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摘要

自然語言生成在最近發展的相當蓬勃，無論是基於對抗式生成網

路 (GAN)或是變分自動編碼器 (VAE)，都有相當的佳作發表。在自然

語言生成的領域中，條件式的改寫是較少人專注的題目，在這篇論文

中，我們對這個題目有更正式的定義－將句子依據給定的條件改寫，

且生成的句子需和原句相像並滿足給定的條件。我們提出了一個基於

序列變分自動編碼器的模型解決這個問題。這個模型在訓練時和自動

編碼器相同，輸入和目標是同個句子，但我們額外加入了條件提醒的

機制，讓模型在生成句子時會去注意在我們給定的條件上，達成控制

的目標。最後我們的實驗結果支持這個模型能生成好品質的句子並符

合條件的改寫。

關鍵字： 自然語言生成,非監督式機器學習
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Abstract

Natural language generation has been a popular field with lots of quality

works published based on generative adversarial network (GAN) or varia-

tional autoencoder (VAE). However, rephrasing with condition is a problem

that few people focus on. In this work, the problem is formally defined as

”rephrase a sentence with given condition, and the generated sentence should

be similar to the origin sentence and it should satisfy the given condition”.

Moreover, we propose a conditional model based on sentence-VAE to solve

the problem. The model is trained as an autoencoder, but we can control the

condition of the generated sentence. And, it inherits the nature of autoencoder

that the generated sentences would be similar to the input sentence. With

experiment results supported, the model can solve the problem with quality

sentences.

Keywords: natural language generation, variational autoencoder, unsuper-

vised machine learning
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Chapter 1

Introduction

Natural Language Generation (NLG) has been thriving in these years as generative adver-

sarial networks (GAN) [6] and variational autoencoder (VAE) [10][13] have been applied

to sequence-to-sequence [16] models. Besides sequence-GAN [18] and sentence-VAE

[4], works in machine translation also improve the quality of generation using attention

mechanism [2][12] and even a new model of sequence-to-sequence based on attention

mechanism [17].

Many works have worked on generating with styling [5], editing [7] and generating

from continuous space [15] [4]. But we have not seen works to rephrase sentence with

condition, which cannot be achieved by any of exists model if parallel corpus cannot be

used. Conditions may vary, and parallel corpus seldom exists. This is a problem worth

solving.

With the understanding of how a recurrent neuron network works [9][11], a condition

may be controlled by several cells. For example, an encoder of an autoencoder may cap-

ture the length information in some cells, so that the decoder knows how many words to

decode. Based on this discovery, we may ask what if we give the condition explicitly?

Holding this idea, we propose a conditional variational autoencoder (CS-VAE) to

solve the conditional rephrasing problem. Combining continuous generating and condi-

tion mechanism, we expect the model to learn the condition information using our explic-

itly given feature, so that the latent space can unsupervised cluster similar sentences with

different conditions. If the model is well trained, then we can manipulate the condition to

1
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control the output sentence.

We train the model like an variational autoencoder with additional conditions. Us-

ing KL annealing trick [4], our model learns posterior distribution along with decoder

language model. At testing phase, we input both a sentence and a condition, which is

different from traditional variational autoencoder scheme.

The model is experimented with several condition functions including length, subject,

tense and ”single or plural”. The results shows that our model do have the ability to

rephrase sentences with given condition, and our model has low copy rate which means

it often generates sentences not in the training set. The smoothness is also examined by

bi-gram and tri-gram language model, which represent part of the generation quality.

2
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Chapter 2

Related Works

2.1 Sentence-VAE

Sentence VAE [4] is a generative sequence-to-sequence model based on variational au-

toencoder [10]. The sequence autoencoder is modified by adding a re-sample of the en-

coder hidden state. Instead of a deterministic encoder, the S-VAE encoder describe a pos-

terior distribution of the latent space q(z⃗|x), and then decoder is a language model from

the latent space, which modeling p(x|z⃗). The latent space is generally a standard nor-

mal distribution N(0, 1). Regularizing encoder with KL divergence, a S-VAE is trained

with an autoencoder scheme. S-VAE has the ability to randomly generate sentence from

standard distribution and to decode the change from one sentence to the other sentence.

