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Abstract

The quasi-steady motions of a spherical colloidal particle inside a concentric
spherical cavity filled with a conducting fluid induced by the magnetohydrodynamic
(MHD) effect are analyzed at low Reynolds number. Through the use of a generalized
reciprocal theorem to the Stokes equations modified with the Lorentz force density
resulting from the interaction of an applied magnetic field with the existing electric
current and the consideration of the Maxwell stress to the force exerted on the particle,
the translational and angular velocities of the particle under various conditions are
obtained in closed forms valid for an arbitrary value of the particle-to-cavity radius ratio.
The boundary effects on the motions of the particle caused by the MHD force are
generally equivalent to (yet different from) that in sedimentation.

In Chapter 2, an analytical study is presented for the MHD effects on a translating
and rotating charged sphere in an arbitrary unbounded electrolyte solution prescribed
with a general flow field and a uniform magnetic field. The electric double layer
surrounding the charged particle may have an arbitrary thickness relative to the particle
radius. Through the use of a simple perturbation method, the Stokes equations
modified with an electric force term, including the Lorentz force contribution, are dealt
with using a generalized reciprocal theorem. Using the equilibrium double-layer
potential distribution from solving the linearized Poisson-Boltzmann equation, we
obtain closed-form formulas for the translational and angular velocities of the spherical
particle induced by the MHD effects to the leading order. It is found that the MHD
effects on the particle movement associated with the translation and rotation of the

particle and the ambient fluid are monotonically increasing functions of xa, where x



is the Debye screening parameter and a is the particle radius. Any pure rotational
Stokes flow of the electrolyte solution in the presence of the magnetic field exerts no
MHD effect on the particle directly in the case of a very thick double layer (xa — 0).
The MHD effect caused by the pure straining flow of the electrolyte solution can drive
the particle to rotate, but it makes no contribution to the translation of the particle.

In Chapter 3, the MHD effects on the translation and rotation of a charged sphere
situated at the center of a charged spherical cavity filled with an arbitrary electrolyte
solution when a constant magnetic field is imposed are analyzed. The electric double
layers adjacent to the solid surfaces may have an arbitrary thickness relative to the
particle and cavity radii. Through the same method of analysis in Chapter 2, we obtain
explicit formulas for the translational and angular velocities of the colloidal sphere
produced by the MHD effects valid for all values of the particle-to-cavity size ratio.
The boundary effect on the MHD motion of the spherical particle is a qualitatively and
quantitatively sensible function of the parameters a/b and xa, where b is the
radius of the cavity. In general, the proximity of the cavity wall reduces the MHD
migration but intensifies the MHD rotation of the particle.

In Chapter 4, the electromagnetophoretic (EMP) motion of a spherical colloidal
particle positioned at the center of a spherical cavity filled with a conducting fluid is
analyzed. Under uniformly applied electric and magnetic fields, the electric current
and magnetic flux density distributions are solved for the particle and fluid phases of
arbitrary electric conductivities and magnetic permeabilities. Applying a generalized
reciprocal theorem to the Stokes equations modified with the resulted Lorentz force
density, we obtain a closed-form formula for the migration velocity of the particle valid
for an arbitrary value of the particle-to-cavity radius ratio. The particle velocity in



general decreases monotonically with an increase in this radius ratio, with an exception
for the case of a particle with high electric conductivity and low magnetic permeability
relative to the suspending fluid. The asymptotic behaviors of the boundary effect on
the EMP force and mobility of the confined particle at small and large radius ratios are
discussed.

In Chapter 5, an analytical study is presented for the magnetic-field-induced
motion of a colloidal sphere with spontaneous electrochemical reactions on its surface
situated at the center of a spherical cavity filled with an electrolyte solution. The zeta
potential associated with the particle surface may have an arbitrary distribution, whereas
the electric double layers adjoining the particle and cavity surfaces are taken to be thin
relative to the particle size and the spacing between the solid surfaces. The electric
current and magnetic flux density distributions are solved for the particle and fluid
phases of arbitrary electric conductivities and magnetic permeabilities. Applying a
generalized reciprocal theorem to the Stokes equations with the resulted Lorentz force
term, we obtain explicit formulas for the translational and angular velocities of the
colloidal sphere valid for all values of the particle-to-cavity size ratio. The dipole and
quadrupole moments of the zeta potential distribution over the particle surface cause the
particle translation and rotation, respectively. The induced velocities of the particle are
unexpectedly significant, and their dependence on the characteristics of the
particle-fluid system is physically different from that for EMP particles or phoretic
swimmers. The particle velocities decrease monotonically with an increase in the
particle-to-cavity size ratio. The boundary effect on the movement of the particle with
interfacial self-electrochemical reactions induced by the MHD force is much stronger

than that in phoretic swimming.
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Chapter 1

Introduction

1.1 Background of colloidal magnetohydrodynamics

The flow of an electrically conducting, Newtonian fluid caused by its interaction
with an electromagnetic force is known as the magnetohydrodynamic (MHD) effect
(Jackson 1976; Hubbard and Wolynes 1981; Davidson 2001; Grant et al. 2002; Qian
and Bau 2005; Luca 2009) which is described by the modified Navier-Stokes equations
and Maxwell’s equations.  This flow results from the Lorentz force exerted on the fluid
as an electric current and a non-collinear magnetic field are prescribed in it. In the
absence of applied electric fields, the Lorentz force exerted on an electrolyte solution

may be expressed as a force density pvxB acting on a differential volume of the
solution, where p is the space charge density, Vv is the fluid velocity, and B is the

applied magnetic field. This driving force, pointing toward the direction normal to
both v and B and playing as an additional term in the Navier-Stokes equations,
produces the MHD flow of the fluid.

Most colloidal particles bear charges on their surfaces as a consequence of
dissociation of functional groups or crystal lattice defects when immersed in an
electrolyte solution. The counterions in the solution are attracted by the surface charge
of the particle so that their concentration becomes higher in the vicinity of the particle
surface than the bulk value. On the other hand, the coions are repelled from the
particle surface. Hence, a region of mobile ions that is not electrically neutral forms

surrounding the particle. The combination of this region and the fixed charge on the
1



particle surface is well known as an electric double layer with the space charge density

p . When an external electric field is applied, the interaction between the particle’s

surface charge and this field drives the particle to migrate at an electrophoretic velocity
in one direction, while the movement of the counterions in the double layer induces an
ambient fluid flow in the opposite direction. Electrophoresis has long been used as an
effective technique for separation and identification of biologically active compounds in
the biochemical and clinical fields (O'Brien and White 1978; Ohshima et al. 1983;
Huang and Keh 2005; Chang and Keh 2008; Cheng et al. 2008). The movement of a
charged particle caused by the MHD effect, in which both parts of the electric double
layer experience the Lorentz force, is relevant to electrophoresis, but the difference
between them is evident.

On the other hand, an electrically conducting, Newtonian fluid in the presence of
an electric current density J and a magnetic flux density B will undergo a MHD
flow in the direction perpendicular to both fields. This fluid flow is driven by the
resulted Lorentz force density JxB, which also plays as an additional term in the
Navier-Stokes equation (Jackson 1976; Grant et al. 2002; Qin and Bau 2012). In an
enclosed fluid, the MHD force is compensated by an established pressure gradient,
analogous to the hydrostatic pressure gradient in gravitational field, and the fluid will be
at rest.

When a colloidal particle is freely suspended in a fluid subjected to the Lorentz
force, the force acts on both the fluid and the particle. If the force exerted on the
particle is different from that on the fluid, then relative migration, known as
electromagnetophoresis (EMP), of the particle occurs in the direction of or against

JxB, depending on their relative electromagnetic properties. The mechanism of
2



EMP was first reported by Kolin (Kolin 1953; Leenov and Kolin 1954) who carried out

an analysis for a spherical particle of radius a in an unbounded fluid of viscosity 7

*

with arbitrary particle-to-fluid electric conductivity ratio & and obtained a simple

formula for the particle velocity U which can be expressed as

2 *_
u=2 @ Ly.B. (1.1)
9 o +2

This analysis has since been extended to a particle of non-spherical geometries (Moffatt
and Sellier 2002; Sellier 2003, 2007; Yariv and Miloh 2007). The EMP force and
torque exerted on a fixed particle of arbitrary shape as well as the translational and
angular velocities of a freely suspended, non-spherical particle are also found to be
bilinearin J and B.

In practical applications of the EMP effect, colloidal particles are not isolated and
will move in the proximity of solid boundaries (Watarai et al. 2004; liguni and Watarai
2005). Therefore, it is of interest to examine the boundary effects on the EMP
migration of a particle. Recently, the EMP motions of a spherical particle in the
vicinity of a plane wall were investigated using spherical bipolar coordinates (Sellier
2005, 2006) and a method of reflections (Yariv and Miloh 2009). Asymptotic
expansions in A, the ratio of the particle radius to the distance of the particle center
from the wall, generated by the reflection method indicate that the leading-order
wall-induced corrections (retardation effects) to the EMP force and migration velocity

of the particle appear at O(2*) and O(A), respectively.

1.2 Applications of colloidal magnetohydrodynamics

Magnetohydrodynamics is often used to describe the plasma physics, and recently

3



it has applications in the field of colloidal science. Colloidal particles suspended in
electrolyte solutions prescribed with a magnetic field have been used in a wide variety
of applications (Sekhar et al. 2005; De Las Cuevas et al. 2008; de Vicente et al. 2009).
The addition of magnetic fields or MHD flows to colloidal systems also has potential
applications in the manipulation and self-assembly of charged nanoparticles, which are
usually not isolated and will move in the vicinity of solid boundaries (Kalsin et al. 2006;
Shevchenko et al. 2006; Bishop and Grzybowski 2007; Tretiakov et al. 2009).

The effect of EMP is of considerable importance in numerous practical
applications, such as the separation of biological particles (DNA fragments, proteins,
cells, yeasts, etc.) due to the differences in their sizes and electric conductivities (Kolin
and Kado 1958; Mills 1968; Ozawa et al. 2011), aggregation and disaggregation of
colloidal suspensions (Tombécz et al. 1991; Busch et al. 1996; Stuyven et al. 2009),
removal of small nonmetallic inclusions or impurities from molten metals (Xu et al.
2007; Haverkort and Peeters 2010), measurement of the particle-wall interaction force
(liguni and Watarai 2003; 2010), determination of glycation on diabetic erythrocytes
(Nozaki et al. 2004), and operation of multicolor display devices (Chung and Liang
2009).

On the other hand, manipulation of autocatalytic micro/nanomotors or other
colloidal particles is an important application of colloidal particles (Yang et al. 2003;
Burdick et al. 2008; Chaturvedi et al. 2010). Autonomously propelled
micro/nanomotors or swimmers (e.g., by the wusual auto-electrophoresis or
auto-diffusiophoresis mechanism) can perform various nanoscale tasks ranging from
drug delivery to cargo transport in microfluidic devices without the need for externally

supplied energy have been designed and fabricated (Dreyfus et al. 2005; Kline et al.

4



2005; Kline et al. 2006; Golestanian et al. 2007; Laocharoensuk et al. 2008; Sen et al.
2009; Gibbs et al. 2010; Moran et al. 2010; Wei and Jan 2010).  Synthetic nanomotors
often take the form of Janus nanoparticles consisting of two dissimilar segments
suspended in a liquid fuel with asymmetric reactions occurring on the nanomotor
surface, and a typical example is a self-propelled bimetallic nanomotor that swims due
to the spontaneous decomposition (electrochemical reduction and oxidation) of
hydrogen peroxide fuel to oxygen and water in aqueous solutions.  These
electrochemically grown nanomotors have also been engineered to perform controlled
motion under applied magnetic fields. But, there are few theoretical investigations on
the motion of autonomously propelled nanomotors induced by externally applied

magnetic fields available in the literature and we will extend this research.

1.3 Purpose of the thesis

In this thesis, we analyze the quasi-steady motions of a spherical colloidal particle
inside a concentric spherical cavity filled with a conducting fluid induced by the MHD
effect at low Reynolds number. Through the use of a generalized reciprocal theorem
to the modified Stokes equations and consideration of the Maxwell stress to the force
exerted on the particle, the translational and angular velocities of the particle under
various conditions will be obtained.

In Chapter 2, we examine the translation and rotation of a charged spherical
particle in an arbitrary electrolyte solution with a prescribed general velocity field
subjected to an external magnetic field in the absence of applied electric fields. The
thickness of the double layer surrounding the charged particle is arbitrary relative to the

particle radius. The purpose is to determine the motion of the particle induced by the



MHD force. Closed-form formulas for the induced translational and angular velocities
of the particle are obtained in Egs. (2.14) and (2.15).

In Chapter 3, we investigate the general motion of a charged colloidal sphere in a
concentric spherical cavity filled with an electrolyte solution subject to a prescribed
magnetic field in the absence of external electric fields. The thickness of the electric
double layers adjacent to the solid surfaces is arbitrary relative to the particle and cavity
radii. Explicit formulas for the translational and angular velocities of the confined
spherical particle induced by the MHD effect are obtained in Egs. (3.20) and (3.21).

In Chapter 4, the EMP motion of a colloidal sphere in a concentric spherical cavity
filled with a conducting fluid subject to uniformly prescribed electric and magnetic
fields is analyzed with the consideration of the total force (including the Maxwell stress)
exerted on the particle, where the particle and fluid may have arbitrary values in electric
conductivity and magnetic permeability. Although the concentric cavity is an idealized
abstraction of some real systems, the result of boundary effect on the electrophoretic
velocity of a charged sphere obtained in this geometry (Zydney 1995) agrees with that
for a circular cylindrical pore (Keh and Chiou 1996). The geometric symmetry in this
model system allows closed-form formulas for the EMP force and migration velocity of
the confined particle to be obtained in Egs. (4.15) and (4.18), respectively.

In Chapter 5, the magnetic-field-induced motion of a spherical particle with
self-electrochemical reactions on its surface situated at the center of a spherical cavity
filled with an ionic fluid is examined analytically, where the particle and fluid may have
arbitrary values in electric conductivity and magnetic permeability. The translational
and angular velocities of the particle caused by the MHD force are determined explicitly

in Eq. (5.20) for the general case of an arbitrary distribution of the zeta potential at the

6



particle surface, where only the dipole and quadrupole moments of this potential
distribution are involved. In Section 5.4.1, some examples are given to show how
different types of variation in the zeta potential distribution might affect the movement
of a particle. The spherical geometry of the cavity does not limit the validity of these
expressions for a real-world application and this model might be adaptable to other
geometries, such as that in a recent experimental study of the magnetically guided
motion of electrocatalytic nanorod motors within microchannel networks (Burdick et al.

