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中文ဇ要

次世代無線廣域網路 (WWAN) 通訊標準，如 IEEE 制定的 802.16
(WiMAX) 和 3GPP 制定的 LTE-Advanced 標準，由於其承諾將達成由
ITU-R所規畫的 4G無線網路願境而在近期獲得眾多的關注。然而，在
無線網路可用資源日趨虧乏的情況下，這些通訊標準採用了大量新技
術以提升資源的使用效率。然而，在現實的各種限制下，這些新技術
依然要面臨以有限的計算資源和處理時間內進行資源分配最佳化的挑
戰。

無線網路裡的資源管理問題的困難點在於他們牽扯到參與者的自私
行為與其之間的競爭關係。在無線網路的資源分配問題裡，由於資源
有限，當有一參與者 (如手機、平板和基地台等)取得較多資源時，其
他參與者往往會失去部分資源。此特性使其問題自然的出現了競爭行
為。當參與者受控或本身即為使用者時，我們可假定此類參與者為理
性行為者，而理性行為者在競爭環境下往往會表現出自私的行為。此
類行為和傳統處理資源分配問題的最佳化解法下假定所有參與者皆為
了某共同目標而遵守系統指令相違背。若放任此類自私行為不管，傳
統解法往往會面臨參與者行為不符預期且系統效能不彰的問題。近年
來，將賽局理論應用於無線網路資源分配理論的相關研究日漸熱門。
賽局理論是一套用來分析玩家之間的互動 (如競爭行為)的數學理論工
具。我們可以從賽局理論的角度來看待傳統的資源分配管理問題，並
藉由賽局理論的分析和理論基礎提出嶄新的解決方案。此類方案應保
持合理的效能、實作性，並能夠對自私行為進行有效的控管。

在本論文中，我們將探討異質網路、裝置對裝置通訊、以及群體廣
播等最新的網路系統，將針對各個系統裡的資源管理問題，提出新穎
的以賽局理論為基礎的方法論。我們所探討的系統都存在明顯的競爭
環境，並在我們的分析中發現了有害的自私行為。因此，我們根據分
析的結果和各個系統的特性，分別提出了可以有效管制自私行為的新
穎解決方案。我們透過理論證明或模擬實驗的方式，驗證了這些解決
方案在管制自私行為的同時，也保證了合理的系統效能和實作性。

在異質網路中，我們首先探討了微型基地台的涵蓋範圍問題，我們
首先觀察到在此類問題中，微型基地台從自私使用者所收集到的資訊
可能會有謊報而無法反映系統現況的問題。針對此類自私行為，我們
提出了以投票機制為基礎的賽局機制設計，藉此確保自私使用者會選
擇誠實回報他們所觀察到的系統狀況。接下來，我們分析在異質網路
裡的微型基地台定價問題。我們證明了藉由最佳的差異化合約設計和
微型基地台之間的搭配，我們可以有效地提升無線網路系統的服務品
質，同時系統服務商的利潤也有顯著的提升。最後，我們探討頻帶集
成的最佳規畫與設定問題。我們注意到在此類問題中，基地台一樣需
要從使用者收集其心目中的服務質量需求，而自私的使用者一樣有可

v



能會藉由謊報而獲得不正當的利益。針對此問題，我們提出了以拍賣
機制為基礎的設計，並以理論證明了自私使用者在此機制下會誠實地
回報他們的服務質量需求。
在裝置對裝置通訊系統中，我們觀察到此類系統的點對點傳輸特性

讓使用者更容易謊報他們所觀察到的資訊。同時，我們也注意到此類
系統的傳輸品質可以藉由簡單的資源交換機制獲得提升。從這兩點出
發，我們提出了以交換機制為基礎的賽局機制設計。此設計的運算複
雜度低，達到的資源分配結果滿足柏拉圖最適，同時也保證了使用者
會誠實地向基地台回報他們所觀察到的資訊。
最後，在群體廣播系統裡，我們首先討論了一個較抽象的社會學習

與網路外部性問題。我們提出了一個新的賽局模型：中國餐廳賽局以
處理這個問題。藉由分析這個賽局，我們可以預期自私使用者在有網
路外部性的網路裡的最佳決策。從這個賽局模型出發，我們探討了在
可伸縮編碼群體廣播系統裡的使用者影片訂閱問題。我們認為此類問
題其實是一個網路裡的決策問題，並可以使用我們的中國餐廳賽局來
分析。以此為出發點，我們提出了一個多維馬爾可夫決策過程來描述
此系統的長期效能演進。我們的分析顯示，當我們在系統套用最佳定
價時，我們不只最大化系統服務商的利潤，同時也提升了整個系統的
社會福利。
關ᓉ字：無線網路、資源管理、賽局理論、異質網路、裝置對裝置

通訊、群體廣播、自私行為

vi



Abstract

Next-generation wireless wide-area network (WWAN) standards, such as

IEEE 802.16 and 3GPP LTE-Advanced, raised lots of attentions in these days

since they are established for achieving the 4G standard requirements pro-

posed by ITU-R [1], which illustrates a colorful vision for the future wireless

communication. Nevertheless, the resource for wireless networking, such as

spectrum, is very limited and difficult to expand. In order to fulfill this vi-

sion with limited resource, these new wireless standards introduce numer-

ous advanced techniques to increase the resource utilization efficiency. Most

challenges in these techniques can be transformed into resource allocation

problems under the resource limitation constraints.

The resource management problems in wireless networks are difficult

since they involve complex competitions and selfish behaviors from partici-

pants in the wireless networks. An operation that increases the participant's al-

located resource inevitably reduces the resource for other participants, which

results in competitions. Additionally, when the participants are or controlled

by real humans, we can fairly assume that these participants are rational and

therefore selfish. The competition effect and selfishness of participants in

wireless networks imposes an serious threat to all existing solutions which

are based on traditional perspectives, which usually inherent an assumption

that all participants faithfully follow the orders of the system for some global

objective. In recent years, researchers discovered that game theory is suitable

for analyzing the wireless networking systems, especially for resource man-
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agement problems. Game theory is a mathematical tool applied to model and

to analyze the outcome of interactions, such as competitions, among multi-

ple decision-makers. It can help analyze and predict the selfish behaviors of

participants in wireless networks. It also provides a series of tools to regulate

those undesired selfish behaviors and eliminate the performance degradation

from the competition effects. By introducing game-theoretic approaches, we

can propose novel solutions that are efficient, practical, and robust to the self-

ish behaviors of participants in wireless networks.

In this dissertation, we propose novel game-theoretic approaches to sev-

eral resource management problems in the state-of-the-art wireless systems,

which are heterogeneous networks, D2D communication, and multicasting

system. Given the analysis based on game theory, we identify the potential

threats from selfishness and propose novel solutions to each problem in order

to address the selfish behaviors of participants while keeping reasonable effi-

ciency and practicability. Extensive simulations are also executed for evalu-

ating the performance of each proposed solutions.

In heterogeneous networks, we first study the femtocell coverage control

problem. We first identify that the system information collected from them

does not necessarily reflect the true status of the system due to the selfish

nature of mobile stations. Thus, we design FEmtocell Virtual Election Rule

(FEVER), a voting based mechanism that not only is proved to be truthful

and has low implementation complexity, but also strikes a balance between

efficiency and fairness to meet the different needs. Then, we study the femto-

cell service price problem in heterogeneous network. Femtocell technology

can be used to improve service quality and increase profit by attracting cus-

tomers. Meanwhile, differentiated contracts for different types of users also

show great potential for profit increase. We show that by applying differen-

tiated contracts in femtocell service. The profits of service providers can be

significantly increased. Finally, we study the carrier aggregation mechanism
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in LTE-Advanced system. We observe that selfish users may untruthfully re-

port their QoS requirements in order to manipulate the carrier activation and

resource block allocation. Therefore, we propose a truthful auction with a

greedy resource allocation algorithm in order to guarantee that all rational

UEs truthfully report their QoS requirements.

In D2D communication system, we observe that the ad-hoc characteris-

tic of D2D communication poses the truth-telling issue into the system. Ad-

ditionally, we find out that that the transmission quality in D2D communi-

cations can be significantly improved through a proper resource exchange.

Based on this observation, we propose a Trader-assisted Resource Exchange

(T-REX) mechanism, an exchange-based mechanism that converges in poly-

nomial time and achieves Pareto optimal. We prove that all rational D2D pairs

will truthfully report their information when the trader preference functions

are properly designed.

Finally, in the multicastins system, we first discuss the general social

learning problem in a network with exteranlity effects. We propose a game-

theoretic framework called Chinese restaurant game. Through analyzing the

Chinese restaurant game, we derive the optimal strategy of each agent and

provide a recursive method to achieve the optimal strategy. Based on this

framework, we analyze the scalable video coding multicasting system, which

is an effective solution for video streaming services in wireless networks. We

observe that the requests from users in such a system in fact is a social de-

cision making problem and can be formulated with Chinese restaurant game.

We propose a stochastic framework based on Multi-dimensional Markov De-

cision Process (M-MDP) to evaluate the corresponding system efficiency. We

show that the optimal pricing strategy, which maximizes the expected revenue

of the service provider, also increases the social welfare of the system.

Keywords: wireless networks, resource management, game theory, het-

erogeneous network, device-to-device communication, multicast, selfish
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Chapter 1

Introduction

1.1 Motivation

Wireless networking experiences significant technique advances in recent decades.

These advances, along with the accelerating deployments in all developed and most de-

veloping countries, is pushed by the increasing demands from the mass all over the world.

Next-generation wireless wide-area network (WWAN) standards, such as IEEE 802.16

and 3GPP LTE-Advanced, raised most attentions in these days since they are established

for achieving the 4G standard requirements proposed by ITU-R [1], which illustrates

a colorful vision for the future wireless communication in every place, every moment.

Nevertheless, the resource for wireless networking, such as spectrum, is very limited and

difficult to expand. In order to fulfill this vision with limited resource, these new wire-

less standards introduces numerous advanced techniques, such asmulti-input-multi-output

(MIMO), orthogonal frequency-division multiple access (OFDMA), carrier aggregation

(CA), heterogeneous networks, device-to-device (D2D) communications, multicasting/

broadcasting services, and so on. Some of them are used for achieving ultra-high through-

put, some are for maintaining service quality, and some are for increasing resource utiliza-

tion efficiency. These techniques are technically guaranteed to boost the service quality of

next generation wireless communications. Nevertheless, challenges still exist in applying

these techniques in real world scenarios.

Traditionally, the challenges in applying these techniques are from two perspectives:
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practicability and optimality, under the resource constraints. The practicability of a tech-

nique usually is the first to be addressed since a technique without a practical realization

or implementation cannot be applied in real world at all. Optimality issue arises when we

are interested in the optimal configuration in order to achieve the optimal yet theoretic

performance. In many scenarios, there is a tradeoff between the solutions from these two

perspectives. Most researchers focus on seeking a practical yet efficient solution for im-

plementing the techniques. Nevertheless, all solutions are under the constraints of limited

resource in wireless networks. Most challenges then can be transformed into a resource

management problem: given the available resource, how and on what degrees the new

technique can help improve the network performance?

We observe that there are some common characteristics in wireless network resource

management problems. Let's consider a typical wireless network with user devices (mo-

bilephones, tablets, etc.) and infrastructures (base stations, core networks, etc.) interact

with each other through wireless communications. A participant's operation, such as re-

questing resource, reporting QoS requirements, or determining transmission power, may

not only influence the service quality experienced by herself but also affects the ones expe-

rienced by others in the same network. Additionally, when the participants are controlled

by real humans, we can fairly assume that these participants are rational. A rational partic-

ipant's objective is to maximize her utility, which could be related to her experienced ser-

vice quality, data delivery/reception amount, or even revenue/profit in the system. Given

the fact that the resource is limited in wireless networks, an operation that increases the

participant's allocated resource inevitably reduces the resource for other participants, and

therefore degrades the service quality. The competition among the participants forms

naturally. Combining the competition effect and rationality of participants together, the

operations of these participants become selfish in wireless networks.

The selfishness of participants in wireless networks imposes an serious threat to all

existing solutions which are based on traditional perspectives, especially for resource

management problems. The solutions from traditional perspectives usually inherent an

assumption that all participants faithfully follow the orders of the system for some global
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objective. This assumption becomes invalid when participants are selfish, which could

lead to 1) undesired operations which are unexpected from traditional perspectives, and

2) degraded system performance due to fierce competitions among participants. A new so-

lution concept for wireless network resource management problems is required to analyze,

predict, or even regulate these selfish behaviors in order to prevent undesired performance

degradation.

Game-theoretic approach, a new perspective for wireless networking problems, can

help analyze and predict the selfish behaviors of participants in wireless networks. Game

theory is a mathematical tool applied to model and to analyze the outcome of interactions

among multiple decision-makers. It has been shown to be a powerful tool for analyz-

ing complex interactive system in economic and politic. Additionally, it also provides

a series of tools to regulate those undesired selfish behaviors and eliminate the perfor-

mance degradation from the competition effects. In recent years, researchers discovered

that game theory is also suitable for analyzing the wireless networking systems. Recall-

ing a typical wireless network with various participants interact with each other through

wireless communications by following designed protocols. Some or all participants can

be considered as players in the game, while the wireless communication techniques and

designed protocols can be considered as the game rules. Finally, the service quality or

performance experienced by participants can be considered their utility in the game. Fol-

lowing this formulation, we transform a wireless network resource management problem

into a game. The behaviors of selfish participants can then be studied through the well-

established solution concepts in game theory, such as best responses andNash equilibrium.

The undesired behaviors, such as untruthful information report, unfair competition, and

other cheating actions, can then be identified.

By introducing game-theoretic approaches into the wireless network resource manage-

ment problems, we potentially can propose novel solutions that are efficient, practical, and

robust to the selfish behaviors of participants in wireless networks. Those undesired be-

haviors in wireless networks that are identified through game-theoretic analysis could be

regulated by powerful tools provided in game theory. For instance, a device may request
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some resource with an amount exceeding the amount she required in a resource allocation

process. Such a selfish behavior may increase the probability that this device's require-

ment is satisfied, but it also degrades the overall resource utilization efficiency when the

resulting resource allocation deviates from the optimal one due to this untruthful request.

A game-theoretic pricing design can be implemented in the resource allocation process to

prevent such an issue. Through imposing a proper price on the resource, the requests from

the devices will more likely reflect their true requirements since increasing their demands

also lead to higher payment to them. Various game-theoretic techniques, such as voting,

pricing, auction, and so on, can be applied on various resource management problems in

wireless networks in order to regulate the undesired selfish behaviors and increase the sys-

tem efficiency. Nevertheless, most of them also require further expansion or modifications

in order to satisfy the practicability constraints in wireless networks.

Our objective is to understand the applications of game theory in various state-of-the-

art wireless networks, such as heterogeneous networks, device-to-device communications,

and multicasting system. In each system, we formulate the critical resource management

problem as a game, and then identify the potential selfish and undesired behaviors of par-

ticipants through game-theoretic analysis. Finally, we propose novel solutions to regulate

these behaviors in order to increase the system efficiency while satisfying the practica-

bility constraints. Both the theoretic improvements and limitations of game theory in

different wireless network resource management problems will be thoroughly studied in

this dissertation. In general, we show that game-theoretic approaches indeed benefit the

wireless network by providing efficient, practical, and robust solutions to various resource

management problems.

1.2 Dissertation Outline

In this dissertation, we first provide brief preliminaries on the wireless systems we

would like to investigate and the basic game theory concepts we would apply in Chapter

1.4. Then, we propose novel game-theoretic approaches to several resource management

problems in the state-of-the-art wireless systems in the following chapters, which are het-
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erogeneous networks (Chapter 2, 3, and 4), D2D communication (Chapter 5), and multi-

casting system with social learning (Chapter 6 and 7). All the studied systems share the

same characteristic that devices may selfishly compete for the limited resource in the wire-

less system, as we illustrated in each chapter. Given the analysis based on game theory,

we then propose novel solutions to each problem in order to address the selfish behaviors

of participants while keeping reasonable efficiency and practicability. Finally, we draw

our conclusions in Chapter 8.

1.2.1 Cell-Breathing inHeterogeneousNetworks: AVotingApproach

(Chapter 2)

Overlay macrocell-femtocell system, a popular type of heterogeneous network, aims

to increase the system capacity with a low-cost infrastructure. To construct such an in-

frastructure, we need to solve some existing problems. First, there is a tradeoff between

femtocell coverage and overall system throughput, which we defined as the cell-breathing

phenomenon. In light of this, we propose a femtocell downlink cell-breathing control

framework to strike a balance between the coverage and data rate. Second, due to the

selfish nature of mobile stations, the system information collected from them does not

necessarily reflect the true status of the system. Thus, we design FEmtocell Virtual Elec-

tion Rule (FEVER), a voting based direct mechanism that only requires users to report

their channel quality information to the femtocell base station. Not only is it proved to be

truthful and has low implementation complexity, but also strikes a balance between effi-

ciency and fairness to meet the different needs. The simulation results verify the enhanced

system performance under FEVER mechanism.

1.2.2 Service Price in Heterogeneous Networks: Optimal Contract

Design (Chapter 3)

Most service providers offer an unlimited data service plan under a flat, fixed-rate con-

tract to meet the huge demand. However, because service quality and user experience can
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vary dramatically in wireless communications, such a contract design is unable to pro-

vide equal service quality for all users, which greatly limits the profit potential of service

providers. As a result, mobile industries look to femtocell technology to improve service

quality and increase profit by attracting customers. Meanwhile, differentiated contracts

for different types of users also show great potential for profit increase. In this chapter,

we investigate unlimited data service plans in terms of enhancements from both femtocell

systems and differentiated contracts. The incentive compatibility (IC) issue in differenti-

ated contract design is considered under the overlay macrocell-femtocell system in both

split-spectrum and shared-spectrum models. The profits under optimal differentiated con-

tracts, with and without the IC condition are compared to traditional flat fee contracts, and

numerical results show that optimal differentiated contracts indeed generate more profits

and serve more users.

1.2.3 CarrierAggregation inLTE-Advanced System: AnAuctionDe-

sign (Chapter 4)

Carrier aggregation is introduced in LTE-Advanced for aggregating non-contiguous

spectrum into a virtual carrier. UEs with carrier aggregation capability can increase their

peak data rates by transmitting through the aggregated virtual carrier that virtually pro-

vides a larger transmission bandwidth. Nevertheless, it deserves further study on how

carrier aggregation should be implemented and configured in order to address the diverse

carrier quality experienced by UEs and their heterogeneous QoS requirements efficiently.

Additionally, most existing resource allocation methods relies on the assumption that UEs

always report their information truthfully, which may be unrealistic when UEs are ratio-

nal from a game-theoretic perspective. In order to address the preceding concerns, we

provide a utility-based game-theoretic approach to the carrier aggregation design in LTE-

Advanced system. We first formulate the resource allocation problem in carrier aggre-

gation as a non-linear optimization problem, which is proved to be NP-hard. Then, we

propose a truthful auction with a greedy resource allocation algorithm in order to 1) find

an efficient carrier activation and resource allocation solution under the QoS requirements
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of UEs, and 2) guarantee that all rational UEs truthfully report their QoS requirements.

Finally, we conduct extensive simulations in order to evaluate the system performance of

the proposed auction design.

1.2.4 Device-to-Device Communications in LTE-Advanced System:

A Resource Exchange Approach (Chapter 5)

Device-to-Device (D2D) communication could improve the efficiency of resource uti-

lization in cellular networks by allowing nearby devices to communicate directly with

each other. Nevertheless, one main challenge in D2D communication is resource alloca-

tion, given the diverse channel qualities of D2D devices. Additionally, when D2D devices

and users are rational, then from a game-theoretic perspective, the ad-hoc characteristic

of D2D communication poses the truth-telling issue into the system.

We observed that the transmission quality in D2D communications can be significantly

improved through a proper resource exchange. Based on this observation, we propose a

novel D2D resource allocation framework for an LTE- Advanced system. We theoreti-

cally prove that any arbitrary algorithm, either distributed or centralized, will converge

in the proposed framework whenever all performed exchanges are beneficial. Based on

the concept of beneficial exchange, we propose a Trader-assisted Resource Exchange (T-

REX) mechanism, an exchange-based mechanism that converges in polynomial time and

achieves Pareto optimal, as an efficient and flexible solution to the D2D resource alloca-

tion problem. The eNodeB regulates the D2D resource allocation through designing the

trader preference functions in the T-REX mechanism. By applying game-theoretic anal-

ysis to the D2D communication system, we prove that all rational D2D pairs will truth-

fully report their information when the trader preference functions are properly designed.

Finally, our simulation results show that the proposed T-REX mechanism significantly

mitigates the interference experienced by D2D devices in LTE-Advanced systems.
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1.2.5 Chinese Restaurant Game: Social Learning vs. Network Ex-

ternality (Chapter 6)

In a social network, agents are intelligent and have the capability to make decisions

to maximize their utilities. They can either make wise decisions by taking advantages

of other agents' experiences through learning, or make decisions earlier to avoid compe-

titions from huge crowds. Both these two effects, social learning and negative network

externality, play important roles in the decision process of an agent. While there are ex-

isting works on either social learning or negative network externality, a general study on

considering both effects is still limited. We find that Chinese restaurant process, a popu-

lar random process, provides a well-defined structure to model the decision process of an

agent under these two effects. By introducing the strategic behavior into the non-strategic

Chinese restaurant process, we propose a new game, called Chinese Restaurant Game, to

formulate the social learning problem with negative network externality. Through analyz-

ing the proposed Chinese restaurant game, we derive the optimal strategy of each agent

and provide a recursive method to achieve the optimal strategy. How social learning and

negative network externality influence each other under various settings is studied through

simulations. We also illustrate the spectrum access problem in cognitive radio networks

as one of the application of Chinese restaurant game. We find that the proposed Chinese

restaurant game theoretic approach indeed helps users make better decisions and improves

the overall system performance.

1.2.6 Stochastic SVC Multicasting model using Chinese Restaurant

Game (Chapter 7)

Heterogeneous multimedia content delivery over wireless networks is an important yet

challenging issue. One of the challenges is maintaining the quality of service due to the

scarce resource in wireless communications and heavy loadings from heterogeneous de-

mands. A promising solution is combining multicasting and scalable video coding (SVC)

techniques via cross-layer design which has been shown to be effectively enhancing the
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quality of multimedia content delivery service in the literature. Nevertheless, most ex-

isting works on SVC multicasting system focus on the static scenarios, where a snapshot

of user demands is given and remains the same. In addition, the economic value of SVC

multicasting system, which is an important issue from the service provider's perspective,

has seldom been explored. In this work, we study a subscription-based SVC multicast-

ing system with stochastic user arrival and heterogeneous user preferences. A stochastic

framework based on Multi-dimensional Markov Decision Process (M-MDP) is proposed

to study the negative network externality existing in the proposed system and theoretically

evaluate the corresponding system efficiency. A game-theoretic analysis is conducted to

understand the rational demands from heterogeneous users under different subscription

pricing schemes. By transforming the original dynamic and complex M-MDP revenue

optimization problem into a traditional average-reward MDP problem, we show that the

optimal pricing strategy which maximizes the expected revenue of the service provider

can be derived efficiently. Moreover, the overall user's valuation on the system, e.g., so-

cial welfare, is maximized under such an optimal pricing strategy. Finally, the efficiency

of the proposed solutions is evaluated through simulations.

1.3 Contributions of Dissertation

In summary, we made the following contributions in this dissertation:

Heterogeneous Networks

1. We are the first to study the cell-breathing phenomenon in heterogeneous networks.

We propose a novel femtocell cell-breathing control framework for managing the

load-balancing and coverage control among overlay cells.

2. Based on the cell-breathing framework, we formulate a game-theoretical model for

discussing the cheating issue in overlay network with selfish mobile stations. We

introduce the concept of voting theory into the cell-breathing control framework.

The proposed voting-based FEVER mechanism is proved to be truthful. This truth-
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ful strategies form a dominant-strategy Nash Equilibrium in FEVER mechanism,

which can be easily implemented. In addition, we prove that FEVER mechanism

offers the flexibility to strike a balance between capacity efficiency and allocation

fairness.

3. We propose a novel wireless service differentiation framework to investigate the

profit service providers make under a variety of differentiated contracts in the het-

erogeneous system. This framework addresses the differences between wireless

service quality among users, which is the basis of the service differentiation.

4. We draw a comparison between the shared-spectrum and split-spectrum systems

in our service differentiation framework and have derived the optimal (profit max-

imizing) contracts under three schemes: flat fee contracts, differentiated contracts

without incentive compatible concerns, and incentive compatible differentiated con-

tracts. In a split-spectrum system, it is difficult to further extract profits from MSs

as the only incentive compatible contract is a flat fee one. By contrast, in a shared-

spectrum system, there are differentiated contracts generating profits by raising ser-

vice prices for the MSs with good service qualities in femtocells, while providing

cheaper prices to other MSs with poor service qualities.

5. We address the heterogeneous characteristics of carrier quality, coverage, and UE

QoS requirements in the proposed game-theoretic approach to carrier aggregation

mechanism. We make use of the carrier aggregation to enhance the system perfor-

mance by satisfying the QoS requirements of UEs more efficiently. Specifically,

we consider two type of UEs, throughput-sensitive and delay-sensitive UEs, in this

work. The proposed solution effectively reduces the delay for delay-sensitive UEs

while satisfying the throughput requirements of throughput-sensitive UEs. Addi-

tionally, we propose a truthful auction design specifically for the heterogeneous

carrier quality and QoS requirements of UEs. We theoretically prove that the pro-

posed design indeed provides proper incentive for the UEs to truthfully report their

QoS requirements.
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6. All proposed solutions for each problem in heterogeneous networks are evaluated

through extensive simulations in our LTE-Advances simulator, which uses the mod-

els and parameters suggested in 4G evaluation document [1] and 3GPP LTE stan-

dard [2].

Device-to-device Communication

1. We propose a novel LTE-Advanced D2D resource allocation framework based on

the resource exchange approach. We reuse most existing LTE-Advanced compo-

nents and followed the same signalling flow logic in order to minimize the protocol

impacts.

2. We theoretically prove that the resource exchange approach is equivalent to the tra-

ditional resource allocation approach in the solution feasibility. Additionally, we

prove that any arbitrary algorithm, either distributed or centralized, will converge in

the proposed framework whenever all exchanges are beneficial. To the best of our

knowledge, we are the first group to present the resource exchange approach to the

D2D resource allocation problem.

3. We propose the Trader-assisted Resource Exchange (T-REX) mechanism as an effi-

cient and flexible solution to the D2D resource allocation problem in the proposed

framework. The T-REX mechanism identifies the beneficial exchanges through an-

alyzing the corresponding exchange graph. The algorithm's complexity is polyno-

mial, which makes it a practical solution to large-scale D2D networks. In addition,

the derived allocation is Pareto optimal; therefore, the efficiency is guaranteed. In

addition, we prove that the T-REX mechanism is strategy-proof when the trader

preference functions are properly designed.

4. All the proposed solutions were evaluated through the proposed LTE-Advanced

D2D simulator, which uses the models and parameters suggested in the latest 3GPP

technical contribution [3]. Our simulation results showed that the proposed T-REX

mechanism significantly mitigates the interference experienced by D2D devices.
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Additionally, the convergence of the proposed framework is verified and evaluated

in the simulations.

Social Learning and Multicasting System

1. We propose a novel game, called Chinese Restaurant Game, to formulate the so-

cial learning problem with negative network externality by introducing the strate-

gic behavior into the non-strategic Chinese restaurant process. Through analyzing

the Chinese restaurant game, we observe that the timing of making decision signifi-

cantly influences a participant's utility. We show that there exists a tradeoff between

two contradictory advantages, which are making decisions earlier for choosing bet-

ter actions and making decisions later for learning more accurate believes.

2. Chinese restaurant game is general enough to model various learning and decision

making problems in social network, cloud computing, and wireless networks. We

demonstrate how the model can be applied in real applications by studying the chan-

nel access and sensing problems in cognitive radio network. Through simulations,

we show that both the sensing accuracy and utilities of network users are enhanced

by applying the best strategies derived from Chinese restaurant game.

3. We develop a Markov decision process based stochastic framework to analyze the

resource allocation in a SVCmulticasting systemwith heterogeneous user demands.

By considering the stochastic user arrival, such a framework is more general than

the existing snapshot-based approaches in the literature.

