JEEREERBNERERIEE A
78 43 3T
Department of Computer Science and Information Engineering:

College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

R X 8 F BB B ARE A R H BRI
Conditional Sentence Rephrasing without Pairwise

Training Corpus

FZE
Yen-Ting Lee

8 E#HIR MR TIEE L
Advisor: Shou-De Lin, Ph.D.

FERBR 108 &7 A
July, 2019

doi:10.6342/NTU201903579

G

e
any a j

B RARGHE TR TR ABARNBRETL T AR
%0938 AR 0 RRT LUBA 8 RARFA X o HF 0 A RHAT
AORE R RERBRAL TR - BIBH - KB =MAETRE
B EEM > EARABHEANGE R FH /TR -

doi:10.6342/NTU201903579

Acknowledgements

First, I would like to express my gratitude to my advisor, Prof. Shou-
De Lin, who give me many advises to improve my research work and finish
this thesis. Second, I would like to thank all the defense committee members.
Last but not the least, I would like to thank Liang-Hsin Shen, Pei-Lun Tai, and

Amy Lin for surveying and experimenting in the field of rephrasing together.

il

doi:10.6342/NTU201903579

NI

&

BARBTARARLERGAEGED BB AANHIAE RS
% (GAN) A% " B #8%45 % (VAE) > FRAME S . - £ 8 A
BT ARMBART GHANABTEARDAFTENEE AERBWX
FoRMHESERAEAEERANTR —Fa FRESCTHEMERE >
HA R)T EARR) sagitih 28T aythit o KM E T —EER
Fo%n 88w R A MA@ E - GEEADAEIREHE S
Y ZAAE > A B AR A 6] F 0 B RAVBR SN A N T AR IR ER Y
Behl o EEAAL R FHEREEARMS T OMEME L > FERIEH
BEAR REKRMOTRER LIF BB AL RIS E)4 FE 54
SRS -

Mets @ BARITTAR FETAREEE
il

doi:10.6342/NTU201903579

Abstract

Natural language generation has been a popular field with lots of quality
works published based on generative adversarial network (GAN) or varia-
tional autoencoder (VAE). However, rephrasing with condition is a problem
that few people focus on. In this work, the problem is formally defined as
“rephrase a sentence with given condition, and the generated sentence should
be similar to the origin sentence and it should satisfy the given condition”.
Moreover, we propose a conditional model based on sentence-VAE to solve
the problem. The model is trained as an autoencoder, but we can control the
condition of the generated sentence. And, it inherits the nature of autoencoder
that the generated sentences would be similar to the input sentence. With
experiment results supported, the model can solve the problem with quality

sentences.

Keywords: natural language generation, variational autoencoder, unsuper-

vised machine learning

v

doi:10.6342/NTU201903579

Contents

i
|Acknowledgements i
tEd iii
iv
[[Introduction 1
P Related Workg 3
R.1 Sentence-VAE 3

.2 Prototype Editingo 4

B Problem Definition 5
B.1 Definition 5

3.2 Exampld 6

% Proposed Method 7
#.1 Conditional Sentence Variational Autoencoder 7

#.2 Condition Mechanisml. 9

5 Experimentd 10
................................... 10

5.2 Condition Evaluation 11
5.2.1 Condition Function v v i 11

v

doi:10.6342/NTU201903579

5.2.2 Accuracyl

5.2.3 Generated Sentences

5.3 Generation Qualityl

5.4 Can An Autoencoder Also Work?

6 Conclusions and Future Workl

Vi

doi:10.6342/NTU201903579

List of Figures

#.1 A Condition Variational Autoencoder Overview!) 7

#.2 Training as an autoencoder] 8

#.3 Training as an autoencoder) 8

5.1 Length Distribution). 12

5.2 Length Accuracyl 13

5.3 Autoencoder ACCUTacy) v o o i 18
vii

doi:10.6342/NTU201903579

List of Tables

B.1 An example about length condition rephrasing 6
5.1 Number of sentencesineachsel 10
5.2 Tense Condition Accuracylo v v 14
5.3 Subject Condition Accuracyl 14
5.4 Subject Condition ACCUTaCY . . . « « v v v v v e 14
5.5 LengthExampley 15
5.6 Tense Examples o 0 e 15
5.7 SujectExamples. 16
5.8 Single or Plural Examples 16
5.9 CopyRatd o, 17
5.10 Bigram and Trigram Probability] 18
5.11 Jaccard Distance e 18
viii

doi:10.6342/NTU201903579

Chapter 1

Introduction

Natural Language Generation (NLG) has been thriving in these years as generative adver-
sarial networks (GAN) [6] and variational autoencoder (VAE) [[10][[13] have been applied
to sequence-to-sequence [|16] models. Besides sequence-GAN [|18] and sentence-VAE
[A4], works in machine translation also improve the quality of generation using attention
mechanism [2][12] and even a new model of sequence-to-sequence based on attention
mechanism [|17].