2008).






Chapter 2

Magnetohydrodynamic effects on a charged sphere with arbitrary

double-layer thickness

In this chapter, we consider the steady motion of a translating and rotating colloidal

sphere of radius @ and zeta potential ¢, in an unbounded electrolyte solution with a

general linear velocity field in the presence of a uniformly applied magnetic field as shown in
Figure 2.1. The thickness of the electric double layer adjacent to the particle surface is
arbitrary relative to the particle radius. Gravitational effects are ignored. Our objective is
to determine the additional particle motion induced by the existence of the constant magnetic
field.

To evaluate the translational and angular velocities of the particle induced by the MHD
effect, it is necessary to first solve for the equilibrium electric potential and velocity fields in

the fluid phase.

2.1 Equilibrium electric potential distribution
When the Debye-Hiickel approximation applicable for the case of low electric potentials

is used, the equilibrium double-layer potential distribution  in the absence of the imposed

velocity field and magnetic field is governed by the linearized Poisson-Boltzmann equation,
Vi =Ky, (2.1)

where K is the Debye screening parameter. The boundary conditions for w at the

particle surface and infinity are simply that



w=¢, at r=a (2.2a)
w=0 a r—-ow, (2.2b)

where I is the radial coordinate from the particle center. The solution of Egs. (2.1) and

(2.2) is (Henry 1931)

A __(r-a
l/lz?e ( )é/p' (23)

2.2 Fluid velocity distribution
With knowledge of the equilibrium electric potential distribution in the electrolyte
solution outside the particle, we can now proceed to find the fluid velocity field. The fluid
motion in the presence of a magnetic flux density B_ is governed by the Stokes equations
modified with an electric force (including the Lorentz force) term,
nViv=Vp-p(vxB_—-Vy), (2.4a)
V-v=0. (2.4b)
In these equations, v and p are the fluid velocity and dynamic pressure distributions,
respectively, 77 is the fluid viscosity, o is the total space charge density related to the net
local electric field vxB_ -V by Poisson’s equation as (Tai 1964)
p=&V-(vxB_—Vy), (2.5)
where ¢ is the dielectric permittivity of the fluid, and the expression for y has already
been given in Eq. (2.3). Here, the linear superposition of the equilibrium electric field
-V and the Lorentz field vxB_ is valid since the latter is practically weak relative to the
former. Note that the induced charge density that arises from the magnetic flux density
imposed on the moving fluid is included in Eqg. (2.5).

Equation (2.4a) shows that a magnetic field can drive an electrolyte solution to move
10



only if there exists an electric current density perpendicular to it. In this study we consider
the current flow produced by the general case of a charged sphere translating with velocity

U, and rotating with angular velocity € in a Stokes flow which can be uniform, rotational,

or straining at infinity. The velocity and pressure fields in Eq. (2.4) can be expressed by the

following simple perturbation expansions:

V=V, +av,, +0(a?), (2.6a)

p=p, +apy +0(a’), (2.6b)
where a:gg“p‘Bw‘/n is a small dimensionless parameter, the subscript O represents the

prescribed Stokes flow in the absence of the magnetic field, and v,, and p,, denote

respectively the fluid velocity and pressure distributions caused by the magnetic flux density

B, orthogonal to the flow direction.

The governing equations of the zeroth-order flow field without the MHD effect (a =0)
are
nVev, =Vp,, (2.7a)
V-v,=0. (2.7b)
The boundary conditions for this flow field with a prescribed general linear Stokes flow can
be expressed as
Vo=U,+Q xr at r=a, (2.83)
Vo=U_+Q_xr+E_-r as r—oo, (2.8b)
where U_ and €_ are constant translational and angular velocity vectors, respectively,
E_ is a constant rate-of-strain dyadic, and I is the position vector from the particle center.

]

Evidently, the three terms on the right-hand side of Eq. (2.8b) represent the uniform, pure

11



rotational, and pure straining undisturbed flows, respectively. The translational velocity U,

and angular velocity Q, of the particle may result from the prescribed flow field given by

Eqg. (2.8b) or from some external force and torque acting on the particle. The solution of Egs.

(2.7) and (2.8) is (Keh and Chen 1996)

3a a’ 3 a a°
vV, =U_+Q xr+(—+—7)(U -U_)+—(—-——7)U_ -U_ ) rr
0 0 9 (4r 4r3)( p oo) 4(r3 r5)( p oc)
a’ a® 5 a® a°

Substituting Eg. (2.5) and the expansions given by Eq. (2.6) into Eq. (2.4) and collecting
the first-order terms of the small perturbation parameter « , we obtain
a(pviv,, —Vp,) = —-eD(V-D), (2.10a)
V-v,, =0, (2.10b)

where D=v,xB,_ -V is the net electric field involving the zeroth-order velocity field

V,. The boundary conditions for the fluid velocity v,, are
avy =U, +Q,, xr at r=a, (2.11a)
v, =0 as rr—ow, (2.11b)
Here, U,, and €,, are the translational and angular velocities, respectively, of the particle

of the leading order in « resulting from the MHD effect to be determined.

2.3 Induced particle velocities

The induced translational and angular velocities of the particle in Eq. (2.11a) can be
obtained by the use of the reciprocal theorem of Lorentz (Happel and Brenner 1983).
Following Tuebner’s approach with a generalized reciprocal theorem (Teubner 1982; Yoon

1991; Kim and Yoon 2002; 2003), as presented in Appendix A, we can express the force and
12



torque balance equations as

6unau,, = [ of -%ds +&[[[_ve-D(vV-D)av,

8una’Q, = [[ _rx(o .g) ds+z[[[ Ve -D(V-D)adV,

where
-1 3a a° 3,a adrr
Vo=(—+—N+-(——=)—
4r  Ar 4°r r’'r
—R a3
Vo =———¢€-I,

o = (DD —%|D|2 ),

I is the unit dyadic, and € is the alternating unit triadic.

(2.12a)

(2.12b)

(2.13a)

(2.13b)

(2.13c)

In Egs. (2.12) and (2.13), the

dyadics \_/g (dimensionless) and \_/5 (with the dimension of length) represent the

normalized Stokes flow fields around an uncharged sphere translating and rotating,

respectively, in an unbounded fluid for the generalized reciprocal theorem, and 6" is the

electric Maxwell stress tensor.

After the substitution of Egs. (2.3), (2.9), and (2.13) into Eq. (2.12) and some

mathematical manipulations, we obtain

&g

Uy =—=[M, (@)U, -M (@)U, 1xB,_,
n

Q. =g—§p{[N0(Ka)Qp -N_(x2)Q_1xB,_ —N_(xa)E_-B_},
n

where

et (1_7)
24y°

Mo(t) = J‘:o

[41+ty)(3y* —1) -t?(15¢* + 2y° -1) 1dy,

(2.14a)

(2.14b)

(2.15a)



M. (t) = Mo(t)—g, (2.150)

No(t) = Nw(t)+%, (2.15¢)

et(l_7)
67/3

b g
N () =t jl dy . (2.15d)

Equation (2.14a) illustrates that the induced translational velocity of the particle depends on
the prescribed translational velocities of the particle and unbounded fluid, and it is in the
direction perpendicular to both the relevant prescribed velocities and the applied magnetic
field. Equation (2.14b) indicates that the induced angular velocity of the particle depends on
the prescribed angular velocities of the particle and unbounded fluid, and it is also in the
direction normal to both the relevant prescribed angular velocities and the imposed magnetic

field. Note that, for any given value of xa, the dimensionless mobility parameter M, is
greater than M_ and N, is greater than N_ by fixed values 2/3 and 1/6, respectively.

Thus, the MHD effect on a charged particle induced by the prescribed translation and rotation
of the particle is more significant than that induced by a translational and rotational fluid flow.

Equation (2.14) shows that the rate-of-strain dyadic of the unbounded fluid flow is
able to drive the particle to rotate (also with the mobility parameter N_ ), whereas it makes

no contribution to the translation of the particle. This outcome can be understood by a
careful examination of the cross product of the velocity field of a pure straining or extensional
flow and an applied magnetic field, which indicates that the resulting Lorentz effect is

force-free but can exert a couple on the particle.

2.4 Results and discussion

In this section, we first consider the expressions for the dimensionless mobility

14



parameters M,, M_, N,, and N_ in Eq. (2.15) for the two limiting cases of the

o0

parameter xka. Results of the general case for the MHD effect on the particle motion will
then be discussed.

In the limit of a very thin electric double layer (xa — ), Eq. (2.15) results in M, =1,

M_=1/3, N,=2/3,and N_=1/2, and thus Eq. (2.14) reduces to

U, =22 (3U, U, )xB,. (2.16a)
3n
&g,

QM :E[(4Qp_3gm)xBx_3EooBoo] (216b)

In the limit of a very thick double layer (xa —0), Eq. (2.15) leads to M, =11/24,

M_=-5/24, N,=1/6,and N_ =0, and then Eq. (2.14) becomes

U, =52 @10, +5U,)xB,, (2.17a)
24n

Q-1 «B,. (2.17b)
677

From Egs. (2.16) and (2.17), we can find that a uniform Stokes flow in the uniform
magnetic field will induce an MHD translational velocity of the particle in the direction
opposite to (or same as) that induced by the prescribed translation of the particle in the case of
a very thin (or thick) electric double layer. A pure rotational flow and a pure straining flow
in the uniform magnetic field exert no MHD effect on the particle movement directly in the
case of a very thick double layer, but can produce the MHD rotation of the particle in the case
of a thin double layer. Also, the MHD effect on a translating and rotating particle is more
significant in the case of a thin double layer than in the case of a thick double layer. This
outcome is predictable knowing that the space charge density in a narrow region of diffuse

ions near the particle surface is much larger for the case of thin double layer than for the case

15



of thick double layer.

The numerical values of the dimensionless mobility parameters M,, M_, N,, and

N_, as defined by Eq. (2.14) and calculated from formulas in Eq. (2.15), are plotted versus
the parameter xa in Figure 2.2 and Figure 2.3. The integrations in these formulas are
performed numerically using a personal computer. Except for M _, which can be a negative
or positive value, all the other three mobility parameters are always positive. Thus,
according to Eqg. (2.14b), the prescribed rotation of the particle will always induce its MHD
angular velocity in the direction opposite to that induced by the prescribed angular velocity of
the fluid. The mobility parameters M, and M _ are monotonically increasing functions
of xa respectively from 11/24 and -5/24 at xa=0 to 1 and 1/3 as xka — o, and the
mobility parameters N, and N_ are also monotonically increasing functions of xa
respectively from 1/6 and0at xa=0 to2/3and 1/2as xa — .

It is interesting to observe the special case that both the spherical particle and the
suspending fluid move with the same translational and angular velocities (which occurs if the
particle is freely suspended in the linear fluid flow without externally applied force and torque)

and the fluid flow has no rate of strain in the magnetic field. Substituting U, =U_,

Q,=Q,,and E, =0 into Eq. (2.14), we obtain

2
U, =250y B, (2.18a)
M 377 p ©
Q,-%ra «B,. (2.18b)
677

Namely, the MHD effect on the particle motion in this special case is independent of the
double-layer thickness. For a very thick double layer (xa — 0), Eq. (2.18) can also be

obtained in a simple, alternative way by balancing the hydrodynamic drag force and torque

16



with the Lorentz force and moment, respectively, on the particle, for which the total surface

charge can be related to the zeta potential as 47a&c,.
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U +Q _xr+E_-r

Figure 2.1 Geometric sketch for the MHD effect on the motion of a charged spherical
particle in an unbounded electrolyte solution under applied Stokes flow and magnetic

induction fields.
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Figure 2.2 Plots of the dimensionless mobility parameters M, and M _ as defined by

Eq. (2.14a) and calculated from Egs. (2.15a) and (2.15b) versus the parameter xa .
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Figure 2.3  Plots of the dimensionless mobility parameters N, and N_ as defined by Eq.

(2.14b) and calculated from Egs. (2.15c) and (2.15d) versus the parameter xa .
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Chapter 3

Magnetohydrodynamic effects on a charged sphere in a charged

spherical cavity with arbitrary double-layer thickness

In this chapter, we consider the quasisteady translation and rotation of a neutrally

buoyant colloidal sphere of radius a and zeta potential £, in a concentric, translating and
rotating spherical cavity of radius b and zeta potential ¢, filled with an electrolyte

solution in the existence of a constant magnetic field as shown in Figure 3.1. The thickness
of the electric double layers adjacent to the particle surface and cavity wall is arbitrary
compared with the particle and cavity radii. Our purpose is to evaluate the boundary effect
on the additional particle motion induced by the application of the uniform magnetic field.

To determine the translational and angular velocities of the confined particle caused by
the MHD effect, we first need to ascertain the equilibrium electric potential and velocity

distributions in the fluid phase.

3.1 Equilibrium electric potential distribution
With the use of the Debye-Huckel approximation applicable for the case of low electric
potentials, the equilibrium double-layer potential distribution y in the absence of the
applied velocity field and magnetic field is governed by the linearized Poisson-Boltzmann
equation, same as Eq. (2.1),
Vi =Ky, (3.1)

where K is the reciprocal of the Debye screening length. The boundary conditions for
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at the particle and cavity surfaces are
y=¢, at r=a, (3.2a)
w=¢, at r=b, (3.2b)

where I is the radial coordinate from the particle/cavity center. The solution of Egs. (3.1)

and (3.2) is
v = - sinh[tl(z—_l)]+gp/”tsinh[t(l—/ly)]’ (3.3)
ssinh[t(1— 1)]
where
y=rla, A=alb, t=xb. (3.4a,b,c)

3.2 Fluid velocity distribution
Having obtained the solution for the equilibrium electric potential distribution in the
fluid phase, we can now proceed to deal with the velocity field. Because the Reynolds

number is small, the fluid motion in the presence of a magnetic flux density B_ is governed
by the Stokes equations modified with an electric force (including the Lorentz force) term,
nV’v=Vp-p(vxB, -Vy), (3.5a)
V-v=0. (3.5b)
In the above equations, VvV and p are the fluid velocity and dynamic pressure distributions,
respectively, 77 is the fluid viscosity, o is the total space charge density related to the net
local electric field vxB_ -V by Poisson’s equation as
p=&V-(vxB_—-Vy), (3.6)
where ¢ is the permittivity of the dielectric fluid, and the expression for y has already

been given in Eq. (3.3). Here, the linear superposition of the equilibrium electric field
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-V and the Lorentz field vxB_ is valid since the latter is practically weak relative to the

former. Note that the induced charge density that arises from the magnetic field prescribed
in the moving fluid is included in Eq. (3.6).
Equation (3.5a) indicates that a magnetic field can drive an electrolyte solution to move

only if there exists an electric current density perpendicular to it. We now consider the

current flow caused by the case of a charged sphere translating with velocity U and rotating
with angular velocity € in a concentric spherical cavity whose wall translates with velocity
U, and rotates with angular velocity € . The velocity and pressure fields in Eq. (3.5)
can be expressed by the perturbation expansions

V=V, +av,, +0(a?), (3.7a)

p=p,+apy +0(a’), (3.7b)
where « :5§p\Bw\/n is a small dimensionless parameter, the subscript 0 denotes the fluid
flow in the absence of the magnetic field, and v,, and p,, represent the fluid velocity and

pressure distributions, respectively, produced by the magnetic field B_ . Equations

(3.5)-(3.7) are the same as Eqgs. (2.4)-(2.6).

