
doi:10.6342/NTU201903636

國立台灣大學工學院機械工程研究所

碩士論文

Graduate Institute of Mechanical Engineering

College of Engineering

National Taiwan University

Master Thesis

應用於顫振辨識之特徵選擇與分類方法之研究

A study of feature selection and classification methods for

chatter identification models

陳宇軒

Yu-Hsuan Chen

指導教授:劉建豪 博士

Advisor: Chien-Hao Liu, Ph.D.

中華民國 108年 6月

June, 2019

doi:10.6342/NTU201903636

1

doi:10.6342/NTU201903636

2

誌謝

 首先要感謝指導教授劉建豪老師，在碩士班這兩年給我的指導與支持，並

在研究上遇到困難時幫忙找資源協助我，讓我在實驗室這兩年學習到許多做研究

的方法。也感謝施文彬老師，在我碩一時提供了許多研究方向的建議與指教，使

我受益良多。口試委員蔡孟勳教授及蔡曜陽教授也提供了許多專業的見解，對這

篇論文的研究提供了寶貴的意見與回饋，感謝你們的參與。

 這篇研究可以順利完成，一部分要感謝泳辰學長的建議以及當初建立的研

究方向。傑程與胤瑄平時提出的問題與想法也幫助我更仔細的思考研究上遇到的

一些問題。感謝實驗室的夥伴們，星宇，善謙，建章，尚軒，家倫，炫奇，健

宏，柏文，碩志，晉祥，永珊，均鴻，謝謝你們的幫忙與陪伴。也感謝家人一路

上的支持，讓我可以順利完成這個學位。

doi:10.6342/NTU201903636

3

中文摘要

 維持高產率對於銑削加工的效率而言十分重要。顫振是加工時發生的一種

自激式振動，在實務中限制了產率。過去的研究提出了許多顫振偵測的方法，利

用各種訊號處理的方法如快速傅立葉轉換(FFT)，小波包轉換(WPT)，及希爾伯特

-黃轉換(HHT)。許多資料分類演算法也被應用於顫振偵測。雖然顫振偵測的領域

已有許多文獻，我們仍不清楚何種方法可以達到較佳的正確率與偵測速率。

在本研究中，我們將測試多種訊號處理方法以及資料分類的演算法，使用

的資料集中包含各種主軸轉速及切深。我們結合多種訊號處理方法及分類演算法，

開發了一個顫振辨識平台以建立分類模型並評估其性能。資料分類方法包含了固

定的閾值，最近鄰居法(k-NN)，單純貝氏分類器，支持向量機(SVM)，局部密度

因子(LOF)，以及類神經網路。以分類精準度而言，結果顯示最近鄰居法搭配小

波包轉換及希爾伯特-黃轉換是最佳的方法，誤判率僅 2.2%。

關鍵字: 顫振，小波包轉換，希爾伯特-黃轉換，最近鄰居法，支持向量機

doi:10.6342/NTU201903636

4

Abstract

Maintaining high production yield is important for efficiency in the milling process.

Chatter is a type of self-excited vibration that can occur during machining, and limits the

production yield in practice. In the past, many chatter detection methods were proposed

using different signal processing methods such as Fast Fourier transform (FFT), wavelet

packet transform (WPT), and Hilbert-Huang transform (HHT). Several classification

methods were also applied in chatter detection. Despite the large amount of researches

regarding chatter detection, it is unclear which of these proposed methods are better in

terms of accuracy and detection speed.

In this research, we test the signal processing methods and classification algorithms

against the entire dataset, with a wide range of spindle speeds and depth of cuts. A chatter

identification platform is developed to train models and evaluate their performance, using

combinations of signal processing methods and classification algorithms. The

classification methods include numerical threshold, k-nearest neighbors (K-NN), Naïve

Bayes, support vector machine (SVM), local outlier factor (LOF), and artificial neural

network. K-NN proves to be the optimal method when using WPT and HHT for signal

processing, with an error rate of 2.2%.

Keywords: chatter, wavelet packet transform, Hilbert-Huang transform, k-nearest

neighbor, support vector machine

doi:10.6342/NTU201903636

5

Table of Contents

1. Introduction ... 12

1.1 High-speed milling and chatter .. 12

1.2 Chatter detection .. 14

1.3 Aim of this research ... 16

1.4 Structure of the thesis .. 18

2. Signal processing methods and feature extraction ... 19

2.1 Fast Fourier transform (FFT) ... 19

2.2 Wavelet packet transform (WPT) .. 22

2.3 Autocorrelation coefficients .. 26

2.4 Hilbert-Huang transform (HHT) .. 29

3. Classification algorithms .. 33

3.1 Numerical threshold ... 33

3.2 Naïve Bayes ... 34

3.3 Local outlier factor (LOF) ... 35

3.4 Support vector machine (SVM) ... 36

3.5 K-nearest neighbor (k-NN) .. 38

3.6 Artificial neural network (ANN) ... 39

4. Implementation.. 40

4.1 Architecture of the data analysis and model training platform 40

4.2 Implementation details ... 42

4.2.1 Zero-padding before FFT ... 42

doi:10.6342/NTU201903636

6

4.2.2 Computing autocorrelation coefficients ... 43

4.2.3 Peak finding.. 45

4.3 Validation ... 47

5. Results and discussion ... 48

5.1 Data collection and labeling.. 48

5.2 Comparisons of classification algorithms ... 49

5.3 Parameters optimizations ... 54

5.3.1 Fast Fourier transform (FFT) ... 55

5.3.2 Wavelet packet transform (WPT) .. 63

5.3.3 Autocorrelation coefficients ... 69

5.3.4 Hilbert-Huang transform (HHT) .. 77

5.3.5 Frequency spectrum (with artificial neural network) 79

5.4 Comparison of features ... 80

5.5 Effect of window size ... 83

5.5.1 Error rates ... 83

5.5.2 Detection speed .. 85

6. Conclusions and future work ... 88

References.. 89

Appendix A. List of cutting conditions in the dataset ... 100

Appendix B. Model training and validation results .. 102

doi:10.6342/NTU201903636

7

List of figures

Fig. 1. Chatter leaving undesired marks on the surface of the workpiece [9] 13

Fig. 2. Illustration of how chatter develops due to abrupt change in chip thickness [2] 13

Fig. 3. An example of a stability lobe diagram [14] ... 14

Fig. 4. (a) Spectrum of the vibration signal after FFT, (b) Intrinsic mode functions

(IMFs) obtained from Hilbert-Huang transform [40] ... 15

Fig. 5. Illustrations of LOF and SVM .. 16

Fig. 6. Power spectrum density (PSD) obtained by applying FFT on the sound signal

during cutting. [56] ... 20

Fig. 7. Illustration of window and overlap ... 22

Fig. 8. Various families of mother wavelets, including (a) Haar, (b) Daubechies (db),

and (c) biorthogonal (bior). [58] ... 23

Fig. 9. Wavelet transform produces lower frequency resolution at high frequencies 24

Fig. 10. Wavelet packet transform and its corresponding coefficient tree for each

frequency bands [59] .. 25

Fig. 11. Illustration of the concept of autocorrelation coefficient 27

Fig. 12. IMFs of a cutting signal obtained using HHT ... 31

Fig. 13. Illustration of Hilbert transform on vibration signal [67] 31

Fig. 14. Hilbert spectrum of unstable (left) and stable (right) cutting signals calculated

and visualized with MATLAB ... 32

Fig. 15. An example of visualized local outlier factors .. 36

Fig. 16. (a) Illustration of linear SVM for a linearly-separable dataset [78] (b) Non-

linear SVM with RBF kernel [79] .. 37

Fig. 17 Architecture of model training platform for chatter identification 41

doi:10.6342/NTU201903636

8

Fig. 18. Illustration of the computation of discrete convolution 44

Fig. 19. Illustration of the peak finding procedure and the calculation of prominence of a

peak ... 46

Fig. 20. Illustration of stratified k-fold validation [47] .. 47

Fig. 21 Experiment setup when gathering the dataset .. 49

Fig. 22. Test costs of LOF for each of the three test datasets, and the average costs 50

Fig. 23. Test error rates of K-NN for each of the three test datasets, and the average

error rates. ... 52

Fig. 24. Error rates when different classification methods are used with the same feature

(FFT relative energy) .. 54

Fig. 25. FFT spectrum raised to exponent p for p = 0.5, 1, 2.75, and 8 56

Fig. 26. Effect of exponent p on classification error rates .. 57

Fig. 27. FFT relative energy plots for (a) p = 0.5, (b) p = 1, (c) p = 2.75, and (d) p =

8 .. 58

Fig. 28. Comparison of error rates with different FFT related features 63

Fig. 29. Comparison of average error rates within each mother wavelets family 65

Fig. 30. Comparison of average error rates within each mother wavelets family 66

Fig. 31. Comparison of average error rates when different axes are used as feature in k-

NN classifier ... 66

Fig. 32. Normalized relative energies 𝐸′𝑊𝑃𝑇(𝑦) and 𝐸′𝑊𝑃𝑇(𝑧) using WPT 68

Fig. 33. Autocorrelation coefficient for a stable cut ... 70

Fig. 34. Autocorrelation coefficient for an unstable cut ... 70

Fig. 35 Autocorrelation coefficient of (a) original acceleration signal, (b) velocity

signal, and (c) displacement signal. .. 71

Fig. 36. Distribution of standardized phase differences 𝜀 for x-, y-, and z-axes. 72

doi:10.6342/NTU201903636

9

Fig. 37. Phase differences 𝜀 of the entire dataset, in x-, y-, and z-directions. 74

Fig. 38. Distribution of the y- and z-axis relative energy after only HHT (top), and

WPT+HHT (bottom) .. 78

Fig. 39. Comparison of average error rates when different axes are used as feature 79

Fig. 40. Probability distribution function (PDF) of the y-axis features used in this

research, for both stable and unstable categories, including (a) 𝐸1, 𝐹𝐹𝑇, (b) 𝐸2, 𝐹𝐹𝑇,

(c) 𝐸3, 𝐹𝐹𝑇, (d) 𝐸𝑊𝑃𝑇, (e) 𝜖 from autocorrelation coefficient, and (f) 𝐸𝐻𝐻𝑇 81

Fig. 41. Comparison of error rates of all features ... 82

Fig. 42. Variation of error rates with respect to window size for (a) EFFT, 1, (b) WPT,

(c) phase ε for autocorrelation coefficient, and (d) HHT ... 84

Fig. 43. Variation of detected time with respect to window size for (a) 𝐸𝐹𝐹𝑇, 1, (b)

WPT, (c) phase 𝜀 for autocorrelation coefficient, and (d) HHT. 86

Fig. 44. Relative detected times for each different feature and window sizes for FFT

(𝐸1, 𝐹𝐹𝑇), WPT, autocorrelation coefficient, and HHT (with WPT) 87

doi:10.6342/NTU201903636

10

List of tables

Table 1. Major libraries used to implement the platform ... 42

Table 2. Performance test on numpy.fft.rfft() .. 43

Table 3. Classification error rates using FFT (𝐸1, 𝐹𝐹𝑇) and different unstable data point

ratio in LOF .. 51

Table 4. Classification error rates using k-NN and different weights 53

Table 5. Classification error rates using FFT (𝐸1, 𝐹𝐹𝑇) and different filter bandwidths

 .. 59

Table 6. Classification error rates using FFT (𝐸1, 𝐹𝐹𝑇) and different window sizes 60

Table 7. Error rates using 𝐸1, 𝐹𝐹𝑇, by ignoring all but 𝑛 highest peaks 61

Table 8. Classification error rates using FFT (𝐸2, 𝐹𝐹𝑇) and different number of peaks 62

Table 9. Classification error rates using FFT (𝐸3, 𝐹𝐹𝑇) and different number of peaks 62

Table 10. Classification error rates using WPT and different window sizes 67

Table 11. Classification error rates using autocorrelation coefficients and different

window sizes .. 75

Table 12. Classification error rates using autocorrelation coefficients and different

prominence percentages ... 76

Table 13. Comparison of classification error rates between acceleration, velocity, and

displacement using autocorrelation coefficients... 76

Table 14. Classification error rates using only HHT, and WPT+HHT 79

doi:10.6342/NTU201903636

11

List of abbreviations

MA Missing alarm rate

FA False alarm rate

ER Error rate

doi:10.6342/NTU201903636

12

1. Introduction

1.1 High-speed milling and chatter

Production yield is important for CNC machines. One way to increase production

yield is by increasing the spindle speed in the milling process. By increasing the spindle

speed, the material removal rate is increased proportionally, so is the production yield [1].

However, by increasing the cutting speed, new problem arises. Chatter is a

phenomenon caused by the mechanical interactions between the cutting tool and the

workpiece. This self-excited vibration [2] causes significant issues in machining, causing

large vibrations, which limits productivity and may produce poor surface finish on the

workpiece [3] [4]. Fig. 1 shows a comparison of surface finishes between chatter and

chatter-free cutting. Fig. 2 illustrates the effect of chip thickness in chatter development.

Vibrations in the cutting process causes variations in chip thickness, and certain

combination of spindle speed, feed rate, material, and cutting tool causes the chip

thickness to drastically fluctuate like Fig. 2 (c). This is the origin of chatter.

The cause of chatter and its mechanical models are well-studied. The cutting process

can be described with as a non-linear system [5], and a stability lobe diagram (SLD) was

used to indicate which cutting conditions cause chatter [6]. Fourier series was used to

obtain an analytical description of SLDs [7], and was later verified experimentally [8].

doi:10.6342/NTU201903636

13

Fig. 1. Chatter leaving undesired marks on the surface of the workpiece [9]

Fig. 2. Illustration of how chatter develops due to abrupt change in chip thickness [2]

Many methods were proposed to calculate the SLD, including a previous research

using transfer functions [10], and a method using multi-frequency solution [11]. Semi-

discretization method was applied to solve the non-linear delayed differential equations

describing chatter stability [12], and had been verified as accurate approach for SLD

computations [13]. Fig. 3 shows a SLD with spindle speed on the x-axis and depth of cut

on the y-axis. The region above the black curve is the chatter region, i.e. any cutting

condition above the black curve is unstable.

doi:10.6342/NTU201903636

14

Fig. 3. An example of a stability lobe diagram [14]

1.2 Chatter detection

The most straightforward way to avoid chatter is to obtain the SLD [15] [16] [17],

and avoid cutting in the unstable range. However, several parameters have effects on the

SLD, including the vibration modes of the CNC machine, the cutting tool, the material of

the workpiece, and the wear of the cutting tool. In addition, cutting force signal is required

to calculate the SLD, which typically requires a dynamometer. In this research, we utilize

chatter detection methods that do not require a dynamometer.

In the past, many chatter detection methods were proposed using different signal

processing methods. FFT of vibration signals were used to calculate the optimal cutting

path [18]. FFT can also be calculated every 16 samples for quick detection [19]. Wavelet

transform is a signal processing method that was also applied to chatter recognition [20].

Wavelet packet transform (WPT) is an extension of wavelet transform to get better

doi:10.6342/NTU201903636

15

frequency resolution at certain frequency ranges, and was used in several previous works

[21] [22] [23] [24] [25] [26] [27]. R-value was also used to monitor chatter by measuring

the spindle drive current [28] [29]. Time domain cutting force signal [30], or its power

spectrum density [31] can also be utilized. Hilbert-Huang transform has also been proven

effective [32] [33] [34] [35] [36]. Fig. 4 (a) shows an example of FFT spectrum, and Fig.

4 (b) is the intrinsic mode functions (IMFs) decomposed from the time-domain vibration

signals. Machine vision was also applied in combination with short-time Fourier

transform (STFT) [37], or texture analysis using neural networks [38] [39].

(a) (b)

Fig. 4. (a) Spectrum of the vibration signal after FFT, (b) Intrinsic mode functions

(IMFs) obtained from Hilbert-Huang transform [40]

After features are extracted with one of the signal processing methods, some

researches set a fixed threshold as the boundary of chatter (unstable) and non-chatter

(stable) signals [21] [31] [41] [42] [43]. A classification algorithm may be used to train a

model to classify unstable and stable data for better accuracy. Well-known classification

doi:10.6342/NTU201903636

16

algorithms such as support-vector machine (SVM) [21] [44] [45] [46], k-means [31], local

outlier factor (LOF) [47], and artificial neural networks [41] [42] [43] were used in the

past and were proven effective. Fig. 5 (a) and (b) shows examples of dataset classified

with LOF and SVM, respectively.

(a) (b)

Fig. 5. Illustrations of LOF and SVM

(a) Each data point is assigned a local outlier factor (LOF) and outliers of the dataset

can be identified [48]. (b) An illustration of data classified using support vector

machine (SVM). The solid lines are support vectors separating the two classes –

triangle and circle [49].

