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中文摘要 

 維持高產率對於銑削加工的效率而言十分重要。顫振是加工時發生的一種

自激式振動，在實務中限制了產率。過去的研究提出了許多顫振偵測的方法，利

用各種訊號處理的方法如快速傅立葉轉換(FFT)，小波包轉換(WPT)，及希爾伯特

-黃轉換(HHT)。許多資料分類演算法也被應用於顫振偵測。雖然顫振偵測的領域

已有許多文獻，我們仍不清楚何種方法可以達到較佳的正確率與偵測速率。 

在本研究中，我們將測試多種訊號處理方法以及資料分類的演算法，使用

的資料集中包含各種主軸轉速及切深。我們結合多種訊號處理方法及分類演算法，

開發了一個顫振辨識平台以建立分類模型並評估其性能。資料分類方法包含了固

定的閾值，最近鄰居法(k-NN)，單純貝氏分類器，支持向量機(SVM)，局部密度

因子(LOF)，以及類神經網路。以分類精準度而言，結果顯示最近鄰居法搭配小

波包轉換及希爾伯特-黃轉換是最佳的方法，誤判率僅 2.2%。 

 

關鍵字: 顫振，小波包轉換，希爾伯特-黃轉換，最近鄰居法，支持向量機 
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Abstract 

Maintaining high production yield is important for efficiency in the milling process. 

Chatter is a type of self-excited vibration that can occur during machining, and limits the 

production yield in practice. In the past, many chatter detection methods were proposed 

using different signal processing methods such as Fast Fourier transform (FFT), wavelet 

packet transform (WPT), and Hilbert-Huang transform (HHT). Several classification 

methods were also applied in chatter detection. Despite the large amount of researches 

regarding chatter detection, it is unclear which of these proposed methods are better in 

terms of accuracy and detection speed. 

In this research, we test the signal processing methods and classification algorithms 

against the entire dataset, with a wide range of spindle speeds and depth of cuts. A chatter 

identification platform is developed to train models and evaluate their performance, using 

combinations of signal processing methods and classification algorithms. The 

classification methods include numerical threshold, k-nearest neighbors (K-NN), Naïve 

Bayes, support vector machine (SVM), local outlier factor (LOF), and artificial neural 

network. K-NN proves to be the optimal method when using WPT and HHT for signal 

processing, with an error rate of 2.2%.  

 

Keywords: chatter, wavelet packet transform, Hilbert-Huang transform, k-nearest 

neighbor, support vector machine  

  



doi:10.6342/NTU201903636

5 
 

Table of Contents 

1. Introduction ........................................................................................................... 12 

1.1 High-speed milling and chatter ........................................................................ 12 

1.2 Chatter detection .............................................................................................. 14 

1.3 Aim of this research ......................................................................................... 16 

1.4 Structure of the thesis ...................................................................................... 18 

2. Signal processing methods and feature extraction ............................................. 19 

2.1 Fast Fourier transform (FFT) ........................................................................... 19 

2.2 Wavelet packet transform (WPT) .................................................................... 22 

2.3 Autocorrelation coefficients ............................................................................ 26 

2.4 Hilbert-Huang transform (HHT) ...................................................................... 29 

3. Classification algorithms ...................................................................................... 33 

3.1 Numerical threshold ......................................................................................... 33 

3.2 Naïve Bayes ..................................................................................................... 34 

3.3 Local outlier factor (LOF) ............................................................................... 35 

3.4 Support vector machine (SVM) ....................................................................... 36 

3.5 K-nearest neighbor (k-NN) .............................................................................. 38 

3.6 Artificial neural network (ANN) ..................................................................... 39 

4. Implementation...................................................................................................... 40 

4.1 Architecture of the data analysis and model training platform ............................... 40 

4.2 Implementation details ..................................................................................... 42 

4.2.1 Zero-padding before FFT ............................................................................... 42 



doi:10.6342/NTU201903636

6 
 

4.2.2 Computing autocorrelation coefficients ......................................................... 43 

4.2.3 Peak finding.................................................................................................... 45 

4.3 Validation ......................................................................................................... 47 

5. Results and discussion ........................................................................................... 48 

5.1 Data collection and labeling.................................................................................. 48 

5.2 Comparisons of classification algorithms ............................................................. 49 

5.3 Parameters optimizations ................................................................................. 54 

5.3.1 Fast Fourier transform (FFT) ......................................................................... 55 

5.3.2 Wavelet packet transform (WPT) .................................................................. 63 

5.3.3 Autocorrelation coefficients ........................................................................... 69 

5.3.4 Hilbert-Huang transform (HHT) .................................................................... 77 

5.3.5 Frequency spectrum (with artificial neural network) ..................................... 79 

5.4 Comparison of features ......................................................................................... 80 

5.5 Effect of window size ........................................................................................... 83 

5.5.1 Error rates ....................................................................................................... 83 

5.5.2 Detection speed .............................................................................................. 85 

6. Conclusions and future work ............................................................................... 88 

References...................................................................................................................... 89 

Appendix A. List of cutting conditions in the dataset ............................................. 100 

Appendix B. Model training and validation results ................................................ 102 

 

  



doi:10.6342/NTU201903636

7 
 

List of figures 

Fig. 1. Chatter leaving undesired marks on the surface of the workpiece [9] ................ 13 

Fig. 2. Illustration of how chatter develops due to abrupt change in chip thickness [2] 13 

Fig. 3. An example of a stability lobe diagram [14] ....................................................... 14 

Fig. 4. (a) Spectrum of the vibration signal after FFT, (b) Intrinsic mode functions 

(IMFs) obtained from Hilbert-Huang transform [40] ..................................................... 15 

Fig. 5. Illustrations of LOF and SVM ............................................................................ 16 

Fig. 6. Power spectrum density (PSD) obtained by applying FFT on the sound signal 

during cutting. [56] ......................................................................................................... 20 

Fig. 7. Illustration of window and overlap ..................................................................... 22 

Fig. 8. Various families of mother wavelets, including (a) Haar, (b) Daubechies (db), 

and (c) biorthogonal (bior). [58] ..................................................................................... 23 

Fig. 9. Wavelet transform produces lower frequency resolution at high frequencies .... 24 

Fig. 10. Wavelet packet transform and its corresponding coefficient tree for each 

frequency bands [59] ...................................................................................................... 25 

Fig. 11. Illustration of the concept of autocorrelation coefficient .................................. 27 

Fig. 12. IMFs of a cutting signal obtained using HHT ................................................... 31 

Fig. 13. Illustration of Hilbert transform on vibration signal [67] ................................. 31 

Fig. 14. Hilbert spectrum of unstable (left) and stable (right) cutting signals calculated 

and visualized with MATLAB ....................................................................................... 32 

Fig. 15. An example of visualized local outlier factors .................................................. 36 

Fig. 16. (a) Illustration of linear SVM for a linearly-separable dataset [78] (b) Non-

linear SVM with RBF kernel [79] .................................................................................. 37 

Fig. 17 Architecture of model training platform for chatter identification .................... 41 



doi:10.6342/NTU201903636

8 
 

Fig. 18. Illustration of the computation of discrete convolution .................................... 44 

Fig. 19. Illustration of the peak finding procedure and the calculation of prominence of a 

peak ................................................................................................................................. 46 

Fig. 20. Illustration of stratified k-fold validation [47] .................................................. 47 

Fig. 21 Experiment setup when gathering the dataset .................................................... 49 

Fig. 22. Test costs of LOF for each of the three test datasets, and the average costs ..... 50 

Fig. 23. Test error rates of K-NN for each of the three test datasets, and the average 

error rates. ....................................................................................................................... 52 

Fig. 24. Error rates when different classification methods are used with the same feature 

(FFT relative energy) ...................................................................................................... 54 

Fig. 25. FFT spectrum raised to exponent p for p = 0.5, 1, 2.75, and 8 ......................... 56 

Fig. 26. Effect of exponent p on classification error rates .............................................. 57 

Fig. 27. FFT relative energy plots for (a) p = 0.5, (b) p = 1, (c) p = 2.75, and (d) p =

8 ...................................................................................................................................... 58 

Fig. 28. Comparison of error rates with different FFT related features ......................... 63 

Fig. 29. Comparison of average error rates within each mother wavelets family .......... 65 

Fig. 30. Comparison of average error rates within each mother wavelets family .......... 66 

Fig. 31. Comparison of average error rates when different axes are used as feature in k-

NN classifier ................................................................................................................... 66 

Fig. 32. Normalized relative energies 𝐸′𝑊𝑃𝑇(𝑦) and 𝐸′𝑊𝑃𝑇(𝑧) using WPT ....... 68 

Fig. 33. Autocorrelation coefficient for a stable cut ....................................................... 70 

Fig. 34. Autocorrelation coefficient for an unstable cut ................................................. 70 

Fig. 35 Autocorrelation coefficient of (a) original acceleration signal, (b) velocity 

signal, and (c) displacement signal. ................................................................................ 71 

Fig. 36. Distribution of standardized phase differences 𝜀 for x-, y-, and z-axes. ........... 72 



doi:10.6342/NTU201903636

9 
 

Fig. 37. Phase differences 𝜀 of the entire dataset, in x-, y-, and z-directions. ................ 74 

Fig. 38. Distribution of the y- and z-axis relative energy after only HHT (top), and 

WPT+HHT (bottom) ...................................................................................................... 78 

Fig. 39. Comparison of average error rates when different axes are used as feature ..... 79 

Fig. 40. Probability distribution function (PDF) of the y-axis features used in this 

research, for both stable and unstable categories, including (a) 𝐸1,  𝐹𝐹𝑇, (b) 𝐸2,  𝐹𝐹𝑇, 

(c) 𝐸3,  𝐹𝐹𝑇, (d) 𝐸𝑊𝑃𝑇, (e) 𝜖 from autocorrelation coefficient, and (f) 𝐸𝐻𝐻𝑇 ............ 81 

Fig. 41. Comparison of error rates of all features ........................................................... 82 

Fig. 42. Variation of error rates with respect to window size for (a) EFFT, 1, (b) WPT, 

(c) phase ε for autocorrelation coefficient, and (d) HHT ............................................... 84 

Fig. 43. Variation of detected time with respect to window size for (a) 𝐸𝐹𝐹𝑇, 1, (b) 

WPT, (c) phase 𝜀 for autocorrelation coefficient, and (d) HHT. .................................... 86 

Fig. 44. Relative detected times for each different feature and window sizes for FFT 

(𝐸1, 𝐹𝐹𝑇), WPT, autocorrelation coefficient, and HHT (with WPT) ............................ 87 

 

  



doi:10.6342/NTU201903636

10 
 

List of tables 

Table 1. Major libraries used to implement the platform ............................................... 42 

Table 2. Performance test on numpy.fft.rfft() ................................................................ 43 

Table 3. Classification error rates using FFT (𝐸1, 𝐹𝐹𝑇) and different unstable data point 

ratio in LOF .................................................................................................................... 51 

Table 4. Classification error rates using k-NN and different weights ............................ 53 

Table 5. Classification error rates using FFT (𝐸1, 𝐹𝐹𝑇) and different filter bandwidths

 ........................................................................................................................................ 59 

Table 6. Classification error rates using FFT (𝐸1, 𝐹𝐹𝑇) and different window sizes .... 60 

Table 7. Error rates using 𝐸1, 𝐹𝐹𝑇, by ignoring all but 𝑛 highest peaks ....................... 61 

Table 8. Classification error rates using FFT (𝐸2, 𝐹𝐹𝑇) and different number of peaks 62 

Table 9. Classification error rates using FFT (𝐸3, 𝐹𝐹𝑇) and different number of peaks 62 

Table 10. Classification error rates using WPT and different window sizes ................. 67 

Table 11. Classification error rates using autocorrelation coefficients and different 

window sizes .................................................................................................................. 75 

Table 12. Classification error rates using autocorrelation coefficients and different 

prominence percentages ................................................................................................. 76 

Table 13. Comparison of classification error rates between acceleration, velocity, and 

displacement using autocorrelation coefficients............................................................. 76 

Table 14. Classification error rates using only HHT, and WPT+HHT .......................... 79 

 

  



doi:10.6342/NTU201903636

11 
 

List of abbreviations 

MA Missing alarm rate 

FA False alarm rate 

ER Error rate 

 

  



doi:10.6342/NTU201903636

12 
 

1. Introduction 

1.1   High-speed milling and chatter 

Production yield is important for CNC machines. One way to increase production 

yield is by increasing the spindle speed in the milling process. By increasing the spindle 

speed, the material removal rate is increased proportionally, so is the production yield [1].  

However, by increasing the cutting speed, new problem arises. Chatter is a 

phenomenon caused by the mechanical interactions between the cutting tool and the 

workpiece. This self-excited vibration [2] causes significant issues in machining, causing 

large vibrations, which limits productivity and may produce poor surface finish on the 

workpiece [3] [4]. Fig. 1 shows a comparison of surface finishes between chatter and 

chatter-free cutting. Fig. 2 illustrates the effect of chip thickness in chatter development. 

Vibrations in the cutting process causes variations in chip thickness, and certain 

combination of spindle speed, feed rate, material, and cutting tool causes the chip 

thickness to drastically fluctuate like Fig. 2 (c). This is the origin of chatter. 

The cause of chatter and its mechanical models are well-studied. The cutting process 

can be described with as a non-linear system [5], and a stability lobe diagram (SLD) was 

used to indicate which cutting conditions cause chatter [6]. Fourier series was used to 

obtain an analytical description of SLDs [7], and was later verified experimentally [8]. 
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Fig. 1. Chatter leaving undesired marks on the surface of the workpiece [9] 

 

 
Fig. 2. Illustration of how chatter develops due to abrupt change in chip thickness [2] 

 

Many methods were proposed to calculate the SLD, including a previous research 

using transfer functions [10], and a method using multi-frequency solution [11]. Semi-

discretization method was applied to solve the non-linear delayed differential equations 

describing chatter stability [12], and had been verified as accurate approach for SLD 

computations [13]. Fig. 3 shows a SLD with spindle speed on the x-axis and depth of cut 

on the y-axis. The region above the black curve is the chatter region, i.e. any cutting 

condition above the black curve is unstable. 
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Fig. 3. An example of a stability lobe diagram [14] 
 

1.2   Chatter detection 

The most straightforward way to avoid chatter is to obtain the SLD [15] [16] [17], 

and avoid cutting in the unstable range. However, several parameters have effects on the 

SLD, including the vibration modes of the CNC machine, the cutting tool, the material of 

the workpiece, and the wear of the cutting tool. In addition, cutting force signal is required 

to calculate the SLD, which typically requires a dynamometer. In this research, we utilize 

chatter detection methods that do not require a dynamometer. 