The Stokes equations for the zeroth-order flow field without the MHD effect (« =0) are
nvv, =Vp,, (3.8a)
Vv, =0, (3.8b)
and the relevant boundary conditions are
Vo=U,+Q xr at r=a, (3.93)
vo=U,+Q xr at r=b, (3.9b)

where I is the position vector from the particle/cavity center. The translational velocity
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U, and angular velocity Q, of the particle may result from the translational and angular

velocities of the confining cavity wall given by Eq. (3.9b) and from some external force and

torque acting on the particle. We obtain the solution of Egs. (3.8) and (3.9) as

Vo= FiT[aiup+a2uw+3a3(up—uw) &4 +FiR(a4szp +aQ,)xr, (3.10)
where

a =1- L +62°1-2)+3°A- ) - 1y (9-512 —41), (3.11a)
a, =—1+ A + y’[4y —3— 2y(6y% —5) + 34°(2° - 3y +1)], (3.11b)
8, =(1-2)y* - -y (-2)r" -1, (3.11c)
a, =1- 15°, (3.11d)
a; = 7 -1; (3.11e)
Iy =7A-)'4+71+42), (3.12a)
I'y=71-2). (3.12b)

Substituting Egs. (3.6) and (3.7) into Eq. (3.5) and collecting the first-order terms of the

small perturbation parameter « , we obtain

a(nvViv,, —Vp,) =—-eD(V-D), (3.13a)
Vv, =0, (3.13b)
where
D=v,xB, -Vy,
(3.14)

which is the net electric field involving the zeroth-order velocity field v,. The boundary
conditions for the fluid velocity v,, can be expressed as

vy, = (U, +Q,, xr) at r=a, (3.15a)
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vy =0 at r=b, (3.15b)
where U,, and €,, are the translational and angular velocities, respectively, of the

confined particle of the leading order in « produced by the MHD effect to be determined.

3.3 Induced particle velocities

The translational and angular velocities of the particle appearing in Eq. (3.15a) induced
by the MHD effect can be obtained by the use of the reciprocal theorem of Lorentz (Happel
and Brenner 1983). Following Tuebner’s approach with a generalized reciprocal theorem
(Teubner 1982; Yoon 1991; Kim and Yoon 2002; Keh and Hsieh 2008), we can express the

force and torque balance equations as

= E r _T. .
67t77afTUM—”r:ao -FdS+g_mb>r>av D(V-D)dV , (3.16a)
3 _ e I v .D(V-
snna’f.Q,, _J.Irzarx(c ) ds +"3mb>r>a" D(V-D)dV, (3.16h)
where
E 1 2..

o :g(DD—E|D| 1); (3.17)
vi=L@ar+3a ™ (3.182)
T & 3 2) :
VAL I (3.18b)

FR
9. 5, 9 §
fT Z(l—is)(l—zﬂ‘f-zﬂ,s —Zﬁs +ﬂ,6) l, (3193.)
fo=1-2)", (3.19b)

I is the unit dyadic, and € is the alternating unit triadic. In Egs. (3.16)-(3.18), the

dyadics v (dimensionless) and v (with the dimension of length) represent the
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normalized Stokes flow fields around an uncharged sphere translating and rotating,
respectively, in a concentric spherical cavity for the generalized reciprocal theorem, and o

is the Maxwell stress tensor.
After the substitution of Egs. (3.3), (3.10), (3.14), and (3.17)-(3.19) into Eg. (3.16) and

some mathematical manipulations, we obtain

B %KMPPé’p + waé/w)up + (Mpwgp + Ivlwwé/w)uw]>< BOO' (3203.)
QM - %[(Nppé/p + pré/w)gp + (pré/p + NWWCJVW)QW]X BOO' (320b)
where
M. :—[l+mcotht(1 n-[ L ﬁiﬁi'(”lht% Dty (o1a)
T
M., =——[t cscht(l— /1)+jlt % ai;ﬁ?;?:;]rl?lt(fﬂ)ihb dr], (3.21b)
T
_ 2 J-ltz[al(az—a3)+a2a3)]rsinht(1—r)—bldT (3.21¢)
pw 3f Ja r'Zsinht(1-2) ’ |
_ 2 J‘ltz[ai(az_as)"‘aza?,)]TSinht(T_ﬂ)_bZdT (3.21d)
w3t da AlZsinht(1- 1) '
1 1t?air’ sinht(1—17)
N,y == —[L+thcotht(l—2) - [ === dr], (3.21e)
6f, 2 ATgsinht(1-2)
2,23 _
NWp = 1t ?42'2 Slnht(‘[ l)df], (321f)
4 ATgsinht(1-A4)
2 3 a: _
N, - 1 J~1t az4a527 _smht(l T)dl' (3.219)
6f; 74 A I;sinht(1-A4)
N, = 1 J~1t agaszz' *sinht(z - /1) dr- (3.21h)
6f, 74 ATgsinht(l-A)
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b, = %(a1 +3a,)[67° (4> —1) - 2(X° —D][trcosht(l—7) +sinht(1—7)], (3.22a)

b, = %(a1 +3a,)[67°(F* 1) - 2(X° - ][tz cosht(z — A) +sinht(z =4)], = (3.22b)

and z=r/b=yLl. Equation (3.20a) shows that the induced translational velocity of the

confined particle depends on the prescribed translational velocities of the particle and cavity,
and it is in the direction perpendicular to both the relevant prescribed velocities and the
imposed magnetic field. Equation (3.20b) indicates that the induced angular velocity of the
particle depends on the prescribed angular velocities of the particle and cavity, and it is also in
the direction normal to both the relevant prescribed angular velocities and the applied

magnetic field.

3.4 Results and discussion

We first consider the expressions for the dimensionless mobility parameters M, M, ,

M,,, M, N Ny, N, and N, in Eqg. (3.21) for the limiting cases of the

pp?
electrokinetic parameter xa and separation parameter A=a/b. Results of the general

case for the boundary effect on the MHD motion of the particle will then be discussed.

3.4.1 Limiting cases

In the limiting case of xa — o (very thin electric double layers), Eq. (3.21) reduces to

3 5(1-A4)
M =-3M. =-= , 3.23a
pp pw 2 + 2(1_215) ( )
M, =Ny, =0, (3.23b)
2
=24 2024) (3.23¢)
3 31-4)
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N =422, (3.23d)

When 1 — 0 (the cavity wall is at an infinite distance from the particle), the above formulas

can be further simplified and Eqg. (3.20) becomes

u,, =%[3gpup—(gp—3gw)uw]x5w, (3.24a)

QM = 61[4§pr _3(‘/;p +é’W)QW)]X Boc : (324b)
n

In the limiting case of xa — 0 (Vvery thick electric double layers), Eq. (3.21) reduces to

44 + 481 - 754* —1504% —154* +964° +521°
My =-M,, = 2 3 4 5 6y ' (3.253)
24(4+114 +154° +154° +154" +110° +41°)

_ (1-2)*(20+ 684 +832% +332° —121' —122)

M_, =-M : 3.25b
P WW 24(1— 2°)(4+TA+42%) ( )
N N ! 2 3.25
oo =" Wp=€(1+/1+/1), (3.25¢)
N,, =N, =0. (3.25d)
When 2 — 0, Egs. (3.20) and (3.25) lead to
&
uU,, =%(gp—gw)(11up+5uw)x5m, (3.26a)
Q, =é(§p —£)Q xB, . (3.26b)

Both of the translational and angular velocities of the particle resulting from the MHD effect
are proportional to the zeta potential difference between the particle surface and the cavity
wall in this limiting case.

In the limit of A —1 (the particle fills the cavity up completely), Eq. (3.21) results in
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M,=M,=M_, =M, =N, =N, =0 and N, =-N, =1/2, and thus Eq. (3.20)

reduces to

u,, =0, (3.27a)
Q, ==(£,~-¢.)Q, xB., . (3.27b)
21

As expected, the translational velocity of the particle caused by the MHD effect vanishes in
this limiting case.

Equations (3.24) and (3.26) with ¢, =0 are consistent with Eq. (2.14) . Note that the

translational and angular velocities of the charged particle induced by the MHD effect as
expressed by Egs. (3.24) and (3.26) are independent of the particle size, analogous to the

electrophoretic velocity of the particle in the limiting cases of k@ »>o and xa — 0.

3.4.2 General case

The numerical values of the dimensionless mobility parameters M., M, M,

Muw, Ngpo Nyp,o Ny, and N, ., as defined by Eq. (3.20) and calculated from formulas

in Eq. (3.21), are plotted versus the parameter A =a/b for various values of the parameter

ka in Figs. 3.2-3.5.

Figure 3.2 shows the results of the mobility parameters Mpp and wa corresponding

to the translational velocity U, of the particle. In general, M is a positive value which

pPp

decreases with an increase in A4 (indicating that the proximity of the cavity wall reduces the

MHD migration of the particle) and with a decrease in k@ and M, is a negative value

p
which is not a monotonic function of 2 and xa, but there are exceptions when A is large

(say, greater than 0.6).
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Figure 3.3 illustrates the results of the mobility parameters M, and M, concerning
the translational velocity U, of the cavity wall. In general, both M, and M, are not

monotonic functions of 2 and xa. M, isa positive value when xa issmall (less than
unity) and can be negative otherwise (depending on the value of 1). On the contrary,
M,,, is a positive value when xa is large (say, greater than 10) and can be negative
otherwise (also depending on the value of 1).

The results of the mobility parameters N,, and N, about the angular velocity Q,

of the particle are plotted in Figure 3.4. It can be seen that N, is a negative value whose
magnitude increases with an increase in A or with a decrease in xka and disappears as

A—0 or xka— o, whereas Npp IS positive and increases with an increase in xa for a

given value of 4. In general, N, increases with an increase in A (illustrating that the

pp
approach of the cavity wall enhances the MHD rotation of the particle), but there are

exceptions when both 2 and xa are large.

Figure 3.5 shows the results of the mobility parameters N, and N, regarding the

angular velocity @, of the cavity wall. Both N, and N,, are negative values with
their magnitudes decreasing monotonically with an increase in A or with a decrease in xa

and vanishingas 4 —1 or ka8 —> 0. Namely, the approach of the cavity wall diminishes

the MHD rotation of the particle caused by Q. .

It is interesting to examine the special case that both the spherical particle and the cavity
wall move with the same translational and angular velocities (which occurs if the particle is

freely suspended in the fluid inside the moving cavity without externally applied force and
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torque) in the presence of the magnetic field.  Substituting U, =U =U and

Q,=Q, =Q into Eq. (20), we obtain

u,, =%(Mp§p+MWgw)uwa, (3.28a)

Q, =§(pr;p+NW§W)sszw, (3.28b)
where

M,=M,+M,,, M, =M, +M,,, (3.29,b)

N =Ny, +N,, Ny =N, +N,,. (3.29¢,d)

Figure 3.6 illustrates the results of the mobility parameters Mp and M,, about the

translation of the particle and cavity. For any given value of xa, Mp IS positive and
decreases monotonically with an increase in A from 2/3 at A=0 to zero at 1=1.
Namely, the proximity of the cavity wall reduces the MHD migration of the particle. M, is

a positive value when xa is large and can be negative if xa is small. For any specified

value of 1,both M, and M, are monotonically increasing functions of xa.
The results of the mobility parameters N, and N, relating to the rotation of the

particle and cavity are plotted in Figure 3.7. For any value of xa, N, is positive and
increases monotonically with an increase in A from 1/6 at 1=0 to 1/2 at 1=1.

Namely, the approach of the cavity wall enhances the MHD rotation of the particle. N, is

w
always negative and, for a finite value of xa, it first increases with an increase in A from
-1/2 at 2 =0, reaches a maximum at some value of A, and then decreases with a further

increase in A to -1/2 again at A =1. For any fixed value of 2, both N, and N, are
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monotonically decreasing functions of xa.

Finally, we consider the relative importance of the MHD effect on the particle movement.