1.3 Aim of this research

Despite the large variety of existing chatter identification methods, there are two

main issues. The first is that in most researches, the dataset used to validate the proposed

method is small, usually consisting of less than 10 cuts. Comprehensive validation was

done only in rare cases, e.g. Zhehe Yao, et al. tested their detection method with a dataset

doi:10.6342/NTU201903636

17

consisting of 45 cuts [21]. Therefore, in most cases, the reader cannot obtain the actual

accuracy of the given method, and it is near impossible to compare the effectiveness of

different methods. For example, many researches claims that wavelet transform [50] [51],

wavelet packet transform [52], or Hilbert-Huang transform [53] is a superior method

compared to fast Fourier transform for chatter or machine fault identifications. However,

the claims are usually based on a theoretical or empirical argument with little or no

statistical evidence provided. We aim to resolve this issue by comparing different signal

processing methods using the same dataset and common parameters such as window size.

In fact, as will be shown in chapter 5, some of our findings are completely opposite to

such popular claims.

The second issue is that, even if a chatter identification method is tested on a large

dataset, and the accuracy is available for comparison, it is unfair to compare the accuracy

of two methods from different research teams. This is because the datasets used for

validation are different, and some datasets probably consists many data at the boundary

of stable and unstable region, and is thus more difficult to classify correctly.

With the rise of industry 4.0, the availability of large amount of data from

manufacturing processes should be utilized to help training models in order to improve

chatter detection accuracy. In this research, we will take advantage of the cutting data to

truly test the signal processing methods and classification algorithms against the entire

dataset, with spindle speed ranging from 4500 to 7000 rpm, and depth of cut from 0.2 to

1.0 mm. We believe this approach can help developing a standard procedure to train a

model, and evaluate the true accuracy of the model in a fair way.

doi:10.6342/NTU201903636

18

1.4 Structure of the thesis

This thesis consists of two main topics: feature extraction and classification

algorithms. Chapter 2 briefly introduces the signal processing methods that will be

compared in this research. Each signal processing method may generate one or more

feature(s), and will be further processed by one of the classification algorithms discussed

in chapter 3. Chapter 2 and 3 will mainly focus on the concepts, and the implementation

details will be described in chapter 4, which is focused on the software implementation

and optimizations of some of the algorithms.

Chapter 5 summarizes the results. Data collection procedure for the dataset used in

this research is explained in detail. Then, the classification algorithms are compared when

using the same feature extraction method. Since there are many parameters involved for

each signal processing method, their parameters will be optimized. After optimization is

completed within each signal processing method, all of the methods will be compared.

The amount of combination is large, because, for our model training platform developed

in this research, any extracted feature can be combined with any classification algorithm.

Finally, since both the error rate and detection speed are critical for chatter detection, we

will discuss how they are affected by window size, and the tradeoff involved.

Chapter 6 is the conclusion and we point out the potential direction for future

researches. There is an appendix showing all the results from different models we trained

which should make comparison easier.

doi:10.6342/NTU201903636

19

2. Signal processing methods and feature extraction

Four signal processing methods are used to in this research to extract features from

the vibration signals in our dataset. They include Fast Fourier transform (FFT), wavelet

packet transform (WPT), autocorrelation coefficient, and Hilbert-Huang transform

(HHT).

Since chatter is a phenomenon that can be identified via the vibrations at chatter

frequencies, it may be desirable to observe the vibration characteristics in the frequency

domain. FFT and WPT are such algorithms, which are widely used in many chatter

identification researches. Autocorrelation coefficient and HHT help us to look at the

problem from time-domain. Roughly speaking, the former calculates the periodicity of

the signal whereas the latter decomposes the signal into several intrinsic mode functions

(IMFs) in a specific way.

2.1 Fast Fourier transform (FFT)

FFT is a popular method for chatter detection [54] [55]. FFT is an implementation of

the well-understood Fourier transform, which transform discrete time domain data to

frequency domain. The time complexity of N-point FFT is 𝑂(𝑁𝑙𝑜𝑔𝑁), which makes it

quicker than WPT, autocorrelation coefficients, and HHT with our implementation. The

high performance, great theoretical foundations, and easy-to-interpret results make FFT

a great candidate for chatter detection. Fig. 6 shows the spectrum after applying FFT on

sound signal. The circles indicate the peaks at tooth pass frequencies and the asterisks

indicate peaks at spindle speed frequencies. FFT is a power tool for chatter recognition

due to its fast computation time,

doi:10.6342/NTU201903636

20

Fig. 6. Power spectrum density (PSD) obtained by applying FFT on the sound signal

during cutting. [56]

Several features can be extracted from the spectrum obtained with FFT, the following

ones will be investigated in this research:

(1) 𝐸1,𝐹𝐹𝑇: Relative energy between a frequency band and the entire spectrum. The

energy in a certain frequency band is defined as

𝐸𝑓𝑚𝑖𝑛,𝑓𝑚𝑎𝑥 = ∑ |𝑠(𝑓)|𝑝,

𝑓𝑚𝑖𝑛≤ 𝑓 ≤𝑓𝑚𝑎𝑥

 (1)

where |𝑠(𝑓)| is the magnitude of spectrum at frequency f, and the exponent p is

an adjustable parameter. The relative energy for an frequency band [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] is

defined as

𝐸1,𝐹𝐹𝑇 =
𝐸𝑓𝑚𝑖𝑛,𝑓𝑚𝑎𝑥
𝐸0,𝑓𝑠/2

, (2)

doi:10.6342/NTU201903636

21

where fs is the sampling rate. Therefore, 𝐸0,𝑓𝑠/2 is the energy of the entire

frequency range after FFT.

In practice, 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 are chosen to include the dominant chatter

frequency. Therefore, a higher 𝐸1,𝐹𝐹𝑇 indicates a higher chance of chatter

occurring. Peaks at tooth pass frequencies should be filtered before calculating

𝐸1,𝐹𝐹𝑇 so that those normal peaks are not incorrectly considered as an indication

of chatter. The DC component, i.e. amplitude at 0 Hz, is also set to zero.

In addition, it’s also possible to calculate 𝐸1,𝐹𝐹𝑇 by ignoring all but the 𝑛

highest peaks in the spectrum. The results will be discussed in chapter 5.

(2) 𝐸2,𝐹𝐹𝑇 : Relative energy between the chatter frequency band and tooth pass

frequencies. First, the spectrum is obtained from the vibration signal. Then, 𝑛

peaks are chosen using the implementation described in section 4.2. Finally, the

calculation of relative energy is performed similarly to 𝐸1,𝐹𝐹𝑇.

(3) 𝐸3,𝐹𝐹𝑇 : Relative energy between non-tooth pass frequencies and the entire

spectrum. The calculation steps are similar to 𝐸2,𝐹𝐹𝑇.

(4) Magnitude and phase of the spectrum: It is possible to recognize chatter from the

spectrum of the vibration signal due to the rise of chatter peak. However, there are

other spectral changes when chatter occurs, which are not easily identifiable

visually. Nevertheless, we can facilitate artificial neural networks (ANNs) and use

the magnitude or phase of the spectrum as input, to obtain a classification model.

FFT can be used with a sliding window to calculate the spectrum at fixed intervals as

shown in Fig. 7. There are two parameters – window size and overlap. The window size

describes how much data is taken to perform FFT, and the overlap is the amount of time

doi:10.6342/NTU201903636

22

that two consecutive windows intersects. We will use this concept throughout this article,

and applying it to other signal processing methods, such as WPT and HHT.

Fig. 7. Illustration of window and overlap

2.2 Wavelet packet transform (WPT)

Despite the high performance and popularity of FFT, it only decomposes a function

into sines and cosines. Wavelet transform was developed to decompose a function into

other sets of functions called mother wavelets. There are many families of mother wavelets,

such as Daubechies (db), Haar, and dmey. Within each family, there can be one or more

types of mother wavelets. For example, Daubechies (db) family includes db1, db2, db3,

etc. Fig. 8 shows three families of mother wavelets.

A potential advantage of using wavelet transform comes from Gabor uncertainty

principle, which shows that in a frequency analysis, the product of time resolution and

frequency resolution is never smaller than a constant [57]. Wavelet transform sacrifices

frequency resolution in favor of better time resolution compared to FFT. A better time

resolution means chatter can be possibly detected earlier. However, it should be noted that

Vibration signal

window 1

window 2

window 3 …

overlap

window size

+t

doi:10.6342/NTU201903636

23

similar effects can be acquired by using FFT with a sliding window, which is called short-

time Fourier transform (STFT).

Wavelet transform splits the frequency domain into several bands as illustrated in Fig.

9. Since chatter occurs at certain frequencies, we can pick the band that contains the

dominant chatter frequency, and calculate the vibration energy within that band.

Intuitively, when the energy in the chatter frequency band is high, the probability of chatter

occurring is high as well. This concept will be used in our chatter detection strategy.

(a)

(b)

(c)

Fig. 8. Various families of mother wavelets, including (a) Haar, (b) Daubechies (db),

and (c) biorthogonal (bior). [58]

doi:10.6342/NTU201903636

24

Fig. 9. Wavelet transform produces lower frequency resolution at high frequencies

 In addition to wavelet transform (WT), there is a modified version called wavelet

packet transform (WPT). The frequency resolution at high frequencies is lower than the

low frequencies for WT as shown in Fig. 9. WPT uses a series of low-pass and high-pass

filters to divide the signal into two parts as illustrated in Fig. 10. By doing this dividing

process repeatedly for 𝑛 times, we get a wavelet packet tree of 𝑛 levels. Each level

consists of nodes of coefficients, representing the vibration amplitude at its corresponding

frequency band. Since the wavelet packet tree is symmetric, the frequency resolution at

all frequencies are equal, which is more ideal than WT. Therefore, we use WPT in

research. The feature we extract from the signal is the relative energy

𝐸𝑊𝑃𝑇 =
𝐸𝑐ℎ𝑎𝑡𝑡𝑒𝑟
𝐸𝑎𝑙𝑙

, (3)

where 𝐸𝑐ℎ𝑎𝑡𝑡𝑒𝑟 = |𝑐𝑐ℎ𝑎𝑡𝑡𝑒𝑟|
𝑝 and 𝐸𝑎𝑙𝑙 = ∑ |𝑐𝑖|

𝑝
𝑖 . Here 𝑐𝑐ℎ𝑎𝑡𝑡𝑒𝑟 is the wavelet coefficient

of the chatter frequency band and 𝑐𝑖 refers to the 𝑖-th wavelet coefficient at 𝑛-th level. 𝑝

and 𝑛 are both adjustable. In this research, we choose 𝑛 = 5, which splits the frequency

doi:10.6342/NTU201903636

25

domain (0 to 5000 Hz) into 25 = 32 bands. From experiment, the dominant chatter

frequency is in the 6th band, which is between 781.25 and 937.25 Hz.

Fig. 10. Wavelet packet transform and its corresponding coefficient tree for each

frequency bands [59]

doi:10.6342/NTU201903636

26

2.3 Autocorrelation coefficients

Autocorrelation coefficient is an indicator of the periodicity of the signal. Given

a series of displacements x(n), define autocorrelation function [60]

𝑅𝑥𝑥(𝑚)=
1

𝑁
∑ 𝑥(𝑛)𝑥(𝑛 + 𝑚)

𝑁−1

𝑛=0

(4)

After standardization, we get the autocorrelation coefficient

𝑅𝑥𝑥
′ (𝑚) =

1
𝑁
∑ 𝑥′(𝑛)𝑥′(𝑛 + 𝑚)𝑁−1
𝑛=0

√1
𝑁
∑ [𝑥′(𝑛)]2𝑁−1
𝑛=0

√1
𝑁
∑ [𝑥′(𝑛 + 𝑚)]2𝑁−1
𝑛=0

, (5)

where

𝑥′(𝑘) = 𝑥(𝑘) −
1

𝑁
∑ 𝑥(𝑛)

𝑁−1

𝑛=0

.

For example, for a perfectly periodic signal, 𝑥(𝑛) = 𝑠𝑖𝑛 (2𝜋 ∙ 0.01𝑛) for 1 ≤ 𝑛 ≤ 𝑁, if

we choose m so that it is identical to the period of the signal, i.e. m = 100, then 𝑅𝑥𝑥′(𝑚) =

1 by (5). On the other hand, if m is equal to half of the period, i.e. m = 50, then 𝑅𝑥𝑥′(𝑚) =

−1.

The motivation of using autocorrelation coefficient comes from the fact that stable

cutting signal is close to periodic, with period being the inverse of tooth pass frequency

[60]. In contrast, during unstable cutting, some chatter frequencies arise at the natural

frequencies of the spindle, and some arises above and below the tooth pass frequencies.

This can be seen from the vibration model of the milling process [5] [10] [61] [62], and

this property allows us to identify chatter with autocorrelation coefficients.

The steps to calculate autocorrelation coefficient is as follows:

doi:10.6342/NTU201903636

27

1. Take a segment of vibration signal, which has to be at least as long as twice the

tooth pass period T1. This vibration signal can be of any form, e.g. acceleration,

velocity, or displacement. Call this signal x, and its length T.

2. Shift the signal in time by 𝜏. Let the sampling rate be 𝑓𝑠, then 𝑚 = 𝑓𝑠𝜏. Repeat

this step for 0 ≤ 𝜏 ≤ 𝑇.

3. Since 𝑚 ∝ 𝜏 , we can write autocorrelation coefficient 𝑅𝑥𝑥
′ (𝑚) as 𝑅𝑥𝑥

′ (𝜏) .

Calculate the 𝑅𝑥𝑥
′ (𝜏) for each 𝜏, where 0 ≤ 𝜏 ≤ 𝑇.

4. Find the time between peaks in 𝑅𝑥𝑥
′ (𝜏), call this TX. This should be identical to

tooth pass period in stable cutting but not unstable cutting.

5. In stable cutting, T1 should be an integer multiple of 𝑇𝑋 because the vibration

signal for every revolution of the spindle should be similar. Find the remainder of

𝑇1 divided by 𝑇𝑋 , call this 𝜀 . When 𝜀 is very close to 0, we say the cutting

condition is stable. Otherwise, it is unstable.

Fig. 11. Illustration of the concept of autocorrelation coefficient [60]

T1: 1 / (tooth pass frequency)

TX : Time between peaks

𝜀: Phase difference

 indication of chatter

doi:10.6342/NTU201903636

28

Step 4 above involves peak finding, which is non-trivial and the implementation is

outlined in section 4.2. Calculation of 𝜀 is required in step 5, which requires the concepts

of prominence of a peak discussed in section 4.2. The procedure is as follows:

1. Let the spindle rotation period be 𝑇0. Find all peaks in [0, 2𝑇0].

2. For [0, 𝑇0] and [𝑇0, 2𝑇0], select peaks with top 𝑥% prominence in each interval,

for some 𝑥 ∈ [0,100].

3. Among the peaks found in step 2, choose the peak just before 𝑇0, and the one just

after 𝑇0. Name them C and D, and let their corresponding times be 𝑇𝐶 and 𝑇𝐷.

4. Let the minimum value between C and D be 𝑦𝑚𝑖𝑛 = max
𝑇𝐶≤𝑡≤𝑇𝐷

𝑦(𝑡).

5. Let 𝑦′(𝑇0) = 𝑦′(𝑇0) − 𝑦𝑚𝑖𝑛, 𝑦′𝐶 = 𝑦𝐶 − 𝑦𝑚𝑖𝑛, and 𝑦′𝐷 = 𝑦𝐷 − 𝑦𝑚𝑖𝑛.

6. Calculate

𝜙 = 𝑐𝑜𝑠−1 (
4𝑦′(𝑇0)

𝑦′
𝐶
+ 𝑦′

𝐷

− 1), (6)

For a cosine wave, 𝑦 = 𝑐𝑜𝑠(𝜔𝑡) , the above equation gives

𝜙(𝑇0) = 𝑐𝑜𝑠
−1 (

4[𝑐𝑜𝑠(𝜔𝑇0) − 1]

2 + 2
− 1) = 𝑐𝑜𝑠−1(𝑐𝑜𝑠(𝜔𝑇0)).

Therefore, 𝑐𝑜𝑠(𝜙(𝑇0)) = 𝑐𝑜𝑠(𝜔𝑡) as expected.

In practice, the autocorrelation coefficient may differ significantly from one spindle

rotation to another. If we use the result from one period to predict whether the condition

is stable or unstable, incorrect prediction can occur frequently as the autocorrelation

coefficient fluctuates. Therefore, we split the input signal into windows, which is much

longer than spindle speed period, but small enough for chatter detection purposes, e.g. 0.2

seconds. This can reduce classification error rate. For each window, phase differences 𝜀

doi:10.6342/NTU201903636

29

is calculated for every two spindle speed periods. The extracted feature is the average of

𝜀 in this window.

A theoretical advantage of using autocorrelation coefficients is that this is applied in

time domain. A frequency-domain signal processing methods involves gathering

sufficiently long signal before transforming into frequency domain to ensure good

frequency resolution. For example, at a sampling rate of 10 kHz, FFT needs

approximately 0.1 seconds of data to achieve a frequency resolution of 5 Hz, which is

required because of the proximity of chatter frequency and tooth pass frequency on our

CNC machine. On the other hand, autocorrelation coefficient method requires only a

spindle rotation period to perform a calculation, which is only 0.02 seconds if the spindle

speed is 6000 rpm and 𝑇 = 2𝑇1. Since we use windows, the window size may be adjusted

to exploit this theoretical advantage. This was tested and the results are shown in chapter

5.