In the past, many chatter detection methods were proposed using different signal 

processing methods. FFT of vibration signals were used to calculate the optimal cutting 

path [18]. FFT can also be calculated every 16 samples for quick detection [19]. Wavelet 

transform is a signal processing method that was also applied to chatter recognition [20]. 

Wavelet packet transform (WPT) is an extension of wavelet transform to get better 
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frequency resolution at certain frequency ranges, and was used in several previous works 

[21] [22] [23] [24] [25] [26] [27]. R-value was also used to monitor chatter by measuring 

the spindle drive current [28] [29]. Time domain cutting force signal [30], or its power 

spectrum density [31] can also be utilized. Hilbert-Huang transform has also been proven 

effective [32] [33] [34] [35] [36]. Fig. 4 (a) shows an example of FFT spectrum, and Fig. 

4 (b) is the intrinsic mode functions (IMFs) decomposed from the time-domain vibration 

signals. Machine vision was also applied in combination with short-time Fourier 

transform (STFT) [37], or texture analysis using neural networks [38] [39]. 

 

 
(a) (b) 

 

Fig. 4. (a) Spectrum of the vibration signal after FFT, (b) Intrinsic mode functions 

(IMFs) obtained from Hilbert-Huang transform [40] 

 

After features are extracted with one of the signal processing methods, some 

researches set a fixed threshold as the boundary of chatter (unstable) and non-chatter 

(stable) signals [21] [31] [41] [42] [43]. A classification algorithm may be used to train a 

model to classify unstable and stable data for better accuracy. Well-known classification 
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algorithms such as support-vector machine (SVM) [21] [44] [45] [46], k-means [31], local 

outlier factor (LOF) [47], and artificial neural networks [41] [42] [43] were used in the 

past and were proven effective. Fig. 5 (a) and (b) shows examples of dataset classified 

with LOF and SVM, respectively. 

 

 
(a) (b) 

 

Fig. 5. Illustrations of LOF and SVM 

(a) Each data point is assigned a local outlier factor (LOF) and outliers of the dataset 

can be identified [48]. (b) An illustration of data classified using support vector 

machine (SVM). The solid lines are support vectors separating the two classes – 

triangle and circle [49]. 

 

1.3   Aim of this research 

Despite the large variety of existing chatter identification methods, there are two 

main issues. The first is that in most researches, the dataset used to validate the proposed 

method is small, usually consisting of less than 10 cuts. Comprehensive validation was 

done only in rare cases, e.g. Zhehe Yao, et al. tested their detection method with a dataset 
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consisting of 45 cuts [21]. Therefore, in most cases, the reader cannot obtain the actual 

accuracy of the given method, and it is near impossible to compare the effectiveness of 

different methods. For example, many researches claims that wavelet transform [50] [51], 

wavelet packet transform [52], or Hilbert-Huang transform [53] is a superior method 

compared to fast Fourier transform for chatter or machine fault identifications. However, 

the claims are usually based on a theoretical or empirical argument with little or no 

statistical evidence provided. We aim to resolve this issue by comparing different signal 

processing methods using the same dataset and common parameters such as window size. 

In fact, as will be shown in chapter 5, some of our findings are completely opposite to 

such popular claims. 

The second issue is that, even if a chatter identification method is tested on a large 

dataset, and the accuracy is available for comparison, it is unfair to compare the accuracy 

of two methods from different research teams. This is because the datasets used for 

validation are different, and some datasets probably consists many data at the boundary 

of stable and unstable region, and is thus more difficult to classify correctly.  

With the rise of industry 4.0, the availability of large amount of data from 

manufacturing processes should be utilized to help training models in order to improve 

chatter detection accuracy. In this research, we will take advantage of the cutting data to 

truly test the signal processing methods and classification algorithms against the entire 

dataset, with spindle speed ranging from 4500 to 7000 rpm, and depth of cut from 0.2 to 

1.0 mm. We believe this approach can help developing a standard procedure to train a 

model, and evaluate the true accuracy of the model in a fair way.  
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1.4   Structure of the thesis 

This thesis consists of two main topics: feature extraction and classification 

algorithms. Chapter 2 briefly introduces the signal processing methods that will be 

compared in this research. Each signal processing method may generate one or more 

feature(s), and will be further processed by one of the classification algorithms discussed 

in chapter 3. Chapter 2 and 3 will mainly focus on the concepts, and the implementation 

details will be described in chapter 4, which is focused on the software implementation 

and optimizations of some of the algorithms.  

Chapter 5 summarizes the results. Data collection procedure for the dataset used in 

this research is explained in detail. Then, the classification algorithms are compared when 

using the same feature extraction method. Since there are many parameters involved for 

each signal processing method, their parameters will be optimized. After optimization is 

completed within each signal processing method, all of the methods will be compared. 

The amount of combination is large, because, for our model training platform developed 

in this research, any extracted feature can be combined with any classification algorithm. 

Finally, since both the error rate and detection speed are critical for chatter detection, we 

will discuss how they are affected by window size, and the tradeoff involved. 

Chapter 6 is the conclusion and we point out the potential direction for future 

researches. There is an appendix showing all the results from different models we trained 

which should make comparison easier. 
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2. Signal processing methods and feature extraction 

Four signal processing methods are used to in this research to extract features from 

the vibration signals in our dataset. They include Fast Fourier transform (FFT), wavelet 

packet transform (WPT), autocorrelation coefficient, and Hilbert-Huang transform 

(HHT).  

Since chatter is a phenomenon that can be identified via the vibrations at chatter 

frequencies, it may be desirable to observe the vibration characteristics in the frequency 

domain. FFT and WPT are such algorithms, which are widely used in many chatter 

identification researches. Autocorrelation coefficient and HHT help us to look at the 

problem from time-domain. Roughly speaking, the former calculates the periodicity of 

the signal whereas the latter decomposes the signal into several intrinsic mode functions 

(IMFs) in a specific way. 

 

2.1   Fast Fourier transform (FFT) 

FFT is a popular method for chatter detection [54] [55]. FFT is an implementation of 

the well-understood Fourier transform, which transform discrete time domain data to 

frequency domain. The time complexity of N-point FFT is 𝑂(𝑁𝑙𝑜𝑔𝑁), which makes it 

quicker than WPT, autocorrelation coefficients, and HHT with our implementation. The 

high performance, great theoretical foundations, and easy-to-interpret results make FFT 

a great candidate for chatter detection. Fig. 6 shows the spectrum after applying FFT on 

sound signal. The circles indicate the peaks at tooth pass frequencies and the asterisks 

indicate peaks at spindle speed frequencies. FFT is a power tool for chatter recognition 

due to its fast computation time,  
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Fig. 6. Power spectrum density (PSD) obtained by applying FFT on the sound signal 

during cutting. [56] 

 

Several features can be extracted from the spectrum obtained with FFT, the following 

ones will be investigated in this research: 

(1) 𝐸1,𝐹𝐹𝑇: Relative energy between a frequency band and the entire spectrum. The 

energy in a certain frequency band is defined as 

𝐸𝑓𝑚𝑖𝑛,𝑓𝑚𝑎𝑥 = ∑ |𝑠(𝑓)|𝑝,

𝑓𝑚𝑖𝑛≤ 𝑓 ≤𝑓𝑚𝑎𝑥

 (1) 

 

where |𝑠(𝑓)| is the magnitude of spectrum at frequency f, and the exponent p is 

an adjustable parameter. The relative energy for an frequency band [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] is 

defined as  

𝐸1,𝐹𝐹𝑇 =
𝐸𝑓𝑚𝑖𝑛,𝑓𝑚𝑎𝑥
𝐸0,𝑓𝑠/2

, (2) 
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where fs is the sampling rate. Therefore, 𝐸0,𝑓𝑠/2  is the energy of the entire 

frequency range after FFT. 

In practice, 𝑓𝑚𝑖𝑛  and 𝑓𝑚𝑎𝑥  are chosen to include the dominant chatter 

frequency. Therefore, a higher 𝐸1,𝐹𝐹𝑇  indicates a higher chance of chatter 

occurring. Peaks at tooth pass frequencies should be filtered before calculating 

𝐸1,𝐹𝐹𝑇 so that those normal peaks are not incorrectly considered as an indication 

of chatter. The DC component, i.e. amplitude at 0 Hz, is also set to zero. 

In addition, it’s also possible to calculate 𝐸1,𝐹𝐹𝑇 by ignoring all but the 𝑛 

highest peaks in the spectrum. The results will be discussed in chapter 5. 

(2) 𝐸2,𝐹𝐹𝑇 : Relative energy between the chatter frequency band and tooth pass 

frequencies. First, the spectrum is obtained from the vibration signal. Then, 𝑛 

peaks are chosen using the implementation described in section 4.2. Finally, the 

calculation of relative energy is performed similarly to  𝐸1,𝐹𝐹𝑇. 

(3) 𝐸3,𝐹𝐹𝑇 : Relative energy between non-tooth pass frequencies and the entire 

spectrum. The calculation steps are similar to 𝐸2,𝐹𝐹𝑇. 

(4) Magnitude and phase of the spectrum: It is possible to recognize chatter from the 

spectrum of the vibration signal due to the rise of chatter peak. However, there are 

other spectral changes when chatter occurs, which are not easily identifiable 

visually. Nevertheless, we can facilitate artificial neural networks (ANNs) and use 

the magnitude or phase of the spectrum as input, to obtain a classification model.   

 

FFT can be used with a sliding window to calculate the spectrum at fixed intervals as 

shown in Fig. 7. There are two parameters – window size and overlap. The window size 

describes how much data is taken to perform FFT, and the overlap is the amount of time 



doi:10.6342/NTU201903636

22 
 

that two consecutive windows intersects. We will use this concept throughout this article, 

and applying it to other signal processing methods, such as WPT and HHT. 

 
 

Fig. 7. Illustration of window and overlap 

 

2.2   Wavelet packet transform (WPT) 

Despite the high performance and popularity of FFT, it only decomposes a function 

into sines and cosines. Wavelet transform was developed to decompose a function into 

other sets of functions called mother wavelets. There are many families of mother wavelets, 

such as Daubechies (db), Haar, and dmey. Within each family, there can be one or more 

types of mother wavelets. For example, Daubechies (db) family includes db1, db2, db3, 

etc. Fig. 8 shows three families of mother wavelets.  

A potential advantage of using wavelet transform comes from Gabor uncertainty 

principle, which shows that in a frequency analysis, the product of time resolution and 

frequency resolution is never smaller than a constant [57]. Wavelet transform sacrifices 

frequency resolution in favor of better time resolution compared to FFT. A better time 

resolution means chatter can be possibly detected earlier. However, it should be noted that 

Vibration signal

window 1

window 2

window 3 …

overlap

window size

+t
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similar effects can be acquired by using FFT with a sliding window, which is called short-

time Fourier transform (STFT).  

Wavelet transform splits the frequency domain into several bands as illustrated in Fig. 

9. Since chatter occurs at certain frequencies, we can pick the band that contains the 

dominant chatter frequency, and calculate the vibration energy within that band. 

Intuitively, when the energy in the chatter frequency band is high, the probability of chatter 

occurring is high as well. This concept will be used in our chatter detection strategy.  

  

 

 
(a) 

 

(b) 

 

 
(c) 

 

Fig. 8. Various families of mother wavelets, including (a) Haar, (b) Daubechies (db), 

and (c) biorthogonal (bior). [58] 
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Fig. 9. Wavelet transform produces lower frequency resolution at high frequencies 
 

 

 In addition to wavelet transform (WT), there is a modified version called wavelet 

packet transform (WPT). The frequency resolution at high frequencies is lower than the 

low frequencies for WT as shown in Fig. 9. WPT uses a series of low-pass and high-pass 

filters to divide the signal into two parts as illustrated in Fig. 10. By doing this dividing 

process repeatedly for 𝑛  times, we get a wavelet packet tree of 𝑛  levels. Each level 

consists of nodes of coefficients, representing the vibration amplitude at its corresponding 

frequency band. Since the wavelet packet tree is symmetric, the frequency resolution at 

all frequencies are equal, which is more ideal than WT. Therefore, we use WPT in 

research. The feature we extract from the signal is the relative energy  

𝐸𝑊𝑃𝑇 =
𝐸𝑐ℎ𝑎𝑡𝑡𝑒𝑟
𝐸𝑎𝑙𝑙

, (3) 

 

where 𝐸𝑐ℎ𝑎𝑡𝑡𝑒𝑟 = |𝑐𝑐ℎ𝑎𝑡𝑡𝑒𝑟|
𝑝 and 𝐸𝑎𝑙𝑙 = ∑ |𝑐𝑖|

𝑝
𝑖 . Here 𝑐𝑐ℎ𝑎𝑡𝑡𝑒𝑟 is the wavelet coefficient 

of the chatter frequency band and 𝑐𝑖 refers to the 𝑖-th wavelet coefficient at 𝑛-th level. 𝑝 

and 𝑛 are both adjustable. In this research, we choose 𝑛 = 5, which splits the frequency 
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domain (0 to 5000 Hz) into 25 = 32  bands. From experiment, the dominant chatter 

frequency is in the 6th band, which is between 781.25 and 937.25 Hz. 

 

 

 

Fig. 10. Wavelet packet transform and its corresponding coefficient tree for each 

frequency bands [59] 
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2.3   Autocorrelation coefficients 

Autocorrelation coefficient is an indicator of the periodicity of the signal. Given 

a series of displacements x(n), define autocorrelation function [60] 

𝑅𝑥𝑥(𝑚)=
1

𝑁
∑ 𝑥(𝑛)𝑥(𝑛 + 𝑚)

𝑁−1

𝑛=0

 
(4) 

 

After standardization, we get the autocorrelation coefficient 

𝑅𝑥𝑥
′ (𝑚) =

1
𝑁
∑ 𝑥′(𝑛)𝑥′(𝑛 + 𝑚)𝑁−1
𝑛=0

√1
𝑁
∑ [𝑥′(𝑛)]2𝑁−1
𝑛=0

√1
𝑁
∑ [𝑥′(𝑛 + 𝑚)]2𝑁−1
𝑛=0

, (5) 

where 

𝑥′(𝑘) = 𝑥(𝑘) −
1

𝑁
∑ 𝑥(𝑛)

𝑁−1

𝑛=0

. 