As an example, for a particle with £, =100 mV suspended in an aqueous solution at 20°C
with prescribed magnetic flux density |B,|=1T, Eq. (3.28a) with U, =U,, =U £, =0 and

A =0 predicts that ‘UMMU‘ =107, which is also the typical value of the small perturbation

parameter « . The fact that the MHD effect on the particle movement is relatively weak is
understandable knowing that the electric field induced by the interaction between the

magnetic field and the fluid motion given by the term vxB_ in Eqg. (3.5a) is much less than

the typical external electric field applied in electrophoresis of charged particles.
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Figure 3.1 Geometric sketch for the MHD effect on the motion of a charged spherical
particle in an concentric spherical cavity under applied Stokes flow and magnetic induction

field.
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Figure 3.2a  Plots of the dimensionless mobility parameter M as defined by Eq. (3.20a)

and calculated from Eq. (3.21a) versus the parameter A for various values of the parameter

Ka.
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Figure 3.2b  Plots of the dimensionless mobility parameter M,,, as defined by Eq. (3.20a)

p
and calculated from Eq. (3.21b) versus the parameter A for various values of the parameter

Ka .
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Figure 3.3a  Plots of the dimensionless mobility parameter M, as defined by Eq. (3.20a)

and calculated from Eq. (3.21c) versus the parameter A for various values of the parameter

Ka.
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Figure 3.3b  Plots of the dimensionless mobility parameter M, as defined by Eq. (3.20a)

and calculated from Eq. (3.21d) versus the parameter A for various values of the parameter

Ka .
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Figure 3.4a  Plots of the dimensionless mobility parameter N, as defined by Eq. (3.20b)

and calculated from Eq. (3.21e) versus the parameter A for various values of the parameter

Ka.
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Figure 3.4b  Plots of the dimensionless mobility parameter N,,, as defined by Eg. (3.20b)

p
and calculated from Eq. (3.21f) versus the parameter A for various values of the parameter

Ka.
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Figure 3.5a  Plots of the dimensionless mobility parameter N, as defined by Eq. (3.20b)

and calculated from Eqg. (3.219) versus the parameter A for various values of the parameter

Ka.
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Figure 3.5b  Plots of the dimensionless mobility parameter N,,, as defined by Eq. (3.20b)

and calculated from Eq. (3.21h) versus the parameter A for various values of the parameter

Ka .
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Figure 3.6a  Plots of the dimensionless mobility parameter M, as defined by Eq. (3.28a)

versus the parameter A for various values of the parameter xa.
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Figure 3.6b  Plots of the dimensionless mobility parameters M,, as defined by Eq. (3.28a)

versus the parameter A for various values of the parameter xa.
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Figure 3.7a  Plots of the dimensionless mobility parameters N, as defined by Eq. (3.28b)

versus the parameter A for various values of the parameter xa.
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Chapter 4

Electromagnetophoresis of a spherical particle in a spherical

cavity

In this chapter, we consider the EMP migration of a spherical colloidal particle of radius

a situated at the center of a spherical cavity of radius b filled with a conducting fluid of

viscosity 77 subject to an applied electric current field J, =J_ e, and a perpendicularly

applied magnetic induction field B, =B_e, at the quasi-steady state and low Reynolds

o0

number, as shown in Figure 4.1, where e, and e, are two principal unit vectors in the

rectangular coordinates (X, Y, z), and both the electric current density J_ and magnetic flux
density B_ are constant. The particle surface and cavity wall are allowed to bear electric

charges and the conducting fluid may be an electrolyte solution, but the electric double layers
adjacent to the particle and cavity surfaces are assumed to be thin relative to the particle
radius and the gap width between the solid surfaces (b —a) such that the entire fluid phase is
electrically neutral with a uniformity in the ionic composition. Electrokinetic
(electrophoretic/electro-osmotic) and gravitational effects, which have been considered
separately (Happel and Brenner 1983; Keh and Hsieh 2007; Keh and Cheng 2011) and can be
added directly due to the linearity of the problem, are ignored here. The objective is to

determine the boundary effect of the enclosing cavity on the EMP velocity of the particle.
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4.1 Electric current density distributions

The electric conductivities o, of the particle and o of the fluid are taken as constants.
Thus, the electric potential distributions are governed by the Laplace equations
Viy,=0 (0<r<a) (4.1a)
for the particle and
Viy=0 (a<r<b) (4.1b)
for the fluid, where (r,8,¢) are spherical coordinates.

The boundary conditions for the potential distributions y, and y at the particle

surface and cavity wall are

r=a: er'(J—Jp)ZO, (423.)
J J,
e, x(———)=0;
s (4.20)
r=>b: e,-J-J,)=0, (4.3)
where the electric current density distributions in the particle and fluid phases are
J,=-0,Vy, and J=-—0Vy, (4a,b)

respectively, and e, is the unit vector in the I direction. Equations (4.2a) and (4.2b)

stand for the continuity of the normal component of the current density and the tangential

component of the electric field at the particle surface, and Eq. (4.3) gives the uniformly

applied current density J, =J.e, in the fluid phase in the absence of the particle. The

additional electric current induced by the fluid motion under the applied magnetic field is
negligible relative to the applied electric current (the typical value of their ratio a’B’c/n
will be discussed in Subsection 5.4.3) .

The solution to the above equations is
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J \
vy =-3"S, ()Y, (4.53)

W= —J—‘”Sl(a*)[a* +2—(c =Dy Iy, (4.5b)
O
where
S,(X) =[x+2+22(x-D]*, (4.6)
Y =sinédsing is a surface harmonic, y=r/a, o :ap/a, and A=al/b. The constant

terms in Eq. (4.5) are trivial and have been omitted.

4.2 Magnetic flux density distributions
The magnetic permeabilities 4, of the particle and 4 of the fluid are also taken to be
constants, and the magnetic flux density distributions are governed by (Jackson 1976)
V-B,=0, VxB,=uJ, (0<r<a) (4.7a,b)
for the particle and
V-B=0, VxB =1 (a<r<hb) (4.7c,d)

for the fluid.

The boundary conditions for the magnetic field at the particle surface and cavity wall are

r=a: e (B-B,)=0, (4.8a)
e, x(B-2ey_o. (4.8b)

Mty
r=b: e,-(B-B,)=0. (4.9)

Equations (4.8a) and (4.8b) denote that both the normal component of the magnetic flux
density and the tangential component of the magnetic field are continuous at the particle

surface, whereas Eq. (4.9) leads to the imposed magnetic flux density B_ everywhere in the

fluid in the absence of the particle.
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The solution to Egs. (4.7)-(4.9) with the substitution of Egs. (4.4) and (4.5) can be

expressed as

3 e
B, :—E,uprO' S,(c")r’e, xVY —u,VP,, (4.10a)
B= —ystl(a*)["T”+ (6" —1)y°r’e, x VY — uV &, (4.10b)

where the magnetic scalar potential distributions due to the applied magnetic field

B,=B_e, are

0 o~ Z

p

b =— iSl(y*)rcow, (4.11a)
Y7,

& =—Bes (1 +2- (" ~1)y *Ircos, (4.11b)
7

and 4 = My /1. The constant terms in Eq. (4.11) are trivial and have been neglected.

The first terms on the right-hand side of Eq. (4.10) are induced by the applied electric
current density (Ampere’s law), whereas the second terms whose curls vanish result from the
applied magnetic field. The magnitude of either ratio of the first-to-second terms has the

order gl /B, , which is usually small (will be discussed in Subsection 5.4.3) .

4.3 Electromagnetophoretic force and velocity
The creeping motion of the fluid in the presence of the applied magnetic flux density and
electric current density is governed by the Stokes equations with a Lorentz force density term,
nViv=Vp-JxB, (4.12a)
V.v=0, (4.12b)
where V and p are the fluid velocity and dynamic pressure distributions, respectively.
Note that, different from the constant force density in a gravitational field, the Lorentz force

density Jx B is a function of position in the particle and fluid phases.
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The boundary conditions for the fluid velocity at the no-slip particle surface and cavity
wall are given by
r=a: v=U, (4.13)
r=b: v=0, (4.14)
where U is the EMP migration velocity of the particle to be determined. There is no
rotation of the particle due to the axial symmetry of the fluid flow.

Following Teubner’s approach to obtain the particle velocity (without solving for the
fluid velocity field) with a generalized reciprocal theorem (Teubner 1982; Yoon 1991; Keh
and Hsieh 2008; Miloh 2011), we can express the EMP force exerted on the confined particle
as

6rnnaf - U=F(c", 1 )-FL), (4.15)
where the total applied force acting on the particle is composed of relevant surface and

volume integrals,

Fo', i) =[], 3,xB,dv+ meVT (AxB)AV +[[_¢"eds. (4.16)

=a

Here, f, isthe hydrodynamic resistance coefficient for the migration of the sphere driven by
a body force field in the concentric spherical cavity given by Eq. (3.19a), 6" isthe magnetic

Maxwell stress tensor,

o =L (BB- LB 1), (4.17)
y7i 2

and v is given by Eq. (3.18a).

In Eqg. (4.16), the first term on the right-hand side is the Lorentz body force exerted
directly on the particle, known as the electromagnetic weight, the second term is a force
contribution from the fluid flow due to the Lorentz force density in Eq. (4.12a), and the third

term represents the contribution from the Maxwell stress at the particle surface. F(L1)

51



equals (4/3)ra®J_xB_, which is the applied Lorentz force acting on the fluid volume

occupied by the particle, known as the electromagnetic buoyancy.
Substituting Eqgs. (4.4) and (4.5) for the electric current density distributions and Egs.
(4.10) and (4.11) for the magnetic flux density distributions into Egs. (4.15) and (4.16), we

obtain the ensuing migration velocity of the particle

.al
u=u"2J xB_, (4.18)
n

where the dimensionless EMP mobility of the particle

1
3f,

U =——{S,(0")8,(u)B0™ B +D) — ¢, (0 + i) ¢, (07" +1)] —%}, (4.19)

and the coefficients ¢, and c, are functions of the particle-to-cavity radius ratio 4,
C,=(L+A+2)5+61+32 + ) (4+TA+427)7", (4.20a)
C,=(A—A)(7+17A+152 +52° + A)(4+TA+42%) . (4.20b)

Evidently, U™ is a function of the particle-to-fluid electric conductivity ratio o and

*

magnetic permeability ratio " as well as A only. For the special case of " = 4" =1

(the particle and suspending fluid have the same electric conductivity and magnetic
permeability), the electromagnetic weight (and the total applied force acting on the particle)
equals the electromagnetic buoyancy and there is no particle motion. If only the first term
on the right-hand side of Eq. (4.16) is taken approximately to be the total applied force in Eq.
(4.15), then Eq. (4.19) becomes

2
of,

U'=——[90"S,(c")u'S, (1) -1]. (4.21)

Note that Eq. (4.18) predicts U to be bilinear in the product J_xB_, indicating that
the integral terms of the second orders J? and B2 in the Maxwell stress ¢ and Lorentz

force densities JxB and J,xB, in Eq. (4.16) vanish and make no contribution to the
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particle velocity. Nonetheless, the contribution from the induced magnetic flux density

caused by the applied electric current density [the first term in Eq. (4.10b)] is included in Eqg.
(4.19) via the term containing ¢" in Eq. (4.16). For a particle with a =1zm in aqueous

solutions with the applied electric current density J_ =10* A/m? and magnetic flux density
B, =1T, the characteristic particle velocity a’J_B,/» in Eq. (4.18) is about 10™° m/s

typically.
In the limit 4 — 0 (the cavity wall is at an infinite distance from the particle), Eq. (4.19)

reduces to

U = 79¢ 1 +50 —31u —53
0 36(c" +2)(u +2)

(4.22)

If the term of integration of the Maxwell stress ¢ over the particle surface in Eq. (4.16) is

not included, Eq. (4.22) becomes

U” = 176" =50  -5u -7
12(c" +2) (" +2)

(4.23)

This approximate result agrees with the EMP mobility calculated using the formula obtained
earlier by Leenov and Kolin (Leenov and Kolin 1954) for the EMP force acting on a spherical

particle in an unbounded fluid with 4~ =1, in which the effect of the Maxwell stress was not
considered. Note that the EMP mobility at 4" =1 predicted by Eq. (4.23) is much smaller

than that resulting from Eq. (4.22) by a factor of 3/7, and thus the contribution from the

Maxwell stress (only due to its part bilinear in J_ and B_) to the EMP migration of a

particle is significant.

In the limit A —1 (the particle fills the cavity up completely), Eq. (4.19) results in

U™ =0, as expected.
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4.4 Results and discussion
Equation (4.18) for the EMP migration of a spherical particle positioned at the center of a
spherical cavity indicates that the velocity of the particle is bilinear in the applied electric

current and magnetic flux density fields (and proportional to a®*/7). The results of the

dimensionless EMP mobility obtained in Egs. (4.19) and (4.22) for the confined particle and
an isolated particle, respectively, as well as the asymptotic behavior of the boundary effect on

EMP will be discussed in this section.

4.4.1 Electromagnetophoretic mobility parameter
We first plot the EMP mobility parameter U; of an unconfined spherical particle
(A =0) as calculated from Eqg. (4.22) in Figure 4.2 for various values of the particle-to-fluid

electric conductivity ratio o~ and magnetic permeability ratio »*. As can be derived from
Eq. (4.22), U; is always positive if ¢ >53/5 and negative if o <31/79, regardless of
the value of 4. In the intermediate range of 31/79<o” <53/5, U; is positive (negative)
if the value of 4" is sufficiently large (small). For a constant value of ., the value of U,
increases monotonically with an increase in ¢ from a negative constant at ¢ =0 to a
positive one as o — . For a specified value of o greater than 1/17, the value of U;
increases monotonically with an increase in 4*, whereas for a given value of o less than
1/17, U, is negative and decreases monotonically with an increase in 4" . When
o =1/17, U, =-16/45, independent of . . Equation (4.22) gives U, =-31/72
—53/144, 5/72,and 79/36 in the limits of (x",c") approaching («,0), (0,0), (0,),
and (o0, ), respectively.

The normalized EMP mobility U™ /U, of a confined particle calculated from Eq. (20)
54



as a function of the particle-to-cavity radius ratio A is plotted in Figure 4.3 for limiting

conditions of the parameters ¢” and x". In general, U /U, decreases monotonically

with an increase in A from unity at 2 =0 to zero at A =1 for specified values of &

and 4". However, for the case of large o (thus, Ug is positive) and small " (e.g., a

superconducting particle), U*/US first decreases with an increase in A from unity at

A =0, reaches a minimum of negative value (implying a reversal in the direction of particle
migration), then increases with further increase in A to zero at A =1. In this case, the

second term on the right-hand side of Eq. (4.16) dominates the force exerted on the particle
and results in the non-monotonic dependence of U™ on A. For a constant value of A,
U’/ U; decreases (or the boundary effect becomes stronger) with an increase in ¢ and
increase (or the boundary effect gets weaker) with an increase in 4", keeping the other

parameter unchanged. The boundary effect of the cavity on the EMP mobility of the particle

is equivalent to that caused by gravitational fields (Happel and Brenner 1983) (in the
particular case of ¢ =1/3 and x" =1, U /Uy =1/f, for an arbitrary value of A and

the boundary effect on EMP migration is exactly the same as that on sedimentation), but is

much stronger than that in electrophoresis (Keh and Hsieh 2007).

4.4.2 Asymptotic behaviors
Yariv and Miloh (Yariv and Miloh 2009) analyzed the EMP motions of an insulating

spherical particle suspended in a conducting fluid of matching magnetic permeability (i.e.,
with o =0 and x" =1) in the vicinity of a dielectric plane wall, where an electric current

is imposed parallel to the wall and a perpendicular magnetic field is applied either parallel or

normal to the wall. Through the use of a method of reflections for the situation of wide
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separation (4 —0), they obtained formulas for the hydrodynamic force on the particle and the
migration velocity of the particle in asymptotic expansions of A, the ratio of the particle
radius to the distance of the particle center from the wall. The leading-order wall-induced
corrections to the EMP force and migration velocity appear to be O(4%) and O(A),
respectively, as opposed to the O(A) variation for both the resistance and the mobility of a
sphere undergoing sedimentation near a plane wall.

