SRR R FEEIEN SR L
Lk

Department of Information Management

College of Management

National Taiwan University

Master Thesis

BitTorrent & 5 4% & R & ¥ vz & 47
On The Performance of Multiple-File Downloads in
BitTorrent Systems

f 37T

Tun-Ping Yu

R BERERE L
Advisor: Yuh-Jzer Joung, Ph.D.

PERRE 102 & 17

January, 2013

=t

FRybm| A Z) BEEERF S R MONF UBBRD T c SR A4 B - ko

/

i

E
FEREOFEP- B - BhR LYK TR P B B Fo 12
T A RE- B BRAAE RS T BT AT R FTROANNS BT B A

- X o "é; TR R A PR — QPR A TEI ¥ - :’;’\'},’é%iljfiﬁucq/"‘&rf$ié

wlidek o fRAERT FEF S FRORRE A WS RE RS BE R
e X REFED A0 0 2 R AR BFR E RA SR AT
R ehd o5 RBEE R rﬂmiﬁc@vKEfsﬂ% B ~ S~ ETAE S 5 s fidE A
fedf 8 o G PR E R Y 0 GE PR 4 00 A - PR e

BROFEAGLEFTRE iljs s R o A - L PR R R

aﬁﬂﬁﬁgwmﬁﬁaﬁ%ﬁﬂﬁ%ww’ﬁﬂ{ﬁ%%ﬁﬁ@%%w’
BN FlES £ X AN AR HEY bR A e o AL e apm g

%%ﬁilﬂﬁ’%#%#%@%%bﬁmﬁm’f%ﬁ%if?ﬁ%ﬂéf—

B LB EPALN A TR o» EHBRBHRANEFfoRTE X
B b T SRR S § AR (7 e ety B o 20 B iR e
N B

=

i

|

a

Bt 2 s 2 d A F R REF G PREL R L BT
EUGER R E il ik SRR i AR

ZaiEBE o Y RBIEP -

EF YR BNk P F (RayHo)e # A F e FFH RS £ e (Fenfiin™

7 EER A Yo nY F e { AR RAR ¢ 2 B AW Y

FFFp AP o 7 F

FELX OGO BRARGEWE PRNE B (RAR BT FEAPL E
kE LB X d o B AREEENS X P\;T‘!t.ﬁ%— FRths A FRG iz o 4
WEBAAFLE N e F AL F s & S o ZEY R o

LRMDAF b BRaEs 2l o @I R T i HE

BT ALk EE KGRI A4 3 B R

mi4 AR

January, 23 2013

%2 4 &
g hiRE TR- R E-

EFR S SO T o
BitTorrent & % % T 3R ¢ et £ 17
BitTorrent(BT)&_- #& Bt ¥+ Bk (peer-to-peer) 4, & & ﬁig?] e d A H ekt
B @i b FAAE BR DA FI W WA O B P S R A
4*$§?ﬁ%ﬁgiﬁ@ﬁ’ﬁbiiﬂﬁﬁﬂ»,n B S PRERER T2 - 0 s Fpt
Bl KRBT R BRREF T A RaFY o
£ BT 5 B4 - R AR T PR LR e f i 5o
i fEIT/'L H ¥ eV §5 B [(scalability) » L BT - P2 B 5 148 +x pE 4
T feoie izt F AL HH - 4% T Y (single-file download) i T 2
f’%ﬁjﬁﬁﬁw”’%4®% Bt 3 oo e Ra L HT SRR T
(multiple-file download)k 5 st~ AR fo i 47 o T ¥ Rgp 2P L K ¢ BT ¢
P ALE 8Sheni v F R R e R 0 G A i R TRt SRR B
R T
AP T 7 T R B B cna* (utilization) B IR T o A 2 e e §
%%@ﬁ%ﬂ’M%MHHWMWMHme@¥Mmm‘MNT
(Multiple-File-Single-Torrent) & £_¢*$ MFST ¢/ 5 4c #1718 # et Bid 3%
(unchoking slot)#& & & $ &> 2 L R HME ~ | AT B- OfRT st A A 4p
kmoyﬂﬁwi@?%é%mﬁg@&&mﬁfﬁwﬁ’%?ﬁ@»ﬁ&mﬁ

$ﬁ$ﬁ%@’ﬁﬁibﬁT§%@g%ﬁgge

i 425 © BitTorrent ~ ’Zﬁ,,ﬁ%‘ff s dih B ‘ffﬁié‘; “HEL LR

THESISABSTRACT

Student : Tun-Ping Yu January, 2013
Advisor : Yuh-Jzer Joung, Ph.D.

On the Performance of Multiple-File Downloadsin BitTorrent Systems

BitTorrent is a peer-to-peer file sharing protocol; due to its unique mechanism, it
has excellent file transport performance, so it is widely used to distribute large amounts
of data across the Internet and to stream high-quality video. BitTorrent is also one of the
largest traffic consumers on the Internet, attracting various research on this protocol.

One of the most amazing characteristics of BitTorrent is that the average time a
peer stays in the system is not related to the entry rate of peers into the system. This
indicates that BitTorrent has great scalability. This characteristic attracts even more
research on this protocol, but most of it focuses on the theme of single-file downloads.
Research on multiple-files downloads exists, but there is still a lack of rigorous,
organized research on the topic. According to real-world traces, over 85 percent of
BitTorrent users download multiple files concurrently.

Our research found that when the bandwidth utilization is high, different
multiple-file-download approaches—such as MFMT(Multiple-File-Multiple-Torrents) °
MEFST (Multiple-Files-Single-Torrents) or MFST with extended unchoking slots have
similar average download times, regardless of whether of file sizes are unique or not.
We also found that the entry rates of peers will actually affect the average download

time of peers when the system is operating in a low bandwidth environment.

keywords : BitTorrent ~ Multiple-file-download ~ unchoking slots number ~ performance ~

file size difference

Contents

1 INEFOTUCTION ..ot n e e n s 1
I.1 BacK@rOUNG.......cccuiiiiiiieiie ettt ettt e e et e e veeeenseeenaneeens 1

1.2 MOTIVALION ettt ettt ettt et e st esae e e b e saee e 2

1.3 ReSCArCh ODJECLIVES ..iciuviieieiiieiiiieeiiieeeite ettt etee et e e aee e seree e saaeeeeavee e 5

2 REGIEA WOIK ... 6
2.1 BitTOITent OVETVIEW ..ccueiiiiiiiiiiiiieiiieeiee st ettt e ettt sttt sttt sbe e b e snneeneees 6
2.1.1 TermiNOIOZICScccuvieeiuiieeiiieiiieeeiieeeiee e etee e st e e aeeesaaeeseaaeesaeeensaeeennnas 6

2.1.2 BitTorrent mechaniSms..........coeouiiiiiiiieniiiiiieeeee e 8

2.2 BItTOITENE SYSTEIM Loieiiiieiiiieiiie ettt ettt et e e e e aveeesaeeeneaeeeanes 11
2.2.1 Measurement and simulation based Studie€scccccoevveeniiiiiiiniiiniiennenne 11
2.2.2 Analysis based on Mathematic modelingc.ccccoveeviieeiiiennienn, 13

2.3 Multiple Files Download...........cccceeeiiieiiieeiiieeiieeeeecee e e 14
2.3.1 Analysis and modeling based on real world traceccccoeevvevviieeenennne. 15