For example, for a perfectly periodic signal, 𝑥(𝑛) = 𝑠𝑖𝑛 (2𝜋 ∙ 0.01𝑛) for 1 ≤ 𝑛 ≤ 𝑁, if 

we choose m so that it is identical to the period of the signal, i.e. m = 100, then 𝑅𝑥𝑥′(𝑚) =

1 by (5). On the other hand, if m is equal to half of the period, i.e. m = 50, then 𝑅𝑥𝑥′(𝑚) =

−1.  

The motivation of using autocorrelation coefficient comes from the fact that stable 

cutting signal is close to periodic, with period being the inverse of tooth pass frequency 

[60]. In contrast, during unstable cutting, some chatter frequencies arise at the natural 

frequencies of the spindle, and some arises above and below the tooth pass frequencies. 

This can be seen from the vibration model of the milling process [5] [10] [61] [62], and 

this property allows us to identify chatter with autocorrelation coefficients.  

The steps to calculate autocorrelation coefficient is as follows: 
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1. Take a segment of vibration signal, which has to be at least as long as twice the 

tooth pass period T1. This vibration signal can be of any form, e.g. acceleration, 

velocity, or displacement. Call this signal x, and its length T. 

2. Shift the signal in time by 𝜏. Let the sampling rate be 𝑓𝑠, then 𝑚 = 𝑓𝑠𝜏. Repeat 

this step for 0 ≤ 𝜏 ≤ 𝑇. 

3. Since 𝑚 ∝ 𝜏 , we can write autocorrelation coefficient 𝑅𝑥𝑥
′ (𝑚)  as 𝑅𝑥𝑥

′ (𝜏) . 

Calculate the 𝑅𝑥𝑥
′ (𝜏) for each 𝜏, where 0 ≤ 𝜏 ≤ 𝑇. 

4. Find the time between peaks in 𝑅𝑥𝑥
′ (𝜏), call this TX. This should be identical to 

tooth pass period in stable cutting but not unstable cutting. 

5. In stable cutting, T1 should be an integer multiple of 𝑇𝑋  because the vibration 

signal for every revolution of the spindle should be similar. Find the remainder of 

𝑇1 divided by 𝑇𝑋 , call this 𝜀 . When 𝜀  is very close to 0, we say the cutting 

condition is stable. Otherwise, it is unstable.  

 

 

Fig. 11. Illustration of the concept of autocorrelation coefficient [60] 

 

T1: 1 / (tooth pass frequency)

TX : Time between peaks

𝜀: Phase difference

    indication of chatter
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Step 4 above involves peak finding, which is non-trivial and the implementation is 

outlined in section 4.2. Calculation of 𝜀 is required in step 5, which requires the concepts 

of prominence of a peak discussed in section 4.2. The procedure is as follows: 

1. Let the spindle rotation period be 𝑇0. Find all peaks in [0, 2𝑇0]. 

2. For [0, 𝑇0] and [𝑇0, 2𝑇0], select peaks with top 𝑥% prominence in each interval, 

for some 𝑥 ∈ [0,100]. 

3. Among the peaks found in step 2, choose the peak just before 𝑇0, and the one just 

after 𝑇0. Name them C and D, and let their corresponding times be 𝑇𝐶 and 𝑇𝐷. 

4. Let the minimum value between C and D be 𝑦𝑚𝑖𝑛 = max
𝑇𝐶≤𝑡≤𝑇𝐷

𝑦(𝑡). 

5. Let 𝑦′(𝑇0) = 𝑦′(𝑇0) − 𝑦𝑚𝑖𝑛,  𝑦′𝐶 = 𝑦𝐶 − 𝑦𝑚𝑖𝑛, and 𝑦′𝐷 = 𝑦𝐷 − 𝑦𝑚𝑖𝑛. 

6. Calculate 

𝜙 = 𝑐𝑜𝑠−1 (
4𝑦′(𝑇0)

𝑦′
𝐶
+ 𝑦′

𝐷

− 1), (6) 

 

For a cosine wave, 𝑦 = 𝑐𝑜𝑠(𝜔𝑡) , the above equation gives 

𝜙(𝑇0) = 𝑐𝑜𝑠
−1 (

4[𝑐𝑜𝑠(𝜔𝑇0) − 1]

2 + 2
− 1) = 𝑐𝑜𝑠−1(𝑐𝑜𝑠(𝜔𝑇0)). 

Therefore, 𝑐𝑜𝑠(𝜙(𝑇0)) = 𝑐𝑜𝑠(𝜔𝑡) as expected. 

 

In practice, the autocorrelation coefficient may differ significantly from one spindle 

rotation to another. If we use the result from one period to predict whether the condition 

is stable or unstable, incorrect prediction can occur frequently as the autocorrelation 

coefficient fluctuates. Therefore, we split the input signal into windows, which is much 

longer than spindle speed period, but small enough for chatter detection purposes, e.g. 0.2 

seconds. This can reduce classification error rate. For each window, phase differences 𝜀 
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is calculated for every two spindle speed periods. The extracted feature is the average of 

𝜀 in this window.  

A theoretical advantage of using autocorrelation coefficients is that this is applied in 

time domain. A frequency-domain signal processing methods involves gathering 

sufficiently long signal before transforming into frequency domain to ensure good 

frequency resolution. For example, at a sampling rate of 10 kHz, FFT needs 

approximately 0.1 seconds of data to achieve a frequency resolution of 5 Hz, which is 

required because of the proximity of chatter frequency and tooth pass frequency on our 

CNC machine. On the other hand, autocorrelation coefficient method requires only a 

spindle rotation period to perform a calculation, which is only 0.02 seconds if the spindle 

speed is 6000 rpm and 𝑇 = 2𝑇1. Since we use windows, the window size may be adjusted 

to exploit this theoretical advantage. This was tested and the results are shown in chapter 

5. 

 

2.4   Hilbert-Huang transform (HHT) 

Hilbert-Huang transform is a signal processing method that is designed to analyze 

non-stationary and non-periodic signals [63], and has been applied various fields of study 

such as in medical, geophysics, and structure safety analysis [64]. HHT involves two steps: 

1. Apply empirical mode decomposition (EMD) [65]. This decompose the input 

signal into the sum of several time-domain functions, called intrinsic mode 

functions (IMFs). A process called sifting is used to find the local maxima and 

minima for the signal and decompose it according to a set of rules. The number 

of IMFs a signal is decomposed into is determined by the signal itself. Contrary 



doi:10.6342/NTU201903636

30 
 

to sine and cosine functions used in Fourier transform, IMFs can vary in both time 

and frequency. 

2. Apply Hilbert transform to each of the IMFs. Hilbert transform is defined by [66] 

𝐻(𝑢)(𝑡) =
1

𝜋
∫

𝑢(𝜏)

𝑡 − 𝜏
𝑑𝜏

∞

−∞

, 

which has the effect of shifting the phase of the negative frequencies of u(t) by  
𝜋

2
 

and the phase of the positive frequencies by −
𝜋

2
.  

 

Fig. 12 shows the 11 IMFs that are decomposed from a cutting signal. Fig. 13 

shows that Hilbert transform extracts the envelope of the signal, as shown in the red dotted 

curve. We can define 𝐸𝐻𝐻𝑇 = |𝑥𝑛(𝑡)/𝑥(𝑡)|
2 as the energy for the HHT result, where 

𝑥𝑛(𝑡) is the 𝑛-th IMF and 𝑥(𝑡) is the original vibration signal.  Fig. 14 is the time-

frequency visualization of the spectrum obtained using HHT. It’s also possible to extract 

the chatter frequency band by applying WPT to the input signal, take the wavelet 

coefficients from the chatter frequency band, and apply inverse WPT. Then the signal can 

be processed with HHT to get the energy of each IMF. This approach has been shown to 

be more effective than using HHT alone [32]. In this research, we set 𝑛 = 1, which 

implies 𝐸𝐻𝐻𝑇 is high when the first IMF has large amplitudes. 
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Fig. 12. IMFs of a cutting signal obtained using HHT 

 
 

 
Fig. 13. Illustration of Hilbert transform on vibration signal [67] 
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Fig. 14. Hilbert spectrum of unstable (left) and stable (right) cutting signals calculated 

and visualized with MATLAB 
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3. Classification algorithms 

After we obtain the feature vectors using the signal processing methods described in 

the previous chapter, they will be put into a classification algorithm to train a model. The 

model will be able to predict whether a signal belongs to stable or unstable. Since our 

dataset is labeled, we mainly focused on supervised learning. In this chapter, several 

methods and classification algorithms are used, and their effectiveness are compared.  

The simplest method is to set a fixed threshold value to distinguish stable data from 

the unstable ones. A statistical method – Naïve Bayes was tested in 3.2. Some commonly 

used classification algorithms, such as local outlier factor (LOF), support vector machine 

(SVM), and k-nearest neighbor (k-NN), were applied to our dataset. Finally, we utilized 

artificial neural network (ANN) to obtain models for prediction. 

3.1   Numerical threshold 

Using a fixed threshold as the boundary of stable and unstable region is one of 

the simplest and most straightforward method. This method relies on the distribution of 

a feature to be separable by a single threshold. The calculation steps are as follows: 

1. Choose a feature that is represented by a single numerical value, e.g. the relative 

energy after FFT of the x-axis signal.  

2. Compute the values of this feature for the entire dataset to obtain the distribution 

of both stable and unstable data. 

3. Let there be m stable data points and n unstable data points. Since relative 

energy is larger for unstable data points, choose the m-th smallest value in these 

𝑚 + 𝑛 data points. This is the selected threshold. A data point is considered 

stable if and only if its value is below this threshold. 
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3.2   Naïve Bayes 

Naïve Bayes is a probabilistic classifier based on Bayes’ theorem, widely used in 

machine learning [68] [69] [70]. The general idea is as follows. Given a set of features, 

such as the energy ratios of x-, y-, and z-axis, we know the distribution of each feature for 

both unstable and stable data. Then, we fit the distribution curve with, e.g. Gaussian 

distribution. Now, given a new data point, we can estimate its probability of being 

unstable based on the fitted distribution and its energy ratio from x-axis. Same can be 

done with y- and z-axis.  

Given a feature vector 𝐱 = (𝑥1,… , 𝑥𝑛) , and classes {𝐶𝑘} , we want to calculate 

𝑝(𝐶𝑘|𝑥1,… , 𝑥𝑛), the probability that x belongs to Ck , for each k. To determine which 

class 𝐱 belongs to, we want to find k that maximizes 𝑝(𝐶𝑘|𝑥1,… , 𝑥𝑛). Assume all features 

x1, … , xn are independent. By Bayes' theorem, 

 

𝑝(𝐶𝑘|𝐱) =
𝑝(𝐶𝑘)𝑝(𝐱|𝐶𝑘)

𝑝(𝐱)
. 

By chain rule,  

𝑝(𝐶𝑘|𝐱) ∝ 𝑝(𝐶𝑘, 𝑥1, … , 𝑥𝑛) = 𝑝(𝐱|𝐶𝑘) = 𝑝(𝐶𝑘)𝑝(𝑥1|𝐶𝑘)…𝑝(𝑥𝑛|𝐶𝑘), 

where 𝑝(𝐶𝑘)  is called prior probability, or simply prior. For our application, we set 

𝑝(𝐶𝑘) = 1/𝑘 for all k. 𝑝(𝑥1|𝐶𝑘) depends on the model fitting methods, such as Gaussian 

or Bernoulli. 
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3.3   Local outlier factor (LOF) 

LOF is an algorithm to distinguish outliers from clusters of data points, and has been 

used in audio and image recognition [71]. Previous work used LOF to classify relative 

wavelet packet entropy [72]. To use this method in this research, it is required to limit the 

ratio of unstable data points so that they are significantly less than the stable once. This 

is because LOF finds the outliers, i.e. the points far away from other points. 

Define k-distance 𝑘(𝐴) be the k-th nearest neighbor of point A. Denote the distance 

between two points A and B as 𝑑(𝐴, 𝐵). Define reachability distance as  

𝑟𝑘(𝐴, 𝐵) = 𝑚𝑎𝑥{𝑘(𝐵), 𝑑(𝐴, 𝐵)}. 

The reason to use reachability distance instead of the distance between A and B is to get 

more stable results in computations. Furthermore, define local reachability density as  

𝑙𝑟𝑑𝑘(𝐴) =
|𝑁𝑘(𝐴)|

∑ 𝑟𝑘(𝐴, 𝐵)𝐵∈𝑁𝑘(𝐴)

, 

where 𝑁𝑘(𝐴) is the k nearest neighbors of A. Roughly speaking, local reachability density 

is the reciprocal of the average distance between A and its neighbors. The local outlier 

factor is  

𝐿𝑂𝐹𝑘(𝐴) =
∑

𝑙𝑟𝑑(𝐵)
𝑙𝑟𝑑(𝐴)𝐵∈𝑁𝑘(𝐴)

|𝑁𝑘(𝐴)|
=
∑ 𝑙𝑟𝑑(𝐵)𝐵∈𝑁𝑘(𝐴)

|𝑁𝑘(𝐴)| ∙ 𝑙𝑟𝑑(𝐴)
. 
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Fig. 15. An example of visualized local outlier factors  

 
 

3.4   Support vector machine (SVM) 

SVM is a well-known method to separate two classes of data points [73] [74], and 

has the advantage of good performance because the equations can be written in linear 

form. SVM has been used for chatter recognition when combined with information 

entropy [75], WPT [76], and Q-factor [77].  

There are two types of SVMs, linear and non-linear. For linear SVM, suppose there 

are n points (𝐱𝟏, 𝑦1), … , (𝐱𝐧, 𝑦𝑛), where 𝑦𝑖 = ±1, SVM attempts to separate the points 

with 𝑦𝑖 = 1 from the ones with 𝑦𝑖 = −1 using a hyperplane 𝐰 ∙ 𝐱 − 𝑏 = 0 with some 

vector 𝐰, called support vector. This is illustrated in Fig. 16 (a). In practice, there are 

cases when the points cannot be separated by a hyperplane as in Fig. 16 (b). In such cases, 

the points are mapped to higher dimensional space using a kernel function such as 
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polynomial, RBF, and sigmoid. The mapped points may be easily separable with a 

hyperplane.  

 

 
(a) 

 

 
(b) 

 

Fig. 16. (a) Illustration of linear SVM for a linearly-separable dataset [78] (b) Non-

linear SVM with RBF kernel [79] 

 

 

 



doi:10.6342/NTU201903636

38 
 

3.5   K-nearest neighbor (k-NN) 

K-NN is a simple classification algorithm based on votes from the neighbors [80]. 

