R FpRFRTApEE &
FALim

Department of Information Management

College of Management

National Taiwan University

Master Thesis

X T RE S 2 E I B2y
A Study of Methods and Tools for Verifying

Safety-Critical Software

TR

Jing-Jie Lin

g FEY #4
Advisor: Yih-Kuen Tsay, Ph.D.

PERRK 102 £ 3 2
March, 2013

~
e

X iR E>2ELI L 2P
A Study of Methods and Tools for Verifying

Safety-Critical Software

A BRI EE B H

FAF R E AT s 2 L

oo @ odE o2 - 3

it
o+
|
—
=
a4
I 7’%‘;
%%

ArS
"
(\.’3
2
)
gt
w3

Frky b o DA FEA B2 ETRLT OB LD AW E L DA AL
Sty ARE W - BB EAAEIRFFS Lo g Ao B g R
PR R Jogt o KA Z B B RE X R AR R Y 1

B (I EFHER O CERPOBALZ AT cFFRREHS AT
FOARETE S HHEF PO SRF A EFDORH B AEH e m DS E
SR T M ARH R R AT R REFILFRAL RS
ST

Bt BR R R E DN R BEHP EF L St ph 2 7 e Jle
GRS TERAME SRR SRS RS G T LU
2 BT A k- AL PRI AR cover o BT A frmr it 0 By S 2 B R
R > AR IR P v gha A E] e HEE R R s AP Lokt e o

ﬁgﬁ{ﬁ,ﬁ_?‘%z;ﬂ}@n\,, ‘}\:% 51_/ am %‘IBA:\,FP 4 ,4}5 fffff“éc-?%?

T BAHHTE G R R A ER L RAT X 5 vl BHHE RS
KO 2 8 4e g A6 47 0 i R 00 B4 o 0 s S 0 B et e o
MERERRNNERGZ x5 SRk B R REHN PR o B RERD

S BBAB A D A L AAE R B PR R G2 Bk

&
%
e

BABHEALRent Fo s BEp L R IR A TR AN g

2

LT

o

Hobak
F & A B R R A

Y

h v g &
He P X > MEWMBES EE L AT
SRR & 102 3
hEERRE D FEY OB

F VRS FRERAGEE S > TP H ISR o X 2T
PL AL TR I TR c FREFEURGFTIRBE FED 0 TEANKRIT
FE TR e P 4] o TR d LT AR K e 0 A AT
B PR R ORI o FIM PR 2T E R P RHBE S E UK
% o

&

Bsy FES A L RLAETR IR A R R LA e
RG> A2 AT L REN N E RIS RS & o A ipa o 32

IEd AR FLERFEPI SRS B AR ER S o 20 FE

N
3

- Ay FRLFFIFEYAREL ARSI L s SERFF L
D f KRR ARE e BT 0 APHA 2D L i E A SR R
oo AP [AILfE > AP Lo B R A PO H RN L 0 at e

IR R B R owm T ¢ e P e D FR L R e E

T;}F]“'% B mw‘qllfr%’x RBAFEZEFAALAR NE E R ARSI E R
AFhiEire AP me s - ARRH BFFHTAES F L FHIRS

>
1T o

TPE ST AR D RKFEE G - T f

Y
\\E"

B4 @ TR EARE - FREFEES TR FEMT R
BIA AT~ B L R R

THESIS ABSTRACT
GRADUATE INSTITUTE OF INFORMATION MANAGEMENT
NATIONAL TAIWAN UNIVERSITY

Student: Lin, Jing-Jie Month/Year: March, 2013
Advisor: Tsay, Yih-Kuen

A Study of Methods and Tools for Verifying Safety-Critical
Software

Safety-critical software is software whose failure harm people or even cause deaths,
so the correctness of such software is very important. Safety-critical software is typically
a real-time and multithreaded program. Multithreading is required because of multiple
concurrent activities. Real-time programming is required to guarantee strict timing con-
straints. Real-time multithreaded programs are prone to mistakes, and some bugs in such
programs are subtle and difficult to find using testing or simulation. Thus it is desirable
to apply formal verification on such safety-critical programs.

Nowadays, there are many methods and tools that support formal verification of the
functional and timing correctness of real-time multithreaded programs. Each method or
tool provides parts of solutions to the issue involved. Unfortunately, the methods and
tools have traditionally been developed separately by different communities, and it is
nontrivial to assemble a suitable collection of them. To practically verify a program,
one needs to spend much effort and time on getting familiar with the tools located in
different domains, and to select an adequate tool collection to complete the verification
tasks. In this thesis, we review a selection of methods and tools and show how they
may be used to carry out the verification tasks. To provide a more comprehensive il-
lustration, we consider a representative controller program as our target program, which
is a temperature controller for chemical reactor protection. We delineate the details for
verification of the functional correctness and timing correctness of the program. We also
point out whether there exist differences between the model for verification and the real
program, and whether there exist tasks that are not supported by current tools. In doing
so, we establish a benchmark case and with it obtain a partial yet informative assessment
of the readiness of current technology for formal verification of real-time multithreaded
programs.

Keywords: Formal Methods, Model Checking, Multithreading, Real-Time Systems,
Static Analysis, Timing Analysis, WCET.

111

Contents

=t
Sy

AR
THESIS ABSTRACT

1 Introduction

1.1 Backgroundo
1.2 Motivation and Objectives
1.3 Thesis Outline oL

Preliminaries and Related Work
2.1 Controllers and Real-Time Programming
2.2 Model Checking and Deductive Verification
2.2.1 Model Gliecking . . I T%=s L]. . . 8 .« 5%
2.2.2 Deductive Verifieation| . . & . . L] 4. . . Lo
2.3 WCET and Scheduling Analysis
231 WCET . T =X 8- .. -0} Forr &
2.3.2 Scheduling Analysis~ 0oL Lo
2.4 Related Work . . .G S5 ow . - - ot - e o . e e e e e
2.4.1 Cases of Tools Application for Functional Correctness
2.4.2 Cases of Tools Application for Timing Correctness
2.4.3 Cases of Tools Application for Both Functional and Timing Cor-
rectness

Challenge Case: The Controller

3.1 Introduction of the Controller
3.2 Requirements L
3.3 Code of the Controller,

Functional Correctness

4.1 Model Checking - Using SPIN,
4.1.1 Define Modex test harness file
4.1.2 Run Modex to Extract Model
4.1.3 Run SPIN to Verify the Model

4.2 Deductive Approach - Using VeriFast
4.2.1 Rewrite Program 0oL

v

W N = -

4.2.2 Model External Functions

4.2.3 Annotate Program L.
5 Timing Correctness
5.1 Compute WCET
5.1.1 Divide and Compile the Program
5.1.2 Annotate Program
5.2 Compute WCRT
5.2.1 Set up System Model
5.2.2 Query for WCET and Run
5.3 Compute Overhead
5.3.1 Query Task Switch Cost
5.3.2 Run Scheduling Analysis
6 Conclusion
6.1 Contributions
6.2 Discussion
6.2.1 SPIN+Modex oovvi v o
6.2.2 VeriFast . . . g9 <x. . ma.

6.3 Future Work

Bibliography

47
47
47
49
20
20
o1
52
52
23

54
o4
25
25
26
56

58

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3

5.1
5.2

5.3

A typical control loop
Basic idea of model checking oo
Workflow of deductive verification
Basic notions of WCET oo
Components of a WCET tool that applied static method
Path-based approach of estimate calculation [31]
IPET approach of estimate calculation [31]
Structure-based approach of estimate calculation [31]
The model of two tasks that share two resources [32]
A periodic with jitter event model [32]o
Upper and lower event functions [32]
The model that two tasks shared two resources and with cycle [32]
The process of compositional system level analysis [43]

Components of the controller
Control flows of the controller threads
Relevant verification tasks for the controller

Scheduling of five periodic threads.
System model of the controller program. It is illustration not screen shot
from the tool. . . . M@ 7. &3, . s .V @Y L.
Scheduling of five periodic threads with jitters.

vi

List of Tables

Vil

Chapter 1

Introduction

1.1 Background

Safety-critical software is the software that its failure will harm people or even cause
deaths, so the correctness of the software is very important. Safety-critical systems
arise in nuclear engineering, automotive, aviation, and spaceflight. And it is typically
consists of real-time and multithreaded programs. Multithreading is required because
of multiple concurrent activities Real-time programming is required to guarantee strict
timing constraints Real-time multithreaded programs are prone to mistakes,and thus we
rely more on methods and tools to ensure correctness of the code.

Code generation is one of the approaches, it generates source code through higher
abstraction level codes that programmers specified. However, the tools of code generation
has technical limitations that can not handle requirements at once, and it usually needs
manual refinement, and thus it also need extra verification. Practically, the programs
are developed from informal requirement descriptions to implementation code without
comprehensive modeling or analysis. For those programs, we usually use verification to
guarantee the correctness.

In practice, testing and simulation are still dominant, but research literature [54, 50]
and industry standards [6, 3] have shown steadily increasing awareness of the advantages
of using formal methods, including static analysis, model checking, and theorem proving.
This applies to both design and code verification. For example, the current version of
IEC 61508 [6] encourages the use of formal methods to help reduce test cases.

Real-time programs require to guarantee strict timing constraints, and real-time mul-

tithreaded programs have more complex timing behavior, thus it has to meet stringent
functional and timing requirements. When coded as high-level programs with threads
and timing functions, as now commonly done in the industry, their formal verification
involves many different issues, some of which are rather complicated entailing difficult
and tedious verification tasks. First of all, one should make sure that the code is free
from any usual program safety error (so that it would not stop or crash unexpectedly).
There is then the question of whether the program will carry out the intended functions
correctly in the presence of concurrency. One may need to consider this both at the
source and the object code levels. Probably even more tedious, if not harder, is whether
all functions will be performed in a timely manner. This has to do with not only how
the threads are arranged, but also which compiler is used and which operating system
and processor the compiled code will be run on. All these together require support by a

multitude of methods and tools.

1.2 Motivation and Objectives

We spent several weeks on relevant literature studying, but we could only find tools
for some of the verification tasks. Each method or tool supports parts of solutions and
proofs to issues and requires. Unfortunately, the methods and tools are traditionally been
developed separately by different communities, and it is nontrivial to assemble a suitable
collection of them. It is also challenge to identify the issues and find adequate tool meet
the verification requires. To practically verify a program, we need to spend much effort
and time on being familia with the tools locating in different domains, and need to select
a adequate tool collection to completely verify. These may be attributed to the fact that
the involved issues have traditionally been addressed and the methods and tools for their
resolution developed separately by different communities.

To make more comprehensive illustration, we provide a trial case of a simple yet
representative digital controller program, and delineate the various tasks entailed by
its formal verification. The controller is part of a chemical reactor protection system
and is implemented in the C programming language extended with pthreads and timing

functions that are compatible with the real-time POSIX standard [7, 9, 8]. It represents

a typical piece of real-time software. Its main control-law computation involves tracking
the temperature fluctuations of the reactor and is quite straightforward. The concurrent
tasks as coded by the threads are periodic and their interactions are minimal.

There may be various verification tasks that can be done on the target controller.
Instead of giving a comprehensive survey of all usable technologies, we review a “best-
effort” selection of methods and tools and show how they may be used to perform the
verification tasks. As we will show, certain tasks in the verification have to be carried out
by hand because of the lack of suitable tools. There are also gaps between the abstract
model and source code. In doing so, we establish the controller program as a benchmark
case and with it obtain a partial yet informative assessment of the readiness of current

technology for formal verification of real-time multithreaded programs.

1.3 Thesis Outline

The rest of this thesis is structured as follows:

e In Chapter 2, we give some preliminaries about this thesis, and introduce several

related literatures.
e In Chapter 3, we introduce the controller and the requirements.
e In Chapter 4, we describe how to verify functional correctness of the controller.
e In Chapter 5, we describe how to verify timing correctness of the controller.

e In Chapter 6, we summarize our contributions, discuss the results of verification,

also indicate some possible research direction in the future.