4. We propose a game-theoretic model, which is based on Chinese restaurant game, to

analyze the behaviors of heterogeneous users. We study how rational and intelligent

users submit their demands, i.e., subscriptions, under two pricing schemes: one-time

charge scheme and per-slot charge scheme, and derive the equilibrium conditions

of the game. To the best of our knowledge, this is the first work bringing game

theoretic analysis to the SVC multicasting system.
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5. We theoretically evaluate the economic value of the SVCmulticasting system. Specif-

ically, we investigate the revenue-maximized policy and pricing strategies in both

one-time charge and per-slot charge schemes. We propose an efficient algorithm

to derive the optimal policy and pricing strategies of the SVC multicasting system.

Both theory and simulation results confirm that the derived solution not only maxi-

mizes the expected revenue but also optimizes the social welfare.
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1.4 Preliminaries

1.4.1 4G Heterogeneous Networks

High system capacity is one of the fundamental requirements of wireless communi-

cation system. Various techniques have been proposed in WiMAX and LTE-Advanced

(LTE-A) for enhancing the quality and transmission capacity such asMulti-InputMultiple-

Output (MIMO), Carrier Aggregation (CA), and other techniques [4]. While most ad-

vanced signal and transmission techniques potentially enhance the performance of wire-

less systems [4], they eventually reach the theoretical limitation due to the physical laws:

the signal quality. Most of next generation wireless networks are planned to operate in

high frequency spectrum. In such spectrum, the signals will degrade significantly in long

distance and indoor environments. This suggests that more areas will experience weak

signal receptions unless the network deployment is densified.

In order to boost network capacity in a flexible and cost-efficient manner, the con-

cept of Heterogeneous Networks (HetNets) has been introduced in LTE-A standard [5]. A

heterogeneous network consists of macrocells, which are deployed for serving large cov-

erage areas, and low-power and low-cost nodes such as picocells, femtocells, relay nodes,

or remote radio heads (RRHs), which provide services in areas with dedicated capacity.

The wireless signal quality can be greatly enhanced through the assistance from the low-

power nodes when they are properly deployed in the coverage holes in the macrocells.

Additionally, these low-cost nodes are more economically attractive as they usually re-

quire lower-cost infrastructure and lower requirements in terms of backhaul connections.

A typical HetNet in LTE-A is composed of lower-power base stations (BSs) underlying

in the existing macrocell system. These small BSs are intended to increase the signal

strength, offload the macrocells, and enhance the spectrum utilization. The deployment

of HetNets can be planned and conducted by the service provider in advance, or requested

and deployed by users themselves. The service area and operating spectrum of the small

cells is usually partly or fully overlapping with the macrocell. Heterogeneous small cell

base stations have been introduced in HetNets [5]. We briefly state as follows:
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• Picocells are low-power (23 to 30dBm) cell towers providing similar features as

macrocells except smaller coverage (hundreds of meters) and user load (tens of

users). They use the same backhaul as the macrocells and are deployed by the ser-

vice provider.

• Relays are small stations that deliver the data between macrocells and MSs in a

multi-hop over-the-air scheme. They are mostly deployed by the service provider

in order to extend the coverage of existing networks. A relay requires over-the-

air backhaul capacity between macrocell BS and uses a similar transmit power as

picocells.

• RRHs are radio control units that are connected directly to the macrocells through

fibers but deployed with a distance from the macrocell BS. The macrocell has full

control on the RRHs and operate them as its own wireless interface.

• Femtocells are also known as Home eNode Bs (HeNBs) in LTE systems [6]. A

femtocell BS (femtoBS) can be regarded as a simple, low-transmission power (i.e.

23 dBm or less) base station installed by users in an unplanned manner. Through the

deployment of femtoBSs, subscribers are able to access to networks via broadband

backhaul. That is, femtocells may utilize Internet protocol (IP) and flat base sta-

tion architectures. FemtoBSs may operate in open-access, closed-subscribed group

(CSG), or hybrid-access scheme, depending on the choice of the cell owner.

In these possible choices of small cells, the femtocell has the following advantages: It

increases indoor signal coverage and system capacity on demands, providing higher link

quality with lower transmission power, and utilizes the existing broadband connection

as its backhaul. Nevertheless, the femtocell system faces several challenges. Intercell

interference, one of the most severe issues, takes place since femtoBSs typically operate

in a licensed spectrum. Therefore, their coverage overlaps with other base stations in the

same spectrum, as shown in Fig. 1.1, in which networks often suffer from interference.

Additionally, the backhaul may also be an issue since it is likely that the femtocell operates

in a broadband connection with limited quality of service (QoS), such as significant long
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Figure 1.1: An illustration of Interference in Heterogeneous Networks

delay. The low QoS of relied connections may limit the ability of the service provider to

control the femtocells in real time.

1.4.2 Device-to-Device Communications

Heterogeneous networks basically make use of the proximity gain from the user de-

vice to the base stations of small cells. There is another way to make use of the proxim-

ity gain by implementing device-to-device (D2D) communication [7] in cellular system.

Traditionally, two cellular devices communicate with each other through multi-hop trans-

mission, with base stations (BSs) as their intermediate infrastructure. Such a transmission

scenario is inefficient in terms of both resource utilization and transmission delay when

these two devices are in close proximity to each other. In D2D communication, two nearby

devices to communicate with each other directly. This approach improves the transmis-

sion quality from the proximity [8], reduces the transmission delay by utilizing one-hop

direct connection instead of two-hop cellular connection, and provides an extra dimension

for resource reuse in the cellar system. 3GPP has begun to examine the service require-

ment for Proximity-based Services (ProSe), which is the D2D communications for LTE-

Advanced, and then has started ProSe radio access network standardization recently [9].

Four service scenarios are considered: whether the devices are within and out of network

coverage, and whether the devices are allowed to discover nearby devices only or could

utilize direct communications with each others.

There are two major challenges in D2D communication: peer discovery and resource
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allocation [7]. D2D devices should have the ability to discover the potential opportunities

to execute D2D communication with their peers. When devices are within the network, the

BSs, or evolved Node-B (eNB) in LTE system, could participate in this process by identi-

fying potential D2D pairs or providing (approximate) location and proximity information

to devices. When devices are out of the network coverage, a distributed peer discovery

function is necessary. Nevertheless, the accurate channel gain still needs to be measured

through a proximity signalling technique, which requires further studies.

Resource allocation is another key challenge in D2D communications in a cellular

system [7]. As specified by [7], D2D communications can be executed in unlicensed or

licensed spectra. Although the former choice could utilize the existingwireless technology

such as Wi-Fi and Bluetooth, it is relatively unreliable due to its openness to other out-of-

system devices. For the latter choice, in which the resources utilized by D2D communi-

cations are dedicated resources (spectrum, resource blocks, etc.) licensed to the cellular

system or a specific purpose (public safety, for instance) [10]. When devcies are within

the network coverage, the BSs should regulate the resource allocation of D2D communi-

cations in order to prevent undesired interference to existing cellular users, and enhance

resource utilization efficiency. When devices are out of the network coverage, they should

have the ability to identify the available resource and reduce the potential interference to

other devices in a distributed fashion.

1.4.3 Multimedia Multicasting System

Multimedia service is one of themost popular and fast growing applications in wireless

networks. It is also themost challenging one since the loading generated by themultimedia

content is much heavier than other services, along with more strict QoS requirements such

as short delays. In some application scenarios, such as live broadcast streaming [11] or

Internet protocol TV [12,13], users in the same network request for the same multimedia

content. In such scenarios, multicasting services could be applied to efficiently deliver

the content to multiple users by making use the broadcasting characteristic of wireless

communications.
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The multicasting service has been standardized as Enhanced Multimedia Broadcast

Multicast Services (E-MBMS) in LTE and Multimedia multicast and broadcast service

(MBS) in WiMAX. The basic concept of multcasting is delivering the same content once

to multiple users at once using relatively robust modulation and coding schemes. The re-

source for multicasting service could be either predefined in order to prevent unnecessary

interference to existing unicast services, or opportunistically reuse when the interference

is tolerable.

How the resource should be allocated for such an service is the main challenge and has

been explored by numerous researchers. In brief, the resource should be efficiently allo-

cated to different multicast group, which is determined by the demands, according to the

diverse transmission quality experienced by users. Additionally, the service should have

minimal impact on other traditional unicast services, which imposes a (dynamic) resource

constraint on the multicasting service. Most researchers agree that a cross-layer design be-

tween wireless communication layer and application layer is necessary since the service

quality highly depends on the quality of received multimedia content and preferences of

users, which cannot be linked to the wireless communication performance in a straight-

forward way. For instance, the users may be heterogeneous in experienced transmission

quality, device capability, or preference on the video content/quality, which should be

taken into account when configuring the mutlicasting service. The relation of wireless

transmission performance to the multimedia content quality should also be carefully ad-

dressed in the cross-layer design. The relation usually depends on the multimedia en-

coding/decoding technique applied in the application layer. For instance, scalable video

coding (SVC) [14] encodes a video into multiple layers. A basic-quality video can be

derived by decoding the basic layer along, while higher quality video can be derived by

decoding multiple layers in sequential order. This characteristic makes it a perfect match

to multmedia multicasting service providing multiple qualities of multimedia contents.
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1.4.4 Game Theory

Basic Game Elements

Game theory is a powerful tool applied to model and to analyze the outcome of inter-

actions among multiple decision-makers. A traditional game consists of three basic ele-

ments: players, strategies, and utilities. Players are the participants and decision makers

in the game. They can take some predefined actions to affect the interaction with other

players and make influence on the final game result. Players are individual decision mak-

ers - given specified information (game rules, state of the system, applied actions of other

players, etc) of the game, they apply strategies to decide the actions (reactions) taken in

the game. Formally speaking, strategies are functions that map collected information to

applied actions. The set of all possible strategies is defined as a strategy space, and the set

of a possible combination of each player's strategy is called a strategy profile.

Given this information, players may apply different strategies when making decisions.

With strategy profiles and related arguments, the game structure will produce a corre-

sponding outcome. Outcomes can be considered as the results produced by an input strat-

egy profile, which may carry different implications to different players. A player's evalu-

ation of the outcome is given by a utility function. Utility functions, as quantified evalua-

tions to the outcomes of a game, map the outcomes into real-value spaces. Since different

game strategies may bring out different outcomes, we can see the element of utility as a

function of a strategy evaluation. Under the framework of a game theory, the behavior of

players' interactions can be properly modeled. The process may be also helpful to supply

insights into the problems we investigate. For researchers in communication areas, game

theory is very useful to analyze problems involving interactions among elements in the

system, the resource allocation problem particularly.

In most cases, we assume that all players are rational. Thus, they tend to adopt strategy

that can maximize their utility. In such games, every player is trying to maximize their

own utility. Furthermore, if the players refuse to collude with each other, the game can be

modeled as a non-cooperative game. In most game models, the purpose of the theoretic

analysis is to find out the equilibrium, namely, the most likely produced outcome of a
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steady state in the system.

Strategic Game and Nash Equilibrium

A strategic game is a type of games that all players behave simultaneously with perfect

knowledge on other players' possible actions. Specifically, suppose that there is a game

that involves two or more players, in which each player is assumed to know the actions of

the other players. All players choose their actions simultaneously, and then the outcome

of the game is also settled. In such a case, a rational player should predict what actions

other players will choose before she chooses her action.

The expected outcome of the game can be found through finding the Nash equilib-

rium. Let's assume that there exists an action profile that after each player has chosen

her action accordingly, no player can increase her utility from changing her action when

other players' actions remain unchanged. If such an action profile is applied, no players

have the incentive to deviate from the applied action since the deviation gives her equal

or less utility. When the above conditions are met, the action profile constitutes a Nash

equilibrium.

Using a typical HetNet system as an example, femtocells can be considered as the

players in the strategic game, while their actions are their applied transmission power,

occupied resources, or other operations that will potentially influence the service quality

of other cells. Then, a femtocell's utility can be defined as the service quality, such as the

throughput or delay time, experienced by UEs in the cell. An example is illustrated in

Fig. 1.2, where multiple femtoBSs are determining their transmission power. Given other

femtocell's transmission power, a femtocell may have her optimal transmission power that

maximizes her utility. In such an approach, we would like to identify the stable outcome

of the game, that is, the Nash equilibrium in the HetNet.

Strategic game approach is straight forwarding, but the results may not be appealing:

the Nash equilibrium can be an inefficient outcome comparing to the optimal solution due

to the competitive effect in strategic game. Some regulation designs, such as penalties on

the femtocells, may be necessary to improve the system performance.
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Figure 1.2: Strategic Game Approach to Heterogeneous Networks

Stackelberg Game and Subgame-Perfect Nash Equilibrium

The Stackelberg game is a sequential game specifically for the systems with hierarchi-

cal structure, which is a natural approach to the resource allocation in HetNets. In a Stack-

elberg game, two types of players, leaders and followers, are defined. In the game process,

the leader should apply or announce her action first. Then, the followers response to the

leader's action accordingly. Since all players are rational, the followers should choose

their actions that maximize their own utility. By using this insight, the leader can predict

the rational responses of the followers if she chooses certain actions. The leader then can

choose her action that maximize her own utility based on her analysis on the rational re-

sponse of the followers. The leaders, which should be macrocells in HetNets, have the

advantages to apply their actions wisely before the followers, which are the femtocells in

HetNets (Fig. 1.3). By strategically determining their applied action, the macrocells can

lead the game to their desired outcome when they have enough information to predict the

response of the femtocells in HetNets.

In a Stackelberg game, we will study the subgame perfect Nash equilibrium. Subgame

perfect Nash equilibrium is a popular refinement to the Nash equilibrium under the se-

quential game. It guarantees that all players choose strategies rationally in every possible
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Figure 1.3: Stackelberg Game Approach to Heterogeneous Networks

subgame. A subgame is a part of the original game. In a typical leader-follower Stackel-

berg game, there are two subgames: the follower subgame and the leader subgame. The

subgame perfect Nash equilibrium in Stackelber game can be found through backward

induction: the Nash equilibrium of subgames in the follower subgame, in every possible

outcome of the leader subgame, is derived first. Then, taking the Nash equilibrium of

the follower subgame as the predicted responses of followers, the leader chooses her best

strategy that maximize her expected utility in the leader subgame. The subgame perfect

Nash equilibrium is then derived by combing the Nash equilibrium of follower subgame

and the best responses of the leaders.

Stackelberg game is ideal for system involving central authority or hierarchical struc-

tures, such as HetNets consists of both macrocell and femtocells. Nevertheless, the re-

quirements to fully understand the response of femtocells given any possible action of

macrocell in Stackelberg game may be impractical when the HetNet is complex. In such a

case, learning techniques, such as reinforcement learning, could be applied to help macro-

cell find her best strategy in the Stackelberg game.

Voting and Truth-telling

Voting is an important research topic in economics and politics. It is commonly used

in today's society for determining important choice or policy which affects the mass, espe-
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cially when individuals may have different preferences on the outcome. The main concept

of voting that all voters have their own preferences on several policies, which could be de-

fined in ranks. A voting is hold to aggregate all voter's preferences on the public policies.

Then, a predefined voting rule determined the social preferences on the policies according

to the aggregated preferences. This approach may be suitable for wireless networks when

determining system parameters or choosing a configuration profile. The voters, which

are the participants in the wireless network, deliver their preferences on the parameter/

configuration through feedback or control channels. The authority than determine the

configuration according to the aggregated preferences.

The voting rule a critical design in voting. The most commonly used voting rule is the

majority rule, which chooses the policy that most voters vote for. The concept is straight-

forward and easy to be implemented in real world, which makes it a popular choice of

voting rules. Unfortunately, the majority rule has been proved to be untruthful and easy to

be manipulated, which means that the outcome may be unfair and even not reflect the true

preferences of majority. In addition, it has been shown by Arrow [15] that it is impossible

to construct a voting rule that is non-dictatorship, Pareto efficient, and independence of

irrelevant alternatives when voters could choose any of possible preferences on the poli-

cies, which means that unless the voting rule is dictatorship or inefficient, there always

exists a method for voters to manipulate the outcome to their preferred one by alternate

the reported preferences. The theorem therefore suggests that a truthful, non-dictatorship,

and efficient voting rule only exists in a system with some restrictions on the preferences

of voters.

Median Voter Scheme (MVS) is a popular truthful voting design. It is used to choose

a public policy r ∈ R that can be one-to-one transformed into a real value set R̄ ⊂ [0, 1].

The procedure of MVS is as follows:

1. The election holder announces what order of the sorted votes he will choose (the

median one, for instance.)

2. All voters vote for their most preferred policy vi.
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3. The election holder chooses the votes according to the rule he claimed before as the

output of the election

Mathematically, given a sorted vote set V = {v|vi ≤ vj∀i < j} in ascending order and a

predetermined selected vote order κ, the output ofMVS is vκ. MVS is proved to be truthful

when the preferences of voters are single-peaked, which means that a voter's preference on

a policy v′
i is less when its distance to her most preferred one is larger. Such a preference

structure is common in real word applications, such as the location of a hospital on the

street, or the coverage of a cell, as we will illustrated in Chapter 2.

Mechanism Design

Mechanism design is a branch of game theory. System designers apply the techniques

to design an algorithm or a procedure to achieve some good properties in the system .

By using the techniques of mechanism design, the system can achieve several desirable

properties. For example, the property of social welfare maximizes the utility summation

of all players. Note that such rules are not against the players' nature of rationality and

selfishness. That is, the players' decisions are still based on their own profits under the

setup. Since mechanism design provides a set of elegant tools for a general system design,

it is fairly suitable to apply the concept to wireless communication protocols or algorithm

designs, especially when the element of players' interactions involves.

Vickrey−Clarke−Groves (VCG)mechanism is one of the most successful mechanism

as it guarantees the truthful Nash equilibrium and achieves the optimal resource allocation

at the same time. Nevertheless, the VCGmechanism has an unacceptably high complexity

when the allocation problem is NP-hard, which make it impractical in some models.

In HetNets, for instance, mechanism design can be a powerful tool when the service

provider or base stations would like to improve the efficiency of a system with rational

players or prevent undesired cheating behaviors from the user devices. In a typical carrier

assignment problem in cellular networks, for instance, the base station may request the

carrier quality and QoS requirements of user devices in order to determine the efficient

allocation. A user, if rational, maymanipulate the allocation by reporting their information
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untruthfully. When the manipulated allocation is more desired by the user, such as more

assigned carriers and resource blocks, she then has the incentive to report information

untruthfully. In such a case, mechanism design can take place to prevent these undesired

outcomes.
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Chapter 2

Cell-Breathing in Heterogeneous

Networks: A Voting Approach

2.1 Introduction

Overlay macrocell-femtocell system aims to enhance the system capacity in a low-

cost and self-organized manner [16]. A femtocell base station (BS) with low transmission

power can be installed in indoor or natural environments to overcome macrocell's severe

signal degradations. Since the mobile stations (MSes) in these environments are at rel-

atively shorter distances from the femtocell than the macrocell, their signal qualities are

enhanced with the lower radio propagation loss. Thus, the cellular system capacity is

enhanced by the femtocell. In practical implementation, femtocell BSes are usually de-

ployed by users themselves in an unplannedmanner, and operate through existing personal

broadband connections. These connections with limited data rates will be used as back-

haul links of femtocells. Hence, the femtocell system should be self-organized in order to

prevent unnecessary interference and resource wastes [17].

2.1.1 Cell-Breathing Phenomenon in Overlay System

Regarding efficiency, there is a tradeoff between system throughput and coverage in

downlink scheme of overlay macrocell-femtocell system. We may examine an overlay
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system with one macrocell and one femtocell as an example. MSes located in the overlay

section of both cells can freely choose the serving cell from these two cells. In general,

MSes' choices on the cells mainly depend on the offered service quality. Based on the

system efficiency perspective, only a limited number of MSes with good channel qualities

are supposed to be served by the femtocell. Other MSes should be served by the macrocell

in order to preserve the limited femtocell resources.

The limitations on the femtocell resources come from two parts: wired backhaul data

rate and wireless resources. The wired backhaul data rate becomes the limitation when

femtocells operate through existing broadband connections with limited data rate com-

pared to themacrocells deployed by the service operators. Thewireless resources becomes

the limitation when femtocells is only allowed to use limited wireless resources such as

spectrum or access time since they usually operate in a lower coverage and loading on

average comparing to the macrocells. Note that both limitations can be considered as the

constraints on the capacity of the femtocells.

The cell-breathing phenomenon in overlaymacrocell-femtocell system arises when the

femtocell backhaul data rate becomes the stricter constraint of the femtocell throughput.

When the backhaul data rate is the stricter constraints, those MSs served by the femtocell

may experience a low throughput. It happens when the coverage of the femtocell is not

properly configured. We illustrate an example in Fig. 2.1, where an overlay macrocell-

femtocell system is serving five MSes. The femtocell BS has a 3Mbps backhaul connec-

tion. When the femtocell BS's downlink transmission power is P1, it provides a small

coverage and therefore only serves two MSes. Each of the MSes has a throughput of

1.5Mbps. The total backhaul data rate, which is 3Mbps, has been allocated to these two

MSes. For other MSes, they are served by the macrocells. The overall achieved system

throughput under P1 is 5.4Mbps. Then, when the femtocell BS increases its downlink

power from P1 to P2(P2 > P1), the coverage of the femtocell increases. Four, instead

of two, MSes can be served by the femtocell. The newly joined MSes will choose the

femtocell as their serving cell since the femtocell provides a higher expected throughput

(0.5Mbps) to them. Nevertheless, the original two MSes experience a lower throughput
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Figure 2.1: Downlink Cell-breathing in an overlay macrocell-femtocell system

comparing to the data rate under P1, which is because the overall femtocell throughput is

constrained by the limited backhaul data rate. In such a case, the overall achieved system

throughput is reduced to 3Mbps + 2Mbps = 5Mbps. The efficiency loss is due to the

unbalanced loading between the macrocell and femtocell. The increased femtocell cov-

erage benefits some MSes originally served by the macrocell but degrades the data rates

of other MSes who are already served by the femtocell. The backhaul resource utilization

turns out to be inefficient when too many MSes choose to be served by the femtocell. In

short, increasing femtocell downlink transmission power may result in the degradation of

MSes' downlink throughput and impair the utilitarian of the overall system resource.

2.1.2 Selfish Behavior of MSes in Self-organized Femtocells

Because of femtocell's unplanned deployment characteristic, traditional optimization

techniques cannot be applied before installations. Thus, femtocell system should be de-

signed as a self-organized system. When the femtocell BS tries to organize and decide

proper system parameters, such as downlink transmission power, comprehensive informa-

tion on the overlay system, including the backhaul data rate and downlink channel quality

information (CQI) of MSes, is required. To collect downlink CQI of MSes, the femtocell

BS needs to request a CQI report from the MS to derive the information. However, since

the choice of downlink transmission power is related to the CQI reported by MSes, this
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Figure 2.2: Selfish Behaviors of MSes under traditional access policy

creates an issue in the self-organized system: selfish behavior of MSes.

Because MSes are distributed devices controlled by users, they are assumed selfish.

Their behavior is based on their own benefits, which may be conflicted with the system

optimization objective. In the femtocell system we discussed in the previous paragraph,

there is a chance that MSes may report unauthentic CQI that does not reflect the true

channel state but can persuade the femtocell to make the action that enhances the cheating

MSes' benefits when the accessing rule is not properly designed.

Let us consider two traditional access policies and see how selfish MSes may choose

to report fake CQI here: 1) The femtocell chooses to serve k MSes with worst channel

qualities in macrocell. The femtocell downlink transmission power will then be adjusted

to allow those users to be served by the femtocell. When an MS is selfish, it has the

incentive to report a lower channel quality in CQI report since this fake report increases

the probability that it can be served by the femtocell. 2) The femtocell chooses to serve k

MSes with highest channel qualities in femtocell. In this case, MSes tend to report higher

channel quality in CQI reports in order to increase the probability to be served by the

femtocell. Specifically, a selfish MS tends to report an untruthful SNR in the CQI report

which is a higher SNR that leads to the same modulation and coding scheme (MCS) as the

one if the true SINR is reported. By reporting a higher SINR, the probability to be served

by the femtocell increases, while the resulting throughput is still higher than the one under

the macrocell.
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We illustrate a typical SINR(signal-to-interference-and-noise ratio)-throughput table

in Fig. 2.2 as an example. Let us assume that a certain MS has a throughput of rm under

the macrocell service, and its SINR under the femtocell is Q1. When the MS truthfully

reports Q1 in the SINR report, the MCS the femtocell will apply is MCS 2 if the MS is

selected, and the resulting throughput is r1 if no other constraint is imposed. Nevertheless,

if theMS untruthfully reportQ2 instead ofQ1 in the SINR report, the resultingMCS is still

MCS 2, and the resulting throughput remains r1 since its true SINR isQ1. This untruthful

report does not degrade the throughput of the MS under the femtocell. Additionally, it

increases the probability of the MS being served by the femtocell. Therefore, the rational

MS has the incentive to cheat by reporting Q2 instead of Q1 in its SINR report.

In the above examples, we observe that rational MSes are likely to be cheated under

traditional access policy. When the collected information does not reflect the true system

status, the decision of the femtocell will deviate from the optimization choice due to the

selfish behavior of MSes, which is not a desired situation from the system optimization

perspective.

2.1.3 Subscriber Group Modes

Subscriber group mode is another important characteristic in the self-organized fem-

tocell system. Since femtocell BSes are purchased and deployed by home or corporation

users, these users may not be willing to share the service with other foreign users. Thus, a

subscriber group can be optionally defined in the femtocell for access control. Three sub-

scriber group modes are defined in the femtocell system: Open Subscriber Group (OSG),

Closed Subscriber Group (CSG), and Hybrid mode [18]. In OSG mode, all users are al-

lowed to access the femtocell service. In contrast, a femtocell in CSG mode only allows

access to users in the subscriber group. As a balanced design between OSG and CSG, in

Hybrid mode subscriber group users can access the femtocell service at any time, while

non-subscriber group users can access it under a lower priority.

Although Hybrid mode offers a flexible resource allocation approach, the selfish be-

havior of MSes becomes a more serious issue under Hybrid mode because of different
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types of MSes. Different types of MSes may compete with each other by persuading the

femtocell favoring one of the groups and blocking the other. Analysis on the behavior of

MSes under different subscriber group modes is required when designing the femtocell

self-organized mechanism.

In this work, we analyze the cell-breathing phenomenon resulting from the femtocell

downlink power control through the proposed femtocell cell-breathing control framework.

Due to the selfish behavior of MSes in a wireless network, we need a truthful CQI col-

lecting mechanism to ensure the authenticity of the reported CQI from MSes. In addition,

the mechanism should be functional in an environment lacking of an information sharing

process among MSes since such a process is not available in general wide-area wireless

network. To address these two requirements, we propose a voting based FEmtocell Vir-

tual Election Rule (FEVER) mechanism, which only requires MSes to report their own

private CQI to the femtocell. Voting, which has been popularly used in our daily life and

well-studied in politic and economic areas, is an effective method to determine policies

related to mass publics [19]. In voting process, the opinions of voters on a policy are

collected through the voting process held by the authority, and the decision will be made

based on the collected votes and predefined voting rules. We observe that this process

highly matches our cell-breathing control framework - the femtocell's transmission power

should be determined by the information (opinions) provided by the MSes. We prove

that in FEVER mechanism, all MSes truthfully report their CQI without the incentive to

manipulate. Additionally, FEVER mechanism provides the flexibility to satisfy different

requirements in the balance between efficiency and fairness.

Finally, for the three subscriber group modes defined in femtocell system, we propose

the Subscriber Group FEVER (SG-FEVER) mechanism. The objectives of SG-fever are:

1) ensuring the service quality of subscriber group users, and 2) maintaining the truthful

characteristic of FEVER mechanism. We prove that SG-FEVER mechanism fulfill above

two objectives, and it also inherits the flexibility of FEVERmechanism to strike a balance

between efficiency and fairness.

The main contributions of this chapter are listed as follows.
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1. The cell-breathing phenomenon in overlay macrocell-femtocell system is described

and investigated. We propose a novel femtocell cell-breathing control framework

for managing the load-balancing and coverage control among overlay cells.

2. We formulate a game-theoretical model for discussing the cheating issue in overlay

network with selfish mobile stations. We introduce the concept of voting theory into

the cell-breathing control framework. The proposed voting-based FEVER mecha-

nism is proved to be truthful. This truthful strategies form a dominant-strategy Nash

Equilibrium in FEVER mechanism, which can be easily implemented. In addition,

we prove that FEVER mechanism offers the flexibility to strike a balance between

capacity efficiency and allocation fairness.