2.3.2 Modeling of multiple-file downloadsccceeviieeiiiieniiieiieeieeas 16

2.3.3 Simulation based studies of cross torrent tit-for-tatccceeeeeeeenn.. 17

B B 1 11101 0 T 1 PSP 19
A= g 0o (o] o |V SR 16
3.1 Multiple File Download in BitTorrentcccccoecvieviiieiiieeniieeeiee e 22
3.2 Multiple-Files-Multiple-Torrent...........ccceeeeuiieeciiieeiie e 28
3.3 Multiple-Files-Single-TOrrentccceeuvieeiiiieeiieeeiee et 37
EXperiment................. i g I ottt e r e s e r e e 40
4.1 EXPEriment 1 .ooocciiiiiiiieiiieeiiieecie e tre et ettt e e 42
Y SO 55 o< 141151 1 | AR ke 8L SR B B0 e Too=1 1 2000 (et 44
4.3 Experiment 3 ... i o e 45
CONCIUSION ..t r e n b e ne e 49

BibDIIOGr @Y ... e 51

List of Figures

Fig. 1 System Of tWo fI1€S ..ooviiiieeiiiece e s 34
Fig.2 The average download time in experiment 1cccceeeiieriieeniieeniee e, 43
Fig. 3 The average download time in eXperiment 2ccceeeevveercrieencieeenreesnneenne 45
Fig.4 The average download time of experiment 1 rerunccccceeevcvveercveeennennne 46

Fig. 5 The average download time of experiment 2 rerunccccceeeveveeerveeernnenne 48

List of Tables

Table. 1

Table. 2

Table. 3

Table. 4

Table. 5

Table. 6

Notation used in the MFMT with Inter-Torrent Collaboration model 30
Notation used in the MFMT without Inter-Torrent Collaboration model 32
Network setting of experiments 1 and 2ccccoeeeiieviieecie e, 41
The size of download files in experiment 1ccccoceevviieniiieniieeriee e, 42
The size of download files in experiment 2ccccccvevvveeeiieenieeenieeeeieeenns 44
Network setting of experiment 3ccooceieiiiiiiiiieeee e 46

Chapter 1

| ntroduction

BitTorrent [1], also known as BT, was first introduced by Bram Cohen in 2003 [2].
Since then, it has become one of the most popular and widely used P2P file sharing
protocols on the Internet. According to Sandvine (Fall 2011) [3], BitTorrent still
accounts for 16.5% of Internet traffic in North America, second only to Netflix. It is also
the only major P2P network currently ranking as one of the top ten Internet traftic

consumers in North America.

In a P2P file sharing network, peers in the system not only act as a client but also
as a server. Instead of downloading from a centralized server, files are downloaded from
other peers in the P2P network. This way, every peer contributes to the system and the
workload is distributed across the whole network. The mechanism mentioned above is

the reason why P2P file sharing systems are very scalable.

In the following section, we will provide background by briefly describing

BitTorrent protocol and its mechanism.

1.1 Background

To download files with BitTorrent, a peer needs to download a specific metafile
called a Torrent. Torrents are usually downloaded from web-based forums, which are
called Portals. Compared to other P2P file sharing protocols that have provided
searching function to locate the file such as eDonkey and Foxy, BitTorrent seems
inconvenient without built-in searching functions. However, it is still one of the most
popular—if not the most popular—P2P file sharing protocol because its well-designed
mechanisms make it extremely efficient, especially when sending large amounts of data

across the network.

BitTorrent divides files into smaller pieces. As soon as a peer finishes downloading
a complete piece, it is able to contribute to the system by uploading that same piece. The
combination of the above-mentioned techniques with the piece selection and choking
algorithms forms the core of BitTorrent’s mechanisms. They are the reason for the
extreme success of BitTorrent. We will further discuss these mechanisms in chapter 2.

In the next section, we are going to state our motivation.

1.2 Motivation

Due to the extreme success of BitTorrent, there has been plenty of research on it.

Those works have revealed the characteristics and performance of BitTorrent [4-6].

2

Most of those studies focus on a single-torrent system. They assume a node joins a

single torrent, one at a time. However, another study shows that more than 85 percent of

peers concurrently join multiple torrents [7]. Even though there is little research about

downloading multiple files in the BitTorrent system, some of research has proposed

several techniques for collaboration among multiple torrents to improve the

performance of the BitTorrent system under multiple-file downloading schemes. To the

best of our knowledge, due to the difficulties faced in deployment and implementation,

current practical BitTorrent clients do not utilize the technique of working with

collaboration between different torrents.

Practically, not only do peers tend to join more than one torrent at a time, a single

torrent can contain multiple files [8, 9]. For example, different episodes of a TV show or

different songs by the same singer are often published together. Peers tend to download

those highly correlated files together. Here we find an interesting question that does not

yet have an answer. When publishing multiple files, assuming the files are all highly

correlated so that all peers will download all of them: I Is it more efficient to put all of

those files into a single torrent, or is it more efficient to place them into different

torrents?

Another question arises from the scheme above. When multiple files are published

within a single torrent, most practical BitTorrent clients only use a single session to

handle it, and unchoking slots are set within a session. For example, if three files are

packed into a single torrent, the BitTorrent client will not use three times the unchoking

slots downloading them. We are wondering if this could be a performance factor in a

multiple-file download environment.

Most of the practical BitTorrent clients use 5 unchoking slots per torrent. This

means for each torrent a peer will simultaneously upload to at most 5 other peers. There

is some research about the unchoking mechanisms of BitTorrent. Fan et al. [10] give a

thorough insight into the trade-off between two different strategies applied to choking

slots. Laoutaris [11] proposed an uplink allocation algorithm that they called "BitMax".

The BitMax algorithm focuses on improving overall performance by increasing uplink

utilization. Uplink utilization is achieved by dynamically changing the unchoking slots

number and the uplink allocates to each unchoking node. But there still an unanswered

question: When downloading multiple files within a single session, does opening more

unchoking slots according to the number of files improve overall performance?

These problems, commonly faced by a BitTorrent user, need almost little

modifications to apply those changes. Our goals are to discover the influence of packing

files together under different downloading environments and the effect of changing

unchoking slots under different conditions. We believe our research could really help

BitTorrent users to adjust their own client settings.

1.3 Research Objectives

We first try to analyze the different schemes mentioned above with a fluid-based
model [4] and try to understand their performance under the steady-state. Even though
fluid-based mathematical models can capture fairly well the characteristics of the
BitTorrent system, the model is limited to describing the system performance under the

steady-state.

According to trace analysis of [9, 12], in the real-world BitTorrent system the
stable period is actually very short, so we also want to know about the overall
performance of the system over its entire lifetime. As a result, we decided to use the
simulation-based study as another way to observe the performance and evaluation of the

BitTorrent system under non-steady-state conditions.

The simulator we used is General Peer-to-peer Smulator (GPS) [13]. GPS models
the full behavior of the BitTorrent protocol. We believe it could very well help us

evaluate the conditions of the BitTorrent system.

Chapter 2

Related Works

Bram Cohen revealed BitTorrent in 2003 [2]. Because of its wide deployment and
extreme success, there have been various studies performed on the measurements,
modeling, and algorithms of BitTorrent systems. In this chapter we first present an
overview of BitTorrent mechanisms and establish the terminologies in section 2.1. In
section 2.2 we discuss various works on the BitTorrent System to provide an
understanding of BitTorrent performance and its characteristics. In section 2.3 we focus
on research related to multiple-file download systems. Finally, in section 2.4 we will

have a short summary at the end of this chapter.

2.1 BitTorrent overview

We will start by introducing the terminologies and basic concept of BitTorrent in

2.1.1 then further discuss the mechanisms used in BitTorrent in 2.1.2.