Chapter 2

Preliminaries and Related Work

In this section, we describe the structure of typical controllers, common features of
real-time programming applied in such controllers, two main approaches in static program
verification, timing and scheduling analyses of multi-task real-time systems, and cases of

tools application.

2.1 Controllers and Real-Time Programming

A typical controller of a reaction plant basically has the following periodic tasks:

1. Receive sampled data from sensors. The data may be digitized by analog-to-digital
converters (A /D).

2. Compute the control value from the sampled data, compare the desired value with
the control value, and compute the output data. Trip the reaction and trigger

alarms if the control value exceeds some preset limits.
3. Send the output data to actuators through digital-to-analog converters (D/A).

4. Communicate with a reliable network for sending data to and receiving data from

remote controllers or remote sensors, or receiving control commands.
5. Check if there is any hardware failure.

6. Make sure by watchdog timers software modules running in this controller do not

get stuck.

Network

Setpoint—y|

A/D Controller D/A

t v
| Sensor }«— Plant |«— Actuator]

Figure 2.1: A typical control loop

It is rigorously required that the job of each periodic task initiated in one round must be
finished before the next round.

The periodic tasks of a controller are usually implemented as threads synchronized
with semaphores, mutex, or locks. To ensure the rigorous timing requirements can be
satisfied, the controller usually runs on real-time operating systems (RTOS) which have
less system operation overhead and more advanced scheduling algorithms. A periodic
task can be programmed as a loop that processes the job first and then waits for the next
round. The waiting time of each round may be different and can be calculated with the
help of real-time clocks provided by the RTOS or by hardware equipments.

There are other common programming features applied in a controller. For example,
low-level device access and network communication through sockets or message channels
are required to interact with local 1/O devices, remote hosts, and remote sensors; inter-
process communication and synchronization may be used in a more complex controller;
fault tolerance, redundancy, and failure detection are important to make the controller

more robust.

2.2 Model Checking and Deductive Verification

The correctness of a program can be decomposed to several properties or specifica-
tions that should be satisfied by the program. There are two main approaches to the
verification of functional correctness. One approach is model checking [21], which can
be fully automatic but may not be able to prove undecidable properties. The other ap-
proach is deductive approach, which may need interaction with experts but can prove

more properties than model checking.

Model:
State
Transition
Diagram

Yes Counterexample | |
J
Model
Checker
rogram Satisfies
No the Specification

Figure 2.2: Basic idea of model checking

pecification
Temporal
Logic Formula

2.2.1 Model Checking

Figure 2.2 shows the structure of model checking. Facing a program, we can see
the execution of the program as a transition of the states. So the program can be
transformed to a state transition diagram, also a model. Specification is described with
linear temporal logic (LTL) formula, which can assert how the behavior of the program
evolves over time [21]. The model checker will check whether a model satisfy a LTL
formula. If the model checker reports errors, the program violates the specification, and
the counter example can show the error trail with interactive simulator. If there is no
errors, the program satisfies the specification.

To check whether a model satisfy a LTL formula F', model checker generates an w-
automata Ap, which is equivalent to the LTL formula F. w-automata is a finite state

machine that run on words of infinite length, and it can be represented as a tuple A =

(@, %, 6,40, Acc).
e () is a finite set of states.
e X is the alphabet of A, is a finite set.
e 0: () XX x(is the transition relation.
e ¢0 is the initial set of states.
e Acc is the acceptance condition.

The set of accepted input strings is called the recognized w-language by the automaton,

denoted as L(A).

After generating of Ap, the model checker generates the complement automata A .
The set L(A_r) is the computing collection that can be identified by the complement,
and the set L(M) is the computing collection that can be identified by the model. If the
intersection of L(A.r) and L(M) is not empty set, i.e. L(M)N L(A.r) # 0, the model
violates the specification. Otherwise, the model satisfies the specification.

Verification of a program with model checking typically includes the following steps.
1. Construct an abstract model of the program.

2. Specify functional assertions.

3. Apply a model checker to search any assertion violation.

The construction of an abstract model from a program can be achieved either manually
or automatically with predicate abstraction. The abstract model is usually represented as
a state transition graph where a state carries the concrete or symbolic values of program
variables at a specific time point in the program execution. The states of the abstract
model may be finite or infinite. A program command corresponds to a state transition
which changes the values of program variables. Note that system calls and third-party
libraries used in the program should also be taken into account in the abstract model
unless the adopted model checker can construct models from binary executables.

The functional assertions against the abstract model are usually expressed in boolean
formulae, temporal logic formulae, automata, or other logic formulae. Any state that
violates the assertions are identified as bad states. The goal of model checking is then to
find bad states of the abstract model. In a bad state is found, the path from the initial
state to the bad state is returned as a counterexample, which is very helpful in fixing
the program. Standard safety properties are often checked by the model checker without
additional assertions.

The state exploration by the model checker can be fully automated and is quite ef-
ficient since the state transition graph is already known. A main problem of model
checking is state explosion, which means that the state size of the model is too large
to be explored with limited memory size and CPU clockrate. During the past 10 years,

several techniques were developed to tackle the state explosion problem. The techniques

include abstraction, partial-order reduction, symmetry reduction, composistional reason-
ing, symbolic model checking with binary decision diagrams and boolean satisfiability
(SAT), counterexample-guided abstraction refinement (CEGAR) [20].

There are several efficient model checkers available, for example NuSMV [19], SPIN [36],
CPAChecker [17], SLAM [16], ESBMC [23], Java Pathfinder [52], etc. While the model
checker ESBMC supports threads, extensions of SPIN for multithread programs are also
available [55].

And the tool Modex [11] is for automatic constructing the abstract model. Modex is
short for Model Extractor. It can automatically transform a C program to a corresponding
Promela model. For supporting automatic model extraction, SPIN versions 4.0 and later
supports the inclusion of embedded C code by increasing five new primitives. The new
primitives provide a powerful extension that let SPIN models have the full power of the
arbitrary C code. SPIN can not check the embedded code fragments at either parsing or
verification phase. The embedded code are directly copied from the model into verifier
that SPIN generates. It is the C compiler that provides the required interpretation of all
embedded code.

2.2.2 Deductive Verification

Deductive program verification is a method to prove the correctness of program
through deductive reasoning. It accepts an annotated program and produces verifica-
tion conditions that are required to prove the validity of the annotations, which specify
as program specifications the pre-/post- conditions of functions or program segments, in-
variants of loops, and assertions at specified program locations. It is based on a program
logic with axioms and inference rules, that capture the semantics of a program. Most
deductive methods are based on Hoare logic [33] and predicate transformer [25].

Figure 2.3 shows the structure of deductive verification. First, user needs to annotate
the program. The annotations are for expressing the pre-condition and post-condition of
the fragment of the program and also the specification of verification. The program with
annotations then will compile to an intermediate language. Doing so, it can support the
input source code with several programming languages, and the verification condition

generator thus can only designed for the intermediate language. For instance, the verifi-

cation tool Frama-C [4] compiles the program to C intermediate language(CIL). VCC of

C Code and
Annotation

T F

Compiler

Java Code and
Annotation

Tk

Python Code
and Annotation

Intermediate
Form with
Annotation

Verification

—» Condi
Generator

tion

\

y

Verification
Obligations

Interactive
Prover

SMT
Solver

Figure 2.3: Workflow of deductive verification

Microsoft also used the structure. [22]

The verification condition generator generates verification condition according to an-
notated intermediate language. If all of the verification properties can be proved, the
origin program satisfies the specification that user asserted. The principle of verifica-
tion condition generator bases on generating conditions that satisfy annotations from
predicate transformer and weakest pre-condition. [25]

Below are typical verification steps of the deductive approach with a deductive verifier.

1.

For the verification of safety-critical systems, the behavior preservation of the rewritting

program in step 1 and the model of system functions and libraries in step 2 should also

be verified.

ifying their pre-conditions and post-conditions.

Annotate the program with specifications.

can be discharged automatically by decision procedures.

Rewrite the program features and syntax that are not supported by the verifier.

. Model external functions such as system functions and third-party libraries by spec-

. Run the verifier to generate verification conditions. Most verification conditions

Prove unsolved verification conditions manually in interactive theorem provers.

The program annotation and deduction are based on Hoare logic, which provides
an axiomatic system to prove if a program satisfies its specification. The pre-/post-
conditions of a program S is expressed by { P}S{Q} where P is the precondition and @
is the postcondition. Both preconditions and postconditions can be expressed in some
logic formulae, for example propositional logic, first-order logic, separation logic [49], etc.
The annotation {P}S{Q} is valid if and only if for every program state s that satisfies
the precondition P, if the execution of S from state s ends at state s’, then s’ satisfies
the postcondition Q.

The annotations of the program serve as the specifications that have to be satisfied
by the program. Similarly, external functions such as system functions and third-party
libraries used in the program also have their own specifications to be satisfied. Since
external functions may not have source code available for establishing the validity of
their specifications, the annotations of external functions are usually assumed. For safety-
critical systems, the assumptions should be made as few as possible.

The verification conditions (or proof obligations) of the annotated program can be
deduced based on Dijkstra’s weakest precondition [25]. Depending on the logic adopted
in the annotations, the generation of verification conditions is mostly automatic. Once
a verification condition is generated, it may be proved and discharged immediately by
automatic decision procedures such as Yices [26] and Z3 [47]. Verification conditions
that cannot be discharged automatically are proved manually by experts with the help
of interactive proof assistants such as Coq [51] and Isabelle/HOL [48].

A typical deductive verifier contains a verification condition generator and an auto-
matic decision procedure. There are also several deductive verifiers, including Why [28],
Frama-C [4], VeriFast [38], VCC [22], etc. The last two verifiers support threads while

the first two verifiers do not.

2.3 WCET and Scheduling Analysis

The execution time of a task may vary, depending on the input and execution en-
vironment; the longest possible execution time is conventionally called the worst-case

execution time (WCET) of the task. In Figure 2.4, the curve represents the distribution

10

A Worst-Case Performance

BCET

distribution of times

0 ! Possible Execution Times I time

Figure 2.4: Basic notions of WCET

of the number of the execution time that occurred when executing many times. Its min-
imum and maximum are the best-case execution time (BCET) and worst-case execution
time (WCET).

To be assured that a task will be completed by the deadline, one must obtain a safe
estimate of its WCET. Static WCET analysis is the primary method to obtain such safe
estimates. A number of tools are available for static WCET analysis, including aiT [1],
Bound-T [2], SWEET [13], etc.

Current static WCET analysis tools can only deal with sequential tasks. To obtain
the worst-case response time (WCRT, which is the longest interval between the task’s
activation and the completion) of a task that contains concurrent activities or threads,
the different threads need to be separated into individual sequential programs. Manual
annotation of a program may be needed to help the tool to compute a more accurate
WCET estimate. After obtaining the WCET’s of all parts, a scheduling analysis can
then be preformed to determine the WCRT of the task. Scheduling analysis can be
divided into two phases [43] [32]: local scheduling analysis and compositional system
level analysis. In the local scheduling analysis, the WCRT of a periodic task can be
calculated by adding to its own WCET value the WCET’s of all other tasks with higher
priorities. In the compositional system level analysis, the WCRT of a task with cyclically
dependent subtasks can be computed by using fix point methods. There are several tools
for scheduling, including symTA/S [14], RT-Druid [12], etc.

There is another issue of a task containing both preemptive and non-preemptive jobs.

11

Analysisinput Tool constructioninput

flow of Information
Abstract »

Executable User Instruction E> tool input
processor

program annotations Semantics

Global
bound

Processor
behavior

analysis
CFG + flow information

Control-
flow
analysis

Frontend Visualization

calculation

Analysis steps

Figure 2.5: Components of a WCET tool that applied static method

When a job accesses a resource that is mutually exclusively shared with other jobs, the
job enters the critical section and becomes non-preemptive. Preemptions cause jitters
because of context-switch cost. One may use the UCB (Useful Cache Block) analysis [44]
to calculate the jitters. If a memory block may be reached at program point P and if it
may be reused at another program point reachable from P, it is called a UCB at program
point P. Preemption may cause cache misses in memory blocks that are UCB’s. The
upper bound on the number of UCB’s equals to the upper bound on the number of cache
misses. The cache-related preemption delay can be calculated by multiplying the number

of UCB’s and the penalty.