3. For evaluating the system performance, a LTE overlay network simulator is im-

plemented with realistic radio propagation and modulation models [1] [20]. The

efficiency and fairness under different parameter settings in FEVER mechanism is

verified through simulations. We further investigate and compare the three sub-

scriber group modes under SG-FEVER mechanism with the LTE simulator. The

characteristics of these three modes are demonstrated in realistic simulations.

2.2 Femtocell Cell-Breathing Framework

We start from an overlay macrocell-femtocell system. A macrocell BS serves MSes in

its coverage area. One femtocell BS is located in the macrocell's coverage area, with one

coverage area overlapping with the former one. Both BSes are operating with backhaul

connections with certain data rates. For analysis simplification, the macrocell and fem-

tocell use different spectrums in our model, so there is no inter-cell interference issue in

the overlay system. Note that the main conclusion of this chapter is not affected even the

cells share the same spectrum, which is discussed in Section 2.4.

We are focusing on the downlink wireless transmission of MSes in this chapter. There

are N MSes Mi ∈ S in the coverage of femtocell. An MS can be served by either the

macrocell or femtocell. We denote the set of MSes served by the macrocell and the fem-
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tocell by Sm and Sf , respectively. For a given cell j = {f,m}, the BS transmits down-

link data to MSes by a power Pj in a carrier. For an MS Mi served by the cell j, its

downlink SINR is ηi,j = PjGi,j

N0+Ii,j
where Gi,j is the signal loss rate from cell j to Mi, N0

is the background white noise, and Ii,j is the location-dependent interference. We use

Li,j = Gi,j

N0+Ii,j
|j={m,f} ∈ Λ to denote the channel quality information (CQI) ofMi in cell

j, where Λ is the universal set of CQI. For a given SINR ηi,j , we denote the wireless data

rate from cell j toMi by Γ(ηi,j), which is the PHY transmission rate in a typical wireless

communication system. We assume Γ(·) is an increasing function, which is true in most

modulation schemes.

2.2.1 Cell-Breathing Phenomenon

Given the same network scenario (macrocell BS's downlink power, all MSes' sig-

nal loss rates, etc), when the femtocell BS increases its downlink power Pf , we observe

that there are two opposite influences on the MSes. On one hand, it enhances the wire-

less transmission qualities of MSes served by the femtocell. To be specific, an MSMi's

SINR ηi,f = PfLi,f increases linearly with Pf , and its wireless data rate Γ(ηi,f ) increases

with Pf because Γ(ηi,f ) is an increasing function (For convenience, we denote Γ(PfLi,f )

by Γi,f (Pf )). On the other hand, because the downlink transmission in the femtocell is

enhanced, some MSes may choose to select the femtocell instead of macrocell as their

serving cell. Thus, MSes already served by the femtocell may have a lower expected

throughput due to the joining of new MSes. The cell-breathing phenomenon is com-

posed of these two effects. Note that this is different from the cell-breathing in CDMA

system [21]. In the case of CDMA cell-breathing, an increase in the cell coverage results

in a decrease in the cell's capacity due to interference amongMSes in the same cell. In con-

trast, in OFDMA system the overall throughput in general increases with the transmission

power until it is constrained by the wired backhaul data rate. However, the overlay system

throughput may decrease when the femtocell's coverage increases since MSes may ineffi-

ciently choose the femtocell as their serving cell and therefore reduce the overall resource

utilization.
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Figure 2.3: Femtocell Cell-Breathing Control Framework

Additionally, the coverage of a femtocell should be self-organized according to the

current cell deployment and resource availability of the overlay system. In traditional

cellular networks, the cell coverage is usually properly planned by telecom operator in

advance. On the contrary, femtocell base stations are typically deployed in an unplanned

manner [16, 17]. In this chapter, we assume that the femtocell has been deployed by the

user, and therefore the cell deployment is given in advance. In such a scenario, we con-

sider the self-organized femtocell coverage control problem given that the femtocell base

stations are already deployed. The optimal cell planning, which is another interesting

issue, is beyond the scope of this chapter.

Due to the cell-breathing phenomenon, a proper choice on the Pf is important for

femtocells to enhance the downlink transmission qualities of MSes while serving rea-

sonable number of MSes. This requires CQI reported by MSes. Thus, we propose a cell-

breathing control framework, which has four phases: Information Collection, Femtocell

Cell-breathing, Cell Selection, and Capacity Allocation phases (Fig. 2.3).

2.2.2 Information and Cell-Breathing Control Phases

In Information Collection phase, the femtocell defines the information it requires,

which we denoted as θ here. All MSes in the area report their information θi to the femto-

cell then. Next, in Femtocell Cell-Breathing phase, the femtocell decidesPf in accordance

with the {θi} collected in the first phase. We denote a downlink cell-breathing ruleB based
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on the collected θ̄ = {θi} ∈ Θn by a function B:

B : Θn 7→ [0, Pmax
f ]⇒ B(θ̄) = B({θi}) = Pf ,

where θi is the information reported by Mi, Θn is the universal set of information, and

Pmax
f is the maximum power.

Since the information is only known by the MSes themselves and unknown to the

femtocell BS, MSes may "cheat" by reporting false information to mislead the femtocell's

choice on Pf . Cheating not only leads to unfairness in the system but also makes the fem-

tocell choose an improper Pf and degrades the system performance. To prevent cheating,

the downlink cell-breathing rule should be truthful, that is, after all selfish MSes learned

the rule, they all choose to report the true information.

In this framework, the information is reported by MSes in the first phase, and then

femtocell BS chooses the downlink transmission power in second phase. If the information

required isMSes' preferred downlink power, these two phases naturally formulate a voting

scheme, and the cell-breathing rule can be considered as a voting rule.

Median Voter Scheme (MVS) is a popular truthful voting design. It is used to choose

a public policy r ∈ R that can be one-to-one transformed into a real value set R̄ ⊂ [0, 1].

The procedure of MVS is as follows:

1. The election holder announces what order of the sorted votes he will choose (the

median one, for instance.)

2. All voters vote for their preferred policy vi.

3. The election holder chooses the votes according to the rule he claimed before as the

output of the election

Mathematically, given a sorted vote set V = {v|vi ≤ vj∀i < j} in ascending order and a

predetermined selected vote order κ, the output of MVS is vκ. Based onMVS, we propose

theVirtual Election scheme for cell-breathing control in this framework. Given all MSes

Mi ∈ S 's vote pi on the femtocell downlink power Pf and a predefined selected vote order
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κ, we denote the Virtual Election rule as

Bv(p̄, κ) = Bv({p|pi ≤ vj∀i, j ≤ N, i < j}, κ) = pκ (2.1)

2.2.3 Cell Selection and Capacity Allocation Phases

The expected throughput, which is the main concern of the MSes and is denoted by γ,

is then determined in Cell Selection and Capacity Allocation phases. After femtocell BS

chooses the downlink power in Cell-Breathing Phase, MSes select the cell to be served in

Cell Selection phase. The MS's selection on the cell is based on the expected throughput

under different cells, which will be determined in the Capacity Allocation phase, where

femtocell andmacrocell BSes allocate their backhaul capacity to theMSes they serve. The

expected throughput of an MS is under the constraints of both wireless data rate and allo-

cated backhaul data rate. Therefore, anMS should carefully choose the cell by considering

both data rates in each cell.

In this framework, we assume the backhaul data rate of macrocell BS is large enough to

handle all serving MSes' downlink request since it is deployed directly through the service

provider. Mathematically, its backhaul data rate, which is denoted as Cm, is larger than

the sum of serving MSes' wireless data rate ∑
Mi∈Sm

Γ(ηi,m). Hence, forMi requiring the

data from the Internet, its expected throughput, which is denoted by γi,m, is always exactly

its wireless data rate, that is, γi,m = Γ(ηi,m).

However, in the case of the femtocell BS, the allocation of available backhaul capacity

becomes an issue. The data rate Cf of a femtocell backhaul connection is usually limited

because it is installed at home or the office and using a broadband connection as its back-

haul. It is possible that available resources cannot meet the total wireless data rate of all

serving MSes, that is, Cf <
∑
Mi∈Sf

Γ(ηi,f ). Thus, the allocated downlink data rate of

Mi under femtocell, which is denoted by γi,f , is less than or equal to Γ(ηi,f ). Under this

circumstance, not all MSes can have downlink transmission at their maximum achievable

data rate. Thus, a predefined allocation rule is required. We denote an allocation rule to
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allocate Cf to all MSes served by the femtocell by

A({Γ(ηi,f )|Mi ∈ Sf}) = {γi,f |Mi ∈ Sf}. (2.2)

Each MS is allocated with a backhaul data rate γi,j|j={m,f} according to their wireless

data rate and the total backhaul data rate. A reasonable backhaul data rate allocated to an

MS should not exceed its wireless data rate. Therefore, the allocated backhaul data rate

is also its expected throughput under the cell. For femtocell BS, the allocation rule A(·)

is applied to determine all MSes' expected throughput γi,f . Since fairness is typically a

desirable property in the resource allocation problem, we consider a fair allocation rule

A(·) in this framework. We define the fairness of the allocation rule A(·) as follows:

Assumption 1 (Max-min Fairness). For an allocation rule A({Γ(ηi,f )|Mi ∈ Sf}) =

{γi,f |Mi ∈ Sf} = γf , ∀Mi, Mj ∈ Sf , the following assumptions must be satisfied:

if ∃γ′f ̸= γf , γ′
k,f > γk,f for someMk ∈ Sf , (2.3)

⇒ ∃Mi ∈ Sf , γ′
i,f < γi,f ≤ γk,f .

A straightforward thinking of this assumption is some backhaul capacity originally

allocated to the existing MSes served by the femtocell may be reallocated to the new MS

in order to ensure fairness. In fact, (2.3) is a general characteristic for a allocation rule

with max-min fairness constraints [22].

In addition, we assume ∀Mi ∈ S, Cf

N
≥ γi,m, which we call the capacity assumption.

This catches the characteristics of femtocell deployment in real world: femtocells mostly

are installed in the environments where the macrocell cannot offer good service qualities.

In addition, a service provider may support a user to install a femtocell BS by upgrading

the user's broadband connection in order to make the femtocell capable of accommodating

multiple MSes. In Section 2.5.1, we show that the assumption can be relaxed when our

objective is maximizing overall system throughput.
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2.3 Game Model Formulation and Analysis

We now characterize MSes' behavior in the proposed framework. Generally, a rational

MS should select the BS which offers the higher expected throughput as its serving BS.

Notice that the expected throughput depends on two factors. The first factor is the wireless

data rate of the serving MS, which is affected by the downlink transmission power of the

BS. The second factor is the allocated backhaul data rate, which is determined by the

amount of the backhaul resource that the BS will allocate to the MS. Specifically, the

data rate the BS allocated to an MS depends on the channel quality under the cell and the

number of MSes served by the cell. Since the expected throughput under a cell will be

influence by the choice of other MSes, anMS's optimal choice will be determined by other

MSes' decisions in Cell Selection phase.

These complicated interactions should be investigated in order to ensure the final op-

erating point is the one we desire. Game Theory is an appropriate tool in formulating and

analyzing such a system. We use Nash Game model to formulate the cell-breathing con-

trol problem. Nash Equilibrium of the cell-breathing control problem, which represents

the stable operating point in the system, is analyzed.

In a Nash Game model, there are three components: players, actions, and utility

functions. A player has various actions to choose from. After all players choose the

actions simultaneously, the outcome of the game is decided, and their utilities are denoted

by the utility functions with the outcome as input. Tomaximize a player's utility, he applies

a strategy to choose specific actions under predefined conditions. Note that one's applied

strategy may influence others' utilities and make them change their strategies as well,

Table 2.1: Notations

Notation Explanation
S, Sf , Sm The set of MSes (all, in femtocell, in macrocell)
Li,{f,m} The channel quality information (CQI) ofMi

Pf The femtocell downlink power
ηi,{f,m} The SINR experienced byMi

Γ(ηi) The wireless data rate ofMi under SINR ηi

Γi,f (Pf ) The wireless data rate ofMi from the femtocell under Pf

A(·) The femtocell's allocation rule on downlink data rate
γi,{f,m} The expected throughput ofMi

B(·) The downlink cell-breathing rule

39



Cell Selection Stage

Cell-Breathing Stage

Strategy: Report 

Outcome: 

Θ∈iθ

fP

Strategy: Join  

Outcome: 
},{ mfjj

S
=

}{ , jiγ

Cell-Breathing Rule: 

Allocation Rule: )(⋅A

)(⋅B

fP

Information Collection Phase

Femtocell Cell-Breathing Phase

Cell-Selection Phase

Capacity Allocation Phase

Figure 2.4: Two-Stage Game Model

which results in the instability of the system.

In the stable state of the game, any player should have chosen their best response

to other players' currently applied strategies. If any single player is asked to change his

strategy while others' remain unchanged, he sticks to his current strategy because chang-

ing his strategy decreases or makes no difference to his utility. This specified strategy

combination forms a Nash Equilibrium (NE).

Definition 1 (Nash Equilibrium). In a Nash game with a player set P , each player pi with

a strategy space Si and a utility functions ui, a strategy combination s∗ = {s∗
1, s

∗
2, ..., s

∗
n}

is a Nash Equilibrium if and only if ∀pi ∈ P,∀si ∈ Si,

ui(s∗
i , s

∗
−i) ≥ ui(si, s∗

−i)

where s∗
−i is the strategy combination {s∗

j |j ̸= i}.

In addition, there is a special type of NE called dominant-strategy Nash Equilib-

rium (DSNE). In DSNE, given any combination of other players' strategies, a player's

best response is always the same. Since a player's best response now is independent of

other players' strategies, the implementation complexity is greatly reduced.

Definition 2 (Dominant-Strategy Nash Equilibrium). In a Nash game with a player set P ,

each player pi with a strategy space Si and a utility functions ui, a strategy combination

s∗ = {s∗
1, s

∗
2, ..., s

∗
n} is a dominant-strategy Nash Equilibrium if and only if ∀pi ∈ P, ∀si ∈

Si,∀s−i ∈ S−i,

ui(s∗
i , s−i) ≥ ui(si, s−i)
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where s∗
−i is the strategy combination {s∗

j |j ̸= i} and S−i is the strategy space of players

despite pi.

We formulate the femtocell cell-breathing control framework into a two-stage extensive-

form Nash Game (Fig. 2.4). Stage 1 is Cell-Breathing stage, where we implement femto-

cell downlink cell-breathing mechanism in order to collect the private information (CQI,

as an instance) of MSes. All MSes report their θ to the mechanism in this stage and

then the mechanism chooses Pf . Stage 2 is Cell Selection stage, where MSes selecting

their preferred BS. In both stages, all Mi ∈ S are the players. Their strategy spaces are

Θ× {Mi ∈ Sf ,Mi ∈ Sm}, where Θ is the set of all possible state of private information

in Stage 1, and Mi ∈ Sj represents its choice in Stage 2. We denote the utility function

of Mi by ui = γi where γi is Mi's expected throughput. This characterizes the MS as a

selfish user seeking a higher throughput.

We follow the backward induction procedure to find the NE in the proposed two-stage

Nash Game. First, we explore the NE in the Cell Selection subgame (composed of the

cell selection stage only) regarding all possible outcomes of the previous stage. Then we

move backward and check the NE in the game (composed of these two stages) given the

NEs in the Cell Selection subgame. The NE we derive by following this procedure is a

Subgame-Perfect Nash Equilibrium (SPNE).

2.4 Nash Equilibrium in Cell Selection Subgame

We first find the NE in the Cell Selection subgame. The following theorem describes

the best response ofMi to select the cells under femtocell power p:

Theorem 1. Under the allocation rule A(·) satisfying Assumption 1, Mi's best response

in Cell Selection subgame is :

βi(p) =


Mi ∈ Sf , if Γi,f (p) ≥ γi,m

Mi ∈ Sm, otherwise
(2.4)

In addition, given the MS set Sf (p) under the downlink power p,Mi ∈ Sf (p)'s expected
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throughput γi,f is given below:

γi,f =


Γi,f (p), if Γi,f (p) < γf (p)

γf (p), otherwise
(2.5)

where ∑
Mi∈Su

f
(p)

Γi,f (p) + |Scf (p)|γf (p) = min{Cf ,
∑

Mi∈Sf (p)
Γi,f (p)}. (2.6)

Suf (p) = {Mi|Γi,f (p) < γf (p)} and Scf (p) = Sf (p) \ Suf (p)

Note that the best response ofMi is independent of other MSes' strategies. Thus, these

best responses form a unique DSNE in the Cell Selection subgame: Each MS chooses to

connect to the cell that offers the higher wireless data rate. This expected behavior is

similar to the cell selection procedure in legacy wireless devices.

In Cell-Breathing stage, as we discussed in Section 2.2, the cell-breathing rule should

be truthful in order to prevent cheating behavior in MSes.

Definition 3 (Truthful Rule). A downlink cell-breathing ruleB(θ̄) underA({Γ(ηi,f )|Mi ∈

Sf}) is truthful if ∀Mi ∈ Sf with their true information θ̄∗, and ∀θ̄ ∈ Θn, ui(γ∗
i,f ) ≥

ui(γi,f ), where {γ(∗)
i,f } = A({Γi,f (B( ¯θ(∗)))}).

As shown in definition, the truthful strategies in fact construct a NE since no user will

deviate from the truthful strategy.

Here we show the truthfulness of Virtual Election rule. Virtual Election rule is based

on MVS, which has been shown truthful when the preferences of voters are single-peaked

preferences [15].

Definition 4 (Single-Peaked Preference). A preference ≽ over R̄ is single-peaked if and

only if there exists a unique r̄i ∈ R̄ that ∀r ∈ R̄\{r̄i} and ∀θ ∈ [0, 1), θr+(1− θ)r̄i ≽ r,

where i ≽ j represents i is preferred or equal to j for the player.

It has been proved by Ching [23] that all voters will vote for their peak choice r̄i in

MVS when their preferences are single-peaked. Thus, MVS is a truthful rule since all vot-

ers report their most preferred choices truthfully. Recalling the Virtual Election scheme
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rule in (2.1), ifLi,j|j={f,m} is public information amongMSes, that is, all MSes know other

MSes' CQI, it can be proved that the preference of MSes on the femtocell downlink power

is single-peaked when the allocation rule A(·) satisfies Assumption 1. We first provide

an insight of this preference characteristic: ForMi ∈ Sf served by the femtocell BS, its

expected throughput γi,f is decided by the allocation rule A(·), which takes the MS set

Sf and their wireless data rates {Γi,f (Pf )} as inputs. Both inputs of A(·) are affected by

the choice of downlink power Pf of the femtocell BS. A higher Pf will encourage more

MSes connect to the femtocell and therefore share femtocell BS's backhaul capacity. This

decreases the expected throughput of each MSes. Nevertheless, a higher Pf also enhances

the transmission qualities of MSes by increasing the wireless data rate and therefore relax-

ing the expected throughput constraint. This may bring a higher expected throughput for

the MS if its expected throughput is constrained by the wireless data rate. Along with the

changes of Pf , these two inputs have opposite effects on the expected throughput to MSes.

Note that if the macrocell and femtocell share the same spectrum, the conflicting effect of

these two inputs becomes more significant. For instance, when the femtocell uses a higher

downlink transmission power, the interference to the macrocell is stronger. The increased

interference may encourage more MSes to choose femtocell as their serving cell. Thus,

more MSes share the limited backhaul capacity, and their expected throughput under the

femtocell are decreased.

Formally, we define each MS's preference over Pf :

Definition 5 (MS's preference on Pf ). Mi's preference over Pf is denoted as ≽i which

satisfies

∀p, p′ ∈ [0, Pmax
f ], p ≽i p′ ⇔ ui(Ai(p)) ≥ ui(Ai(p′)).

where {γi,f} = A({Γi,f (p)}) and Ai(p) = γi,f .

The following theorem shows that for a given ≽i, there exists an ideal p∗
i that is pre-

ferred or equal to any other choices of p ∈ [0, Pmax
f ]. Thus, ≽i is a single-peaked prefer-

ence with a peak choice p∗
i .

Theorem 2 (Single-Peaked Preference on Pf ). When the allocation rule A(·) satisfies
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Figure 2.5: MSes' Single-Peaked Preferences over Pf

Assumption 1, ∀Mi ∈ Sf , ≽i is single-peaked with peak p∗
i , where p∗

i is denoted as

p∗
i =


P F , i = arg maxMi∈S{Li,f}

PM
i , otherwise

(2.7)

where

P F =


Γ−1
f (Cf ), if Γ−1

f (Cf ) exists

pb−j , otherwise.
(2.8)

PM
i = min{argp(Γi,f (p) = γf (p)), Pmax

f }, (2.9)

pb
i = Γ−1

i,f
(γi,m), Cf − γj,m < Γf (pb−

j ) < Cf , and Γf (p) =
∑

pb
i

≤p
Γi,f (p).

Thus, under a given allocation rule A(·) satisfying Assumption 1, MSes with good

channel qualities prefer P F , which is the minimum femtocell downlink power to maxi-

mizes the overall expected throughput of MSes under the femtocell. If P f is increased,

more users connect to the femtocell, and their expected throughput are strictly decreased.

For those MSes with poor channel qualities, each of them prefers a femtocell downlink

power that maximizes their own expected throughput. If we assume a shared spectrum

model, the conflicting effect of two inputs on the allocation rule is more significant, the

single-peakedness of user's preferences on Pf will be held in the shared spectrum model,
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despite the peak powers are different from those described in Theorem 2. In details, in

the shared spectrum model, the expected throughput of Mi under macrocell γi,m should

be decreasing with Pf due to the interference from the femtocell. Therefore, we may de-

fine a decreasing function Γi,m(Pf ) to representMi's expected throguhput under macro-

cell. Nevertheless, two important observations in the independent spectrummodel are still

valid: 1) the wireless data rate under femtocell Γi,f (Pf ) remains an increasing function of

Pf since the macrocell does not change its transmission power and the interference from

the macrocell is therefore nonincreasing with Pf . 2) There is at most one boundary point

P ∗
f that Γi,m(Pf ) = Γi,f (Pf ) for everyMi ∈ S since the former one is a decreasing func-

tion while the later one is an increasing function. Supporting by these two observations,

the conclusions in Theorem 1 and Theorem 2 remain valid in the shared spectrum model.

An example of the preferences of MSes with corresponding expected throughput is

shown in Fig. 2.5. FourMSes are in the overlay network, and the femtocell's backhaul data

rate is 7 Mbps. Using MS 2's data rate as example, the downlink power that maximizes

its expected throughput is 0.3926 Watt. Its data rate strictly decreases when the power

increases or decreases. Thus, its peaked power p∗
2 = 0.3926.

Since MSes' preferences are single-peaked, we give a corollary to conclude the truth-

fulness of Virtual Election rule.

Corollary 1 (Truthfulness of Virtual Election Rule). Virtual Election rule is a truthful rule

when the allocation rule A(·) satisfies Assumption 1.

Proof. Returning to the Virtual Election rule, because the MSes' preferences over Pf are

single-peaked,Mi will chooses to report its most preferred power p∗
i under Virtual Election

rule. Therefore, the Virtual Election rule is truthful.

2.5 FEVER -AFemtocell DownlinkCell-BreathingMech-

anism

Although the Virtual Election rule can make MSes truthfully report their preferences

on downlink power, the NE in Virtual Election rule is not a DSNE since the peak value p∗
i
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Figure 2.6: FEVER Mechanism

ofMi depends on the channel qualities of other MSes. Thus there is a serious drawback

in the mechanism: all MSes and the femtocell are required to possess complete informa-

tion of other MSes such as their signal loss rates and interference levels in order to derive

the peak p∗
i . This requirement is undesirable in a realistic wireless network since the im-

plementation of information sharing among MSes induces a huge overhead. The calcu-

lation on the preferred downlink power is also unrealistic considering the relatively low

and scarce computational power of mobile devices. A more practical mechanism without

these requirements is necessary for implementing the voting scheme in the real wireless

system. Hence, we propose FEmtocell Virtual Election Rule (FEVER) mechanism for

the cell-breathing control framework. FEVER is a truthful mechanism based on Virtual

Election rule without the requirement of complete information. MSes are only required

to report their CQI directly to the femtocell without calculating their preferred downlink

power. In addition, we prove that there exists a truthful DSNE in FEVER mechanism.

Therefore, the truthfulness of FEVER is guaranteed, and its implementation complexity

is quite low. It only requires small changes to the existing cell selection procedures in

standards.

As shown in Fig. 2.6, FEVERmechanism is composed of three levels in Cell-Breathing

stage: Channel Information Harvester (CIH), Cell-Breathing Helper (CBH), and Virtual
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Election Rule (VER). First, CIH requires all MSes to report their CQI θi = {Li,f , Li,m}.

Then, CBH uses the channel information harvested by CIH to calculate MSes' most pre-

ferred downlink power p∗
i . These values are derived by H({θi|Mi ∈ S}) = H(θ̄) =

{p∗
i |Mi ∈ S}, where H(·) is in accordance with the results given by (2.7). Finally, VER

collects {p∗
i |Mi ∈ S} derived from CBH and applies Virtual Election rule to choose the

femtocell downlink power Pf . Then, in Cell Selection stage there are two levels: BEst

response Dynamic (BED) andMax-min Allocation Rule (MAR). According to the chosen

Pf , MSes select the cell they want to be served by, which can be predicted by Theorem

1. Thus Sf and Sm is decided in this level. Since we have all CQI from CIH, we induce

a cheat-proof procedure here: if an MS Mj which is not in Sf (Pf ) calculated by CBH

selects the femtocell in this stage, we surely know this MS is cheating in Cell-Breathing

stage and thus we can block this MS from using the femtocell service. Finally, the femto-

cell allocates the backhaul data rate according to the max-min allocation rule Afever(·).

Then, we give the following theorem to show the truthfulness of FEVER mechanism.

Theorem 3 (Truthfulness of FEVER mechanism). AllMi report their CQI θ∗
i = {∗

i,f ,
∗
i,m}

truthfully in FEVER mechanism Bfever(·). That is, ∀Mi ∈ S, ∀θ̄ ∈ Θn = (L× L)n,

ui(Ai(Bfever(θ̄∗))) ≥ ui(Ai(Bfever(θ̄))).

Proof. Due to page limitation, we sketch the outline of the proof here. We discuss three

cases: Mi's vote vi derived in CIH is equal to, larger than, or smaller than the selected vote

vκ. For the first case, surelyMi will just report its CQI truthfully. For the second case, the

vote chosen by FEVER is larger than its most preferred downlink power vi. Therefore,

γi,f = Γf (vκ) according to Assumption 1 and Theorem 2. IfMi chooses to report L′
i,f <

L∗
i,f , the modified vote v′

i will be larger than vi, and the vote chosen by VER v′
κ will be

no smaller than vκ according to VER. So, γ′
i,f = Γf (v′

κ) ≤ Γf (vκ). Since it eventually

gets a lower downlink data rate, it has no incentive to report L′
i,f < L∗

i,f . However, if

Mi chooses to report L′
i,f > L∗

i,f , since the modified vote v′
i will be smaller than vi, and

the original selected vote vκ is larger than vi, reporting L′
i,f makes no difference to vκ.
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Additionally, since γi,f is already not constrained by its wireless data rate Γi,f (vκ), its

downlink data rate remains the same γ′
i,f = Γf (vκ) = γi,f . Therefore, it has no incentive

to report L′
i,f > L∗

i,f . Similarly, in the third caseMi still chooses to report L∗
i,f . For Li,m,

givenMi ∈ Sj if vκ is selected and L∗
i,m is reported, it makes no difference to vκ unless

given the reported L′
i,m,Mi will make a choice of S ′

j ̸= Sj|j={f,m}. However, sinceMi's

true CQI is L∗
i,m, it will choose Sj in the Cell Selection stage, and thus the cheating will be

revealed by the femtocell. Hence, FEVER mechanism is a truthful mechanism. Note that

this proof requires the capacity assumption is satisfied or Γf (p) may not be a decreasing

function.

If the capacity assumption, that is, ∀Mi ∈ S, Cf

N
≥ γi,m, is not satisfied, the prefer-

ence on power is no longer single-peaked. However, FEVER mechanism is still truthful

when the selected vote order κ is equal to 1. We show this characteristic in the following

theorem.

Theorem 4 (Truthfulness without capacity assumption). When ∃Mi ∈ S, Cf

N
< γi,m, all

Mi still report their CQI θ∗
i = {∗

i,f ,
∗
i,m} truthfully in FEVER mechanism Bfever(·) when

selected vote order κ = 1.