Many works have worked on generating with styling [5], editing [[7] and generating
from continuous space [[15] [4]. But we have not seen works to rephrase sentence with
condition, which cannot be achieved by any of exists model if parallel corpus cannot be
used. Conditions may vary, and parallel corpus seldom exists. This is a problem worth
solving.

With the understanding of how a recurrent neuron network works [9][[1 1], a condition
may be controlled by several cells. For example, an encoder of an autoencoder may cap-
ture the length information in some cells, so that the decoder knows how many words to
decode. Based on this discovery, we may ask what if we give the condition explicitly?

Holding this idea, we propose a conditional variational autoencoder (CS-VAE) to
solve the conditional rephrasing problem. Combining continuous generating and condi-
tion mechanism, we expect the model to learn the condition information using our explic-
itly given feature, so that the latent space can unsupervised cluster similar sentences with

different conditions. If the model is well trained, then we can manipulate the condition to

doi:10.6342/NTU201903579

control the output sentence.

We train the model like an variational autoencoder with additional conditions. Us=
ing KL annealing trick [4], our model learns posterior distribution along with:’(}ecoder
language model. At testing phase, we input both a sentence and a conditi()_h, \‘thh 1S
different from traditional variational autoencoder scheme. .

The model is experimented with several condition functions including length, subject,
tense and “single or plural”. The results shows that our model do have the ability to
rephrase sentences with given condition, and our model has low copy rate which means
it often generates sentences not in the training set. The smoothness is also examined by

bi-gram and tri-gram language model, which represent part of the generation quality.

doi:10.6342/NTU201903579

Chapter 2

Related Works

2.1 Sentence-VAE

Sentence VAE [4] is a generative sequence-to-sequence model based on variational au-
toencoder [[10]. The sequence autoencoder is modified by adding a re-sample of the en-
coder hidden state. Instead of a deterministic encoder, the S-VAE encoder describe a pos-
terior distribution of the latent space ¢(Z]x), and then decoder is a language model from
the latent space, which modeling p(x|Z). The latent space is generally a standard nor-
mal distribution N (0, 1). Regularizing encoder with KL divergence, a S-VAE is trained
with an autoencoder scheme. S-VAE has the ability to randomly generate sentence from
standard distribution and to decode the change from one sentence to the other sentence.
While all techniques are similar to the origin variational autoencoder, the sequence-to-
sequence version is suffered from the collapsing of latent space. The problem is similar
to the concept of ’cold start”. At the start of training, decoder is random. Since the loss
contains both KL divergence and language model, the KL divergence loss may first be
optimized. That is, the encoder only outputs standard normal distribution. Language
model cannot learn when the encoder is totally random. The proposed solution is simple:
weighted the KL loss with the training step. At first, KL loss is muted, and gradually
rises as the train process goes on. This is called KL annealing technique. Both linear and

sigmoid function can aid S-VAE learning.

doi:10.6342/NTU201903579

2.2 Prototype Editing

Based on the variation in sequence-to-sequence, neuron editor [[7] set.a mile stone.in
rephrasing sentences. First, it generates training pairs by selecting sentences Wifﬁﬁaccard
distance < 0.5. Then, the model is trained with an edit vector. The edit vector 'cfonthaiﬁ's_.the
embedding of words to add and delete to the origin sentence, which is called prototype,
and the vector predicts mean and standard deviation of normal distribution and then the
vector is re-sampled from the distribution.

The way ”prototype then edit” can not only rewrite sentences but also improve lan-
guage model. With attention editing, neuron editor achieves lower perplexity. The pro-
totype selection key in the whole process. First, it gives the problem into a supervised
solution. Second, it lower the complexity of generating sentence. Last, it provides the

edit directions.

doi:10.6342/NTU201903579

Chapter 3

Problem Definition

In this section, we formally state the condition, explain the rephrasing goal and define the

problem.