2.3.1 WCET

Wilhelm et al. [53] proposed different approaches to calculate WCET and surveys
several commercially available tools and research prototypes. There are two categories of
approaches, static and measurement-based methods, and we introduce static one.

Static analysis does not execute the program on a hardware or simulator, but rather
is based on abstract models of the hardware. Figure 2.5 shows the components and flow
of information of a WCET tool that applied static method.

The analysis can be divided into several phases [53] [31]:

1. Value analysis, which determines the ranges of processor’s registers and the values

of local variables at each program point,

2. Control flow analysis, which computes the possible execution paths of the program,

12

3. Processor-behavior analysis, which predicts the cache, pipeline, and memory’s in-

fluence on the execution time, and

4. Estimate calculation, which uses information obtained from the preceding phases

to derive a WCET estimate.

In step of value analysis, it decides the bound of registers and the value of local
variables at each program point. Usually, the results are not precise numbers, but are
safety upper and lower bounds. Value analysis is important for cache analysis and loop
bound analysis. It uses abstract interpretation: all the controller instructions are modeled
as operations of abstract states, and the registers also correspond to possible interval by
abstract states. [31]

Take add instruction as a example, D is abstract register or memory cell, and [I, u]
represents the interval corresponding to a D, | is the lower bound and u is the upper
bound. The add instruction sums up the two Dy to a new Dy, and the interval of new
Dps is between the sum of lower bound of the two Dgus(l; + [2) and the sum of upper
bound of the two Dgs(us + uz). Due to the size of actual registers or memory cells are
limited, we should check for the overflow problem. If overflow happens, the new interval

of Dgps becomes unknown. [27]

add : Dabs X Dabs =, Dabs

[l1 + Iz, uy + us], if no overflow is possible

]+l ua] = { unknown, otherwise

In step of control flow analysis, it collects all the possible execution paths. Due to
the termination is granted, the set of path number is limited. We do not count the real
sets of path, but instead count the superset of the real set. The superset is the safety
approximation, and the smaller the better. Control flow analysis includes representation
of input program, for example, call graph, control flow graph and other possible informa-
tion as intervals of input data, bounds of execution times of loops. Information is from
value analysis or user. The output of result can be viewed as the limitation of dynamic

behavior of the program, including which functions will be called, relationships between

conditions, and feasibility of the paths. [31]

13

Longest path

tpmh =31
thender =3
//Calculate WCET
WCET=
thender +tpmh *(maxitier-l)
=3+31*%99
=3072
——>® exit ———>0 exit
Control-flow graph Path-based calculation

Figure 2.6: Path-based approach of estimate calculation [31]

In step of processor-behavior analysis, the processor includes many elements that
make execution time contex-dependent, for example, memort, cache, pipeline and branch
forecast. The execution time of a single instruction is dependent with its execution
history. In order to find the precise bound of execution time, we need to analyze all
the states of the elements of the processor that reach the path of the instruction. In
this step, we decide the invariants of occupancy states. The tool should consider all the
surrounding conditions of the processor, including the full memory hierarchy, the bus,
and peripheral units. In general, the upper bound of execution time of a instruction is
decided by the states of processor at the moment that executing the instruction. And the
states of processor is decided by potential execution histories. Some of the instructions
may be executed at specific condition, so the execution time may differ, the accuracy of
calculation may be influenced. We can consider separate execution histories according to
the context of information flow. [31]

In step of estimate calculation, it decides the estimation of the WCET. There are
three approaches: path-based, structure-based, and implicit path enumeration technique
(IPET). Figure 2.6 shows the path-base method. It calculates the upper bound of execu-
tion time of different paths, and find the longest execution time to be the upper bound
of the task. [31] Figure 2.7 shows the IPET method. It combines data flow and upper

bounds of execution time of basic blocks to sets of arithmetic constraints. Each basic

14

//Start and exit constraints
Xstm‘t =1 > Xexit =1

//Structural constraints

Xstm‘t = Xstm‘t:\

Ky =Kparta T Xpga = Xiewit + Xap
Xp =Xp = Xpe + Xpp

X Xun Ko =Kpe =Xcg

Aexit

Ky =Xpn + Xon = Xya
Kexit =X aexit

//Loopbound constraint
XA <100

—> exit X,] .
| //IWCET represetation

WCET=max(X, *3 + X *5 + X *7
IPET calculation +... + Xy *2)=3072

Figure 2.7: IPET approach of estimate calculation [31]

block and program flow edge has a time coefficient t_entity, representing the upper bound
of contribution of the total execution time. The variable x_entity represents the number
of execution time of the entity. The upper bound is determined by sum of the products of
the number of execution time and the upper bound of contribution of the total execution
time. (3 onpiny Ti X ti)

Figure 2.8 shows the structure-based method. It calculates the upper bound by
bottom-up traversal of the syntax tree of the task, and the bounds of statements is

computed by combination rules for that type of statement.

2.3.2 Scheduling Analysis

When several tasks share the same resources, scheduling is needed to prevent the
conflicts of the requirements of resources,. Scheduling decides the order of the execution

of the tasks, and the order that tasks getting the resources.

Local Scheduling Analysis

Tasks is activated by events. For instance, expiration of a timer, internal or external
interrupt, and task chaining. Scheduling analysis abstracts individual activating events to
event stream, and according to event stream to generate the scenarios of worst condition.

Scheduling analysis calculate the worst-case response time (WCRT, the interval between

15

——>@ exit

start

start

WCET
[oap \
B,C,D, |28 A,B,C,D, (3072
E,FG,H E,F,G,H
\——/
L——e exit ——e exit exit

)& Transformation rules
A seq T(seq(S1,S2))=T(S1)+ T(S2)
T~ T(if(Exp)S1 else S2)=
if seq T(Exp)+ max(T(S1), T(S2))
— T T(loop(Exp, Body)) =
B C Dif H T(Exp)+ (T(Exp)+ T(body)) * (maxiter- 1)
T~
E F G Structure-based calculation

Figure 2.8: Structure-based approach of estimate calculation [31]

activation and termination) of the tasks through the scenarios.

Henia et al [32] proposed the model applied in SymTA/S [14]. Figure 2.9 shows the
model of two tasks that share two resources. R1, R2 represents the tasks, and Srcl, Src2
represents the resources, and E1 E4 represents the events. The model is called event
model, which capture possible timing of activating events.

Event model is described with parameters. For example, (P, J) represents a periodic

with jitter event model. P is the period and J is the the interval that may deviate from

R1 R2
El > i0 OOj E2 > i0 001

Srel 1 i
E0 > i0 OO‘ E3 > i0 o0

Sre2 3 2

Figure 2.9: The model of two tasks that share two resources [32]

16

=1
pP=4 At=4 At=4:

lliillré‘[lllg—lllﬁlll't

li—l
t, t,+d 1,48 t,+12 t,+16

Figure 2.10: A periodic with jitter event model [32]

its origin location because of jitter. Figure 2.10 shows a example that (P,J) = (4, 1),
and every activation events will fall inside the gray boxes.

Upper event function 7}, ;(At) represents the upper bound of the number of events
within interval At. Lower event function nb, ;(At) represents the lower bound of the
number of events within interval At.

771%+J(At) = (%W

Npys(At) = maz (0, |55])

Event functions are piecewise constant step functions that with unit-height steps.

Figure 2.11 shows the event function for (P,.J) = (4,1). The black points indicate that
upper event function use the point of small value, and lower event function use the point
of large value. When in the interval of At, the number of events will limit in the scope
between the upper and lower event function.

The minimum distance function 6™"(N > 2) represent the minimum distance between
(N > 2) consecutive events in an event stream, and maximum distance function §"**(N >
2) represent the maximum distance.

™ (N > 2) = max{0,(N — 1)« P — J}

§mar(N >2) = (N — 1)« P+ J

If the event is sporadic, the lower event function nb, ;(At) is always zero, and §™**(N >
2) is infinity for all values of N. With all the functions above, we can calculate the worst-

case response time of a task by the following equation. [39]

ri =C; + ZVjehp(i) (77? (Tl)) * Cj

17

Number of
events

; 1 np'*‘l :
- i P=4 oy
e

*f,lf)

IIIIIIIIIIIIIIII'At

10 15

N —1—Ppo

Figure 2.11: Upper and lower event functions [32]

r; represents the WCRT of task ¢, and j represents the tasks that priorities are higher
than task ¢. hp(i) is a set that includes all of the tasks that priorities are higher than
task i. C; and Cj is the WCET value of task i and j. nj(r;) represents the upper bound
of the number of events of task j within interval r;. The equation calculates the response
time of task ¢ under the largest number of interruptions by other higher priority tasks.

Therefore, it is worst-case response time of task .

Compositional System Level Analysis

In local scheduling analysis, when each task acquired the WCRT of itself, it will output
a event model, as the activating event model of next task. The period of the output event
model is the same as the activating event model, and the jitter of the output event model
need add the interval between the shortest and longest response time.

Jout = Jact + (trespmaz) — t(resp,min))

Jout 18 the output event model, and J,. is the activating event model. ¢ copmax) is
the WCRT, and (,csp,min) is the best-case response time.

Take Figure 2.9 as an example, the activating event models of R1 are all available, so
it can get the WCRT(7'1, T'3) and output event models through local scheduling analysis.
The output event models are the activating event models of R2, and again it can get the
WCRT(T2, T4) through local scheduling analysis.

However, not all the situations can work as above, for instance in Figure 2.12, only

18

Srcl T1 T2
T4 T3 Src2

Figure 2.12: The model that two tasks shared two resources and with cycle [32]

the activating modelS of 71 and T2 are available, so the analysis can not work because
not all the resources are available of a task. It need the WCRT of R2 to compute the
WCRT of R1, and vise versa. The problem is called as cyclic scheduling dependency.

To solve the problem, it sends all the output event models to all the system path in
the initial until the activation event models for every tasks are available. The method is
safe because the scheduling do not change the period of event model, it only increase the
jitter, and the larger jitter interval includes the smaller jitter interval, which is assumed
to be safe.

After sending the output event model, it do compositional system level analysis. First,
do local scheduling analysis for each task, when all the local scheduling analyses are
finished and all the output event models are sent, check if there is activation event models
need updated. If so, the output event models for that task may be changed, so do the local
scheduling analysis again. If all the activation event models need not to be updated, it
reaches the convergence. The last computed WCRTSs are valid. If the stop conditions are
satisfied in the analysis, e.g violate the scheduling limitation, the system Level analysis

will stop. Figure 2.13 shows the process of compositional system level analysis.

2.4 Related Work

In this section, we review some cases of tools application. We classify the cases to

three categories: applied tools for functional correctness, for timing correctness, and for

the both.

19

Environment
Model

—>

Transform to Input
Event Model

v

Local Scheduling
Analysis

Infeasible
Configuration

hedulabilityT™—

Yes

Derive Output
Event Model

No onvergence? Yes Feasible
Configuration

Figure 2.13: The process of compositional system level analysis [43]

2.4.1 Cases of Tools Application for Functional Correctness

Gliick and Holzmann [29] applied SPIN+Modex [11] to check for flight software ver-
ification. The flight software is from NASA’s Deep Space One (DS1) mission, and it is
implemented in C. They used the model checker to find some defects at launch.

Kosina [42] used many tools to verify the code of Linux Kernel. For example,
Coverity, Sparse and MOPS. He also used SPIN+Modex to find vulnerability of missing
locking in function load_el f library(). But the details is not shown in the paper.

Kim et al. [41] detected of concurrency bugs in the kernel by combining both model
checking techniques with SPIN+Modex and testing methods. It proposed the MOdel-
based KERnel Testing (MOKERT) framework, which includes Modex and SPIN. The
advantage of the framework is it can replaying a counter example on the actual kernel
code. The framework can prevent the counter example that was detected from the model
checker is a false alarm, which is caused from the gap between abstract model and source
code.