Suppose we have a data point A without knowing whether it is stable or unstable. We find 

k-nearest neighbors of A for some k. Let’s say 𝑘 = 5, and there are 3 of them are stable, 

and 2 are unstable. Since 3  2, k-NN classify A as stable.  

It is easy to add a weight function 𝑤(𝑟) for each neighbor. For example, let the k 

neighbors of A be 𝑝1, … , 𝑝𝑘, and the first m points are stable while the rest are unstable. 

Let the distance between A and 𝑝𝑖 be 𝑟𝑖 for all i. Then, define the scores 

𝑠𝑐𝑜𝑟𝑒(𝑠𝑡𝑎𝑏𝑙𝑒) =∑𝑤(𝑟𝑖)

𝑚

𝑖=1

 

𝑠𝑐𝑜𝑟𝑒(𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒) = ∑ 𝑤(𝑟𝑖)

𝑘

𝑖=𝑚+1

 

 If 𝑠𝑐𝑜𝑟𝑒(𝑠𝑡𝑎𝑏𝑙𝑒)  𝑠𝑐𝑜𝑟𝑒(𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒), then A should be classified as stable, and 

vice versa. Some common weight functions 𝑤(𝑟) are 1 (uniform), 𝑟−𝑎, and 𝑒−𝑎, for some 

𝑎  0. 
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3.6   Artificial neural network (ANN) 

Using ANN in chatter recognition has the advantage that a detailed model is not 

required and reasonable accuracy may still be achieved without manually select an 

optimal feature as input. For this reason, we will use the entire frequency spectrum as the 

input of the ANN. The vibration signal will be converted into frequency domain using 

FFT, and ANN should be able to distinguish the stable data from unstable data since 

chatter is more easily recognizable in frequency domain. The architecture and training 

parameters will be manually tuned to obtain a good accuracy.  
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4. Implementation 

4.1 Architecture of the data analysis and model training 

platform 

Fig. 17 shows the architecture of the model training platform developed in this 

research. This platform makes it easy to change the feature or classification algorithm to 

use, adjust the corresponding parameters, and quickly obtain a validation report 

indicating the effectiveness of the trained model. Any combination of the mentioned 

features and classification algorithms can be used, along with several modes for tool 

entry/exit detection, data selection, etc. 

The blocks with solid lines in Fig. 17 indicates a data processing or calculation 

step. A block with dashed lines represents an optional step. First, vibration data from the 

accelerometer, along with their labels, are loaded from files. Then, the tool entry and 

exit parts of the vibration signals are excluded to ensure the data being trained are valid 

cutting data. Certain tooth pass frequencies that are too close to chatter frequencies are 

filtered out to prevent misidentifications. Features are then computes according to the 

specified parameters, and saved into a cache file so that if the same feature is to be used 

again with another classification algorithm, we can simply load all features from cache. 

This can drastically reduce the computation time. Therefore, we have two data sources: 

from file (option 1) and from cache (option 2). 

The dataset, consisting of feature vectors and labels, is then split into training and 

test datasets randomly. Models are trained and validated using stratified k-fold 

validation. Some hyperparameters are automatically tuned to minimize error rate. The 

validation report of the final model will be shown to summarize the results. 
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Fig. 17 Architecture of model training platform for chatter identification 

 

 

Vibration data

Data selection 

(all, random, or specified files)

Read file & exclude cuts with 

both stable and unstable 

segments

Filter out tool entry/exit phases
Tool entry/exit 

detection mode
Plot result

Filter out certain tooth pass 

frequencies

Selected feature 

& parameters
Compute feature vectors cache

option 1

option 2

Plot intermediate 

steps for analysis
Split training/test 

datasets

k-fold validation 

parameters Plot feature 

distributions

Classification 

algorithm & 

parameters

Training / 

classification

Stratified k-fold 

validation

Tune 

hyperparameters

Save model

Show validation 

report



doi:10.6342/NTU201903636

42 
 

4.2   Implementation details 

This section will describe the techniques used to implement the model training 

platform shown in Fig. 17. The entire program is written in Python 3. The main libraries 

that was used is listed in Table 1.  

Table 1. Major libraries used to implement the platform 

library Main usage in our platform 

numpy High performance numerical computations 

scipy FFT, filters 

PyWavelets WPT 

pyhht HHT 

matplotlib Data visualizations 

scikit-learn LOF, k-NN 

keras ANN 

tensorflow ANN 

 

4.2.1 Zero-padding before FFT  

Our program uses numpy for FFT computations. For some testing data, 

performance issues were observed. After some investigations, the conclusion is the 

implementation of numpy’s fft.rfft() function is the cause of the issue. When the length 

of input array is not an integer power of 2, it tries to factor the length and split the 

computation into chunks. However, when the length is a prime number, the computation 

slows down drastically. As we can see in Table 2, the computation time when the array 

length is 16384 (= 214) is better than 12581 (= 23×547) and 12584 (= 23×112×13), and 

more than 50 times better than 12583, which is a prime number. 

A technique called zero-padding can be applied to resolve this issue. We zero-

pad the original vibration signal to so that the total length is an integer power of 2. For 

example, if the vibration signal has 12583 samples, we add zeros to the array until the 

length is 16384. This can significantly improve performance while not negatively 
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affecting the frequency spectrum of the FFT output. In fact, zero-padding improves the 

frequency resolution of the output spectrum. Note that when window function is used, 

the signal should be zero-padded before applying a window function. 

 

Table 2. Performance test on numpy.fft.rfft() 

Input array length Computation time (sec) 

12581 0.01698 

12582 0.00898 

12583 0.48424 

12584 0.01039 

16384 0.00937 

32768 0.01051 

65536 0.01897 

 

4.2.2 Computing autocorrelation coefficients 

The time complexity of direct computation of autocorrelation coefficients from 

(4) is O(N2). However, this can be improved to O(N log N) using FFT because (4) is 

similar to the equation of discrete convolution 

(𝑓 ∗ 𝑔)[𝑛] = ∑ 𝑓[𝑚]𝑔[𝑛 − 𝑚].

𝑁

𝑛=−𝑁

 

Fig. 18 shows how discrete convolution can be computed in O(N log N) instead of O(N2) 

for the direct approach. We show the connection between (4) and the equation above 

below.  



doi:10.6342/NTU201903636

44 
 

 

Fig. 18. Illustration of the computation of discrete convolution 

 

Proposition    Given two 0-indexed arrays x and y, of length Nx and Ny respectively. 

Define discrete convolution as  

(𝑥 ∗ 𝑦)[𝑚] =  ∑ 𝑥[𝑛]𝑦[𝑚 − 𝑛]

𝑁𝑦−1

𝑛=0

for m ∈ [0,  𝑁𝑥 + 𝑁𝑦 − 2], (7) 

and assume x[i] = y[i] = 0 for i < 0. Let z be the reversed array of x, i.e. 𝑧[𝑖] = 𝑥[𝑁𝑥 −

𝑖 − 1] for all i. Then,  

(𝑧 ∗ 𝑥)[𝑚 + 𝑁 − 1] = ∑ 𝑥[𝑛]𝑥[𝑚 + 𝑛]

𝑁−1

𝑛=0

, (8) 

 

proof 

(𝑧 ∗ 𝑥)[𝑚] 

= ∑ 𝑧[𝑛]𝑦[𝑚 − 𝑛]                                           (𝑏𝑦 (7))  

𝑁𝑦−1

𝑛=0

 

𝑓 ∗ 𝑔 𝑛 = ∑ 𝑓 𝑚 𝑔[𝑛 − 𝑚]

𝑁

𝑛=−𝑁

𝑓, 𝑔 𝑓 ∗ 𝑔
O(N2)

Direct computation

FFT

𝐹,  𝐹   
Multiplication

O(N)

O(N log N) O(N log N)Inverse FFT
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= ∑ 𝑧[𝑁𝑦 − 1 − 𝑝]𝑦[𝑚 + 𝑝 + 1 − 𝑁𝑦]      (𝑝 = 𝑁𝑦 − 1 − 𝑛)

𝑁𝑦−1

𝑝=0

 

= ∑ 𝑥[𝑝] 𝑦[𝑚 + 𝑝 + 1 − 𝑁]                           (𝑏𝑦 (2),  𝑎𝑛𝑑 𝑙𝑒𝑡 𝑁 = 𝑁𝑥 = 𝑁𝑦)

𝑁−1

𝑝=0

 

= ∑ 𝑥[𝑛] 𝑦[(𝑚 + 1 − 𝑁) + 𝑛]                        

𝑁−1

𝑛=0

 

Substituting m with m+N-1, we get (8).    

 

The above proposition can be directly applied because (7) matches the 

implementation of scipy’s fftconvolve. Specifically, (𝑥 ∗ 𝑦) = fftconvolve(x, y, 

mode=‘full’). 

 

4.2.3 Peak finding 

Peak finding is used in parts of the program, e.g. finding n-highest peaks in the 

spectrums after FFT, and finding peaks in autocorrelation coefficient plot. We used 

𝑠𝑐𝑖𝑝𝑦. 𝑠𝑖𝑔𝑛𝑎𝑙. 𝑓𝑖𝑛𝑑_𝑝𝑒𝑎𝑘𝑠 to implement these parts of the program. The parameters 

used include the minimum horizontal distance between peaks, and prominence. 

When trying to find peaks within a graph, e.g. a spectrum, the minimum horizontal 

distance between peaks is set to ensure that two peaks very close to each other won’t be 

both included in the result. Suppose 20 peaks should be selected from a vibration signal 

spectrum, there may be 3 peaks near one tooth pass frequency. The unintended 
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consequence is that probably only 7 tooth pass frequencies are included in the 20 peaks 

that the algorithm found, instead of 20. 

Prominence is a property of a peak, describing the height of a peak relative to the 

neighboring values. The calculation of prominence is as follows: 

(1) Draw a horizontal line, crossing the peak in discussion, until it intersects the signal 

or the window border. This is illustrated by the green lines in Fig. 19. 

(2) For the left and right sides of the peak, find the minimum of each side, these are 

the bases of the peak as shown in red dots in Fig. 19. 

(3) The prominence is the difference between the height of the peak and the higher 

value of the bases. 

Therefore, it is possible to find n most prominent peaks from a graph by ordering the 

prominences of all peaks, and take the largest n results. This concept is used in the 

implementation of autocorrelation coefficients. 

 
Fig. 19. Illustration of the peak finding procedure and the calculation of prominence 

of a peak 

 

Peak

Base 
(left)

Base 
(right)

Prominence
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4.3   Validation 

In machine learning, training and test datasets must be separated. Otherwise, it is 

trivial to obtain a model that achieves 100% accuracy for supervised learning – simply 

memorize all data and their labels and build a lookup table. To evaluate the true accuracy 

of a model, we use one of the standard approaches – stratified k-fold validation. The 

concept is shown in Fig. 20 for the case 𝑘 = 3, where the dataset is split into 3 parts. There 

are k rounds of validations. For the first round, the first 1/𝑘 data are used for training 

while the rest are used for testing. Note that each the ratios of A and B classes in each 1/𝑘 

part should be identical. 

In this research, the dataset consists vibration data from 143 cuts. Each cut may result 

in many data points due to the sliding window we use. However, during the learning and 

validation process, if a cut is used for training, all data points in that cut are used as training, 

and vice versa. This ensures the result is fair and minimizing overfitting. 

 

 
 

Fig. 20. Illustration of stratified k-fold validation [47] 
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5. Results and discussion 

5.1 Data collection and labeling 

The experiment data of this research comes from previous work of our laboratory 

[47]. Since the goal of this research is chatter identification, a sufficient number of 

experiment data is required as inputs for classification algorithms. Our dataset contains 

vibration signals from a CNC milling machine, while cutting at different spindle speed, 

depth of cut, and feed rates. Stability lobe diagram (SLD) of the CNC machine was 

obtained by the traditional method - modal test and cutting force coefficients 

measurement. The cutting conditions, which includes spindle speed, depth of cut, and 

feed rate, were chosen so that it is near the stability boundary of the SLD. SLD is not 

necessary, but it makes it easier to search for cutting conditions that is in the stable or 

unstable region. 

We used a CNC milling machine to perform the cutting experiment. The 

experiment setup is shown in Fig. 21. A tri-axial accelerometer was mounted on the 

spindle housing, and NI-9234 DAQ was used at sampling rate of 10240 Hz to acquire the 

vibration signals. 143 straight cuts were performed and each cut lasts around 5 seconds, 

excluding tool entry and exit phase. These 143 cuts contain at least 110 spindle speed and 

depth of cut combinations, so we have good variety in our dataset. While conducting the 

experiment, we labeled whether chatter occurs during this cut by listening to the sound. 

There are 3 possible values for this label – entirely stable, entirely unstable, and partially 

unstable. Therefore, the dataset consists of vibration signals from 143 cuts, along with a 

label. 
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Fig. 21 Experiment setup when gathering the dataset  

Accelerometer was installed on the spindle housing, and a NI DAQ was used to acquire 

the signal. [47] 

 

5.2 Comparisons of classification algorithms 

 In this section, different classification algorithms are compared using the same 

feature. The feature used is FFT energy ratio, 𝐸1,𝐹𝐹𝑇, with window size of 1.2 seconds, 

no overlap, exponent of 2.75, and all three axes. Since the window and overlap are fixed, 

the number of data points used to train the models are identical, giving a fair comparison 

of different classification algorithms. 
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The numeric threshold method yields an error rate of 6.579%, with false alarm 

and missing alarm rates both being 3.289%. Naïve Bayes produces error rates of 5.263% 

and 5.482% using Gaussian and Bernoulli Naïve Bayes, respectively. 

Fig. 22 shows the testing cost when using LOF as the classifier. Using stratified 

k-fold validation with 𝑘 = 3, the cost of 3 test datasets are shown, with the average at the 

bottom-right corner. In terms of error rate, the optimal amount of neighbors is 

approximately 150. The cost varies between 0 to 1, with 0 meaning all data points are 

correctly classified, and 1 meaning all are incorrectly classified. Also, since the unstable 

data point ratio is an adjustable parameter, the relation between it and error rate is listed 

in Table 3, where using 15% of unstable data is optimal with an error rate of 8.53%.  

 

 
Fig. 22. Test costs of LOF for each of the three test datasets, and the average costs 
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Fig. 33 shows the error rates on three test datasets and the average using k-NN as 

the classifier. Table 4 shows the error rates with different weights, including uniform, 

𝑟−𝑎, and 𝑒−𝑎𝑟 with some 𝑎. The lowest error rate is 5.21% while the highest is 6.061%. 

The difference is small, which leads to the conclusion that the weight does not affect the 

error rate significantly. 