Proof. Since κ = 1, ∀Mi ∈ Sf , γi,f = Γi,f (v1). For a givenMj ∈ Sf , if it chooses to re-

port ′
i,f <

∗
i,f , its allocated data rate Γ′

i,f is strictly lower than Γi,f because it claims a lower

wireless data rate. In contrast, if it chooses to report ′
i,f >

∗
i,f , it claims a higher wireless

data rate and the CBH will decide a lower vote v′
1 < v1, and thus its real downlink data

rate γi,f = Γ(v′
1

∗
i,f ) < Γ(v′

1
∗
i,f ). Thus, it will truthfully report i,f . For ∗

i,m, a misreported
′
i,m does not affect the vote v1 unless it is large enough that the MS will not be counted

in Sf in CBH. According to the cheat-proof procedure in BED, this MS cannot return to

the femtocell and its downlink data rate is γi,m < Γi,f (v1). Hence, ∀Mi ∈ Sf , they all

report CQI θ∗
i . Similarly, ∀Mj ∈ Sm, they also report CQI θ∗

j . Thus FEVER mechanism

is truthful even when ∃Mi ∈ S, Cf

N
< γi,m.

The choice of κ = 1 not only relaxes the capacity assumption but also makes FEVER

mechanism to choose the most capacity efficient operation point in most network scenario,
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which will be shown in the following section.

2.5.1 Performance Analysis of FEVER mechanism

In FEVER mechanism, the selected vote order κ is predefined in VER to derive the

κth votes as the choice of Pf . Now we discuss the influence of κ on the (throughput)

efficiency and (allocation) fairness of the resulting expected throughput {γi,f |Mi ∈ Sf}

and {γi,m|Mi ∈ Sm}. We will show that there is a tradeoff between efficiency and fairness

when different κ is chosen.

Price of Anarchy

First we define the price of anarchy (POA): the ratio of the maximum social utility

to the social utility at NE. POA is used to measure the efficiency loss due to the selfish

behavior of MSes in NE. If POA is equal to one, there is no efficiency loss at NE, and NE

leads to the same performance as the social-utility maximized system. In the femtocell

cell-breathing control framework, we define the social utility as Us = ∑
Mi∈S ui. The

price of anarchy of FEVER mechanism is described as below:

Theorem 5. The price of anarchy of FEVER mechanism POA(κ) is one if the selected

vote order κ = 1 and the social-utility maximized power P ∗
f can be described as

j∑
i=1

Γ(P ∗
fLi,f ) ≤ Cf and

j+1∑
i=1

Γ(P ∗
fLi,f ) ≥ Cf .

In addition, POA(κ) is increasing with κ and bounded by 2.

Proof. First, we shortly describe how to find the optimal downlink power in the fem-

tocell: we first sort MSes in increasing order of L1,m

L1,f
. (This guarantees that MSes join

the femtocell sequentially when the femtocell BS increases Pf .) Intuitively, the optimal

power that maximizes social utility is the one that just allocates all the available back-

bone capacity to MSes. If the solution does not exist and the macrocell's data rate is rel-

atively large, the optimal power will be the one that minimizes the unallocated backbone

data rate before an additional MS joins Sf and uses all the capacity. Thus, the optimal
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power P ∗
f is given by

∑j
i=1 Γ(P ∗

fLi,f ) ≤ Cf and
∑j+1
i=1 Γ(P ∗

fLi,f ) > Cf , where j satisfies

P ∗
fLi,f ≥ PmLi,m, ∀i ≤ j and P ∗

fLi,f < PmLi,m ∀i ≥ j. If ∑j
i=1 Γ(P ∗

fLi,f ) = Cf , the

social utility U∗
s = ∑

Mi∈S ui = Cf + ∑N
i=j+1 Γi,m. We observe that Pf , which is the peak

value ofM1, is equal to PF according to Theorem 2. Thus, if κ = 1, FEVER mechanism

always chooses P ∗
f , and thus POA(1) = 1.

The reason that POA(κ) is an increasing function is intuitive. When Pf increases,

there are two possible cases: one is that a new MS Mj joins Sf , and the other is that no

MS changes its selection. For the former case, the social utility will decrease by γj,m since

Mj chooses to join Sf and gives up the throughput offered by the macrocell. For the latter

case, there is no change in the resulting social utility. In addition, we know vκ increases

with κ, so Pf = Bfever(·, κ) is an increasing function of κ. Thus, POA(κ) is an increasing

function of κ.

Finally, since the worst case in FEVERmechanism will be that all users choose to join

the femtocell and all macrocell's offered services are wasted under selfish behavior, we

have γi,f |κ=N > γi,m ∀Mi ∈ S. In addition, we know
∑
Mi ∈ Sγi,f |κ=N = Cf . Thus,

POA(κ) ≤ POA(N) =
Cf +

∑
Mi∈Sm(P ∗

f
) γi,m

Cf
<

Cf +Cf

Cf
= 2.

Theorem 5 tells us that when κ = 1, FEVER mechanism always chooses the down-

link power that maximizes the social utility. In addition, according to Theorem 4, even the

capacity assumption is relaxed, FEVER mechanism can still maximize the social utility

because all MSes truthfully report their CQI when κ = 1. For κ > 1, the social util-

ity decreases with κ since more MSes joins Sj and waste the throughput offered by the

macrocell. Thus the output becomes inefficient.

Noted that in some scenarios, the optimal power P ∗
f may not be the one described in

Theorem 5. This happens when γj+1,m < Cf −
∑j
i=1 Γ(P ∗

fLi,f ). In this case, allowing

Mj+1 to join the femtocell is beneficial to the system since the unallocated backhaul ca-

pacity is significantly large. In this case POA(1) will be slightly larger than one. The

degree of efficiency loss depends on the macrocell downlink data rate of γj,m. Given γj,m,

POA(1) < Cf +γj,m

Cf
= 1 + γj,m

Cf
. If capacity assumption is satisfied, POA(1) < 1 + 1

N
.
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Fairness

Then, we discuss the fairness among Mi ∈ S when κ changes. Since the allocation

rule Afever(·) follows Assumption 1, the resource allocation (backhaul capacity) among

all MSes in Sf surely satisfy max-min fairness. In addition, given a predetermined κ, all

MSes' utilities satisfy the max-min fairness under FEVER mechanism.

Theorem 6. Given κ, all MSes' utilities {ui|Mi ∈ S} under FEVER mechanism satisfies

max-min fairness, that is,

∃{u′
i} ̸= {ui}, u′

k > uk for someMk ∈ S

⇒ ∃Mi ∈ S, u′
i < ui ≤ uk.

Here we would like to further discuss the fairness efficiency among all MSes in the

overlay system. To discuss the fairness efficiency, we apply a common fairness index: Jian

fairness index I({ui}) =
(
∑

1≤i≤N
ui)2

N
∑

1≤i≤N
u2

i
[24] here. Jian fairness index is bounded between

0 and 1. A higher fairness index means the resource allocation is fairer. The following

theorem describes the fairness efficiency of FEVER mechanism.

Theorem 7. The fairness index I({ui}) of output of FEVER mechanism is an increasing

function of κ.

Proof. We use Property 1 in [24] to prove this. Before that, we define the reallocation

sequence {(M1
i ,M

1
j , du1), (M2

i ,M
2
j , du2), ...}, where (M l

i ,M
l
j, du

l) means M l
i 's utility

(downlink data rate) minus dul while M l
j 's utility plus du1. We also recall the notations

Suf (p) and Scf (p) in the proof of Theorem 1 in Appendix.

According to Theorem 1, for a given p and p′ = dp+ p > p, we have Sf (p) ⊂ Sf (p′)

and γf (p) > γf (p′). Without losing generality, we assume dp is small enough that only

one of following cases happens when power is increased to p′: Sf (p′) = Sf (p) or Sf (p′) =

Sf (p) ∪ {MSj}.

Since the reallocation only happens in MSes in Sf (p′), we focus on the effect of these

users and ignore users served by the macrocell. For the first case, no newMS joins Sf (p′).
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Since ∑
Mi∈Sf (p′) ui = ∑

Mi∈Sf (p) ui = Cf and γf (p) > γf (p′), there exists at least one

reallocation sequence {(M l
i ,M

l
j, du

l)}, whereM l
i ∈ Scf (p) andM l

j ∈ Suf (p′), can realize

the reallocation from {γi,f (p)} to {γi,f (p′)}.

According to the proof of Theorem 1 in Appendix, ∀Mi ∈ Scf (p), γi,f (p′) = γf (p′) <

γf (p). And ∀Mj ∈ Suf (p′), γj,f (p) ≤ γj,f (p′) ≤ γf (p′). Thus, for all reallocation

(M l
i ,M

l
j, du

l),dul ≤ γil,f (p) − γil,f (p′) = γil,f (p) − γ(p′) ≤ γil,f (p) − γjl,f (p) =

uli(p)− ulj(p).

According to Property 1 in [24], Jian fairness index increases when du ≤ ui−uj . This

means after every reallocation (M l
i ,M

l
j, du

l), Jian fairness index increases. Thus, the final

output I({ui(p′)}) is larger than I({ui(p′)}) when p′ > p in the first case. Similarly, In

the second case we can reach the same conclusion. Thus, the fairness index of the output

of FEVER mechanism is an increasing function of femtocell downlink power p. Finally,

since vκ is increasing with κ, I(κ) = I({ui(vκ)}) is increasing with κ.

Notice that when κ = N and p∗
N ≤ Pmax

f , the output of FEVER mechanism has a

fairness index of one.

Observed in Theorem 5 and 7, there is a tradeoff between throughput efficiency and

allocation fairness. When a larger κ is chosen, the output of FEVER mechanism becomes

less capacity efficient since more users give up the macrocell services. Doing so increases

the allocation fairness since these users now are offered with higher expected throughput,

in exchange with lower expected throughput to those users already selected by the femto-

cell. The choice of κ should be application-oriented. On one hand, if the service provider

wants to make use of the additional backhaul data rate offered by the femtocell efficiently,

he can choose a smaller κ. On the other hand, if he wants to make users share the backhaul

fairly, he may choose a larger κ.

2.6 Subscriber Group Modes

Wenow investigate the compatibility of FEVERmechanism to subscriber groupmodes

in femtocell system. In implementing the subscriber group modes in femtocells, two is-
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sues are of concerns: access control on low-priority MSes and resource reservation for

high-priority MSes. These two concerns change the access policy of femtocells and may

brings some incompatibility to existing access policies for typical cell base stations.

We first apply necessary extensions into our downlink cell-breathing framework and

two-stage game model. We add a new phase: Access Control Phase between Cell Breath-

ing and Cell Selection phases into the framework. In this phase, the femtocell should

decide and broadcast the allowed mobile user set Sa. Only users in Sa are allowed to

access the femtocell. Notice that the choice of Sa depends on the subscriber group mode

and the available resource.

To model the user behavior in the new framework, we extend the two-stage game

model in Section 2.3. The Access Control Phase is included in the first stage (Cell-

Breathing Stage) of our two-stage gamemodel. In the new gamemodel, the Cell-Breathing

rule is extended to output not only the femtocell downlink power Pf but also the allowed

mobile user set Sa. In addition, in the Cell-Selection stage we impose a new game rule:

only users belonging to Sa have the right to access the femtocell. Mathematically, the

player set in the second stage is now restricted to Sa instead of S. Other usersMi ̸∈ Sa

can only select the macrocell. In the femtocell, a subscriber group Sg ⊂ S is predeter-

mined. Each MSMi ∈ Sg has a desired expected throughput γreqi . We assume their utility

is maximized whenever the desired rate is satisfied. Thus, the utility function ofMi ∈ Sg

is ui(γ) = min(γ, γreqi ). Lastly, we assume the backhaul data rate can support at least the

demand of these MSes, that is, Cf ≥
∑
Mi∈Sg γreqi . With this assumption, we define the

reserved capacity function Cg(p):

Cg(p) =
∑

Mi∈Sg,a(p)
(min(Γi,f (p), γreqi )), (2.10)

where Mi ∈ Sg,a(p) if and only if Mi ∈ Sg and Γi,f (p) ≥ Γi,m. Cg(p) is the backhaul

data rate reserved for users in Sg. Notice that the assumption and reserved data rate imply

that when all users in Sg select the femtocell, they all can still have a reasonable service

quality. For other users, they may have an unacceptable (lower than the one provided by

macrocell) expected throughput if users in Sg have higher priority.
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2.6.1 FEVER Mechanism in Subscriber Group modes

We now propose Subscriber Group FEVER (SG-FEVER) mechanism, a voting-based

truthful mechanism that is compatible to three subscriber group modes. Similar to FEVER

mechanism, SG-FEVER is composed of three levels in Cell-Breathing stage: Channel

Information Harvester (CIH), Subscriber Group Cell-Breathing Helper (SG-CBH), and

Subscriber Group Virtual Election Rule (SG-VER).

In SG-CBH, instead of directly applying max-min allocation rule to derive the peak of

each user, we first define Sg,a(p) and Cg(p) according to (2.10). Then, the max-min allo-

cation rule Afever(·) is applied to these two groups independently: the reserved capacity

Cg(p) is used for users in Sg,a(p), while the remaining capcity C−g(p) = Cf − Cg(p) is

used for users in S−g(p), which is given by

S−g(p) = {Mi|Γi,f (p) ≥ Γi,m andMi ̸∈ Sg}.

The peak p∗
i and the wireless data rate Γi,f (p) of each user Mi ∈ S are derived in this

process.

Finally, SG-VER collects {p∗
i |Mi ∈ S} derived fromCBH and applies Virtual Election

rule to choose the femtocell downlink power Pf with a predetermined selected vote order

κ. In addition, SG-VER broadcasts the allowed user set Sa, which depends on the choice

of subscriber group mode.

Then, in Cell Selection stage there are still two levels: BEst response Dynamic (BED)

and Subscriber Group Max-min Allocation Rule (SG-MAR). In SG-FEVER mechanism,

MSes select the BS they want to be served by based on their best responses given in

Theorem 1 if they are in the allowed user set Sa. If not, the users have no choice but to

choose the macrocell BS as their serving BS . Thus, Sf and Sm are decided in this level.

The cheat-proof procedure in SG-FEVER is enhanced: if an MS is not in Sg(Pf ) selects

the femtocell in this stage, femtocell BS blocks the MS form using femtocell services.

Finally, the femtocell allocates the backhaul data rate according to the decision in SG-

CBH, and the expected throughput is then determined. Since the implementation of OSG
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is straightforward, we discuss the implementation of other subscriber group modes.

CSG Mode

In thismode, only users inSg are allowed to access the femtocell. ThusSa = {Mi|Γi,f (Pf ) ≥

γi,m} ∩ Sg. Note that SG-FEVER promises that users in Sg will be allocated at least the

wireless data rate Γi,f (Pf ) from the femtocell BS, and at most their required throughput

γreqi . When κ = |Sg|, ∀Mi ∈ Sg, γi,f (vκ) = γreqi . That is, all users derive their required

throughput from the femtocell.

Corollary 2. [Truthfulness under CSG Mode] SG-FEVER mechanism is a truthful mech-

anism when Sg is non-empty and Sa = {Mi|Γi,f (Pf ) ≥ γi,m} ∩ Sg.

Proof. We first discuss the case thatMi ̸∈ Sg. If so, the MS cannot choose the femtocell

whatever it reports in SG-CBH sinceMi /∈ Sa ⊂ Sg. Thus, any θi ∈ Θ, including θ∗
i , is

Mi's best response. Then, if Mi ∈ Sg, since SG-CBH always provides the user at least

its raw wireless data rate Γi,f (Pf ), its preference on Pf is single-peaked with peaks p∗
i

at Γi,f (p∗
i ) = γreqi . So, Mi will report θ∗

i in SG-FEVER mechanism. We conclude that

reporting θ∗
i is the dominant strategy of any Mi ∈ S in SG-FEVER mechanism under

CSG mode, that is, SG-FEVER is a truthful mechanism.

Hybrid Mode

For Hybridmode, the subscriber groupSg is also predefined, but other users are still al-

lowed to access the femtocell if there are remaining resources (backhaul capacity). Given

a predetermined non-empty set Sg, we define Sa = {Mi|Γi,f (Pf ) ≥ γi,m} in this mode.

Since we remove the restriction that all users not belonging to Sg are excluded from the

femtocell, there is a chance that a user Mi ̸∈ Sg will be included in Sa. We prove that

SG-FEVER mechanism is a truthful mechanism in Hybrid mode.

Corollary 3 (Truthfulness underHybridMode). SG-FEVERmechanism is a truthful mech-

anism when Sg is non-empty and Sa = {Mi|Γi,f (Pf ) ≥ γi,m}.
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Proof. It has been shown in Corollary 2 that ∀Mi ∈ Sg, reporting θ∗
i is their dominant

strategy under SG-CBH. Then, ∀Mi ̸∈ Sg, the remaining capacity C−g(p) is allocated

according toAfever(·) in SG-CBH. Thus, according to Theorem 3, their dominant strategy

is reporting θ∗
i either. So, SG-FEVER mechanism is a truthful mechanism under Hybrid

mode.

2.7 Simulation Results

To evaluate the efficiency and influence of κ in FEVER mechanism, we implement

a LTE overlay macrocell-femtocell simulator by extending the LTE link-level simula-

tor [20]. We follow the settings specified by 3GPP [2] to simulate link-level SINR-

throughput results, which are used to specify the wireless data rate function Γ(·) in our

model. We followed IMT-Advanced 4G evaluation guidelines [1] to construct the overlay

macrocell-femtocell system configuration. We apply Outdoor-to-Indoor and Indoor Small

Office models as the path loss models of macrocell signal and femtocell signals respec-

tively. In our simulations, there are 19 macrocells with a radius of 2 km in hexagonal

layout. Within each macrocell, five femtocells are randomly placed. All macrocell share

the same carrier which is different from the one shared by all femtocells. We chose the

macrocell in the central and a femtocell at a distance of 1.6 km to the macrocell BS as our

simulating overlay system. For MSes within these two cells, their locations are randomly

distributed within a 50m circular house centered at the femtocell BS. All macrocells have

a downlink power Pm = 46 dBmW, while all background femtocells have a downlink

power of 23 dBmW. The AWGN noise is −132dBmW. The simulating femtocell has a

maximum downlink power limit P f
max = 1 W. The data rate of the femtocell's backhaul

Cf is 25 Mbps.

2.7.1 Effect of MSes on femtocell service range

We first examine the effect of different number of MSes on the total system throughput

and MSes served by the femtocell. 5 ∼ 20 MSes are randomly placed in the system ac-
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cording to the parameter settings we listed before. We choose four κ settings for FEVER

mechanism: κ = 1, κ = 5, κ = 10, and κ = 15. For comparison, we also sketch the

results of two other mechanisms: Maximum Throughput and Maximum Power. In Maxi-

mum Throughput mechanism, the femtocell chooses the power that maximizes the overall

system throughput, that is, Pf = arg maxp
∑
Mi∈Sf

γi,f + ∑
Mi∈Sm

γi,m. This mechanism

represents the case that the femtocell's objective is maximizing the resource utilization in

the system without concerns on the fairness among MSes. In the Maximum Power mech-

anism, the femtocell always chooses the maximum power P f
max as its transmission power.

This mechanism represents the case that the femtocell's objective is maximizing its cov-

erage in this overlay system. Note that under both mechanisms the allocation rule still

satisfies Assumption 1, and MSes follow the best responses stated in Theorem 1. More-

over, we assume that the MSes always report their CQI truthfully under the Maximum

Throughput mechanism in order to simulate the femtocell has the perfect knowledge on

the current state of wireless system. The results are shown in Fig. 2.7.

Fig. 2.7 (a) shows that when the number ofMSes increases, the total system throughput

also increases since more MSes are served by the femtocell or macrocell. We observe that

when we choose κ > 1, the system throughput is lower than the one under κ = 1. In

addition, the system throughput of Maximum Throughput is almost identical as the one

under κ = 1. This observation fits the conclusion in Theorem 5 that κ = 1 maximizes the

total system throughput. For other choices of κ, we observe that a larger κ leads to lower

system throughput. In addition, when the number of MSes is small, FEVER mechanism

under large κ chooses the same operating point as Maximum Power mechanism. This is

because for those users who gives large votes, theymost likely areMSes with poor channel

qualities to the femtocell. Thus, they prefer the femtocell power as high as possible. When

the number of MSes increases, they then hope the femtocell power is limited in order to

prevent other MSes from joining the femtocell and sharing the limited backhaul capacity.

In Fig. 2.7 (b), we observe that a smaller κ indeed blocks more MSes from joining the

femtocell. When the number of total MSes increases, less than 10 MSes are served by the

femtocell under κ = 1. In contrast, more than 15 MSes choose to join Sf when κ = 15.
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Figure 2.7: Simulation Results: FEVER Mechanism under Different Choice of κ

Note that the choice of κ does not necessary mean that only κ MSes are allowed to join

the MSes, but the expected throughput of the vκ voter is maximized.

2.7.2 Tradeoff between Efficiency and Fairness

Then, we examine the tradeoff between efficiency and fairness when different κ is

chosen. 20 MSes are placed in the overlay system, and we choose κ = 1 ∼ 20 in the

experiments. Under each choice of κ, we calculate the system throughput efficiency (the

price of anarchy of FEVERmechanism) and the fairness index of the expected throughput

of all MSes. The simulation results are shown in Fig. 2.8.

The tradeoff between capacity efficiency and allocation fairness is clearly shown in

Fig. 2.8, which fits the conclusion we made in Section 2.5.1. When we choose κ = 1,

the efficiency becomes 1, but the fairness index is 0.7287, which is the lowest one in

all operating points. Instead, if we choose κ = 20, the price of anarchy under FEVER

mechanism becomes 1.2617 and fairness index becomes 1. Note that there may exist

multiple choices of κ which lead to the same operating point with the efficiency of 1.

This is because some MSes, most likely those near the femtocell BS, have the same votes

on P F defined in Theorem 2. In the experiment scenario, there are 9 MSes close to the
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Figure 2.8: Simulation Results: Efficiency and Fairness Tradeoff

femtocell. They join the femtocell immediately when Pf > 0, thus they share the same

vote. So, all choices of κ < 10 lead to the same performance, which is the same under

Maximum Throughput mechanism.

2.7.3 Influence of Subscribe Group Modes

Finally, we evaluate the influence of different subscriber group modes in overlay sys-

tem through simulations. 5 MSes, which belong to the subscriber group Sg and with

required throughput of 4Mbps, are randomly placed in the range between 25m and 50m

to the femtocell BS. In addition, 0 ∼ 10 MSes are randomly placed in the range between

50m and 100m. These MSes are treated as users from outside and do not belong to Sg.

Then, we apply SG-FEVER mechanism with two choices of selected vote order: κ = 1

and κ = κg, where κg is defined as the largest vote from MSes in Sg. The choice κ = κg

is a straightforward one because all users in subscriber group should have a good service

under the femtocell. The simulation results were shown in Fig. 2.9.

In Fig. 2.9 (a), we observe that κ = 1 is not a good choice in CSG and Hybrid modes.

The system throughput in these two modes when κ = 1 is significantly lower than the one

in OSG mode. Additionally, the system throughput is higher when κ = κg comparing to

the one with κ = 1 in all modes. The performance degradation results from the reserved

resource scheme in SG-FEVER. Since the subscriber group user have reserved resources,
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Figure 2.9: Simulation Results: SG-FEVER Mechanism under different SG modes

it is likely that the smallest vote is from the MS in subscriber group, and the MS chooses

the downlink power that just meets its requirement. In this scenario it is possible that there

is still unallocated backhaul data rate in the femtocell. In addition, we observd that when

κ = κg, both OSG and Hybrid modes perform as well as the OSG mode with κ = 1 when

there exist non-subscriber group MSes. (Note that we have prove that OSG mode with

κ = 1 leads to the optimal operating points in the overlay system).

Although both OSG and Hybrid modes perform well when κ = κg in terms of total

system throughput, we have different conclusions in Fig. 2.9 (b), which shows the average

subscriber group user throughput. When there are more non-subscriber group MSes in

the overlay system, the average subscriber group throughput decreases to 3.112 Mbps

and 2.778 Mbps when κ = 1 and κ = κg in OSG mode. In contrast, when SG-FEVER

mechanism is in Hybrid mode with κ = κg, all subscriber group MSes derive 4 Mbps

downlink data rates, which are their predetermined required throughput. According to

the results, among all the subscriber group modes, Hybrid mode in femtocell system is

beneficial to the overlay system and the subscriber group users.
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2.8 Related Work

Veeravalli and Sendonaris first discovered the cell-breathing phenomenon in CDMA

cellular system [21]. Jalali further discussed the possibility of using cell-breathing phe-

nomenon as a management tool on the cell capacity [25]. The fairness issue under cell-

breathing was investigated by Yang and Ephremides [26]. Despite in CDMA system,

researchers also observed the cell-breathing phenomenon in the coverage of WLAN AP

[27] [28]. Bahl et. al. proposed various cell-breathing control algorithms under WLAN

to realize power estimation and load balancing [27]. Bejerano and Han also proposed

graph-based cell-breathing algorithms to realize the load-balancing [28].

For research on the femtocell subscriber group modes [18], Studies have showed that

either static CSG or OSG modes may result in system inefficiency in interference man-

agement and bandwidth sharing [29] [30] [31] [32]. Hybrid mode as a balance between

interference and efficiency was suggested in [31] [32]. The implementation of Hybrid

mode in OFDMA system was further discussed in [33].

Some related works have focused on the issue of downlink power control in femtocell

networks. Akbudak and Czylwik designed a distributed power control and scheduling

algorithm to mitigate co-tier interference between femtocells. Through numerical anal-

ysis, they showed that their designed algorithm achieved sub-optimum close to global

optimum [34]. Li et. al proposed both centralized and distributed solutions to reduce

cross-tier interference in macrocell-femtocell overlay networks. The proposed solutions

provide QoS to both macrocell and femtocell users [35]. Jorswieck and Mochaourab used

game theory to analyze the non-cooperative power allocation between two cells in cellular

networks. In addition, they applied AGV mechanism to guarantee MSes' truthful SINR

reporting [36]. However, these works focus on the wireless capacity of the multi-cell

system, while the backhaul capacity constraint in femtocell is not in their scopes.

To the best of our knowledge, the issue of cell-breathing downlink power control in

backhaul-constrained overlay networks has not been covered yet.
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2.9 Summary

We proposed a femtocell cell-breathing control framework for determining the opti-

mal coverage of the femtocell and allocating limited femtocell backhaul data rate to MSes

fairly and efficiently. FEVER mechanism, a novel Virtual Election based mechanism to

collect all MSes' channel quality information, was proposed. FEVER mechanism was

shown to be truthful, and we proved that through different choice of selected vote or-

der, the balance between system throughput and allocation fairness among MSes can be

maintained. We also demonstrated the implementation of FEVER mechanism in different

subscriber group modes by proposing SG-FEVER mechanism. The LTE-based realistic

simulation results not only verify the performance enhancement under FEVER mecha-

nism, but also show the benefits of Hybrid mode to the overlay system.

Appendix: Proofs of Theorems

Proof of Theorem 1 - First, we prove that the necessary and sufficient condition of

Mi to join Sf is Γi,f (p) ≥ γi,f . Given an allocation rule A(·) satisfying Assumption 1 and

a femtocell downlink power p, we apply the water-filling algorithm and derive the below

allocation:

γi,f = min{Γi,f (p), γf (p)} (2.11)

We denote the MSes served by the femtocell under the downlink power p by Sf (p). Then,

we denote Suf (p) = {Mi|Γi,f (p) < γf (p)} and Scf (p) = Sf (p) \ Suf (p). Thus,

∑
Mi∈Su

f
(p)

Γi,f (p) + |Scf (p)|γf (p) = min{Cf ,
∑

Γi,f (p)}. (2.12)

The (2.11) and (2.12) define a unique rf (p). In addition, we have |Sf |γf (p) ≥
∑
Mi∈Su

f
(p) Γi,f (p)+

|Scf (p)|γf (p). Thus,

γf (p) ≥


Cf

|Sf | ≥
Cf

|S| = Cf

N
, if ∑ Γi,f (p) ≥ Cf

maxMi∈Sf
Γi,f (p), otherwise

(2.13)
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Thus, ifMi chooses to joinSj , its data rate γi,f satisfiesΓi,f (p) ≥ γi,f ≥ min{Γi,f (p), Cf

N
} ≥

min{Γi,f (p), γi,m}. In addition, we have ∀Mi ∈ S,
Cf

N
≥ γi,m. So, Mi's best response

function is

βi(p) =


Mi ∈ Sf , if Γi,f (p) ≥ γi,m

Mi ∈ Sm, otherwise

Proof of Theorem 2 -We denote pbi = Γ−1
i,f (γi,m) = Pm

L1,m

L1,f
asMi's boundary power.