Hossain and Chowdhury [37] provided a practical approach on Model checking with
Modex and SPIN. The target is a simple mutual exclusion program without using mutex.
It showed and explained the details of process in the verification.

Cuypers, Jacobs, and Piessens [24] showed how VeriFast can be used to verify the

20

data-race-freedom of a multithreaded Java application.

2.4.2 Cases of Tools Application for Timing Correctness

Gustafsson and Ermedahl [30] summarized five different industrial case-studies that
using WCET analysis. The first is for disable interrupt (DI) regions in a RTOS with the
tool SWEET. The second is for DI regions and system calls in a RTOS with the tool
aiT. The third is for automotive communication code with the tool aiT. The forth is for
welding systems code with the tool aiT and a measurement tool oscilloscope. The fifth is
for articulated haulers code with the tool ai'T and an in-circuit emulator for measurement
Finally, it discussed advantages and disadvantages of different timing analysis methods
used.

Byhlin et al. [18] applied WCET analysis on automotive communication software. It
verified the time-critical code in products from Volcano Communications Technologies
AB (VCT). They investigate the practical difficulties that arise when applying current
WCET analysis methods to particular kind of systems. aiT[1] is the WCET analysis tool
they chose to verify.

Késtner et al. [40] presented a tool flow for validating timing behavior based on aiT [1]
and SymTA/S [14]. Using XML Timing Cookies (XTC) to communicate SymTA/S s
with aiT. The target they verified is embedded hard real-time systems. Moreover, they
discussed the most important hardware components affecting timing predictability and
summarizes their effect on the applicability of measurement-based approaches and on the

efficiency and precision of static analysis methods.

2.4.3 Cases of Tools Application for Both Functional and Tim-
ing Correctness

Souyris et al. [50] verified avionics software products. Avionics software products
are developed according to very stringent rules imposed by the DO-178B standard [3].
They used two kinds of formal techniques, deductive methods and abstract interpretation
based static analysis for the verification. The tools they considered for deductive methods
are Caveat and Frama-C [4]. The abstract interpretation based tools are Astree, aiT[1],

Stackanalyzer and Fluctuat.

21

Chapter 3

Challenge Case: The Controller

3.1 Introduction of the Controller

Our verification target is a digital controller that controls the temperature of a chem-
ical reactor to avoid thermal runaway by adjusting the flow rate of coolants passing
through the reaction process. The temperature of the reaction is measured by the aver-
age of the temperature obtained from two sensors. If the temperature rises consecutively
three times in the most recent measurements and the current temperature exceeds a
specified high level, the controller increases (with output 1) the flow rate of coolants.
Similarly, the controller decreases (with output -1) the flow rate of coolants if the tem-
perature goes down consecutively three times in the most recent measurements and the
current temperature is below a specified low level. It is safety-critical that the temper-
ature cannot exceed a specified upper limit, which is higher than the high level. If the
safety criteria is violated, the controller triggers a trip to stop the chemical reaction.

The controller is designed to run on systems compatible with real-time POSIX and
is implemented in C. The industrial coding standard MISRA-C [15] is followed as much
as possible. The basic controller functions are implemented by the five tasks shown in
Figure 3.1: temperature control loop (TCL) task, sender task, receiver task, diagnosis
task, and watchdog task. Each task is executed periodically in a POSIX thread. To make
sure that the tasks do not get stuck, the controller comes with a hardware watchdog timer
that should be reset periodically. If the hardware watchdog timer times out, the controller
will be restarted.

The main thread initializes shared variables, hardware handles, and socket connections

22

Controller

,,

. Sender | . Receiver |

—r—>| Temperature Control Loop (TCL) ’_" >

. Diagnosis | . Watchdog |

,,,

Figure 3.1: Components of the controller

first, starts the five tasks, and then waits for the finish of the tasks, as the control-flow
diagram shows in Figure 3.1. The TCL task reads temperature data from 1/O ports
connecting to the sensors (through A/D converters), computes the changes of the tem-
perature and adjusts the flow rate of coolants, and sends outputs to I/O ports connecting
to the actuators (through D/A converters). If the temperature exceeds a preset limit, a
trip is issued to stop the reaction (and sound the alarm).

The sender task sends to the control center the status of the controller stored in a
shared buffer, which is protected by a pthread mutex. When a task wants to update
the controller status, it enables the corresponding status bit in the buffer. Once sent,
the shared buffer is cleared by the sender. The receiver task receives control commands
(for example, shutdown the controller gracefully) from the control center through the
network, which is a FDDI network virtually structured as two rings. When the receiver
receives control commands, it execute the commands directly. In order to prevent the
receiver from waiting incoming data forever, the receiver may times out when listening
data from the network. Both receiver and sender rely on sockets to receive and send data.

The diagnosis task performs several hardware tests, for example network interfaces
failure, physical memory faults, I/O ports errors, to make sure that all the hardware of
the controller works correctly. The watchdog task resets the hardware watchdog timer
after checking periodically if the other tasks are still alive and progressive. Except the
watchdog task, each task is required to increment a counter after finishing its job in each

round. A task is considered dead if its counter is not incremented in time.

23

Read

Temperature

No

v
Tr Calculate
No P Output
‘ T ‘ ‘ Adjust

Actuator

Reset WDT

Yes

End

i

Lock Buffer

Empty Buffer

v

Unlock Buffer

Reset WDT

s

Yes
N A
End

|

3.2 Requirements

Start Tasks

Wait for

Receiver

Listen to
Clients

No

Receive
Command
Process
Command
Reset WDT

Yes

End

Reset WDT

Yes

End

No
A4

Y Lock Buffer

ves [Send Error

Message

v

Set Error Bit

Reset HW
WDT

Figure 3.2: Control flows of the controller threads

\
\\ Unlock Buffer

Each thread/task of the controller should correctly complete its jobs in a timely

manner. The requirements for the controller and the verification tasks that they entail

can be grouped into the following three categories; Figure 3.3 illustrates this grouping.

e Basic program analysis. The controller should continue to run without crashing

for simple program safety reasons or getting deadlocked. So, its program should

be statically analyzed to ensure that it is free of any common program safety error

such as out of bound array index, buffer overflow,illegal pointer access, and memory

leakage. It should also be analyzed to ensure that there will be no deadlock. These

basic program safety analyses may be performed with static program analyzers such

as Astrée and CodeSonar. Since they are essentially push-button processes, we will

not elaborate on them further in this paper.

e Functional correctness. The main task here is to verify that the output of the TCL

task in each round is indeed 1 (to increase the flow rate of coolants) when the

most recent four sampled temperature readings are increasing and the last reading

24

Basic
—» Program
Controller Analysis
Program Astrée,
CodeSonar
Fuctional
—» Correctness
Platform Verification
Compiler SPIN+Modex,
— RTOS VeriFast
Processor Task
_ { WEET L | Model
Peripherals Analysis with WCET
- aiT, Bound-T
v
= Thread Scheduling
ITask Analysis
SymTA/S,
RT-Druid

Figure 3.3: Relevant verification tasks for the controller

exceeds a set high temperature value, the output should be -1 (to decrease the flow
rate) when the most recent four sampled temperature readings are decreasing and
the last reading is under a set lower temperature value, the output should be 0 (to
maintain the flow rate), otherwise. Also, the watchdog task correctly detects the
inactive of other tasks and there is no false alarm. This relies on that the counter
of a task is incremented at the end of each round, though quite straightforward,
should be verified. Any discovered error will be reported eventually. In Chapter 4,
we show how these correctness requirements can be formalized and verified with

the SPIN model checker.

Timing correctness (WCET and scheduling analyses). The main timing require-
ments for the controller are: (1) the TCL, Receiver, and Watchdog tasks must each
complete one round of its jobs in every 25 milliseconds, (2) the Sender task in every
50 milliseconds, and (3) the Diagnosis task in every 8 hours. This involves a safe

estimation of the WCET of each thread/task and a scheduling analysis to see if the

25

jobs of all tasks for one round will be completed before their respective deadline,
i.e., end of the corresponding period. Note that these analyses require information
about the execution platform, including the compiler, RTOS, processor, and pe-
ripherals. In Chapter 5, we show how these analyses may be carried out with the

aiT and SymTA /S tools.

3.3 Code of the Controller

Listing 3.1: The main thread

CO J O UL W N+

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

int main(void)

{

pthread_t tcl_t, sender_t, receiver_t, diagnosis_t, watchdog_t;
pthread_attr_t attr;

struct sched_param param;

int errno;

/x Initialize the five tasks. x/
if (errno = initialize())
return errno;

/% Initialize the base time. x/
gettime (&starttime) ;

pthread_attr_init (&attr);

param.sched_priority = TCL_PRIORITY;

pthread_attr_setschedparam(&attr, ¶m);

if (errno = pthread_create (&tcl_t, &attr, tcl, NULL))
return errno;

param.sched_priority = SENDER_PRIORITY;

pthread_attr_setschedparam(&attr, ¶m);

if (errno = pthread_create (&sender_t, &attr, sender, NULL))
return errno;

param.sched_priority = RECEIVER_PRIORITY;

pthread_attr_setschedparam(&attr, ¶m);

if (errno = pthread_create (&receiver_t, &attr, receiver, NULL))
return errno;

param.sched_priority = DIAGNOSIS_PRIORITY;

pthread_attr_setschedparam(&attr, ¶m);

if (errno = pthread_create(&diagnosis_t, &attr, diagnosis, NULL))
return errno;

param.sched_priority = WATCHDOG_PRIORITY;

pthread_attr_setschedparam(&attr, ¶m);

if (errno = pthread_create(&watchdog_t, &attr, watchdog, NULL))
return errno;

26

41

42 pthread_join(tcl_t, NULL);
43 pthread_join(sender_t, NULL);
44 pthread_join(receiver_t, NULL);
45 pthread_join(diagnosis_t, NULL);
46 pthread_join(watchdog_t, NULL);
47
48 finalize () ;
49
50 return EXIT_SUCCESS;
51 %
Listing 3.2: The TCL task
1 wvoid* tcl(void* arg)
2 A
3 int pos, neg, prev_temp, curr_temp, templ, temp2;
4 int size = 4;
5
6 waitForNext (TCL_PERIOD);
7 while(state == STATE_RUNNING) {
8 prev_temp = curr_temp;
9
10 read (sensorl, &templ, sizeof (templ));
11 read (sensor2, &temp2, sizeof (temp2));
12 curr_temp = (templ + temp2) / 2;
13
14 if (curr_temp > prev_temp){
15 if (pos == 3)
16 pos = pos;
17 else
18 pos = pos +1;
19 }
20 else
21 pos = 0;
22 if (curr_temp < prev_temp){
23 if (neg == 3)
24 neg = neg;
25 else
26 neg = neg +1;
27 }
28 else
29 neg = 0;
30
31 if (curr_temp > MAX_TEMPERATURE) {
32 /+* Stop the reaction. x/
33 trip O ;
34 alarm (TCL, ERR_TEMPERATURE) ;
35 } if (pos >= 3 && curr_temp > HIGH_TEMPERATURE) {
36 /% Increase the flow rate of coolants. x/
37 increase (actuator) ;
38 } else if (neg >= 3 && curr_temp < LOW_TEMPERATURE) {
39 /* Decrease the flow rate of coolants. x/
40 decrease (actuator) ;
41 }