3.1 Definition

Our goal is to train a generative model that can rephrase sentence with given condition.
Additionally, to avoid sophisticate labelling process, labelled corpus is not required. In-
stead, a condition function is used to tag each sentence. According to the previous de-

scription, we can formally state the problem. First, we introduce the notation.
* Corpus S = {s1, ..., Sn}

* Condition Universe C'4, = {c1, ..., ¢, }, containing all possible condition of any s;

Condition Function f : S — Cyy
e Condition Set C' = {Cj|Cj = f(SZ‘),VSi S S}
+ Generative Model g : (S,C) — S, where S’ is a generated sentence setand S’ # S

Then, a generative model g is required that generated sentence s = g(s, ¢) should be
similar to s and f(s') = c, regardless f(s) = c or not.
Additional Limit: The problem would be easy if there exists pairwise corpus. It would

be a simple supervised task with (S, S") pairs. However, pairwise corpus seldom exists

5

doi:10.6342/NTU201903579

for any condition function, so in this work, we focus on building models without pairwise

corpus.

3.2 Example

To clarify the definition, we introduce an example in Table-B.1|. First we select “best ice
cream ever !” as the sentence to rephrase. Second, length function is used as the condition
function and the origin condition is "length=5". Then, we select a target condition ¢ = 10.
Finally, we want the model to generate some sentences with given (”’best ice cream ever

17, 10), i.e. ’the ice cream is the best i ever had !”.

Origin Sentence best ice cream ever !

Condition Function | length of the sentence

Origin Condition 5

Target Condition 10

Generated Sentence | the ice cream is the best i ever had !

Table 3.1: An example about length condition rephrasing

doi:10.6342/NTU201903579

4. :"‘.‘n 1

Chapter 4

Proposed Method

Condition RNN Works <EOS>
Linear " — T T T
/ \///' - \\\
Encoder Cell —» Encoder Cell \ latent space ,—> Linear —>» Decoder Cell —» Decoder Cell —» Decoder Cell
\ o\ J/
Linear —
RNN Works <S0S> RNN Works

Figure 4.1: A Condition Variational Autoencoder Overview.

4.1 Conditional Sentence Variational Autoencoder

Based on Sentence-VAE[4], we propose a conditional variety, shown in figure §.1. It is
not a simple merging with Condition-VAE[14]. Instead, our model preserve encoder at
testing phase and the type of condition is different from previous work. A CS-VAE has a
encoder modeling posterior distribution ¢(Z]z) and a decoder modeling language model
with given condition p(z|Z, c).

At training phase, CS-VAE is trained as an autoencoder, as shown in figure §.2, and
the objective function is almost the same with Sentence-VAE using evidence lower bound

(ELBO) to approximate the true likelihood of p(x), which is

ELBO(0;) = K L(go(?12)[|p(2)) + Egy(z1z) [Po (2|7,)] <= p(x) (4.1)

doi:10.6342/NTU201903579

RNN Works <EOS>
||.|I.I|..I|+III||“|||| |_|u|..||.|||...||.|||.| ||I|..||||||||.|I|||.|||

Present tense
/ Linear H /As\\

latent space —» Linear —>» Decoder Cell —» Decoder Cell I—ﬂ Decoder Cell

Encoder Cell —» Encoder Cell

Linear

RNN Works <SOS> RNN Works

Figure 4.2: Training as an autoencoder.

Here, p(2) is normal distribution and since it is an autoencoder, ¢ = f(z). The ELBO
requires KL annealing tricks mentioned in S-VAE[4] to optimized without collapsing in
latent space. That is, go(Z]z) = 0 to minimize KL loss, and the decoder always receives
the same input from latent space. We adopt the sigmoid KL annealing process which the
KL loss is weighted with a sigmoid function. At first, the weight is set to 0 and increases
as the training step moves on. After an epoch, the KL weigth rises to 0.5, which means
that the function is actually goes like o (# of step / steps per epoch). After several epochs,
the KL weight is close to 1. This trick lets decoder learn as much as it can, and then applies
the loss to encoder. It prevents KL loss from collapsing because the likelihood would drop

intensively if encoder collapse.

Past tense
/ Linear " — \

latent space Linear —>» Decoder Cell —» Decoder Cell —» Decoder Cell

RNN Worked <EOS>
Dl Tbaltnld oAbt

Encoder Cell —» Encoder Cell

Linear

RNN Works <S0S> RNN Worked

Figure 4.3: Training as an autoencoder.