2.1.1 Terminologies

In the BitTorrent system, files are first divided into smaller file chunks called

pieces. Every piece is divided equally except for the final piece. A peer who wants to

upload a file must first create a small metafile called a torrent. The torrent file holds the

URLs of trackers, file size, file name and cryptographic hash(SHA1) of all pieces. The

length of the piece is usually a power of 2, and size is chosen based on the file size.

Smaller piece size usually has better efficiency but also will increase the size of

the .torrent meta file. The most common and practically used piece sizes 256KB,

512KB, and 1MB [14]. Usually torrent files are published and stored on a specific

website called a portal, such as “The Pirate Bay [15]” to allow other users to download

them.

Peers join the same torrent and form a swarm. For a node, every torrent they joined

is called a session. Those who have finished downloading and are still willing to stay in

the swarm uploading the files are called seeds. Those who have not yet finished

downloading are called leechers. The tracker is a centralized component that assists the

communication between peers. The tracker maintains the list of peers participating in

the same swarm. Every peer initiates the download by requesting a peer list from the

tracker. Peers that are currently downloading can also periodically update the peer list

from the tracker. The tracker can also gather statistical information from peers who are

willing to provide their stats; these tracker logs and traces are valuable research
7

resources. Trackers only help peers discover each other, but do not assist in any form of

file transfer.

A technique based on distributed hash table is implemented to provide support for

“trackerless” download, which allows peer downloads from a torrent without a working

tracker. Another way to gather information from peers in the same swarm is through

Peer exchange (PEX) Message. Peer exchange allows peers to exchange the peer list

with their connected peers.

2.1.2 BitTorrent mechanisms

The following introduction about BitTorrent are reference from Bram [2] and

BitTorrent protocol specification [14].

e Piece selection

The strict policy of piece selection is that if any sub-piece has been requested, the

remaining sub-piece will be requested first. This makes sure the complete piece can be

finished as soon as possible.

At the start of download, a newly incoming peer has no piece to upload. It just tries

to get a complete piece as soon as possible. So the newly joining peer just randomly

selects a piece to download until it has a complete piece.

The most important piece selection mechanism and the one which makes BitTorrent

extremely efficient and available is the Local Rarest First (LRF). Peers are have the

knowledge of which pieces their connected peers get. Local rarest first means peers tend

to download the fewest pieces distributed among the connected peers. This technique

does a great job of evenly distributing the pieces throughout the swarm, and also

prevents the existence of a particular piece that no longer exists in the system after the

original seed leaves.

There is also endgame mode. When all sub-pieces that have not finished are being

actively requested, a peer will send requests for all sub-pieces to all connected peers.

The purpose of endgame mode is to avoid the potential delay in completing a download

caused by requesting the last few pieces from peers with slow upload bandwidth.

e Choking algorithm

In BitTorrent, when you upload a file to a specific peer, you are unchoking that peer.

And choking a peer means you do not upload to that peer.

BitTorrent is without central resource control. Every peer just tries to maximize their

own download rate. The basic concept of a choking algorithm is a Tit-for-tat (TFT)

strategy. Tit-for-tat means that a peer simply uploads to those who upload the most to

them. Usually a peer is simultaneously uploading to 5 other peers. Four of the

9

unchoking slots apply the TFT strategy. For every 10 seconds, a peer will select 4 peers

who have uploaded the most to it during the past 20 seconds [11].Then, the fifth slot

applies a different strategy called optimistic unchoking. For every 30 seconds the peer

randomly unchokes a peer it is connected to. This lets the peer itself search for better

peers to connect to. This also helps new incoming peers to get their first piece. Qiu and

Srikant [4] prove TFT is very efficiency through a mathematical model.

When over a minute passes without getting a single piece from a particular peer, the

peer is snubbed by that particular peer. An anti-snubbing strategy in BitTorrent will

prevent the peer from unchoking those who snubbed you except through the optimistic

unchoking. Also when a peer is snubbed from all peers it currently downloads from, it

will temporarily generate multiple optimistic unchoking slots for exploring better peers

to download from.

e Queuing and Super Seeding

To prevent performance loss due to high round trip time between receiving a piece

and the next request message, a peer usually keeps a few unfulfilled requests on each

connection.

Super seeding is not part of the original BitTorrent protocol and it is only for the

original file distributor. When the original file distributor chooses to use super seeding

10

mode, it will pretend itself as another leecher in the system. When peers connect, the
seed will inform a peer that received a new piece and that particular piece will be the
one that has not yet been sent to anyone. The seed will not upload another piece to the
same piece until the seed found another peer that has a particular piece. Super seeding
help peers to download only the rarest data and reduces the amount of upload performed
by original seeds before other clients turn into seeds. Upon finishing the uploading of
one complete copy of the file using super seeding mode, multiple new seeds will

emerge in a short period of time, thus creating a big boost for the overall performance of

the swarm.

2.2 BitTorrent system

Due to the success of BitTorrent in practice, plenty of research tries to capture,
analyze and study its success through theory. Mathematic modeling becomes a very
popular way to capture the characteristics of the BitTorrent system. We will first discuss
them in 2.2.1. However, due to the extreme complexities of the BitTorrent system, some
abstraction of the details or unrealistic assumption are made on those models, limiting
those models to mostly describing the system under certain situations. As a result, other
research is trying to capture a more realistic view of the BitTorrent system by using

simulation-based approaches or analyzing the logs and tracker traces. These are going to

11

be discussed in 2.2.2.

2.2.1 Analysis based on Mathematic modeling

Qiu and Srikant [4] present a fluid model for the evolution of peers number, with
the assumption that peers arrive following a Poisson process. By using the fluid model
above and applying the Little’s law, the average download time for a peer under
steady-state was calculated. The result shows that under steady-state the average
download time of a peer is not related to the arrival rate of incoming peers, which
means that the BitTorrent system has tremendous scalability. Authors also present a

simple model showing that file sharing is very effective in BitTorrent.

Fan et al. [10] characterize the design space of BitTorrent protocols. They consider
BitTorrent’s two design objectives: 1) Performance—minimizing the average download
time; 2) Fairness—those who contribute more should receive better service than those

who contribute less.

They consider the scenario in which file size is uniform but peers have
heterogeneous bandwidth. They neglect the bottleneck caused by network topology.
They assume that only the upload and download bandwidth of peers create the limit to
the download speed. It is because current the BitTorrent system has no incentives for

seeding. They also assume that peers leave the system right after they finish the

12

download. Using the mathematical model they present, the fundamental trade-off

between performance and fairness of BitTorrent protocol is explored. The influence of

numbers of regular choking slots and optimistic unchoking slots on the average

download rate and fairness are modeled. They found that higher ratios of optimistic

unchoking slots improves the overall performance of the system and higher ratios of

regular unchoking slots improves the fairness of the system. Authors also mentioned

that in most practical BitTorrent clients four regular unchoking slots and one optimistic

unchoking slot are used, which indicates that most practical BitTorrent clients focus

more on fairness than performance.

There are also works like[11] [16, 17] that present additional models for more

complicated situations and different issues like fairness and availability.

2.2.2 Measurement and simulation based studies

Izal et al. [12] studied the trace of a tracker’s log during a 5-month period. The

authors showed that BitTorrent performs pretty well and is very effective in distributing

large content simultaneously to the extensive amount of nodes. They also point out that

BitTorrent is realistic and inexpensive compared to traditional ways of distributing files

through FTP or HTTP. By combining the piece selection mechanism and the choking

algorithm BT is extremely effective and efficient [18].

13

Pouwelse et al. [19] present a measurement study of BitTorrent based on trace
gathered over a period of 8 months from a single torrent —search site. Issues like
availability, integrity, flash crowd handling, and download performance are studied.

They also point out that currently, BitTorrent lack incentives to seed.