27

42

43 wdt_tcl = (wdt_tcl + 1) % MAX_WDT;
44
45 waitForNext (TCL_PERIOD) ;
46 }
47 '}
Listing 3.3: The sender task
1 void* sender(voidx* arg)
2 {
3 waitForNext (SENDER_PERIOD) ;
4 while(state == STATE_RUNNING) {
5 pthread_mutex_lock (&mutex) ;
6 write(s_sockfd, buffer, strlen(buffer));
7 bzero (buffer, BUFFER_SIZE);
8 pthread_mutex_unlock (&mutex) ;
9
10 wdt_sender = (wdt_sender + 1) % MAX_WDT;
11
12 waitForNext (SENDER_PERIOD);
13 }
14 %}
15
16 void enable(int module, char flags)
17 {
18 pthread_mutex_lock (&mutex) ;
19 buffer [module] = buffer[module] & flags;
20 pthread_mutex_unlock (&mutex) ;
21 %}
Listing 3.4: The receiver task
1 void* receiver (void* arg)
2 A
3 int nbytes;
4 char buffer [BUFFER_SIZE];
5 int retval;
6
7 waitForNext (RECEIVER_PERIOD) ;
8 while (state == STATE_RUNNING) {
9 /* Check if incoming data are available with a timeout. x/
10 retval = waitOnSocket (r_sockfd, 1);
11 if (retval == -1)
12 error (RECEIVER, ERR_RECEIVER_SOCKET_FAILED) ;
13 else if (retval == 1) {
14 if ((cli_sockfd = accept(r_sockfd, (struct sockaddr *) &
cli_addr, sizeof(cli_addr))) == -1) {
15 error (RECEIVER, ERR_RECEIVER_SOCKET_FAILED) ;
16 } else {
17 bzero (buffer, BUFFER_SIZE) ;
18 nbytes = read(cli_sockfd, buffer, BUFFER_SIZE - 1);
19 close(cli_sockfd);

28

20 process (buffer);
21 }
22 }
23
24 wdt_receiver = (wdt_receiver + 1) % MAX_WDT;
25
26 waitForNext (RECEIVER_PERIOD) ;
27 }
28 }
Listing 3.5: The diagnosis task
1 void* diagnosis(void* arg)
2 {
3 int round = O0;
4 char errors;
5
6 waitForNext (DIAGNOSIS_PERIOD);
7 while(state == STATE_RUNNING) {
8 errors = 0;
9
10 /* Check sensors. x/
11 if (round == 0) {
12 if (isSensorDown ())
13 errors |= ERR_SENSOR_DOWN;
14 }
15
16 /* Check actuators. x/
17 if (round == 1) {
18 if (isActuatorDown ())
19 errors |= ERR_ACTUATOR_DOWN;
20 }
21
22 /* Check network connection. x/
23 if (round == 2) {
24 if (isNetworkDown ())
25 errors |= ERR_INTERFACE_DOWN;
26 }
27
28 if (errors)
29 error (DIAGNOSIS, errors);
30
31 round = ++round % 3;
32 wdt_diagnosis = (wdt_diagnosis + 1) % MAX_WDT;
33
34 waitForNext (DIAGNOSIS_PERIOD);
35 }
Listing 3.6: The watchdog task
1 void* watchdog(void* arg)
2 A
3 unsigned char tcl[2] = {0, 0};

29

0~ O U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
54
55
56
o7
o8

unsigned char sender[2] = {0, 0};
unsigned char receiver [2] = {0, 0};
unsigned char diagnosis[2] = {0, 0};
unsigned int tcl_r = 0;
unsigned int sender_r = O0;
unsigned int receiver_r = 0;
unsigned int diagnosis_r = O;
unsigned int tcl_i = O;
unsigned int sender_i = O0;
unsigned int receiver_i = 0;
unsigned int diagnosis_i = O0;
char errors;

waitForNext (WATCHDOG_PERIOD) ;

while(state == STATE_RUNNING) {
errors = 0;
if (tcl_r == TCL_WDT_ROUNDS) A{
tcl_i = (tcl_i + 1) % 2;
tcl[tcl_i] = wdt_tcl;
if (tcl[0] == tcll[1])
errors |= ERR_TCL_WDT;
tcl_r = 0;

}

else tcl_r++;

= SENDER_WDT_ROUNDS) {

if (sender_r =
= (sender_i + 1) % 2;

sender_i

sender [sender_i] = wdt_sender;
if (sender [0] == sender[1])
errors |= ERR_SENDER_WDT;
sender_r = 0;
}
else sender_r++;
if (receiver_r == RECEIVER_WDT_ROUNDS) {
receiver_i = (receiver_i + 1) % 2;
receiver [receiver_i] = wdt_receiver;
if (receiver [0] == receiver[1])
errors |= ERR_RECEIVER_WDT;
receiver_r = 0;
}
else receiver_r++;
if (diagnosis_r == DIAGNOSIS_WDT_ROUNDS) {
diagnosis_i = (diagnosis_i + 1) % 2;
diagnosis[diagnosis_i] = wdt_diagnosis;
if (diagnosis[0] == diagnosis[1])
errors |= ERR_DIAGNOSIS_WDT;
diagnosis_r = 0;
}

else diagnosis_r++;

if (errors)
error (WATCHDOG, errors);

30

99

60 /* Reset the hardware watchdog timer. x/
61 resetWDT () ;

62

63 waitForNext (WATCHDOG_PERIOD) ;

64 }

65 ¥

Listing 3.7: Helper functions

void waitForNext (unsigned long period)
{

unsigned long d, s;

timespec_t ts;

/% Calculate the elapsed time. x/
gettime (&ts);
d = diff (&ts, &starttime);

0O Utk Wi+

10 /+* Sleep wuntil the next round. x/
11 s = period - (d % period);

12 if (s > 0)

13 msleep(s);

14 %

15

16 void error (int module, char flags)
17 {

18 display (module, flags);

19 enable (module, flags);

20 ¥

21

22 void enable(int module, char flags)
23 A

24 pthread_mutex_lock (&mutex) ;

25 buffer [module] = buffer [module] & flags;

26 pthread_mutex_unlock (&mutex) ;
27 %}

28

29 int waitOnSocket (int fd, int ms)
30 {

31 fd_set rfds;

32 struct timeval tv;

33

34 FD_ZERO (&rfds) ;
35 FD_SET (fd, &rfds);

36 tv.tv_sec = 0;

37 tv.tv_usec = ms;

38

39 return select (fd+1, &rfds, NULL, NULL, &tv);
40 }

41

42 int isNetworkDown ()

43 {

44 struct ifaddrs *xitfs = NULL, *itf = NULL;
45 int d = 0;

31

46

47 if (getifaddrs(&itfs) == 0) {

48 for (itf = itfs; itf != NULL; itf = itf->ifa_next) {

49 int down = itf->ifa_flags & IFF_UP == 0 || itf->ifa_flags &
IFF_RUNNING == 0;

50

51 if (strcmp(itf->ifa_name, INTERFACE) == 0 && down)

52 d = 1;

53 }

54 }

55 freeifaddrs (itfs);

56 itfs= NULL;

57

58 return d;

59 }

32

Chapter 4

Functional Correctness

Functional correctness of a program can be verified by two main approaches, model
checking and deductive approach. In this section, we demonstrate the verification steps
of the controller with the state-of-the-art model checker SPIN and the deductive verifier
VeriFast.

4.1 Model Checking - Using SPIN

The model checking approach searches automatically in an abstract model to see if
user-specified assertions are violated. Below we show how we verify the tasks of the

controller program with the model checker SPIN and the model extractor Modex.

4.1.1 Define Modex test harness file

A model of SPIN is specified in PROMELA (PROcess MEta LAnguage). To me-
chanically extract the model of the controller program with Modex, we need to define a
Modex test harness file, which is a file with the extension .prz. Below are the typical

steps of defining a Modex test harness file.
1. Define the target program name.
2. Define the target procedures name.
3. Define the filters.
4. Define how the model pieces are combined and specify the LTL formulae.

5. Add some declarations to satisfy Modex parser in the C-source file.

33

We will use the above steps to verify two of the main tasks in verifying the controller
program. One is in the sender thread, which has mutual exclusion issue. The other is in

the computation thread, which has some required properties.

e Mutual Exclusion Task

There is a shared buffer that will be accessed from five threads in the controller.
Each thread will write the corresponding bit in the buffer when errors occur. The
sender thread will send out and reset the buffer every period. The controller pro-
gram uses mutex to prevent two threads write or send the buffer at the same time.

The following shows how we verify the mutual exclusion issue.

1. Define the target program name.

For defining the target single C-source file, we use command %F.

%F sender.c

2. Define the target procedures name.

For defining the target procedures name in the C-source file, we use command
%X. And for defining which filter the procedure will used, we add option %L.
Also, for defining the extract model of procedure as an active prototype, we

add option %a.

The sender thread sends the status stored in a shared buffer, which is protected
by a pthread mutex. Other threads access the buffer through the enable func-
tion in sender.c. Therefore, we choose the sender and enable functions to be

the target procedures.

%X -L sender -a sender
%X -a enable

3. Define the filters.

For defining the details of the filters, we use command %L. It is a multi-line
command, and %% is to specified the end of the definition. If %L is followed by
a name, it will apply to the specified procedure, and if not, it will apply to all

procedures.

34

hL

Import _all_ _all_

pthread_mutex_lock (&(mutex)) atomic { mutex == 0 ->
mutex = 1 }; assert(mutex==1)

pthread_mutex_unlock (&(mutex)) mutex = 0

hhh

%L sender

bzero (... hide

waitForNext (... hide

hh

Above are two filters: the first applies to all procedures, and the second only
applies to the sender procedure. The Import command specifies how the data
objects are included in the generating model. The first argument of it is to
define the name of a data object, and the second argument is to define the
scope in which it appears. Arguments are separated with the tab key. In this
task we use the keyword _all_to express all data objects in all scopes (local
and global) are included in the model.

Other lines specify the mapping we want from code to model. The first argu-
ment is to match the expression in code, and the second argument is to define
how the expression will appear in the model. Because the functions bzero and
waitForNext are not concerned with the mutual exclusion issue we care, we
use the keyword hide to hide the two functions in the model. The parameters
of the function are not needed to fully specify, Modex will match the expression
with the string before three dots. To model the pthread function with mutex,
we map the lock function to an atomic sequence, which checks if the mutex is
free (equals to zero), locks the mutex (assign one to the mutex). Moreover, to
ensure that mutex will be one after the locking function, we add the assertion
assert (mutex==1) in the model. Similarly, the mapping of unlock function is
to assign zero to the mutex.

. Define how the model pieces are combined and specify the LTL formulae.
For defining how various pieces of model are combined and executed, we use
command %P, which is also a multi-line command. The extra declarations are
defined here when they are needed to model the behaviors of the source code.
Also, we can specify LTL formulae here to check the required properties.

%P

35

#include " _modex_sender.spn"

#include " _modex_enable.spn"

1tl live { []((mutex==1)-><>(mutex==0)) }

%
Because the sender and enable procedures do not have other behaviors that
need to be modeled, we simply include the two procedures to model with
#include command. And to ensure that the muter will always eventu-
ally be unlocked after being locked, we specified the LTL formula 1t1 live
[] ((mutex==1)-><>(mutex==0)). [tl is the command to show that its a LTL

formula. live is the name of the formula, and when verifying the model, we

can choose which formula to verify through the name.

5. Add some declarations to satisfy Modex parser in the C-source file.

Sometimes we need more declarations to help Modex to parse the code. In this
task, the data type of mutext is declared to be pthread_mutex_t in the source
code, but because Modex does not recognize the data type pthread_-mutex_t,
parse error will occur. We thus add declaration to define that the data type

of pthread_mutex_t is integer in the source file.

#ifdef MODEX
#define pthread_mutex_t int
#define pthread_t int
#define timespec_t int
#endif

e Required Properties Task

The computation thread required to satisfy the following property: when the most
recent four sampled temperature readings are increasing and the last reading ex-
ceeds a set high temperature value, the computation thread will call increase func-

tion to increase the flow rate of coolants. The following shows how to verify the

property.

1. Define the target program name.

%F computation.c

2. Define the target procedures name.

%X -a tcl

36

3. Define the filters.

%L

Import _all_ _all_
waitForNext (... hide
read(sensorl... read_inl 7 templ
read(sensor2... read_in2 7 temp?2
trip () break

increase (... increase_flag=1;
decrease (... decrease_flag=1;
alarm(. .. hide

Hoe
The aims of two read functions in source code are to read the temperatures
from sensorl and sensor2. Because the temperatures may be varied each time,
we should additional model the behavior. We map the read functions to two
channels, which will get temperatures from two procedures that we will define
in 4). The aim of the trip function is to stop the reaction, and thus we map it
to the keyword break to break the model. The aim of the increase function
is to increase the flow rate of coolants, and therefore we assign one to the
variable increase_flag in the model, showing that the increase function has

been called.