At testing phase, CS-VAE works unlike other VAE approaches. It takes a sentence and
a different condition as input, and then output a sentence similar to the origin sentence but
matches the given condition. As the example in figure #.3, if we train "RNN works”
along with other present tense and past tense sentences, it may rephrase "RNN works” to
”RNN worked” with the past tense condition. We have experimented the model on several

conditions, and results strongly support that the rephrase sentences have high accuracy to

doi:10.6342/NTU201903579

the given condition. Successfully achieving this goal, the condition mechanism is the most

important trick, which will be discussed in the next sector.

4.2 Condition Mechanism

By design, the condition fed to decoder is not only to provide the information, but to
eliminate the condition information in the latent space. Li et al. [[11/] shows that encoder
has the ability to encode conditions to aid decoder such as length. If we explicitly provide
the information, would the encoder still learn to encode such information? The answer
varies to difference models. For a simple sequence-to-sequence autoencoder, it still learns
in encoder, but for a variational autoencoder, the answer is no. The variation of the latent
space add some noise to the encoder information. The re-sample process adds uncertainty
to decoder, so the decoder seeks for a more robust source, which is the fed condition. That
is, the decoder first extract information from the condition, and then get the rest of the
information from the encoder.

Looking back to the latent space, when some conditions are given explicitly, similar
sentences with different condition may overlap in latent space. For example, given tense
information, ”’RNN works” and "RNN worked” may fall into the same latent space because
except one is present tense and the other is past tense, the meaning of the two sentences
are the same.

We cannot actually force the similar sentence mapping into similar space, since the
similarity relation remains unknown. But the unsupervised clustering can explain how we
can manipulate different condition within the same sentence and the model can still output

sentences with the correct condition and the similar semantic meaning.

doi:10.6342/NTU201903579

Chapter 5

Experiments

In this chapter, we set up several experiments to exam the performance of our model
in all dimension. First, the condition accuracy is experimented under several condition
functions. Second, we exam the smoothness of the generated sentences. Third, the level
of generative is evaluated. Finally, we justify the necessity of the variation part in our

model.

5.1 Dataset

We report our result using Yelp open dataset [[1]], which contains millions of user’s review.
The corpus is segmented into sentence level and then tokenized by NLTK package [3].
To avoid complex sentences, we select sentences with five to thirty tokens, which is a
reasonable region to sentences without too many clauses. The corpus is cased to lowercase
to prevent the emotional uppercase words from being new words in the vocabulary. After
these preprocess steps, we split the corpus into training, validation and testing set. The

size of each set is counted in table

Training sentences 6,000,000
Validation sentences | 500,000
Testing sentences 744,962

Table 5.1: Number of sentences in each set

10

doi:10.6342/NTU201903579

5.2 Condition Evaluation

In this section, we exam our model with four condition function: length;, tense, subject;
and single or plural. The four condition functions have different size of conditi(;%fset and
different distribution of the conditions. Although for some functions, ong mﬁy ééme up
with sophisticate rules to transform one sentence to the other condition, it is still'worth
evaluating the ability of our model, and the comparison to rule based method will not be
discussed in this section. For each function, we will report the construction of the condition
function, the distribution of each condition, the accuracy of every condition rephrasing to
other conditions, and the samples of the generated sentences. The experiment will set

based on the validation set.

5.2.1 Condition Function

In this section, we define the condition functions and show the distribution of each condi-

tion set.

» Length: the length of tokens of a sentence, and the condition set is length between

5030

» Tense: First, sentence is labelled pos tag using NLTK [3]. Then, by capturing the
existence of tag "VBP” and "VBZ”, present tense is identified, and the "VBD” tag
means the past tense. Future tense is captured by the word “will”. Defining the

condition, the condition set contains three conditions: “’present tense”, ”past tense”,

and “future tense”.

» Subject: First, sentence is parsed by spaCy2 [8]. Then, find the “nsubj” tag in the
sentence. If the tag exists, sentences containing ”I”” or "We” are the first subject;
sentences containing “You” are the second subject; other sentences are the third
subject. But if there is no subject, it may be an imperative sentence or it is not a
complete sentence. These sentences are classified into “other” category. To sum

up, four conditions are in the condition set: “first subject”, ’second subject”, "third

subject”, and “other”.