Fig. 24 sums up this section with all optimal error rates from each classification 

method compared. K-NN is the best one at 5.21%, almost matched by Naïve Bayes at 

5.263% and SVM at 5.647%. Numeric threshold and LOF are the worse ones. Incidentally, 

an error rate of 7.12% is achieved using ANN, placing it as the 5th best feature. However, 

since the methodology of it is quite different to other classification methods, it is best to 

not make direct comparison. 

Table 3. Classification error rates using FFT (𝐸1,𝐹𝐹𝑇) and different unstable data point 

ratio in LOF 

Unstable data point ratio (%) ER (%) 

10 10.4 (14.8) 

15 8.53 (14.4) 

20 9.01 (18.1) 

Feature: [window=1.2, overlap=0, exp=2.75, bw=10, xyz], classification: [LOF, auto[1-200], weight 

1/r^3] 
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Fig. 23. Test error rates of K-NN for each of the three test datasets, and the average 

error rates. 
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Table 4. Classification error rates using k-NN and different weights 

Weight FA (%) MA (%) ER (%) 

uniform 0.646 (1.258) 5.222 (6.918) 5.868 (8.176) 

𝑟−1 1.065 (2.516) 4.564 (6.289) 5.629 (8.805) 

𝑟−2 1.275 (3.145) 4.354 (5.66) 5.629 (8.805) 

𝑟−3 1.485 (3.774) 4.576 (5.66) 6.061 (9.434) 

𝑟−4 1.48 (3.774) 4.349 (5.66) 5.829 (9.434) 

𝑒−𝑟 0.646 (1.258) 5.222 (6.918) 5.868 (8.176) 

𝑒−2𝑟 0.646 (1.258) 5.222 (6.918) 5.868 (8.176) 

𝑒−5𝑟 0.646 (1.258) 4.773 (6.918) 5.419 (8.176) 

𝑒−10𝑟 0.8557 (1.887) 4.354 (5.66) 5.21 (7.547) 

𝑒−100𝑟 2.096 (6.289) 3.691 (5.031) 5.787 (11.32) 

Feature: [window=1.2, overlap=0, exp=2.75, bw=10, xyz], classification: [knn, auto[1-200], weight 

1/r^3] 
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Fig. 24. Error rates when different classification methods are used with the same 

feature (FFT relative energy) 

 

5.3 Parameters optimizations 

This section is focus on parameter optimization for each feature extraction method. 

For example, the parameters involved in WPT includes mother wavelet, window and 

overlap sizes, and exponent used to compute the energy. We will find the optimal values 

for these parameters to obtain the best error rate for WPT, and in later sections this error 

rate can be compared to other feature types, such as autocorrelation coefficients, to give 

a fair comparison of the effectiveness of different features.  
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5.3.1 Fast Fourier transform (FFT) 

 This section describes the classification results when using FFT-related features, 

and FFT parameter optimizations will be discussed. The first feature we investigate is the 

relative energy 𝐸1,𝐹𝐹𝑇. The exponent 𝑝 in (1) is an adjustable parameter, and can take any 

value in (0,∞). Fig. 25 illustrates the spectrum amplitudes |𝑆(𝑓)|𝑝 for 𝑝 = 0.5, 1, 2.75, 

and 8. Top right figure is for 𝑝 = 1, i.e. the original FFT spectrum. The highest peak at 

around 900 Hz is the chatter frequency of the machine. There are several smaller peaks 

at tooth pass frequencies. In addition, the noise is can be clearly seen in the spectrum as 

well, especially in the frequency range of 2000 to 3500 Hz. These unwanted noise is 

sometimes unavoidable and may negatively impact the detection of chatter. We argue that 

the parameter 𝑝 can reduce the effect of noise. 

When we increase the value of 𝑝  to 2.75, the smaller peaks become smaller 

relative to the dominant chatter peak. Due to their smaller amplitudes, the noise between 

2000 to 3500 Hz become significantly lower relative to the chatter and tooth pass 

frequency peaks. If 𝑝 is further increased to 8 as shown in the bottom right figure, only 2 

largest peaks are visible. This is not ideal because most of the information in the spectrum 

is lost, and classification error rate will increase. On the other hand, using 𝑝 < 1 increases 

the influence of smaller peaks and amplifies the noise. In summary, there are adverse 

effects when 𝑝 is too large or too small. We aim to find an optimal value.  
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Fig. 25. FFT spectrum raised to exponent p for p = 0.5, 1, 2.75, and 8 

 

  

Fig. 27 illustrates the effect of 𝑝 on the distribution of 𝐸1,𝐹𝐹𝑇. Fig. 27 (a) is the 

scatter plot of 𝐸1,𝐹𝐹𝑇(𝑦) and 𝐸1,𝐹𝐹𝑇(𝑧) for 𝑝 = 0.5. The top-right is a large area where 

the unstable and stable data points overlap. As 𝑝 increases to 1 and 2.75, the overlapping 

significantly reduces, as can be seen from Fig. 27 (b) and (c), respectively. Fig. 27 (d) 

shows that when 𝑝 is too large, some data points will be pushed to the edge of the graph. 

Fig. 26 shows the error rates of trained models using different values of 𝑝 from 

0.5 to 10. K-NN is used with weight 𝑟−3 and the optimal 𝑘 is chosen between 1 to 200. 

The dotted line is the false alarm (FA) rate, the slightly higher dashed line is the missing 

alarm (MA) rate, and their sum is the total error rate (ER). As we can see, the error rate 

is really high when 𝑝 < 1. This may be due to the noise being amplified. Then, the error 
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rates decrease as 𝑝 increases. The lowest error rate of 6.875% is reached when 𝑝 = 2.75. 

After this point, the higher peaks in the spectrum dominates, and the information of 

smaller peaks start getting overlooked. This causes an slight upward trend in error rates 

from 𝑝 = 2.75 to 10. 

  

 
Fig. 26. Effect of exponent p on classification error rates 

 

Feature: [window=1.2, overlap=0.8, bw=10, xyz] 

classification: [kNN, auto[1-200], weight 1/r^3] 
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                                                           (b) 

 
                                                          (c) 

 
                                                          (d) 

 

Fig. 27. FFT relative energy plots for (a) p = 0.5, (b) p = 1, (c) p =
2.75, and (d) p = 8 

 

 The effect of filter bandwidth is shown in Table 5. There is no clear relationship 

between the filter bandwidth and error rate. In theory, if the bandwidth is too large, the 

chatter peak may be also eliminated due to the proximity of tooth pass frequency and 

dominant frequency for out machine. However, the testing results do not show this trend. 

This might indicate there is another factor playing a role. 
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 The effect of window and overlap sizes is shown in Table 6. The error rate 

increases as the window size decreases. This is possibly due to the fluctuation of 𝐸1,𝐹𝐹𝑇 

within a window. A high value of 𝐸1,𝐹𝐹𝑇 may appear during a stable cut, causing incorrect 

label and higher error rates when the window size is too small to average out the 

fluctuations in 𝐸1,𝐹𝐹𝑇. The overlap does not notably affect the error rate, possibly because 

the overlap does not increase the total amount of information for model training. 

 

Table 5. Classification error rates using FFT (𝐸1,𝐹𝐹𝑇) and different filter bandwidths 

Filter bandwidth (Hz) FA (%) MA (%) ER (%) 

2.5 1.449 (3.58) 5.216 (7.635) 6.665 (7.635) 

5 1.801 (2.837) 5.528 (7.565) 7.329 (10.4) 

10 1.808 (2.778) 5.067 (6.921) 6.875 (9.069) 

20 3.439 (5.314) 5.172 (7.488) 8.611 (12.8) 

40 1.621 (3.095) 4.831 (6.112) 6.451 (7.857) 

Feature: [window=1.2, overlap=0.8, exp=2.75, xyz], classification: [kNN, auto[1-200], weight 1/r^3] 
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Table 6. Classification error rates using FFT (𝐸1,𝐹𝐹𝑇) and different window 

sizes 

 

Window size 

(sec) 

Overlap 

(sec) 

Data 

points 
FA (%) MA (%) ER (%) 

1.2 0.8 1216 
1.808 

(2.778) 

5.067 

(6.921) 

6.875 

(9.069) 

0.9 0.6 1736 
1.721 

(2.152) 

5.851 

(7.719) 

7.572 

(8.772) 

0.6 0.4 2780 
2.455 

(3.459) 

5.818 

(8.491) 

8.273 

(11.95) 

0.3 * 0.2 5895 
3.582 

(5.143) 

7.484 

(11.05) 

11.07 

(12.51) 

1.2 0 456 
1.705 

(4.459) 

4.63 

(6.579) 

6.335 

(7.237) 

0.9 0 608 
1.94   

(3.81) 

5.862 

(8.867) 

7.802 

(10.48) 

0.6 0 972 
2.679 

(3.481) 

5.614 

(8.358) 

8.293 

(11.04) 

0.3 0 2010 
2.917 

(4.512) 

7.107 

(8.006) 

10.02 

(12.52) 

0.1 * 0 6169 
3.803 

(5.082) 

9.124 

(9.545) 

12.93 

(14.16) 

0.05 ** 0 12338 
3.827 

(4.573) 

9.895 

(10.83) 

13.72 

(15.4) 

Feature: [exp=2.75, bw=10, xyz], classification: [kNN, auto[1-200], weight 1/r^3] 

* classification: [kNN, auto[1-500], weight 1/r^3] 

** classification: [kNN, auto[1-2000], weight 1/r^3] 

 

 

 Table 7 shows the result using 𝐸1,𝐹𝐹𝑇, by ignoring all but 𝑛 highest peaks in the 

spectrum. Here, 𝑑 is the minimum frequency difference between two consecutive peaks. 

If there are two peaks with whose frequency difference is less than 𝑑, the latter one will 

be ignored. The optimal error rate of 6.441% is achieved at 𝑑 = 50 𝐻𝑧, 𝑛 = 30, closely 

followed by 6.511% is achieved at 𝑑 = 50 𝐻𝑧, 𝑛 = 5 . It’s worth noting this is only 

slightly worse than 6.335% shown in Table 7 with windows size of 1.2 seconds and no 

overlap. 
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Table 7. Error rates using 𝐸1,𝐹𝐹𝑇, by ignoring all but 𝑛 highest peaks 

 

          d 

n              
10 Hz 50 Hz 100 Hz 

5 7.813 (11.14) 6.511 (8.92) 7.479 (10.9) 

10 8.226 (10.55) 7.436 (10.36) 12.84 (18.1) 

30 7.829 (8.458) 6.441 (12) 6.991 (7.214) 

 

 

Table 8 shows the error rates using 𝐸2,𝐹𝐹𝑇 and different number of peaks (n). The 

error rate is slightly higher when 𝑛 is small (𝑛 = 5), but there is no significant difference 

from 𝑛 = 10 from 𝑛 = 30. Table 9 shows the error rates for 𝐸3,𝐹𝐹𝑇. Similar to 𝐸2,𝐹𝐹𝑇, the 

parameter 𝑛 has no significant effect for 𝑛 ≥ 10. Fig. 28 summarized the best results 

from 𝐸1,𝐹𝐹𝑇, 𝐸2,𝐹𝐹𝑇, and 𝐸3,𝐹𝐹𝑇. The data come from the minimum error rates from Table 

6, Table 8, and Table 9, respectively. 𝐸1,𝐹𝐹𝑇 is the superior feature among the three with 

an error rate of 6.34 %, with 𝐸2,𝐹𝐹𝑇 close behind. 
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Table 8. Classification error rates using FFT (𝐸2,𝐹𝐹𝑇) and different number of peaks 

Number of peaks (n) FA (%) MA (%) ER (%) 

5 3.53 (3.991) 6.466 (7.277) 9.996 (11.27) 

10 2.251 (4.481) 6.107 (10.61) 8.358 (10.86) 

20 3.081 (5.213) 5.515 (6.733) 8.596 (10.19) 

30 2.295 (2.716) 6.154 (7.092) 8.449 (9.456) 

Feature: [window=1.2, overlap=0.8, exp=2.75, range=5, xyz], classification: [kNN, auto[1-200], 

weight 1/r^3] 

 

 

Table 9. Classification error rates using FFT (𝐸3,𝐹𝐹𝑇) and different number of peaks 

Number of peaks (n) FA (%) MA (%) ER (%) 

5 6.524 (9.39) 8.713 (11.06) 15.24 (17.84) 

10 6.07 (11.37) 8.051 (8.294) 14.12 (19.67) 

20 6.819 (7.769) 8.049 (8.772) 14.87 (16.54) 

30 6.618 (8.983) 8.203 (9.456) 14.82 (18.44) 

Feature: [window=1.2, overlap=0.8, exp=2.75, range=5, xyz], classification: [kNN, auto[1-200], 

weight 1/r^3] 
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Fig. 28. Comparison of error rates with different FFT related features 
 

 

5.3.2 Wavelet packet transform (WPT) 

 Fig. 29 shows the comparison of error rates within each mother wavelet family. 

Here, we tested Daubechies (db), Coiflet (coif), Symlet (sym), biorthogonal (bior), reverse 

biorthogonal. The best mother wavelets in each family are db20, coif1, sym2, bior1.5, and 

rbio1.3. Note that not all mother wavelets are tested. For instance, only db1 to db4, db10, 

db15, db20, and db30 are tested for Daubechies wavelets. The reason is that testing all 

wavelets is impractical given the large number of choices. More lower-numbered 

wavelets are tested compared to the higher-numbered ones because the difference 

between db3 and db4 is much more significant than db19 and db20 in terms of the shape 

of the wavelet function. Also, db1, bior1.1, and Haar refer to the same wavelet. 

The error rates are typically within 6 to 10 % showing that the variation is not 

large regardless of which wavelet we choose. As shown in the figure, there is no clear 

way to pick a wavelet within a family. Fig. 30 is a comparison of error rates across 

different families with the lowest error rate in each family chosen as a representation. 
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Daubechies (db) wavelets performs best with an error rate of 6.019%, followed by bior 

and rbio at around 6.6%, whereas dmey is the worst at 9.3%. However, since the 

difference in error rates is not too significant between the best and the worst wavelets, it 

is difficult to judge whether the same conclusion can be reached using another machine. 

Nevertheless, the main point is that among the wavelet families we tested, there should 

not be a large difference regardless which one is used.  

Fig. 31 shows the error rates when different axes are used as feature. Since we use 

a tri-axial accelerometer to acquire data, there are 6 possible combinations. We can use 

only one axis: x, y, or z. We can also use a combination of them: xy, xz, yz, or xyz. The 

error rate when only one axis is used is substantially higher, between 13.52 to 18.11%. 