4. Define how the model pieces are combined and specify the LTL formulae.

1 %P

2 int increase_flag=0;

3 int decrease_flag=0;

4 chan read_inl = '[1] of { int 1};
5 chan read_in2 = [1] of { int };
6

7 #include "_modex_tcl.spn"

8

9 active proctype readl ()

10 {

11 int rand_temp=0;

12 do

13 HH

14 if

15 rand_temp <=300;

16 rand_temp=rand_temp+1;
17 rand_temp >=-60;

18 rand_temp=rand_temp-1;
19 fi;

20 read_inl ! rand_temp;

21 od;

22 %

23

24 active proctype read2()

25 A

37

26 int rand_temp=0;

27 do

28 H

29 if

30 :: rand_temp<=300;

31 rand_temp=rand_temp+1;

32 :: rand_temp>=-60;

33 rand_temp=rand_temp-1;

34 fi;

35 read_in2 ! rand_temp;

36 od;

37}

38

39 #define pO (tcl:pos == 0)

40 #define pl (tcl:pos == 1)

41 #define p2 (tcl:pos == 2)

42 #define p3a (tcl:pos == 3)

43 #define p3b (tcl:pos == 3 && tcl:curr_temp > 180 && tcl:
curr_temp <= 300)

44 #define inc (increase_flag == 1)

45

46 1t1 live { [1((p0O U pl U p2 U p3a U p3b) -> <>(p3b U inc))

47 1t1 iafe { [1(<>inc -> (p0 U p1 U p2 U p3a U p3b)) }

48 W

The first four lines declare the variables that do not appear in the source code
but in the model. increase_flag and decrease_flag are variables to detect
whether the increase or decrease functions are being called. read_inl and
read_in2 are two channels that can store one message of type int. Using
#include "_modex_tcl.spn" to include the tcl procedure.

readl and read2 are two procedures to model the temperature sensors. We
use non-deterministic choices to simulate the variation of the temperatures.
Each iteration in readl will either increase or decrease the temperature and
send it to tcl procedure through read_inl channel. The procedure read2 does
similarly.

The first LTL formula

1tl live { [J((p0O U pl U p2 U p3a U p3b) -> <>(p3b U inc))
}

is to ensure when the most recent four sampled temperature readings are
increasing, and the last reading exceeds the set high temperature value, the
increase function will be called. Using p3a and p3b to differentiate the states

that the temperature has continuously increased three times but does not

38

exceed the set high temperature value from the temperature do exceed the set

high temperature at the last increasing sampled.

The second formula

1tl safe { [I1(<>inc -> (pO U pl U p2 U p3a U p3b)) 1}

is to ensure when the increase function has been called, there must happened
that four sampled temperature readings are continuous increasing, and the

forth exceeds the set high temperature value.

Note if the LTL formula is
1tl safe { [J(<>inc -> (pO0O U p1 U p2 U p3b)) }

, SPIN will report an error for not satisfying the property. Because it miss the
trace that the temperature has continuously increased three times but does
not exceed the set high temperature value, and then the temperature keeps
continuously increased until it exceeds. The trace unsatisfied (p0 U pl U p2

U p3b), but it also calls the increase function. Therefore the error occurs.

5. Add some declarations to satisfy Modex parser in the C-source file.

This task do not need additional declarations.

4.1.2 Run Modex to Extract Model

After defining the .prx file, we run Modex to extract the model. Use command modex

filename.prx, for example:

modex sender.prx

It will automatically extract the model and save in _modex_.drv, and then use the

following command to pass it to model.

cpp “E -P _modex_.drv > model

For preprocessing but not compiling the source file, we add option —F. And, for

inhibiting the generation of line-control information, we add option —P.

4.1.3 Run SPIN to Verify the Model

After the extraction of the model, we run SPIN to verify it with the following com-

mand.

39

spin -0 -a model

The option —O is to turn off the new scope rules, and —a is to generate a verifier
for the specification. The output of the command are pan.[cbhmt | files. Then use gcc
compiler to produce an executable verifier.

gcc -DMEMLIM=1024 -o pan pan.c

The option —DMEMLIM is to define the memory size in Megabytes that can be
allocated, and —o is to place output in file pan. If the verification runs out of memory,
add the option —DCOLLAPSE to compress state vectors. And if the memory is still not
insufficient, change the compression option to —DBITSTATFE, which is an approximate
bit-state hashing or supertrace technique [35] [34].

In our required properties task, we countered the insufficient memory problem. Be-
cause the supertrace technique may have approximation errors, we first lowered the re-
quired scope and did the exhaustive verification.. We changed the set high temperature
value from 180 to 4, and maximum temperature value from 300 to 7. With the above
changes, it can be exhaustive verified, and then we did supertrace verification. Through
the steps, although the original source is still not exhaustive verified, the result of super-
trace verification is reasonably reliable.

Besides, if the target property is a safety property, add the option —DSAFETY to
increase the search efficiency.

Finally, run pan to show the result. For verifying safety property:

./pan -m10000000 -N safe
Use option —mN to set max search depth to N steps. If the specified LTL formulae are
more than one, use option —/N and follow the name of LTL formula that want to verify.

For verifying liveness property:

./pan -m10000000 -a -f -N live
Use option —a to find acceptance cycles, and —f to add weak fairness.

After the execution of above commands, if there are errors in verification result, use

the following command to trace the error trail.
spin -t -c model
The option —t is to perform a guided simulation, and —c is to display the message

sequence chart for a guided run.

40

4.2 Deductive Approach - Using VeriFast

Typical verification steps before invoking a deductive verifier include rewriting the
program, modeling external functions, and annotating the program. In the following, we

illustrate the three steps with the deductive verifier VeriFast [38].

4.2.1 Rewrite Program

The first restriction of VeriFast is the limitted support of global variables, for example
global variables are not allowed in loop invariants. A solution is putting all global variables
in a big C struct passed as an argument to all threads. The second restriction is on-stack
variables of non-primitive types. Unlike the forbidden heap usage in MISRA-C, VeriFast
requires that all C structs and arrays must be created in the heap by malloc and deleted
by free. Another unsupported program feature is single writer and multiple readers of
an atomic variable. An int variable on a POSIX system with GNU C libraries can be
assumed atomic [5] and thus it is unnecessary to protect the variable with mutex or locks
if it has only one single writer. The watchdog counters of the controller are exactly atomic
int variables. In VeriFast, a thread always have some permission f on a heap trunk. The
permission f is a real number between 0 (excluded) and 1 (included). If a thread has 1
permission (default if not specified) on a heap trunk, it can read and write on the heap
trunk. Otherwise, the thread can only read the heap cell. When a thread allocates a heap
trunk, the thread gets full permission on the heap trunk. Such a permission model cannot
support the single writer and multiple readers of an atomic variable because otherwise
the full permission will be greater than 1. Thus we have to protect these atomic variables

explicitly in VeriFast. There are other restrictions not mentioned in this paper.

4.2.2 Model External Functions

For pthreads, VeriFast provides a set of annotated functions with different names and
signatures from the standard pthread interfaces. For other unsupported system calls and
libraries, instead of providing their source code, we can model their semantics by giving
their specifications in pre-conditions and post-conditions. For example, below shows a

specification of the system call open.

41

/%@ prediate on(int flags, int flag) = true == ((flags & flag) =
flag), ©x/

/%@ predicate opened(int fd);, ©x/

int open(char *pathname, int flags);
/%@ requires [?f]chars(pathname, 7?cs) &x& mem('\0', cs) == true
&«& on(flags,
O_RDONLY | O.WDONLY | O.RDWR); @/
/%@ ensures result >= —1 && (result == —1 7 true : opened(result)

)i @x/
The VeriFast-style annotations appear as block comments enclosed by /*@ and @*/ or line
comments starts with //@. The notation &*& denotes separating conjunction in separation
logic [49]. The precondition requires that pathname points to a null-terminated string,
the current thread has f permission (f > 0) on the string, and flags includes one of the
access modes: 0_RDONLY, 0_WRONLY, or 0_RDWR. Since the open operation does not modify
the pathname, it only needs some non-negative permission for read access. The post-
condition ensures that the returned code is -1 on error. The predicate opened(result)
indicates that the file descriptor result has been associated with an opened file. To
ensure that a close operation must follow a successful open operation in every execution

path, we specify the close operation as a consumer of an opened predicate.

int close(int £fd);
//@ requires opened(fd);
//@ ensures true;

In VeriFast, a predicate is treated as a heap trunk and thus it will report memory leaks
if a file descriptor is opened but not closed later in an execution path.
The thread synchronization with mutex is already modeled in VeriFast. The specifi-

cations of mutex functions are shown below.

struct mutex *create_mutex();
//@ requires create_mutex_ghost_arg(?7p) &*& p();
//@ ensures mutex(result, p);

void mutex_acquire(struct mutex *mutex);
//@ requires [?f]mutex(mutex, 7p);
//@ ensures mutex_held(mutex, p, currentThread, f) &x& p();

void mutex_release(struct mutex *mutex) ;
//@ requires mutex_held(mutex, ?p, currentThread, 7f) &x& p();
//@ ensures [f]mutex(mutex, p);

void mutex_dispose(struct mutex *mutex);
//@ requires mutex(mutex, 7p);

//@ ensures p();

42

Basically, the predicate p represents the invariant of the resource protected by a mutex,
denoted by m in the following. The creation of the mutex requires the presence of the
invariant and protects the invariant in a predicate mutex(m, p), which can be divided into
several copies each having permission less than 1 and owned by a thread. The invariant
is guaranteed once a thread successfully acqures the mutex and has to be reestablished

before releasing the mutex.

4.2.3 Annotate Program

Consider the shared buffer of the sender task as an example. A basic invariant of the

shared buffer is:

g->buffer |-> ?b &*& g->buffer_size |-> 7s &*& chars(b, 7cs) &*&
malloc_block (b, s) &*& length(cs) == s

where g is the struct containing all global variables, s->f |-> ?7v indicates that some
value v is stored in the field £ of a struct s, b points to an allocated heap blocks cs of
length s and of type char is ensured by chars(b, ?cs) &*& malloc_block(b, s) &*&
length(cs) == s. Adding more predicates to the invariant can make the sender task
know more about the status of the buffer. For example, a safety property may require
that whenever the sender task sends the buffer with the i-th error bit enabled, the
corresponding error err must happen sometime before. Such property can be specified
by the following formula and added to the invariant of the shared buffer.

nth(i, cs) != 1 || err == 1
However, without support of temporal properties in VeriFast, a similar liveness property
cannot be specified: whenever the error err happens, the buffer sent by the sender task
will eventually have the corresponding error bit i enabled.

Consider the function waitOnSocket, which takes a file descriptor of a socket connec-
tion and a timeout value, waits for incoming data from the socket connection until the
timeout expires, and returns the results of the waiting. The return value may be 0 on

timeout or -1 on error. The specification of the function waitOnSocket is shown below.

int waitOnSocket (int fd, int timeout)
/%@ requires fd >= 0 && timeout >= 0; ©@x/
/%@ ensures result =— || result = —1; ©x/

43

The requires clause specifies the precondition of the function while the ensures clause
specifies the postcondition of the function.

Loop invariant is a key point in the deductive approach. VeriFast does not infer suffi-
cient loop invariants automatically, and thus loop invariants should be specified explicitly.
For example, consider the receiver task which relys on a server socket connection sockfd
to accept client’s connection. This server socket connection should not be changed while

running. To specify this property, ghost variables will be needed.
//@ int SOCKFD = sockfd,

while (STATE == STATE_RUNNING)

/*@ invariant sockfd = SOCKFD; @x/
{

¥

Before entering the receiver’s periodic task in the while loop, a ghost variable SOCKFD
is created in the annotation and the value of sockfd is assigned to SOCKFD. The loop
invariant then specifies after each round of the while loop, the server connection socket
sockfd is still equal to SOCKFD, which is never changed.

For checking the absense of buffer overflow and pointer errors, verification conditions
are generated by VeriFast automatically. A drawback is that the integer bound is fixed
in VeriFast and thus is not platform dependent.