11

doi:10.6342/NTU201903579

« Single or Plural: First, a sentence is both processed by part-of-speech tagglng and

relative parsing. If a ”VBZ” or ”VBP” tag is found, one can 1dent1f"y

subject is single or plural. In other cases, we find the word wgth ns

the word is 17, ’It”, ”He”, ”She”, ”This”, or ”That”, it has a siri'g".l’e&

if the word 1s "We”, ”They”, ”These”, or ”Those”, it has a plural sﬁi@m%er
W EREIE,
sentences we cannot identify are tagged “other”. Then, we have “’single”, “’plural”,
and “other” in the condition set.
Length Distribution Tense Distribution
600000 -
500000 2500000
400000 00000
300000 o
S
=
o |III||||II| -
5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ° p— - F
Subject Distribution . Single or Plural Distribution
3000000 3500000
2500000 3000000
2000000 -
1500000 2000000
. -
o -
: = - L]
no subject first person second person third person other single plural

Figure 5.1: Length Distribution.

The figure shows that the conditions are not uniformly distributed. Instead, for
each condition, there are some condition with few instances. Since the conditions are
different from labels, we do not apply data balance tricks and try to learn a model from

the origin distribution.

5.2.2 Accuracy

Training the model to converge on the training set, we report the condition accuracy on the
validation set. Since the length condition is continuous and the other three conditions are

separated classes, we first discuss the length results and then the other three conditions.

12

doi:10.6342/NTU201903579

First, the length condition accuracy is shown in figure 5.2. The table of numbers is

the model learns less to decode long sentences. Despite the long conditions have less

accuracy, the overall accuracy is still high - the minimum is 0.84.

New condition
5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29

Origin condition

Figure 5.2: Length Accuracy.

The tense, subject, and “’single or plural” condition results are shown in table 5.2,
table 5.3, and table 5.4. Different from length condition, the same condition rephrasing
gets better accuracy, and we observe that future tense” and “’second subject” get low

accuracy when it is rephrased from other conditions. It is interesting that our model does

13
doi:10.6342/NTU201903579

learn to decode the condition, otherwise the autoencoder score would not be high. But,

the model cannot recognize the latent space encoded from the other condition sentences:

We come up with several assumptions to this phenomenon. First, the'assumption states

that model learns few examples for the condition, so the model has a smaller latéiat space

for the condition. Second, we observe that sentences with “future tense” and ’second

subject” are written differently to other conditions. The different distribution may result

in the mismatch of latent space. The assumptions remain justified, and it is out of our

topic, so we leave it as our future work.

Origin Condition

New Condition
Present Past Future

Present
Past
Future

0.9412 0.7980 0.5249
09112 09358 0.5667
0.8994 09238 0.9505

Table 5.2: Tense Condition Accuracy

Origin Condition

New Condition
First Second Third

First

Second
Third

0.9595 0.4439 0.8239
0.8802 0.8442 0.7838
0.8997 0.3688 0.8969

Table 5.3: Subject Condition Accuracy

Origin Condition | New Condition

Single Plural

Single
Plural

0.9473 09197
0.9088 0.9591

Table 5.4: Subject Condition Accuracy

5.2.3 Generated Sentences

In this section, we provide some generated sentences and their origin sentences to under-

stand how the sentence is rephrased by our model in table 5.3, 5.6, 5.7, 5.§. Since the

variational autoencoder always has a sampling part, the output is not deterministic. Good

sentences and bad sentences can both be generated by our model, so we report a good and

a bad generation for each input sentence.

14

doi:10.6342/NTU201903579

large salon with relaxing atmosphere (5) e
the atmosphere is relaxing and the place is comfortable (10) - Good
large family with a large group and my daughter . (10) - Bad

the staff here go out of their way to make sure your every need is takeny'care of (19)
great attention to detail and take care of you . (10) - Good
the people here are to make sure their food . (10) - Bad

it was huge and filled with chopped bacon . (9)
it was good and it came with the eggs and bacon wrapped in bread . (15) - Good
it was so small and my mom were <unk> and the <unk> was filled . (15) - Bad

the staff was attentive and very kind . (8)
the staff was friendly and attentive and the food was good . (12) - Good
the staff was attentive and very attentive and a very attentive . (12) - Bad

Qaaoaaoaaoaad

In the length examples, we obverse that the generation can sometimes be precise in meanings
while the other times it may be uncorrelated to the origin sentence or even the meaning is
opposite.