While all techniques are similar to the origin variational autoencoder, the sequence-to-

sequence version is suffered from the collapsing of latent space. The problem is similar

to the concept of ”cold start”. At the start of training, decoder is random. Since the loss

contains both KL divergence and language model, the KL divergence loss may first be

optimized. That is, the encoder only outputs standard normal distribution. Language

model cannot learn when the encoder is totally random. The proposed solution is simple:

weighted the KL loss with the training step. At first, KL loss is muted, and gradually

rises as the train process goes on. This is called KL annealing technique. Both linear and

sigmoid function can aid S-VAE learning.

3
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2.2 Prototype Editing

Based on the variation in sequence-to-sequence, neuron editor [7] set a mile stone in

rephrasing sentences. First, it generates training pairs by selecting sentences with Jaccard

distance < 0.5. Then, the model is trained with an edit vector. The edit vector contains the

embedding of words to add and delete to the origin sentence, which is called prototype,

and the vector predicts mean and standard deviation of normal distribution and then the

vector is re-sampled from the distribution.

The way ”prototype then edit” can not only rewrite sentences but also improve lan-

guage model. With attention editing, neuron editor achieves lower perplexity. The pro-

totype selection key in the whole process. First, it gives the problem into a supervised

solution. Second, it lower the complexity of generating sentence. Last, it provides the

edit directions.

4
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Chapter 3

Problem Definition

In this section, we formally state the condition, explain the rephrasing goal and define the

problem.

3.1 Definition

Our goal is to train a generative model that can rephrase sentence with given condition.

Additionally, to avoid sophisticate labelling process, labelled corpus is not required. In-

stead, a condition function is used to tag each sentence. According to the previous de-

scription, we can formally state the problem. First, we introduce the notation.

• Corpus S = {s1, ..., sn}

• Condition Universe CAll = {c1, ..., cm}, containing all possible condition of any si

• Condition Function f : S → CAll

• Condition Set C = {cj|cj = f(si), ∀si ∈ S}

• Generative Model g : (S,C) → S, where S ′ is a generated sentence set and S ′ ̸= S

Then, a generative model g is required that generated sentence s
′
= g(s, c) should be

similar to s and f(s′
) = c, regardless f(s) = c or not.

Additional Limit: The problem would be easy if there exists pairwise corpus. It would

be a simple supervised task with (S, S
′
) pairs. However, pairwise corpus seldom exists

5
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for any condition function, so in this work, we focus on building models without pairwise

corpus.

3.2 Example

To clarify the definition, we introduce an example in Table-3.1. First we select ”best ice

cream ever !” as the sentence to rephrase. Second, length function is used as the condition

function and the origin condition is ”length=5”. Then, we select a target condition c = 10.

Finally, we want the model to generate some sentences with given (”best ice cream ever

!”, 10), i.e. ”the ice cream is the best i ever had !”.

Origin Sentence best ice cream ever !
Condition Function length of the sentence
Origin Condition 5
Target Condition 10
Generated Sentence the ice cream is the best i ever had !

Table 3.1: An example about length condition rephrasing

6
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Chapter 4

Proposed Method

Figure 4.1: A Condition Variational Autoencoder Overview.

4.1 Conditional Sentence Variational Autoencoder

Based on Sentence-VAE[4], we propose a conditional variety, shown in figure 4.1. It is

not a simple merging with Condition-VAE[14]. Instead, our model preserve encoder at

testing phase and the type of condition is different from previous work. A CS-VAE has a

encoder modeling posterior distribution q(z⃗|x) and a decoder modeling language model

with given condition p(x|z⃗, c).