Without losing generality, given an MS set S, we assume L1,m

L1,f
≤ L2,m

L2,f
≤ ... ≤ LN,m

LN,f
.

According to Theorem 1, pb1 ≤ pb2 ≤ ... ≤ pbN . Now we discuss the relation among γi,f , p

and each MS's peak. We first denote Γf (p) = ∑
pb

i ≤p Γi,f (p). Since Γ(·) is an increasing

function, Γf (p) is an increasing function too. Then, we denote P F by

P F =


Γ−1
f (Cf ), if Γ−1

f (Cf ) exists

pb−j , otherwise

whereCf−γj,m < Γf (pb−j ) < Cf . The second case occurs whenMj 's joining immediately

uses all the unallocated capacity and thusΓf (pb−j ) < Cf andΓf (pbj) > Cf . Then, we check

the following two cases to show that γf (p) is increasing when p < P F and decreasing

when p > P F :

Recalling (2.11) and (2.12), we know γi,f = Γi,f (p) ∀pbi ≤ p. Because Γi,f (p) is an

increasing function, ∀pbi ≤ p, γi,f is also increasing, and so is γf (p) = max{Γi,f (p)}.

Case 2: p > P F . In this case, we would like to show that γf (p) is strictly decreasing

with p. We discuss two cases:

Case 2.A: pbj < p < p′ < pbj+1. Since p′ < pbj+1,Mj+1 chooses not to join S ′
f . Thus,

S ′
f = Sf = {Mi|i ≤ j}. According to (2.12), we have

|Scf (p)|γf (p′) +
∑

Mi∈Su
f

(p′)
Γi,f (p) = |Scf (p′)|γf (p) +

∑
Mi∈Su

f
(p′)

Γi,f (p′). (2.14)

We make an assumption that γf (p) ≤ γf (p′). Since p′ > p, Γi,f (p′) > Γi,f (p) ∀Mi ∈

Sf . We denote ∆Suf = Suf (p) \ Suf (p′). Due to (2.11), Suf (p) ⊂ Suf (p′). If ∆Suf = ∅,

Scf (p′) = Scf (p) and Suf (p′) = Suf (p). We check the left and right parts of (2.14) terms by
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terms and find out the right part of (2.14) is strictly large than its left part, which reaches

an contradiction. Thus∆Suf is nonempty. For eachMi ∈ ∆Suf , we find out that Γi,f (p′) >

Γi,f (p) > γf (p). Thus, the right part of (2.14) is still strictly larger than its left part. So,

according to the proof of contradiction, our assumption that γf (p) ≤ γf (p′) is wrong.

Thus we have γf (p) > γf (p′).

Case 2.B: pbj < p < pbj+1 < pbk < p′ < pbk+1. Since pbk < p′ < pbk+1, S ′
f =

Sf ∪ {Mj + 1,Mj + 2, ...,Mk} = Sf ∪∆Sf . From (2.12),

Cf = |Scf (p)|γf (p) +
∑

Mi∈Su
f

(p)
Γi,f (p) (2.15)

= |Sc′

f (p′)|γf (p′) +
∑

Mi∈Su′
f

(p′)

Γi,f (p′)

+ |∆Sc′

f (p′)|γf (p′) +
∑

Mi∈∆Su′
f

(p′)

Γi,f (p′),

where Sh′
f (p′) = Shf (p′) \ δSf , δSh

′
f (p′) = Shf (p′) ∩ δSf and h = {c, u}. We still make

an assumption that γf (p) ≤ γf (p′). We observe that in (2.15), the terms with Sc′
f (p′) and

Su
′

f (p′) are just the right part of (2.14) in Case 2.A, which we have proved strictly larger

than the left part. In addition, the third and four terms in the right part of (2.15) are strictly

positive. Thus we conclude the right part of (2.15) is strictly larger than its left part. So,

according to the proof of contradiction, our assumption that γf (p) ≤ γf (p′) is wrong.

Thus we have γf (p) > γf (p′).

Finally, we show that each Mi has its peak value p∗
i . According to (2.11), Γ(·) is

increasing with p, and γf (p) is decreasing with p. Thus, Mi has a unique peak value p∗
i

which satisfies Γi,f (p∗
i ) = (γf (p∗

i )). In addition, ∀Mi ∈ S, p∗
i ≥ P F since γi,f (p) is

increasing when p < P F .

Proof of Theorem 6 - Here we prove this theorem by contradiction. We denote the

utilities of MSes under FEVER mechanism by {ui} and the MSes served by the femtocell

by Sf . Then, we assume there exist other utilities of MSes {u′
i} that

u′
k > uk for someMk ∈ S and ∀ui ≤ uk, u

′
i ≥ ui. (2.16)
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We denote the MS/backhaul data rate allocation under {u′
i} as S ′

f and {γ′
i,f |Mi ∈ S ′

f}.

Then, {u′
i} can be denoted as:

u′
i =


γ′
i,f , ifMi ∈ S ′

f

Γi,m, otherwise.

Notice that S ′
f ̸= Sf must holds. Otherwise, the expected throughput of all MSes will

be equal under both Sf and S ′
f and we have a contradiction here. Now we examine the

candidates ofMk and show the contradictions in every cases.

Case 1: Mk ∈ S \ Sf : We recall (2.4) in Theorem 1.

βi(p) =


Mi ∈ Sf , if Γi,f (p) ≥ γi,m

Mi ∈ Sm, otherwise

Given Mk in S \ Sf = Sm, we have uk = Γk,m > Γk,f (p) ≥ γ′
k,f . Thus, if Mk ∈ S ′

f ,

u′
k = γ′

k,f < Γi,m = uk. However, ifMk ̸∈ S ′
f , u′

k = Γk,f = uk. Both possibilities lead to

the contradiction.

Case 2: Mk ∈ Sf ∩ (S \ S ′
f ): Recalling (2.4) in Theorem 1 and givenMk ∈ Sf and

Mk ∈ S \ S ′
f , we have uk > Γk,m = u′

k, which leads to the contradiction.

Case 3: Mk ∈ Sf ∩S ′
f : We first discuss the case that Sf ̸= S ′

f . GivenMk ∈ S ′
f ∩Sf ,

we have u′
k = γ′

i,f since Mk ∈ S ′
f . In addition, we have u′

k > uk = γi,f (p). However,

recalling (2.11) in Theorem 1:

γi,f =


Γi,f (p), if Γi,f (p) < γf (p)

γf (p), otherwise

Since u′
k > uk and the maximum utility ofMk is Γi,f (p), Γi,f (p) > γf (p) and uk = γf (p).

Thus, we have ∀Mi ∈ Sf , uk = γf (p) ≥ ui. So, if there exists Mi ∈ Sf ∩ (S \ S ′
f ),

according to (2.4) its utility will be u′
i = Γi,m < γi,f = ui. In addition, if there existsMi ∈

(S \ Sf ) ∩ (S ′
f ), according to (2.4) its utility will be u′

i ≤ Γi,f < Γi,m = ui. Both cases

violate (2.16) and lead to the contradiction. Since all cases has been discussed, according

to the proof of contradictions, there exists no {u′
i} satisfying (2.16) with S ′

f ̸= Sf .
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Chapter 3

Service Price in Heterogeneous

Networks: Optimal Contract Design

3.1 Introduction

Along with the growing population of mobile Internet users, the market orientation

of today's mobile telecommunications has shifted from low-throughput voice traffic to

high-throughput data traffic. To increase customers' interest in wireless services, most

service providers offer a flat-fee pricing for unlimited data service, in which the user pays a

single fixed fee for wireless service. However, variations in the service quality of wireless

connections, such as signal degradation in indoor environments, present a major obstacle

to telecommunications companies. As a result, customers' willingness to use these services

is impaired, to the point that service providers often cut their margins, offering lower prices

in order to keep the service attractive.

3.1.1 Femtocell System

One efficient way to improve wireless service instability and thereby combat these

problems is to enhance the signal quality through femtocells. The femtocell, a small base

station (BS) with low transmission power, can alleviate macrocell signal degradation with

its lower signal loss rates and higher frequency reuse rate [17]. By introducing the femto-
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cell system, service quality is enhanced, along with customers' willingness to subscribe to

the wireless service. In the most state-of-the-art wireless standards, there are two possible

spectrum access models for femtocell BSs : shared-spectrum and split-spectrum [37].

In the shared-spectrum model, femtocell BSs operate in the same spectrum as the macro-

cell BSs. This scheme is efficient when the femtocell BSs are deployed in places with

poor macrocell signals, but are subject to interfere when the macrocell signals are strong.

In the split-spectrum model, femtocell and macrocell BSs operate in separate spectrums,

which are split according to the expected mobile station (MS) access rate, preventing the

inter-system interference. Spectrum utilization may be inefficient if the cells contain un-

expected loadings.

3.1.2 Contract Design

In lieu of seeking wireless system enhancements, service providers can also look to a

different type of contract plan to increase their profits: the differentiated contracts. The

differentiated contract method involves setting the MSs with better channel qualities apart

from other users, and charging them more for their higher data-use rates. These differ-

entiated contracts help service providers to efficiently make a higher profit from MSs

according to their data usage. However, these contracts also face a significant problem:

MSs tend to report low channel reception to prevent higher charges, eventually leading

to an even lower profit than the flat-fee contract model. To attract users in an area with

poor channel quality, service providers may offer users two contract options according

to their channel quality conditions: 1) charging an average price for users with normal

channel quality, and 2) charging a lower price for those with poor channel reception. Un-

fortunately, the latter option encourages all MSs to sign for the lower price even if their

area receives normal service quality, effectively cheating the system by signing a cheaper

contract. Even after the initial contract has already been signed, wireless devices can be

configured or hacked by these cheating users [38], allowing them to manipulate disguised

reports of poor channel quality to the service provider so that they can continue signing

cheaper plans under the differentiated contract model. Thus, the differentiated contract
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must be carefully designed to prevent such cheating, a problem which is known as the

incentive compatible (IC) issue.

3.1.3 Contributions

In this chapter, we investigate the femtocell economic valuation and the profitability

of differentiated contracts in an overlay macrocell-femtocell system, to which we make

the following contributions:

1. We propose a novel wireless service differentiation framework to investigate the

profit service providers make under a variety of differentiated contracts in the over-

lay macrocell-femtocell system. The price and maximum data rate are the differen-

tiating factors in the contract structure. This framework addresses the differences

between wireless service quality among users, which is the basis of the service dif-

ferentiation developed in this chapter.

2. We show that a contract structure in our framework prevents cheating behaviors. As

proved in this chapter, the existence of this contract structure is promised when the

MSs experience different service qualities.

3. We draw a comparison between the shared-spectrum and split-spectrum systems in

our framework and have derived the optimal (profit maximizing) contracts under

three schemes: flat fee contracts, differentiated contracts without incentive compat-

ible concerns, and incentive compatible differentiated contracts. In a split-spectrum

system, it is difficult to further extract profits from MSs as the only incentive com-

patible contract is a flat fee one. By contrast, in a shared-spectrum system, there are

differentiated contracts generating profits by raising service prices for the MSs with

good service qualities in femtocells, while providing cheaper prices to other MSs

with poor service qualities.
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3.2 Profit Extraction Framework

In our study, we consider a wireless system with a service provider and N number of

MSs, in which the service provider offers unlimited data service. Two types of services

are provided in the system: one is a macrocell-only service, where MSs are only allowed

to use the data service through macrocells. The other is a femtocell service, where MSs

are allowed to access the data service through either the macrocells or the femtocells in-

stalled by the service provider, depending on the environment of use. In this framework,

the valuation of an MS on the wireless service is based on the service quality he or she

experiences. Service quality is measured by the data rate ri, which is modeled as a random

variable in this framework. Then, we denote MS i's valuation on the service with v(ri),

which is an increasing function. Additionally, the MS i needs to pay a fee ti in order to

use the service. The utility of MS i is given by

ui = E[v(ri)]− ti. (3.1)

The data rate ri is environmentally varied. Factors affecting the environment include

location and the type of cell the user employs. In this framework, the environment is de-

noted as s ∈ {(out), (in,m), (in, f)}, where (out) represents the scheme that MS uses the

macrocell service while outdoors, where (in,m) represents the macrocell service usage

while indoors, and where (in, f) represents indoor use of the femtocell service. Probabil-

ity of an MS being indoors or outdoors is given as pin and pout respectively. The wireless

data rate rsi is determined by the channel quality MS i experienced in environment s. Due

to natural characteristics of wireless transmissions, rsi is given by a random distribution

Rs
i , which is associated with a probability density function (p.d.f.) f si (rsi ) and a cumu-

lative distribution function (c.d.f) F s
i (rsi ) =

∫ rs
i

0 f si (r)dr. When a user is in an outdoor

environment, he is served by the macrocell, and his outdoor data rate p.d.f. is f outi . By

contrast, if he use the service while indoors, he is served by the femtocell (if installed). In

all other situations, he is served by the macrocell. In the former case, his indoor data rate

p.d.f. will be f in,fi (·). In the latter one, the data rate p.d.f will be f in,mi (·).
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In this framework, MSs are classified according to their indoor macrocell data rate dis-

tribution Rin,m
i ∈ Rin,m, where Rin,m is the universal set of Rin,m

i . The channel quality

of an MS is usually modeled by propagation loss from the base station, channel fading/

shadowing, and interference from other signal sources. We assume that Rin,m is an or-

dered set with first-order stochastic dominance as its binary relation. A formal definition

of first-order stochastic dominance is given below:

Definition 6. [First-Order Stochastic Dominance] Given any pair of Rs
l , R

s
l′ ∈ Rs asso-

ciated with p.d.f f sl (r), f sl′(r) and c.d.f. F s
l (r), F s

l′(r), the former has first-order stochastic

dominance over the latter (Rs
l > Rs

l′) if and only if ∀r ∈ R+, F s
l (r) < F s

l′(r).

Without losing generality, we let l ∈ [0, 1] and Rin,m
l > Rin,m

l′ if and only if l > l′.

As a result, MSs are sorted according to the indoor macrocell channel quality they experi-

ence. We define l as the type of MS in this framework. First-order stochastic dominance

promises that given any increasing valuation function v(r), a type lMS always has higher

expected valuation than those with type l′ whenever l′ < l. Thus, MSs can be sorted ac-

cording to the expected valuation on service. First-order stochastic dominance is applied

because what we are tackling in this problem here is the pricing strategy of a city-wide or

national-wide service provider. The differences in interference and channel fading/shad-

owing conditions between the huge number of MSs can be ignored on the average sense.

This is because differences in channel quality can be mostly attributed to the propagation

loss due to distance and walls within an indoor environment. In this case, MSs can be

sorted with Definition 6. Finally, the distribution of type l is given by the p.d.f h(l) and

c.d.f H(l). We assume d
dx

h(l)
H(l) ≥ 0, which is a common property in popular distributions

(Gaussian, Poisson, Exponential, Uniform) and other single-peak densities [39].

The femtocell data rate distributionRin,f
i ∈ Rin,f can be correlated withRin,m

i . Corre-

lation depends on which spectrum the femtocell is operating in. We state this relation with

the function T : Rin,m 7→ Rin,f . Again, we assume here that Rin,f is an ordered set with

first-order stochastic dominance as its binary relation. The exact form of the correlation

function T depends on the spectrum model, as discussed below:

1. Shared-Spectrum The femtocell is operating in the same spectrum as the macro-
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cell. Due to interference between femtocells and macrocells, an MS with a good

macrocell channel quality likely holds a poor femtocell channel quality, especially

when no interference management scheme is applied. Thus, we model T as a de-

creasing function: T (Rin,m
l ) = Rin,f

l < Rin,f
l′ = T (Rin,m

l′ ) if and only if l > l′.

Notice that this does not necessarily mean that the femtocell system is inefficient

in deployment. Even though the interference exists, the femtocell may still provide

some advantages such as higher channel reuse efficiency. In this framework, the

higher channel reuse efficiency in indoor environments plays an important role in

increasing the profit of the service provider.

2. Split-Spectrum The femtocell is operating in different spectrum than the macrocell.

Therefore, the indoor data rates under the femtocells have no correlation to the ones

under macrocells. We model T as a constant function: T (Rin,m
l ) = Rin,f .

For s = out, we simply assume that all MSs share the same outdoor data rate distri-

bution Rout on average.

3.2.1 Contract Design

Services can be divided into two types: the basic macrocell service and the femtocell

service, where the latter deploys a femtocell at the subscriber's home or office to offer

indoor coverage. We assume that the maximum data rate a femtocell supports can be

controlled by the service provider. A practical method to realize this control is to simply

limit the allocated backhaul capacity of the femtocells. This, in turn, limits the maximum

data rate supported by the femtocells, and is an easily implemented traffic control process

since service providers have full control of the backhaul of the wireless system.

The basic contract scheme for macrocell services contains only one condition for using

the basic service: the price tm. By contrast, the femtocell contract contains two conditions:

the maximum data rate r and the price t. When an MS i signs a contract (r, t) with the

service provider, he or she is offered a femtocell deployment at home, and the maximum

data rate provided the femtocell offered will be limited to r. If the service provider offers
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only one single contract (r, t) for the femtocell service, this offer is described as a flat-fee

contract. On the other hand, if the service provider offers a series of contracts {(ri, ti)},

these types of offerings are known as differentiated contracts. When multiple contracts

are provided, MSs have the flexibility to choose contracts that work best for them, unless

additional constraints are applied.

In summary, the contract can be denoted as (y, r, t), where y = {m, f} is the type

of contract. When y = m, the contract has macrocell-only service. When y = f , the

contract provides femtocell service. Note that the maximum data rate is not capped when

y = m. Let V (y, r, l) be the expected data rate of a type l MS under a signed contract

(y, r, t), which is

V (y, r, l) = poutE[v(routl )] + pin(E[v(rin,yl )|rin,yl < r] + v(ri)(1− F in,y
l (r))). (3.2)

The utility of a type l MS is

u(y, r, t, l) = V (y, r, l)− t. (3.3)

When multiple contracts {(r, t)} are provided, a rational MS will choose the contract

which maximizes his or her utility.

3.2.2 Incentive Compatibility

Incentive compatibility (IC) is an issue in game theory that describes whether the play-

ers will apply the actions the designer desires. In this framework, the incentive compatibil-

ity issue arises when the MSs rationally choose the contracts. When the service provider

is negotiating a contract with an MS, the channel quality distribution of the MS may not

be known. That is, the data rate distribution Rin,m
i of MS i is private information. More-

over, even after signing the contract, cheating MS may still report false channel quality

measurement to the service provider, effectively disguising themselves within as another

category of MSs. Experienced users may even modify their devices, reporting forged

channel qualities to prevent the service provider from validating their service-quality cat-
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egory. As a result, the service provider may not address the MS's service quality category

as a condition for new contracts. Therefore, when multiple femtocell contracts are offered

for different types of MSs, the service provider should confirm whether the targeted MSs

are choosing the contracts designed for their level of service quality.

The incentive compatibility issue is resolved when the provided contracts satisfy the

IC condition:

Definition 7 (Incentive compatible (IC) condition). When femtocell contracts are given

by r(l), t(l), where (f, r(l), t(l)) is the contract for a type l MS, the contracts are defined

as incentive compatible for MS set L if they satisfy the following conditions: ∀l, l′ ∈ L

u(f, r(l), t(l), l) ≥ u(f, r(l′), t(l′), l), (3.4)

u(f, r(l), t(l), l) ≥ Ul = u(m,∞, tm, l). (3.5)

The Ul denotes the reserved utility if MSs choose not to sign the femtocell contract,

which is the utility under the basic contract (m,∞, tm) in this framework. When the IC

condition is satisfied, the utility of the target type l MS is maximized when users choose

the contract (r(l), t(l)), which is designed for them. Therefore, the incentive to alter their

choices and "cheat" to get a cheaper contract is eliminated under this contractual scheme.

Femtocell contracts are considered to be implementable when they satisfy the IC condi-

tion. Here, we discuss three popular contract structures:

1. Flat-fee contract: Only one femtocell contract (rf , tf ) is offered to all MSs. Since

there is only one contract available, it is always incentive compatible.

2. Non-IC differentiated contracts: Multiple femtocell contracts (rF (l), tF (l)) are

offered to MSs. This type of contract may not be implementable when the service

type of a particularMS is unknown in advance. We apply this to show the theoretical

upper bound of the overall profit when the type of MS can be validated.

3. IC differentiated contracts: Multiple contracts (rS(l), tS(l)) which satisfy the IC

condition are offered, thereby promising implementability.
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Table 3.1: Notations
Notation Explanation
N Total number of MSs
ri Data rate of MS i

y ∈ {m, f} Macrocell/fetmocell service
l ∈ [0, 1] Type of MS

s ∈ {(out), (in,m), (in, f)} Service environment
pin, pout Probability that an MS stays indoor/outdoor
Rs

l Data rate distribution of type lMS in environment s
fs

l (r),F s
l (r) The p.d.f and c.d.f of type lMS's data rate r in environment s

(y, r, t) Service contract for service y with maximum data rate r and price t
V (y, r, l) The valuation of type lMS on the service y with maximum data rate r
u(y, r, l, t) A type lMS's utility under contract (y,r,t)

V m(r), V f (r) The valuation of MSs with maximum data rate r under macrocell/femtocell in split-spectrum system
V m(r, l), V f (r, l) The valuation of type lMS with maximum data rate r under macrocell/femtocell in shared-spectrum system

The service provider aims to maximize his profits:

R =
∫
L
(t∗(l)− c(y∗(l), r∗(l)))h(l)dl, (3.6)

where L ⊂ [0, 1] is the types of MSs signing contracts, (y∗(l), r∗(l), t∗(l)) is the contract

a type l MS chooses, and c(y, r) is the cost function of the service provider providing

a y-type service with maximum data rate r. We assume c(m, r) = 0, c(f, r) = c(r),

c(∞) =∞, c′(r) > 0, and c′′(r) > 0 for all r ∈ R+, where the latter denotes the variable

cost of the femtocell deployment to a service provider.

3.3 Profit Maximization in Split-Spectrum System

Now we will show how to derive the optimal contract structure in the proposed frame-

work. We begin with a split-spectrum system, in which no correlation exists between the

channel quality under femtocell and macrocell. We assume that on average, all MSs share

the same data rate distribution Rf when the femtocell is installed. If no femtocell is in-

stalled, a type l MS experienced indoor data rate distribution is Rin,m
l . We first show the

optimal price of basic macrocell service. Then, we discuss the optimal contracts under

three femtocell contract structures: the flat fee femtocell contract, non-IC differentiated

femtocell contracts, and IC differentiated femtocell contracts.
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3.3.1 Macrocell-Only Service

First we will discuss a case in which only the basic contract (macrocell service) under

the price tm is offered to all MSs. In this case, femtocell service is not provided, and MSs

have only two options, either to sign the basic contract, or refuse to subscribe. The profit

optimization problem is

maxN(1− F (l∗))tm, ∀l ≥ l∗, Ul = u(m,∞, tm, l) ≥ 0. (3.7)

The optimal basic contract price tm and the boundary type l∗ can be easily derived:

l∗ =


argl V (m,∞, l) = (1− F (l))V ′(m,∞, l), if exists,

0, else.
(3.8)

tm = V (m,∞, l∗). (3.9)

Notice that some MSs may refuse to sign the basic contract due to poor indoor channel

quality, which holds when l∗ > 0. In this case, the service provider simply does not offer

wireless service to some MSs. In addition, for all l > l∗, u(m,∞, tm, l) = Ul > Ul∗ = 0.

That is, they all have positive utilities, which are referred to here as customer surplus.

Profits can be increased by extracting customer surplus.

3.3.2 Flat Fee Femtocell Contract

Let us now discuss the flat fee femtocell contract (rf , tf ) where only a single price

and the maximum data rate option is offered. An MS will now have three options: the

basic contract, femtocell contract, or no subscription. The profit maximization problem

becomes

maxN
∫
L
(t(l)− c(l))h(l)dl, (3.10)
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where ∀l ∈ L, u(m, r(l), t(l), l) ≥ 0, and

(r(l), t(l), c(l)) =


(∞, tm, 0), if u(m,∞, tm, l) > u(f, rf , tf , l),

(rf , tf , c(rf )), otherwise.
(3.11)

Notice that all MSs share the same femtocell data rate distribution Rf . Thus, they

will have the same valuation V (f, rf , l) on the femtocell service. We denote V f (rf ) =

V (f, rf , l) and V m(l) = V (m,∞, l) in the following sections.

Consider the two cases in this section: the case where tm is adjustable and the case

where it is not. We first briefly conclude that case when tm is adjustable. In such a case, it

can be shown that there always exists a tm that is high enough to push all MSs who would

potentially benefit from the femtocell turn to the femtocell contract. Let us consider that

case that the femtocell service is profitable to all users, that is, V f (rf )−c(rf )−V m(l) ≥ 0

for all l ∈ [0, 1]. In such a case, the service provider will push all MSs to use the femtocell

service by increasing the basic contract price to a unreasonably high value. All customer

surpluses can then be extracted from the femtocell users by setting tf = V f (rf ) since

their utilities will come out negative under the unreasonable high basic contract price tm

or zero with no subscription. The profits of service is then maximized. For other cases

that only a portion of MSs are beneficial from the femtocell service, we can always choose

a proper tm to push those MSs to femtocell contract and maximize the profit by setting

tf = V f (rf ).

Let us now consider the case that tm is given in advance and is fixed. We discuss

this case because the basic contract price tm, which represents the traditional unlimited

data plan service price, is usually already determined and announced before the service

provider introduces the femtocells. It may take too much inner cost to change the an-

nounced price. Without losing generality, we assume tm = V m(0). In such a case, all

MSs at least sign the basic contract since it gives them non-negative utility.

Proposition 1. The optimal flat fee femtocell contract (rf , tf ) in a split-spectrum system
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is:

rf = argr V f ′(r) = c′(r). (3.12)

lf∗ =


argl h(l)(V f (rf )− c(rf )− V m(l) + V m(0))−H(l)V m′(l) = 0, if exists,

1, otherwise,
(3.13)

Lf = [0 : lf∗], tf = V f (rf )− V m(lf∗) + V m(0). (3.14)

Please note that the proofs of all given propositions and lemmas, if not shown in the

context, are provided in Appendix.

The femtocell contract is chosen by MSs with poor indoor channel quality (l < lf∗),

while the basic contract is chosen by the other MSs. The femtocell service does improve

the MSs' valuations on the wireless service, and the service provider's profit is increased

by enhancing the channel quality of MSs. However, as shown in (3.14), tf is strictly lower

than V f for those type l MSs that l < lf∗. This means that some customer surpluses are

still left to these MSs. We may extract it with differentiated contracts.

3.3.3 Non-IC Differentiated Femtocell Contract

The customer surpluses left to MSs are due to their advantage under the flat fee con-

tract: they are charged with the same price even if they have different service quality under

the macrocell. If the service provider knows the exact type of MSs, he can charge different

prices according to the MSs' types. Here we introduce the optimal non-IC differentiated

contract to extract all customer surpluses from the MSs under this assumption. The max-

imum data rate and price now can be functions of l (rF (l), tF (l)) . If all MSs choose the

corresponding contracts, the profit becomes

R = N(
∫ lF ∗

0
(tF (l)− c(rF (l)))h(l)dl + (1−H(lF∗))V m(0)), (3.15)

where lF∗ = argl V f − tF (l) = V m(l)− V m(0).

Proposition 2. The optimal non-IC differentiated femtocell contracts (rF (l), tF (l)) in a
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split-spectrum system are:

rF (l) = rF = argr V f ′(r) = c′(r), (3.16)

lF∗ =


argl V f (rF )− c(rF )− V m(l) + V m(0) = 0, if exists,

1, otherwise,
(3.17)

LF = [0 : lF∗], tF (l) = V f (rF )− V m(l) + V m(0), (3.18)

where Lf is the set of MS signing for the femtocell contracts.