Table 5.5: Length Examples

they are n’t friendly but they get the job done . (Present)

they were n’t friendly but they did the job ! . (Past) - Good

they were very friendly but the lady did n’t work . (Past) - Bad

my boyfriend & i were very happy to find this place . (Past)

my husband and i have found this place to be great . (Present) - Good

my boyfriend & i go to this restaurant to <unk> food . (Present) - Bad

1 am back again .. (Present)

1 will be back again (Future) - Good

food was good and the service was great ! (Past)

pizza was good and the service was great ! (Past Given Future Condition) - Bad

Qaoaocaaaoaanod

For present and past tenses, the model gives pretty well results. Rephrasing to future tense, the
third example i am back again ..” can be always transformed i will be back again” or other
similar sentences, so the bad generation cannot be provided. In contrast, the fourth example

”food was good and the service was great” can never be rephrased into future tense, so no good

generation is shown.

Table 5.6: Tense Examples

15

doi:10.6342/NTU201903579

1 really like this place . (First) || =
they really love this place . (Third) - Good | ==
it is like this place . (Third) - Bad

food is good and the menu has a lot of good options . (Third)
i really enjoyed the food and the menu has a good variety . (First) - Good
i really love the food and a lot of good options here . (First) - Good

if you ’re in town you have to check it out (Second)
i ’m in town we have to check it out . (First) - Bad

we ate here with some friends a couple of weeks ago . (First)
we were here and a couple of friends on a saturday . (First Given Second Condition) - Bad

Qaoaocaaaocaaod

The model generates well on the second example and is confused with the subject in the first
example. The third and the fourth examples show the bad generation when the condition has
relative to second subject.

Table 5.7: Suject Examples

1 have been going here for a few years . (Single)

we have been going here for a few years . (Plural) - Good

we ca n’t wait to try a few drinks . (Plural) - Bad

they have a big menu selection and everything i order there was good . (Plural)
it was a big menu and the food was so good and fresh . (Single) - Good
it was a big size and the staff was so friendly and helpful . (Single) - Bad
1 enjoyed the garlic wings the best . (Single)

we had the best wings in town . (Plural) - Good

we enjoyed the garlic knots the best . (Plural) - Bad

we had spicy ramen and traditional . (Plural)

1 had the ramen and spicy ramen . (Single) - Good

1 had the spicy tuna roll . (Single) Bad

aaoaaoaaaoaad

The generated sentences have correct condition, but sometimes the object is confused, such as
garlic wings to garlic knots, spicy ramen to spicy tuna roll.

Table 5.8: Single or Plural Examples

16

doi:10.6342/NTU201903579

5.3 Generation Quality

In this section, we report the quality of our model. To examine the quality/of generated
sentences, we first check the copy rate in table 5.9, which is defined as the percef%i?rge that
the generated sentences are actually in the training set. Lower copy rate.is beftef-, which
means that the generated space is not constrained by training data. Next, we evaluate the
smoothness of the generated senteces by bi-gram model and tri-gram model in table 5.10.
Despite the statistical language model cannot represent the overall quality of generation,
we examine bi-gram and tri-gram probability for both training corpus and generated sen-
tences. If the probabilities are close, it implies the generated sentences may have similar
distribution to the training corpus. Last, we check if the generation is relative to origin
sentence measured by Jaccard distance. The comparison baseline is defined as the ex-
pected jaccard distance if we randomly pick two sentences from the corpus. Repeating a
million times, we randomly sample two sentences from the training set and then evalu-
ate the Jaccard distance between the two sentences. As shown in table .11, the baseline
is experimented to be 0.9361, and the distance between input sentence and the different
condition generation is around 0.7 to 0.8. As expected, same condition rephrasing reaches
lower distance. Overall, the distance results show that our generation is more similar to

the input sentences.

Condition Function | Same Condition Different Condition
Length 0.0185 0.0066
Tense 0.0888 0.0318
Subject 0.0558 0.0370
Single 0.0534 0.0407

Copy rate is very low for every circumstance.