2.4 Hilbert-Huang transform (HHT)

Hilbert-Huang transform is a signal processing method that is designed to analyze

non-stationary and non-periodic signals [63], and has been applied various fields of study

such as in medical, geophysics, and structure safety analysis [64]. HHT involves two steps:

1. Apply empirical mode decomposition (EMD) [65]. This decompose the input

signal into the sum of several time-domain functions, called intrinsic mode

functions (IMFs). A process called sifting is used to find the local maxima and

minima for the signal and decompose it according to a set of rules. The number

of IMFs a signal is decomposed into is determined by the signal itself. Contrary

doi:10.6342/NTU201903636

30

to sine and cosine functions used in Fourier transform, IMFs can vary in both time

and frequency.

2. Apply Hilbert transform to each of the IMFs. Hilbert transform is defined by [66]

𝐻(𝑢)(𝑡) =
1

𝜋
∫

𝑢(𝜏)

𝑡 − 𝜏
𝑑𝜏

∞

−∞

,

which has the effect of shifting the phase of the negative frequencies of u(t) by
𝜋

2

and the phase of the positive frequencies by −
𝜋

2
.

Fig. 12 shows the 11 IMFs that are decomposed from a cutting signal. Fig. 13

shows that Hilbert transform extracts the envelope of the signal, as shown in the red dotted

curve. We can define 𝐸𝐻𝐻𝑇 = |𝑥𝑛(𝑡)/𝑥(𝑡)|
2 as the energy for the HHT result, where

𝑥𝑛(𝑡) is the 𝑛-th IMF and 𝑥(𝑡) is the original vibration signal. Fig. 14 is the time-

frequency visualization of the spectrum obtained using HHT. It’s also possible to extract

the chatter frequency band by applying WPT to the input signal, take the wavelet

coefficients from the chatter frequency band, and apply inverse WPT. Then the signal can

be processed with HHT to get the energy of each IMF. This approach has been shown to

be more effective than using HHT alone [32]. In this research, we set 𝑛 = 1, which

implies 𝐸𝐻𝐻𝑇 is high when the first IMF has large amplitudes.

doi:10.6342/NTU201903636

31

Fig. 12. IMFs of a cutting signal obtained using HHT

Fig. 13. Illustration of Hilbert transform on vibration signal [67]

doi:10.6342/NTU201903636

32

Fig. 14. Hilbert spectrum of unstable (left) and stable (right) cutting signals calculated

and visualized with MATLAB

doi:10.6342/NTU201903636

33

3. Classification algorithms

After we obtain the feature vectors using the signal processing methods described in

the previous chapter, they will be put into a classification algorithm to train a model. The

model will be able to predict whether a signal belongs to stable or unstable. Since our

dataset is labeled, we mainly focused on supervised learning. In this chapter, several

methods and classification algorithms are used, and their effectiveness are compared.

The simplest method is to set a fixed threshold value to distinguish stable data from

the unstable ones. A statistical method – Naïve Bayes was tested in 3.2. Some commonly

used classification algorithms, such as local outlier factor (LOF), support vector machine

(SVM), and k-nearest neighbor (k-NN), were applied to our dataset. Finally, we utilized

artificial neural network (ANN) to obtain models for prediction.

3.1 Numerical threshold

Using a fixed threshold as the boundary of stable and unstable region is one of

the simplest and most straightforward method. This method relies on the distribution of

a feature to be separable by a single threshold. The calculation steps are as follows:

1. Choose a feature that is represented by a single numerical value, e.g. the relative

energy after FFT of the x-axis signal.

2. Compute the values of this feature for the entire dataset to obtain the distribution

of both stable and unstable data.

3. Let there be m stable data points and n unstable data points. Since relative

energy is larger for unstable data points, choose the m-th smallest value in these

𝑚 + 𝑛 data points. This is the selected threshold. A data point is considered

stable if and only if its value is below this threshold.

doi:10.6342/NTU201903636

34

3.2 Naïve Bayes

Naïve Bayes is a probabilistic classifier based on Bayes’ theorem, widely used in

machine learning [68] [69] [70]. The general idea is as follows. Given a set of features,

such as the energy ratios of x-, y-, and z-axis, we know the distribution of each feature for

both unstable and stable data. Then, we fit the distribution curve with, e.g. Gaussian

distribution. Now, given a new data point, we can estimate its probability of being

unstable based on the fitted distribution and its energy ratio from x-axis. Same can be

done with y- and z-axis.

Given a feature vector 𝐱 = (𝑥1,… , 𝑥𝑛) , and classes {𝐶𝑘} , we want to calculate

𝑝(𝐶𝑘|𝑥1,… , 𝑥𝑛), the probability that x belongs to Ck , for each k. To determine which

class 𝐱 belongs to, we want to find k that maximizes 𝑝(𝐶𝑘|𝑥1,… , 𝑥𝑛). Assume all features

x1, … , xn are independent. By Bayes' theorem,

𝑝(𝐶𝑘|𝐱) =
𝑝(𝐶𝑘)𝑝(𝐱|𝐶𝑘)

𝑝(𝐱)
.

By chain rule,

𝑝(𝐶𝑘|𝐱) ∝ 𝑝(𝐶𝑘, 𝑥1, … , 𝑥𝑛) = 𝑝(𝐱|𝐶𝑘) = 𝑝(𝐶𝑘)𝑝(𝑥1|𝐶𝑘)…𝑝(𝑥𝑛|𝐶𝑘),

where 𝑝(𝐶𝑘) is called prior probability, or simply prior. For our application, we set

𝑝(𝐶𝑘) = 1/𝑘 for all k. 𝑝(𝑥1|𝐶𝑘) depends on the model fitting methods, such as Gaussian

or Bernoulli.

doi:10.6342/NTU201903636

35

3.3 Local outlier factor (LOF)

LOF is an algorithm to distinguish outliers from clusters of data points, and has been

used in audio and image recognition [71]. Previous work used LOF to classify relative

wavelet packet entropy [72]. To use this method in this research, it is required to limit the

ratio of unstable data points so that they are significantly less than the stable once. This

is because LOF finds the outliers, i.e. the points far away from other points.

Define k-distance 𝑘(𝐴) be the k-th nearest neighbor of point A. Denote the distance

between two points A and B as 𝑑(𝐴, 𝐵). Define reachability distance as

𝑟𝑘(𝐴, 𝐵) = 𝑚𝑎𝑥{𝑘(𝐵), 𝑑(𝐴, 𝐵)}.

The reason to use reachability distance instead of the distance between A and B is to get

more stable results in computations. Furthermore, define local reachability density as

𝑙𝑟𝑑𝑘(𝐴) =
|𝑁𝑘(𝐴)|

∑ 𝑟𝑘(𝐴, 𝐵)𝐵∈𝑁𝑘(𝐴)

,

where 𝑁𝑘(𝐴) is the k nearest neighbors of A. Roughly speaking, local reachability density

is the reciprocal of the average distance between A and its neighbors. The local outlier

factor is

𝐿𝑂𝐹𝑘(𝐴) =
∑

𝑙𝑟𝑑(𝐵)
𝑙𝑟𝑑(𝐴)𝐵∈𝑁𝑘(𝐴)

|𝑁𝑘(𝐴)|
=
∑ 𝑙𝑟𝑑(𝐵)𝐵∈𝑁𝑘(𝐴)

|𝑁𝑘(𝐴)| ∙ 𝑙𝑟𝑑(𝐴)
.

doi:10.6342/NTU201903636

36

Fig. 15. An example of visualized local outlier factors

3.4 Support vector machine (SVM)

SVM is a well-known method to separate two classes of data points [73] [74], and

has the advantage of good performance because the equations can be written in linear

form. SVM has been used for chatter recognition when combined with information

entropy [75], WPT [76], and Q-factor [77].

There are two types of SVMs, linear and non-linear. For linear SVM, suppose there

are n points (𝐱𝟏, 𝑦1), … , (𝐱𝐧, 𝑦𝑛), where 𝑦𝑖 = ±1, SVM attempts to separate the points

with 𝑦𝑖 = 1 from the ones with 𝑦𝑖 = −1 using a hyperplane 𝐰 ∙ 𝐱 − 𝑏 = 0 with some

vector 𝐰, called support vector. This is illustrated in Fig. 16 (a). In practice, there are

cases when the points cannot be separated by a hyperplane as in Fig. 16 (b). In such cases,

the points are mapped to higher dimensional space using a kernel function such as

doi:10.6342/NTU201903636

37

polynomial, RBF, and sigmoid. The mapped points may be easily separable with a

hyperplane.

(a)

(b)

Fig. 16. (a) Illustration of linear SVM for a linearly-separable dataset [78] (b) Non-

linear SVM with RBF kernel [79]

doi:10.6342/NTU201903636

38

3.5 K-nearest neighbor (k-NN)

K-NN is a simple classification algorithm based on votes from the neighbors [80].

Suppose we have a data point A without knowing whether it is stable or unstable. We find

k-nearest neighbors of A for some k. Let’s say 𝑘 = 5, and there are 3 of them are stable,

and 2 are unstable. Since 3 2, k-NN classify A as stable.

It is easy to add a weight function 𝑤(𝑟) for each neighbor. For example, let the k

neighbors of A be 𝑝1, … , 𝑝𝑘, and the first m points are stable while the rest are unstable.

Let the distance between A and 𝑝𝑖 be 𝑟𝑖 for all i. Then, define the scores

𝑠𝑐𝑜𝑟𝑒(𝑠𝑡𝑎𝑏𝑙𝑒) =∑𝑤(𝑟𝑖)

𝑚

𝑖=1

𝑠𝑐𝑜𝑟𝑒(𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒) = ∑ 𝑤(𝑟𝑖)

𝑘

𝑖=𝑚+1

 If 𝑠𝑐𝑜𝑟𝑒(𝑠𝑡𝑎𝑏𝑙𝑒) 𝑠𝑐𝑜𝑟𝑒(𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒), then A should be classified as stable, and

vice versa. Some common weight functions 𝑤(𝑟) are 1 (uniform), 𝑟−𝑎, and 𝑒−𝑎, for some

𝑎 0.

doi:10.6342/NTU201903636

39

3.6 Artificial neural network (ANN)

Using ANN in chatter recognition has the advantage that a detailed model is not

required and reasonable accuracy may still be achieved without manually select an

optimal feature as input. For this reason, we will use the entire frequency spectrum as the

input of the ANN. The vibration signal will be converted into frequency domain using

FFT, and ANN should be able to distinguish the stable data from unstable data since

chatter is more easily recognizable in frequency domain. The architecture and training

parameters will be manually tuned to obtain a good accuracy.

doi:10.6342/NTU201903636

40

4. Implementation

4.1 Architecture of the data analysis and model training

platform

Fig. 17 shows the architecture of the model training platform developed in this

research. This platform makes it easy to change the feature or classification algorithm to

use, adjust the corresponding parameters, and quickly obtain a validation report

indicating the effectiveness of the trained model. Any combination of the mentioned

features and classification algorithms can be used, along with several modes for tool

entry/exit detection, data selection, etc.

The blocks with solid lines in Fig. 17 indicates a data processing or calculation

step. A block with dashed lines represents an optional step. First, vibration data from the

accelerometer, along with their labels, are loaded from files. Then, the tool entry and

exit parts of the vibration signals are excluded to ensure the data being trained are valid

cutting data. Certain tooth pass frequencies that are too close to chatter frequencies are

filtered out to prevent misidentifications. Features are then computes according to the

specified parameters, and saved into a cache file so that if the same feature is to be used

again with another classification algorithm, we can simply load all features from cache.

This can drastically reduce the computation time. Therefore, we have two data sources:

from file (option 1) and from cache (option 2).

The dataset, consisting of feature vectors and labels, is then split into training and

test datasets randomly. Models are trained and validated using stratified k-fold

validation. Some hyperparameters are automatically tuned to minimize error rate. The

validation report of the final model will be shown to summarize the results.

doi:10.6342/NTU201903636

41

Fig. 17 Architecture of model training platform for chatter identification

Vibration data

Data selection

(all, random, or specified files)

Read file & exclude cuts with

both stable and unstable

segments

Filter out tool entry/exit phases
Tool entry/exit

detection mode
Plot result

Filter out certain tooth pass

frequencies

Selected feature

& parameters
Compute feature vectors cache

option 1

option 2

Plot intermediate

steps for analysis
Split training/test

datasets

k-fold validation

parameters Plot feature

distributions

Classification

algorithm &

parameters

Training /

classification

Stratified k-fold

validation

Tune

hyperparameters

Save model

Show validation

report

doi:10.6342/NTU201903636

42

4.2 Implementation details

This section will describe the techniques used to implement the model training

platform shown in Fig. 17. The entire program is written in Python 3. The main libraries

that was used is listed in Table 1.

Table 1. Major libraries used to implement the platform

library Main usage in our platform

numpy High performance numerical computations

scipy FFT, filters

PyWavelets WPT

pyhht HHT

matplotlib Data visualizations

scikit-learn LOF, k-NN

keras ANN

tensorflow ANN

4.2.1 Zero-padding before FFT

Our program uses numpy for FFT computations. For some testing data,

performance issues were observed. After some investigations, the conclusion is the

implementation of numpy’s fft.rfft() function is the cause of the issue. When the length

of input array is not an integer power of 2, it tries to factor the length and split the

computation into chunks. However, when the length is a prime number, the computation

slows down drastically. As we can see in Table 2, the computation time when the array

length is 16384 (= 214) is better than 12581 (= 23×547) and 12584 (= 23×112×13), and

more than 50 times better than 12583, which is a prime number.

A technique called zero-padding can be applied to resolve this issue. We zero-

pad the original vibration signal to so that the total length is an integer power of 2. For

example, if the vibration signal has 12583 samples, we add zeros to the array until the

length is 16384. This can significantly improve performance while not negatively

doi:10.6342/NTU201903636

43

affecting the frequency spectrum of the FFT output. In fact, zero-padding improves the

frequency resolution of the output spectrum. Note that when window function is used,

the signal should be zero-padded before applying a window function.

Table 2. Performance test on numpy.fft.rfft()

Input array length Computation time (sec)

12581 0.01698

12582 0.00898

12583 0.48424

12584 0.01039

16384 0.00937

32768 0.01051

65536 0.01897

4.2.2 Computing autocorrelation coefficients

The time complexity of direct computation of autocorrelation coefficients from

(4) is O(N2). However, this can be improved to O(N log N) using FFT because (4) is

similar to the equation of discrete convolution

(𝑓 ∗ 𝑔)[𝑛] = ∑ 𝑓[𝑚]𝑔[𝑛 − 𝑚].

𝑁

𝑛=−𝑁

Fig. 18 shows how discrete convolution can be computed in O(N log N) instead of O(N2)

for the direct approach. We show the connection between (4) and the equation above

below.

doi:10.6342/NTU201903636

44

Fig. 18. Illustration of the computation of discrete convolution

Proposition Given two 0-indexed arrays x and y, of length Nx and Ny respectively.

Define discrete convolution as

(𝑥 ∗ 𝑦)[𝑚] = ∑ 𝑥[𝑛]𝑦[𝑚 − 𝑛]

𝑁𝑦−1

𝑛=0

for m ∈ [0, 𝑁𝑥 + 𝑁𝑦 − 2], (7)

and assume x[i] = y[i] = 0 for i < 0. Let z be the reversed array of x, i.e. 𝑧[𝑖] = 𝑥[𝑁𝑥 −

𝑖 − 1] for all i. Then,

(𝑧 ∗ 𝑥)[𝑚 + 𝑁 − 1] = ∑ 𝑥[𝑛]𝑥[𝑚 + 𝑛]

𝑁−1

𝑛=0

, (8)

proof

(𝑧 ∗ 𝑥)[𝑚]

= ∑ 𝑧[𝑛]𝑦[𝑚 − 𝑛] (𝑏𝑦 (7))

𝑁𝑦−1

𝑛=0

𝑓 ∗ 𝑔 𝑛 = ∑ 𝑓 𝑚 𝑔[𝑛 − 𝑚]

𝑁

𝑛=−𝑁

𝑓, 𝑔 𝑓 ∗ 𝑔
O(N2)

Direct computation

FFT

𝐹, 𝐹
Multiplication

O(N)

O(N log N) O(N log N)Inverse FFT

doi:10.6342/NTU201903636

45

= ∑ 𝑧[𝑁𝑦 − 1 − 𝑝]𝑦[𝑚 + 𝑝 + 1 − 𝑁𝑦] (𝑝 = 𝑁𝑦 − 1 − 𝑛)

𝑁𝑦−1

𝑝=0

= ∑ 𝑥[𝑝] 𝑦[𝑚 + 𝑝 + 1 − 𝑁] (𝑏𝑦 (2), 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑁 = 𝑁𝑥 = 𝑁𝑦)

𝑁−1

𝑝=0

= ∑ 𝑥[𝑛] 𝑦[(𝑚 + 1 − 𝑁) + 𝑛]

𝑁−1

𝑛=0

Substituting m with m+N-1, we get (8).