The Taylor expansions for the EMP force and migration velocity of a spherical particle
with x4 =1 within a concentric spherical cavity in A resulting from Eqgs. (4.15) and (4.18)
together with (3.19a), (4.19), and (4.20) are

l4n(c” -1),, 6(3c -1

Flo D -Fap="0 7 - -2 2% 074 00, <8, (4.243)
_No =Dy 9, -8 o602y «B.. (4.24b)
oo +2)" 2" 1o +2) .

Here, the leading-order corrections to the EMP force and migration velocity also appear at

O(2*) and O(A4), respectively, in contrast to the O(A) correction given by Eq. (3.19a) for

both the resistance and the mobility of a sphere settling at the center of a spherical cavity.

The O(A1) wall effect in Eq. (4.24b) is to hinder the EMP migration velocity of the particle,
whereas Eq. (4.24a) indicates that the boundary tends to augment (reduce) the hydrodynamic
force exerted on the particle if, under the situation of ,* =1, the value of & is smaller

(greater) than 1/3.  As expected, the boundary effect of the enclosing cavity wall on the EMP
migration is much stronger than that of a neighboring plane wall predicted by Yariv and Miloh
(YYariv and Miloh 2009), in which, same as in the analysis by Leenov and Kolin (Leenov and
Kolin 1954), the contribution from the Maxwell stress in Eg. (4.16) was not included.

It is also interesting to examine the asymptotic behavior of the boundary effect on EMP

migration for the situation of near contact (41 — 1) between the particle and the concentric
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cavity wall. The Taylor expansions for the EMP force and migration velocity of the

confined particle with 4" =1 in 1—2 resulting from Egs. (4.15) and (4.18) are

F(o™1)-Fl) = 2"(5*5 1 [1+ 2(301_1) (1— 1)
O O

. 230" —122(0* -2) (1—2)? + 01— 1)°*]a%d. xB. , (4.25a)

u=[2
12

2
La-ap+oa-2123, %8B, (4.25b)
n

O
Equation (4.25b) illustrates that the migration velocity of the EMP particle decays with an

increase in A as the order (1— )%, same as that resulting from Eq. (3.19a) for a sphere
migrating under gravity at the center of a spherical cavity. However, Eq. (4.25a) indicates
that the EMP force on the particle is finite (as long as o #0) at A=1 [with the
leading-order correction at O(1—A) in the direction depending also on the sign of ¢ —-1/3
(at x" =1)], as opposed to the divergent asymptotic behavior with the order (1—1)~° for
the hydrodynamic force on a settling sphere in a concentric spherical cavity. Note that the
wall-corrected EMP force and migration velocity of the particle with ," =1 are proportional
to (6" -1)/(c"+2) as A—0 and to (o' -1)/c" as A—1; when o =1 (the particle

and suspending fluid have the same electric conductivity), there is no EMP motion.
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Figure 4.1 Geometric sketch for the EMP motion of a spherical particle in a concentric

spherical cavity under applied electric current density J_ and magnetic flux density B_ .
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Figure 4.2a  Plots of the dimensionless EMP mobility US of an unconfined spherical
particle calculated from Eq. (4.22) for various values of the particle-to-fluid electric

conductivity ratio o~ and magnetic permeability ratio .
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Figure 4.2b  Plots of the dimensionless EMP mobility US of an unconfined spherical
particle calculated from Eq. (4.22) for various values of the particle-to-fluid electric

conductivity ratio o~ and magnetic permeability ratio .
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Figure 4.3 Plots of the normalized EMP mobility U*/U; of a spherical particle
calculated from Egs. (4.20) and (4.22) versus the particle-to-cavity radius ratio A for

various values of the particle-to-fluid electric conductivity ratio o and magnetic

permeability ratio .
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Chapter 5

Magnetohydrodynamic motion of a spherical particle with

self-electrochemical surface reactions in a spherical cavity

In this chapter, we consider the quasi-steady motion of a colloidal sphere of
radius a undergoing self-electrochemical reactions on its surface in a concentric
spherical cavity of radius b filled with an electrolyte solution of viscosity 7
induced by an applied magnetic field B, =B_e,, as shown in Figure 5.1, where
(r,0,¢) are spherical coordinates, e, is the unit vector in the direction of =0,
and B_ is a constant magnetic flux density. The thickness of the electric double
layers adjoining the particle and cavity surfaces is assumed to be very small relative to
the particle radius and the distance between the solid surfaces (b—a). Other
important effects, such as electrokinetic, auto-phoretic, and gravitational effects,
which can be treated separately (Happel and Brenner 1983; Keh and Chang 1998;
Paxton et al. 2005; Golestanian et al. 2007; Keh and Hsieh 2007; Moran and Posner
2011; Yariv 2011) and added directly due to the linearity of the problem, are not
considered here. The purpose is to evaluate the boundary effect of the cavity on the

translational and angular velocities of the particle induced by the MHD effect.

5.1 Electric current density distributions
In the particle and fluid phases, an electric current arises from the
electrochemical reactions occurring spontaneously on the particle surface. The fluid

outside the thin electric double layers adjacent to the particle surface and cavity wall

63



is electrically neutral and the electric conductivities o, and o of the particle and

fluid, respectively, are constants. Thus, the electric potential distributions are

governed by the Laplace equations, same as Eq. (4.1),

Vi, =0 (0<r<a) (5.1a)

p
for the particle and
Vi =0 (a<r<bh) (5.1b)
for the fluid. Here, Eq. (5.1b) results from charge conservation in a region of
uniform composition (Newman 1973; Yariv 2009; 2011); therefore, one needs the
ionic concentrations in the fluid outside the double layers to be sufficiently uniform

(the ionic strength to be high or the reaction rate to be low) for its justification.

The boundary conditions for y, and y at the electrochemically reacting

particle surface and the electrically non-conducting cavity wall are

r=a: e, (oVy-o,Vy,)=0, (5.2a)
y-y,=-¢= —5+Vs; (5.2b)
r=>b: e,-Vy =0, (5.3)

where e, is the unit vector in the I' direction. Equations (5.2a) and (5.3) follow
from that the normal component of the electric current density is continuous at the
particle surface and no current can be conducted into the thin double layer adjoining
the insulating cavity wall (which may have surface charges, but does not have surface
reactions) (Keh and Anderson 1985; Kalsin et al. 2006), respectively. £(8,¢) in Eq.
(5.2b) is the zeta (Nernst) potential non-uniformly distributed over the particle surface
(Keh and Li 1994; Hsieh and Keh 2007; Yariv 2011), which is expressed as the sum

of its average ¢ and deviation distribution —V_(8,¢) from the average subject to

the constraint
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["[v.sinododp=0. (5.4)

Here, a linear anodic/cathodic kinetics, which is the simplified Butler-Volmer kinetic
expression with a small surface overpotential, for a completely reversible interfacial

electrochemical reaction [namely, the reaction rate or current density at the particle

surface equal to (i,nF/RT)(y, -y —¢) with ainF/oRT >>1, where i, and n

are the exchange current density and number of charge transfer, respectively, in the
reaction, F is the Faraday constant, R is the gas constant, and T is the absolute
temperature] (Keh and Li 1994; Li and Keh 1997; Rock et al. 2013) is assumed to
distribute over the particle surface. The current conservation constraint requiring
that the net current into the particle be zero (Moran and Posner 2011; Yariv 2011;
Sabass and Seifert 2012) is satisfied by Egs. (5.2)-(5.4). The electric field induced
by the fluid motion under the applied magnetic field is negligible relative to that
developed from the electrochemical reaction on the particle surface (the typical value

of the ratio a?B2c /7 will be discussed in Subsection 5.4.3) .
The general solution of y, and v, satisfying the requirement of finite

potential inside the particle, can be expressed as (Jackson 1976)

© |
Vo =Vot D 2 Con? Yin s (5.5a)
1=0 m=-1
_ o |
w=y,—C+ Y D [A + Dy PV, (5.5b)
=0 m=-1

where y=r/a, y, isthe electric potential at the particle center,

21 +1 (I—m)!

dn (Lo P (cos@)e™ (5.6)

YIm (97¢) =

are spherical harmonics (the operations of their vector spherical harmonics are

presented in Appendix B), R" is the associated Legendre function of order 1 and
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degree m, and C,,, A,, and D,, are the unknown constants to be determined

from the boundary conditions.

Applying Egs. (5.2) and (5.3) to Eq. (5.5), we obtain

Cpp =—(1 + D)1~ 28, (0))E,,, (5.7a)

An =1 +)2 7S, (67)E,,, (5.7b)

Dy =167S,(07)E,,, (5.7¢)
where

S, (X) =[1+1(x+1) + (1 + DA (x-1)] ", (5.8a)

Ep = [V, Ynsingdodg, (5.80)

A=alb, 0 = o,/o, and Y,.(6,4) is the orthonormal conjugate of Y, (6,¢)
(Jackson 1976).
With the knowledge of w, and w, the electric current density distributions in

the particle and fluid phases due to the interfacial electrochemical reactions can be

obtained as

J,=-0,Vy, and J=-Vy, (5.9a,b)

respectively, same as Eq. (4.4), which increase with the characteristic magnitude of

vV, but are independent of the constant potentials £ and y,.

5.2 Magnetic flux density distributions

The magnetic flux density distributions are governed by
V-B,=0, VxB,=u,Jd,,(0<r<a) (5.10a,b)
for the particle and
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V-B=0, VxB=uJ,(a<r<b) (5.10c,d)
for the fluid, where the magnetic permeabilities 4, and x are constants.

The boundary conditions for the magnetic flux density distributions at the

particle surface and cavity wall are

r=a: e -(B-B,)=0, (5.11a)
B

erX(E——")=0; (5.11b)
7

r=b: e,-(B-B,)=0. (5.12)

Equation (5.10)-(5.12) are the same as Eqs. (4.7)-(4.9).
The solution of Egs. (5.10)-(5.12) with the substitution of Egs. (5.5) and (5.9)

can be obtained in terms of spherical harmonics and expressed as

© | C
B, =1,0,>. . i ﬁ'Lmly'rer X VY, — 1, VP, (5.13a)
1=0 m=-I
SN A| I D| —(1+1)
B:yUZZ[ﬁ)/ —Tmy Jre, xVY,, —uV®, (5.13b)
1=0 m=-1
where
B .
@, =-3—=S,(u )rcosd, (5.14a)
Y7
B00 * * * -3
§D=—781(,u N +2—(u —1)y]rcosd, (5.14b)
and 4 =l p.

The first terms in Eq. (5.13) involving the electric conductivities arise from the
self-electrochemical reactions occurring on the particle surface, whereas the second
terms whose curls vanish are caused by the applied magnetic flux density. The
magnitude of either ratio of the first-to-second terms has the order uoV, /B, , which

is very small (will be discussed in Subsection 5.4.3) .
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5.3 Particle velocities

The fluid outside the thin electric double layers adjacent to the moving particle
and stationary cavity wall is electrically neutral. Thus, its motion in the presence of
the applied magnetic flux density and the electric current density caused by the
self-electrochemical reactions on the particle surface is governed by the Stokes
equations modified with a Lorentz force density, same as Eq. (4.12),

nViv=Vp-JxB, (5.15a)

V-v=0, (5.15b)
where vV and p are the fluid velocity and dynamic pressure distributions,
respectively. Here, the Coulomb body forces in Eq. (5.15a), which are proportional
to vV (Yariv 2010, 2011), disappear with the validity of Eq. (5.1b).

The boundary conditions for the fluid velocity field at the no-slip particle surface
and cavity wall are

r=a: v=U+aQxe, (5.16)

r=>b: v=0, (5.17)
where U and Q are the to-be-determined translational and angular velocities,
respectively, of the particle caused by the MHD effect. As mentioned in the
beginning of this section, the slip velocities at the solid surfaces due to
electro-osmotic effect are not considered here.

Following Teubner’s approach to obtain the particle velocities (without solving
for the fluid velocity) with a generalized reciprocal theorem, we can express the
force and torque balance equations in terms of surface and volume integrals as

6rnnaf . U=F(c", 1), (5.184a)
8nna’f, Q=T(c ,u') , (5.18b)

where the total applied force F(c", ") acting on the particle is the same as Eq. (4.16)
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and the total torque acting on the particle is

(o' )= [ _re.xa"-eds+[[[ V' (3xB)av

a<r<b

+[[[ . re,x(3,xB,)dv. (5.19)
Note that f, and f, are the hydrodynamic resistance coefficients for the
translation and rotation, respectively, of the sphere driven by a body force field in the

concentric spherical cavity given by Eq. (3.19), 6" is the magnetic Maxwell stress

tensor given by Eq. (4.17), and v is given by Eq. (3.18b).
Substituting Egs. (5.5)-(5.9) for the electric current density distributions and Egs.
(5.13) and (5.14) for the magnetic flux density distributions into Eq. (5.18) and

performing mathematical operations, we obtain the particle velocities

u=UaZDxB_, (5.20a)
n
* 0
0-020-8B_, (5.20h)
n

where D and Q are the dipole and quadrupole moments, respectively, of the zeta

potential distribution on the particle surface defined by

1 2n pm R
D:Ej0 jovser3|n9d0d¢, (5.21a)

1 2n pm .
cg:Ej0 [ V.(3ee, ~1)singdodg, (5.21b)

the dimensionless translational and rotational mobility parameters of the particle

U= ﬁl__ﬁjs) 078,(07)S, (1) (k' Uy +u,) (5.222)
Q= %532 (07)S, (1 )W o + @), (5.22b)

and
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u, =3(7+131+104* -24* -84* -52°) , (5.23a)

u, =(L-A)(7+172+154* +52° + 2%), (5.23b)
@, =10+ 20 + 3042 + 294 + 284° +12/° + 6.1°, (5.23¢)
@, =2(1-1)(1+31+61° +52°). (5.23d)

Note that the particle velocities depend on the distribution and rate of the interfacial
electrochemical reaction via the dipole and quadrupole moments of V..

Clearly, both U™ and @~ are positive functions of the particle-to-fluid electric
conductivity ratio ¢ and magnetic permeability ratio x4 as well as the
particle-to-cavity radius ratio 2 only, and the particle velocities are proportional to

the fluid conductivity o or particle conductivity o, = oo . For the case that either

the particle or the fluid is nonconductive (o,=0 or o=0), the electric current

disappears and there is no particle motion. Note that Eq. (5.20) predicts U and Q

to be bilinear in the products DxB_ and Q-B_, respectively, indicating that the

integral terms of the second orders V? and B? in the Maxwell stress ¢ and
Lorentz force densities JxB and J,xB, in Eq. (5.18) vanish and make no

contribution to the particle velocities.
In the limit 2 — 0 (the cavity wall is at an infinite distance from the particle),

Eq. (5.22) reduces to

- 70" (3" +1)
4o+ +2)]

(5.24a)

« o5y +1)
200" +3) (i +2)

(5.24b)

In the limit 2 —1 (the particle fills the cavity up completely), Eq. (5.22)
results in U =Q =0. As expected, the translational and rotational velocities of
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the particle vanish in this limiting case.