Zhang et al. [20] also provide a nearly complete picture of the entire BitTorrent
ecosystem through measurement studies of traces crawling from five of the most
popular torrent-discovery sites and Azureus and Mainline DHTs. Issues like

torrent-discovery, tracker, peer, user behavior and content landscapes are studied.

Bharambe et al. [6] study BitTorrent with flash crowds by using simulation. They
discovered that BitTorrent can achieve high uplink utilization but could be unfair to

peers with high bandwidths.

Other measurement studies [9, 21] combine with the above-mentioned research to

bring great insight on the BitTorrent system.

Most of these studies focus on single-torrent system, but in practice most peers join
multiple torrents and download multiple files at a time. We are going to discuss those

works on downloading multiple files in section 2.3.

2.3 Multiplefilesdownload

14

2.3.1 Analysis and modeling based on real-world trace

Guo et al. [9] analyze and model BitTorrent traffic based on trace from the real
world. According to the trace they found that over 85% of users participate in multiple

torrents.

They present a model to describe the evolution of a single torrent during its entire
lifespan. They model and study the client performance variations and service fairness in
the single-torrent system. They found that the client-performance fluctuates in a
single-torrent but is quite stable when aggregated over multiple torrents. They also
observed that the BitTorrent seeds service policy has a lack of incentives for seeds to

contribute.

They are motivated by observation of the single-torrent system. They also present a
study of multiple torrents through modeling and trace analysis. Their models assume
that peers are willing to seed and delineate a peer’s life cycle into a sequence of
downloading, seeding and sleeping. They also assume that each peer joins each torrent

at most once, and joins one torrent at a time.

From their studies, they proposed an inter-torrent collaboration mechanism that
enabled exchange-based incentives among multiple torrents. According to their model,

the inter-torrent collaboration mechanism can significantly reduce the failure ratio of a

15

single torrent, but their method needs the assistance and modification of the current

tracker. That is definitely quite challenging in real-world deployment.

2.3.2 Modeling of multiple-file downloads

Tian et al. [8] present a fluid-model based analysis on different multi-torrent
schemes. In a Multi-torrent concurrent downloading (MTCD) scheme, the user enters
into separate torrents for multiple files. It is applied in most practical BT clients. In the

MTCD scheme each session is competing with each other for the available bandwidth.

In multi-torrent sequential downloading (MTSD), the user only enters one session
at a time. Multi-file torrent concurrent downloading (MFCD) means a single torrent
contains multiple files, and for each separate file, the user uses an independent session
to download them concurrently. In their model MTCD and MFCD are treated the same.
But they still mention that in most cases files published within a single torrent are

usually highly interest-correlated.

Using average online time per peer as the main evaluation metrics, MTSD
outperforms MTCD when correlations between files are high. But MTCD has a similar
performance with MTSD when files have little correlation. Based on the above
observation from their model, they also proposed a collaborative multi-file sequentially

downloading scheme (CMFSD).

16

In CMFSD a peer downloads multiple files sequentially. They treated every

individual file in a single torrent as a small sub-torrent. A peer will have two sessions

instead of one at a time. One session sequentially joins those sub-torrents as a leecher.

Another will join a finished sub-torrent seeding. They also provide an adapt mechanism

for deployment of CMFSD.

Through the fluid model, although they demonstrate when files are highly

correlated, their scheme could greatly improve the performance of the system. They

claimed their adapt mechanisms would prevent peers from trying to cheat, but it still

does not guarantee that a peer is willing to seed in a finished file. Also their approach

requires the modification of current BitTorrent protocol.

2.3.3 Simulation-based studies of Cross torrent tit-for-tat

Yang et al. [22] proposed a “ cross-torrent-base” tit-for-tat (CTFT) strategy as a

way to provide incentives for nodes to act as seed. CTFT modifies the unchoking

algorithm of leechers. Instead of choosing the peers who upload the most in a particular

torrent, they consider the aggregate upload in all torrents that they both participate in.

Incentives for seeding are provided by giving higher weight for uploading received from

seeds.

They also proposed another modification of CTFT called CTFT with dynamic

17

seeding (CTFT-DS). In CTFT-DS each node locally estimates the ratio of seeds to

leechers. Then, they only seed in those where the ratio is below a certain threshold. The

researchers also present a series of simulation studies.

In their simulation, they assume peers arrive following a Poisson process. Each

torrent has an original seed, which will stay for the entire lifetime of the torrent. They

consider both a homogeneous system and heterogeneous system. In the heterogeneous

system, two classes of peers are defined: a fast peer with higher upload and download

rates, and a slow peer with slower download and upload rates. They assume there are

more slow peers than fast peers. They also use files from the real world in their

experiment. Game patches, software installers and online movie rental systems are used.

They also test two conditions: when all peers join the same set of torrents, and when all

peers just randomly join 3 torrents out of 10. They use the default setting adapted by

most practical BitTorrent client: five unchoking slots with seeds and four plus one

optimistic unchoking slots with leechers.

The main metrics they consider are the average download time over all torrents and

the average total time a node takes to complete all download. The results show that

performance gains are possible through cooperation across multiple torrents. However,

their approaches require modification of the current TFT strategy. Also, a malicious peer

18

could take advantage of the system by disguising itself as a seed in some torrents.

2.4 Summary

In section 2.1, we first introduce the mechanisms used in BitTorrent and
established the terminology. Then we discussed the various related research of the
BitTorrent system in section 2.2. Those works have brought tremendous insight into the
overall system performance and fairness. In section 2.3 we focus on the research on
multiple-file download environments. They have all proposed several techniques to
relate multiple torrents together to improve the overall system performance. However,
all of them consider it from the viewpoint of a leecher or from a global view of the
entire system. In reality, it is impossible for peers to obtain global knowledge of the
entire network. It is also a bit challenging to let every peer in the system apply some
modified strategies. Also for the techniques proposed, all of them required some

modification to current BitTorrent protocol or BitTorrent client implementation.

Considering things from the leechers’ point of view is very reasonable, because
most of the peers in the systems are leechers. In [12] and [9] we learn that seeds
contribute more than leechers, but surprisingly to the best of our knowledge, none of the

research starts from the viewpoint of the original file distributor.

In our work we are trying to find a way to improve system performance without

19

any modification of current protocol or client implementation. Also, from the research

above we learned that seeds contribute a lot to the system and most of the research

focuses on providing incentives for peers to seed. We start from a different point of view.

We consider the impact of theO way in which the original file distributor distributes the

files and its relation to various parameters that can be managed and modified by clients

themselves.

20

Chapter 3

M ethodology

There are several ways to download multiple files in BitTorrent. Much research has
already tackled this topic. Each researcher has their own assumptions and abstractions
of network details and their own solutions to the multiple-file download scenario of
BitTorrent. Even in practice, different BitTorrent clients use different approaches to deal
with the multiple-file download situations they faced. In this chapter, we are going to
summarize and classify the different multiple-file download scenarios in BitTorrent and
compare the downloading efficiency between different multiple-file download

approaches.

In this chapter we will first discuss some of the past research on multiple-file
download in BitTorrent. We then classify the different approaches to multiple-file
downloads according to our own knowledge gleaned from previous research.

Afterwards, we will compare the download efficiency between different download

21

methods. Finally, we try to discuss some other parameters that might affect the
download efficiency under different download approaches, such as number of

unchoking slots and the size differences between download files.

3.1 Multiple-File Download in BitTorrent

Multiple-File Download in BitTorrent

When using BitTorrent to share multiple files, the original file distributor can
decide whether to distribute those files in multiple torrents separately or pack those files
together into one single torrent. We called the former Multiple-File-Multiple-Torrent
(MFMT) download and the latter one is called Multiple-File-Single-Torrent (MFST)

download.