The above proposition can be directly applied because (7) matches the

implementation of scipy’s fftconvolve. Specifically, (𝑥 ∗ 𝑦) = fftconvolve(x, y,

mode=‘full’).

4.2.3 Peak finding

Peak finding is used in parts of the program, e.g. finding n-highest peaks in the

spectrums after FFT, and finding peaks in autocorrelation coefficient plot. We used

𝑠𝑐𝑖𝑝𝑦. 𝑠𝑖𝑔𝑛𝑎𝑙. 𝑓𝑖𝑛𝑑_𝑝𝑒𝑎𝑘𝑠 to implement these parts of the program. The parameters

used include the minimum horizontal distance between peaks, and prominence.

When trying to find peaks within a graph, e.g. a spectrum, the minimum horizontal

distance between peaks is set to ensure that two peaks very close to each other won’t be

both included in the result. Suppose 20 peaks should be selected from a vibration signal

spectrum, there may be 3 peaks near one tooth pass frequency. The unintended

doi:10.6342/NTU201903636

46

consequence is that probably only 7 tooth pass frequencies are included in the 20 peaks

that the algorithm found, instead of 20.

Prominence is a property of a peak, describing the height of a peak relative to the

neighboring values. The calculation of prominence is as follows:

(1) Draw a horizontal line, crossing the peak in discussion, until it intersects the signal

or the window border. This is illustrated by the green lines in Fig. 19.

(2) For the left and right sides of the peak, find the minimum of each side, these are

the bases of the peak as shown in red dots in Fig. 19.

(3) The prominence is the difference between the height of the peak and the higher

value of the bases.

Therefore, it is possible to find n most prominent peaks from a graph by ordering the

prominences of all peaks, and take the largest n results. This concept is used in the

implementation of autocorrelation coefficients.

Fig. 19. Illustration of the peak finding procedure and the calculation of prominence

of a peak

Peak

Base
(left)

Base
(right)

Prominence

doi:10.6342/NTU201903636

47

4.3 Validation

In machine learning, training and test datasets must be separated. Otherwise, it is

trivial to obtain a model that achieves 100% accuracy for supervised learning – simply

memorize all data and their labels and build a lookup table. To evaluate the true accuracy

of a model, we use one of the standard approaches – stratified k-fold validation. The

concept is shown in Fig. 20 for the case 𝑘 = 3, where the dataset is split into 3 parts. There

are k rounds of validations. For the first round, the first 1/𝑘 data are used for training

while the rest are used for testing. Note that each the ratios of A and B classes in each 1/𝑘

part should be identical.

In this research, the dataset consists vibration data from 143 cuts. Each cut may result

in many data points due to the sliding window we use. However, during the learning and

validation process, if a cut is used for training, all data points in that cut are used as training,

and vice versa. This ensures the result is fair and minimizing overfitting.

Fig. 20. Illustration of stratified k-fold validation [47]

doi:10.6342/NTU201903636

48

5. Results and discussion

5.1 Data collection and labeling

The experiment data of this research comes from previous work of our laboratory

[47]. Since the goal of this research is chatter identification, a sufficient number of

experiment data is required as inputs for classification algorithms. Our dataset contains

vibration signals from a CNC milling machine, while cutting at different spindle speed,

depth of cut, and feed rates. Stability lobe diagram (SLD) of the CNC machine was

obtained by the traditional method - modal test and cutting force coefficients

measurement. The cutting conditions, which includes spindle speed, depth of cut, and

feed rate, were chosen so that it is near the stability boundary of the SLD. SLD is not

necessary, but it makes it easier to search for cutting conditions that is in the stable or

unstable region.

We used a CNC milling machine to perform the cutting experiment. The

experiment setup is shown in Fig. 21. A tri-axial accelerometer was mounted on the

spindle housing, and NI-9234 DAQ was used at sampling rate of 10240 Hz to acquire the

vibration signals. 143 straight cuts were performed and each cut lasts around 5 seconds,

excluding tool entry and exit phase. These 143 cuts contain at least 110 spindle speed and

depth of cut combinations, so we have good variety in our dataset. While conducting the

experiment, we labeled whether chatter occurs during this cut by listening to the sound.

There are 3 possible values for this label – entirely stable, entirely unstable, and partially

unstable. Therefore, the dataset consists of vibration signals from 143 cuts, along with a

label.

doi:10.6342/NTU201903636

49

Fig. 21 Experiment setup when gathering the dataset

Accelerometer was installed on the spindle housing, and a NI DAQ was used to acquire

the signal. [47]

5.2 Comparisons of classification algorithms

 In this section, different classification algorithms are compared using the same

feature. The feature used is FFT energy ratio, 𝐸1,𝐹𝐹𝑇, with window size of 1.2 seconds,

no overlap, exponent of 2.75, and all three axes. Since the window and overlap are fixed,

the number of data points used to train the models are identical, giving a fair comparison

of different classification algorithms.

doi:10.6342/NTU201903636

50

The numeric threshold method yields an error rate of 6.579%, with false alarm

and missing alarm rates both being 3.289%. Naïve Bayes produces error rates of 5.263%

and 5.482% using Gaussian and Bernoulli Naïve Bayes, respectively.

Fig. 22 shows the testing cost when using LOF as the classifier. Using stratified

k-fold validation with 𝑘 = 3, the cost of 3 test datasets are shown, with the average at the

bottom-right corner. In terms of error rate, the optimal amount of neighbors is

approximately 150. The cost varies between 0 to 1, with 0 meaning all data points are

correctly classified, and 1 meaning all are incorrectly classified. Also, since the unstable

data point ratio is an adjustable parameter, the relation between it and error rate is listed

in Table 3, where using 15% of unstable data is optimal with an error rate of 8.53%.

Fig. 22. Test costs of LOF for each of the three test datasets, and the average costs

doi:10.6342/NTU201903636

51

Fig. 33 shows the error rates on three test datasets and the average using k-NN as

the classifier. Table 4 shows the error rates with different weights, including uniform,

𝑟−𝑎, and 𝑒−𝑎𝑟 with some 𝑎. The lowest error rate is 5.21% while the highest is 6.061%.

The difference is small, which leads to the conclusion that the weight does not affect the

error rate significantly.

Fig. 24 sums up this section with all optimal error rates from each classification

method compared. K-NN is the best one at 5.21%, almost matched by Naïve Bayes at

5.263% and SVM at 5.647%. Numeric threshold and LOF are the worse ones. Incidentally,

an error rate of 7.12% is achieved using ANN, placing it as the 5th best feature. However,

since the methodology of it is quite different to other classification methods, it is best to

not make direct comparison.

Table 3. Classification error rates using FFT (𝐸1,𝐹𝐹𝑇) and different unstable data point

ratio in LOF

Unstable data point ratio (%) ER (%)

10 10.4 (14.8)

15 8.53 (14.4)

20 9.01 (18.1)

Feature: [window=1.2, overlap=0, exp=2.75, bw=10, xyz], classification: [LOF, auto[1-200], weight

1/r^3]

doi:10.6342/NTU201903636

52

Fig. 23. Test error rates of K-NN for each of the three test datasets, and the average

error rates.

doi:10.6342/NTU201903636

53

Table 4. Classification error rates using k-NN and different weights

Weight FA (%) MA (%) ER (%)

uniform 0.646 (1.258) 5.222 (6.918) 5.868 (8.176)

𝑟−1 1.065 (2.516) 4.564 (6.289) 5.629 (8.805)

𝑟−2 1.275 (3.145) 4.354 (5.66) 5.629 (8.805)

𝑟−3 1.485 (3.774) 4.576 (5.66) 6.061 (9.434)

𝑟−4 1.48 (3.774) 4.349 (5.66) 5.829 (9.434)

𝑒−𝑟 0.646 (1.258) 5.222 (6.918) 5.868 (8.176)

𝑒−2𝑟 0.646 (1.258) 5.222 (6.918) 5.868 (8.176)

𝑒−5𝑟 0.646 (1.258) 4.773 (6.918) 5.419 (8.176)

𝑒−10𝑟 0.8557 (1.887) 4.354 (5.66) 5.21 (7.547)

𝑒−100𝑟 2.096 (6.289) 3.691 (5.031) 5.787 (11.32)

Feature: [window=1.2, overlap=0, exp=2.75, bw=10, xyz], classification: [knn, auto[1-200], weight

1/r^3]

doi:10.6342/NTU201903636

54

Fig. 24. Error rates when different classification methods are used with the same

feature (FFT relative energy)

5.3 Parameters optimizations

This section is focus on parameter optimization for each feature extraction method.

For example, the parameters involved in WPT includes mother wavelet, window and

overlap sizes, and exponent used to compute the energy. We will find the optimal values

for these parameters to obtain the best error rate for WPT, and in later sections this error

rate can be compared to other feature types, such as autocorrelation coefficients, to give

a fair comparison of the effectiveness of different features.

0

2

4

6

8

10

Threshold LOF Naïve

Bayes

k-NN SVM

E
rr

o
r

ra
te

 (
%

)

doi:10.6342/NTU201903636

55

5.3.1 Fast Fourier transform (FFT)

 This section describes the classification results when using FFT-related features,

and FFT parameter optimizations will be discussed. The first feature we investigate is the

relative energy 𝐸1,𝐹𝐹𝑇. The exponent 𝑝 in (1) is an adjustable parameter, and can take any

value in (0,∞). Fig. 25 illustrates the spectrum amplitudes |𝑆(𝑓)|𝑝 for 𝑝 = 0.5, 1, 2.75,

and 8. Top right figure is for 𝑝 = 1, i.e. the original FFT spectrum. The highest peak at

around 900 Hz is the chatter frequency of the machine. There are several smaller peaks

at tooth pass frequencies. In addition, the noise is can be clearly seen in the spectrum as

well, especially in the frequency range of 2000 to 3500 Hz. These unwanted noise is

sometimes unavoidable and may negatively impact the detection of chatter. We argue that

the parameter 𝑝 can reduce the effect of noise.

When we increase the value of 𝑝 to 2.75, the smaller peaks become smaller

relative to the dominant chatter peak. Due to their smaller amplitudes, the noise between

2000 to 3500 Hz become significantly lower relative to the chatter and tooth pass

frequency peaks. If 𝑝 is further increased to 8 as shown in the bottom right figure, only 2

largest peaks are visible. This is not ideal because most of the information in the spectrum

is lost, and classification error rate will increase. On the other hand, using 𝑝 < 1 increases

the influence of smaller peaks and amplifies the noise. In summary, there are adverse

effects when 𝑝 is too large or too small. We aim to find an optimal value.

doi:10.6342/NTU201903636

56

Fig. 25. FFT spectrum raised to exponent p for p = 0.5, 1, 2.75, and 8

Fig. 27 illustrates the effect of 𝑝 on the distribution of 𝐸1,𝐹𝐹𝑇. Fig. 27 (a) is the

scatter plot of 𝐸1,𝐹𝐹𝑇(𝑦) and 𝐸1,𝐹𝐹𝑇(𝑧) for 𝑝 = 0.5. The top-right is a large area where

the unstable and stable data points overlap. As 𝑝 increases to 1 and 2.75, the overlapping

significantly reduces, as can be seen from Fig. 27 (b) and (c), respectively. Fig. 27 (d)

shows that when 𝑝 is too large, some data points will be pushed to the edge of the graph.

Fig. 26 shows the error rates of trained models using different values of 𝑝 from

0.5 to 10. K-NN is used with weight 𝑟−3 and the optimal 𝑘 is chosen between 1 to 200.

The dotted line is the false alarm (FA) rate, the slightly higher dashed line is the missing

alarm (MA) rate, and their sum is the total error rate (ER). As we can see, the error rate

is really high when 𝑝 < 1. This may be due to the noise being amplified. Then, the error

doi:10.6342/NTU201903636

57

rates decrease as 𝑝 increases. The lowest error rate of 6.875% is reached when 𝑝 = 2.75.

After this point, the higher peaks in the spectrum dominates, and the information of

smaller peaks start getting overlooked. This causes an slight upward trend in error rates

from 𝑝 = 2.75 to 10.

Fig. 26. Effect of exponent p on classification error rates

Feature: [window=1.2, overlap=0.8, bw=10, xyz]

classification: [kNN, auto[1-200], weight 1/r^3]

 (a)

0

5

10

15

20

25

0 2 4 6 8 10

P
er

ce
n
ta

g
e

Exponent

FA (%) MA (%) ER (%)

doi:10.6342/NTU201903636

58

 (b)

 (c)

 (d)

Fig. 27. FFT relative energy plots for (a) p = 0.5, (b) p = 1, (c) p =
2.75, and (d) p = 8

 The effect of filter bandwidth is shown in Table 5. There is no clear relationship

between the filter bandwidth and error rate. In theory, if the bandwidth is too large, the

chatter peak may be also eliminated due to the proximity of tooth pass frequency and

dominant frequency for out machine. However, the testing results do not show this trend.

This might indicate there is another factor playing a role.

doi:10.6342/NTU201903636

59

 The effect of window and overlap sizes is shown in Table 6. The error rate

increases as the window size decreases. This is possibly due to the fluctuation of 𝐸1,𝐹𝐹𝑇

within a window. A high value of 𝐸1,𝐹𝐹𝑇 may appear during a stable cut, causing incorrect

label and higher error rates when the window size is too small to average out the

fluctuations in 𝐸1,𝐹𝐹𝑇. The overlap does not notably affect the error rate, possibly because

the overlap does not increase the total amount of information for model training.

Table 5. Classification error rates using FFT (𝐸1,𝐹𝐹𝑇) and different filter bandwidths

Filter bandwidth (Hz) FA (%) MA (%) ER (%)

2.5 1.449 (3.58) 5.216 (7.635) 6.665 (7.635)

5 1.801 (2.837) 5.528 (7.565) 7.329 (10.4)

10 1.808 (2.778) 5.067 (6.921) 6.875 (9.069)

20 3.439 (5.314) 5.172 (7.488) 8.611 (12.8)

40 1.621 (3.095) 4.831 (6.112) 6.451 (7.857)

Feature: [window=1.2, overlap=0.8, exp=2.75, xyz], classification: [kNN, auto[1-200], weight 1/r^3]

doi:10.6342/NTU201903636

60

Table 6. Classification error rates using FFT (𝐸1,𝐹𝐹𝑇) and different window

sizes

Window size

(sec)

Overlap

(sec)

Data

points
FA (%) MA (%) ER (%)

1.2 0.8 1216
1.808

(2.778)

5.067

(6.921)

6.875

(9.069)

0.9 0.6 1736
1.721

(2.152)

5.851

(7.719)

7.572

(8.772)

0.6 0.4 2780
2.455

(3.459)

5.818

(8.491)

8.273

(11.95)

0.3 * 0.2 5895
3.582

(5.143)

7.484

(11.05)

11.07

(12.51)

1.2 0 456
1.705

(4.459)

4.63

(6.579)

6.335

(7.237)

0.9 0 608
1.94

(3.81)

5.862

(8.867)

7.802

(10.48)

0.6 0 972
2.679

(3.481)

5.614

(8.358)

8.293

(11.04)

0.3 0 2010
2.917

(4.512)

7.107

(8.006)

10.02

(12.52)

0.1 * 0 6169
3.803

(5.082)

9.124

(9.545)

12.93

(14.16)

0.05 ** 0 12338
3.827

(4.573)

9.895

(10.83)

13.72

(15.4)

Feature: [exp=2.75, bw=10, xyz], classification: [kNN, auto[1-200], weight 1/r^3]

* classification: [kNN, auto[1-500], weight 1/r^3]

** classification: [kNN, auto[1-2000], weight 1/r^3]

 Table 7 shows the result using 𝐸1,𝐹𝐹𝑇, by ignoring all but 𝑛 highest peaks in the

spectrum. Here, 𝑑 is the minimum frequency difference between two consecutive peaks.