5.4 Results and discussion

Equation (5.20) for the motion of a spherical particle in a concentric spherical
cavity induced by the interaction between the self-electrochemical reactions on the
particle surface and an applied magnetic field indicates that the translational and
angular velocities of the particle are proportional to the dipole and quadrupole

moments, respectively, of the potential distribution Vv_(9,4) over the particle surface.
The results of the particle mobilities obtained in Egs. (5.22)-(5.24) and the dipole and

quadrupole moments of some typical examples of Vv, calculated from Eq. (5.21) will

be discussed and compared with those of the electromagnetophoretic mobility of the

particle in this section.

5.4.1 Models of the zeta potential distribution
As an example, we consider a sphere composed of two orthotropically symmetric

caps of the constant zeta potentials with v, =V, and Vv, =V,, respectively, each
spanning a solid angle 2« (where 0<2a <m), connected by a middle section of the
constant potential v, =V,, as shown in Figure 5.2. Without loss in generality, we
take V,>0. The axis of revolving symmetry of this three-slice spherical particle is
defined by the unit vector € (outward to the cap surface of the potential V,), which
is allowed to orient arbitrarily with respect to the applied magnetic field B_. From
the normalization requirement on the potential distribution Vv, given by Eq. (5.4), we

have

1-cosa
V,=——"—"—(\V,+V,). 5.25
=, V) (5.25)
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Three special cases of this three-slice particle may be of interest.
The first special case is a sphere with an odd distribution of the potential V,, and

Eq. (5.25) is replaced by

V,=-Vv, and V,=0. (5.26)
For an odd distribution of Vv, over the particle surface, its quadrupole moment
vanishes (Q =0), and Egs. (5.13a) and (5.26) lead to the dipole moment as

D :%sinz aVv,e . (5.27)
Thus, the particle will translate without rotation perpendicular to both the applied
magnetic field B_ and the particle orientation €, as long as they are not collinear.
For a given finite potential strength V, and non-collinear orientation € relative to

B, the velocity of the particle (or the dipole moment) increases monotonically with

the solid angle 2¢ fromzeroas « =0 tothe maximumas a=mn/2.
The second special case, in contrast to the previous one, in Figure 5.2 is a sphere

with an even distribution of the potential V_, and Eq. (5.25) reduces to

V,=V, and v;-%vl. (5.28)

For an even distribution of Vv, over the particle surface, its dipole moment disappears
(D=0), and Eqgs. (5.21b) and (5.28) result in the quadrupole moment as

Q:%sinzavl(See— 1. (5.29)

Thus, the particle will rotate without translation for any arbitrary particle orientation
€ relative to the applied magnetic field B_. For such a particle with specified
finite values of the solid angle 2« and the potential strength V,, its angular velocity

has a minimum magnitude in the direction of —B_ when the axis of revolving
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symmetry is normal to the applied magnetic field and has a maximum magnitude

(doubling the minimum) in the direction of B_ when they are collinear; the

dependences of the magnitude and direction of the angular velocity on the orientation

e relative to B, are monotonic in between these two limits. For a given finite
potential strength V, and orientation € relative to B_, the angular velocity of the
particle (or the quadrupole moment) increases monotonically with the solid angle 2«

from a=0 to a==n/2. Forthe singular situation of « =0, Egs. (5.28) and (5.29)
result in V, > o (on two point sources at the poles) and Q=-V,(3ee—1) for a
finite value of V,. For the other singular situation of a«=m=/2, Egs. (5.28) and

(5.29) lead to V, - —oo (on a circle sink at the equator) and Q= (V,/2)(3ee—1) for
a finite value of V,.

The third special case in Figure 5.2 is a sphere composed of two supplementary

caps of potentials V, and V,, respectively, and Eq. (5.25) becomes

l1-cosa
V,=V,=——"V,. 5.30
% 1icosa ¢ (5:30)

For this case, the potential distribution Vv, over the particle surface is neither odd nor
even, and the dipole and quadrupole moments of Vv, can be calculated using Egs.

(5.21) and (5.30), with the result

D :sinZ%VIe : (5.31a)

Q= COSasinZ%V1(3ee —1y. (5.31b)

Equations (5.20) and (5.31) predict that the particle will translate perpendicular to

both the applied magnetic field B_ and the particle orientation €, if they are not

collinear, and rotate for any arbitrary € relativeto B_. For a given finite potential
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strength V, and orientation € relative to B_, the translational velocity of the

particle (or the dipole moment) increases monotonically with the solid angle 2«
from =0 to a==n/2, whereas the angular velocity of the particle (or the
quadrupole moment) first increases with 2a from «=0 to a maximum [with
Q=(V,/8)(3ee—1)] at «==/3, and then decreases with 2¢ to zero at a=n/2.
Since the dipole moments given by Egs. (5.31a) and (5.27) and the quadrupole
moments given by Egs. (5.31b) and (5.29) for the current and previous cases have
identical directions, respectively, their dependences of the magnitudes and directions

of the translational and angular velocities of the particle on the orientation €

relative to B_ have the same behaviors. For the singular situation of « =0, Egs.
(5.30) and (5.31) lead to V, »> o (on a point source at one pole), D=-V,e, and
Q=-V,(3ee—1) for afinite value of V,.

When the two caps of the particle are hemispherical in the first or third special
case discussed above (with ¢ =n/2 and Vv, =-V,) to form a Janus sphere, both Eq.
(5.27) and Eq. (31) reduce to D=(V,/2)e and Q=0. For this particular case of
an odd distribution of V_, the dipole moment reaches its maximum for a given V,
and the particle translates at the greatest speed for a specified orientation € relative
to the applied magnetic field B_ without rotation. If the orientation € is

randomly distributed for an ensemble of identical particles with the zeta potential
distribution in any of the above three cases, the average of Eq. (5.20) with Eq. (27),
(29), or (31) over all e leads to zero mean translational and angular velocities of the
ensemble, as expected.

5.4.2 Particle mobility parameters

We plot the translational and rotational mobility parameters Ug and QO of an
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unconfined spherical particle (A = 0) with interfacial self-electrochemical reactions in

an applied magnetic field as calculated from Eq. (5.24) in Figure 5.3 and Figure 5.4,
respectively, for various values of the particle-to-fluid electric conductivity ratio o

and magnetic permeability ratio ,". For a constant value of ", both U, and
QO increase monotonically with an increase in o from zeroat o =0; for a given
value of o, Ug and QO increase monotonically with an increase in x from
finite constants at »"=0. Equation (5.24) gives U, =7/8 and ,=1/8 in the
limit of 4" =0 and ¢" >, U, =21/4 and Q;=5/4 in the limit of 4" — o
and o >, as well as U;=7/9 and Q,=1/5 for the special case of
o =u =1 (the particle and suspending fluid have the same electric conductivity
and magnetic permeability). In general, U; is greater than QO by a factor about
4.

The normalized mobility parameters U /U, and Q7 /€, of a confined

particle with self-electrochemical surface reactions in an imposed magnetic field
calculated from Egs. (5.22) and (5.24) as functions of the particle-to-cavity radius

ratio A are plotted in Figure 5.5 and Figure 5.6, respectively, for various values of

the parameters o~ and ,*. For specified values of o and 4", both U"/U,

and Q°/Q, decrease monotonically with an increase in A from unityat 2 =0 to

zeroat A=1. The boundary effect of the cavity on the translational velocity of the

particle induced by the MHD force (which is stronger than the effect on the rotational
velocity) is equivalent to (in the particular case of o =1/3 and 4 =1,
U™ /U, =1/ f, for an arbitrary value of A and the effect is exactly the same as that

on sedimentation) that caused by gravitational fields (Happel and Brenner 1983; Keh
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and Chang 1998), but is much stronger than that in electrophoresis, diffusiophoresis,

and thermophoresis (Keh and Chang 1998; Keh and Hsieh 2007). For a constant
value of 2, U /U, and Q°/Q, decrease (or the boundary effect becomes

stronger) with an increase in ¢ and increase (or the boundary effect gets weaker)

with an increase in ", keeping the other parameter unchanged. The dependence of
U”/U, on the parameters o~ and . is much less sensitive than that of Q°/Q;.

Note that the curves with o =0 in Figure 5.5 and Figure 5.6 are drawn only to

illustrate the upper bounds of the normalized mobilities for specified values of 4~

and A knowingthat U™ =Q =0 in this limit.

5.4.3 Typical dimensionless numbers and particle velocities

For the formulas of the translational and angular velocities of the particle
obtained in Egs. (5.20)-(5.23), which are exact for any distribution of the zeta
potential distribution at the particle surface, to be valid, it is necessary to assume that
the dimensionless numbers wuoV, /B, and a’B’c/n (the square root of the latter is
known as the Hartmann number) (Moffatt and Sellier 2002; Yariv and Miloh 2009)
are much less than unity so that the magnetic flux density induced by the electric
current density J is small compared with the applied magnetic field B, and the
Lorentz field vxB induced by the fluid motion is weak relative to the electric field
—Vy generated by the interfacial electrochemical reactions. For a particle with
a=1um and Vv, of the order 100 mV in aqueous solutions of o =10 S/m with a
prescribed magnetic flux density B, =1T, the typical values of uoVv,/B, and
a’B2o/n are 10° and 10°® respectively. Thus, the result in Egs. (5.20)-(5.23) is

sufficiently accurate in practical applications.
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The typical autonomously propelled swimmers are bimetallic nanomotors, and

the electric conductivity of the particle is much larger than that of the fluid (the
conductivity ratio o >>1). For this case, Egs. (5.20) and (5.21) indicate that the

translational and angular velocities of the particle are independent to o and
proportional to the fluid conductivity o . Thus, the MHD effect of the
self-electrochemical reactions occurring on the particle surface is significant in fluids
of high conductivity. Note that the typical magnitudes of the translational velocity

U and angular velocity € of a particle (with a=1uzm and Vv, of the order 100
mV in aqueous solutions of o =10 S/m with an applied magnetic flux density B, =

1T) predicted by Eq. (5.20) could be 10 m/s and 10° s?, respectively, which are
unexpectedly significant. With these particle velocities, the typical value of the

Reynolds number is 107,

5.4.4 Comparisons with electromagnetophoresis and auto-phoresis
The MHD velocity obtained in Eq. (5.20a) for a spherical particle with interfacial

self-electrochemical reactions is different from the electromagnetophoretic velocity
given by Eq. (4.18) which does not equal zeroas ¢ =0 and can reverse its direction
if the value of o or " varies. Also, the particle velocity in Eq. (5.20a) is
proportional to both the fluid conductivity o and the particle radius a (evidently,
the quantity oD/a stands for the effective electric current density induced by the
interfacial reactions to follow a boundary-corrected Stokes law), whereas the
electromagnetophoretic velocity is independent of the fluid conductivity alone (only
depends on the conductivity ratio o) and proportional to a®.

On the other hand, the migration velocity of electrocatalytic micro/nanomotors in

the absence of applied magnetic field can decrease with the fluid conductivity (Paxton
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et al. 2006; Golestanian et al. 2007) and swimmer size (Wheat et al. 2010; Ebbens et
al. 2012) because these swimmers undergo the self-electrophoresis and/or
self-diffusiophoresis with thin interfacial diffuse layers relative to the particle size
(force-free phoretic motion with an apparent slip velocity at the particle surface)
(Golestanian et al. 2007; Keh and Hsieh 2007; Moran and Posner 2011; Yariv 2011),
instead of the MHD motion induced by the Lorentz force. These opposite
dependences on solution conductivity and particle size between MHD and
auto-phoretic effects suggest a good magnetically-guided efficiency for a large

electrocatalytic micro/nanomotor swimming in a highly conductive fluid.
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Figure 5.1 Geometric sketch for the motion of a spherical particle undergoing
interfacial electrochemical reactions in an applied magnetic field in a concentric

spherical cavity.
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Figure 5.2 Sketch for a three-slice spherical particle composed of two

orthotropically symmetric caps of the constant surface potentials V, and V,,

respectively, each spanning a solid angle 2«, connected by a middle section of the

constant surface potential V,.
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Figure 5.3a  Plots of the translational mobility parameter U; calculated from Eq.
(5.24a) for various values of the electric conductivity ratio o and magnetic

permeability ratio i
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Figure 5.3b  Plots of the translational mobility parameter U, calculated from Eq.

(5.24a) for various values of the electric conductivity ratio o  and magnetic

permeability ratio 4.
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Figure 5.4a  Plots of the rotational mobility parameter QZ calculated from Eq.

(5.24b) for various values of the electric conductivity ratio o and magnetic

permeability ratio 4 .
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Figure 5.4b  Plots of the rotational mobility parameter €, calculated from Eq.

(5.24b) for various values of the electric conductivity ratio o and magnetic

permeability ratio i
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Figure 5.5 Plots of the normalized translational mobility U*/U; calculated from
Egs. (5.22a) and (5.24a) versus the particle-to-cavity radius ratio A for various

values of the electric conductivity ratio o and magnetic permeability ratio u .
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Figure 5.6 Plots of the normalized rotational mobility Q*/Q; calculated from
Egs. (5.22b) and (5.24b) versus the particle-to-cavity radius ratio A for various

values of the electric conductivity ratio o and magnetic permeability ratio u .
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Chapter 6

Conclusions

The quasi-steady motions of a spherical colloidal particle inside a concentric
spherical cavity filled with a conducting fluid induced by the MHD effect are
analyzed at low Reynolds number. Through the use of a generalized reciprocal
theorem to the Stokes equations modified with the Lorentz force density resulting
from the interaction of an applied magnetic field with the existing electric current and
the consideration of the Maxwell stress to the force exerted on the particle, the
translational and angular velocities of the particle are obtained in closed forms valid
for an arbitrary value of the particle-to-cavity radius ratio.