One thing that needs to be mentioned here is that in the real world, BitTorrent
clients are more likely running multiple tasks and that those tasks can consist of both
single-file torrents and multiple-file torrents. But for simplicity, in this research we
assume a user will either chose MFMT or MFST as their downloading method when

they trying to download multiple files using BitTorrent.

Another thing we need to mention is that even though the original torrent creator

22

decides the number of files that a torrent contains, whether to download all of them can

be decided by the downloader. Most practical BitTorrent clients allow the user to pick

the files to download even if they are packed into a single torrent. In the real world, files

in a single torrent usually are highly correlated [8]. For example the different episodes

of same television show or different songs by the same singer are commonly packed

into a single torrent, and usually the downloaders tend to download those files together.

Compared to a situation where users are downloading multiple files from a single

torrent, the chance of users downloading the same set of multiple files from different

torrents is very low.

Some past research

Gue et al. [9] find out that at over 85% of BitTorrent users join multiple torrents

through trace analysis. Tian et al. [8] compare the performance of two different

downloading strategies of MFMT under steady-state. The first strategy is called

Multi-Torrent Concurrent Downloading (MTCD). MTCD is when a user tries to

download multiple files, the user simultaneously downloads all of those files

concurrently and the bandwidth is equally shared among all those torrents. The second

strategy is called Multi-Torrent Sequential Downloading (MTSD). With MTSD, the user

sequentially downloads those files one at a time. All of the bandwidth will be used on

23

one single torrent, then switches to the next torrent when the current one is finished.

In Tian’s et al. [8] model, they adopt the concept of File Correlation. File
Correlation refers to the probability that a user downloads the same set of files. The
definition of file correlation is as follow: Assuming there are K files currently in the
system, a user will have a probability of p to download another file. If the entry rate of
all new peers into the system is A,, than a peer who is already downloading i files will

enter the system with the rate of A, (Il.{)P"(l — p)K-L,

Tian et al. [8] models that, when File Correlation is low, MTCD and MTSD
experience similar performance. But with the increase of File Correlation, the
performance of MTCD will decrease. This is because in his MTCD model, he assumes
that a peer who downloads i files will only act as seed after every i files are finished. In
the MTSD model, the users will seed for a period of time after every single file is
finished. Also, in his model he assumes that utilization of upload capacity seeds are
much higher than leechers, so the difference of performance comes from the different

average seeding time in these two methods.

He also mentions the download scenario of MFST, which he calls Multi-File

Torrent Concurrent Downloading (MFCD). They assume that when a BitTorrent client

24

finds out that there are n files in a single torrent, they will divide it into n subtorrents,

and for each of the subtorrents they will generate a virtual peer to download the file.

The bandwidth will equally distribute among all virtual peers just as if they are n

different torrents. From this point of view his MFCD and MTCD scenario is the same.

But he also mentions the cases where usually in MFCD the File Correlation is higher

than those in MTCD [8, 23].

Although they assume in MFCD that different files in a single torrent actually

belong to different swarms, there might be another possible scenario in which

BitTorrent clients do not actually distinguish different files within a single torrent. This

means that no matter how many files are within the torrent, they will all be downloaded

under the same swarm, which is commonly called Content Bundling. The Content

Bundling scenario is actually the same as Single Torrent Single File scenario. They are

even the same when BitTorrent clients allowed users to download a selected set of files

in the torrent. We just simply need to treat those peers who download only a portion of

the torrent as aborted peers, then we can simply just apply the model of Qiu et al. [4] to

describe the performance of Content Bundling under steady-state.

Menasche et al. [24] analyze the difference between Content Bundling and Single

File downloading systems from another point of view. They assume the downloads are a

25

process that switches between waiting time (Busy Period) and service time (Idle Period).

Waiting time is the time when a peer is waiting for a download; thus service time is the

actual time spent downloading the files.

Their models assume BitTorrent download is a coverage process. The first busy

period starts when the original publisher enters the system. The lifetime of a swarm is

switching between the busy period and idle period. In the model, they prove that

bundling several files together can improve the availability of unpopular files in it. They

also point out that the download time of an unpopular file is mainly restricted by its

waiting time, so bundling those files together or with other popular files can improve

their download time efficiently.

Different Multiple-File Download Approaches of BitTorrent

Here we categorized the different multiple-file download approaches of BitTorrent

we have mentioned in above chapters.

From downloading methods

There are two download methods to download multiple files in BitTorrent.

Concurrent download is to simultancously download all the files at once and Sequential

26

download is to sequentially download these files one by one in a certain order. In this

work, we think of sequential download as a sequence of single-file download and will

not discuss it any further. We will mainly focus on Concurrent download in this work.

Concurrent download is actually the default downloading method when downloading

multiple files in most of the practical BitTorrent clients. Also, in most commonly used

BitTorrent clients, the user is allowed to set the number of tasks that are allowed to run

simultaneously. Sequential download is a special case in which only one task is allowed

to run at a time. In most practical situations BitTorrent also has built-in scheduling

functions that allow users to perform sequential downloads.

Inter-torrent collaboration

Another way of classifying different multiple-download approaches in BitTorrent

is to classify them according to the existence of inter-torrent collaboration. We assume

that when inter-torrent collaboration is considered the TFT between the collaborated

torrents are considered together.

Accordingto Torrents

We can also distinguish the different download approaches by the number of files

within the torrent. We only consider two cases, the single-file torrent and the

27

multiple-file torrent.

Even though in the real world, the multiple file downloads usually consist of both
Sngle-file-torrent and Multiple-file-torrent, for simplicity in this work we only consider
cases that only have multiple Sngle-file-torrent and single Multiple-file-torrent. We

classify the BitTorrent multiple downloads as the following scenarios:

@ Multiple-File-Multiple-Torrent Downloading with Inter-Torrent Collaboration:
This scenario is when user concurrently downloads multiple Sngle-file-torrents.
The inter-torrent collaboration in this work simply assumed that the TFT strategy is

considered among all torrents downloads.

@ Multiple-File-Multiple-Torrent Downloading without Inter-Torrent Collaboration:
This one is same as the previous case, except the TFT are considered separately in

each individual torrent.

@ Multiple-Files-Sngle-Torrent Concurrent Downloading:

In this case the multiple files are all bundled in a single torrent.

3.2 Multiple-File-Multiple-Torrent

In this section we are going to discuss and analyze the different parameters that

28

may affect download performance under the two different MFMT cases.
3.2.1 MFMT with Inter-Torrent Collaboration

The first case we consider is the case of MFMT with Inter-Torrent Collaboration.
Because Inter-torrent collaboration is not actually defined in current BitTorrent
specification and not yet used in practical BitTorrent clients, we made the following

assumption of the Inter-Torrent collaboration.

@ We assume that for all torrents downloaded by the same peer, the TFT are

considered together.

With the above assumption, the case of MFMT with inter-torrent collaboration can
be simply viewed as a single-file system, because all the files are downloading within
the same swarm in the system. In other words, those multiple files can be treated as a
single large file, and every individual file can be seen as part of the large file. For the
single-file download performance of BitTorrent under steady-state Qiu et al. [4, 6]

already has a model that describes it fairly well:

dx

== A= 0x(t) — min{cx(®), u(nx () + y(t))},

d
% — min{ex(@,u(px(©) + y©O)) - py(©, (1)

29

y) The entry rate of peers into the system.
x (t) The number of leechers in the system time at time t.
y(t) The number of seeds in the system time at time t.
U The upload bandwidth of all given peers.
c The download bandwidth of all given peers. We assume ¢ >pu.
0 The rate of the aborted leechers leaves the system.
Y The rate of the seeds leaves the system.