At training phase, CS-VAE is trained as an autoencoder, as shown in figure 4.2, and

the objective function is almost the same with Sentence-VAE using evidence lower bound

(ELBO) to approximate the true likelihood of p(x), which is

ELBO(θ;x) = KL(qθ(z⃗|x)||p(z⃗)) + Eqθ(z⃗|x)[pθ(x|z⃗, c)] <= p(x) (4.1)

7
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Figure 4.2: Training as an autoencoder.

Here, p(z⃗) is normal distribution and since it is an autoencoder, c = f(x). The ELBO

requires KL annealing tricks mentioned in S-VAE[4] to optimized without collapsing in

latent space. That is, qθ(z⃗|x) = 0 to minimize KL loss, and the decoder always receives

the same input from latent space. We adopt the sigmoid KL annealing process which the

KL loss is weighted with a sigmoid function. At first, the weight is set to 0 and increases

as the training step moves on. After an epoch, the KL weigth rises to 0.5, which means

that the function is actually goes like σ(# of step / steps per epoch). After several epochs,

the KLweight is close to 1. This trick lets decoder learn as much as it can, and then applies

the loss to encoder. It prevents KL loss from collapsing because the likelihood would drop

intensively if encoder collapse.

Figure 4.3: Training as an autoencoder.

At testing phase, CS-VAEworks unlike other VAE approaches. It takes a sentence and

a different condition as input, and then output a sentence similar to the origin sentence but

matches the given condition. As the example in figure 4.3, if we train ”RNN works”

along with other present tense and past tense sentences, it may rephrase ”RNN works” to

”RNNworked” with the past tense condition. We have experimented the model on several

conditions, and results strongly support that the rephrase sentences have high accuracy to

8
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the given condition. Successfully achieving this goal, the conditionmechanism is the most

important trick, which will be discussed in the next sector.

4.2 Condition Mechanism

By design, the condition fed to decoder is not only to provide the information, but to

eliminate the condition information in the latent space. Li et al. [11] shows that encoder

has the ability to encode conditions to aid decoder such as length. If we explicitly provide

the information, would the encoder still learn to encode such information? The answer

varies to difference models. For a simple sequence-to-sequence autoencoder, it still learns

in encoder, but for a variational autoencoder, the answer is no. The variation of the latent

space add some noise to the encoder information. The re-sample process adds uncertainty

to decoder, so the decoder seeks for a more robust source, which is the fed condition. That

is, the decoder first extract information from the condition, and then get the rest of the

information from the encoder.

Looking back to the latent space, when some conditions are given explicitly, similar

sentences with different condition may overlap in latent space. For example, given tense

information, ”RNNworks” and ”RNNworked”may fall into the same latent space because

except one is present tense and the other is past tense, the meaning of the two sentences

are the same.

We cannot actually force the similar sentence mapping into similar space, since the

similarity relation remains unknown. But the unsupervised clustering can explain how we

can manipulate different condition within the same sentence and the model can still output

sentences with the correct condition and the similar semantic meaning.

9
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Chapter 5

Experiments

In this chapter, we set up several experiments to exam the performance of our model

in all dimension. First, the condition accuracy is experimented under several condition

functions. Second, we exam the smoothness of the generated sentences. Third, the level

of generative is evaluated. Finally, we justify the necessity of the variation part in our

model.

5.1 Dataset

We report our result using Yelp open dataset [1], which contains millions of user’s review.

The corpus is segmented into sentence level and then tokenized by NLTK package [3].

To avoid complex sentences, we select sentences with five to thirty tokens, which is a

reasonable region to sentences without too many clauses. The corpus is cased to lowercase

to prevent the emotional uppercase words from being new words in the vocabulary. After

these preprocess steps, we split the corpus into training, validation and testing set. The

size of each set is counted in table 5.1

Training sentences 6,000,000
Validation sentences 500,000
Testing sentences 744,962

Table 5.1: Number of sentences in each set

10
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5.2 Condition Evaluation

In this section, we exam our model with four condition function: length, tense, subject,

and single or plural. The four condition functions have different size of condition set and

different distribution of the conditions. Although for some functions, one may come up

with sophisticate rules to transform one sentence to the other condition, it is still worth

evaluating the ability of our model, and the comparison to rule based method will not be

discussed in this section. For each function, wewill report the construction of the condition

function, the distribution of each condition, the accuracy of every condition rephrasing to

other conditions, and the samples of the generated sentences. The experiment will set

based on the validation set.