The profit made from the optimal non-IC differentiated femtocell contract is

R = N
∫ lF ∗

0
(V f (rF )− c(rF )− V m(l) + V m(0))h(l)dl. (3.19)

First, we observe that in non-IC differentiated contracts, all femtocell contracts offer

the same maximum data rate rF in (3.16), which is the same as the one offered in the

optimal flat fee contract in (3.12). This is due to the fact that the channel quality under the

femtocell is uncorrelated to the one under macrocells in the split-spectrum system. Then,

we observe that lF∗ > lf∗, which means that the service provider offers femtocell services

to more MSs. Additionally, for those MSs already served under the flat fee femtocell

contract, the price offered in non-IC differentiated contracts in (3.18) is higher than the

one offered in the flat fee contract in (3.14). When the types of MSs are known, we see

that the service provider may increase his profits in two directions: 1) increase the price

of the femtocell service according to the MSs' type, and 2) extend the femtocell service to

some MSs not served under the flat fee femtocell contract.

However, these contracts are not implementable according to our observation. We can

check how much the utility of type l MS increases if he signs (rF , tF (lF∗)) instead of

(rF , tF (l)):

u(f, rF , tF (lF∗), Rl)− u(f, rF , tF (l), Rl) = V m(l)− V m(lF∗) > 0. (3.20)

The above equation is always positive. In other words, an MS with poor indoor macrocell
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channel quality can always get a positive utility increase when choosing the femtocell

contract designed for an MS with good indoor macrocell channel quality. If the service

provider cannot validate the MSs' types, all rational MSs with type l that l < lF∗ will

choose the contract (rF , tF (lF∗)). The resulting profit will be same as the one under the flat

fee contract (rF , tF (lF∗). The profit under this contract is never larger than the optimal flat

fee femtocell contract in Proposition 1 since the latter is the optimal contract. We conclude

that in a split-spectrum system, the optimal non-IC differentiated femtocell contracts are

neither implementable nor optimal when the types of MSs are unknown to the service

provider.

3.3.4 Incentive Compatible Differentiated Femtocell Contract

For the optimal IC differentiated femtocell contracts, the only type of incentive com-

patible femtocell contracts are the flat fee contracts in a split-spectrum system.

Proposition 3. The only type of IC femtocell contracts in a split-spectrum system are flat

fee contracts.

This is mainly because the femtocell service quality in a split-spectrum system is not

correlated to the macrocell signals. Therefore, an IC differentiated femtocell contract does

not exist in a split-spectrum system. The optimal IC contract is same as the optimal flat

fee femtocell contract in Proposition 1.

3.4 Profit Maximization in Shared-Spectrum System

Next, we derive the optimal contracts in the shared-spectrum system under different

contract structures. In this system, the channel quality of MSs in a femtocell deployed

environment has a negative correlation with macrocells. Thus, the transform function

T (R) is modeled as a decreasing function: T (Rin,m
l ) = Rin,f

l < Rin,f
l′ = T (Rin,m

l′ ) if and

only if l > l′. We denote V f (r, l) = V (f, r, l) in this section to represent the valuation of

an MS with Rin,f
l on the femtocell service. It can be checked that V f (r, l) is increasing in
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r and decreasing in l. Following the previous section, we assume that the basic contract

price tm = V m(0) is fixed and announced in advance.

3.4.1 Flat Fee Femtocell Contract

The corresponding optimization problem under the flat fee contract structure is same

as the one in Proposition 1 except that the utility of an MS using the femtocell service

becomes u(f, r, t, l) = V f (r, l)− t.

Proposition 4. The optimal flat fee femtocell contract (rf , tf ) in a shared-spectrum system

is :

rf = argr V f
r (r, lf∗) = c′(r), (3.21)

lf∗ =


argl h(l)(V f (rf , l)− c(rf )− V m(l) + V m(0))−H(l)V m′(l) = 0, if exists,

1, otherwise,
(3.22)

Lf = [0 : lf∗], tf = V f (rf , lf∗)− V m(lf∗) + V m(0), (3.23)

where V f
r (r, lf∗) = ∂V f (r,lf∗)

∂r
.

Notice that tf is strictly lower than V f (rf , l) for all l < lf∗, which means some cus-

tomer surplus is reserved to MSs. In contrast to the split-spectrum system, where all MSs

have the same utility when using the femtocell service, the u(f, rf , tf , l) is decreasing with

l. Therefore, MSs with good femtocell channel quality now have higher utilities.

3.4.2 Non-IC Differentiated Femtocell Contract

We now discuss the optimal non-IC differentiated contracts (rF (l), tF (l)), under the

assumption that the channel quality of an MS can be validated by the service provider.

The profit maximization problem is similar to the one in the split-spectrum system ex-

cept in this case, there is correlation between macrocell and femtocell channel qualities.

By following the same procedure as in Proposition 2, the optimal non-IC differentiated

femtocell contracts are given as follows:
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Proposition 5. The optimal non-IC differentiated femtocell contracts (rF (l), tF (l)) in a

shared-spectrum system are

rF (l) = argr V f
r (r, l) = c′(r), (3.24)

lF∗ =


argl V f (rF (l), l)− c(rF (l))− V m(l) + V m(0) = 0, if exists,

1, otherwise,
(3.25)

LF = [0 : lF∗], tF (l) = V f (rF (l), l)− V m(l) + V m(0), (3.26)

where V f
r (r, l) = ∂V f (r,l)

∂r
.

Unfortunately, the above contracts are still not implementablewhen the channel quality

cannot be validated. It can be checked that all rational MSs with Rin,m
l that l < lF∗ will

choose the contract (rF (lF∗), t(lF∗)) since this contract provides a higher utility to them.

3.4.3 Incentive Compatible Differentiated Femtocell Contract

Proposition 6. The optimal IC differentiated femtocell contracts (rS(l), tS(l)) in a shared-

spectrum system:

rS(l) = argr V f
r (rS(l), l) = c′(rS(l))− H(l)

h(l)
V f
lr (rS(l′), l)|l′=l, (3.27)

lS∗ =


argl V f (rS(l), l) = H(l)

h(l) (V m′(l)− V f
l (rS(l′), l)) + c(rS(l)) + V m(l)|l′=l, if exists,

1, otherwise,
(3.28)

tS(l) = V f (rS(l), l) +
∫ lS∗

l
V f
l (rS(s), s)ds− (V m(lS∗)− tm),LS = [0 : lS∗]. (3.29)

Now we derive the optimal IC differentiated contracts. We first discuss the sufficient

condition to satisfy the IC condition in the shared-spectrum system. This can be achieved
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through two methods: compensate MSs with good channel quality by offering some re-

served utility, and decrease service quality of MSs with poor channel quality distribution.

For femtocell contracts (rS(l), tS(l)), we denote U(l, l′) = u(f, r(l′), t(l′), l). Then, we

show that our framework satisfies the following condition:

Lemma 1 (Differentiation Condition).

V f
rl (r, l) =

∂(∂V
f (r,l)
∂r

)
∂l

< 0.

Proof. Recalling V (y, r, l), we have V f
r (r, l) = Vr(f, r, l) = pinv′(r)(1− F in,f

l (r)) > 0.

Thus,

V f
rl (r, l) = lim

dl→0

pinv′(r)((1− F in,f
l+dl(r))− (1− F in,f

l (r)))
dl

= lim
dl→0

pinv′(r)(F in,f
l (r)− F in,f

l+dl(r))
dl

< 0. (3.30)

The last inequality comes from the fact that Rin,f
l has first-order stochastic dominance

over the Rin,f
l+dl.

The differentiation condition shows that under the same maximum data rate limitation,

an MS with good signal quality has higher marginal utility comparing to those with poor

signal quality. This means there are service differences among MSs. With Lemma 1, we

prove that the IC condition can be converted into the following form:

Lemma 2. Femtocell contracts (r(l), t(l)) are implementable in Rin,f , Rin,m, T (·) if:

U(l) = U(l∗)−
∫ l∗

l
V f
l (r(s), s)ds, (3.31)

U(l∗) ≥ V m(l∗)− tm, (3.32)

r′(l) ≤ 0. (3.33)

where V f
l (r, l) = limdl→0

V f (r,l+dl)−V f (r,l)
dl

and U(l) = u(f, r(l), t(l), l).

Proof. First, the (3.31) is directly converted from (3.4) when (3.33) is satisfied. This can

be checked by differentiating (3.31) and applying (3.33) and Lemma 1. For (3.32), first
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notice that the reserved utility V m(l∗) − tm increases with l. Since Vl(m, r, l) > 0, we

have U(l) > U(l∗) > V m(l∗) − tm > V m(l) − tm. Thus, the (3.5) is satisfied when

(3.31) and (3.32) are satisfied. Since Definition 7 is satisfied, the above equations indeed

describe a series of incentive compatible contracts.

Lemma 2 suggests that some utilities should be left to those MSs with good channel

qualities. In addition, an MS with poor femtocell channel quality will be offered with a

lower maximum data rate femtocell service to prevent other MSs having incentives to sign

the same contract. Now we describe the optimal IC differentiated femtocell contracts in a

shared-spectrum system in Proposition 6, while the proof is as follows:

Proof. The profit of the service provider is given by R =
∫ lf∗

0 (tS(l)− c(rS(l)))h(l)dl +

(1−H(lS∗))tm. Recalling the definition of u(y, r, t, l) in (3.3), we have

R = N(1−H(l))tm +N
∫ lF ∗

0
(V f (rS(l), l)− u(f, rS(l), tS(l), l)− c)h(l)dl.(3.34)

Applying (3.31), (3.32), and integration by part to u(f, rS(l), tS(l), l)h(l), we have

R = N
∫ lS∗

0
(V f (rS(l), l) + V f

l (rS(l), l)H(l)
h(l)

− V m(lS∗)− c(rS(l)))h(l)dl +Ntm.(3.35)

We first apply pointwise optimization over rS(l) to obtain the optimal contracts data rate

rS(l) for allMSs, which is (3.27). Then, we find the optimal boundary lS∗ by the first-order

differentiation method to derive (3.28). Finally, the optimal price (3.29) is by Lemma 2

and (3.3).

Notice that (3.35) indicates lS∗ makes two contradictory effects on the profit: when lS∗

increases, moreMSs are directed to sign themore profitable femtocell contracts ((f, rS(l), l)),

but more utility (V f
l (rS(l), l)H(l)

h(l) +V m(lS∗)) should be reserved for other femtocell users

for maintaining IC. The profit is maximized when these two effects are balanced, which

is at lS∗.
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Figure 3.1: Negative Correlation between Macrocell and Femtocell service quality in
Shared-Spectrum System

3.5 Numerical Verification

We verify the theoretical conclusions through numerical analysis. We discuss the ser-

vice provider's profit and MSs' expected data rates when given certain contract structures.

The settings across all simulations are as follows. The femtocell deployment cost function

is c(r) = 0.01r2. The valuation function of MSs is v(r) = r. The probability of MSs in

indoor environments is pin = 0.5. All data rates follow the Rayleigh distribution except

the differences in average. The average outdoor data rateE[Rout] is 4 Mbps, while indoor

data rates vary according to simulation schemes.

3.5.1 Correlation between Macrocell and Femtocell Service Quality

We verify our assumption on the negative correlation betweenmacrocell and femtocell

service quality in a shared-spectrum system. We implement an LTE overlay macrocell-

femtocell simulator by extending the link-level simulator implemented in [20]. In our

simulations, there are 19 macrocells with a radius of 1.5 km in a hexagonal layout. Within

each macrocell, one femtocell is randomly placed. All cells share the same carrier. We

choose the macrocell in the central area and a femtocell at a random distance to the macro-

cell BS as our simulating overlay system. One MS is placed with a distance of 35m to the

femtocell BS. The statistics of the correlation between the data rates of MSs using macro-

cell and femtocell are displayed in Fig. 3.1, which shows that there is a negative correlation
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Figure 3.2: Different Contract Structures in Split-Spectrum System

between the data rates under macrocell and femtocell. In addition, it suggests that a linear

approximation is enough to fit the correlation. Thus, we use a linear function to model

this negative correlation in our simulations.

3.5.2 Price and Profit under Split-Spectrum System

We investigate the profit and expected data rates of MSs in the split-spectrum system

under different contract structures. The expected indoormacrocell data rates are uniformly

distributed within [0.1, 1]Mbps, and the expected femtocell data rate is 5Mbps. The types

of MSs are uniformly distributed between [0, 1], that is, ∀l ∈ [0, 1], h(l) = 1. A type l

MS has the average indoor macrocell data rate of 0.1 + 0.9l Mbps.

We calculate the service prices of basic contract, flat fee femtocell contract, optimal

non-IC and IC differentiated femtocell contracts. The service prices, profits, and expected

data rate for type l MSs are shown in Fig. 3.2. Notice that the service provider's total

revenue and profit under certain contracts is the integrated area below the contract price

and profit line in each figure.

We observe that the price of optimal IC differentiated femtocell contract (3.96) is the
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same as the price of the flat fee femtocell contract, which confirms Proposition 3. The

optimal non-IC differentiated femtocell contracts potentially offer the largest revenue if

the service provider can validate the MSs' types and force them to sign the correct corre-

sponding contract. However, we have proved that they eventually choose the boundary

contract designed for the MS with the poorest macrocell signal quality. The price of that

contract is 2.92, which is lower than that of a flat fee contract. Thus, the revenue and

profit are eventually lower under the non-IC differentiated contracts than the optimal flat

fee contract.

However, as shown in Fig. 3.2(c), those MSs choosing the femtocell contracts indeed

benefit from the data rate enhancement. However, some MSs (of the type between 0.35

to 0.69, with corresponding expected macrocell data rate 1.76 to 3.43 Mbps) refuse to

sign the flat fee femtocell contract because the enhanced quality cannot cover their extra

expanse. In fact, these MSs are intentionally excluded by the service provider because

they cause higher service prices for others.

3.5.3 Price and Profit under Shared-Spectrum System

We create two wireless network schemes in the shared-spectrum system. The first

one is the poor macrocell scheme, where the expected indoor macrocell data rates are

uniformly distributed within [0.1, 1]Mbps. The other is the goodmacrocell scheme, where

the expected indoor macrocell data rates are uniformly distributed within [0.1, 5]. In both

schemes, the femtocell data rates are distributed within [1, 5], and the data rates under two

cells are negatively correlated. Notice that in the poor macrocell scheme, the femtocell

always provides higher data rates for all types of MSs. Therefore, service providers prefer

to have all MSs use the femtocell in order to increase their valuations on the service. On

the other hand, in the goodmacrocell scheme, someMSsmay eventually have a lower data

rate under the femtocell. In such a case, only thoseMSswith poormacrocell signals should

install femtocells to increase their indoor data rates. The types of MSs are uniformly

distributed between [0, 1]. We calculate the service price, profit, and expected data rates

under different contract structures and network schemes. The results are shown in Fig.

87



0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5

MS type (l)

P
ric

e

 

 
Basic
Flat Fee
Optimal non−IC
Optimal IC

(a) Service Price with Poor Macro-
cell Service Quality

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

MS type (l)

P
ro

fit
 p

er
 M

S
 w

ith
 ty

pe
 l

 

 
Basic
Flat Fee
Optimal non−IC
Optimal IC

(b) Profit with Poor Macrocell Ser-
vice Quality

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5

MS type (l)

E
xp

ec
te

d 
D

at
a 

R
at

e 
(M

bp
s)

 

 
Basic
Flat Fee
Optimal non−IC
Optimal IC

(c) Expected Data Rate within Poor
Macrocell Service Quality

Figure 3.3: Different Contract Structures in Shared-Spectrum System
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Figure 3.4: Different Contract Structures in Shared-Spectrum System
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3.3 and 3.4.

In the poor macrocell scheme (Fig. 3.3), we observe that almost all MSs choose to sign

the femtocell contracts under the non-IC differentiated contracts because the femtocell

service provides better service quality (higher expected data rate) with affordable pricing

to every MS. However, rational MSs are shown to still eventually choose the contract for

the boundary MS (l = 1 in this case). Thus, though all MSs have higher expected data

rates under optimal non-IC differentiated contracts, the profit of the service provider is

less. For the flat free femtocell contract, only 52% of MSs choose the femtocell contracts.

Although the profit under such a contract is higher, the expected data rates of those MSs

not installing femtocells are less.

When the optimal IC differentiated contracts are applied, more MSs (62%) choose to

sign the femtocell contracts because the service provider offers discounted choices to MSs

with poor femtocell signal quality. Further, for MSs with good femtocell signal quality

are charged a higher price than the flat fee contract, which returns a higher maximum data

rate. Thus, the IC differentiated contracts increase the profits from two aspects: higher

price for MSs with good femtocell signal qualities and discounted price for those MS not

served under flat fee femtocell contract (Fig. 3.3(a)). This confirms the correctness of our

conclusions in Lemma 2 and Proposition 6.

For the expected data rate (Fig. 3.3(c)), MSs with good femtocell signal qualities are

offered higher expected data rate than that of the flat fee contract. However, this number

is still lower than the optimal non-IC differentiated contracts. For those MSs with poor

femtocell signal quality (type 0.28 to 0.52), expected data rate is lower than under the

flat fee contract. This is a necessary service quality degradation to promise incentive

compatibility.

We also observe that the enhancements from IC differentiated contracts is more sig-

nificant when the quality difference increases. When good macrocell scheme is applied

(Fig. 3.4), the profit under optimal IC differentiated contracts is almost the same as the

flat fee contract ones. Since MSs now have better macrocell service quality, they also

have higher reserved utilities. Thus, the service provider needs to offer more utility for
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Figure 3.5: Effect of Service Quality Difference

the incentive compatibility in IC differentiated contracts. The utility is given by offering

lower price (Compared with Fig. 3.3(b) and 3.4(b)) and higher data rate (Fig. 3.3(c) and

3.4(c)), where both are costly for the service provider when the macrocell signal quality

is generally good. Due to these two hidden costs, the IC differentiated contracts cannot

extract much more profit than with the flat fee contract in this scheme. Nevertheless, the

profits under IC differentiated contracts are never lower than the flat fee contract.

3.5.4 Effect of Service Quality Difference

We now investigate how the service quality difference affects the profit. We reapply

the poor macrocell service quality scheme in the shared-spectrum system. We control the

minimum femtocell data rate at to fall between 1 to 4.5 Mbps in this analysis. When the

minimum femtocell data rate increases, the femtocell service quality difference among
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MSs turns insignificant. We apply the four contract structures into the wireless system,

and the results are shown in Fig. 3.5.

We observe that the overall profit increases with the minimum femtocell data rate un-

der all contract structures. When the minimum femtocell data rate increases, the overall

femtocell service quality also increases. Thus, the service provider can charge a higher

price under all femtocell contracts. We also observe that the optimal IC differentiated con-

tracts always derive more profits than the flat fee ones. These extra profits increases with

the decrease of the minimum femtocell data rate (Fig. 3.5(a)). This is due to the increase

of channel quality differences. When the minimum femtocell data rate decreases, MSs

are more likely to have different channel qualities under the femtocell service. Therefore,

the customer surplus, which is produced by the channel quality differences, is increased.

Since the customer surplus is the source of the extra profit derived by the IC differentiated

contracts, this contract structure becomes more profitable when the channel quality differ-

ence is significant. We also observe that the ratio of MSs signing the femtocell contracts

increases with the minimum femtocell data rate under all contract structures (Fig. 3.5(b)).

Additionally, the IC differentiated contracts indeed make more MSs choose the femto-

cell service comparing to the flat fee contract. In conclusion, the benefit of differentiated

contracts is more significantly when the service quality difference increases. Moreover,

MSs are more likely to choose the beneficial femtocell service under the differentiated

contracts.

3.6 Related Work

The profits of wireless service providers have been studied extensively. One pop-

ular topic is competition [40--43]. Research shows that differentiating users according

to their valuations on different service providers can mitigate competition, and therefore

increase the profits of all service providers. On the other hand, when we consider a sin-

gle service provider, research suggests that service differentiation can also generate more

profits [41,44--48]. Service differentiation is offered either at the requests of users [41,44]

or in accordance with the classification of service providers [45--47]. In the latter case, the

91



differentiated pricing strategy is used to classify users based on service quality and direct

them to corresponding services. For instance, in research focusing on voice traffic, the ser-

vice differentiation is based on measurements of service quality, such as delay time [49] or

blocking probability [45, 46]. Some literature recommends mutual responsibilities on the

contracts [44,48], including pricing and quality of service (QoS) requirements. However,

most of this research requires information about service quality and requirements to be

reported directly by the users, which, as shown in the previous section, is susceptible to

inaccuracy since users may untruthfully report their information to maximize their utili-

ties. Service providers are in need of a truthful mechanism to guarantee expected profits.

Currently, there are several theoretical discussions on the market issues of femtocell

systems [50, 51]. Claussen et al. show that an overlay macrocell-femtocell system is a

better choice than a macrocell-only system in terms of increasing profits [50]. Shetty

et al. discuss the effects of femtocells on the profits of service providers [51]. Results

also show that femtocells can increase the profits of system operators by decreasing the

loading of macrocells while charging higher for the femtocell services. However, the

pricing scenario in this research applied only to the flat fee scenario in which service

quality is the same on average for all MSs. Cases in which signal quality varies between

the MSs under different environments have not yet been investigated. In this chapter, we

show that the differentiated contract [52], which can generate profits when user's valuation

on the service is varied, and has great potential to improve the overall profits of femtocell

systems.

3.7 Summary

In this chapter, we demonstrate how to maximize the profit of an unlimited data plan

through femtocell systems and specialized contract designs. When the service quality of

an MS is verifiable, we employ the service differentiation in the differentiated contracts

to maximize the service provider's profits. By contrast, when the service quality cannot

be verified, the incentive compatible condition is applied to prevent MSs from cheating

when signing the contract. We prove that only flat fee contracts are incentive compatible
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in a split-spectrum system, and the differentiated contracts can be incentive compatible

in shared-spectrum systems. We conclude that a service provider can indeed derive more

profits from MSs by 1) introducing femtocell services, and 2) provide differentiated con-

tracts. The former increases MSs' valuation on the service, while the latter derives more

customer surplus from MSs using the femtocell service, while offering other MSs an af-

fordable deal.

Appendix: Proofs of Propositions

Proof of Proposition 1: For tm > 0 and tf < V f , it has been shown in previous

section that if u(f, rf , tf , l) > u(m,∞, tm, l), then u(f, rf , tf , l′) > u(m,∞, tm, l′) for

all l′ < l. Thus, there exists lf∗ that for all MS with type l < lf∗, they choose the femtocell

service. Otherwise they choose the basic contract since tm = V m(0) ≥ V m(l). Thus, the

service provider's profit is given by H(lf )(tf − c(rf )) + (1 − H(lf ))(tm) where tf ≤

V f (rf ). The optimal contracts are derived by optimizing this new profit function under

the two constraints with respects to tf , rf , and lf∗.

Proof of Proposition 2: To make a type lMS choose the femtocell contract given the

basic contract price tm, his utility under the femtocell contract should be no less than the

one under the basic contract. Thus, V m(l) − tm ≤ V f (rF ) − tm ⇒ tm ≤ V f (rF ) −

V m(l) + tm. In addition, the profit of femtocell contract is higher than the basic contract

if and only if tF − c(rF ) > tm. With the above two equations and applying pointwise

optimization, we can derive the optimal contracts.

Proof of Proposition 3:Since in the split-spectrum system, all MSs share the same

femtocell data rate distribution, we can denote V (f, r, l) = V f (r) for all MSs. Recalling

(3.31), we have u(f, r(l), t(l), l) = V f (r(l)) − t(l) ≥ u(f, r(l′), t(l′), l) = V f (r(l′)) −

t(l′) ∀l, l′ ∈ L. However, the above equation is true for all l, l′ if and only if r(l) = r(l′)

and t(l) = t(l′) everywhere. Thus, the only incentive compatible contract is the flat fee

contract.

Proof of Proposition 4: We may follow the same proof of Proposition 5 to derive the

solution.
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Proof of Proposition 5: The solution can be derived through point-wise optimizing

each type l ∈ [0, 1]. The optimal data rate rF (l) for type l is given by

dV f (r, l)− c(r)
dr

|r=rF (l) = 0⇒ V f
r (rF (l), l) = c′(rF (l))

Then, the optimal price tF (l) is determined by how much customer surplus the MS has.

The utility of MS l given the data rate rF (l) is V f (rF (l), l)−V m(l)+tm. Thus, we simply

set the price to this in order to extract all customer surpluses. Finally, the boundary MS

type lF∗ is the one that give the service provider the same profit as the macrocell contract.

Thus, it is determined by tF (l)− c(rF (l)) = tm ⇒ V f (rF (l), l)− c(rF (l))− V m(l) = 0.
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Chapter 4

Carrier Aggregation in LTE-Advanced

System: An Auction Design

4.1 Introduction

Next-generation wireless wide-area network (WWAN) standards, such as IEEE 802.16

and 3GPP LTE-Advanced, are established for achieving the 4G standard requirements

proposed by ITU-R [1]. One of themost challenging requirements in 4G standard is 1Gbps

peak data rate for low-mobility user equipment (UEs) and 100 Mbps peak data rate for

high-mobility UEs. In theory, the data rate requirement could be achieved by expanding

the carrier bandwidth to 100 MHz. Nevertheless, a contiguous spectrum with such a wide

bandwidth is rarely available in developed and developing countries since most feasible

spectrum has been licensed to existing wireless techniques such as TV, GSM, or 3G. The

unlicensed spectrum is mostly in a non-contiguous narrowband form. Given the carriers

formed by the narrowband spectrum, next-generation WWAN standards are unlikely to

satisfy the peak data rate requirements if each UE is served by a single carrier.

4.1.1 Carrier Aggregation

Carrier aggregation is introduced in LTE-Advanced for aggregating non-contiguous

spectrum into a virtual carrier [53]. Multiple narrowband carriers can be aggregated into
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a wideband virtual carrier for better spectrum utilization. UEs with carrier aggregation

capability can increase their peak data rates by transmitting through the aggregated virtual

carrier that virtually provides a larger transmission bandwidth. The carrier aggregation

configuration can be UE-specific, which means that it provides a new dimension of UE

configurations. UEs that require high throughput or have delay constraints can be assigned

with a virtual aggregated carrier for high peak data rate, while others may be assigned

with the traditional carrier for energy conservation. In summary, carrier aggregation can

increase UE peak data rate, enhance spectrum utilization efficiency, and provide flexible

configurations on a per-UE basis.

Beside the benefits, there are challenges in the design and implementation of carrier

aggregation in LTE-Advanced system. New hardware and protocol designs, for instance,

are required for all LTE-Advanced infrastructure and devices to support this new function.

Nevertheless, it should have minimal impacts on the existing and running LTE protocol

and maintain the compatibility with the existing LTE-legacy devices. For configuration

part, carrier activation on UEs is one of the key issues in carrier aggregation. Which car-

rier(s) should be activated for each UE is a complex problem with concerns on the diverse

carrier quality, coverage, spectrum efficiency, and UE-specific data requirements [54].

Using the system we illustrated in Fig. 4.1 as an example, LTE devices with different CA

capability are located at different locations in the cell. The cell is offering two carriers C1

and C2, each with different coverage in the cell. In this example, only the CA-supported

device within the coverage of C1 can burst its throughput using both C1 and C2. For

others, the choice of activated carrier for those two devices outside of C1 is limited to

C2 due to carrier reception. Additionally, the legacy device within the coverage of C1

supports only one carrier due to device capability. In addition, it may not be necessary

to enable carrier aggregation for devices within C1 if they are in idle state or with low

data rate requirement. The carrier activation problem is complex that it deserves further

studies.

Additionally, in order to make the virtual carrier function properly, one of the activated

carriers should be the primary carrier, which is responsible for not only the data transmis-
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Figure 4.1: An illustration of CA-enabled LTE Cell

sion but also the delivery of control signals, which is called cross-carrier scheduling [55].

By aggregating the control signal transmission into one or several carriers, the systemmay

prevent unnecessary interference from neighbor cells. The choice of the primary carrier

further increases the complexity of the carrier activation problem. It can be seen that this

problem is a NP-hard problem. Thus, an optimal solution may not be derived in a reason-

able time. A practical solution with acceptable calculation time is desirable and will be

one of the main objectives of this work.

4.1.2 Truth-telling

Nevertheless, most of the existing works studying cellular systems make an assump-

tion that all infrastructure and devices will faithfully follow the designed protocol. This

assumption may not be valid in real world scenario [56]. For instance, some works assume

that the evolved NodeB (eNB) knows the data requirements of UEswhen she is calculating

the final carrier and resource block allocations. However, the data requirements of UEs

should be reported by UEs themselves since only they known the information. The re-

porting process introduces a possibility of cheating for the UEs: A UEmay report the data
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requirement untruthfully if the resulting resource allocation, which is altered by her un-

truthful report, increases her utility. This impairs the allocation efficiency since the eNB

does not receive the correct information and the allocation is therefore manipulated by

UEs under their selfish concerns. Therefore, a solution which functions properly when all

devices faithfully follow the design may perform poorly when the devices (UEs) behave

rationally. A detailed analysis on the rational behaviors of users in the system is neces-

sary in order to understand and prevent this kind of malfunction. Game theory, which aims

to analyze the rational behaviors and interactions of players under certain game rules, is

suitable for this purpose.