Consider the following correctness property specific to the controller: whenever there
are three consecutive temperature raises and the last temperature is higher than
HIGH. TEMPERATURE, the coolant flow rate increases. The formal description of
this property is stated in the following. Let ¢; be the i-th sampling time point (¢; < ¢,
iff i < j), temp[t] the average temperature measured at time point ¢, and cool[t] the
coolant flow rate decided at time point ¢. For all four consecutive sampling time points
ti, tiv1, tive, and tigs, if templ[t;] < templtif1] < templtiro] < templt;s] and templt;ys] >
HIGH TEMPERATURE, then cool[t; 3] > cool[t;1s]. However, the controller does
not keep four most recent temperature history. Instead, it keeps the previous measured
temperature and the count of consecutive temperature raises pos before the current time
point. The count pos is incremented if the current temperature is higher than the previous
temperature and is reset otherwise. Another problem is that existing verifiers usually

support variable reference at a specific line of code, for example 2@ refers to the value

44

of x at label [, but not reference to a variable at a specific loop iteration, for example
templt;].

As a workaround, we can introduce templt;], temp[t; 1], templ[t;io], and temp[t; 3] as
ghost variables to the program, prove the desired property, and also prove the relation
between the ghost variables and the count pos. Below illustrates how these ghost variables

are inserted and how the relation is specified.

1 int size = 4;

2

3 /x0

4 predicate is_zero(int e) = e = 0;

5

6 lemma intx create_ghost(int size);

7 requires size > 0;

8 ensures ints(result, size, 7is) &x& foreach(is, is_zero);

9

10 lemma void set_ghost(int xarr, int idx, int value);

11 requires ints(arr, 7size, 7isl) && idx >= 0 && idx < size,

12 ensures ints(arr, size, 7is2) && is2 = update(idx, value, isl)

13

14 fixpoint bool consecutive(list<int> jis, int size, int curr, int
idx, nat pos) {

15 switch (pos) {

16 case zero: return curr == (idx—1)%size ||

17 nth(idx, is) <= nth((idx—1)%size, is);

18 case succ(n): return nth(idx, is) > nth((idx—1)%size, is) 7?

consecutive(is, size, curr, idx—1, n) : false

19 }

20 }

21 ©x/

22

23 //@ int prev = 0;
24 //@ int curr = 0;
25 //@ int xtemp = create_ghost(size);

26 while (STATE == STATE_RUNNING)

27 /+@ invariant ints(temp, size, 7is) &x& 0 <=
28 prev &+x& prev < size &x& 0 <=
29 curr && curr < size ©@x/;

30 A

31 //@ prev = curr;

32 //@ curr = (curr + 1) % size;

33 prev_temp = curr_temp;

34 //@ set_ghost (temp, prev, curr_temp);
35

36

37

38 curr_temp = templ + temp2;

39 //@ set_ghost (temp, curr, curr_temp);
40

41

42

45

43 if (pos >= 3 && curr_temp > HIGH_TEMPERATURE) {

44 //@ assert consecutive(is, size, curr, curr, nat_of_int(pos))=—
true;

45 increase (actuator);

46 }

47

48 '}

The lemma create_ghost is used to create an array of ghost variables temp that tracks
four of the most recent temperature measurements. The lemma set_ghost is used to
update elements in the temperature array. The recursive predicate consecutive is used
to relate the array of temperature and the count pos to make sure that the calculation

of pos is correct.

46

Chapter 5

Timing Correctness

To garantee timing correctness, we first calculate the WCET of each thread, and then
using the WCET to caculate the WCRT of the controller program, and finally add the
effect of overhead to the WCRT result. We assume using aiT as the WCET tool, and
SymTA/S as the WCRT tool.

5.1 Compute WCET

Computing WCET of each thread includes dividing and compiling the program, an-

notating the executable binaries, and running the tool.

5.1.1 Divide and Compile the Program

To treat individual tasks separatetly, we divide the target program into six parts, each
part from an independent thread, which are the main, TCL, receiver, watchdog, sender,
and diagnosis.

Each piece of code should contain all the information that the task needs. For example,
the header files included and the global functions that each thread calls all need to be
included. In the controller program, the part of the main thread code includes the header
of the main function, and the main function itself. And the threads that use error function
to send error message should include the error function in the TCL task, and the enable
function that the error function calls in the sender task.

Except the main thread, all the other threads use the buffer as a shared variable.
The locking mechanism in the contoller program assure that there will only one thread

access the buffer at a time. The locking instruction is non-preemptive and the others

47

are preemptive. Therefore, different scheduling algorithm be applied in the next section,
and thus we need divide each thread to three parts. The WCET of each part is needed
for scheduling analysis. The codes of first part is from the start of while loop to the
instruction before locking. The second part includes locking instructions, and the third
part includes the codes after locking instruction in the while loop. For example, the first
part of the TCL task in the while loop is as follows.

prev_temp = curr_temp;

if (curr_temp > MAX_TEMPERATURE) {
trip O ;
}
The second part is
alarm (ERR_TEMPERATURE) ;

And the third part is:

if (pos >= 3 && curr_temp > HIGH_TEMPERATURE) {
increase (actuator);

}

waitForNext (TCL_PERIOD) ;

The receiver thread calls the locking function error in both of the branches.

if (retval == -1)
error (ERR_RECEIVER_SOCKET_FAILED) ;
else if (retval == 1) {
if ((cli_sockfd = accept(r_sockfd, (struct sockaddr *) &cli_addr
, sizeof(cli_addr))) == -1) {

error (ERR_RECEIVER_SOCKET_FAILED) ;

Acutully, it will only execute one branch of the codes according to the condition. Thus,
we first calculate the WCET of the whole receiver thread, and the result will show which
branch has longer execution time. Then, using annotation to set the condition true for
the longer branch, and divide the thread into three parts. For example, if we find the
“if” branch has larger WCET, the first part is as follows.

retval = waitOnSocket (r_sockfd, 1);
if (retval == -1)

The second part:
error (ERR_RECEIVER_SOCKET_FAILED) ;

And the third part:

48

else if (retval == 1) {

waitForNext (RECEIVER_PERIOD) ;

After the separation, compile each part of the code to generate executable binary files.

In our example, we use GCC to compile.

5.1.2 Annotate Program

We assume to use aiT as the WCET tool, which analyzes executable binaries. The in-
formation of the executable is usually not sufficient to compute accurate WCET bounds,
therefore we need to use annotations to provide further information. For example, anno-
tation of the compiler can help aiT to reconstruct the control flow better.

/+ ai: compiler "arm—gcc”; x/

The receiver thread is periodic with the while loop. Due to that the code outside
of the while loop is not periodic, and our focus is on the timing behavior that threads
periodic occur, we calculate the WCET of periodic part only. As our goal is to verify
that all of the tasks will complete one round within 50 milliseconds, we use annotation

to compute the WCET in one cycle.

while (STATE == STATE_RUNNING) {
/+ ai: loop here-begin exactly 1; x/

waitForNext (RECEIVER_PERIOD) ;
}

After computing the WCET of the whole receiver thread, as the preview section men-
tioned, we use annotation to set the condition for the branch that with larger WCET
to be true. For example, if we find the “if” branch has larger WCET, then we set the
variable retval to be -1 to calculate the WCET of the first part of the thread.

if (retval == -1)
/% ai: instruction here is entered with retval=—1; %/

Also, we assign the value of registers that aiT can not determine from value analysis.
For example, in the diagnosis thread we need to assign the number of the interface, which

varys from systems.

for (interface = interfaces; interface != NULL; interface =
interface->ifa_next) {
/% ai: instruction here is entered with interfaces=7;, x/

49

TCL |

A

Receiver T T]

Watchdog‘

A A
Sender

Diagnosis T |

>

Figure 5.1: Scheduling of five periodic threads.

The above annotation represents that the value of interfaces will always be seven at the

address.

5.2 Compute WCRT

After calculating the WCET of each thread, we use scheduling tool to analyze the
WCRT of the controller program. The steps include setting up system model, quering
for WCET, and running the tool.

5.2.1 Set up System Model

There are three different periods of tasks in the controller program. The diagnosis
thread has the longest period, and all the other threads except the sender have the
same period, and the period of the sender thread is twice as much as them. The higher
priority thread in the controller program has shorter period, and thus it can apply in
rate-monotonic scheduling [46] [45]. The main thread is excluded for it only executes
once. The priorities of the threads are as follows, TCL = receiver = watchdog > sender
> diagnosis. Figure 5.1 shows a possible execution sequence without jitter. The gray
blocks represent the execution time of the thread in a period, and the up-arrows indicate
the activating time of each period.

Fugure 5.2 shows the system model of our example. The grey squares represent the

input source, i.e. input event model, and the white squares represent the task model. The

20

@4 pra 4 >

25ms_Timing_Event TCL_1 TCL_2 TCL_3

Coed P oot o

25ms_Timing_Event Receiver_1 Receiver_2 Receiver_3

Cord bt fed

25ms_Timing_Event Watchdog_1 Watchdog_2 Watchdog_3

Co=d Db oeq b

50ms_Timing_Event Sender_1 Sender_2 Sender_3

Coed Ppd Opd B

8h_Timing_Event Diagnosis_1 Diagnosis_2 Diagnosis_3

Buffer

Figure 5.2: System model of the controller program. It is illustration not screen shot
from the tool.

five threads are triggered by different periodic timing events. Due to locking of the shared
buffer, it may cause priority inversion in the locking instructions part, i.e., a lower priority
thread can block all other high-priory threads once it enters the locking area. Thus we
divide each thread into three parts, tasks with “_17 is the first part of thread, it represents
the part before locking, and task with “_3” is the part after locking. Both of the two parts
are preemptive, and we choose rate monotonic as scheduling method. Task with “_27 is
the locking part, and the gray square which surrounds all the locking parts indicates that
all of the threads share the same buffer. The locking part is non-preemptive, and we

choose fixed priority non-preemptive scheduling.

5.2.2 Query for WCET and Run

SymTA /S supports integration with aiT. In the user interface of SymTA/S, it can
run WCET directly. As the system model we present, the second part will do in each
iteration. Actually, the system is designed to write buffer when an error occurs. However,
we can not tell when will error happen, so the worst situation is every error occurs in
every iteration. If we can verify that the model satisfies the timing constraints in the

worst situation, the program will always satisfy the timing constraints.

51

TCL T

Receiver T B T
Watchdog T I
A P
Sender
. Y
Diagnosis

Figure 5.3: Scheduling of five periodic threads with jitters.

5.3 Compute Overhead

There will be overhead due to context-switch, shared cache, memory interference, etc.
Therefore the actual threads are periodic with jitters, the preemption may occur when
the lower priority threads execute first. Figure 5.3 shows an example that preemption
occurs, if the activations of TCL, receiver and watchdog thread delay for jitter, the sender
thread will execute first, but when the thread with higher priority activates, it will be
preempted.

When using aiT and SymTA/S, below are the typical steps to compute task switch

cost.

1. Query task switch cost. In user interface of SymTA /S, we both query the WCET

and task switch cost for every individual tasks we divided from aiT.

2. Run scheduling analysis.

5.3.1 Query Task Switch Cost

To consider the context-switch overhead, we use the UCB (Useful Cache Block) anal-
ysis provided in aiT to compute task switch costs. The value of UCB will be stored in
XTC (XML Timing Cookie) [10], which is an interchange format that both of the tools

can communicate through.

52

5.3.2 Run Scheduling Analysis

The UCB will add to all the next tasks with higher priority as termination overhead,
i.e., the WCRT of task will add termination overhead of the lower priority tasks that be

preempted. The result of WCRT with overhead can be viewed as numerical or Gantt

charts.

23

Chapter 6

Conclusion

It is challenging to make multithreaded programs right because of concurrency is-
sues. For instance, synchronization may introduce errors in timing-dependent data, and
also mutually-exclusive operations are needed to prevent shared data race. Real-time
programs are required to guarantee strict timing constraints. However, multithreaded
programs are difficult to debug and trace execution paths, and real-time programs with
multiple threads have more complex timing behaviors. Therefore, real-time multithreaded
programs are prone to mistakes during programming, and it is desirable to apply formal
verification on such programs.