If there are two peaks with whose frequency difference is less than 𝑑, the latter one will

be ignored. The optimal error rate of 6.441% is achieved at 𝑑 = 50 𝐻𝑧, 𝑛 = 30, closely

followed by 6.511% is achieved at 𝑑 = 50 𝐻𝑧, 𝑛 = 5 . It’s worth noting this is only

slightly worse than 6.335% shown in Table 7 with windows size of 1.2 seconds and no

overlap.

doi:10.6342/NTU201903636

61

Table 7. Error rates using 𝐸1,𝐹𝐹𝑇, by ignoring all but 𝑛 highest peaks

 d

n
10 Hz 50 Hz 100 Hz

5 7.813 (11.14) 6.511 (8.92) 7.479 (10.9)

10 8.226 (10.55) 7.436 (10.36) 12.84 (18.1)

30 7.829 (8.458) 6.441 (12) 6.991 (7.214)

Table 8 shows the error rates using 𝐸2,𝐹𝐹𝑇 and different number of peaks (n). The

error rate is slightly higher when 𝑛 is small (𝑛 = 5), but there is no significant difference

from 𝑛 = 10 from 𝑛 = 30. Table 9 shows the error rates for 𝐸3,𝐹𝐹𝑇. Similar to 𝐸2,𝐹𝐹𝑇, the

parameter 𝑛 has no significant effect for 𝑛 ≥ 10. Fig. 28 summarized the best results

from 𝐸1,𝐹𝐹𝑇, 𝐸2,𝐹𝐹𝑇, and 𝐸3,𝐹𝐹𝑇. The data come from the minimum error rates from Table

6, Table 8, and Table 9, respectively. 𝐸1,𝐹𝐹𝑇 is the superior feature among the three with

an error rate of 6.34 %, with 𝐸2,𝐹𝐹𝑇 close behind.

doi:10.6342/NTU201903636

62

Table 8. Classification error rates using FFT (𝐸2,𝐹𝐹𝑇) and different number of peaks

Number of peaks (n) FA (%) MA (%) ER (%)

5 3.53 (3.991) 6.466 (7.277) 9.996 (11.27)

10 2.251 (4.481) 6.107 (10.61) 8.358 (10.86)

20 3.081 (5.213) 5.515 (6.733) 8.596 (10.19)

30 2.295 (2.716) 6.154 (7.092) 8.449 (9.456)

Feature: [window=1.2, overlap=0.8, exp=2.75, range=5, xyz], classification: [kNN, auto[1-200],

weight 1/r^3]

Table 9. Classification error rates using FFT (𝐸3,𝐹𝐹𝑇) and different number of peaks

Number of peaks (n) FA (%) MA (%) ER (%)

5 6.524 (9.39) 8.713 (11.06) 15.24 (17.84)

10 6.07 (11.37) 8.051 (8.294) 14.12 (19.67)

20 6.819 (7.769) 8.049 (8.772) 14.87 (16.54)

30 6.618 (8.983) 8.203 (9.456) 14.82 (18.44)

Feature: [window=1.2, overlap=0.8, exp=2.75, range=5, xyz], classification: [kNN, auto[1-200],

weight 1/r^3]

doi:10.6342/NTU201903636

63

Fig. 28. Comparison of error rates with different FFT related features

5.3.2 Wavelet packet transform (WPT)

 Fig. 29 shows the comparison of error rates within each mother wavelet family.

Here, we tested Daubechies (db), Coiflet (coif), Symlet (sym), biorthogonal (bior), reverse

biorthogonal. The best mother wavelets in each family are db20, coif1, sym2, bior1.5, and

rbio1.3. Note that not all mother wavelets are tested. For instance, only db1 to db4, db10,

db15, db20, and db30 are tested for Daubechies wavelets. The reason is that testing all

wavelets is impractical given the large number of choices. More lower-numbered

wavelets are tested compared to the higher-numbered ones because the difference

between db3 and db4 is much more significant than db19 and db20 in terms of the shape

of the wavelet function. Also, db1, bior1.1, and Haar refer to the same wavelet.

The error rates are typically within 6 to 10 % showing that the variation is not

large regardless of which wavelet we choose. As shown in the figure, there is no clear

way to pick a wavelet within a family. Fig. 30 is a comparison of error rates across

different families with the lowest error rate in each family chosen as a representation.

0

2.5

5

7.5

10

12.5

15

feature

er
ro

r
ra

te
 (

%
)

𝐸1,𝐹𝐹𝑇 𝐸2,𝐹𝐹𝑇 𝐸3,𝐹𝐹𝑇

doi:10.6342/NTU201903636

64

Daubechies (db) wavelets performs best with an error rate of 6.019%, followed by bior

and rbio at around 6.6%, whereas dmey is the worst at 9.3%. However, since the

difference in error rates is not too significant between the best and the worst wavelets, it

is difficult to judge whether the same conclusion can be reached using another machine.

Nevertheless, the main point is that among the wavelet families we tested, there should

not be a large difference regardless which one is used.

Fig. 31 shows the error rates when different axes are used as feature. Since we use

a tri-axial accelerometer to acquire data, there are 6 possible combinations. We can use

only one axis: x, y, or z. We can also use a combination of them: xy, xz, yz, or xyz. The

error rate when only one axis is used is substantially higher, between 13.52 to 18.11%.

Using two axes produces error rates between 10.81 to 11.3%. The optimal result of

6.019% is obtained by using all three axes. It is interesting to know that even if the

direction of cutting is y-axis, x- and z-axis both contribute heavily towards the final

classification model.

doi:10.6342/NTU201903636

65

Fig. 29. Comparison of average error rates within each mother wavelets family

0

2

4

6

8

10

d
b

1

d
b

2

d
b

3

d
b

4

d
b

1
0

d
b

1
5

d
b

2
0

d
b

3
0

er
ro

r
ra

te
 (

%
)

0

2

4

6

8

10

co
if

1

co
if

2

co
if

3

co
if

4

co
if

8

co
if

1
2

er
ro

r
ra

te
 (

%
)

0

2

4

6

8

10

sy
m

2

sy
m

3

sy
m

4

sy
m

5

sy
m

6

sy
m

1
0

sy
m

2
0

er
ro

r
ra

te
 (

%
)

0

2

4

6

8

10

12

b
io

r1
.3

b
io

r1
.5

b
io

r2
.2

b
io

r2
.4

b
io

r3
.1

er
ro

r
ra

te
 (

%
)

0

2

4

6

8

10

rb
io

1
.3

rb
io

1
.5

rb
io

2
.2

rb
io

2
.4

rb
io

3
.1

er
ro

r
ra

te
 (

%
)

doi:10.6342/NTU201903636

66

Fig. 30. Comparison of average error rates within each mother wavelets family

Feature: [window=1.2, overlap=0.8, exp=2.75, bw=10, xyz], classification: [kNN, auto[1-200], weight

1/r^3]

Fig. 31. Comparison of average error rates when different axes are used as feature in

k-NN classifier

Feature: [window=1.2, overlap=0.8, exp=2.75, db20, bw=10], classification: [kNN, auto[1-200],

weight 1/r^3]

0

5

10

db haar coif sym bior rbio dmey

er
ro

r
ra

te
 (

%
)

0

5

10

15

20

x y z xy xz yz xyz

er
ro

r
ra

te
 (

%
)

doi:10.6342/NTU201903636

67

Table 10 shows the error rates when different window sizes are used. Two

observations can be made from this table. The first is that the effect of overlap is marginal,

improving the error rates by at most around 1%. The second is that larger window size

decreases the error rates significantly, with a difference of more than 4% between 1.2 and

0.3 seconds. Fig. 32 shows the distribution of normalized relative energy. The stable data

points lie in a relatively small region, i.e. the orange box.

Table 10. Classification error rates using WPT and different window sizes

Window size

(sec)

Overlap

(sec)

Data

points
FA (%) MA (%) ER (%)

1.2 0.8 1216
1.13

(2.118)

4.89

(6.824)

6.019

(8.941)

0.9 0.6 1736
3.094

(6.811)

6.15

(9.683)

9.244

(10.63)

0.6 0.4 2780
3.266

(7.239)

6.391

(8.705)

9.657

(11.27)

0.3 * 0.2 5895
3.375

(5.891)

6.975

(8.277)

10.35

(14.17)

1.2 0 456
1.287

(2.5)

5.883

(8.054)

7.17

(9.375)

0.9 0 608
2.936

(5.742)

6.412

(7.656)

9.347

(13.4)

0.6 0 972
3.248

(6.928)

6.464

(7.53)

9.712

(14.46)

0.3 0 2010
3.825

(7.648)

7.688

(10.63)

11.51

(12.84)

0.1 * 0 6169
4.325

(5.477)

9.005

(11.35)

13.33

(14.69)

0.05 ** 0 12338
4.531

(5.464)

10.41

(12.65)

14.94

(18.12)

Feature: [exp=2.75, db20, bw=10, xyz], classification: [kNN, auto[1-200], weight 1/r^3]

* classification: [kNN, auto[1-500], weight 1/r^3]

** classification: [kNN, auto[1-2000], weight 1/r^3]

doi:10.6342/NTU201903636

68

Fig. 32. Normalized relative energies 𝐸′𝑊𝑃𝑇(𝑦) and 𝐸′𝑊𝑃𝑇(𝑧) using WPT

Feature: [window=1.2, overlap=0.8, exp=2.75, haar, xyz], classification: [kNN, auto[1-200], weight

1/r^3]

𝐸′𝑊𝑃𝑇(𝑦)

𝐸′𝑊𝑃𝑇(𝑦)

𝐸′𝑊𝑃𝑇(𝑧)

𝐸′𝑊𝑃𝑇(𝑧)

doi:10.6342/NTU201903636

69

5.3.3 Autocorrelation coefficients

Fig. 33 shows the autocorrelation coefficient for acceleration signal under stable

cutting conditions. The left side shows the signal from accelerometer. The length

acceleration signal is approximately 9.4 ms, which is equal to two spindle rotation periods.

In order to find 𝑇𝑋, during peak finding, the peaks with top 50% prominence is chosen.

The right side is the autocorrelation coefficient calculated from (5), with time delay 𝜏 as

the x-axis. The vertical blue line indicates the position of T1 and it coincides with a peak

in autocorrelation coefficient as expected.

Fig. 34 shows the result of an unstable cut. The blue line does not coincide with a

peak in autocorrelation coefficient as expected. In fact, the blue line coincides with a local

minimum, indicating there is significant vibration in frequencies other than tooth pass

frequencies.

Fig. 35 is the autocorrelation coefficients of acceleration, velocity, and

displacement. The DC component of the measured acceleration signal is subtracted, and

then we integrate the signal with respect to time to obtain the velocity. Similarly,

displacement can be calculated. Peaks in autocorrelation coefficients are clearly visible

when 𝜏 is equal to spindle rotation period, which is the expected behavior. However,

when we integrate the signal, the finer vibration details are lost. The vibrations caused by

each tooth is visible in the acceleration graph, barely recognizable in the velocity graph,

and completely disappeared in the displacement graph.

doi:10.6342/NTU201903636

70

Fig. 33. Autocorrelation coefficient for a stable cut

Fig. 34. Autocorrelation coefficient for an unstable cut

doi:10.6342/NTU201903636

71

(a)

(b)

(c)

Fig. 35 Autocorrelation coefficient of (a) original acceleration signal, (b) velocity

signal, and (c) displacement signal.

doi:10.6342/NTU201903636

72

Fig. 36. Distribution of standardized phase differences 𝜀 for x-, y-, and z-axes.

Fig. 37 shows the phases differences 𝜀 calculated from autocorrelation

coefficients. A large amount stable and unstable data points overlap, which can be also

seen in the distribution charts in Fig. 36 and is not ideal. This pattern can be observed

doi:10.6342/NTU201903636

73

regardless of the window size, overlap, or prominence parameter. Phase differences is

often smaller for stable cuts compared to the unstable ones, but sometimes the phase

difference of unstable cuts are small as well.

Table 11 is a comparison of different window sizes and overlap lengths. As we

can see, the error rate increases from 16.93% to 22.8% as the window size decreases from

1.2 seconds to 0.05 seconds. Because the characteristics of vibration signal fluctuates with

time, we cannot expect the phase difference 𝜀 to remain the same even during a single cut.

The fluctuations in 𝜀 averages out when a larger window size is used, and produces a

more representative feature and overall better accuracy. The effect of overlap in error

rates far less significant. Despite the increase in number of data points when the overlap

is larger, the extra data points contributes little to the trained classification models.

Table 12 shows how the prominence parameter affect the error rates. A value

between 70% to 90% is marginally better in terms of the results. Data from Table 13

indicates that the velocity is a marginally better feature, having a 16.42% error rate

compared to 17.93% and 17.96% for acceleration and displacement respectively.

doi:10.6342/NTU201903636

74

Fig. 37. Phase differences 𝜀 of the entire dataset, in x-, y-, and z-directions.

Window size is 1.2 seconds with overlap of 0.8 seconds. Data is acceleration signal.

Peaks with prominence in top 50% are considered. The phase is in degree, with a period

equaling to spindle speed period.

doi:10.6342/NTU201903636

75

Table 11. Classification error rates using autocorrelation coefficients and different

window sizes

Window size

(sec)

Overlap

(sec)

Data

points
FA (%) MA (%) ER (%)

1.2 0.8 1216
6.961

(11.03)

11.01

(14.96)

17.97

(18.97)

0.9 0.6 1736
7.258

(10.44)

10.79

(14.54)

18.05

(21.37)

0.6 0.4 2780
6.1

(10.53)

11.24

(14.62)

17.34

(19.78)

0.3 0.2 5895
6.493

(9.336)

11.48

(16.49)

17.97

(23.54)

1.2 0 456
6.895

(13.51)

10.03

(13.42)

16.93

(18.24)

0.9 0 608
6.806

(11.68)

12.33

(13.43)

19.13

(22.84)

0.6 0 972
6.361

(9.873)

12.57

(16.41)

18.93

(23.53)

0.3 0 2010
6.357

(9.035)

10.96

(12.59)

17.31

(17.57)

0.1 * 0 6169
6.654

(8.674)

12.08

(14.57)

18.74

(19.79)

0.05 * 0 12338
8.793

(11.8)

14.01

(15.78)

22.8

(23.05)

Feature: [prominence=50%, a, xyz], classification: [kNN, auto[1-200], weight 1/r^3]

* classification: [kNN, auto[1-2000], weight 1/r^3]

doi:10.6342/NTU201903636

76

Table 12. Classification error rates using autocorrelation coefficients and different

prominence percentages

Prominence FA (%) MA (%) ER (%)

10% 7.137 (14.01) 11.45 (16.99) 18.58 (21.59)

30% 7.39 (9.591) 11.58 (14.12) 18.97 (19.79)

50% 7.258 (10.44) 10.79 (14.54) 18.05 (21.37)

70% 6.805 (10.05) 10.66 (13.38) 17.46 (17.99)

90% 6.16 (10.12) 11.77 (14.59) 17.93 (18.8)

Feature: [window=0.9, overlap=0.6, a, xyz], classification: [kNN, auto[1-200], weight 1/r^3]

Table 13. Comparison of classification error rates between acceleration, velocity, and

displacement using autocorrelation coefficients.

Feature
Data

points
FA (%) MA (%) ER (%)

acceleration 1736 6.16 (10.12) 11.77 (14.59) 17.93 (18.8)

velocity 1736 7.548 (10.55) 8.868 (11.05) 16.42 (20.18)

displacement 1736 8.846 (9.615) 9.11 (9.464) 17.96 (18.71)

Feature: [window=0.9, overlap=0.6, prominence=50%, xyz], classification: [kNN, auto[1-200], weight

1/r^3]

doi:10.6342/NTU201903636

77

5.3.4 Hilbert-Huang transform (HHT)

Fig. 38 shows the distribution of relative energy 𝐸𝐻𝐻𝑇 in the y- and z-directions.

The top figure is the result with HHT only, and the bottom one is first processed by WPT.

It is interesting that the two distributions are opposite. When using HHT only, 𝐸𝐻𝐻𝑇 is

higher for the stable data points. That implies in stable conditions, the amplitude of the

first IMF is high. However, the pre-processing using WPT reverses the trend. Table 14

gives a comparison between the error rates between the two approaches. It is clear that

WPT+HHT is better than using HHT only, as suggested by a previous research [53]. Fig.

39 shows the error rates when using different axes as feature. Surprisingly, using only x-

and z-axis is slightly better than using all three axes. Nevertheless, using all three axes is

still much more robust compared to using one axis.

doi:10.6342/NTU201903636

78

Fig. 38. Distribution of the y- and z-axis relative energy after only HHT (top), and

WPT+HHT (bottom)

𝐸
𝐻
𝐻
𝑇
(𝑧
)

𝐸𝐻𝐻𝑇(𝑦)

𝐸𝐻𝐻𝑇(𝑦)

𝐸
𝐻
𝐻
𝑇
(𝑧
)

doi:10.6342/NTU201903636

79

Table 14. Classification error rates using only HHT, and WPT+HHT

Feature FA (%) MA (%) ER (%)

HHT only 4.18 (5.952) 8.043 (9.383) 12.22 (14.05)

WPT + HHT 2.049 (3.465) 2.907 (5.437) 4.957 (7.092)

Feature: [window=1.2, overlap=0.8, xyz], classification: [kNN, auto[1-200], weight 1/r^3]

Fig. 39. Comparison of average error rates when different axes are used as feature

5.3.5 Frequency spectrum (with artificial neural network)

 The ANN in our platform is implemented using tensorflow. Some simple neural

networks architectures were attempted, including fully connected layers and dropout

layers. The input is a vector consisting of the magnitude of the spectrum after FFT. Since

the sampling rate is 10 kHz, the length of the input vector is
10000

2
+ 1 = 5001. The input

vector is normalized for optimal results. The output is a single number indicating whether

it is stable or unstable. The number of layers, number of units in each layer, activation

function, dropout rate, and batch size are varied to find the optimal test accuracy. The

dataset is split into 2 parts, with 70% used for training, and 30% used for testing.