1 The effectiveness of file sharing. Values are in [0,1].

Table 1 Notation used in the MFMT with Inter-Torrent Collaboration model

The average time a peer in the system under steady-state T is,

T= : 2
@

1 1 1/1 1
and 5 = max {Z’ o (; —)—/)} - The model above revealed some interesting characteristics

of the BitTorrent system when downloading a single file.

@ The higher the 7, the shorter the T. It is pretty obvious that the more effective the

file sharing, the shorter the overall download time.
@ The longer the average seeding time, the faster the download time.

@ The most important characteristic he discovered is that the download time is not
relevant to the entry rate of A. That is the reason why BitTorrent is scalable.

30

322 MFMT without Inter-Torrent Collaboration

Here, we try to model the case of MFMT without Inter-Torrent Collaboration. We
first make some assumptions to prevent our model from becoming too complicated. For

all assumptions below we are considering the situation under the system steady-state.

@ We assume all peers are have the same upload and download bandwidth.

@ We assume the upload bandwidth is significantly higher than download bandwidth,

meaning that upload bandwidth is the only bottleneck to consider.

@ We assume there are sufficient number of peers, thus the utilization of upload

bandwidth is full.

@ There are no aborted peers in the system.

@ The bandwidth of a peer is equally shared between all downloading torrents.

@ If there are n files in the system, and system is under steady-state, the n files will

finished in the order of Fy, F»,...,Fu.1,Fu.

@ We assume the peers will form n sub system. We define Sub system S, as the peers

who just enter the system and have not yet finished downloading file F;. Thus, sub

31

systems S;is formed by the peers that have finished downloading all the files from
F, to Fi.;, but have not finished downloading file F; yet. For example, S, consists of
the peers that finished downloading the file F; but have not yet finished

downloading file F».

@ We assume that when the system is under steady-state, all the sub-systems are also

under steady-state.

With the above assumptions, we now list all the notations we used in the following

tables.

A The entry rate of peers into the system.

H The upload bandwidth of all given peers.

] The effectiveness of file sharing. Values are in [0,1].
N, Number of regular unchoking slots.

N, Number of optimistic unchoking slots.

St Number of leechers in the sub system 1 at time t.

R R= N IZ_TN The ratio of regular unchoking slots.

F; Size of File i.

Table 2 Notation used in the MFMT without Inter-Torrent Collaboration model

The evolution of number of peers in sub-system S; is as follows:

32

si(t) _ i 1 s;(t)
at F; — [the part of F; download during S, to S;_;]’
nuUR 510 s the upload received from the Regular unchoking from the peers in sub

2
system S; (1 —R)uY:_, %sk (t) comes from the Optimistic Unchoking of the other i

s;(t)
Yiisi®

sub-system that are still downloading file F;. is the ratio of peers in S;to all
peers that are currently downloading file F;. Because of the unbiased feature of
Optimistic Unchoking, the total bandwidth received from Optimistic Unchoking of peers

in S;is calculated as the total bandwidth from all files that are currently downloading F;

times the proportion of peers in S; in all peers downloading F;

s;(t)
Y si(t)

(1 = R e 7 51 (0)

To study the performance under the steady-state, we let

ds;(t)
dt 0

From 3 we get

5 | si(®)
MR 5 + (1 = R)p X=1 ; i (t) Y. s

0=A1- ,
F; — [the part of F; download during S, to S;_]

(4)

But here we are unable to find a general solution for the value of

33

[the part of F; download during S; to S;_;].This need to calculate step by step from
S1, and the models get more complicated during the process. We will do an example of

how to calculated the average download time under the special case of n=2.

3.2.3 MTCD without Inter-Torrent Collaboration with two files

Now we assume there are file F; and F; in the system. The system will form

sub-systems S; and S,.

Filel File2
St Downloading Downloading
S Finished Downloading

Table 3 two states of system

The life of a peer in the system is illustrated as below:

New peers arrive at rate A
_—]
> S 1 — >

Figure 1 system of 2 files

WAJSAS oY) 9ABI]

Now we can list the evolution of number of peers in system S; as,

ds;(t) 2 _nuRSlzﬂ+ (1-— R)/,tslT(t)

1t F,)

34

To study to performance under steady-state, we let

dsy(t)
dt 0

From equation (5) we get,

51 _ s
_MRZ+ (AR

0=241
Fy

(6)

2AF;

————— Then, we
n(MR+1-R)

We get the number of peers in S; under steady-state as §; =
apply the Little’s Law [4][4][4][4]. We can get the average time for a peer stay in

system S; under steady-state T;.

2F,
T1:]
umR +1—R)

(7)

After calculate T;, we are going to calculate the part of F, download during S;. We

believe because of the TFT mechanism the peers in S; will only get pieces of F, from

Optimistic unchoking coming from peers in other sub-systems. So the size of file that F,

being downloaded during S; is

Then we move on to sub-system S,, the evolution of number of peers in S, is as follows,

35

dsn() RS0+ (- R [$52 + 5,0

, 9
dt F2 - BZl ()

As same as what we do in S;, we let

ds,(t)
dt =0

From (9) we get,

nuRS, + (1 = R)u [% + 5_2]

0=1- ,
F2_321

(10)

Then, we can calculate the number of peers in S; under steady-state $,. Then, with

the value of $§,, we can calculate the average time of peers staying in the sub-system S,

T,. The total time a peer spends in the system will be T; + T,. But unfortunately, even

with only n=2, we found the equation became too complicated and difficult to solve.

Even after so many abstractions of network and making some unrealistic

assumptions, we still failed to find a valuable solution or an equation that can present

the performance of MFMT under steady-state. Because we find that it is hard to capture

the performance of MFMT with mathematic modeling, so we decided to change our

approach by using a simulation experiment in next chapter. We wish through simulation

experiment to discover the attribute that affects the performance of MFMT download.
36

3.3 Multiple-Files-Single-Torrent

In this chapter we are going to discuss the case of MFST. Actually on paper MFST
1s almost the same as MFMT, with only one difference: These multiple files distributed
across different Torrents in MFMT are now all bundled into a single torrent in MFST. It
is quite hard to distinguish their difference through mathematic modeling. In facts, its
depends on the way the BitTorrent client actually handles the Multiple-file torrent
MFMT and MFST could be the same. As mentioned before Tian et al. [8] do use the

same model on them in his work.

Despite using the same model on MFMT and MFST, they still believe that there
may be differences between these two different download methods. The difference they
mentioned in their works is the concept of file correlation, which we have mentioned
before. Another attribute that we think that may affect the difference between these two

download methods are the number of unchoking slots used.

In most practical BitTorrent clients, the number of allowed connections and choking
dlots are restricted within each task. Usually one task is added for every torrent that
BitTorrent clients download no matter how many files are within the torrent. So, the

difference between MFMT and MFST may occur here. Take for example; downloading

37

the same three files A, B, C and n unchoking slots are used for every task in the

BitTorrent Clients. If these 3 files are downloading through three separate torrents, a

total of 3n unchoking slots are going to be used; but only nunchoking slots are used

when these three files are bundled intoa single torrent.

Fan et al. [10] have studied the influence of number of unchoking slots to the

download performance in BitTorrent. In his model he finds that the ratio between

optimistic unchoking slots and regular unchoking will affect the download performance:

the higher the ratio of optimistic unchoking, the higher the download performance. It is

very obvious because the unbiased Optimistic unchoking slot compared to the biased

regular unchoking slot does not have the bandwidth lost due to playing tit-for-tat

strategy. Most of the works including [4, 8, 9, 17] have all made the similar assumption

that optimistic unchoking slot does outperform regular unchoking slot in sharing

efficiency.