Table 5.9: Copy Rate

5.4 Can An Autoencoder Also Work?

Claiming the proposed model works, we also check if a simple autoencoder with condition

mechanism can work. Experimented with the length condition, condition autoencoder

17

doi:10.6342/NTU201903579

The generated sentences have similar probabilities to the training set/ 3

Condition Function

Bigram

Trigram

Training sentences

6.3639 x 107°

4.6130 % 1077

Length
Tense
Subject
Single

9.6287 x 107
6.4470 % 1078
1.0933 % 1077
9.0479 x 1078

71892+ 10 F 4+
3.5980 « 107 {,_\— R
5.8131 %1077 - (j,:,'_: l.l

A

5.0904 % 107 7 l|

Table 5.10: Bigram and Trigram Probability

N

Random Sentences

0.9361

Condition Function

Same Condition Different Condition

Length
Tense
Subject
Single

0.7299
0.5993
0.6183
0.6145

0.7869
0.7230
0.7429
0.7396

Jaccard distance between generated sentences and the input sentences is significantly lower than

random baseline.

Table 5.11: Jaccard Distance

fails to generate sentences with given length. As shown in figure 5.3, only the same length

condition or the neighbor conditions have high accuracy. This shows that the decoder of

an autoencoder cannot learn to use the explicit condition as the encoder information is

directly passed.

s

5. oss1s
6 00037
7 00000
5 0000
5 00000
0 00000
1 o000
2 oo
13 0000
14 00000
5 1 oo
5 16 oo
8 17 00000
£ 1 oo
5 19 00000
2 0000
2 0000
2 0000
3 0000
2 00000
3 0000
% 00000
27 0000
2 00000
2 0000

6
01354
08735
0,0040)
0.0000]
0.0000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

7
0.0000
01233

0.0051]
0.0000
0.0000
0.0000
00000
00000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
00000
00000
0.0000
0.0000
0.0000

New Condition
16 17

00000 00000 00000 00000 00000
00000 00000 00000 00000 00000
00000 00000 00000 00000 00000
00000 00000 00000 00000 00000
00000 00000 00000 00000 00000
00000 00000 00000 00000 00000
00000 00000 00000 00000 00000
00000 00000 00000 00000 00000
00020 00000 00000 00000 00000
012865 0003 00000 00000 00000

00000 00000 00000 00000 00001 00s63[MMOBS3 01456 00056 00000 0.0000

Figure 5.3:

0078608054 01662 00109 00001

00000 00003 01403080 02722
00000 00000 00008 0.1730 NNOS050
00000 00000 00000 00012 02318
00000 00000 00000 00000 0.0020
00000 0000 00000 00000 0.0000
00000 00000 00000 00000 0.0000
00000 00000 00000 00000 0.0000
00000 00000 00000 00000 0.0000
00000 00000 00000 00000 0.0000
00000 0000 00000 00000 0.0000
00000 00000 00000 00000 0.0000
00000 00000 00000 00000 0.0000

2 2 2 2 2 2 2% 27 2 2
00000 00000 00000 0000 0000 00000 00000 00000 00000 0.0000
00000 00000 00000 0000 0000 00000 00000 00000 00000 0.0000
00000 00000 00000 0000 0000 00000 00000 00000 00000 0.0000
00000 00000 00000 0000 0000 00000 00000 0000 00000 0.0000
0000 00000 00000 000 0000 00000 00000 0000 00000 0.0000
0000 00000 00000 0000 0000 00000 00000 00000 00000 0.0000
00000 00000 00000 0000 0000 00000 00000 00000 00000 0.0000
00000 00000 00000 0000 0000 00000 00000 00000 00000 0.0000
00000 00000 00000 0000 0000 00000 00000 0000 00000 0.0000
0000 00000 00000 0000 0000 00000 0000 00000 00000 0.0000
00000 00000 00000 0000 0000 00000 00000 00000 00000 0.0000
00000 00000 00000 00000 0000 00000 00000 00000 00000 0.0000
00001 00000 00000 0000 0000 00000 00000 00000 00000 0.0000
00294 00002 00000 000 0000 00000 00000 00000 00000 0.0000
03513 00405 00005 00000 0000 00000 00000 00000 00000 0.0000
04352 00550 00012 00000 00000 00000 00000 0000 00000
02697/MN0S165 05285 00724 00037 00002 0000 00000 00000 00000
ocosa 03271009281 06143 01029 00097 006 00000 00001 00000
00000 00073 03853[11108209 06910 01441 00188 00009 00000 0.0000
00000 00003 00214 042570108178 07553 02225 0034 00029 00006
00000 00000 00004 00286 04800/ 091390N08I2%6 032 00706 00124
| osossoss0d o471t 0w

00000 00000 00000 00000 00025 00880 052981 08921 05836
00000 00000 00000 00000 00003 00068 01372 05494 087800085
00000 00000 00000 0000 0000 00010 00161 01660 05548, 08551

Autoencoder Accuracy.