0

10

20

30

x y z xy xz yz xyz

er
ro

r
ra

te
 (

%
)

doi:10.6342/NTU201903636

80

 92.88% test accuracy is achieved using two fully connected layers with 20 and 10

units, respectively. The activation functions for both layers are relu. Loss function is

binary cross-entropy, optimizer is adam, and batch size is 200. 92.88% accuracy is

achieved with 10 epochs. In general, the training accuracy is higher than test accuracy,

and the parameters above is mainly selected to avoid overfitting.

5.4 Comparison of features

 Fig. 40 is a collection of probability density functions from each feature. For each

plot of the figure, the parameters used are the ones that process the lowest error rate. Only

the distribution of y-axis is shown since it is the direction of feed. A feature is a good

chatter indicator if the overlap between the stable and unstable distributions is small. For

example, the overlap is large for the phase difference 𝜀 from autocorrelation coefficient,

which indicates that it is not a good feature. This is evident from its classification error

rate, which is the highest amongst the six. The first two FFT-related features, 𝐸1,𝐹𝐹𝑇 and

𝐸2,𝐹𝐹𝑇, both show a high peak for the stable curve, which implies a large amount of stable

data points have low 𝐸1,𝐹𝐹𝑇 or 𝐸2,𝐹𝐹𝑇 . However, the unstable data points distribute

relatively evenly.

doi:10.6342/NTU201903636

81

Fig. 40. Probability distribution function (PDF) of the y-axis features used in this

research, for both stable and unstable categories, including (a) 𝐸1, 𝐹𝐹𝑇, (b) 𝐸2, 𝐹𝐹𝑇,

(c) 𝐸3, 𝐹𝐹𝑇, (d) 𝐸𝑊𝑃𝑇, (e) 𝜖 from autocorrelation coefficient, and (f) 𝐸𝐻𝐻𝑇

P
D

F
P

D
F

P
D

F

P
D

F
P

D
F

P
D

F

(a) (b)

(c) (d)

(e) (f)

doi:10.6342/NTU201903636

82

Fig. 41 shows the lowest error rates for each type of feature. HHT, when used

with WPT, has the best performance in terms of error rate, at 4.856%. WPT and 𝐸1,𝐹𝐹𝑇

are the second and third, at 6.019% and 6.335% respectively. Phase difference from

autocorrelation coefficient is the worst, with an error rate of 16.42%, which is more than

3 times of the best error rate. For all six features, HHT is the only one that is based on

empirical formulas and does not have a convincing theoretical background for chatter

identification. It is surprising that it beats other methods with good theoretical foundations,

although by a very small margin.

Fig. 41. Comparison of error rates of all features

0

5

10

15

20

E
1
,F

F
T

E
2

E
3

W
P

T

au
to

.

H
H

T
+

W
P

T

er
ro

r
ra

te
 (

%
)

𝐸1,𝐹𝐹𝑇 𝐸2,𝐹𝐹𝑇 𝐸3,𝐹𝐹𝑇 WPT auto-

correlation

coeff.

HHT +

WPT

doi:10.6342/NTU201903636

83

5.5 Effect of window size

 As discussed previously in the sections regarding parameter optimization of FFT,

WPT, and autocorrelation coefficient, the error rate generally decreases with increased

windows size. This is likely due to the fluctuation of the feature within a window. E.g. a

high value of energy ratio may appear promptly during a stable cut, causing it to be

incorrectly classified as unstable. This can result in higher error rates when the window

size is too small. However, a lower window size might have the benefit of quicker

detection time in real-time chatter detection applications. This is a trade-off between error

rate and detection time. In this section, the effect of window size on error rates and

detection speeds is discussed, and the detection speeds of models trained with different

features will be compared.

5.5.1 Error rates

 Fig. 42 shows the relation between window size and error rate for 4 features, FFT,

WPT, autocorrelation coefficient, and HHT. The window size varies from 0.05 seconds

to 1 second and overlap is set to 50% of the window size for both training and test data.

K-NN is used as the classification method with weight 𝑟−3 and the optimal 𝑘 is selected

between 1 and 200. The trends of the four figures are similar where the error rate is high

when window size is below 0.2 seconds, and quickly decreasing as the window size

increases to 0.3 to 0.5 seconds. It is worth noting that the error rate for HHT drops to

2.2% at window size of 0.37 seconds.

doi:10.6342/NTU201903636

84

(a)
(b)

(c)
(d)

Fig. 42. Variation of error rates with respect to window size for (a) EFFT,1, (b) WPT,

(c) phase ε for autocorrelation coefficient, and (d) HHT

doi:10.6342/NTU201903636

85

5.5.2 Detection speed

 Fig. 43 show the variation of detection speeds with different window sizes. The

data points are the average detection speeds for all cuts, and the error bar indicates one

standard deviation. The detected time is relative to the time where window size is 0.05

seconds, and lower value is better. Surprisingly, the detected time in general decreases as

window size increases. We explain this using WPT as an example, with a small window

size. During the training process, due to the inevitable fluctuations, the energy ratio

feature needs to be high enough for the model to be considered as unstable. During testing,

we must wait longer for the energy ratio to rise above the stable-unstable boundary so

that the model identifies it as unstable. This may be the cause of slower detection for

small window sizes.

 Detected times between different features are also compared in Fig. 44.

Autocorrelation coefficient produces the fastest detected time at window size of 0.47

seconds. HHT results in a slower detection, typically 0.2 to 0.3 seconds behind other three

features. These detected times are the average of the entire dataset. For each unstable cut

in the dataset, we simulate the time when the chatter would be detected using a trained

model. These times are then averaged and compared with another model. Therefore, these

detected times are relative, and is unrelated to the actual time of chatter occurrence.

doi:10.6342/NTU201903636

86

(a)

(b)

(c)

(d)

Fig. 43. Variation of detected time with respect to window size for (a) 𝐸𝐹𝐹𝑇,1, (b)

WPT, (c) phase 𝜀 for autocorrelation coefficient, and (d) HHT.

doi:10.6342/NTU201903636

87

Fig. 44. Relative detected times for each different feature and window sizes for FFT

(𝐸1,𝐹𝐹𝑇), WPT, autocorrelation coefficient, and HHT (with WPT)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1

R
el

ta
iv

e
d

et
ec

te
d

 t
im

e
(s

ec
)

Window (sec)

FFT

WPT

auto.

HHT

doi:10.6342/NTU201903636

88

6. Conclusions and future work

In this research, a chatter identification platform is developed to train models and

evaluate their performance, using combinations of signal processing methods and

classification algorithms and a dataset consisting of 143 cuts under various cutting

condition. We compared several classification methods in terms of their performance on

chatter identification after parameter optimization for each classifier. K-NN, Naïve Bayes,

and SVM are the superior methods, with error rates from 5.21% to 5.647%. The effect on

accuracy of feature selection is far more significant compared to classifier selection.

Efforts are put into parameter optimizations for each of these features. Using the optimal

classifier, k-NN, and window size of 1.2 seconds and no overlap, the optimal error rate is

achieved by using HHT and WPT together, at 4.856%. The rest are 𝐸𝑊𝑃𝑇, 𝐸1,𝐹𝐹𝑇, 𝐸2,𝐹𝐹𝑇,

𝐸3,𝐹𝐹𝑇 , and autocorrelation coefficient, ordered by error rate, from low to high.

Autocorrelation coefficient proves to be the least effective, with an error rate of 16.42%.

Incidentally, using all three axes as feature is shown to be much better than using only 1

or 2 axes in some circumstances. Finally, the effect of window size on error rates and

detection speeds is also investigated using the platform we developed. A window size

around 0.3 to 0.5 seconds is optimal in terms of error rate, and the best error rate of 2.2%

was found using a window size of 0.37 seconds with HHT+WPT. However, HHT+WPT

results in a marginally slower chatter detection compared to other features, and what

comes as a surprise is that smaller window size does not lead to faster chatter detection.

There are some potential directions for future researches. Due to the large amount

of possible variations in ANN architectures, it is not explored fully in this work and may

be worth investigating. Another optimization opportunity is to use different window sizes

for training and testing, and observe the trend of error rate and detection time.

doi:10.6342/NTU201903636

89

References

[1] Atanas Ivanov, Rebecca Leese, and Alexandre Spieser, Micromanufacturing

Engineering and Technology (Second Edition), Micro and Nano Technologies,

2015.

[2] Ronald Faassen, "Chatter Prediction and Control for High-Speed Milling Modelling

and Experiments," Ph. D. thesis, 2007.

[3] Guillem Quintana and Joaquim Ciurana, "Chatter in machining processes: A

review," International Journal of Machine Tools & Manufacture, pp. 363-376,

2011.

[4] Erol Turkes, Sezan Orak, Suleyman Neseli, and Suleyman Yaldiz, "Linear analysis

of chatter vibration and stability for orthogonal cutting in turning," Int. Journal of

Refractory Metals and Hard Materials, pp. 163-169, 2011.

[5] J. Tlusty and F. Ismail, "Basic Non-Linearity in Machining Chatter," CIRP Annals,

vol. 30, no.1, pp. 299-304, 1981.

[6] J. Tlusty, W. Zaton, and F. Ismail, "Stability Lobes in Milling," CIRP Annals, vol.

32, no. 1, pp. 309-313, 1983.

[7] Y. Altintaş and E. Budak, "Analytical Prediction of Stability Lobes in Milling,"

CIRP Annals, vol. 44, no. 1, pp. 357-362, 1995.

[8] R. P. H. Faassen, N. V. D. Wouw, J. Oosterling, and H. Nijmeijer, "Prediction of

regenerative chatter by modelling and analysis of high-speed milling," International

Journal of Machine Tools and Manufacture, vol. 43, no. 14, pp. 1437-1446, 2003.

doi:10.6342/NTU201903636

90

[9] E. Kuljanic, G.Totis, and M. Sortino, "Vibrations and Chatter in Machining: State

of the Art and New Approaches," in Advanced Manufacturing Systems and

Technology, 2008.

[10] E. Solis, C. Peres, J. Jiménez, J. Alique, and J. Monje, "A new analytical–

experimental method for the identification of stability lobes in high-speed milling,"

International Journal of Machine Tools and Manufacture, vol. 44, no. 15, pp. 1591-

1597, 2004.

[11] S. D. Merdol and Y. Altintas, "Multi Frequency Solution of Chatter Stability for

Low Immersion Milling," Journal of Manufacturing Science and Engineering, vol.

126, no. 3, pp. 459-466, 2004.

[12] T. Insperger and G. Stépán, "Semi-discretization method for delayed systems,"

International Journal for Numerical Methods in Engineering, vol. 55, no. 5, pp.

503-518, 2002.

[13] J. Muñoa, M. Zatarain, Z. Dombovari, and Y. Yang, "Effect of Mode Interaction on

Stability of Milling Processes," in 12th CIRP Conference on Modelling of

Machining Operations, San Sebastian, Spain, 2009.

[14] Z. Dombóvári, "Overview of stability analysis in machining processes," Technical

report, 2008.

[15] Y. Altintas, "Analytical prediction of three dimensional chatter stability in milling,"

JSME Int J C-Mech Syst, vol. 44, no. 3, pp. 717-723, 2001.

doi:10.6342/NTU201903636

91

[16] Y. Altintas, E. Shamoto, P. Lee, and E. Budak, "Analytical prediction of stability

lobes in ball end milling," J Manuf Sci E-T ASME, vol. 121, no. 4, pp. 586-592,

1999.

[17] A. Tang and Z. Liu, "Three-dimensional stability lobe and maximum material

removal rate in end milling of thin-walled plate," Int J Adv Manuf Technol, vol. 43,

no. 1, pp. 33-39, 2009.

[18] C. Toh, "Vibration analysis in high speed rough and finish milling hardened steel,"

Journal of Sound and Vibration, vol. 278, no. 1-2, pp. 101-115, 2004.

[19] Z. Han, H. Jin, M. Li, and H. Fu, "An open modular architecture controller based

online chatter suppression system for CNC milling," Mathematical Problems in

Engineering,, p. 13, 2015.

[20] M. C. Yoon and D. H. Chin, "Cutting force monitoring in the endmilling operation

for chatter detection," Proceedings of the Institution of Mechanical Engineers, Part

B: Journal of Engineering Manufacture, vol. 219, no. 6, pp. 455-465, 2005.

[21] Z. Yao, D. Mei, and Z. Chen, "On-line chatter detection and identification based on

wavelet and support vector machine," Journal of Materials Processing Technology,

vol. 210, no. 5, pp. 713-719, 2010.

[22] Y. Sun and Z. Xiong, "An Optimal Weighted Wavelet Packet Entropy Method With

Application to Real-Time Chatter Detection," IEEE/ASME Transactions on

Mechatronics, vol. 21, no. 4, pp. 2004-2014, 2016.

doi:10.6342/NTU201903636

92

[23] Y. Sun, C. Zhuang, and Z. Xiong, "Real-time chatter detection using the weighted

wavelet packet entropy," in IEEE/ASME International Conference on Advanced

Intelligent Mechatronics, 2014.

[24] G. G. Yen and K. C. Lin, "Wavelet packet feature extraction for vibration

monitoring," IEEE Transactions on Industrial Electronics, vol. 47, no. 3, pp. 650-

667, 2000.

[25] Melih C. Yesilli, Firas A. Khasawneh, and Andreas Otto, "On Transfer Learning

For Chatter Detection in Turning Using Wavelet Packet Transform and Empirical

Mode Decomposition," arXiv, 2019.

[26] B. S. Berger I. Minis, J. Harley, M. Rokni, and M. Paradopoulos, "Wavelet based

cutting state identification," Journal of Sound and Vibration, vol. 213, no. 5, pp.

813-827, 1998.

[27] A. Ordaz-Moreno, R. de Jesus Romero-Troncoso, J. A. Vite-Frias, J. R. Rivera-

Gillen, and A. Garcia-Perez, "Automatic online diagnosis algorithm for broken-bar

detection on induction motors based on discrete wavelet transform for FPGA

implementation," IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp.

2193-2202, 2008.

[28] E. Soliman and F. Ismail, "Chatter detection by monitoring spindle drive current,"

The International Journal of Advanced Manufacturing Technology, vol. 13, no. 1,

pp. 27-34, 1997.

doi:10.6342/NTU201903636

93

[29] Deniz Aslan and Yusuf Altintas, "On-line chatter detection in milling using drive

motor current commands extracted from CNC," International Journal of Machine

Tools and Manufacture, vol. 132, 2018.

[30] R. Du, M. Elbestawi, and B. Ullagaddi, "Chatter detection in milling based on the

probability distribution of cutting force signal," Mechanical Systems and Signal

Processing, vol. 6, no. 4, pp. 345-362, 1992.

[31] S. Tangjitsitcharoen, "In-process monitoring and detection of chip formation and

chatter for CNC turning," Journal of Materials Processing Technology, vol. 209,

no. 10, pp. 4682-4688, 2009.

[32] H. Cao, Y. Lei, and Z. He, "Chatter identification in end milling process using

wavelet packets and Hilbert–Huang transform," International Journal of Machine

Tools and Manufacture, vol. 69, pp. 11-19, 2013.

[33] Yongjian Ji, Xibin Wang, Zhibing Liu, Hongjun Wang, Li Jiao, Dongqian Wang,

and Shouyang Leng, "Early milling chatter identification by improved empirical

mode decomposition and multi-indicator synthetic evaluation," Journal of Sound

and Vibration, vol. 433, pp. 138-159, 2018.

[34] Wei Peng, Zhongju Hu, Li Yuan, and Pingyu Zhu, "Chatter identification using

HHT for boring process," in International Conference on Optical Instruments and

Technology, 2013.

[35] R. Q. Yang and X.Gao, "Hilbert-Huang transform-based vibration signal analysis

for machine health monitoring," IEEE Trans. Instrum. Meas., vol. 55, no. 6, pp.

2320-2329, 2006.

doi:10.6342/NTU201903636

94

[36] Tang, J. P., Chiou, D. J., Chen, C. W., Chiang, W. L., Hsu, W. K., Chen, C. Y., and

Liu, T. Y., "A case study of damage detection in benchmark buildings using a

hilbert-huang transform-based method," Journal of Vibration and Control, vol. 17,

no. 4, pp. 623-636, 2011.

[37] Michał Szydłowski and Bartosz Powałka, "Chatter detection algorithm based on

machine vision," Int J Adv Manuf Technol, vol. 65, pp. 517-528, 2011.

[38] Zhenga H, Kongb LX, and Nahavandia S, "Automatic inspection of metallic surface

defects using genetic algorithms," Journal of Materials Processing Technology, vol.

125, pp. 427-433, 2007.