In Chapter 2, the MHD effects on a translating and rotating colloidal sphere in an
arbitrary electrolyte solution prescribed with a general flow field and a constant
magnetic field are analyzed. The thickness of the electric double layer adjacent to
the particle surface can be arbitrary relative to the particle radius. The equilibrium
double-layer potential distribution is determined through the use of the Debye-Huckel
approximation. The modified Stokes equations governing the fluid velocity field are
dealt with using a simple perturbation method and a generalized reciprocal theorem,
and explicit formulas for the translational and angular velocities of the particle
induced by the MHD effects are obtained in Eq. (2.14), with the relevant mobility
parameters (dimensionless functions of xa) given by Eq. (2.15) and Figs. 2.2 and 2.3.
The MHD effects on the particle movement associated with the translation and
rotation of the particle and the ambient fluid flow are found to be monotonically

increasing functions of xa, and the interaction between the magnetic field and a pure
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rotational or straining Stokes flow produces no direct MHD effect on the particle
when its electric double layer is very thick. The MHD effect caused by the pure
straining flow of the electrolyte solution is able to drive the particle to rotate, but
makes no contribution to the translation of the particle.

In Chapter 3, the MHD effects on the translation and rotation of a charged
colloidal sphere in a concentric spherical cavity filled with an arbitrary electrolyte
solution subject to a uniformly applied magnetic field are analyzed. The thickness of
the electric double layers adjacent to the solid surfaces can be arbitrary relative to the
particle and cavity radii. The equilibrium double-layer potential distribution in the
fluid phase is determined through the use of the Debye-Huckel approximation. The
modified Stokes equations governing the fluid velocity field are dealt by using a
simple perturbation method and a generalized reciprocal theorem, and closed-form
formulas for the translational and angular velocities of the confined particle resulting
from the MHD effects are obtained in Egs. (3.20) and (3.28), with the relevant
mobility parameters given by Egs. (3.21) and (3.29) and Figs. 3.2-3.7. These
mobility parameters are qualitatively and quantitatively sensible functions of the
separation parameter A and electrokinetic parameter xa . In general, the
proximity of the cavity wall diminishes the MHD migration but enhances the MHD
rotation of the particle.

In Chapter 4, the EMP migration of a spherical particle situated at the center of a
spherical cavity filled with a conducting fluid subjected to uniformly applied electric
and magnetic fields is analyzed. After solving the electric current and magnetic flux
density distributions in the particle and fluid phases of arbitrary electric conductivities
and magnetic permeabilities, the Stokes equations modified with the resulted Lorentz
force density for the fluid motion are treated by a generalized reciprocal theorem, and

the EMP migration velocity of the particle is obtained explicitly in Egs. (4.19)-(4.21).
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The effect of the Maxwell stress, which was neglected in previous studies, on the
EMP force and velocity of the particle is found to be significant. The migration
velocity of the particle in general decreases monotonically with an increase in the

particle-to-cavity radius ratio A, with an exception for the case that the electric
conductivity ratio o is large and the magnetic permeability ratio ,* is small,

where the particle may reverse its direction of migration with the variationin 4. At
the touching limit A =1, the particle velocity vanishes, but the EMP force acting on

the particle is finite. The boundary effect on the EMP migration of the particle,
which increases with an increase in ¢ and decreases with an increase in 4, is

equivalent to that on its sedimentation, but is much stronger than that on its
electrophoretic motion.

In Chapter 5, the MHD motion of a spherical particle with interfacial
self-electrochemical reactions in a concentric spherical cavity filled with an ionic
fluid subject to an applied magnetic field is analyzed. The thickness of the electric
double layers adjacent to the particle and cavity surfaces is assumed to be small
relative to the particle radius and the distance between the solid surfaces, but the zeta
potential at the particle surface may have an arbitrary distribution.  After solving the
electric current and magnetic flux density distributions in the particle and fluid phases
of arbitrary electric conductivities and magnetic permeabilities, the Stokes equations
modified with the Lorentz force density for the fluid motion are treated by a
generalized reciprocal theorem, and the translational and angular velocities of the
particle induced by the MHD effect are obtained explicitly in Egs. (5.20)-(5.23).
These translational and angular velocities, which depend on the dipole and quadrupole
moments, respectively, of the zeta potential distribution over the particle surface,

decrease monotonically with an increase in the particle-to-cavity radius ratio A and
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vanishes in the limit. The induced velocities of the particle are unexpectedly
significant, and their dependence on the characteristics of the particle-fluid system is
physically different from that for EMP particles or phoretic swimmers. The
boundary effect on the movement of the particle with self-electrochemical surface
reactions induced by the MHD force increases with an increase in the particle-to-fluid
electric conductivity ratio ¢  and decreases with an increase in the magnetic

permeability ratio . This boundary effect is equivalent to that caused by the

gravity, but is much stronger than that in general phoretic motions.
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Q ~ a4

C,C,

C...D., E

Im?» =Im? =Im

List of symbols

radius of spherical particle, m

functionof 2 and y defined by Egs. (3.11)

radius of concentric spherical cavity, m

magnetic flux density, V - s -m™ (T)

uniform applied magnetic flux density, V - s -m (T)
function of 2 in Eqgs. (4.20)

coefficient of spherical harmonic

dipole moment of deviation distribution of zeta potential, V
unit vector outward to the cap surface of the potential V,
unitvectorin I and Z direction

constant rate-of-strain dyadic, s*

hydrodynamic resistance coefficients for the translation and rotation.
Faraday constant, C/mol

Force acting on the particle, N

unit dyadic

electric current density of the fluid and particle, A /m?
uniform applied electric current density, A /m?
dimensionless translational mobility parameter
dimensionless rotational mobility parameter

pressure distribution, N/m?

MHD effect induced fluid pressure, N-m™

quadrupole moment of deviation distribution of zeta potential, V
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r,o0,¢ spherical coordinates

r position vector from the particle center, m

R gas constant, J- K* -mol™

T absolute temperature, K

T Torque acting on the particle, N- m

u,, U, function of 2 in Egs. (5.23a,b)

u” dimenstionless translational mobility parameter

U translational velocity of the particle, m-s™

Uy MHD induced translational velocity of the particle, m-s™

V, deviation distribution of zeta potential, V

Vv fluid velocity field distribution, m-s™

v, zeroth-order flow field, m-s™

V), MHD effect induced fluid velocity, m-s™

v ,\_/R normalized Stokes flow field of translation and rotation, -, m
Vo ,\_/§ normalized Stokes flow field of translation and rotation in an

unbounded fluid, -, m

X,Y,2 rectangular coordinates, m

spherical harmonics of order | and degree m

m

Greek symbols

a perturbation expansion parameter, equal to g§p|Bw|/77
£ permittivity of fluid, C*- J*- m™

D D, magnetic scalar potential of the fluid and particle, A
n fluid viscosity, kg - m™* - s
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y equalto r/a

I';, Iy functionof 2 and y defined by Egs. (3.12)

K Debye screening length, m™

A equalto a/b

U, permeability of the fluid and particle, H/m (N/A?

n relative permeability

v, electric potential distribution of fluid and particle, V

,, @, function of A in Egs. (5.23c,d)

Q angular velocity of the particle, s*

Q, angular velocity of the particle without boundary, s™

Q, MHD induced rotational velocity of the particle, s™

Q dimensionless rotational mobility parameter

Yol total space charge density, C- m™

0,0, electrical conductivity of the fluid and particle, S:m™ (A- V1. m™)
o relative conductivity

c° Maxwell stress tensor of electric field contribution, N - m™
c" Maxwell stress tensor of magnetic field contribution, N - m™
< zeta potential of particle, V

Vg average zeta potential over the particle surface, V

T equalto r/b

Subscripts

p particle

w cavity wall

93



94




References

Bishop, K. J. M. and Grzybowski, B. A. (2007). "“Nanoions”: Fundamental properties
and analytical applications of charged nanoparticles”. ChemPhysChem 8:2171-2176.

Burdick, J., Laocharoensuk, R., Wheat, P. M., Posner, J. D. and Wang, J. (2008).
"Synthetic nanomotors in microchannel networks: Directional microchip motion and
controlled manipulation of cargo”. Journal of the American Chemical Society
130:8164-8165.

Busch, K. W., Gopalakrishnan, S., Busch, M. A. and Tombacz, E. (1996).
"Magnetohydrodynamic aggregation of cholesterol and polystyrene latex
suspensions”. Journal of Colloid and Interface Science 183:528-538.

Chang, Y. C. and Keh, H. J. (2008). "Diffusiophoresis and electrophoresis of a
charged sphere perpendicular to two plane walls". Journal of Colloid and Interface
Science 322:634-653.

Chaturvedi, N., Hong, Y., Sen, A. and Velegol, D. (2010). "Magnetic enhancement of
phototaxing catalytic motors". Langmuir 26:6308-6313.

Cheng, K.-L., Sheng, Y.-J., Jiang, S. and Tsao, H.-K. (2008). "Electrophoretic size
separation of particles in a periodically constricted microchannel”. The Journal of
Chemical Physics 128:101101-1-4.

Chung, J. and Liang, R.-C. (2009). Electro-magnetophoresis display, in U.S. Patent
No. 7576904.

Davidson, P. A. (2001). An Introduction to Magnetohydrodynamics. Cambridge
University Press, Cambridge, England.

De Las Cuevas, G., Faraudo, J. and Camacho, J. (2008). "Low-gradient
magnetophoresis through field-induced reversible aggregation”. The Journal of
Physical Chemistry C 112:945-950.

De Vicente, J., Segovia-Gutierrez, J. P., Andablo-Reyes, E., \ereda, F. and
Hidalgo-Alvarez, R. (2009). "Dynamic rheology of sphere- and rod-based
magnetorheological fluids". The Journal of Chemical Physics 131:194902-1-10.

95



Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A. and Bibette, J.
(2005). "Microscopic artificial swimmers". Nature 437:862-865.

Ebbens, S., Tu, M.-H., Howse, J. R. and Golestanian, R. (2012). "Size dependence of
the propulsion velocity for catalytic Janus-sphere swimmers"”. Physical Review E
85:020401-1-4.

Gibbs, J. G., Fragnito, N. A. and Zhao, Y. (2010). "Asymmetric Pt/Au coated catalytic
micromotors fabricated by dynamic shadowing growth”. Applied Physics Letters
97:253107-1-3.

Golestanian, R., Liverpool, T. B. and Ajdari, A. (2007). "Designing phoretic micro-

and nano-swimmers". New Journal of Physics 9:126-1-8.

Grant, K. M., Hemmert, J. W. and White, H. S. (2002). "Magnetic field-controlled

microfluidic transport”. Journal of the American Chemical Society 124:462-467.

Happel, J. and Brenner, H. (1983). Low Reynolds Number Hydrodynamics. Martinus
Nijhoff, Dordrecht, The Netherlands.

Haverkort, J. W. and Peeters, T. W. J. (2010). "Magnetohydrodynamic effects on
insulating bubbles and inclusions in the continuous casting of steel”. Metallurgical
and Materials Transactions B 41:1240-1246.

Henry, D. C. (1931). "The cataphoresis of suspended particles. Part I. The equation of
cataphoresis". Proceedings of the Royal Society of London. Series A 133:106-129.

Hsieh, T. H. and Keh, H. J. (2007). "Boundary effects on electrophoresis of a colloidal
cylinder with a nonuniform zeta potential distribution”. Journal of Colloid and
Interface Science 315:343-354.

Huang, Y. C. and Keh, H. J. (2005). "Transient electrophoresis of spherical particles at
low potential and arbitrary double-layer thickness". Langmuir 21:11659-11665.

Hubbard, J. B. and Wolynes, P. G. (1981). "An electrohydrodynamic contribution to
the Hall effect in electrolyte solutions”. The Journal of Chemical Physics
75:3051-3054.

liguni, Y. and Watarai, H. (2003). "Simultaneous measurement of the migration

velocity and adsorption force of micro-particles using an electromagnetophoretic

96



force under a high magnetic field". Analytical Sciences 19:33-37.

liguni, Y. and Watarai, H. (2005). "New principle of electromagnetophoretic
adsorption—desorption microchromatography”. Journal of Chromatography A
1073:93-98.

liguni, Y. and Watarai, H. (2010). "Dynamic electromagnetophoretic force analysis of
a single binding interaction between lectin and mannan polysaccharide on yeast cell
surface”. Analyst 135:1426-1432.

Jackson, J. D. (1976). Classical Electrodynamics. John Wiley & Sons, New York.

Kalsin, A. M., Fialkowski, M., Paszewski, M., Smoukov, S. K., Bishop, K. J. M. and
Grzybowski, B. A. (2006). "Electrostatic self-assembly of binary nanoparticle crystals
with a diamond-like lattice"”. Science 312:420-424.

Keh, H. J. and Anderson, J. L. (1985). "Boundary effects on electrophoretic motion of
colloidal spheres". Journal of Fluid Mechanics 153:417-4309.

Keh, H. J. and Chang, J. H. (1998). "Boundary effects on the creeping-flow and
thermophoretic motions of an aerosol particle in a spherical cavity”. Chemical
Engineering Science 53:2365-2377.

Keh, H. J. and Chen, S. H. (1996). "The motion of a slip spherical-particle in an
arbitrary Stokes-flow". European Journal of Mechanics - B/Fluids 15:791-807.

Keh, H. J. and Cheng, T. F. (2011). "Sedimentation of a charged colloidal sphere in a
charged cavity". The Journal of Chemical Physics 135:214706-1-10.

Keh, H. J. and Chiou, J. Y. (1996). "Electrophoresis of a colloidal sphere in a circular
cylindrical pore"”. AIChE Journal 42:1397-1406.

Keh, H. J. and Hsieh, T. H. (2007). "Electrophoresis of a colloidal sphere in a
spherical cavity with arbitrary zeta potential distributions". Langmuir 23:7928-7935.

Keh, H. J. and Hsieh, T. H. (2008). "Electrophoresis of a colloidal sphere in a
spherical cavity with arbitrary zeta potential distributions and arbitrary double-layer
thickness". Langmuir 24:390-398.

Keh, H. J. and Li, W. J. (1994). "Interactions among bipolar spheres in an electrolytic

cell”. Journal of The Electrochemical Society 141:3103-3114.
97



Kim, J. Y. and Yoon, B. J. (2002). "Electrophoretic motion of a slightly deformed
sphere with a nonuniform zeta potential distribution”. Journal of Colloid and
Interface Science 251:318-330.

Kim, J. Y. and Yoon, B. J. (2003). "High-order field electrophoresis theory for a

nonuniformly charged sphere”. Journal of Colloid and Interface Science 262:101-106.

Kline, T. R., lwata, J., Lammert, P. E., Mallouk, T. E., Sen, A. and Velegol, D. (2006).
"Catalytically driven colloidal patterning and transport”. The Journal of Physical
Chemistry B 110:24513-24521.