Using two axes produces error rates between 10.81 to 11.3%. The optimal result of 

6.019% is obtained by using all three axes. It is interesting to know that even if the 

direction of cutting is y-axis, x- and z-axis both contribute heavily towards the final 

classification model. 
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Fig. 29. Comparison of average error rates within each mother wavelets family 
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Fig. 30. Comparison of average error rates within each mother wavelets family 

 
Feature: [window=1.2, overlap=0.8, exp=2.75, bw=10, xyz], classification: [kNN, auto[1-200], weight 

1/r^3] 

 

 
Fig. 31. Comparison of average error rates when different axes are used as feature in 

k-NN classifier 
 

Feature: [window=1.2, overlap=0.8, exp=2.75, db20, bw=10], classification: [kNN, auto[1-200], 

weight 1/r^3] 
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Table 10 shows the error rates when different window sizes are used. Two 

observations can be made from this table. The first is that the effect of overlap is marginal, 

improving the error rates by at most around 1%. The second is that larger window size 

decreases the error rates significantly, with a difference of more than 4% between 1.2 and 

0.3 seconds. Fig. 32 shows the distribution of normalized relative energy. The stable data 

points lie in a relatively small region, i.e. the orange box.   

 

Table 10. Classification error rates using WPT and different window sizes 

 

Window size 

(sec) 

Overlap 

(sec) 

Data 

points 
FA (%) MA (%) ER (%) 

1.2 0.8 1216 
1.13  

(2.118) 

4.89  

(6.824) 

6.019 

(8.941) 

0.9 0.6 1736 
3.094 

(6.811) 

6.15  

(9.683) 

9.244 

(10.63) 

0.6 0.4 2780 
3.266 

(7.239) 

6.391 

(8.705) 

9.657 

(11.27) 

0.3 * 0.2 5895 
3.375 

(5.891) 

6.975 

(8.277) 

10.35 

(14.17) 

1.2 0 456 
1.287  

(2.5) 

5.883 

(8.054) 

7.17  

(9.375) 

0.9 0 608 
2.936 

(5.742) 

6.412 

(7.656) 

9.347  

(13.4) 

0.6 0 972 
3.248 

(6.928) 

6.464  

(7.53) 

9.712 

(14.46) 

0.3 0 2010 
3.825 

(7.648) 

7.688 

(10.63) 

11.51 

(12.84) 

0.1 * 0 6169 
4.325 

(5.477) 

9.005 

(11.35) 

13.33 

(14.69) 

0.05 ** 0 12338 
4.531 

(5.464) 

10.41 

(12.65) 

14.94 

(18.12) 

Feature: [exp=2.75, db20, bw=10, xyz], classification: [kNN, auto[1-200], weight 1/r^3] 

* classification: [kNN, auto[1-500], weight 1/r^3] 

** classification: [kNN, auto[1-2000], weight 1/r^3] 
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Fig. 32. Normalized relative energies 𝐸′𝑊𝑃𝑇(𝑦) and 𝐸′𝑊𝑃𝑇(𝑧) using WPT 

Feature: [window=1.2, overlap=0.8, exp=2.75, haar, xyz], classification: [kNN, auto[1-200], weight 

1/r^3] 
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5.3.3 Autocorrelation coefficients 

Fig. 33 shows the autocorrelation coefficient for acceleration signal under stable 

cutting conditions. The left side shows the signal from accelerometer. The length 

acceleration signal is approximately 9.4 ms, which is equal to two spindle rotation periods. 

In order to find 𝑇𝑋, during peak finding, the peaks with top 50% prominence is chosen. 

The right side is the autocorrelation coefficient calculated from (5), with time delay 𝜏 as 

the x-axis. The vertical blue line indicates the position of T1 and it coincides with a peak 

in autocorrelation coefficient as expected.  

Fig. 34 shows the result of an unstable cut. The blue line does not coincide with a 

peak in autocorrelation coefficient as expected. In fact, the blue line coincides with a local 

minimum, indicating there is significant vibration in frequencies other than tooth pass 

frequencies. 

Fig. 35 is the autocorrelation coefficients of acceleration, velocity, and 

displacement. The DC component of the measured acceleration signal is subtracted, and 

then we integrate the signal with respect to time to obtain the velocity. Similarly, 

displacement can be calculated. Peaks in autocorrelation coefficients are clearly visible 

when 𝜏 is equal to spindle rotation period, which is the expected behavior. However, 

when we integrate the signal, the finer vibration details are lost. The vibrations caused by 

each tooth is visible in the acceleration graph, barely recognizable in the velocity graph, 

and completely disappeared in the displacement graph. 
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Fig. 33. Autocorrelation coefficient for a stable cut 

 

 
 

Fig. 34. Autocorrelation coefficient for an unstable cut 

 



doi:10.6342/NTU201903636

71 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 35 Autocorrelation coefficient of (a) original acceleration signal, (b) velocity 

signal, and (c) displacement signal. 
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Fig. 36. Distribution of standardized phase differences 𝜀 for x-, y-, and z-axes. 

 

Fig. 37 shows the phases differences 𝜀  calculated from autocorrelation 

coefficients. A large amount stable and unstable data points overlap, which can be also 

seen in the distribution charts in Fig. 36 and is not ideal. This pattern can be observed 
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regardless of the window size, overlap, or prominence parameter. Phase differences is 

often smaller for stable cuts compared to the unstable ones, but sometimes the phase 

difference of unstable cuts are small as well.  

Table 11 is a comparison of different window sizes and overlap lengths. As we 

can see, the error rate increases from 16.93% to 22.8% as the window size decreases from 

1.2 seconds to 0.05 seconds. Because the characteristics of vibration signal fluctuates with 

time, we cannot expect the phase difference 𝜀 to remain the same even during a single cut. 

The fluctuations in 𝜀 averages out when a larger window size is used, and produces a 

more representative feature and overall better accuracy. The effect of overlap in error 

rates far less significant. Despite the increase in number of data points when the overlap 

is larger, the extra data points contributes little to the trained classification models. 

Table 12 shows how the prominence parameter affect the error rates. A value 

between 70% to 90% is marginally better in terms of the results. Data from Table 13 

indicates that the velocity is a marginally better feature, having a 16.42% error rate 

compared to 17.93% and 17.96% for acceleration and displacement respectively. 
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Fig. 37. Phase differences 𝜀 of the entire dataset, in x-, y-, and z-directions. 

Window size is 1.2 seconds with overlap of 0.8 seconds. Data is acceleration signal. 

Peaks with prominence in top 50% are considered. The phase is in degree, with a period 

equaling to spindle speed period. 
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Table 11. Classification error rates using autocorrelation coefficients and different 

window sizes 

Window size 

(sec) 

Overlap 

(sec) 

Data 

points 
FA (%) MA (%) ER (%) 

1.2 0.8 1216 
6.961 

(11.03) 

11.01 

(14.96) 

17.97 

(18.97) 

0.9 0.6 1736 
7.258 

(10.44) 

10.79 

(14.54) 

18.05 

(21.37) 

0.6 0.4 2780 
6.1 

(10.53) 

11.24 

(14.62) 

17.34 

(19.78) 

0.3 0.2 5895 
6.493 

(9.336) 

11.48 

(16.49) 

17.97 

(23.54) 

1.2 0 456 
6.895 

(13.51) 

10.03 

(13.42) 

16.93 

(18.24) 

0.9 0 608 
6.806 

(11.68) 

12.33 

(13.43) 

19.13 

(22.84) 

0.6 0 972 
6.361 

(9.873) 

12.57 

(16.41) 

18.93 

(23.53) 

0.3 0 2010 
6.357 

(9.035) 

10.96 

(12.59) 

17.31 

(17.57) 

0.1 * 0 6169 
6.654 

(8.674) 

12.08 

(14.57) 

18.74 

(19.79) 

0.05 * 0 12338 
8.793 

(11.8) 

14.01 

(15.78) 

22.8 

(23.05) 

Feature: [prominence=50%, a, xyz], classification: [kNN, auto[1-200], weight 1/r^3] 

* classification: [kNN, auto[1-2000], weight 1/r^3] 
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Table 12. Classification error rates using autocorrelation coefficients and different 

prominence percentages 

Prominence FA (%) MA (%) ER (%) 

10% 7.137 (14.01) 11.45 (16.99) 18.58 (21.59) 

30% 7.39 (9.591) 11.58 (14.12) 18.97 (19.79) 

50% 7.258 (10.44) 10.79 (14.54) 18.05 (21.37) 

70% 6.805 (10.05) 10.66 (13.38) 17.46 (17.99) 

90% 6.16 (10.12) 11.77 (14.59) 17.93 (18.8) 

Feature: [window=0.9, overlap=0.6, a, xyz], classification: [kNN, auto[1-200], weight 1/r^3] 

 

 

Table 13. Comparison of classification error rates between acceleration, velocity, and 

displacement using autocorrelation coefficients.  

Feature 
Data 

points 
FA (%) MA (%) ER (%) 

acceleration 1736 6.16 (10.12) 11.77 (14.59) 17.93 (18.8) 

velocity 1736 7.548 (10.55) 8.868 (11.05) 16.42 (20.18) 

displacement 1736 8.846 (9.615) 9.11 (9.464) 17.96 (18.71) 

Feature: [window=0.9, overlap=0.6, prominence=50%, xyz], classification: [kNN, auto[1-200], weight 

1/r^3] 
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5.3.4 Hilbert-Huang transform (HHT) 

Fig. 38 shows the distribution of relative energy 𝐸𝐻𝐻𝑇 in the y- and z-directions. 

The top figure is the result with HHT only, and the bottom one is first processed by WPT. 

It is interesting that the two distributions are opposite. When using HHT only, 𝐸𝐻𝐻𝑇 is 

higher for the stable data points. That implies in stable conditions, the amplitude of the 

first IMF is high. However, the pre-processing using WPT reverses the trend. Table 14 

gives a comparison between the error rates between the two approaches. It is clear that 

WPT+HHT is better than using HHT only, as suggested by a previous research [53]. Fig. 

39 shows the error rates when using different axes as feature. Surprisingly, using only x- 

and z-axis is slightly better than using all three axes. Nevertheless, using all three axes is 

still much more robust compared to using one axis. 
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Fig. 38. Distribution of the y- and z-axis relative energy after only HHT (top), and 

WPT+HHT (bottom) 
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Table 14. Classification error rates using only HHT, and WPT+HHT 

Feature FA (%) MA (%) ER (%) 

HHT only 4.18 (5.952) 8.043 (9.383) 12.22 (14.05) 

WPT + HHT 2.049 (3.465) 2.907 (5.437) 4.957 (7.092) 

Feature: [window=1.2, overlap=0.8, xyz], classification: [kNN, auto[1-200], weight 1/r^3] 

 

 
Fig. 39. Comparison of average error rates when different axes are used as feature 

 

5.3.5 Frequency spectrum (with artificial neural network) 

 The ANN in our platform is implemented using tensorflow. Some simple neural 

networks architectures were attempted, including fully connected layers and dropout 

layers. The input is a vector consisting of the magnitude of the spectrum after FFT. Since 

the sampling rate is 10 kHz, the length of the input vector is 
10000

2
+ 1 = 5001. The input 

vector is normalized for optimal results. The output is a single number indicating whether 

it is stable or unstable. The number of layers, number of units in each layer, activation 

function, dropout rate, and batch size are varied to find the optimal test accuracy. The 

dataset is split into 2 parts, with 70% used for training, and 30% used for testing.  
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 92.88% test accuracy is achieved using two fully connected layers with 20 and 10 

units, respectively. The activation functions for both layers are relu. Loss function is 

binary cross-entropy, optimizer is adam, and batch size is 200. 92.88% accuracy is 

achieved with 10 epochs. In general, the training accuracy is higher than test accuracy, 

and the parameters above is mainly selected to avoid overfitting. 

 

5.4 Comparison of features 

 Fig. 40 is a collection of probability density functions from each feature. For each 

plot of the figure, the parameters used are the ones that process the lowest error rate. Only 

the distribution of y-axis is shown since it is the direction of feed. A feature is a good 

chatter indicator if the overlap between the stable and unstable distributions is small. For 

example, the overlap is large for the phase difference 𝜀 from autocorrelation coefficient, 

which indicates that it is not a good feature. This is evident from its classification error 

rate, which is the highest amongst the six. The first two FFT-related features, 𝐸1,𝐹𝐹𝑇 and 

𝐸2,𝐹𝐹𝑇, both show a high peak for the stable curve, which implies a large amount of stable 

data points have low 𝐸1,𝐹𝐹𝑇  or 𝐸2,𝐹𝐹𝑇 . However, the unstable data points distribute 

relatively evenly.  
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Fig. 40. Probability distribution function (PDF) of the y-axis features used in this 

research, for both stable and unstable categories, including (a) 𝐸1, 𝐹𝐹𝑇, (b) 𝐸2, 𝐹𝐹𝑇, 

(c) 𝐸3, 𝐹𝐹𝑇, (d) 𝐸𝑊𝑃𝑇, (e) 𝜖 from autocorrelation coefficient, and (f) 𝐸𝐻𝐻𝑇  
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Fig. 41 shows the lowest error rates for each type of feature. HHT, when used 

with WPT, has the best performance in terms of error rate, at 4.856%. WPT and 𝐸1,𝐹𝐹𝑇 

are the second and third, at 6.019% and 6.335% respectively. Phase difference from 

autocorrelation coefficient is the worst, with an error rate of 16.42%, which is more than 

3 times of the best error rate. For all six features, HHT is the only one that is based on 

empirical formulas and does not have a convincing theoretical background for chatter 

identification. It is surprising that it beats other methods with good theoretical foundations, 

although by a very small margin.  

 
Fig. 41. Comparison of error rates of all features 
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5.5 Effect of window size 

 As discussed previously in the sections regarding parameter optimization of FFT, 

WPT, and autocorrelation coefficient, the error rate generally decreases with increased 

windows size. This is likely due to the fluctuation of the feature within a window. E.g. a 

high value of energy ratio may appear promptly during a stable cut, causing it to be 

incorrectly classified as unstable. This can result in higher error rates when the window 

size is too small. However, a lower window size might have the benefit of quicker 

detection time in real-time chatter detection applications. This is a trade-off between error 

rate and detection time. In this section, the effect of window size on error rates and 

detection speeds is discussed, and the detection speeds of models trained with different 

features will be compared.  

