375 | 6975 | 1035

WPT eXp‘2'75'33220’ bw=10, | kNN | “eioht 1mg | 989 | 5801y | 8.277) | (4.17)
window=1.2, overlap=0

d , overlap=0, k=auto[L-200], 1287 | 5883 | 7.7

WPT eXp‘2'75'35220’ bw=10, | kNN | " oignt g | 498 | @s5) | (8.054) | (9.375)
window=0.9, overlap=0

d , overlap=0, k=auto[L-200], 2036 | 6.412 | 9.347

WPT eXp‘2'75'35220’ bw=10, | kNN | “ueignt s | 88 | (5.742) | (7.656) | (13.4)
window=0.6, overlap=0

d , overlap=0, k=auto[L-200], 3248 | 6.464 | 9.712

WPT eXp‘2'75'35220’ bw=10, | kNN | “eight s | 972 | (6.928) | (7.53) | (14.46)
window=0.3, overlap=0

d , overlap=0, k=auto[L-200], 3825 | 7.688 | 1151

WeT eXp‘2'75'35220’ bw=10, | kNN | eight 13 | 2910 | (75648) | (1063) | (12.84)
window=0.1, overlap=0

d , overlap=0, k=auto[1-500], 4325 | 9005 | 1333

WPT EXp‘2'75'35220’ bw=10, | kNN | “eignt g | 8169 | 5477y | (1135) | (14.69)
window=0.05, overlap=0

I , overlap=0, k=auto[L-2000], 4531 | 1041 | 14.94

WPT EXp‘2'75'3522°* bw=10, | kNN | "\ eight 13- | 12338 | 5464y | (12:65) | (18.12)
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wor | sz s | g | oty | g | o | g |
wor | iz s | | e | g | ot | e s
WPT va'Bi"z’ﬁ?dzbz"(Yeé'ﬁﬁigsz kNN kjvaelf;%[tlyzra%] 1216 (360;471) (213%) (ﬁigi)
WPT V\QQS:ZV;Slétf\éertlsvpszS kNN k\fvae‘f;%[tli/zgg]' 1216 (51%552) (g:ggi') ég:g%
WPT gx;)nf;g;ldﬁzgvgcvaffooiz kNN kjvaelf;%[tluzrag] 1216 @‘jﬁi—fﬁ) (g:i%) (ﬁ:gg)
WPT ewx:c)n:(jzo\;v;ldﬁzgvgc\/aflzoo?/z kNN kjvaelfé%[tluzra%] 1216 (g:ggi) (??22) (ﬂ:g)
e | oz gaens | | | |t oo | ua
o | ot s | |t | g | s e |
I T P e o R N I
I T P e PR
T TN IR e oy T T P
r | oz | o [t |y | o | o
o | ootz s | g |t | | g | o | o
| otz s | g |t | | s | o
FFT V‘g;g:;";;ive;’igag;f Thres: 456 | 3289 | 3289 | 6579
o | vntortzamtoro. | op | rmtizon | g e
o | ntortzamtor | op | rmeizon | g =
oo | e | o | | o
FFT Vgggfgv;éive;’igaxf l’;';‘)',‘ég Gaussian 456 | 2193 | 307 | 5.263
FFT "‘QQSS;";;%\,S;’%&E;S l’;':}',‘éi Bernoulli 456 | 2103 | 3289 | 5.482
FFT VZ'QSSZV?in?ZTQa E;S || kNN \l/(v:?;ftl%lnﬁ‘gsr]n 456 (gﬁggg) (gigﬁ) (21?32)
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FFT Tﬂsgéviéiﬁﬁga Q;zo " | kNN k:\?vli:tlc;;[hlti?r[)] 456 é:gig) (giggg) (2123?,)
FFT Tﬂsgéviéiﬁﬁga Q;zo " | kNN kjvaelf;%[tluzrag] 456 (Clﬁzlg) ?5;.3;6‘;4) (giggg)
FFT Tﬂsgéviéiﬁﬁga Q;zo " | kNN kjvaelf;%[tluzrag] 456 (\%247‘32) ?5?6376&; (giggzlt)
oo | o | | | | g e | o
FFT Tﬂsgéviéiﬁﬁga Q;zo " | kNN kﬁ::;r[]%ezﬂos] 456 812@3) (gszaié) (21?32)
oo | ot | | o | | g | e | ems
oo | mezomen | | o | g | ome [ are | one
oo | mrones | | v | oz || o
oo | mrones | | o | | g | o o
e | e omes | s | ensisgon, | o | 436 | 270 | 508
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