18

doi:10.6342/NTU201903579

Chapter 6

Conclusions and Future Work

In this work, we first define a new generation problem, which cannot be solved by existing
method. Next, a conditional sentence-VAE is proposed to rephrase an input sentence with
a given condition. The CS-VAE works differently from other VAEs that it trains as an au-
toencoder, but at testing phase, with encoding the input sentence and a new condition, the
model can generate a sentence satisfying the new condition while the meaning is similar
to the input sentence.

Training with kl annealing tricks to converge, the model is examined with four con-
dition functions. First, we define the four condition function: length, tense, subject and
”single or plural”. Then, the accuracy shows that our model can do well on condition
generation, except the condition with too few examples. To solve the data unbalanced
problem, the work is left as future work with possible solutions naming weighting tech-
niques, feedback augmentation, and cross source learning. Last, we examine the copy rate
and the bi-gram, tri-gram probability. Low copy rate and similar probability score support

the generate sentences have good quality.

19

doi:10.6342/NTU201903579

Bibliography

[1] Yelp open dataset. https://www.yelp.com/dataset/.

[2] D.Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

[3] S.Bird, E. Klein, and E. Loper. Natural Language Processing with Python. O’Reilly

Media, Inc., 1st edition, 2009.

[4] S.R.Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio. Generat-
ing sentences from a continuous space. In Proceedings of The 20th SIGNLL Confer-
ence on Computational Natural Language Learning, pages 10-21, Berlin, Germany,

Aug. 2016. Association for Computational Linguistics.

[5] C. K. Chen, Z. F. Pan, M. Sun, and M. Liu. Unsupervised stylish image description

generation via domain layer norm. CoRR, abs/1809.06214, 2018.

[6] L. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Proceedings of the
27th International Conference on Neural Information Processing Systems - Volume

2, NIPS’14, pages 2672-2680, Cambridge, MA, USA, 2014. MIT Press.

[7] K. Guu, T. B. Hashimoto, Y. Oren, and P. Liang. Generating sentences by editing
prototypes. CoRR, abs/1709.08878, 2017.

20

doi:10.6342/NTU201903579

https://www.yelp.com/dataset/

[8] M. Honnibal and I. Montani. spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing: Te-appear;

2017.

= :"‘.‘n 1

[9] A. Karpathy, J. Johnson, and F. Li. Visualizing and understanding recﬁrrént net
works. CoRR, abs/1506.02078, 2015.

[10] D.P.Kingma and M. Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-
16, 2014, Conference Track Proceedings, 2014.

[11] J.Li, X. Chen, E. Hovy, and D. Jurafsky. Visualizing and understanding neural mod-
els in NLP. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
pages 681-691, San Diego, California, June 2016. Association for Computational

Linguistics.

[12] T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1412—1421, Lisbon, Portugal, Sept.

2015. Association for Computational Linguistics.

[13] D. Rezende and S. Mohamed. Variational inference with normalizing flows. In
F. Bach and D. Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages

1530-1538, Lille, France, 07-09 Jul 2015. PMLR.

[14] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using
deep conditional generative models. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing

Systems 28, pages 3483—3491. Curran Associates, Inc., 2015.
[15] S. Subramanian, S. R. Mudumba, A. Sordoni, A. Trischler, A. C. Courville, and
C. Pal. Towards text generation with adversarially learned neural outlines. In S. Ben-

21

doi:10.6342/NTU201903579

gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems 31, pages 7551=7563.

Curran Associates, Inc., 2018. -
[16] 1. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning 'with néural
networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, ‘and"K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27, pages

3104-3112. Curran Associates, Inc., 2014.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[18] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence generative adversarial
nets with policy gradient. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI’17, pages 2852-2858. AAAI Press, 2017.

22

doi:10.6342/NTU201903579

	誌謝
	Acknowledgements
	摘要
	Abstract
	Introduction
	Related Works
	Sentence-VAE
	Prototype Editing

	Problem Definition
	Definition
	Example

	Proposed Method
	Conditional Sentence Variational Autoencoder
	Condition Mechanism

	Experiments
	Dataset
	Condition Evaluation
	Condition Function
	Accuracy
	Generated Sentences

	Generation Quality
	Can An Autoencoder Also Work?

	Conclusions and Future Work
	Bibliography