  

5.5.1 Error rates 

 Fig. 42 shows the relation between window size and error rate for 4 features, FFT, 

WPT, autocorrelation coefficient, and HHT. The window size varies from 0.05 seconds 

to 1 second and overlap is set to 50% of the window size for both training and test data. 

K-NN is used as the classification method with weight 𝑟−3 and the optimal 𝑘 is selected 

between 1 and 200. The trends of the four figures are similar where the error rate is high 

when window size is below 0.2 seconds, and quickly decreasing as the window size 

increases to 0.3 to 0.5 seconds. It is worth noting that the error rate for HHT drops to 

2.2% at window size of 0.37 seconds. 
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(a) 
(b) 

 

 
 

(c) 
(d) 

 

Fig. 42. Variation of error rates with respect to window size for (a) EFFT,1, (b) WPT, 

(c) phase ε for autocorrelation coefficient, and (d) HHT 
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5.5.2 Detection speed 

 Fig. 43 show the variation of detection speeds with different window sizes. The 

data points are the average detection speeds for all cuts, and the error bar indicates one 

standard deviation. The detected time is relative to the time where window size is 0.05 

seconds, and lower value is better. Surprisingly, the detected time in general decreases as 

window size increases. We explain this using WPT as an example, with a small window 

size. During the training process, due to the inevitable fluctuations, the energy ratio 

feature needs to be high enough for the model to be considered as unstable. During testing, 

we must wait longer for the energy ratio to rise above the stable-unstable boundary so 

that the model identifies it as unstable. This may be the cause of slower detection for 

small window sizes.  

 Detected times between different features are also compared in Fig. 44. 

Autocorrelation coefficient produces the fastest detected time at window size of 0.47 

seconds. HHT results in a slower detection, typically 0.2 to 0.3 seconds behind other three 

features. These detected times are the average of the entire dataset. For each unstable cut 

in the dataset, we simulate the time when the chatter would be detected using a trained 

model. These times are then averaged and compared with another model. Therefore, these 

detected times are relative, and is unrelated to the actual time of chatter occurrence.  
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(a) 

 

(b) 

 
 

(c) 

 

(d) 

Fig. 43. Variation of detected time with respect to window size for (a) 𝐸𝐹𝐹𝑇,1, (b) 

WPT, (c) phase 𝜀 for autocorrelation coefficient, and (d) HHT.  
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Fig. 44. Relative detected times for each different feature and window sizes for FFT 

(𝐸1,𝐹𝐹𝑇), WPT, autocorrelation coefficient, and HHT (with WPT) 
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6. Conclusions and future work 

In this research, a chatter identification platform is developed to train models and 

evaluate their performance, using combinations of signal processing methods and 

classification algorithms and a dataset consisting of 143 cuts under various cutting 

condition. We compared several classification methods in terms of their performance on 

chatter identification after parameter optimization for each classifier. K-NN, Naïve Bayes, 

and SVM are the superior methods, with error rates from 5.21% to 5.647%. The effect on 

accuracy of feature selection is far more significant compared to classifier selection. 

Efforts are put into parameter optimizations for each of these features. Using the optimal 

classifier, k-NN, and window size of 1.2 seconds and no overlap, the optimal error rate is 

achieved by using HHT and WPT together, at 4.856%. The rest are 𝐸𝑊𝑃𝑇, 𝐸1,𝐹𝐹𝑇, 𝐸2,𝐹𝐹𝑇, 

𝐸3,𝐹𝐹𝑇 , and autocorrelation coefficient, ordered by error rate, from low to high. 

Autocorrelation coefficient proves to be the least effective, with an error rate of 16.42%. 

Incidentally, using all three axes as feature is shown to be much better than using only 1 

or 2 axes in some circumstances. Finally, the effect of window size on error rates and 

detection speeds is also investigated using the platform we developed. A window size 

around 0.3 to 0.5 seconds is optimal in terms of error rate, and the best error rate of 2.2% 

was found using a window size of 0.37 seconds with HHT+WPT. However, HHT+WPT 

results in a marginally slower chatter detection compared to other features, and what 

comes as a surprise is that smaller window size does not lead to faster chatter detection. 

There are some potential directions for future researches. Due to the large amount 

of possible variations in ANN architectures, it is not explored fully in this work and may 

be worth investigating. Another optimization opportunity is to use different window sizes 

for training and testing, and observe the trend of error rate and detection time.  
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Appendix A. List of cutting conditions in the dataset 

Note: The chip load is fixed at 0.1 mm/tooth. 

Experimentally stable cutting conditions: 

Spindle speed (rpm) Depth of cut (mm) Spindle speed (rpm) Depth of cut (mm) 

4500 0.2 6100 0.5 

4500 0.3 6100 0.6 

4600 0.2 6200 0.2 

4900 0.3 6200 0.3 

5000 0.2 6200 0.4 

5000 0.3 6200 0.5 

5000 0.4 6200 0.6 

5000 0.5 6200 0.7 

5000 0.6 6200 0.8 

5000 0.7 6200 0.9 

5000 0.8 6200 1 

5000 0.9 6300 0.2 

5000 1 6300 0.3 

5100 0.2 6300 0.4 

5100 0.3 6300 0.5 

5100 0.4 6300 0.6 

5100 0.5 6300 0.7 

5100 0.6 6400 0.2 

5200 0.2 6400 0.3 

5200 0.3 6400 0.4 

5200 0.4 6400 0.5 

5300 0.2 6400 0.6 

5300 0.3 6500 0.2 

5400 0.2 6500 0.3 

5500 0.2 6500 0.4 

5500 0.2 6500 0.5 

5600 0.2 6500 0.6 

5700 0.2 6600 0.2 

5800 0.2 6600 0.3 

5900 0.2 6600 0.4 

5900 0.3 6700 0.2 

6000 0.2 6700 0.3 

6000 0.3 6700 0.4 

6000 0.4 6800 0.2 

6100 0.2 6800 0.3 

6100 0.3 6900 0.2 

6100 0.4 7000 0.2 
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Experimentally unstable cutting conditions: 

Spindle speed (rpm) Depth of cut (mm) Spindle speed (rpm) Depth of cut (mm) 

4500 0.32 5900 0.4 

4500 0.4 5900 0.5 

4600 0.3 6000 0.5 

4700 0.2 6000 0.6 

4700 0.3 6100 0.7 

4800 0.2 6100 0.8 

4800 0.3 6200 1.2 

4900 0.4 6300 0.8 

5000 1.1 6300 0.9 

5100 0.7 6400 0.7 

5200 0.5 6500 0.6 

5200 0.6 6500 0.62 

5300 0.3 6500 0.7 

5300 0.4 6600 0.5 

5400 0.3 6700 0.4 

5500 0.3 6700 0.5 

5600 0.3 6800 0.3 

5700 0.2 6800 0.4 

5700 0.3 6900 0.3 

5800 0.3 7000 0.3 
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Appendix B. Model training and validation results 

Note: The number in the parenthesis indicates the maximum error rate of the 3 validation datasets (in 

stratified k-fold validation with k=3). The other number is the average error rate of the three datasets. 

Examples: 

(a) Auto. Coeff., window=1.2, overlap=0.8, prominence=50%, a, xyz: The feature is autocorrelation 

coefficient, window size 1.2 sec, overlap 0.8 sec, prominence 50%, using x-, y-, and z-axes acceleration as 

feature. 

(b) kNN, k=auto[1-200], weight 1/r^3: The classification method is k-nearest neighbors, with k automatically 

selected between 1 to 200 for the lowest error rate, with weight 1/r^3. 

(c) FFT, exp=2.75, n=5, d=100, bw=10: exponent 2.75, tooth pass filter bandwidth 10Hz, only 5 highest peaks 

are used, with the minimum distance between peaks being 100 Hz. 

Feature Classification 
data 

points 
FA (%) MA %) ER (%) 

Auto. 

Coeff. 

window=1.2, overlap=0.8, 

prominence=50%, a, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

6.961 

(11.03) 

11.01 

(14.96) 

17.97 

(18.97) 

Auto. 

Coeff. 

window=0.9, overlap=0.6, 

prominence=50%, a, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1736 

7.258 

(10.44) 

10.79 

(14.54) 

18.05 

(21.37) 

Auto. 

Coeff. 

window=0.6, overlap=0.4, 

prominence=50%, a, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
2780 

6.1 

(10.53) 

11.24 

(14.62) 

17.34 

(19.78) 

Auto. 

Coeff. 

window=0.3, overlap=0.2, 

prominence=50%, a, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
5895 

6.493 

(9.336) 

11.48 

(16.49) 

17.97 

(23.54) 

Auto. 

Coeff. 

window=1.2, overlap=0, 

prominence=50%, a, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
456 

6.895 

(13.51) 

10.03 

(13.42) 

16.93 

(18.24) 

Auto. 

Coeff. 

window=0.9, overlap=0, 

prominence=50%, a, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
608 

6.806 

(11.68) 

12.33 

(13.43) 

19.13 

(22.84) 

Auto. 

Coeff. 

window=0.6, overlap=0, 

prominence=50%, a, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
972 

6.361 

(9.873) 

12.57 

(16.41) 

18.93 

(23.53) 

Auto. 

Coeff. 

window=0.3, overlap=0, 

prominence=50%, a, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
2010 

6.357 

(9.035) 

10.96 

(12.59) 

17.31 

(17.57) 

Auto. 

Coeff. 

window=0.1, overlap=0, 

prominence=50%, a, xyz 
kNN 

k=auto[1-2000], 

weight 1/r^3 
6169 

6.654 

(8.674) 

12.08 

(14.57) 

18.74 

(19.79) 

Auto. 

Coeff. 

window=0.05, overlap=0, 

prominence=50%, a, xyz 
kNN 

k=auto[1-2000], 

weight 1/r^3 
12338 

8.793 

(11.8) 

14.01 

(15.78) 

22.8 

(23.05) 

Auto. 

Coeff. 

window=0.9, overlap=0.6, 

prominence=10%, a, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1736 

7.137 

(14.01) 

11.45 

(16.99) 

18.58 

(21.59) 

Auto. 

Coeff. 

window=0.9, overlap=0.6, 

prominence=30%, a, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1736 

7.39 

(9.591) 

11.58 

(14.12) 

18.97 

(19.79) 
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Auto. 

Coeff. 

window=0.9, overlap=0.6, 

prominence=70%, a, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1736 

6.805 

(10.05) 

10.66 

(13.38) 

17.46 

(17.99) 

Auto. 

Coeff. 

window=0.9, overlap=0.6, 

prominence=90%, a, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1736 

6.16 

(10.12) 

11.77 

(14.59) 

17.93 

(18.8) 

Auto. 

Coeff. 

window=0.9, overlap=0.6, 

prominence=50%, v, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1736 

7.548 

(10.55) 

8.868 

(11.05) 

16.42 

(20.18) 

Auto. 

Coeff. 

window=0.9, overlap=0.6, 

prominence=50%, x, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1736 

8.846 

(9.615) 

9.11 

(9.464) 

17.96 

(18.71) 

FFT 
window=1.2, overlap=0.8, 

exp=0.5, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

8.539 

(9.569) 

12.25 

(14.25) 

20.79 

(21.77) 

FFT 
window=1.2, overlap=0.8, 

exp=0.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

6.389 

(11.67) 

12.07 

(14.29) 

18.46 

(20.71) 

FFT 
window=1.2, overlap=0.8, 

exp=1, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

4.007 

(8.235) 

8.993 

(11.5) 

13 

(15.53) 

FFT 
window=1.2, overlap=0.8, 

exp=1.25, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

3.228 

(6.921) 

6.969 

(8.685) 

10.2 

(14.32) 

FFT 
window=1.2, overlap=0.8, 

exp=1.5, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

1.846 

(4.513) 

6.136 

(7.601) 

7.982 

(12.11) 

FFT 
window=1.2, overlap=0.8, 

exp=1.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

1.601 

(3.294) 

5.777 

(8.706) 

7.379 

(12) 

FFT 
window=1.2, overlap=0.8, 

exp=2, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

2.01 

(4.245) 

5.439 

(6.667) 

7.449 

(8.726) 

FFT 
window=1.2, overlap=0.8, 

exp=2.25, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

2.318 

(5.176) 

5.525 

(7.5) 

7.843 

(9.647) 

FFT 
window=1.2, overlap=0.8, 

exp=2.5, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

2.332 

(5.489) 

5.93 

(6.361) 

8.262 

(10.98) 

FFT 
window=1.2, overlap=0.8, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

1.808 

(2.778) 

5.067 

(6.921) 

6.875 

(9.069) 

FFT 
window=1.2, overlap=0.8, 

exp=3, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

2.441 

(3.505) 

4.953 

(9.813) 

7.393 

(13.32) 

FFT 
window=1.2, overlap=0.8, 

exp=3.5, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

2.643 

(6.161) 

4.334 

(5.45) 

6.977 

(11.61) 

FFT 
window=1.2, overlap=0.8, 

exp=4, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

3.22 

(7.399) 

4.45 

(5.303) 

7.67 

(11.46) 

FFT 
window=1.2, overlap=0.8, 

exp=5, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

2.201 

(3.066) 

4.72 

(5.5) 

6.92 

(7.25) 

FFT 
window=1.2, overlap=0.8, 

exp=6, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

2.089 

(4.225) 

4.628 

(5.736) 

6.717 

(7.746) 

FFT 
window=1.2, overlap=0.8, 

exp=8, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

2.743 

(5.201) 

5.375 

(8.312) 

8.118 

(9.848) 

FFT 
window=1.2, overlap=0.8, 

exp=10, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

3.506 

(5.742) 

4.78 

(5.955) 

8.286 

(9.569) 
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FFT 
window=1.2, overlap=0.8, 

exp=2.75, bw=2.5, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

1.449 

(3.58) 

5.216 

(7.635) 

6.665 

(7.635) 

FFT 
window=1.2, overlap=0.8, 

exp=2.75, bw=5, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

1.801 

(2.837) 

5.528 

(7.565) 

7.329 

(10.4) 

FFT 
window=1.2, overlap=0.8, 

exp=2.75, bw=20, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

3.439 

(5.314) 

5.172 

(7.488) 

8.611 

(12.8) 

FFT 
window=1.2, overlap=0.8, 

exp=2.75, bw=40, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

1.621 

(3.095) 

4.831 

(6.112) 

6.451 

(7.857) 

FFT 
window=0.9, overlap=0.6, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1736 

1.721 

(2.152) 

5.851 

(7.719) 

7.572 

(8.772) 

FFT 
window=0.6, overlap=0.4, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
2780 

2.455 

(3.459) 