5.2.1 Condition Function

In this section, we define the condition functions and show the distribution of each condi-

tion set.

• Length: the length of tokens of a sentence, and the condition set is length between

5 to 30

• Tense: First, sentence is labelled pos tag using NLTK [3]. Then, by capturing the

existence of tag ”VBP” and ”VBZ”, present tense is identified, and the ”VBD” tag

means the past tense. Future tense is captured by the word ”will”. Defining the

condition, the condition set contains three conditions: ”present tense”, ”past tense”,

and ”future tense”.

• Subject: First, sentence is parsed by spaCy2 [8]. Then, find the ”nsubj” tag in the

sentence. If the tag exists, sentences containing ”I” or ”We” are the first subject;

sentences containing ”You” are the second subject; other sentences are the third

subject. But if there is no subject, it may be an imperative sentence or it is not a

complete sentence. These sentences are classified into ”other” category. To sum

up, four conditions are in the condition set: ”first subject”, ”second subject”, ”third

subject”, and ”other”.

11
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• Single or Plural: First, a sentence is both processed by part-of-speech tagging and

relative parsing. If a ”VBZ” or ”VBP” tag is found, one can identify whether the

subject is single or plural. In other cases, we find the word with ”nsubj” tag. If

the word is ”I”, ”It”, ”He”, ”She”, ”This”, or ”That”, it has a single subject. And,

if the word is ”We”, ”They”, ”These”, or ”Those”, it has a plural subject. Other

sentences we cannot identify are tagged ”other”. Then, we have ”single”, ”plural”,

and ”other” in the condition set.

Figure 5.1: Length Distribution.

The figure 5.1 shows that the conditions are not uniformly distributed. Instead, for

each condition, there are some condition with few instances. Since the conditions are

different from labels, we do not apply data balance tricks and try to learn a model from

the origin distribution.

5.2.2 Accuracy

Training the model to converge on the training set, we report the condition accuracy on the

validation set. Since the length condition is continuous and the other three conditions are

separated classes, we first discuss the length results and then the other three conditions.

12
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First, the length condition accuracy is shown in figure 5.2. The table of numbers is

placed in appendix since it is too complex. The figure shows that the accuracy is in-

difference to the origin length. Even the autoencoder condition (the diagonal line) does

not perform better than other conditions. Instead, the accuracy has higher relation to the

length distribution. It is because for longer sentences, the training instance is fewer, and

the model learns less to decode long sentences. Despite the long conditions have less

accuracy, the overall accuracy is still high - the minimum is 0.84.

Figure 5.2: Length Accuracy.

The tense, subject, and ”single or plural” condition results are shown in table 5.2,

table 5.3, and table 5.4. Different from length condition, the same condition rephrasing

gets better accuracy, and we observe that ”future tense” and ”second subject” get low

accuracy when it is rephrased from other conditions. It is interesting that our model does

13
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learn to decode the condition, otherwise the autoencoder score would not be high. But,

the model cannot recognize the latent space encoded from the other condition sentences.

We come up with several assumptions to this phenomenon. First, the assumption states

that model learns few examples for the condition, so the model has a smaller latent space

for the condition. Second, we observe that sentences with ”future tense” and ”second

subject” are written differently to other conditions. The different distribution may result

in the mismatch of latent space. The assumptions remain justified, and it is out of our

topic, so we leave it as our future work.