The ratio between two different unchoking slots do affect the performance of the

BitTorrent system, but if the ratio is maintained, no matter the number of unchoking

dlotsare used the performance of system will stay the same [10]. It is quite easy to

understand because we usually assume there are a sufficient number of peers in the

system and there are always pieces to download if the bandwidth is allowed. But in the

38

real world there may be chances that even though we have enough unoccupied

bandwidth, there are no desired pieces to download.

As to our knowledge of most of the commonly used BitTorrent clients, the default

number of optimistic unchoking slots and regular unchoking slots are 1 and 4

respectively. They are set to the number not according to any theory or proof but by

experience. We wonder if this setting by past experience may not work that well when

considering the existence of multiple-file torrents.

Unfortunately, we cannot theoretically prove that if we extend the number of

unchoking slots used according to the number of files in the torrent, that can affect the

performance of download. As a result, we decided to examine this situation by running

some simulation experiments in the next chapter.

39

Chapter 4

Experiment Result

In the previous chapter we theoretically examine some different multiple-file
download approaches of BitTorrent. We have made some assumptions but there are still
many cases that we have failed to analyze. In this chapter, we decided to study them

through a series of simulation experiments.
The Simulator Used

The simulator we used is General Peer-to-Peer Simulator (GPS) [13]. GPS is an
event-driven p2p simulator which simulates every messages passing between peers. The
reason we choose GPS as our simulator is because it already has a built-in BitTorrent

protocol and also support for multiple-file downloads.

GPS adopt the GT-ITM [25] as a tool to simulate the topology of a real network.

The bandwidth is also constrained according to the network topology. In the network

40

topology that GPS used there are two kinds of nodes transit node and stub node. Transit

nodes are the backbone of the network and stub nodes are the edge of network or the

place where peers actually exist. These two different nodes form three kinds of different

connections. These connections are the connection between two transits nodes (TT),

connection between two stub nodes (SS) and the connection between transit node and

stub node (TS).

The bandwidths are allocated according to these connections. The propagation

delays on the connections are also considered. All of the above features make GPS

closer to a real network environment.

The experiments in GPS are configured by two text-based setting files; document

file and event file. Document file defines the size and amount of the download files in

the system. Event file defines event happened in the system.

In the following experiment 1 and 2, we are using the default setting of GPS for the

bandwidths and delays on different connections. Bandwidth between two transit nodes

is 1000Mbps with a S5ms of delay. Bandwidth between transit node and sub node is

100Mbps with a 10ms delay. Bandwidth between two stub nodes is 10Mbps with 30ms

delay.

41

Bandwidth Transit-Transit 1000 Mbps

Bandwidth Transit-Sub 100 Mbps
Bandwidth Sub-Sub 10 Mbps
Delay Transit-Transit 5ms
Delay Transit-Sub 10 ms
Delay Sub-Sub 30ms

Table 3 Network setting of experiments 1 and 2

4.1 Experiment 1

In our first experiment, we compare the performance of three different kinds of
multiple-file download approaches in BitTorrent. MFMT, MFST, and MFST with
extended unchoking slots. For each of the three different approaches, 3 sets of files are
used as download files; one single 5S00MB file, two 250MB files and five 100MB files.
The number of unchoking slots used is the default setting of most practical BitTorrent
clients: one optimistic unchoking slot and four regular unchoking slots, and the numbers
of both kinds of unchoking slots are multiplied by 2 in the scenario of extended 2, and

multiplied by 5 in the scenario of extended 5.

Number of files Singlefilesize
1 500 Mb

2 250 Mb x 2

5 100 Mb x 5

Table 4 the size of download files in experiment 1

In figure 2, the average download times of these different approaches are shown.

42

50
45
40 - m MFST
35 -
= B MFST Extend 2
B 30 -
2
S 25 - W MFST Extend 5
S
2 20 -
D) B MEMT 2 files
15 -
10 - B MFMT 5 files
5 .
O .
A=30 A=50 A =100

Figure 2 the average download times in experiment 1

In these first experiments, two hundred peers will enter the system at a constant

rate (30, 50 and 100) and start to download all the available files in the system. Five

different download approaches with 3 different entry rates are simulated. The five

different download approaches are MFST, MFST extend 2 (which means the number of

unchoking slots are 2 times the default setting), MFST extend 5 (which means the

number of unchoking slots are 5 times the default setting); MFMT 2 files are

downloading 2 files from 2 separate torrents and MFMT 5 files are downloading 5 files

from 5 separate torrents. The total sizes of the download files in all experiments are 500

Mb.

43

We can see that, as mentioned in the previous chapter, the entry rate of peers does
not affect the download times of peers. Also, all five different download scenarios have
the similar average downloading times. This is very reasonable because of the high
bandwidth utilization in our experiments, especially when the sizes of files are unique in

each scenario.

4.2 Experiment 2

In the second experiment we examine the download performance of MFMT under
the condition when the sizes of files are different. Figure 3 shows the average download

time of experiment 2.

Number of files filessizes

1 500 Mb
2 300Mb, 200 Mb
5 150M b, 125M b, 100M b, 75M b, 50M b

Table 5 the size of download files in experiment 2

In this experiment, the total sizes of all download files are the same as experiment

1, a total of 500 Mb. However, the difference is that sizes of files are no longer unique

in the 2 and 5 files scenarios.

44

50

45

40 -

35 4

30 1 mA=30

25 -~ mA=50

mA=100

(spuodag)au,

20 -

15 -

10 -

1 file 2 files 3 files

Figure 3 the average download times in experiment 2

From the result shown in figure 3, we can see that even when the size of files are
not unique, the average download times of MFMT are still very similar when the total
sizes of all download files are the same. The average download time of multiple-file
download does not affect by the individual sizes of download files. This is also very
reasonable when we consider that the simulation environment high bandwidth
utilization combined with almost no waiting times due to the fact that we let all three

swarms have the same set of peers.

4.3 Experiment 3

In this experiment we rerun the same experiments that we have done in experiment

45

1 and experiment 2 but under a slower network environment. The delays between

different connections remain the same but bandwidths are adjusted. Bandwidth between

two transit nodes is reduced to 500Mbps. Bandwidth between transit node and sub node

is reduced to S0Mbps. Bandwidth between two stubs nodes is reduced to SMbps.

Bandwidth Transit-Transit 500 Mbps
Bandwidth Transit-Sub 50 Mbps
Bandwidth Sub-Sub 5Mbps

Table 6 Network setting of experiment 3

Rerun of Experiment 1

90 -
80 -
m MFST
70 -
L, 60 - B MFST Extend 2
g.
,33 50 A = MFST Extend 5
g 10
8 B MFMT 2 files
w2
~ 30 -
B MFMT 5 files
20 -
10 -
0 .
A=30 A=50 A =100

Figure 4 the average download times of experiment 1 rerun

From figure 4 we can see the performance of different download methods are

actually very similar. The result strengthens the conclusion we made in the previous

46

experiment: that when network utilization is high, the average download times of peers

is not affected by the way they choose to download the files.

Aside from the conclusion we already know, there is something interesting we

observed from our results. Even though average download times across different

download methods are similar, but there are notable differences between the

performance between A=30 and A= 100 under low bandwidth environment. The result is

very easy to understand because we limit our network bandwidth capacities. So, under a

low bandwidth environment with shorter average entry time, the upload bandwidth of

peers provided reached the limit capacities of backbone network, resulting longer

average download times.