[39] Lee BY and Tarng YS, "Surface roughness inspection by computer vision in turning

operations," Int J Mach Tool Manuf 41, pp. 1251-1263, 2007.

[40] Ching-Chih Wei, Meng-Kun Liu, and Guo-Hua Huang, "Chatter Identification of

Face Milling Operation via Time-Frequency and Fourier Analysis," International

Journal of Automation and Smart Technology, pp. 25-36, 2016.

[41] X. Q. Li, Y. S. Wong, and A. Y. C. Nee, "A Comprehensive Identification of Tool

Failure and Chatter Using a Parallel Multi-ART2 Neural Network," Journal of

Manufacturing Science and Engineering, vol. 120, no. 2, p. 433, 1998.

[42] M. Lamraoui, M. Barakat, M. Thomas, and M. E. Badaoui, "Chatter detection in

milling machines by neural network classification and feature selection," Journal

of Vibration and Control, vol. 21, no. 7, pp. 1251-1266, 2013.

doi:10.6342/NTU201903636

95

[43] J. Hino, S. Okubo, and T. Yoshimura, "Chatter Prediction in End Milling by FNN

Model with Pruning," JSME International Journal Series C, vol. 49, no. 3, pp. 742-

749, 2006.

[44] Yang Y, Yu D, and Cheng J, "A fault diagnosis approach for roller bearing based

on IMF envelope spectrum and SVM," Measurement, no. 40, vol. 9–10, pp. 943-

950, 2007.

[45] Tan F, Yin M, Wang L, and Yin G, "Spindle thermal error robust modeling using

LASSO and LS-SVM," Int J Adv Manuf Technol, no. 94, vol. 5, pp. 2861-2874,

2018.

[46] Bhat NN, Dutta S, Vashisth T, Pal S, Pal SK, and Sen R, "Tool condition monitoring

by SVM classification of machined surface images in turning," Int J Adv Manuf

Technol, vol. 83, no. 9, pp. 1487-1502, 2016.

[47] Y.-C. Yao, Real-time Chatter Detection, Analysis and Suppression Using in

Intelligent Spindles Based on One-class Support Vector Machine and Local Outlier

Factor (Master thesis), 2018.

[48] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander, "LOF:

Identifying Density-Based Local Outliers," in Proc. ACM SIGMOD 2000 Int. Conf.

On Management of Data, Dalles, TX, 2000.

[49] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin, "A Practical Guide to

Support Vector Classification," Techinical report, 2003.

doi:10.6342/NTU201903636

96

[50] S. Tangjitsitcharoen, "Analysis of Chatter in Ball End Milling by Wavelet

Transform," International Journal of Industrial and Manufacturing Engineering,

vol. 6, no. 11, pp. 2438-2444, 2012.

[51] R. Brancati, E. Rocca, S. Savino, and F. Farroni, "Gear Rattle Analysis Based on

Wavelet Signal Decomposition," in Proceedings of the ASME 2012 11th Biennial

Conference On Engineering Systems Design And Analysis, 2012.

[52] Sami Ekici, Selcuk Yildirim, and Mustafa Poyraz, "Energy and entropy-based

feature extraction for locating fault on transmission lines by using neural network

and wavelet packet decomposition," Expert Systems with Applications, Volume 34,

Issue 4, 2008.

[53] Shaoke Wan, Xiaohu Li, Wei Chen, and Jun Hong, "Investigation on milling chatter

identification at early stage with variance ratio and Hilbert–Huang transform," The

International Journal of Advanced Manufacturing Technology, Volume 95, Issue

9–12, pp. 3563-3573, 2017.

[54] Nayana Gandhi, "FFT based evaluation of cutting forces and chatter vibrations in

turning by varying speed, feed, depth of cut and rake angle.," in GIT-Journal of

Engineering and Technology , 2012.

[55] Haosheng Li, Bin Wu, and Hubert Kratz, "FFT and Wavelet-Based Analysis of the

Influence of Machine Vibrations on Hard Turned Surface Topographies," Tsinghua

Science & Technology, vol. 12, no. 4, pp. 441-446, 2007.

[56] F.B.J.W.M. Hendriks, "Chatter detection in high-speed milling," Technical report,

2005.

doi:10.6342/NTU201903636

97

[57] L.R. Soares, H.M. de Oliveira, R.J.S. Cintra, and R.M. Campello de Souza, "Fourier

Eigenfunctions, Uncertainty Gabor PrincipleAnd Isoresolution Wavelets," in XX

Simpósio Brasileiro de Telecomunicações, Rio de Janeiro, 2003.

[58] Introduction to Wavelet Families (MATLAB online documentation).

[59] F. Safara, S. Doraisamy, A. Azman, A. Jantan, and S. Ranga, "Wavelet Packet

Entropy for Heart Murmurs Classification," Advances in Bioinformatics, pp. 1-6,

2012.

[60] Eiji Kondo, US 9285797 B2 (U.S. Patent), 2016.

[61] S. D. Merdol and Y. Altintas, "Multi Frequency Solution of Chatter Stability for

Low Immersion Milling," Journal of Manufacturing Science and Engineering, vol.

126, no. 3, pp. 459-466, 2004.

[62] Tamas Insperger and Gabor Stepan, "Semi-discretization method for delayed

systems," International Journal for Numerical Methods in Engineering, vol. 55, no.

5, pp. 503-518, 2002.

[63] Norden E. Huang and Zhaohua Wu, "A review on Hilbert‐Huang transform:

Method and its applications to geophysical studies," Reviews of Geophysics,

Volume 46, Issue 2, 2008.

[64] Norden E Huang and Samuel S P Shen, Hilbert-Huang Transform and Its

Applications, World Scientific, 2005.

[65] Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih,

Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H. Liu, The empirical

doi:10.6342/NTU201903636

98

mode decomposition and theHilbert spectrum for nonlinear andnon-stationary time

series analysis, Royal Society, 1996.

[66] Mathias Johansson, "The Hilbert transform," Technical report.

[67] Timothy J. Ulrich, "Envelope Calculation from the Hilbert Transform," Techinical

report, 2006.

[68] Jason D. M. Rennie, Lawrence Shih, Jaime Teevante, and David R. Karger,

"Tackling the Poor Assumptions of Naive Bayes Text Classifiers," in Proceedings

of the Twentieth International Conference on Machine Learning, 2003.

[69] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach,

Prentice Hall, 2009.

[70] Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom Mitchell, "Learning

to classify text from labeled and unlabeled documents," in Association for the

Advancement of Artificial Intelligence, 1998.

[71] Schubert, E.; Zimek, A.; Kriegel, H. -P., "Local outlier detection reconsidered: A

generalized view on locality with applications to spatial, video, and network outlier

detection," Data Mining and Knowledge Discovery, 2012.

[72] Yung-Chen Yao, Yu-Hsuan Chen, Chien-Hao Liu, Wen-Pin Shih, "Real-time

chatter detection and automatic suppression for intelligent spindles based on

wavelet packet energy entropy and local outlier factor algorithm," The International

Journal of Advanced Manufacturing Technology, pp. 1-13, 2019.

doi:10.6342/NTU201903636

99

[73] N.Y. Deng, Y.J. Tian, and C.H. Zhang, Support Vector Machines: Algorithms and

Extensions, CRC Press, 2012.

[74] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines

and other Kernel based Learning Methods, Cambridge University Press, 2000.

[75] Chen Bing, Yang Ji, Zhao Ju, and Ren Jingbo, "Milling Chatter Prediction Based

on the Information Entropy and Support Vector Machine," in International

Industrial Informatics and Computer Engineering Conference, 2015.

[76] G. S. Chen and Q. Z. Zheng, "Online chatter detection of the end milling based on

wavelet packet transform and support vector machine recursive feature

elimination," The International Journal of Advanced Manufacturing Technology,

Volume 95, Issue 1–4, pp. 775-784, 2018.

[77] Yongqing Wang, Qile Bo, Haibo Liu, Lei Hu, and Hao Zhang, "Mirror milling

chatter identification using Q-factor and SVM," The International Journal of

Advanced Manufacturing Technology, vol. 98, issue 5–8, pp. 1163-1177, 2018.

[78] R. Berwick and Village Idiot, "An Idiot’s guide to Support vector machines

(SVMs)," Technical report.

[79] Tristan Fletcher, "Support Vector Machines Explained," Technical report.

[80] Altman, N. S., "An introduction to kernel and nearest-neighbor nonparametric

regression," The American Statistician, pp. 175-185, 1992.

doi:10.6342/NTU201903636

100

Appendix A. List of cutting conditions in the dataset

Note: The chip load is fixed at 0.1 mm/tooth.

Experimentally stable cutting conditions:

Spindle speed (rpm) Depth of cut (mm) Spindle speed (rpm) Depth of cut (mm)

4500 0.2 6100 0.5

4500 0.3 6100 0.6

4600 0.2 6200 0.2

4900 0.3 6200 0.3

5000 0.2 6200 0.4

5000 0.3 6200 0.5

5000 0.4 6200 0.6

5000 0.5 6200 0.7

5000 0.6 6200 0.8

5000 0.7 6200 0.9

5000 0.8 6200 1

5000 0.9 6300 0.2

5000 1 6300 0.3

5100 0.2 6300 0.4

5100 0.3 6300 0.5

5100 0.4 6300 0.6

5100 0.5 6300 0.7

5100 0.6 6400 0.2

5200 0.2 6400 0.3

5200 0.3 6400 0.4

5200 0.4 6400 0.5

5300 0.2 6400 0.6

5300 0.3 6500 0.2

5400 0.2 6500 0.3

5500 0.2 6500 0.4

5500 0.2 6500 0.5

5600 0.2 6500 0.6

5700 0.2 6600 0.2

5800 0.2 6600 0.3

5900 0.2 6600 0.4

5900 0.3 6700 0.2

6000 0.2 6700 0.3

6000 0.3 6700 0.4

6000 0.4 6800 0.2

6100 0.2 6800 0.3

6100 0.3 6900 0.2

6100 0.4 7000 0.2

doi:10.6342/NTU201903636

101

Experimentally unstable cutting conditions:

Spindle speed (rpm) Depth of cut (mm) Spindle speed (rpm) Depth of cut (mm)

4500 0.32 5900 0.4

4500 0.4 5900 0.5

4600 0.3 6000 0.5

4700 0.2 6000 0.6

4700 0.3 6100 0.7

4800 0.2 6100 0.8

4800 0.3 6200 1.2

4900 0.4 6300 0.8

5000 1.1 6300 0.9

5100 0.7 6400 0.7

5200 0.5 6500 0.6

5200 0.6 6500 0.62

5300 0.3 6500 0.7

5300 0.4 6600 0.5

5400 0.3 6700 0.4

5500 0.3 6700 0.5

5600 0.3 6800 0.3

5700 0.2 6800 0.4

5700 0.3 6900 0.3

5800 0.3 7000 0.3

doi:10.6342/NTU201903636

102

Appendix B. Model training and validation results

Note: The number in the parenthesis indicates the maximum error rate of the 3 validation datasets (in

stratified k-fold validation with k=3). The other number is the average error rate of the three datasets.

Examples:

(a) Auto. Coeff., window=1.2, overlap=0.8, prominence=50%, a, xyz: The feature is autocorrelation

coefficient, window size 1.2 sec, overlap 0.8 sec, prominence 50%, using x-, y-, and z-axes acceleration as

feature.

(b) kNN, k=auto[1-200], weight 1/r^3: The classification method is k-nearest neighbors, with k automatically

selected between 1 to 200 for the lowest error rate, with weight 1/r^3.

(c) FFT, exp=2.75, n=5, d=100, bw=10: exponent 2.75, tooth pass filter bandwidth 10Hz, only 5 highest peaks

are used, with the minimum distance between peaks being 100 Hz.

Feature Classification
data

points
FA (%) MA %) ER (%)

Auto.

Coeff.

window=1.2, overlap=0.8,

prominence=50%, a, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

6.961

(11.03)

11.01

(14.96)

17.97

(18.97)

Auto.

Coeff.

window=0.9, overlap=0.6,

prominence=50%, a, xyz
kNN

k=auto[1-200],

weight 1/r^3
1736

7.258

(10.44)

10.79

(14.54)

18.05

(21.37)

Auto.

Coeff.

window=0.6, overlap=0.4,

prominence=50%, a, xyz
kNN

k=auto[1-200],

weight 1/r^3
2780

6.1

(10.53)

11.24

(14.62)

17.34

(19.78)

Auto.

Coeff.

window=0.3, overlap=0.2,

prominence=50%, a, xyz
kNN

k=auto[1-200],

weight 1/r^3
5895

6.493

(9.336)

11.48

(16.49)

17.97

(23.54)

Auto.

Coeff.

window=1.2, overlap=0,

prominence=50%, a, xyz
kNN

k=auto[1-200],

weight 1/r^3
456

6.895

(13.51)

10.03

(13.42)

16.93

(18.24)

Auto.

Coeff.

window=0.9, overlap=0,

prominence=50%, a, xyz
kNN

k=auto[1-200],

weight 1/r^3
608

6.806

(11.68)

12.33

(13.43)

19.13

(22.84)

Auto.

Coeff.

window=0.6, overlap=0,

prominence=50%, a, xyz
kNN

k=auto[1-200],

weight 1/r^3
972

6.361

(9.873)

12.57

(16.41)

18.93

(23.53)

Auto.

Coeff.

window=0.3, overlap=0,

prominence=50%, a, xyz
kNN

k=auto[1-200],

weight 1/r^3
2010

6.357

(9.035)

10.96

(12.59)

17.31

(17.57)

Auto.

Coeff.

window=0.1, overlap=0,

prominence=50%, a, xyz
kNN

k=auto[1-2000],

weight 1/r^3
6169

6.654

(8.674)

12.08

(14.57)

18.74

(19.79)

Auto.

Coeff.

window=0.05, overlap=0,

prominence=50%, a, xyz
kNN

k=auto[1-2000],

weight 1/r^3
12338

8.793

(11.8)

14.01

(15.78)

22.8

(23.05)

Auto.

Coeff.

window=0.9, overlap=0.6,

prominence=10%, a, xyz
kNN

k=auto[1-200],

weight 1/r^3
1736

7.137

(14.01)

11.45

(16.99)

18.58

(21.59)

Auto.

Coeff.

window=0.9, overlap=0.6,

prominence=30%, a, xyz
kNN

k=auto[1-200],

weight 1/r^3
1736

7.39

(9.591)

11.58

(14.12)

18.97

(19.79)

doi:10.6342/NTU201903636

103

Auto.

Coeff.

window=0.9, overlap=0.6,

prominence=70%, a, xyz
kNN

k=auto[1-200],

weight 1/r^3
1736

6.805

(10.05)

10.66

(13.38)

17.46

(17.99)

Auto.

Coeff.

window=0.9, overlap=0.6,

prominence=90%, a, xyz
kNN

k=auto[1-200],

weight 1/r^3
1736

6.16

(10.12)

11.77

(14.59)

17.93

(18.8)

Auto.

Coeff.

window=0.9, overlap=0.6,

prominence=50%, v, xyz
kNN

k=auto[1-200],

weight 1/r^3
1736

7.548

(10.55)

8.868

(11.05)

16.42

(20.18)

Auto.