5.818 

(8.491) 

8.273 

(11.95) 

FFT 
window=0.3, overlap=0.2, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-500], 

weight 1/r^3 
5895 

3.582 

(5.143) 

7.484 

(11.05) 

11.07 

(12.51) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
456 

1.705 

(4.459) 

4.63 

(6.579) 

6.335 

(7.237) 

FFT 
window=0.9, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
608 

1.94 

(3.81) 

5.862 

(8.867) 

7.802 

(10.48) 

FFT 
window=0.6, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
972 

2.679 

(3.481) 

5.614 

(8.358) 

8.293 

(11.04) 

FFT 
window=0.3, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
2010 

2.917 

(4.512) 

7.107 

(8.006) 

10.02 

(12.52) 

FFT 
window=0.1, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-500], 

weight 1/r^3 
6169 

3.803 

(5.082) 

9.124 

(9.545) 

12.93 

(14.16) 

FFT 
window=0.05, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-2000], 

weight 1/r^3 
12338 

3.827 

(4.573) 

9.895 

(10.83) 

13.72 

(15.4) 

FFT 

window=1.2, overlap=0.8, 

exp=2.75, n=5, d=10, 

bw=10, xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.906 

(5.45) 

4.907 

(6.234) 

7.813 

(11.14) 

FFT 

window=1.2, overlap=0.8, 

exp=2.75, n=5, d=50, 

bw=10, xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.531 

(3.286) 

3.98 

(5.634) 

6.511 

(8.92) 

FFT 

window=1.2, overlap=0.8, 

exp=2.75, n=5, d=100, 

bw=10, xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

3.108 

(3.791) 

4.371 

(7.109) 

7.479 

(10.9) 

FFT 

window=1.2, overlap=0.8, 

exp=2.75, n=10, d=10, 

bw=10, xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

3.581 

(5.164) 

4.645 

(8.291) 

8.226 

(10.55) 

FFT 

window=1.2, overlap=0.8, 

exp=2.75, n=10, d=50, 

bw=10, xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

3.565 

(7.952) 

3.871 

(5.911) 

7.436 

(10.36) 
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FFT 

window=1.2, overlap=0.8, 

exp=2.75, n=10, d=100, 

bw=10, xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

8.539 

(15.71) 

4.297 

(6.683) 

12.84 

(18.1) 

FFT 

window=1.2, overlap=0.8, 

exp=2.75, n=30, d=10, 

bw=10, xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.811 

(5.647) 

5.017 

(7.214) 

7.829 

(8.458) 

FFT 

window=1.2, overlap=0.8, 

exp=2.75, n=30, d=50, 

bw=10, xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.003 

(4.235) 

4.437 

(7.765) 

6.441 

(12) 

FFT 

window=1.2, overlap=0.8, 

exp=2.75, n=30, d=100, 

bw=10, xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

1.926 

(4.502) 

5.065 

(7.214) 

6.991 

(7.214) 

c/tp 

window=1.2, overlap=0.8, 

exp=2.75, n=30, range=5, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.295 

(2.716) 

6.154 

(7.092) 

8.449 

(9.456) 

c/tp 

window=1.2, overlap=0.8, 

exp=2.75, n=20, range=5, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

3.081 

(5.213) 

5.515 

(6.733) 

8.596 

(10.19) 

c/tp 

window=1.2, overlap=0.8, 

exp=2.75, n=10, range=5, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.251 

(4.481) 

6.107 

(10.61) 

8.358 

(10.86) 

c/tp 

window=1.2, overlap=0.8, 

exp=2.75, n=5, range=5, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

3.53 

(3.991) 

6.466 

(7.277) 

9.996 

(11.27) 

n/all 

window=1.2, overlap=0.8, 

exp=2.75, n=5, range=5, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

6.524 

(9.39) 

8.713 

(11.06) 

15.24 

(17.84) 

n/all 

window=1.2, overlap=0.8, 

exp=2.75, n=10, range=5, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

6.07 

(11.37) 

8.051 

(8.294) 

14.12 

(19.67) 

n/all 

window=1.2, overlap=0.8, 

exp=2.75, n=20, range=5, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

6.819 

(7.769) 

8.049 

(8.772) 

14.87 

(16.54) 

n/all 

window=1.2, overlap=0.8, 

exp=2.75, n=30, range=5, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

6.618 

(8.983) 

8.203 

(9.456) 

14.82 

(18.44) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, haar, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

1.934 

(3.318) 

5.19 

(6.923) 

7.124 

(9.242) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, coif1, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.25 

(4.481) 

4.953 

(6.84) 

7.204 

(11.32) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, coif2, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.89 

(7.16) 

6.084 

(9.25) 

8.974 

(12.89) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, coif3, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.649 

(5.674) 

5.475 

(6.856) 

8.125 

(12.53) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, coif4, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

3.245 

(5.226) 

6.229 

(7.601) 

9.473 

(12.83) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, coif8, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

3.066 

(5.938) 

6.095 

(9.181) 

9.162 

(11.17) 
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WPT 

window=1.2, overlap=0.8, 

exp=2.75, coif12, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.955 

(6.047) 

6.066 

(6.512) 

9.021 

(12.56) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, sym2, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

1.917 

(3.981) 

5.327 

(6.089) 

7.244 

(10.07) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, sym3, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.651 

(5.14) 

4.955 

(7.557) 

7.606 

(11.68) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, sym4, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.415 

(4.717) 

5.671 

(8.255) 

8.085 

(12.97) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, sym5, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

1.232 

(1.546) 

6.517 

(8.837) 

7.749 

(10.23) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, sym6, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

3.122 

(7.857) 

5.1 

(7.654) 

8.222 

(11.67) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, sym10, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.301 

(2.709) 

5.659 

(6.888) 

7.96 

(9.026) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, sym20, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.706 

(6.604) 

5.927 

(6.7) 

8.633 

(12.03) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, bior1.3, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.958 

(7.637) 

5.492 

(6.931) 

8.45 

(13.37) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, bior1.5, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

1.393 

(1.733) 

5.279 

(7.765) 

6.672 

(9.176) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, bior2.2, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.683 

(7.277) 

5.719 

(7.96) 

8.402 

(13.38) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, bior2.4, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

3.781 

(9.33) 

5.958 

(7.379) 

9.739 

(13.16) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, bior3.1, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

3.06 

(4.976) 

6.786 

(9.61) 

9.845 

(13.03) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, rbio1.3, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.432 

(4.481) 

5.484 

(8.019) 

7.916 

(12.5) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, rbio1.5, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.773 

(7.059) 

5.071 

(6.203) 

7.844 

(9.882) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, rbio2.2, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

3.13 

(9.39) 

5.137 

(7.463) 

8.267 

(12.44) 
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WPT 

window=1.2, overlap=0.8, 

exp=2.75, rbio2.4, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

1.218 

(2.148) 

6.116 

(9) 

7.334 

(9.75) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, rbio3.1, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

1.747 

(2.338) 

4.887 

(10.07) 

6.634 

(11.24) 

WPT 
window=1.2, overlap=0.8, 

exp=2.75, db1, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

2.255 

(5.516) 

5.616 

(8.148) 

7.871 

(8.889) 

WPT 
window=1.2, overlap=0.8, 

exp=2.75, db2, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

3.461 

(7.329) 

5.611 

(7.731) 

9.072 

(11.58) 

WPT 
window=1.2, overlap=0.8, 

exp=2.75, db3, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

3.01 

(7.009) 

5.739 

(6.983) 

8.749 

(12.85) 

WPT 
window=1.2, overlap=0.8, 

exp=2.75, db4, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

2.477 

(5.924) 

5.992 

(6.818) 

8.469 

(12.56) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, db10, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

1.935 

(3.271) 

5.156 

(8.879) 

7.091 

(12.15) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, db15, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.929 

(7.26) 

5.539 

(8.586) 

8.468 

(11.48) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, db20, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

1.13 

(2.118) 

4.89 

(6.824) 

6.019 

(8.941) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, db30, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

3.089 

(8.491) 

5.87 

(7.235) 

8.958 

(13.68) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, dmey, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

2.989 

(5.425) 

6.321 

(6.84) 

9.311 

(12.26) 

WPT 

window=0.9, overlap=0.6, 

exp=2.75, db20, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
1736 

3.094 

(6.811) 

6.15 

(9.683) 

9.244 

(10.63) 

WPT 

window=0.6, overlap=0.4, 

exp=2.75, db20, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
2780 

3.266 

(7.239) 

6.391 

(8.705) 

9.657 

(11.27) 

WPT 

window=0.3, overlap=0.2, 

exp=2.75, db20, bw=10, 

xyz 

kNN 
k=auto[1-500], 

weight 1/r^3 
5895 

3.375 

(5.891) 

6.975 

(8.277) 

10.35 

(14.17) 

WPT 

window=1.2, overlap=0, 

exp=2.75, db20, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
456 

1.287 

(2.5) 

5.883 

(8.054) 

7.17 

(9.375) 

WPT 

window=0.9, overlap=0, 

exp=2.75, db20, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
608 

2.936 

(5.742) 

6.412 

(7.656) 

9.347 

(13.4) 

WPT 

window=0.6, overlap=0, 

exp=2.75, db20, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
972 

3.248 

(6.928) 

6.464 

(7.53) 

9.712 

(14.46) 

WPT 

window=0.3, overlap=0, 

exp=2.75, db20, bw=10, 

xyz 

kNN 
k=auto[1-200], 

weight 1/r^3 
2010 

3.825 

(7.648) 

7.688 

(10.63) 

11.51 

(12.84) 

WPT 

window=0.1, overlap=0, 

exp=2.75, db20, bw=10, 

xyz 

kNN 
k=auto[1-500], 

weight 1/r^3 
6169 

4.325 

(5.477) 

9.005 

(11.35) 

13.33 

(14.69) 

WPT 

window=0.05, overlap=0, 

exp=2.75, db20, bw=10, 

xyz 

kNN 
k=auto[1-2000], 

weight 1/r^3 
12338 

4.531 

(5.464) 

10.41 

(12.65) 

14.94 

(18.12) 
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WPT 
window=1.2, overlap=0.8, 

exp=2.75, db20, bw=10, x 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

8.892 

(13.7) 

8.843 

(11.25) 

17.73 

(21.15) 

WPT 
window=1.2, overlap=0.8, 

exp=2.75, db20, bw=10, y 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

9.433 

(13.46) 

8.678 

(11.76) 

18.11 

(22.6) 

WPT 
window=1.2, overlap=0.8, 

exp=2.75, db20, bw=10, z 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

8.077 

(10.34) 

5.441 

(6.971) 

13.52 

(17.31) 

WPT 

window=1.2, overlap=0.8, 

exp=2.75, db20, bw=10, 

xy 

kNN 
k=auto[1-200], 

weight 1/r^3 
1216 

5.152 

(12.5) 

5.654 

(8.951) 

10.81 

(15.87) 

WPT 
window=1.2, overlap=0.8, 

exp=2.75, db20, bw=10, xz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

4.849 

(9.856) 

6.501 

(8.173) 

11.35 

(18.03) 

WPT 
window=1.2, overlap=0.8, 

exp=2.75, db20, bw=10, yz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

5.449 

(8.654) 

5.856 

(7.161) 

11.3 

(14.9) 

HHT 
window=1.2, overlap=0.8, 

xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

4.18 

(5.952) 

8.043 

(9.383) 

12.22 

(14.05) 

HHT 
window=1.2, overlap=0.8, 

w/ WPT, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

2.049 

(3.465) 

2.907 

(5.437) 

4.957 

(7.092) 

HHT 
window=1.2, overlap=0.8, 

w/ WPT, x 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

3.497 

(4.95) 

2.291 

(3.073) 

5.788 

(7.329) 

HHT 
window=1.2, overlap=0.8, 

w/ WPT, y 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

10.52 

(17.02) 

11.31 

(16.2) 

21.83 

(24.35) 

HHT 
window=1.2, overlap=0.8, 

w/ WPT, z 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

3.977 

(5.437) 

4.613 

(7.565) 

8.59 

(13) 

HHT 
window=1.2, overlap=0.8, 

w/ WPT, xy 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

3.045 

(3.599) 

2.287 

(3.31) 

5.332 

(6.619) 

HHT 
window=1.2, overlap=0.8, 

w/ WPT, xz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

2.765 

(5.693) 

2.092 

(4.019) 

4.856 

(7.178) 

HHT 
window=1.2, overlap=0.8, 

w/ WPT, yz 
kNN 

k=auto[1-200], 

weight 1/r^3 
1216 

3.474 

(6.147) 

4.383 

(6.619) 

7.857 

(12.77) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 

Thres-

hold 
 456 3.289 3.289 6.579 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
LOF 

n=auto[1-200], 

10% unstable 
456   

10.4 

(14.8) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
LOF 

n=auto[1-200], 

15% unstable 
456   

8.53 

(14.4) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
LOF 

n=auto[1-200], 

20% unstable 
456   

9.01 

(18.1) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 

Naïve 

Bayes 
Gaussian 456 2.193 3.07 5.263 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 

Naïve 

Bayes 
Bernoulli 456 2.193 3.289 5.482 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight uniform 
456 

0.646 

(1.258) 

5.222 

(6.918) 

5.868 

(8.176) 
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FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r 
456 

1.065 

(2.516) 

4.564 

(6.289) 

5.629 

(8.805) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^2 
456 

1.275 

(3.145) 

4.354 

(5.66) 

5.629 

(8.805) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^3 
456 

1.485 

(3.774) 

4.576 

(5.66) 

6.061 

(9.434) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight 1/r^4 
456 

1.48 

(3.774) 

4.349 

(5.66) 

5.829 

(9.434) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight e^-r 
456 

0.646 

(1.258) 

5.222 

(6.918) 

5.868 

(8.176) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight e^-2r 
456 

0.646 

(1.258) 

5.222 

(6.918) 

5.868 

(8.176) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight e^-5r 
456 

0.646 

(1.258) 

4.773 

(6.918) 

5.419 

(8.176) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight e^-10r 
456 

0.8557 

(1.887) 

4.354 

(5.66) 

5.21 

(7.547) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
kNN 

k=auto[1-200], 

weight e^-100r 
456 

2.096 

(6.289) 

3.691 

(5.031) 

5.787 

(11.32) 

FFT 
window=1.2, overlap=0, 

exp=2.75, bw=10, xyz 
SVM 

C-SVM, C=2.5, 

kernel=sigmoid, 

deg=4 

456 
1.946 

(4.487) 

3.701 

(5.263) 

5.647 

(8.974) 

 

 