Origin Condition New Condition
Present Past Future

Present 0.9412 0.7980 0.5249
Past 0.9112 0.9358 0.5667
Future 0.8994 0.9238 0.9505

Table 5.2: Tense Condition Accuracy

Origin Condition New Condition
First Second Third

First 0.9595 0.4439 0.8239
Second 0.8802 0.8442 0.7838
Third 0.8997 0.3688 0.8969

Table 5.3: Subject Condition Accuracy

Origin Condition New Condition
Single Plural

Single 0.9473 0.9197
Plural 0.9088 0.9591

Table 5.4: Subject Condition Accuracy

5.2.3 Generated Sentences

In this section, we provide some generated sentences and their origin sentences to under-

stand how the sentence is rephrased by our model in table 5.5, 5.6, 5.7, 5.8. Since the

variational autoencoder always has a sampling part, the output is not deterministic. Good

sentences and bad sentences can both be generated by our model, so we report a good and

a bad generation for each input sentence.

14



doi:10.6342/NTU201903579

O large salon with relaxing atmosphere (5)
G the atmosphere is relaxing and the place is comfortable (10) - Good
G large family with a large group and my daughter . (10) - Bad
O the staff here go out of their way to make sure your every need is taken care of . (19)
G great attention to detail and take care of you . (10) - Good
G the people here are to make sure their food . (10) - Bad
O it was huge and filled with chopped bacon . (9)
G it was good and it came with the eggs and bacon wrapped in bread . (15) - Good
G it was so small and my mom were <unk> and the <unk> was filled . (15) - Bad
O the staff was attentive and very kind . (8)
G the staff was friendly and attentive and the food was good . (12) - Good
G the staff was attentive and very attentive and a very attentive . (12) - Bad
In the length examples, we obverse that the generation can sometimes be precise in meanings
while the other times it may be uncorrelated to the origin sentence or even the meaning is

opposite.

Table 5.5: Length Examples

O they are n’t friendly but they get the job done . (Present)
G they were n’t friendly but they did the job ! . (Past) - Good
G they were very friendly but the lady did n’t work . (Past) - Bad
O my boyfriend & i were very happy to find this place . (Past)
G my husband and i have found this place to be great . (Present) - Good
G my boyfriend & i go to this restaurant to <unk> food . (Present) - Bad
O i am back again .. (Present)
G i will be back again (Future) - Good
O food was good and the service was great ! (Past)
G pizza was good and the service was great ! (Past Given Future Condition) - Bad
For present and past tenses, the model gives pretty well results. Rephrasing to future tense, the
third example ”i am back again ..” can be always transformed ”i will be back again” or other
similar sentences, so the bad generation cannot be provided. In contrast, the fourth example

”food was good and the service was great” can never be rephrased into future tense, so no good
generation is shown.

Table 5.6: Tense Examples

15
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O i really like this place . (First)
G they really love this place . (Third) - Good
G it is like this place . (Third) - Bad
O food is good and the menu has a lot of good options . (Third)
G i really enjoyed the food and the menu has a good variety . (First) - Good
G i really love the food and a lot of good options here . (First) - Good
O if you ’re in town you have to check it out (Second)
G i ’m in town we have to check it out . (First) - Bad
O we ate here with some friends a couple of weeks ago . (First)
G we were here and a couple of friends on a saturday . (First Given Second Condition) - Bad
The model generates well on the second example and is confused with the subject in the first
example. The third and the fourth examples show the bad generation when the condition has

relative to second subject.

Table 5.7: Suject Examples

O i have been going here for a few years . (Single)
G we have been going here for a few years . (Plural) - Good
G we ca n’t wait to try a few drinks . (Plural) - Bad
O they have a big menu selection and everything i order there was good . (Plural)
G it was a big menu and the food was so good and fresh . (Single) - Good
G it was a big size and the staff was so friendly and helpful . (Single) - Bad
O i enjoyed the garlic wings the best . (Single)
G we had the best wings in town . (Plural) - Good
G we enjoyed the garlic knots the best . (Plural) - Bad
O we had spicy ramen and traditional . (Plural)
G i had the ramen and spicy ramen . (Single) - Good
G i had the spicy tuna roll . (Single) Bad
The generated sentences have correct condition, but sometimes the object is confused, such as

garlic wings to garlic knots, spicy ramen to spicy tuna roll.