Kline, T. R., Paxton, W. F., Mallouk, T. E. and Sen, A. (2005). "Catalytic nanomotors:
remote-controlled autonomous movement of striped metallic nanorods™. Angewandte
Chemie International Edition 44:744-746.

Kolin, A. (1953). "An electromagnetokinetic phenomenon involving migration of

neutral particles”. Science 117:134-137.

Kolin, A. and Kado, R. T. (1958). "Fractionation of cell suspensions in an

electromagnetic force field". Nature 182:510-512.

Laocharoensuk, R., Burdick, J. and Wang, J. (2008). "Carbon-nanotube-induced
acceleration of catalytic nanomotors". ACS Nano 2:1069-1075.

Leenov, D. and Kolin, A. (1954). "Theory of -electromagnetophoresis. I.
Magnetohydrodynamic forces experienced by spherical and symmetrically oriented

cylindrical particles”. The Journal of Chemical Physics 22:683-688.

Li, W. J. and Keh, H. J. (1997). "Boundary effects on the bipolar behavior of a
spherical particle in an electrolytic cell”. Journal of The Electrochemical Society
144:3536-3544.

Luca, R. D. (2009). "Lorentz force on sodium and chlorine ions in a salt water
solution flow under a transverse magnetic field". European Journal of Physics
30:459-466.

Mills, R. A. (1968). "A microscopic formulation of electromagnetophoresis”. The
Bulletin of Mathmetical Biophysics 30:309-318.

Miloh, T. (2011). "Dipolophoresis of interacting conducting nano-particles of finite

98



electric double layer thickness". Physics of Fluids 23:122002-1-14.

Moffatt, H. K. and Sellier, A. (2002). "Migration of an insulating particle under the
action of uniform ambient electric and magnetic fields. Part 1. General theory".
Journal of Fluid Mechanics 464:279-286.

Moran, J. L. and Posner, J. D. (2011). "Electrokinetic locomotion due to
reaction-induced charge auto-electrophoresis”. Journal of Fluid Mechanics
680:31-66.

Moran, J. L., Wheat, P. M. and Posner, J. D. (2010). "Locomotion of electrocatalytic
nanomotors due to reaction induced charge autoelectrophoresis™. Physical Review E
81:065302-1-4.

Newman, J. S. (1973). Electrochemical Systems. Prentice-Hall, Englewood Cliffs, NJ.

Nozaki, O., Munese, M. and Kawamoto, H. (2004). "Determination of glycation on

diabetic erythrocytes by electromagnetophoresis”. Bunseki Kagaku 53:85-90.

O'Brien, R. W. and White, L. R. (1978). "Electrophoretic mobility of a spherical
colloidal particle”. Journal of the Chemical Society, Faraday Transactions 2:
Molecular and Chemical Physics 74:1607-1626.

Ohshima, H., Healy, T. W. and White, L. R. (1983). "Approximate analytic
expressions for the electrophoretic mobility of spherical colloidal particles and the
conductivity of their dilute suspensions”. Journal of the Chemical Society, Faraday
Transactions 2: Molecular and Chemical Physics 79:1613-1628.

Ozawa, S., Kurosaka, D., Yamamoto, |. and Takamasu, T. (2011). "DNA
electromagnetophoresis under the condition of magnetic fields perpendicular to
electric fields". Japanese Journal of Applied Physics 50:070212-1-3.

Paxton, W. F., Baker, P. T., Kline, T. R., Wang, Y., Mallouk, T. E. and Sen, A. (2006).
"Catalytically induced electrokinetics for motors and micropumps". Journal of the
American Chemical Society 128:14881-14888.

Paxton, W. F., Sen, A. and Mallouk, T. E. (2005). "Motility of catalytic nanoparticles
through self-generated forces". Chemistry — A European Journal 11:6462-6470.

Qi, H., Chen, Q., Wang, M., Wen, M. and Xiong, J. (2009). "Study of self-assembly of

99



octahedral magnetite under an external magnetic field". The Journal of Physical
Chemistry C 113:17301-17305.

Qian, S. and Bau, H. H. (2005). "Magnetohydrodynamic flow of RedOx electrolyte".
Physics of Fluids 17:067105-1-12.

Qin, M. and Bau, H. H. (2012). "Magnetohydrodynamic flow of a binary electrolyte
in a concentric annulus”. Physics of Fluids 24:037101-1-20.

Rock, R. M., Sides, P. J. and Prieve, D. C. (2013). "The effect of electrode kinetics on
electrophoretic forces". Journal of Colloid and Interface Science 393:306-313.

Sabass, B. and Seifert, U. (2012). "Nonlinear, electrocatalytic swimming in the
presence of salt". The Journal of Chemical Physics 136:214507-1-13.

Sekhar, T. V. S., Sivakumar, R. and Kumar, T. V. R. R. (2005).
"Magnetohydrodynamic flow around a sphere”. Fluid Dynamics Research
37:357-373.

Sellier, A. (2003). "Migration of an insulating particle under the action of uniform
ambient electric and magnetic fields. Part 2. Boundary formulation and ellipsoidal
particles"”. Journal of Fluid Mechanics 488:335-353.

Sellier, A. (2005). Migration of a solid conducting sphere immersed in a liquid metal
near a plane boundary under the action of uniform ambient electric and magnetic
fields, in The 15th Riga and 6th PAMIRConference on Fundamental and Applied
MHD, Rigas Jurmala, Latvia, 311-314.

Sellier, A. (2006). "Migration of a solid conducting sphere immersed in a liquid metal
near a plane conducting solid wall under the action of uniform ambient electric and

magnetic fields". Magnetohydrodynamics 42:317-326.

Sellier, A. (2007). "Slow viscous migration of a conducting solid particle under the
action of uniform ambient electric and magnetic fields". Computer Modeling in
Engineering and Sciences 21:105-132.

Sen, A., lbele, M., Hong, Y. and Velegol, D. (2009). "Chemo and phototactic

nano/microbots”. Faraday Discussions 143:15-27.

Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. and Murray, C. B. (2006).

100



"Structural diversity in binary nanoparticle superlattices". Nature 439:55-59.

Stuyven, B., Chen, Q., Moortel, W. V. d., Lipkens, H., Caerts, B., Aerts, A., Giebeler,
L., Eerdenbrugh, B. V., Augustijns, P., Mooter, G. V. d., Humbeeck, J. V., Vanacken, J.,
Moshchalkov, V. V., Vermant, J. and Martens, J. A. (2009). "Magnetic field assisted

nanoparticle dispersion”. Chemical Communications 45:47-49.

Tai, C. T. (1964). "A study of electrodynamics of moving media". Proceedings of the
IEEE 52:685-689.

Teubner, M. (1982). "The motion of charged colloidal particles in electric fields". The
Journal of Chemical Physics 76:5564-5573.

Tombécz, E., Ma, C., Busch, K. W. and Busch, M. A. (1991). "Effect of a weak
magnetic field on hematite sol in stationary and flowing systems”. Colloid and
Polymer Science 269:278-289.

Tretiakov, K. V., Bishop, K. J. M. and Grzybowski, B. A. (2009). "Additivity of the
excess energy dissipation rate in a dynamically self-assembled system". The Journal
of Physical Chemistry B 113:7574-7578.

Watarai, H., Suwa, M. and liguni, Y. (2004). "Magnetophoresis and
electromagnetophoresis of microparticles in liquids”. Analytical and Bioanalytical
Chemistry 378:1693-1699.

Wei, H.-H. and Jan, J.-S. (2010). "Self-propulsion and dispersion of reactive colloids
due to entropic anisotropy". Journal of Fluid Mechanics 657:64-88.

Wheat, P. M., Marine, N. A., Moran, J. L. and Posner, J. D. (2010). "Rapid fabrication
of bimetallic spherical motors". Langmuir 26:13052-13055.

Xu, Z., Li, T. and Zhou, Y. (2007). "Continuous removal of nonmetallic inclusions
from aluminum melts by means of stationary electromagnetic field and DC current".
Metallurgical and Materials Transactions A 38:1104-1110.

Yang, Y., Grant, K. M., White, H. S. and Chen, S. (2003). "Magnetoelectrochemistry
of nitrothiophenolate-functionalized gold nanoparticles”. Langmuir 19:9446-9449.

Yariv, E. (2009). "An asymptotic derivation of the thin-debye-layer limit for
electrokinetic phenomena”. Chemical Engineering Communications 197:3-17.

101



Yariv, E. (2011). "Electrokinetic self-propulsion by inhomogeneous surface kinetics".
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science
467:1645-1664.

Yariv, E. and Miloh, T. (2007). "Electro-magneto-phoresis of slender bodies". Journal
of Fluid Mechanics 577:331-340.

Yariv, E. and Miloh, T. (2009). "Boundary effects on electro-magneto-phoresis”.
Journal of Fluid Mechanics 622:195-207.

Yoon, B. J. (1991). "Electrophoretic motion of spherical particles with a nonuniform

charge distribution”. Journal of Colloid and Interface Science 142:575-581.

Zydney, A. L. (1995). "Boundary effects on the electrophoretic motion of a charged

particle in a spherical cavity". Journal of Colloid and Interface Science 169:476-485.

102



Appendix A

Generalized reciprocal theorem

Let v, and II, be the fluid velocity and stress fields satisfying the Stokes
equations modified with the force density X,. The governing equations of the fluid
velocity field Vv, are

V-, =X, =-V-", V.v,=0, (A.1a,b)
The force density X, is an electromagnetic force density or any other force density.
The boundary conditions for the fluid velocity field Vv, can be expressed as

v,=U+Qxr at r=a, (A.2a)

v, =0, at r=b or r—-ow,. (A.2b)

Let v, and II, be the normalized fluid velocity and stress fields satisfying
the homogeneous Stokes equations. The governing equations of the fluid velocity

field v, are

vV-i1,=0, V.v,=0. (A.3a,b)
=T
The field Vv, can be expressed as the translation field V  (dimensionless) or

—R
rotation field v  (with dimension of length) fluid fields. The boundary conditions
- - - _T _R
for the fluid velocity fields V and V can be expressed as

—R
v =I, v =Ixr at r=a, (A.4a)
v =0, v =0, at r=b,or row. (A.4b)
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From the generalized reciprocal theorem we obtain

II, :Av, =11, : Av, (A.5)
where
1 T
Av, ZE(Wi +(Vv,)) (A.6)

From the symmetry of the stress tensor, we have
I :Vv; =V (v, IL)-v,;-(V-II}). (A7)

Integrating the right-hand side of the above equation over the fluid volume V, we

apply the divergence theorem to obtain,

[V (v, M)V - v, (V- m)dv
\% \%
=—[v, I,-dS - v, - X,dV =—[v, T, -dS . (A.8)
S, % S,

The force and torque exerted on the particle surface by the hydrodynamic stress

are
Fy = [II"-dS =—6zaf,U— [V’ - XV, (A.9a)
S \Y
T, = [rx(".dS) = -8za’Q - | veeXdv, (A.9b)
S \%
where
" = —pl+2uA =—pl + p[Vv+(VV)]. (A.10)

The force and torque exerted on the particle surface by the electromagnetic stress are

R, = [m"-ds, (A.11a)
Sa
Ty = [rx(m"-ds), (A.11b)
Sa
where
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n" =g(EE—1|E|2|)+1[BB—3|B|2|j, (A.12)
2 U 2

The total force and torque exerted on the particle by the fluid are

Fy+Fy =—6z7af, U+ [ -dS— [V’ - X,dV, (A.133)
S, Vv

T+ Ty =—87z7°Q+ [rx (I -dS) - [V" - X,dV . (A.13b)
Sa Vv
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Appendix B

Vector spherical harmonics

B1. Definition of vector spherical harmonics (VSH)

Y., are the spherical harmonics, and we define three VSHs

Yin = Yin€ ¥, =rvy, D, =rxVY,
B2. Orthogonality of VSH

Y ¥, =0 Y @, =0 ¥, ®,=0

[Yin - YindQ = 8,5, ¥, ¥, dQ =10 +1)5, 5,

[®, @, dQ=10+1)5,5,, [Yin - ¥,dQ=0

[Yin - ®},dQ2=0 ¥, @, d2=0

B3. Multipole expansion of a vector field

E=3 3 (EL (MY, + EQ (¥, + EQ(1)®,.)

0
m
1=0 m=-I

B4. Gradient, divergence and curl of VSH:

The multipole expansion of a scalar field ¢ is

¢

i Z ¢Im (r)YIm

We can express its gradient, divergence and curl in VSH form.
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V¢ ZZdﬂmY +¢Im Im1

1=0 m=-1

dg;, 2., 1(1+1
V-E= ZZ( FEIm ( )E(l))YIm,

1=0 m=-1

“ o |(|+1) de® 1
VxE = EQY,. Im E(z)‘I’ +
>, (CIr )

ImI

@
e+ e e, ).
r dr

B5. Solution for the magnetic flux density
The governing equations for the magnetic flux density are
VxB=wl=-ouVy, (B.1)
V-B=0. (B.2)

The solution of electrical potential y which satisfies the Laplace equation is

wiZmWMOZZM&“EMHm, (8.3)

1=0 m=-1 1=0 m=-1

The gradient of y expressed by VSH is

Vl// ZZ V/ImY +V/Im\P (B4)

1=0 m—I r

The magnetic flux density can be solved by the VSH expansions
B=Y Z(B.m(r)Y +Bn (N, + B (N®,,) (B.5)

1=0 m=-I
From some identities of VSH, the curl and divergence of a magnetic flux density are
|

e 1(1+1 dB® 1 1_,
VxB=) > (- ( )B(Z)Y (d'r B(Z))‘I’ (—FBIm

1=0 m=-1

1)
B Lepya,)

(B.6)
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v B Zz(dBr ZBr l(l:—l) Im)YIm

1=0 m=-I

(B.7)

From the orthogonality of the VSH, we can obtain the unknown functions B,

BY, and B?.

The equation for B{? is

(B, 1oy gy ¥
dr r r

After solving the above equation, we obtain

1,a,. 1 r
B\, = uol- ()'1 m+—=(2)'Ej,]
r 1+1 a

The equations for B/ and BY are

)
Bin - Bl(nll) =0
r dr r
dB,, +EB,;, I(I +1) B(l’ 0
dr r

After solving the above equation, we obtain

e dyn(r
Blm: Z(Ijr()

BY = Xim(F)
r

where

® = Z‘O: ZZIm(r)YIm

1=0 m=-1

which satisfies the Laplace equation.

109

(B.8)

(B.9)

(B.10)
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