In this thesis, we reviewed methods and tools for verifying real-time multithreaded
programs, and we considered a representative controller program as our target program
to provide a more comprehensive illustration. We assembled a selection of tools to com-
pletely verify the functional and timing correctness of a controller program. Also, we
described the issues and requirements of a real-time multithreaded program, and showed
the details about how to perform the verification tasks. Moreover, we pointed out that
several verification tasks still have to be carried out by hand, and there also exist gaps

between the model for verification and the real program.

6.1 Contributions

e Guidance on the usage of tools and tasks for verification of real-time

multithreaded programs.

We select the verification tools to be a complete tool chain for functional and timing

o4

correctness, and use the tools to verify the representative controller program. The
thesis can guide the practitioner to attain the high assurance guaranteed by formal

methods.

e Point out the tasks that still have to be carried out by hand, and there

are gaps between abstract model and program.

Verification in some of tools is not fully automatic, and transformation may be
needed to handle the verification process. Besides, some of the verification tasks
are not supported by current tools, and also there may exist gaps between the
abstract model and the real program. Finding out whether these gaps exist can
remind the practitioner to notice the gaps, and to notice the influences that the
gaps may lead to. We also hope that our study will encourage tool developers to

try filling the gaps.

6.2 Discussion

6.2.1 SPIN+Modex

Model extraction is nearly fully automatically with Modex. Although the reliabil-
ity of the mechanically transformation without proving, the correctness of mechanically
transform part of model is highly trusted. Below we discuss the reasons that may cause
differences between the abstract model and the source code.

First, the parts that need manually transform to model. Programs usually send and
receive messages from the outside environment, and if the messages are varied with time,
we should manually model the changing behavior as in our required properties task.
Actually, we should model the behaviors that will change the state while the program
is running and the model checker can not know how it is changed. The manually part
effects much of the correctness of the model, and it needs to comprehend the interactions
between the program and other program or environment.

Second, there are some of forms of code can not be transformed with Modex. e.g
condition ? valuelfTrue : valuelfFalse. Modex will have parse error with above

argument, but we can simply change it to the if-else form. There may be other code

95

forms that are not supported by Modex, but if we can change the form without modifying
the meaning, there will not generate gaps that from the changing of code forms.

Third, there are difficulties in modeling function calls. If there are two threads both
call the function F', Modex will transform the threads to two procedures, and transform
the function call to an extended active prototype, which is instrumented to support
procedure call mechanism. However, F'is only one process, and it can not be reentered,
which is against the meaning in source code. We may change to map £ as inline to solve

the problem, but if F' has parameters or return value, it does not work.

6.2.2 VeriFast

We have tried to verify the controller for the same tasks with VeriFast. And we
find there are more gaps between the abstract model and the source code when using
VeriFast. One of the reasons is because there are many features that do not support. For
example, global variables can not use in VeriFast. However, there are common to use
global variables in programs, so we need to rewrite greatly for solving the features that
do not support.

Moreover, it need to model all of the external functions such as system functions and
third-party libraries. We need to specify the pre-conditions and post-conditions for all
the functions that the program called, and this need comprehension of the details of the
external functions. If the pre/post-condition are not well-defined, it will generate the
gaps between the rewrite code to the original code.

Although VeriFast is prone to generate the gaps than SPIN, when facing programs
that with deep hierarchies of function calls, it will need much manually transformation
with SPIN. Thus the rewrite program for VeriFast may be closer to the source code, and
the verification with VeriFast may be more reliable. Also, if the annotations are accurate,

the semantic of program will be more faithful with VeriFast.

6.3 Future Work

e Complete the verification of timing correctness of the controller program with tools.

In the thesis, because of the difficulties in acquiring of the tools and the hardware,

26

the timing correctness of the controller do not actually verify with the tools. The
experience of actually verifying the timing correctness can help recognize more

about the execution of the tools.

Complete the verification of functional correctness with VeriFast, and find out in

what situations it has more benefits than model checking method.

We have pointed out some of the advantages and disadvantages of VeriFast, and if
the controller can actually be verified with it, the differences between VeriFast and
SPIN will be more obvious. And the experience may suggest the programmers to

choose tool according to the target tasks.

Increase the number of issues that need to be verified in the controller program.

There may be more issues that can be discussed in the controller program. And the
experience can suggest the programmer what verification issues may a controller

program face.

Include real-time issue in SPIN.

SPIN now can not deal with real-time problems, but there are some methods have
been proposed. Including the real-time issues in SPIN may simpler the tool chain

of verification, or give some timing information to the tool for timing correctness.

Apply more tools on the verification, and compare the results, discuss the advan-

tages and disadvantages.

There are many verification tools, comparing the the advantages and disadvantages

can suggest the programmers to choose the suitable tools for verification.

o7

Bibliography

[1] aiT. http://www.absint.com/ait/.
[2] Bound-T. http://www.bound-t.com/.

[3] DO-178B/ED-12B. Software Considerations in Airborne Sstems and Equipment Cer-

tification.
[4] Frama-C software analyzers. http://frama-c.com/.
[5] The GNU C library manual.
[6] TEC 61508. http://www.iec.ch/functionalsafety /.

[7] IEEE Std 1003.1-2008 Portable Operating System Interface (POSIX) Base Specifi-

cations, Issue 7.

[8] IEEE Std 1003.1-2008 Portable Operating System Interface (POSIX) Commands
and Utilities, Issue 7.

[9] IEEE Std 1003.1-2008 Portable Operating System Interface (POSIX) System Inter-

faces and Headers, Issue 7.
[10] INTERESTED project.
[11] Modex. http://spinroot.com/modex/index.html.
[12] RT-Druid. http://www.evidence.eu.com/content/view/28/51/.
[13] SWEET. http://www.mrtc.mdh.se/projects/wcet /sweet.html.

[14] SymTA/S. http://www.symtavision.com/symtas.html.

o8

[15]

[16]

[17]

[18]

[19]

[20]

23]

[24]

[25]

MISRA-C: 2004 — guidelines for the use of the C language in critical systems, 2004.

T. Ball, V. Levin, and S. K. Rajamani. A decade of software model checking with
SLAM. Communications of the ACM, 54(7):68-76, 2011.

D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In CAV 2011, volume 6806 of LNCS, pages 184-190, 2011.

S. Byhlin, Ermedahl A., Gustafsson J., and Lisper B. Applying static wcet analysis
to automotive communication software. In ECRTS 2005, pages 249-258, 2005.

A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic model
checking. In CAV 2002, volume 2404 of LNCS, pages 359-364, 2002.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proceedings of the 12th International Conference on Com-

puter Aided Verification, volume 1855 of LNCS, pages 154-169, 2000.
E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. The MIT Press, 1999.

E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: a practical system for verifying concurrent c.

In Proceedings of the 22nd International Conference on Theorem Proving in Higher

Order Logics, volume 5674 of LNCS, pages 23-42, 2009.

L. Cordeiro and B. Fischer. Verifying multi-threaded software using SMT-based
context-bounded model checking. In Proceedings of the 33rd International Confer-

ence on Software Engineering, pages 331-340, 2011.

C. Cuypers, B. Jacobs, and F. Piessens. Verification of data-race-freedom of a java
chat server with verifast. CW reports CW550, Department of Computer Science,
K.U.Leuven, 2009.

E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-

grams. Communications of the ACM, 18(8):453-457, 1975.

29

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

B. Dutertre and L. d. Moura. The YICES SMT solver.

C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm. Reliable and precise wcet determination for a real-life

processor. In Proceedings of the 1st International Workshop on Embedded Software,

volume 2211 of LNCS, pages 469485, 2001.

J.-C. Fillidtre and C. Marché. The Why /Krakatoa/Caduceus platform for deductive
program verification. In CAV 2007, volume 4590 of LNCS, pages 173-177, 2007.

P. R. Glick and G. J. Holzmann. Using spin model checking for flight software
verification. In Proceedings of Aerospace Conference, 2002. IEEE, volume 1, pages
105-113, 2002.

J. Gustafsson and A. Ermedahl. Experiences from applying WCET analysis in indus-
trial settings. In Proceedings of the 10th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing, ISORC '07, pages 382—
392. IEEE Computer Society, 2007.

R. Heckmann and C. Ferdinand. Worst-case execution time prediction by static
program analysis. Technical report, AbsInt Angewandte Informatik GmbH, 2004.
http://www.absint.com/wcet.htm.

R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System
level performance analysis — the SymTA /S approach. IEE Computers and Digital
Techniques, 152(2):148-166, 2005.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576-580, 1969.

G. J. Holzmann. An improved protocol reachability analysis technique. SOFT-
WARE, PRACTICE AND EXPERIENCE, 18:137-161, 1988.

G. J. Holzmann. An analysis of bitstate hashing. Formal Methods in System Design,
13(3):289-307, 1998.

G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. 2003.

60

[37]

[42]

[43]

[44]

[45]

[46]

Md. I. Hossain and N. S. Chowdhury. A practical approach on model checking
with modex and spin. In International Journal of Electrical and Computer Sciences,

volume 11, pages 1-7, 2011.

B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier.

In APLAS 2010, volume 6461 of LNCS, pages 304-311, 2010.

M. Jersak. Compositional performance analysis for complex embedded applications.

Technical report, PhD thesis, Technical University of Braunschweig, 2004.

D. Kastner, R. Wilhelm, R. Heckmann, M. Schlickling, M. Pister, M. Jersak,
K. Richter, and C. Ferdinand. Timing validation of automotive software. In ISoLA,

pages 93-107, 2008.

M. Kim, S. Hong, C. Hong, and T. Kim. Model-based kernel testing for concurrency
bugs through counter example replay. FElectronic Notes in Theoretical Computer

Science, 253(2):21-36, 2009.

J. Kosina. Fighting security bugs in the linux kernel. In WDS’07 Proceedings of
Contributed Papers, pages 64-71, 2007.

S. Kiinzli, A. Hamann, R. Ernst, and L. Thiele. Combined approach to system level
performance analysis of embedded systems. In Proceedings of the 5th IEEE/ACM In-
ternational Conference on Hardware/Software Codesign and System Synthesis, pages

63-68, 2007.

C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and
C. S. Kim. Analysis of cache-related preemption delay in fixed-priority preemptive

scheduling. IEEE Transactions on Computers, 47:700-713, 1998.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm exact
characterization and average case behavior. In Proceedings of Real Time Systems

Symposium 1989, pages 166—171, Santa Monica, CA, USA, 1989.

J. W. S. Liu. Real-Time Systems. Prentice Hall, 2002.

61

[47]

[48]

[49]

[51]

[52]

[53]

[54]

[55]

L. d. Moura and N. Bjgrner. Z3: An efficient SMT solver. In Proceedings of the 14th
International Conference on Tools and Algorithms for the Construction and Analysis

of Systems, volume 4963 of LNCS, pages 337340, 2008.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant for
higher-order logic. 2002.

J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS 2002, pages 55-74. IEEE Computer Society Press, 2002.

J. Souyris, V. Wiels, D. Delmas, and H. Delseny. Formal verification of avionics
software products. In Proceedings of the 2nd World Congress on Formal Methods,
volume 5850 of LNCS, pages 532-546, 2009.

The Coq Development Team. The Coq Proof Assistant Reference Manual — Version
8.3, October 2010.

W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering, 10(2):203-232, 2003.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschu-
lat, and P. Stenstrom. The worst-case execution-time problem - overview of methods
and survey of tools. ACM Transactions on Embedded Computing Systems, 7(3):36-1,
2008.

J. Yoo, E. Jee, and S. Cha. Formal modeling and verification of safety-critical

software. Software, IEEE, 26(3):42-49, 2009.

A. Zaks and R. Joshi. Verifying multi-threaded C programs with SPIN. In Proceed-
ings of the 15th International SPIN Workshop on Model Checking Software, volume
5156 of LNCS, pages 325-342, 2008.

62

	論文封面
	論文扉頁
	謝辭
	中文摘要
	thesis