Rerun of Experiment 2

Just like the previous rerun of experiment 1, we observed the same result as

experiment 2 at this rerun. Different download methods actually do not influence the

average download times. We also find the trend that when the average arrival times are

lower the average download times are shorter. This is due to the fact that faster arrival

of peers may cause backbone network capacities be occupied.

47

mA=30
mA=50
mA=100

(spuooag)aur],

1 file 2 file 5 file

Figure 5 the average download times of experiment 2 rerun

In this chapter we mainly run three sets of experiments. The first one is to compare

the influence of different download approaches to the average download time. The

second one is to examine the situation in which sizes of files are not unique when using

MFMT download approaches. The last one is a rerun of previous two experiments under

a low bandwidth environment. The result showed no matter under high or low

bandwidth conditions, the download approaches used or the size difference between

download files does not affect the average download speed. We also find that when

network bandwidth capacities are low, entry rates actually may affect the download

performance, because too many peers may occupy the bandwidth, causing longer

average download times.

48

Chapter 5

Conclusions

In this paper, we first introduced the various different methods of multiple-file
downloads in BitTorrent. Then, we classified and introduced the differences between
these approaches. After, we tried to study the performance of different multiple-file
download approaches under steady-state based on the previous research from others and

some new models of our own.

Unfortunately, our attempt to model the downloading time of MFMT download
failed. We tried to study the performance of MFMT with simulation experiments. The
results show that MFMT with Inter-torrent collaboration, MFMT without Inter-torrent

collaboration and MFST have similar performances.

We also extended the number of unchoking slotsin MFST when there are multiple
files in the single torrent. The results show the same as other previous research on a

single file system, that the number of unchoking slots does not affect the download

49

performance under the steady-state.

Futureimprovement

We tried to use the commonly used Fluid model to analyze the different approaches

of multiple-file download in BitTorrent. Unfortunately, even with so much abstraction

of network details, we still failed to find a meaningful result to describe the performance

of MFMT. We hope in the future we can develop a new model that is able to better

describe the performance of multiple-file download in BitTorrent under various

Network conditions.

We have run a series of experiments by using GPS simulators. Even though

simulation is a good way to capture the performances of BitTorrent under certain

network conditions, we can still consider doing simulation in a real-world network

environment. Or, we can even try to collect data and tracker trace from real-world

BitTorrent clients and tracker, resulting in a more diverse and complete research on

multiple-file download in BitTorrent.

50

Bibliography

[1]

[2]

3]

[4]

[5]

[6]

BitTorrent. Available: http://www.bittorrent.com/

B. Cohen, "Incentives Build Robustness in BitTorrent," presented at the 1st

Workshop on Economics of Peer-to-Peer Systems, 2003.

sandvine, "Global Internet Phenomena Report," Fall 2011.

D. Qiu and R. Srikant, "Modeling and performance analysis of BitTorrent-like

peer-to-peer networks," presented at the Proceedings of the 2004 conference

on Applications, technologies, architectures, and protocols for computer

communications, Portland, Oregon, USA, 2004.

B. Fan, J. C. S. Lui, and D.-M. Chiu, "The design trade-offs of BitTorrent-like file

sharing protocols," IEEE/ACM Trans. Netw., vol. 17, pp. 365-376, 2009.

A. R. Bharambe, C. Herley, and V. N. Padmanabhan, "Analyzing and Improving a

BitTorrent Networks Performance Mechanisms," in INFOCOM 2006. 25th IEEE

International Conference on Computer Communications. Proceedings, 2006, pp.

1-12.

51

[7]

[8]

[9]

[10]

[11]

[12]

[13]

L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, "Measurements, analysis,

and modeling of BitTorrent-like systems," presented at the Proceedings of the

5th ACM SIGCOMM conference on Internet Measurement, Berkeley, CA, 2005.

T. Ye, W. Di, and N. Kam-Wing, "Analyzing Multiple File Downloading in

BitTorrent," in Parallel Processing, 2006. ICPP 2006. International Conference on,

2006, pp. 297-306.

L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, "A performance study of

BitTorrent-like peer-to-peer systems," Selected Areas in Communications, IEEE

Journal on, vol. 25, pp. 155-169, 2007.

F. Bin, J. C. S. Lui, and C. Dah-Ming, "The Design Trade-Offs of BitTorrent-Like File

Sharing Protocols," Networking, IEEE/ACM Transactions on, vol. 17, pp. 365-376,

20009.

N. Laoutaris, D. Carra, and P. Michiardi, "Uplink allocation beyond

choke/unchoke: or how to divide and conquer best," presented at the

Proceedings of the 2008 ACM CoNEXT Conference, Madrid, Spain, 2008.

M. lzal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A. Hamra, and L.

Garces-Erice, "Dissecting BitTorrent: Five Months in a Torrent's Lifetime,"

presented at the PAM, 2004.

W. Yang and N. Abu-Ghazaleh, "GPS: a general peer-to-peer simulator and its

52

[14]

[15]

[16]

[17]

[18]

[19]

[20]

use for modeling BitTorrent," in Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems, 2005. 13th IEEE International Symposium on,

2005, pp. 425-432.

Bittorrent Protocol Specification v1.0. Available:

http://wiki.theory.org/BitTorrentSpecification

The Pirate Bay. Available: http://thepiratebay.org/

W.-C. Liao, F. Papadopoulos, and K. Psounis, "Performance analysis of

BitTorrent-like systems with heterogeneous users," Perform. Eval., vol. 64, pp.

876-891, 2007.

A. L. H. Chow, L. Golubchik, and V. Misra, "BitTorrent: An Extensible

Heterogeneous Model," in INFOCOM 2009, IEEE, 2009, pp. 585-593.

A. Legout, G. Urvoy-Keller, and P. Michiardi, "Rarest first and choke algorithms

are enough," presented at the Proceedings of the 6th ACM SIGCOMM

conference on Internet measurement, Rio de Janeriro, Brazil, 2006.

J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips, "The Bittorrent P2P

File-Sharing System: Measurements and Analysis," presented at the 4TH

INTERNATIONAL WORKSHOP ON PEER-TO-PEER SYSTEMS (IPTPS), 2005.

Z. Chao, P. Dhungel, W. Di, L. Zhengye, and K. W. Ross, "BitTorrent Darknets," in

INFOCOM, 2010 Proceedings IEEE, 2010, pp. 1-9.

53

[21]

[22]

[23]

[24]

[25]

G. Neglia, G. Reina, Z. Honggang, D. Towsley, A. Venkataramani, and J. Danaher,

"Availability in BitTorrent Systems," in INFOCOM 2007. 26th IEEE International

Conference on Computer Communications. IEEE, 2007, pp. 2216-2224.

Y. Yang, A. L. H. Chow, and L. Golubchik, "Multi-torrent: a performance study

and applications," Int. J. Adv. Media Commun., vol. 4, pp. 31-58, 2010.

J. Han, T. Chung, S. Kim, H. Kim, T. T. Kwon, and Y. Choi, "An Empirical Study on

Content Bundling in BitTorrent Swarming System," CoRR, vol. abs/1008.2574,

2010.

D. S. Menasche, A. A. A. Rocha, B. Li, D. Towsley, and A. Venkataramani,

"Content availability and bundling in swarming systems," presented at the

Proceedings of the 5th international conference on Emerging networking

experiments and technologies, Rome, Italy, 2009.

E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, "How to model an

internetwork," in INFOCOM '96. Fifteenth Annual Joint Conference of the IEEE

Computer Societies. Networking the Next Generation. Proceedings IEEE, 1996,

pp. 594-602 vol.2.

54