In this work, we study the downlink carrier activation and resource block allocation in

carrier aggregation capable LTE system. UEs are assumed to be rational and have different

QoS requirements on the receiving data amount and delays. Their utilities are determined

by the received data amount and the delay. The eNB is in charge of the carrier and re-

source block allocation according to the carrier quality, coverage, and UE-specific data

requirements, while its objective is two-fold: It aims to maximize the system efficiency,

which is the total utility of UEs in the system, and prevent the rational UEs from reporting

their information untruthfully. Our main contributions are as follows:

1. We address the heterogeneous characteristics of carrier quality, coverage, and UE

QoS requirements in our proposed model and solutions. We make use of the carrier

aggregation to enhance the system performance by satisfying the QoS requirements

of UEs more efficiently. Specifically, we consider two type of UEs, throughput-

sensitive and delay-sensitive UEs, in this work. The proposed solution effectively

reduces the delay for delay-sensitive UEs while satisfying the throughput require-

ments of throughput-sensitive UEs by properly triggering the carrier aggregation

function of each UE accordingly.

2. To the best of our knowledge, this is the first attempt to propose and address the truth

telling issue in carrier aggregation. We propose a truthful auction design specifically

for the heterogeneous carrier quality and QoS requirements of UEs. We theoreti-

cally prove that the proposed design indeed provides proper incentive for the UEs
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to truthfully report their QoS requirements even if they selfishly behave.

3. The proposed solution is evaluated through extensive simulations in our LTE-Advances

simulator, which uses the models and parameters suggested in 4G evaluation docu-

ment [1] and 3GPP LTE standard [2]. The simulation results show that the proposed

solution outperforms traditional implementations significantly in terms of social

welfare, which represents the ability of the system satisfying the QoS requirements

of UEs.

4.2 System model

We consider a LTE-Advanced cell with one eNB and a set of UEs N = {1, 2, ..., n}.

The eNB is assigned with a set of carriers C = {1, 2, ..., K} for serving UEs. A carrier c

is divided into Bc subcarriers. In a duration of T slots, there are T ∗ Bc resource blocks

in each carrier c to be allocated to UEs.

UEs are heterogeneous in their experienced carrier qualities, carrier aggregation capa-

bilities, and QoS requirements. Specifically, the carrier quality indicatorQi,c indicates the

expected amount of data per resource block UE i can receive if carrier c is activated for

her. Notice that whenQi,c = 0, either UE i has no reception on carrier c (out of coverage)

or UE i does not support the baseband of carrier c (hardware limitation). Then, let Ci be

the maximum number of aggregating carriers UE i can support. For legacy LTE devices,

Ci = 1. For CA-capable devices, Ci is greater than one and mostly equals to two or three.

4.2.1 QoS Requirements of UEs

The QoS requirements of UE i is denoted by (Mi, ki), where Mi is the amount of

requested data in a duration of T slots, and ki ∈ {th, delay} indicates whether the UE is

throughput-sensitive or delay-sensitive.

When ki = th, UE i is requesting a downlink transmission service with a guaran-

teed average throughput of Mi/T . This type of QoS requirements can be found in file

downloading or video streaming service, in which a minimum acceptable throughput is
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required to maintain the quality of service to an acceptable level. In such a case, letmi be

the actually received data amount by UE i, UE i's valuation on the service quality is given

by a valuation function V th(mi,Mi) satisfying the following properties:

dV th(mi,Mi)
dmi


≥ 0, mi < Mi;

= 0, mi > Mi.
(4.1)

V th(Mi,Mi) ≡ 1. (4.2)

The (4.1) indicates that UE i's valuation increases with the throughput until the require-

ment Mi/T is met. The (4.2) normalizes the valuations of all throughput-sensitive UE's

by letting their maximum valuation on the service be one.

When ki = delay, UE i is requesting a downlink transmission service with a delay-

sensitive data of sizeMi. This represents the case of search query and voice call in which

small but timely response is expected. In these applications, the user will have a higher

valuation when she receives the data in shorter delay. We model this requirement with

the following valuation function V delay(·). Let mi be the actually received data amount

by UE i and di be the delay of the last amount of received data. When mi ≥ Mi, UE i's

valuation V delay(di) satisfy
dV delay(di)

ddi
≤ 0 (4.3)

For the case thatmi < Mi, we let di =∞ to reflect the fact that the requested data is not

completed received and therefore useless to the UE at this moment.

4.2.2 Cross-Carrier Scheduling

Cross-carrier scheduling improve the transmission quality by aggregate control sig-

nals of multiple carriers in one control channel that the UE experiences less interference

from neighbor cells. Specifically, UEs not only experience different transmission quality

Qi,c in carriers, but also the interference on the control signals. In LTE downlink trans-

mission, physical downlink control channel (PDCCH) in the activated carrier is used to
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deliver notification messages to UEs of the allocated downlink resource blocks in the same

carrier. When cross-carrier scheduling is activated, all downlink control signals are ag-

gregated into the primary carrier's PDCCH. Each downlink control message indicates its

corresponding carrier, and the notified UE can listen and receive the downlink data at the

indicated resource block in the indicated carrier. In such a case, the UE only needs to

listen to the PDCCH in her assigned primary carrier for all the PDCCH messages.

Given the interference level on the PDCCH in each carrier experienced by UEs, the

eNB should assign the primary carrier of each UE to the one with least interference among

all the activated carriers. Here we denoteDi,c as the interference level experienced by UE

i in carrier c, and cpi ∈ C as the primary carrier used for transmitting PDCCH signals.

Then, P (Di,cp
i
) is the probability that the PDCCH signals of carrier c can be successfully

decoded by UE i if the corresponding primary carrier is cpi . Finally, the expected received

data amount per resource block of UE i in carrier c conditioning on the choice of primary

carrier cpi is given by P (Di,cp
i
)Qi,c.

4.2.3 BS Resource Allocation

The CA resource allocation works as follows. Before the time slot 1, the eNB requests

UEs to report their carrier qualities and QoS requirements for the following T slot. Then,

the eNB determines the carrier activation and resource block allocation for each UEs ac-

cording to the received information. According to the allocation, eNB first activates each

UE's carriers and assign the primary carrier for the UE. Then, at each time slot t ∈ [0, T ]

, the eNB notifies the UEs through PDCCH signals if their downlink data is transmitted

at specific resource blocks in certain carriers at time slot t. The whole process terminates

and restarts at time slot T .

4.3 Carrier Activation and Resource Block Allocation

The objective of eNB is to maximize the expected total valuation of UEs, which is

given by ∑n
i=1 vi. The allocation problem can be formulated as a non-linear integer opti-
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mization problem. Let Ci ⊂ C be the activated carriers for UE i, xi,c,b,t ∈ {0, 1} be the

assignment of carrier c's resource bock b at slot t to UE i, and cpi ∈ Ci be the assigned

carrier for transmitting PDCCH signals of carrier c to UE i. Then, the expected received

data amount of UE i in time slot t is given by

mi(t) =
∑

c∈C,1≤b≤Bc

P (Di,cp
i
)xi,c,b,tQi,c. (4.4)

Therefore, the total expected amount of received data in the following T slots is given by

mi =
T∑
t=1

mi(t) =
T∑
t=1

∑
c∈Ci,1≤b≤Bc

P (Di,cp
i
)xi,c,b,tQi,c. (4.5)

The expected delay di experienced by UE i given the allocation is

di =


min argt{

∑
xi,c,b,tP (Di,cp

i,c
)Qi,c ≥Mi}}, if exists;

∞, otherwise;
(4.6)

4.3.1 Optimization problem

In this work, we consider a utility-based approach to the optimization problem. The

objective of the eNB is to maximize the overall valuations of UEs, which is denoted by

V th(·) and V delay(·) according to their types. The overall valuation also represents the

ability of the system to satisfy the UE's QoS requirements. The valuation maximization

problem can be formulated as follows:

max
xi,c,b,t,c

p
i ,Ci

∑
ki={th}

wiV
th(mi,Mi) +

∑
ki={delay}

wiV
delay(di) (4.7)

where

Ci ⊂ C, pi ∈ Ci, xi,c,b,t ∈ {0, 1}, ∀i, c, b, t
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|Ci| ≤ Ci, ∀i (CA capability constraint)∑
i∈N

xi,c,b,t ≤ 1, ∀c, b, t (non-overlapping constraint)∑
1≤t≤T,1≤b≤Bc

xi,c,b,t = 0, ∀i, c ̸∈ Ci (assignment constraint)

mi =
∑
t,c

xi,c,b,tP (Di,pi
)Qi,c

di =


min argt{

∑
xi,c,b,tP (Di,pi,c

)Qi,c ≥Mi}}, if exists;

∞, otherwise;

Notice that di is derived through a non-linear function, which makes the optimization

problem be nonlinear and hard. The difficulty of this optimization problem depends on

the form of valuation function V th and V delay. In the following paragraph, we show that

the proposed value maximization problem is NP-hard:

Theorem 8. The proposed optimization problem in (4.7) is NP-hard.

Proof. In order to show that the optimization problem in (4.7) is NP-hard, we will show

that any arbitrary 0− 1 knapsack problem, which is NP-complete, can reduce to the pro-

posed problem in polynomial time.

Let us consider a 0 − 1 knapsack problem with a bag with maximum capacity of W

and N items. Each item has a valuation of wi and a weight of Mi. We reduce this into

the proposed problem in (4.7) by considering a cell with only one carrier C containingW

resource blocks. We let N items be the UEs in the system, while wi be their weight and

Mi be their requesting data amount. We then let ∀i, c, Qi,c = 1 and P (Di,c) = 1, and

ki = th. Finally, we let V th(mi,Mi) = 1 ifmi = Mi, and 0 otherwise. By this reduction,

a UE will have a contribution of wi to the overall valuation if and only if her requirement

Mi is satisfied by setting an amount ofMi resource blocks to it.

The optimal solution {x∗
i,c,b,t} found in this reduced problem can be transformed back

to the original 0 − 1 knapsack problem by putting an item i in the bag if and only if∑
c,b,t x

∗
i,c,b,t ≥ Mi. Since the reduction and transformation can be done in a linear time,

we conclude that the proposed optimization problem in (4.7) is as hard as 0− 1 knapsack

problem. Therefore, the proposed optimization problem in (4.7) is NP-hard.
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Since the proposed optimization problem is NP-hard, the optimal solution may be

undesirable when the response time is a concern. Several heuristic approaches, such as

greedy algorithm, may be applied here for finding sub-optimal solutions in an acceptable

time.

4.3.2 Sub-problem: Satisfying QoS requirement while Minimizing

Allocated Resource

Here we consider a greedy approach by solving the optimization problem per UE. The

basic idea is to use as few as possible resource blocks to satisfy each UE's requirement,

one at a time. Formally speaking, given a UE and currently available resource blocks, we

would like to minimize the number of resource blocks used to satisfy her QoS requirement.

The resource usage minimization problem for a throughput-sensitive UE i is as fol-

lows:

min
xi,c,b,t,c

p
i ,Ci

∑
c,b,t

xi,c,b,t (4.8)

where

Ci ⊂ C, cpi ∈ Ci, xi,c,b,t ∈ {0, 1}, ∀c, b, t

|Ci| ≤ Ci, ∀i (CA capability constraint)∑
i∈N

xi,c,b,t ≤ 1, ∀c, b, t (non-overlapping constraint)∑
1≤t≤T,1≤b≤Bc

xi,c,b,t = 0, ∀i, c ̸∈ Ci (assignment constraint)

mi =
∑
t,c

xi,c,b,tP (Di,pi
)Qi,c ≥Mi (data amount constraint)

It can be shown that the preceding optimization problem is still NP-hard due to the

combinational choices on activated carriersCi and primary carrier cpi . Nevertheless, when

Ci and cpi are chosen, the optimal solution of {xi,c,b,t} can be found through greedily allo-

cating available resource blocks from the carrier c ∈ Ci with highest Qi,c untilmi ≥Mi.

Therefore, the optimal solution is still tractable in cubic time when Ci ≤ 3.
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The resource usage minimization problem for a delay-sensitive UE i is as follows:

min
xi,c,b,t,c

p
i ,Ci

di (4.9)

where

Ci ⊂ C, cpi ∈ Ci, xi,c,b,t ∈ {0, 1}, ∀c, b, t

|Ci| ≤ Ci, ∀i (CA capability constraint)∑
i∈N

xi,c,b,t ≤ 1, ∀c, b, t (non-overlapping constraint)∑
1≤t≤T,1≤b≤Bc

xi,c,b,t = 0, ∀i, c ̸∈ Ci (assignment constraint)

mi =
∑
t,c

xi,c,b,tP (Di,pi
)Qi,c ≥Mi (data amount constraint)

di = min argt{
∑

xi,c,b,tP (Di,pi,c
)Qi,c ≥Mi}

Again, when Ci and cpi are chosen, the optimal solution can be found through greedily

allocating available resource blocks from all carrier c ∈ Ci starting from t = 0 until

mi ≥Mi. Therefore, the optimal solution is still tractable in cubic time when Ci ≤ 3.

These two sub-problems are useful for us to propose a greedy approach for the opti-

mization problem in (4.7), which we will illustrate it in Section 4.5.

4.4 Game Model Formulation

The eNB requires the information of UEs to allocate the carriers and resource blocks

properly. Specifically, the per-UE carrier quality {Qi,c}, PDCCH interference {Di,c},

and data requirements (Mi, ki) are the information requested by eNB and reported by

UEs themselves. Nevertheless, when UEs are rational, they may report the information

untruthfully if the allocation manipulated by the untruthful report is beneficial to them.

When UEs choose to report untruthfully, the eNB receives incorrect information from

UEs, and the optimization problem in Section 4.3 will solved using incorrect constraints

and parameters. As a result, the derived allocation may be inefficient or even infeasible
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to the system. Thus, it is important to prevent this issue, which is called truth-telling issue

in game theory terminology.

4.4.1 Game Model

We formulate the system we are investigating as a game. A game is composed of three

elements: players, actions, and utility functions. In our formulation, all UEs i ∈ N are

considered players in the proposed game. Each player's action ai ∈ Ai is their reported

QoS requirement ai = (Mi, ki) ∈ Ai = R× {th, delay}.

In the system, each UE i are required to pay a fee pi in order to use the service. There-

fore, the utility of a UE i is given by

ui(mi, di, pi) = vi(mi, di)− wipi. (4.10)

where wi is its weight in resource allocation priority. Given a higher weight wi, UE i has

a higher discount on its payment and higher priority in the carrier activation and resource

block allocation. Notice that the expected utility of a UE is determined by the final carrier

and resource block allocation, which is the solution to (4.7) and is affected by the input of

all UEs. Therefore, a UE's utility is determined by not only his reported data requirement

but also other UEs' reports. This complex interaction is an important characteristic in a

typical game model.

The process of the proposed game is the same as the resource allocation process shown

in Fig. 4.2. The eNB first requests information from all UEs. Then, all UEs report their

information to the eNB. Finally, the eNB determines the carrier and resource block allo-

cation and the corresponding payment of each UE i. The expected utility of all UEs can

then be calculated accordingly.

4.4.2 Nash Equilibrium

Nash equilibrium is a solution concept for general non-cooperative game with rational

players. Informally speaking, Nash equilibrium is an action profile where each player's

106



Informa(on	
  Repor(ng


Carrier	
  Ac(va(on	
  &	
  
Resource	
  Block	
  

Alloca(on


?θ ?θ ?θ

1θ 2θ 3θ

xi,c,b,t{ }, pi,c{ }

C1


C2


T
0


Figure 4.2: Information Reporting and Resource Allocation Process

action described in the profile is the one that maximizes his utility conditioning on the

actions of other players in the profile. When the above condition is reached, no player has

the incentive to deviate from their applied action, and thus the outcome remains stable.

Nash equilibrium is widely used for predictions on the outcome of a game. The formal

definition of Nash equilibrium is as follows:

Definition 8 (Nash Equilibrium). An action profile a = {a1, a2, ..., an} is a Nash equilib-

rium if and only if ∀i ∈ N, a′
i ∈ Ai,

ui(ai, a−i) ≥ ui(a′
i, a−i), (4.11)

where a−i denotes the actions of all players except player i.

In this work, we focus on a specific type of Nash equilibrium, which is truthful Nash

equilibrium.

Definition 9 (Truthful Nash Equilibrium). Let a∗
i = (Mi, ki) be the true QoS requirement

of UE i. Then, a truthful Nash equilibrium exists if and only if a∗ = (a∗
1, a

∗
2, ..., a

∗
n) is a

Nash equilibrium.
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The existence of truthful Nash equilibrium is important as players will truthfully re-

port their private information, which is their QoS requirement, only if such equilibrium

is achievable. Nevertheless, a truthful Nash equilibrium does not exist in a general non-

cooperative game unless the game rule is properly designed. Therefore, our objective is

implementing the truthful Nash equilibrium in the proposed game.

Algorithm 1WINNER_DETERMINATION
Input: UE N, Carrier C, Carrier quality {Qi,c} and {Di,c}, QoS requirement {ki,Mi}, and

weight {wi}
Output: Carrier activation {Ci}, primary carrier {cpi }, allocation {xi,c,b,t}, and first loser's utility

ulose
1: W = ∅;
2: ulose = 0;
3: ∀i, c, b, t, xi,c,b,t = 0
4: W′ = N;
5: while W ̸= W′ and N ̸= ∅ do
6: W′ = W;
7: for all i in N do
8: if ki = th then
9: if exist feasible solution to (4.8) then
10: u∗

i = 1, and r∗
i =

∑
xii,c,b,t, where {xii,c,b,t} is the solution to (4.8) under the con-

straints that di = max∑
i′ ̸=i

xi′,c,b,t=0, t;
11: end if
12: else
13: calculate u∗

i by solving (4.9);
14: r∗

i =
∑
xii,c,b,t, where {xii,c,b,t} is the solution to (4.9);

15: end if
16: end for
17: W = arg maxi∈Nwiu

∗
i ;

18: w = arg mini∈W r∗
i ;

19: {xi,c,b,t} = {xwi,c,b,t};
20: W = W ∪ {w};
21: N = N \ {w};
22: if N ̸= ∅ then
23: ul = maxi∈Nwiu

∗
i ;

24: else
25: ul = 0;
26: end if
27: end while

4.5 Auction Design

Auctions have been widely used in various domains involving resource allocations,

especially on problems with concerns on private information. A typical auction has two
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types of participants: auctioneers and bidders. The auctioneers have some products for

sell. The bidders, whomay have different valuations on products, compete with each other

for the products hold by the auctioneers through a bidding process. In or after the bidding

process, the auctioneers decide the allocation of the products and the corresponding pay-

ments of all participants. Notice that the valuation of a bidder on the products is private

information and will not be known by the auctioneers or other bidders unless she chooses

to truthfully reveal it in the bidding process. As a rational bidder, she will choose to truth-

fully reveal her private information only in a truthful Nash equilibrium. Therefore, the

implementation of truthful Nash equilibrium is one of the main challenges in the auction

theory.

Vickrey−Clarke−Groves auction (VCG auction) [57] is one of the most successful

auction designs as it not only guarantees the existence of truthful Nash equilibrium, but

also achieves the optimal resource allocation. Nevertheless, the implementation of VCG

auction becomes impractical when the allocation problem is NP-hard since it requires the

optimal allocation to be achieved eventually. This makes it an undesired choice for us

since the corresponding optimization problem in our system is NP-hard, as we proved in

Theorem 8.

In this section, we propose a Vickery-inspired auction to implement the truthful Nash

equilibrium. The eNB is the only auctioneer, and all UEs i ∈ N are considered bidders in

the auction with their reported QoS requirement (Mi, ki) as their bids. The proposed auc-

tion is composed of two stages: winner determination and payment determination stages.

The winner determination stage selects the "winners", which are the UEs selected to be

fulfilled with their data requirements, according to their reports. Then, the payment de-

termination stage determines the payment pi each winner required to pay to the eNB. We

prove that by our design, the truthful Nash equilibrium can be implemented in a low-

complexity manner.
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4.5.1 Winner and Payment Determination

In the winner determination stage, the winners are selected according to a UE-based

greedy algorithm. The algorithm works as follows. Firstly, we sort all UEs according to

their maximum weighted valuation if their requirements are satisfied using the currently

available resource blocks. If two UEs have the same maximum weighted valuation, the

one requires fewer resource blocks to satisfy goes first.

Then, the first UE in the list is selected as the winner and the eNB activates carriers

and allocates resource blocks to the UE for satisfying its requirementMi. The locations

of the resources blocks depend on the UE's type ki: When ki = delay, the resource blocks

are allocated from the beginning of the carriers (t = 1). When ki = th, the resource

blocks are allocated from the end of the carriers (t = T ), that is, the allocation should

maximize the expected delay for throughput-sensitive UEs. This promises that the delay

of data for delay-sensitive type UEs is always shorter than the throughput-sensitive type

UEs. Finally, the UE is excluded from the list, and all UEs in the list are sorted again

following the same logic.

The routine continues until all UEs are removed from the list or the remaining resource

blocks cannot satisfy the QoS requirement of the first UE remaining in the list. The al-

gorithm terminates when one of the above conditions met. The pseudo code of Winner

Determination algorithm is shown in Algorithm 1.

In the payment determination stage, the payments of all UEs are determined by a

Vickery-inspired pricing rule. Firstly, we define the boundary UE b(N) as the last winner

in the winner determination stage when a set of UE N participates in the auction. Then,

the payment of UE i is given by Vk
ib

(Mib , d
b
ib), where ib = b(N \ {i}) and dbib be the

delay of UE ib if UE i is excluded. The pseudo code of proposed Payment Determination

algorithm is shown in Algorithm 2.

4.5.2 Existence of Truthful Nash Equilibrium

By combining the proposed winner determination and payment determination rules,

we now prove that there exists a truthful Nash equilibrium in the proposed auction. We
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Algorithm 2 PAYMENT_DETERMINATION
Input: N, C,{Qi,c},{Di,c}, {ki,Mi}, and {wi}
Output: Payment {pi}
1: for i ∈ N do
2: [{Ci}, {cpi }, {xi,c,b,t}, ulose] = WINNER_DETERMINATION(N \

{i},C), {Qi,c}, {Di,c}, {ki,Mi}, {wi};
3: pi = ul
4: end for

start from a lemma that explains whether a delay-sensitive UE i will report its data re-

quirement type untruthfully.

Lemma 3. If a winner UE i reports k′
i = th instead of ki = delay as its data requirement

type, its experienced delay does not decrease.

Lemma 3 is a direct result from the proposed allocation rule. It shows that a delay-

sensitive UE iwill never report her type untruthfully. Then, the following lemma provides

a necessary condition for the existence of truthful Nash equilibrium.

Lemma 4. If a UE wins the auction by reporting (M,k), then it can wins the action by

reporting (M ′, k) withM ′ ≤M , but may not if reporting (M ′′, k) withM ′′ ≤M

Proof. SinceM ′ ≤M , the required number of resource blocks is never greater underM ′

than M . Therefore, the UE's order in the new list is never larger than the original list.

Additionally, there are enough resource blocks to satisfyM ′ since the UE is a winner by

reportingM > M ′. So, the UE is still selected as a winner by reporting (M ′, k).

For the case ofM ′′ ≤M , since the required number of resource block is never smaller

under M ′′ than M , it is possible that the order of the UE in the new list is smaller than

in the original list, according to the winner determination algorithm. This reduces the

possibility of the UE to win the auction.

Lemma 4 is important as it suggests that a UE i cannot increase her probability to win

in the proposed auction by increasing her requested data amountMi. Although a UE may

choose to decrease her requested data amount Mi in order to increase her probability to

win, we will show that reportingM ′
i ≤Mi will never be beneficial to the UE i later.

Lemma 5. a UE i's payment pi is unrelated to her own bid (Mi, ki).

111



Proof. According to the payment determination rule, the UE i's payment is uib(Mib , d
b
ib),

in which UE i's bid is excluded from the winner determination stage. Since UE i's bid is

excluded, it does not have any influence on the winner determination. Therefore, the UE

i's bid does not have any influence on her payment.

Finally, we propose the following theorem about the existence of truthful Nash equi-

librium in the proposed auction.

Theorem 9 (The existence of truthful Nash equilibrium). A truthful Nash equilibrium

exists in the proposed game if the proposed auction is applied.

Proof. Let (M∗
i , k

∗
i ) be the true QoS requirements of UE i, ∀i ∈ N. By Lemma 4 and

5, it is guaranteed that reporting Mi ̸= M∗
i is never the better response of UE i if k∗

i is

reported. We now need to check if report k′
i instead of k∗

i is beneficial to UE i.

Case 1: k∗
i = th. In this case, reporting ki = delay only reduces its weighted valuation

and therefore increases its order in the list. This reduces its probability to win the auction

and therefore impair its expected utility.

Case 2: k∗
i = delay. In this case, reporting ki = th may increase its weighted valua-

tion and therefore decrease its order. We should discuss this under two possible cases:

Case 2.a: UE i is not a winner by reporting k∗
i . In this case, even UE i becomes a

winner, its true utility will be negative since he is not a winner in the original list.

Case 2.b: UE i is a winner by reporting k∗
i . In this case, UE i is still a winner and

now follows the allocation rule for throughput-sensitive type. According to Lemma 3, the

delay under ki is strictly larger than under k∗
i if the UE reports the sameMi. In such a case,

the valuation of UE i is strictly lower by reporting ki = th instead of k∗
i = delay. Given

the same payment pi, the expected utility of UE i is strictly lower by reporting ki ̸= k∗
i .

Concluding from above, the truthful Nash equilibrium exists if the proposed auction

is applied.
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4.6 Simulation Results

We evaluate the proposed solutions in Section 4.5 through simulations. We simulate

a LTE-Advanced system with 19 cell BSs deployed in a typical 19-cell hexagonal topol-

ogy. There are 5 independent carriers, each with 1.4 MHz bandwidth. According to LTE's

standard, a frame is composed of 10 subframes, while a subframe is composed of 2 time

slot, each with 0.5 ms. A 1.4 MHz carrier is composed of 6 resource blocks at each time

slot, while a resource block has a bandwidth of 180kHz and contains 7 symbols. The

number of bits contained in a symbol depends on the applied MCS. In the simulations, we

apply the MCSs and link-level settings specified by 3GPP [2] according to the signal-to-

interference-and-noise ratio (SINR) experienced by UEs [20]. For other settings, we fol-

low the IMT-Advanced 4G evaluation guidelines [1]: The downlink transmission power

of each cell is 23dBm, while the cell radius is 100 m. The propagation loss model is out-

door model, while the shadow fading follows a log-normal distribution of mean 0dB and

standard deviation 10dB.

We assume that all cells, except the center one, are full-buffered and are treated as

the neighbor cells of the center cell. Each neighbor cell activates all carriers to transmit

data to their UEs, while 2 of the activated carriers are assigned as the primary carriers

of their serving UEs. For the center cell, we apply the proposed auction design in order

to determine the carrier activation and resource block allocations according to the QoS

requests from the serving UEs. The auction holds for every 8 frames, which equal to 80

ms. This fits one of the CQI reporting rates defined in LTE-Advanced.

A fixed number of UEs are uniformly and randomly deployed in the system. These

UEs request for downlink transmissions. They experience different carrier qualities due

to 1) the spatial-diverse and carrier-diverse interference from neighbor cells, and 2) the

propagation signal loss due to the distance from the center cell BS to the UE. Each UE

supports at most 2 carriers when carrier aggregation is enabled. The QoS requirement of

each UE is randomly generated. Given the average request data amountMavg, the request

data amountMi of each UE is randomly generated from 1 kB to 2Mavg kB. Additionally,

half of the UEs are throughput-sensitive, while others are delay-sensitive. The valuation
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function of throughput-sensitive V th(mi) = log(1 + 9 min{mi,Mi}
Mi

), while the valuation

function of delay-sensitive is V delay(di) = log(1 + 40
di

).