Coeff.

window=0.9, overlap=0.6,

prominence=50%, x, xyz
kNN

k=auto[1-200],

weight 1/r^3
1736

8.846

(9.615)

9.11

(9.464)

17.96

(18.71)

FFT
window=1.2, overlap=0.8,

exp=0.5, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

8.539

(9.569)

12.25

(14.25)

20.79

(21.77)

FFT
window=1.2, overlap=0.8,

exp=0.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

6.389

(11.67)

12.07

(14.29)

18.46

(20.71)

FFT
window=1.2, overlap=0.8,

exp=1, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

4.007

(8.235)

8.993

(11.5)

13

(15.53)

FFT
window=1.2, overlap=0.8,

exp=1.25, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

3.228

(6.921)

6.969

(8.685)

10.2

(14.32)

FFT
window=1.2, overlap=0.8,

exp=1.5, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

1.846

(4.513)

6.136

(7.601)

7.982

(12.11)

FFT
window=1.2, overlap=0.8,

exp=1.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

1.601

(3.294)

5.777

(8.706)

7.379

(12)

FFT
window=1.2, overlap=0.8,

exp=2, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

2.01

(4.245)

5.439

(6.667)

7.449

(8.726)

FFT
window=1.2, overlap=0.8,

exp=2.25, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

2.318

(5.176)

5.525

(7.5)

7.843

(9.647)

FFT
window=1.2, overlap=0.8,

exp=2.5, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

2.332

(5.489)

5.93

(6.361)

8.262

(10.98)

FFT
window=1.2, overlap=0.8,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

1.808

(2.778)

5.067

(6.921)

6.875

(9.069)

FFT
window=1.2, overlap=0.8,

exp=3, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

2.441

(3.505)

4.953

(9.813)

7.393

(13.32)

FFT
window=1.2, overlap=0.8,

exp=3.5, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

2.643

(6.161)

4.334

(5.45)

6.977

(11.61)

FFT
window=1.2, overlap=0.8,

exp=4, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

3.22

(7.399)

4.45

(5.303)

7.67

(11.46)

FFT
window=1.2, overlap=0.8,

exp=5, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

2.201

(3.066)

4.72

(5.5)

6.92

(7.25)

FFT
window=1.2, overlap=0.8,

exp=6, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

2.089

(4.225)

4.628

(5.736)

6.717

(7.746)

FFT
window=1.2, overlap=0.8,

exp=8, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

2.743

(5.201)

5.375

(8.312)

8.118

(9.848)

FFT
window=1.2, overlap=0.8,

exp=10, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

3.506

(5.742)

4.78

(5.955)

8.286

(9.569)

doi:10.6342/NTU201903636

104

FFT
window=1.2, overlap=0.8,

exp=2.75, bw=2.5, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

1.449

(3.58)

5.216

(7.635)

6.665

(7.635)

FFT
window=1.2, overlap=0.8,

exp=2.75, bw=5, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

1.801

(2.837)

5.528

(7.565)

7.329

(10.4)

FFT
window=1.2, overlap=0.8,

exp=2.75, bw=20, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

3.439

(5.314)

5.172

(7.488)

8.611

(12.8)

FFT
window=1.2, overlap=0.8,

exp=2.75, bw=40, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

1.621

(3.095)

4.831

(6.112)

6.451

(7.857)

FFT
window=0.9, overlap=0.6,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1736

1.721

(2.152)

5.851

(7.719)

7.572

(8.772)

FFT
window=0.6, overlap=0.4,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
2780

2.455

(3.459)

5.818

(8.491)

8.273

(11.95)

FFT
window=0.3, overlap=0.2,

exp=2.75, bw=10, xyz
kNN

k=auto[1-500],

weight 1/r^3
5895

3.582

(5.143)

7.484

(11.05)

11.07

(12.51)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
456

1.705

(4.459)

4.63

(6.579)

6.335

(7.237)

FFT
window=0.9, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
608

1.94

(3.81)

5.862

(8.867)

7.802

(10.48)

FFT
window=0.6, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
972

2.679

(3.481)

5.614

(8.358)

8.293

(11.04)

FFT
window=0.3, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
2010

2.917

(4.512)

7.107

(8.006)

10.02

(12.52)

FFT
window=0.1, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-500],

weight 1/r^3
6169

3.803

(5.082)

9.124

(9.545)

12.93

(14.16)

FFT
window=0.05, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-2000],

weight 1/r^3
12338

3.827

(4.573)

9.895

(10.83)

13.72

(15.4)

FFT

window=1.2, overlap=0.8,

exp=2.75, n=5, d=10,

bw=10, xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.906

(5.45)

4.907

(6.234)

7.813

(11.14)

FFT

window=1.2, overlap=0.8,

exp=2.75, n=5, d=50,

bw=10, xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.531

(3.286)

3.98

(5.634)

6.511

(8.92)

FFT

window=1.2, overlap=0.8,

exp=2.75, n=5, d=100,

bw=10, xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

3.108

(3.791)

4.371

(7.109)

7.479

(10.9)

FFT

window=1.2, overlap=0.8,

exp=2.75, n=10, d=10,

bw=10, xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

3.581

(5.164)

4.645

(8.291)

8.226

(10.55)

FFT

window=1.2, overlap=0.8,

exp=2.75, n=10, d=50,

bw=10, xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

3.565

(7.952)

3.871

(5.911)

7.436

(10.36)

doi:10.6342/NTU201903636

105

FFT

window=1.2, overlap=0.8,

exp=2.75, n=10, d=100,

bw=10, xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

8.539

(15.71)

4.297

(6.683)

12.84

(18.1)

FFT

window=1.2, overlap=0.8,

exp=2.75, n=30, d=10,

bw=10, xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.811

(5.647)

5.017

(7.214)

7.829

(8.458)

FFT

window=1.2, overlap=0.8,

exp=2.75, n=30, d=50,

bw=10, xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.003

(4.235)

4.437

(7.765)

6.441

(12)

FFT

window=1.2, overlap=0.8,

exp=2.75, n=30, d=100,

bw=10, xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

1.926

(4.502)

5.065

(7.214)

6.991

(7.214)

c/tp

window=1.2, overlap=0.8,

exp=2.75, n=30, range=5,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.295

(2.716)

6.154

(7.092)

8.449

(9.456)

c/tp

window=1.2, overlap=0.8,

exp=2.75, n=20, range=5,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

3.081

(5.213)

5.515

(6.733)

8.596

(10.19)

c/tp

window=1.2, overlap=0.8,

exp=2.75, n=10, range=5,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.251

(4.481)

6.107

(10.61)

8.358

(10.86)

c/tp

window=1.2, overlap=0.8,

exp=2.75, n=5, range=5,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

3.53

(3.991)

6.466

(7.277)

9.996

(11.27)

n/all

window=1.2, overlap=0.8,

exp=2.75, n=5, range=5,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

6.524

(9.39)

8.713

(11.06)

15.24

(17.84)

n/all

window=1.2, overlap=0.8,

exp=2.75, n=10, range=5,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

6.07

(11.37)

8.051

(8.294)

14.12

(19.67)

n/all

window=1.2, overlap=0.8,

exp=2.75, n=20, range=5,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

6.819

(7.769)

8.049

(8.772)

14.87

(16.54)

n/all

window=1.2, overlap=0.8,

exp=2.75, n=30, range=5,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

6.618

(8.983)

8.203

(9.456)

14.82

(18.44)

WPT

window=1.2, overlap=0.8,

exp=2.75, haar, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

1.934

(3.318)

5.19

(6.923)

7.124

(9.242)

WPT

window=1.2, overlap=0.8,

exp=2.75, coif1, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.25

(4.481)

4.953

(6.84)

7.204

(11.32)

WPT

window=1.2, overlap=0.8,

exp=2.75, coif2, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.89

(7.16)

6.084

(9.25)

8.974

(12.89)

WPT

window=1.2, overlap=0.8,

exp=2.75, coif3, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.649

(5.674)

5.475

(6.856)

8.125

(12.53)

WPT

window=1.2, overlap=0.8,

exp=2.75, coif4, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

3.245

(5.226)

6.229

(7.601)

9.473

(12.83)

WPT

window=1.2, overlap=0.8,

exp=2.75, coif8, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

3.066

(5.938)

6.095

(9.181)

9.162

(11.17)

doi:10.6342/NTU201903636

106

WPT

window=1.2, overlap=0.8,

exp=2.75, coif12, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.955

(6.047)

6.066

(6.512)

9.021

(12.56)

WPT

window=1.2, overlap=0.8,

exp=2.75, sym2, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

1.917

(3.981)

5.327

(6.089)

7.244

(10.07)

WPT

window=1.2, overlap=0.8,

exp=2.75, sym3, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.651

(5.14)

4.955

(7.557)

7.606

(11.68)

WPT

window=1.2, overlap=0.8,

exp=2.75, sym4, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.415

(4.717)

5.671

(8.255)

8.085

(12.97)

WPT

window=1.2, overlap=0.8,

exp=2.75, sym5, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

1.232

(1.546)

6.517

(8.837)

7.749

(10.23)

WPT

window=1.2, overlap=0.8,

exp=2.75, sym6, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

3.122

(7.857)

5.1

(7.654)

8.222

(11.67)

WPT

window=1.2, overlap=0.8,

exp=2.75, sym10, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.301

(2.709)

5.659

(6.888)

7.96

(9.026)

WPT

window=1.2, overlap=0.8,

exp=2.75, sym20, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.706

(6.604)

5.927

(6.7)

8.633

(12.03)

WPT

window=1.2, overlap=0.8,

exp=2.75, bior1.3, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.958

(7.637)

5.492

(6.931)

8.45

(13.37)

WPT

window=1.2, overlap=0.8,

exp=2.75, bior1.5, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

1.393

(1.733)

5.279

(7.765)

6.672

(9.176)

WPT

window=1.2, overlap=0.8,

exp=2.75, bior2.2, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.683

(7.277)

5.719

(7.96)

8.402

(13.38)

WPT

window=1.2, overlap=0.8,

exp=2.75, bior2.4, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

3.781

(9.33)

5.958

(7.379)

9.739

(13.16)

WPT

window=1.2, overlap=0.8,

exp=2.75, bior3.1, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

3.06

(4.976)

6.786

(9.61)

9.845

(13.03)

WPT

window=1.2, overlap=0.8,

exp=2.75, rbio1.3, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.432

(4.481)

5.484

(8.019)

7.916

(12.5)

WPT

window=1.2, overlap=0.8,

exp=2.75, rbio1.5, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.773

(7.059)

5.071

(6.203)

7.844

(9.882)

WPT

window=1.2, overlap=0.8,

exp=2.75, rbio2.2, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

3.13

(9.39)

5.137

(7.463)

8.267

(12.44)

doi:10.6342/NTU201903636

107

WPT

window=1.2, overlap=0.8,

exp=2.75, rbio2.4, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

1.218

(2.148)

6.116

(9)

7.334

(9.75)

WPT

window=1.2, overlap=0.8,

exp=2.75, rbio3.1, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

1.747

(2.338)

4.887

(10.07)

6.634

(11.24)

WPT
window=1.2, overlap=0.8,

exp=2.75, db1, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

2.255

(5.516)

5.616

(8.148)

7.871

(8.889)

WPT
window=1.2, overlap=0.8,

exp=2.75, db2, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

3.461

(7.329)

5.611

(7.731)

9.072

(11.58)

WPT
window=1.2, overlap=0.8,

exp=2.75, db3, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

3.01

(7.009)

5.739

(6.983)

8.749

(12.85)

WPT
window=1.2, overlap=0.8,

exp=2.75, db4, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

2.477

(5.924)

5.992

(6.818)

8.469

(12.56)

WPT

window=1.2, overlap=0.8,

exp=2.75, db10, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

1.935

(3.271)

5.156

(8.879)

7.091

(12.15)

WPT

window=1.2, overlap=0.8,

exp=2.75, db15, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.929

(7.26)

5.539

(8.586)

8.468

(11.48)

WPT

window=1.2, overlap=0.8,

exp=2.75, db20, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

1.13

(2.118)

4.89

(6.824)

6.019

(8.941)

WPT

window=1.2, overlap=0.8,

exp=2.75, db30, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

3.089

(8.491)

5.87

(7.235)

8.958

(13.68)

WPT

window=1.2, overlap=0.8,

exp=2.75, dmey, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1216

2.989

(5.425)

6.321

(6.84)

9.311

(12.26)

WPT

window=0.9, overlap=0.6,

exp=2.75, db20, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
1736

3.094

(6.811)

6.15

(9.683)

9.244

(10.63)

WPT

window=0.6, overlap=0.4,

exp=2.75, db20, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
2780

3.266

(7.239)

6.391

(8.705)

9.657

(11.27)

WPT

window=0.3, overlap=0.2,

exp=2.75, db20, bw=10,

xyz

kNN
k=auto[1-500],

weight 1/r^3
5895

3.375

(5.891)

6.975

(8.277)

10.35

(14.17)

WPT

window=1.2, overlap=0,

exp=2.75, db20, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
456

1.287

(2.5)

5.883

(8.054)

7.17

(9.375)

WPT

window=0.9, overlap=0,

exp=2.75, db20, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
608

2.936

(5.742)

6.412

(7.656)

9.347

(13.4)

WPT

window=0.6, overlap=0,

exp=2.75, db20, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
972

3.248

(6.928)

6.464

(7.53)

9.712

(14.46)

WPT

window=0.3, overlap=0,

exp=2.75, db20, bw=10,

xyz

kNN
k=auto[1-200],

weight 1/r^3
2010

3.825

(7.648)

7.688

(10.63)

11.51

(12.84)

WPT

window=0.1, overlap=0,

exp=2.75, db20, bw=10,

xyz

kNN
k=auto[1-500],

weight 1/r^3
6169

4.325

(5.477)

9.005

(11.35)

13.33

(14.69)

WPT

window=0.05, overlap=0,

exp=2.75, db20, bw=10,

xyz

kNN
k=auto[1-2000],

weight 1/r^3
12338

4.531

(5.464)

10.41

(12.65)

14.94

(18.12)

doi:10.6342/NTU201903636

108

WPT
window=1.2, overlap=0.8,

exp=2.75, db20, bw=10, x
kNN

k=auto[1-200],

weight 1/r^3
1216

8.892

(13.7)

8.843

(11.25)

17.73

(21.15)

WPT
window=1.2, overlap=0.8,

exp=2.75, db20, bw=10, y
kNN

k=auto[1-200],

weight 1/r^3
1216

9.433

(13.46)

8.678

(11.76)

18.11

(22.6)

WPT
window=1.2, overlap=0.8,

exp=2.75, db20, bw=10, z
kNN

k=auto[1-200],

weight 1/r^3
1216

8.077

(10.34)

5.441

(6.971)

13.52

(17.31)

WPT

window=1.2, overlap=0.8,

exp=2.75, db20, bw=10,

xy

kNN
k=auto[1-200],

weight 1/r^3
1216

5.152

(12.5)

5.654

(8.951)

10.81

(15.87)

WPT
window=1.2, overlap=0.8,

exp=2.75, db20, bw=10, xz
kNN

k=auto[1-200],

weight 1/r^3
1216

4.849

(9.856)

6.501

(8.173)

11.35

(18.03)

WPT
window=1.2, overlap=0.8,

exp=2.75, db20, bw=10, yz
kNN

k=auto[1-200],

weight 1/r^3
1216

5.449

(8.654)

5.856

(7.161)

11.3

(14.9)

HHT
window=1.2, overlap=0.8,

xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

4.18

(5.952)

8.043

(9.383)

12.22

(14.05)

HHT
window=1.2, overlap=0.8,

w/ WPT, xyz
kNN

k=auto[1-200],

weight 1/r^3
1216

2.049

(3.465)

2.907

(5.437)

4.957

(7.092)

HHT
window=1.2, overlap=0.8,

w/ WPT, x
kNN

k=auto[1-200],

weight 1/r^3
1216

3.497

(4.95)

2.291

(3.073)

5.788

(7.329)

HHT
window=1.2, overlap=0.8,

w/ WPT, y
kNN

k=auto[1-200],

weight 1/r^3
1216

10.52

(17.02)

11.31

(16.2)

21.83

(24.35)

HHT
window=1.2, overlap=0.8,

w/ WPT, z
kNN

k=auto[1-200],

weight 1/r^3
1216

3.977

(5.437)

4.613

(7.565)

8.59

(13)

HHT
window=1.2, overlap=0.8,

w/ WPT, xy
kNN

k=auto[1-200],

weight 1/r^3
1216

3.045

(3.599)

2.287

(3.31)

5.332

(6.619)

HHT
window=1.2, overlap=0.8,

w/ WPT, xz
kNN

k=auto[1-200],

weight 1/r^3
1216

2.765

(5.693)

2.092

(4.019)

4.856

(7.178)

HHT
window=1.2, overlap=0.8,

w/ WPT, yz
kNN

k=auto[1-200],

weight 1/r^3
1216

3.474

(6.147)

4.383

(6.619)

7.857

(12.77)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz

Thres-

hold
 456 3.289 3.289 6.579

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
LOF

n=auto[1-200],

10% unstable
456

10.4

(14.8)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
LOF

n=auto[1-200],

15% unstable
456

8.53

(14.4)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
LOF

n=auto[1-200],

20% unstable
456

9.01

(18.1)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz

Naïve

Bayes
Gaussian 456 2.193 3.07 5.263

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz

Naïve

Bayes
Bernoulli 456 2.193 3.289 5.482

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight uniform
456

0.646

(1.258)

5.222

(6.918)

5.868

(8.176)

doi:10.6342/NTU201903636

109

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r
456

1.065

(2.516)

4.564

(6.289)

5.629

(8.805)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^2
456

1.275

(3.145)

4.354

(5.66)

5.629

(8.805)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^3
456

1.485

(3.774)

4.576

(5.66)

6.061

(9.434)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight 1/r^4
456

1.48

(3.774)

4.349

(5.66)

5.829

(9.434)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight e^-r
456

0.646

(1.258)

5.222

(6.918)

5.868

(8.176)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight e^-2r
456

0.646

(1.258)

5.222

(6.918)

5.868

(8.176)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight e^-5r
456

0.646

(1.258)

4.773

(6.918)

5.419

(8.176)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight e^-10r
456

0.8557

(1.887)

4.354

(5.66)

5.21

(7.547)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
kNN

k=auto[1-200],

weight e^-100r
456

2.096

(6.289)

3.691

(5.031)

5.787

(11.32)

FFT
window=1.2, overlap=0,

exp=2.75, bw=10, xyz
SVM

C-SVM, C=2.5,

kernel=sigmoid,

deg=4

456
1.946

(4.487)

3.701

(5.263)

5.647

(8.974)