Table 5.8: Single or Plural Examples
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5.3 Generation Quality

In this section, we report the quality of our model. To examine the quality of generated

sentences, we first check the copy rate in table 5.9, which is defined as the percentage that

the generated sentences are actually in the training set. Lower copy rate is better, which

means that the generated space is not constrained by training data. Next, we evaluate the

smoothness of the generated senteces by bi-gram model and tri-gram model in table 5.10.

Despite the statistical language model cannot represent the overall quality of generation,

we examine bi-gram and tri-gram probability for both training corpus and generated sen-

tences. If the probabilities are close, it implies the generated sentences may have similar

distribution to the training corpus. Last, we check if the generation is relative to origin

sentence measured by Jaccard distance. The comparison baseline is defined as the ex-

pected jaccard distance if we randomly pick two sentences from the corpus. Repeating a

million times, we randomly sample two sentences from the training set and then evalu-

ate the Jaccard distance between the two sentences. As shown in table 5.11, the baseline

is experimented to be 0.9361, and the distance between input sentence and the different

condition generation is around 0.7 to 0.8. As expected, same condition rephrasing reaches

lower distance. Overall, the distance results show that our generation is more similar to

the input sentences.

Condition Function Same Condition Different Condition
Length 0.0185 0.0066
Tense 0.0888 0.0318
Subject 0.0558 0.0370
Single 0.0534 0.0407

Copy rate is very low for every circumstance.

Table 5.9: Copy Rate

5.4 Can An Autoencoder Also Work?

Claiming the proposed model works, we also check if a simple autoencoder with condition

mechanism can work. Experimented with the length condition, condition autoencoder

17
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Condition Function Bigram Trigram
Training sentences 6.3639 ∗ 10−8 4.6130 ∗ 10−7

Length 9.6287 ∗ 10−9 7.1892 ∗ 10−8

Tense 6.4470 ∗ 10−8 3.5980 ∗ 10−7

Subject 1.0933 ∗ 10−7 5.8131 ∗ 10−7

Single 9.0479 ∗ 10−8 5.0904 ∗ 10−7

The generated sentences have similar probabilities to the training set.

Table 5.10: Bigram and Trigram Probability
、

Random Sentences 0.9361
Condition Function Same Condition Different Condition
Length 0.7299 0.7869
Tense 0.5993 0.7230
Subject 0.6183 0.7429
Single 0.6145 0.7396

Jaccard distance between generated sentences and the input sentences is significantly lower than
random baseline.

Table 5.11: Jaccard Distance

fails to generate sentences with given length. As shown in figure 5.3, only the same length

condition or the neighbor conditions have high accuracy. This shows that the decoder of

an autoencoder cannot learn to use the explicit condition as the encoder information is

directly passed.

Figure 5.3: Autoencoder Accuracy.
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Chapter 6

Conclusions and Future Work

In this work, we first define a new generation problem, which cannot be solved by existing

method. Next, a conditional sentence-VAE is proposed to rephrase an input sentence with

a given condition. The CS-VAE works differently from other VAEs that it trains as an au-

toencoder, but at testing phase, with encoding the input sentence and a new condition, the

model can generate a sentence satisfying the new condition while the meaning is similar

to the input sentence.

Training with kl annealing tricks to converge, the model is examined with four con-

dition functions. First, we define the four condition function: length, tense, subject and

”single or plural”. Then, the accuracy shows that our model can do well on condition

generation, except the condition with too few examples. To solve the data unbalanced

problem, the work is left as future work with possible solutions naming weighting tech-

niques, feedback augmentation, and cross source learning. Last, we examine the copy rate

and the bi-gram, tri-gram probability. Low copy rate and similar probability score support

the generate sentences have good quality.
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