The carrier qualities are determined by two factors in the simulations. The first one

is the expected resource block data amount (Qi,c) in each carrier, which represents the

data amount a resource block can carry under the currently applied MCS. The value can

be derived through simulating the LTE wireless channel model in [20]. The second one

is the PDCCH decoding probability (P (Di,c)). In LTE system, all PDCCH messages are

transmitted using the BPSK modulation. Given the transmission power, resource block

bandwidth and symbol rates, and the typical length of PDCCH message, we can theoreti-

cally calculate the bit-error rate and therefore the message error rate of a PDCCHmessage

(We ignore the coding rate of PDCCH message here for simplicity).

In all simulations, we compare 5 schemes. The first one is the proposed solution, where

the proposed auction design is applied. Specifically, the winner determination algorithm

in Algorithm 1 is applied here for activating the carriers and allocating the resource blocks

to the UEs according to their QoS requirements. We compare the proposed solution with

three carrier activation schemes. One is the random scheme, where each UE randomly

activates 2 carriers. Another one is the fair scheme, where each carrier is assigned with

the same number of UEs (or plus/minus 1 if aliquant). The last one is the Best CQI scheme,

where each UE activates two carriers that offer her the highest expected resource block

data amount. In all three schemes, round-robin method is applied on the resource block

allocation. These schemes represent the traditional carrier activation schemes where no

QoS requirements are addressed. In the last scheme, we apply our proposed solution

while limiting the number of activated carrier of each UE to 1, which simulate the case

that all UEs are using legacy devices with no carrier aggregation support. This helps us

to understand how carrier aggregation enhances the performance of the system.

The performance metric we choose in the simulations is the social welfare of the sys-

tem, which is defined as follows:

SW =
∑
i∈N

V ki(·),
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Figure 4.3: Simulation Results: Number of UEs

which is the same as the objective function in (4.7). The social welfare represents the total

valuation of UEs on the service, which is an important indicator on the system efficiency

in game theory. Since our work focus on optimizing the service valuation based on UEs'

QoS requirements, we choose this as the performance metric in our evaluations.

4.6.1 UE Density

In the first simulation, we control the number of UEs in the center cell from 2 to 20

to evaluate the effect of UE density to the performance of proposed solution and other

schemes. The cell radius is 100m while the average request amount is 50kB. The simula-

tion results are shown in Fig. 4.3.

We observe that the proposed solution significantly outperforms other schemes. This

is because our solution properly addresses the QoS requirements of UEs, especially for the

delay-sensitive UEs. In comparison, all three traditional carrier activation schemes result

poor social welfares, while the fair scheme performs best and best CQI performs worst.

This is due to the unbalanced carrier activation resulting from best CQI and random carrier

activation. The loading on certain carriers may significantly be higher than the ones on

other carriers, which bring a negative impact on the service quality of the UEs using those

carriers.
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Figure 4.4: Simulation Results: Cell Radius

For the no-CA scheme, we observe that the traditional scheme performs better than

the no-CA scheme when the number of UEs is small. Nevertheless, when the number of

UEs increases, our proposed solution still outperforms traditional scheme even without the

help of carrier aggregation. Additionally, the social welfare significantly increases when

carrier aggregation is enabled in the proposed solution. The performance boosts mostly

comes from the delay reduction experienced by the delay-sensitive UEs.

4.6.2 Cell Density

Next, we control the cell radius from 100m to 1000m for investigating the effect of

cell density on the system performance. The number of UEs is 10 in this simulation. The

results are shown in Fig. 4.4. We observe that the proposed scheme outperforms all other

schemes significantly, while all other relative performance gaps are similar to the results

in the previous simulation. We also observe that the social welfare decreases when the

cell radius increases to larger than 400 m. This is because when the cell radius increases,

which also means the cell density decreases, the distance from the serving BS to a UE

increases on average. This increases the signal propagation loss and therefore reduces

the carrier qualities experienced by the UEs. In such a case, their QoS requirements are

relatively harder to satisfy.
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Figure 4.5: Simulation Results: Requested Data Amount

Nevertheless, it is interesting to note that the social welfare does not always decreases

monotonically. When the cell radius is less than 400 m, the social welfare in fact increases

when the radius increases. This is due to another factor influencing carrier qualities: the

interference from neighbor cells. When the cell radius increases, the interference from

neighbor cells decreases on average since the cell density decreases. This helps increase

the carrier qualities. The results suggest that the propagation loss and neighbor cell inter-

ference are tradeoff factors in determining cell density when deploying cells.

4.6.3 QoS Requirement

Finally, we study the efficiency of the proposed solution satisfying QoS requirements

under severe demands. We simulate with 10 UEs and control the average request data

amount from 25kB to 250kB. The simulation results are shown in Fig. 4.5. We observe

that the proposed solution again outperforms all other schemes even under severe QoS

requirements. The social welfare decreases significantly when the average request data

amount increases. Nevertheless, when carrier aggregation is enabled, the proposed solu-

tion can properly make use of the benefits from carrier aggregation in order to achieve

higher system efficiency in terms of social welfare.
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4.7 Related Work

The attentions on carrier aggregation in LTE-Advanced system have been raised in

recent years. Some works focus on the implementation of carrier aggregation in LTE-

Advanced system under various configurations, such as reducing scheduling delay [58],

PDCCH search space design [59, 60], and aggregating TDD and FDD LTE carriers [61].

Most researchers discuss the carrier allocation and activation among multiple cells, espe-

cially in heterogeneous networks [62--65]. These works focus on the interference miti-

gation through properly assigning and activating the primary/secondary carriers among

these cells. Nevertheless, the specific resource allocation and QoS requirements of UEs

in each cell under carrier aggregation are not addressed in these works.

Some researchers therefore explore the potential of carrier aggregation to enhance the

quality of LTE service through proper resource allocation, such as throughput enhance-

ment [66], load balance [67], and utility maximization [68, 69]. Nevertheless, most ex-

isting works focus on the case that all UEs in the system share the same or similar QoS

demands, such as high throughput demand or delay constraints. The study on the resource

allocation in carrier aggregation given heterogeneous QoS demands from UEs are still

lacking in this area. In addition, none of existing works address the potential threats from

the untruthful information report from UEs, which potentially prevents all existing meth-

ods from functioning properly.

4.8 Summary

In this chapter, we study the carrier aggregation design in LTE-Advanced system

through a game-theoretic perspective. We first address the heterogeneous carrier qual-

ity and QoS requirements of UEs by modeling the resource allocation problem in carrier

aggregation as a utility-based non-linear optimization problem. Given that the optimiza-

tion problem is NP-hard, we aim to find an efficient algorithm to find the near-optimal

solution. Additionally, we address the potential threats from the selfish UEs, who may

report their QoS requirements untruthfully and therefore induce an unfair and inefficient

118



resource allocation, by proposing a truthful auction design. The proposed auction provides

an efficient greedy algorithm to satisfy the QoS requirements of UEs through carrier ag-

gregation with reasonable computation time. Additionally, it guarantees the existence of

truthful Nash equilibrium and therefore prevents the rational UEs from reporting manipu-

lated QoS requirements. The simulation results verified that the proposed auction design

for carrier aggregation enhances the LTE-Advanced system's capability to satisfy UE's

QoS requirements.

119



120



Chapter 5

Device-to-Device Communications in

LTE-Advanced System: A Resource

Exchange Approach

5.1 Introduction

Improving the coverage and efficiency of resource utilization is one of the key chal-

lenges in the next-generation cellular systems. Device-to-Device (D2D) communication

could improve the coverage and resource utilization by allowing nearby devices to com-

municate directly [7]. 3GPP has begun to examine the service requirement for Proximity-

based Services (ProSe), which is the D2D communications for LTE-Advanced, and then

has started ProSe radio access network standardization recently [9]. It allows two nearby

devices to communicate with each other directly using existing WLAN or WPAN tech-

niques in an unlicensed spectrum or an LTE-Advanced transmission technique in licensed

spectrum. This approach improves the transmission quality from the proximity [8], re-

duces the transmission delay by utilizing one-hop direct connection instead of two-hop

cellular connection, and provides an extra dimension for resource reuse in the cellar sys-

tem.
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Figure 5.1: D2D Resource Exchange

5.1.1 D2D Resource Allocation

Resource allocation is one of the key challenges in D2D communications in a cellu-

lar system [7]. As specified by [7], D2D communications can be executed in unlicensed

or licensed spectra. Since the former choice is relatively unreliable due to its openness

to other out-of-system devices, in this chapter we study the latter choice, in which the

resources utilized by D2D communications are dedicated resources (spectrum, resource

blocks, etc.) licensed to the cellular system or a specific purpose (public safety, for in-

stance) [10]. WhenD2D communications are utilizing a licensed spectrum, the BSs should

regulate the resource allocation of D2D communications in order to 1) prevent undesired

interference to existing cellular users, 2) enhance resource utilization efficiency according

to (possibly frequency and spatially diverse) channel conditions, and 3) reuse resources

if possible. Additionally, the BSs should be able to respond quickly to requests from the

D2D devices and rapid changes in inter/intra-cell interference. Therefore, it is necessary

to develop a low-complexity yet efficient algorithm for resource allocation.

The ad-hoc characteristic of D2D communication poses a new challenge to the D2D

resource allocation problem: the truth-telling issue. Specifically, the BS requires the chan-

nel measurements from D2D devices in order to allocate resources efficiently. Neverthe-

less, the BS cannot validate these reports, since the transmissions occur only between the

corresponding D2D devices. This gives the D2D devices the potential to cheat by report-

ing the measurements untruthfully when the untruthful reports would be advantageous to
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the D2D devices in terms of the resource allocation. When D2D devices or corresponding

users are rational, they will behave selfishly and therefore make use of this advantage.

To illustrate, let us assume that the BS tends to allocate the resource blocks to the

devices claiming to have the highest transmission qualities (Best CQI Scheduling in LTE-

Advanced, for instance). In such a case, D2D devices tend to report a forged measurement

value higher than the real value of their most desired resource blocks in their reports. This

forged report will increase the probability that the desired resource blocks will be allocated

to them. The BS therefore cannot provide an efficient allocation, since the information

she has received does not reflect the true system state. To tackle this issue, it is necessary

to employ a game-theoretic analysis [56]. A strategy-proof solution, which guarantees

truthful reporting, must be used to prevent untruthful reports from rational users.

5.1.2 Resource Exchange Approach

The transmission quality in D2D communications can be significantly improved when

a proper resource exchange is executed. Let us consider an OFDMA-based cellular system

with four D2D pairs using licensed OFDMA resource blocks. The example is illustrated

in Fig. 5.1, where the two D2D pairs in the middle are using resource blocks 1 and 2,

respectively. The main interference sources of these two pairs are their nearby D2D pairs

using the same resource blocks. The interference can be significantly reduced if those two

pairs in the middle exchange the resource blocks they have with each other. With this

new allocation, all pairs experience improved transmission quality, since the interference

is alleviated by the higher propagation loss from longer distances. This potentially ben-

eficial exchange can be identified by the eNodeB or D2D pairs themselves. In addition

to its simplicity, the resource exchange approach provides other benefits to D2D resource

allocation: 1) the resource exchange process can be locally implemented by a simple three-

way handshake signalling flow, and 2) it can be launched locally for timely response to

rapid environmental changes, or globally triggered by cellular BSs for system-wide opti-

mization. Based on these observations, we apply the resource exchange approach in our

proposed D2D resource allocation framework.
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5.1.3 Contributions

In this chapter, we aim to provide a comprehensive D2D resource allocation frame-

work for an LTE-Advanced system. The framework is based on the resource exchange

approach, in which a series of dedicated resource block groups (RBGs) are predefined

and reserved for D2D communications. Each D2D pair possesses an RBG in a frame after

a resource request is accepted by the Evolved Node B (eNodeB). 1 The eNodeB or D2D

pairs may trigger a resource exchange among D2D pairs or between the eNodeB and a

D2D pair if proper exchange pairs are identified. We prove that every resource exchange

reduces the total system interference when it is beneficial. This provides a sufficient con-

dition to guarantee the convergence of any arbitrary algorithm in our framework.

To improve the efficiency of resource utilization, the system-wide optimization can

be performed by the eNodeB, in which the truth-telling issue may occur as we mentioned

previously. In such a case, we provide a game-theoretic analysis for investigating the

truth-telling issue in the proposed framework. We propose using the Trader-assisted Re-

source EXchange (T-REX) mechanism to handle the resource exchange operations. The

eNodeB participates in the operations through identifying optimal exchange sequences and

applying trader preference functions. We prove that the truth-telling issue can be resolved

through the proposed mechanism when a proper trader preference function is chosen. Fi-

nally, we evaluate the performance of the proposed solutions through simulations using

the models and parameters suggested in the latest 3GPP technical contribution [3]. In

summary, we make the following contributions:

1. We propose a novel LTE-Advanced D2D resource allocation framework based on

the resource exchange approach. We reuse most existing LTE-Advanced compo-

nents and followed the same signalling flow logic in order to minimize the protocol

impacts.

2. We theoretically prove that the resource exchange approach is equivalent to the tra-

ditional resource allocation approach in the solution feasibility. Additionally, we

1'eNodeB' and 'BS' are interchangeable in this chapter.
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prove that any arbitrary algorithm, either distributed or centralized, will converge in

the proposed framework whenever all exchanges are beneficial. To the best of our

knowledge, we are the first group to present the resource exchange approach to the

D2D resource allocation problem.

3. Based on the idea of beneficial exchange, we propose the Trader-assisted Resource

Exchange (T-REX) mechanism as an efficient and flexible solution to the D2D re-

source allocation problem in the proposed framework. The T-REXmechanism iden-

tifies the beneficial exchanges through analysing the corresponding exchange graph.

The algorithm's complexity is polynomial, which makes it a practical solution to

large-scale D2D networks. In addition, the derived allocation is Pareto optimal;

therefore, the efficiency is guaranteed. In addition, we prove that the T-REX mech-

anism is strategy-proof when the trader preference functions are properly designed;

that is, all D2D pairs truthfully report their information even if they are rational and

selfish. We are one of the first groups to apply game-theoretic analysis to the D2D

resource allocation problem.

5.2 D2DResourceAllocation Framework forLTE-Advanced

System

We design our D2D resource allocation framework according to the following princi-

ples: 1) Reuse the existing components of the LTE-Advanced standard asmuch as possible

in order to minimize the protocol impact, and 2) maintain high flexibility in configuration

and deployment for different service requirements.

The minimal transmission resource unit in LTE- Advanced is a resource block. In our

framework, we define a set of resource blocks dedicated for D2D communication only.

These resource blocks are grouped into resource block groups (RBGs), each with the same

number of resource blocks, as illustrated in Fig. 5.2(a). The dedicated resource design

has been proposed in several widely known standards, such as Terrestrial Trunked Radio

(TETRA) [70], a European Telecommunications Standards Institute (ETSI) standard for
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Figure 5.2: D2D Resource Allocation Framwork

public safety networks used by government agencies or emergency services. This design

is especially useful for public safety service using a dedicated public safety spectrum for

proximity services [10] or commercial service providers holding multiple contiguous or

non-contiguous narrowband spectrum licenses.

An eNodeB governs a cell, which consists of several service areas. All RBGs are

reused in every service area. D2D pairs in the same service area are allocated with dif-

ferent RBGs, so D2D devices suffer from only inter-area interference. This inter-area

interference will be spatially diverse and changing due to device mobility or resource re-

allocation.

5.2.1 Resource Granting

The requesting and granting of D2D resources are realized through the following sig-

nalling flow (Fig. 5.2(b)), which is similar to the uplink resource granting signalling in

LTE-Advanced system. When a potential D2D pair is identified and notified through peer

discovery, one of the D2D devices triggers the resource granting procedure by sending a

D2D scheduling request (D2D SR) on her dedicated SR resource in the physical uplink

control channel (PUCCH) to the serving eNodeB. This device is also considered as the

D2D pair head of this pair. Next, the eNodeB will send a resource grant for channel qual-
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ity indicator (CQI) and buffer status report (BSR) transmission to both D2D devices if she

accepts the request. The grant also indicates the corresponding resource in the physical

uplink shared channel (PUSCH) for the D2D device to upload the information. Here we

reuse the same CQI and BSR format in the LTE-Advanced standard.

The CQI should contain the channel measurement on all the subcarriers related to the

dedicated RBGs. Therefore, the CQI reporting type should be an eNodeB-configured sub-

band feedback on all the subcarriers dedicated for D2D RBGs. The BSR contains the QoS

requirement of the D2D pair, which helps the eNodeB to determine the amount of RBGs

reserved for this D2D pair. For instance, the eNodeB may reserve one specific RBG in

several subsequent frames for the D2D pair. Finally, the resource grant for RBG is sent to

both D2D devices, which indicates the RBG that this pair is granted and the corresponding

leasing time. The resource granting procedure is terminated here. Notice that the eNodeB

should maintain up-to-date information on each D2D pair's transmission quality, which

is indicated by CQI. CQI updates can be actively requested by the eNodeB or passively

triggered by some D2D pairs when necessary.

5.2.2 Resource Exchange

A resource exchange can be triggered by the eNodeB when 1) a new D2D pair joins

and requests an RBG, 2) a D2D pair's RBG grant is terminated, and 3) one or more D2D

pairs update their CQIs. Whenever the above situations occur, the eNodeB may identify

the beneficial exchange sequence in the updated D2D pair set or CQIs. If an exchange

sequence is found, the eNodeB may trigger the resource exchange among all pairs in the

sequence by sending new RBG grant to the pair heads. The notified D2D pairs will then

use the newly granted RBG in the subsequent transmission. Notice that an exchange may

also occur between a D2D pair and the eNodeB. The eNodeB may allocate an unallocated

RBG to a D2D pair in exchange for the RBG this D2D pair owns. In such a case, only

one D2D pair is notified using the resource granting signalling.

Additionally, a resource exchange can also be distributively triggered by the D2D pair

in delay-sensitive applications. This optimally deployed D2D-triggered mode requires a
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shared RBG containing at least three subframes. This shared RBG is preserved for all D2D

pairs to communicate with each other. D2D pairs that wish to communicate with others

should listen to the shared RBG to receive the requests. All D2D pairs may access the

shared RBG using a slotted-ALOHA mechanism in every 3n + 1 subframe. A D2D pair

head may broadcast its possessed and desired RBGs to other nearby D2D pairs in the same

service area through the shared RBG. If the other D2D pair head that holds the requested

RBG also prefers the exchange, she may respond to the request in the following subframe

of the shared RBG. Finally, the original D2D pair head sends an acknowledgement in

the third subframe, and both pairs switch to the exchanged RBGs immediately. After

the exchange, both pairs notify the eNodeB about the exchange so that the eNodeB can

maintain an up-to-date RBG allocation status. The above mode reduces the eNodeB's

loading by offloading some responsibilities of the eNodeB to the D2D pairs themselves. It

also reduces the CQI reporting signalling and eNodeB-trigger delay to perform exchanges

through the eNodeB. Nevertheless, the exchange requests in the first stepmay be lost when

multiple D2D pairs broadcast their requests simultaneously. Therefore, it is preferable to

deploy this modewhen the number of D2D pairs in the service area is small. The signalling

flows of both modes are illustrated in Fig. 5.2(c).

5.3 System Model

The proposed framework provides necessary functions for an LTE-Advanced system

to support resource allocation for D2D communications. Nevertheless, further study is

required on how the service provider configures and regulates the D2D communications

by the support of these functions.

Let us consider a cellular system with one BS s and a set ofN D2D pairs. These D2D

pairs are within the BS's service coverage. The coverage is divided intoM D2D service

area, while the set of D2D pairs within service aream isDm = {dm1 , dm2 , ...}. There is a set

of RBGs B = {1, 2, ..., L} preconfigured in the system. These RBGs are reused in every

service area. Each D2D pair requires an RBG to perform D2D transmissions, and all D2D

pairs in the same service area use different RBGs. Let bmi ∈ B be the RBG allocated to
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D2D pair dmi in service aream. Then the RBG allocation in service aream can be denoted

by bm = (bm1 , bm2 , ..., bm|Dm|). Accordingly, a portion of RBGs Bm(bm) = {j|j ∈ bm} ⊂

B is allocated to the D2D pairs in service area m, and other RBGs B−1
m (bm) = B \ Bm

are held by the BS in this area. Finally, the overall RBG allocation in all service areas is

denoted by b = {bm}

The interference experienced by a D2D pair in our framework comes from other D2D

pairs using the same RBG in other service areas. Specifically, let the interference experi-

enced by D2D pair dmi be Imi , which is

Imi (bm,b−m) =
∑

j∈Dm′ ,m′ ̸=m
1(bm′

j = bmi )Pgm
′,m

j,i (5.1)

, where b−m is the RBG allocation in all service areas except aream, P is the transmission

power of D2D devices, and gm
′,m

j,i is the channel gain from D2D pair j in service area m′

to pair i in service aream. Since D2D pairs in the same area use different RBGs, there is

no intra-area interference, and we have gm,mj,i = 0, ∀i, j ∈ Dm. Here we assume that the

distance between two devices in one pair is significantly smaller than the distance between

D2D pairs in different service areas. Therefore, the inter-area interference experienced by

both devices in the same pair will be similar. Additionally, we assume that the channel

characteristic is reciprocal, that is, gm,m
′

j,i = gm
′,m

i,j , ∀m,m′, i, j.

5.3.1 Resource Exchange Problem

Given an initial RBG allocation b0, our goal is to reach the optimal RBG allocation b∗

with the lowest overall system interference through exchange operations. The objective

function can be denoted as

min
∑

m,i∈Dm

Imi (b) (5.2)

In our framework, two D2D pairs may apply an exchange operation by switching their

possessed RBGs. Additionally, a D2D pair may also exchange her RBG with the BS for

an RBG still unallocated to other D2D pairs. After an exchange operation is executed, a

new allocation b′ is derived.
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An exchange sequence defines a series of exchanges in a service area from an initial al-

location b0
m. For a newly arrived D2D pair, she may virtually receive a randomly-assigned

RBG in the initial allocation. Notice that all exchanges are limited to devices in the same

service area. For convenience, we denote smj as the "holder" of RBG j ∈ B−1
m (b0

m) in the

BS. In addition, an exchange pair (x, y), where x, y ∈ Dm ∪{smj |j ∈ B−1
m (b0

m)}, denotes

an exchange between x and y. Then, we define an exchange sequence Sm for service area

m as

Sm = [(x1, y1), (x2, y2), ...], (5.3)

The new RBG allocation bm is completely determined by the initial allocation b0
m and

the exchange sequence Sm. We denote this process as EX(b0
m,Sm) = bm. Thus, our

objective is to find the exchange sequence S that minimizes the total interference in the

resource exchange problem. We first show the feasibility of arbitrary RBG allocation in

the resource exchange problem.

Theorem 10. [Feasibility of Exchange Approach] Given arbitrary b0
m and bm, there ex-

ists an exchange sequence Sm that EX(b0
m,Sm) = bm. In addition, the Sm can be found

in linear time.

Proof. We prove this by constructing an exchange sequence that achieve bm. We first

expand the RBG allocation vector b0
m and bm to v0

m and vm by including the holders

{s0,m
j } and {smj } into the allocation. Then, we construct a resource exchange graph using

all D2D pairs and holders in the BS as vertices. Then, each vertex x constructs a directed

edge from herself to the vertex y with v0,m
x = vmy .

Since both v0
m and vm are one-to-one mapping from B to Dm ∪ {smj |j ∈ B−1

m (b0
m)},

each vertex in the graph has exactly one directed edge to and from another vertex. In

other words, any vertex belongs to a cycle or has one directed edge pointing to herself.

For the latter case, the vertex is removed from the graph. For the rest of the vertices, let

C = {v1, v2, ..., vk} be a series of vertices belonging to a cycle in the graph. Then, we

construct a sequenceSc = [(v1, v2), (v2, v3), ..., (vk−1, vk)]. Finally, an exchange sequence

Sm = [Sc] is built by merging all constructed sequences together.

130



It can be verified that for every exchange (x, y) indicated in the Sm, the vertex x

possesses the desired RBG indicated in bm. For any vertex x that does not involve in Sm,

she has a directed edge to herself, which means v0,m
x = vmx , so no exchange is required.

In sum, the new allocation bm is achieved through the exchange sequences Sm from the

initial allocation b0
m.

Theorem 10 indicates that the resource exchange approach does not put any additional

constraints on the feasible allocation. Any RBG allocation can be achieved through the

exchange operations from any initial RBG allocation. Nevertheless, the allocation prob-

lem with the objective function in (5.2) is NP-hard [71]. Therefore, an optimal solution

may be unachievable when a short response time is a concern. An efficient approximate

method is required.

5.3.2 Beneficial Exchange

A beneficial exchange is an exchange sequences wherein all D2D pairs in the service

area experience equal or less interference after the exchanges. It can be a good starting

point for the approximate algorithm. We first state its formal definition:

Definition 10. [Beneficial Exchange] A beneficial exchange is an exchange sequence Sm

for an initial RBG allocation b0
m where

Imi (b0
m,b0

−m) ≤ Imi (EX(b0
m,Sm),b0

−m),∀i ∈ Dm (5.4)

A beneficial exchange can be considered as a local greedy solution to the interference

minimization problem. Nevertheless, we prove that when all exchanges are beneficial, the

RBG allocation of the system will converge.

Theorem 11. [Convergence of Beneficial Exchanges] An exchange-based resource allo-

cation algorithm in the proposed framework converges if every exchange sequences in the

algorithm is a beneficial exchange.

Proof. Without losing generality, we assume that the beneficial exchange occurs in service
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aream∗. Let I0,m
i and Imi be the interference experienced by the D2D pair dmi before and

after the beneficial exchange.

Case 1: m = m∗: In this case, ∑
Dm

Imi <
∑

Dm
I0,m
i is a direct result from Definition

10. We denote the interference difference as ∆Im∗ =

∑
m̸=m∗

∑
j∈Dm

∑
i∈Dm∗

Pgm,m
∗

j,i (1(bm∗
i = bmj )− 1(b0,m∗

i = bmj )) < 0 (5.5)

. Case 2: m ̸= m∗: In this case, the interference difference experienced by a D2D pair

dmj before and after the exchange is

∆Im = Imj (bm∗ ,b−m∗)− Imj (b0
m∗ ,b−m∗) (5.6)

=
∑

i∈Dm∗

∑
j∈Dm

Pgm
∗,m

i,j (1(bm∗
i = bmj )− 1(b0,m∗

i = bmj ))

=
∑

i∈Dm∗

∑
j∈Dm

Pgm,m
∗

j,i (1(bm∗
i = bmj )− 1(b0,m∗

i = bmj ))

Therefore, the sum of the total system interference difference is given by

∑
m

∑
i∈Dm

Imi (bm∗ ,b−m∗)− Imi (b0
m∗ ,b−m∗) = ∆Im∗ +

∑
m̸=m∗

∑
i∈Dm

∑
j∈Dm∗

Pgm,m
∗

j,i (1(bm∗
i = bmj )− 1(b0,m∗

i = bmj ))

= ∆Im∗ + ∆Im∗
< 0 (5.7)

Therefore, the total system interference is reducedwhen a beneficial exchange occurs.

Theorem 11 is important, as it guarantees the convergences of any algorithm using

beneficial exchanges in the proposed D2D resource allocation framework. Note that the

convergence also holds for distributed algorithms whenever every exchanges between two

D2D pairs is a beneficial exchange. In conclusion, any arbitrary beneficial-exchange-

based greedy algorithm converges under either the eNodeB-assistedmode orD2D-triggered

mode in the proposed framework.
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5.4 eNodeB-assisted D2D Resource Allocation

A D2D-triggered resource allocation approach is suitable for small networks with few

D2D pairs. In contrast, it is more desirable to have an eNodeB-assisted resource allocation

approach when the D2D pairs are numerous or resource utilization efficiency is a serious

concern. In this approach, the CQIs from the D2D pairs become necessary information for

the eNodeB to determine the efficient allocation. Nevertheless, as we have illustrated in

Section 5.1, rational D2D pairs have the incentive to report CQIs untruthfully if the allo-

cation mechanism is not properly designed. These forged CQI reports not only give unfair

advantages to these D2D pairs but also reduce the resource utilization efficiency since the

eNodeB does not receive correct information. Therefore, it is necessary to address the

truth-telling issue in an eNodeB-assisted resource allocation approach.

5.4.1 Game Model Formulation

We construct a Nash game model for the proposed framework in order to analyse the

truth-telling issue. In a Nash game, there are three components: players, actions, and

utility functions. We define all D2D pairs as the players. The action of a D2D pair dmi

is the CQI ψmi she reports to the BS. Her utility is defined as the experienced Carrier to

Interference Ratio (CIR), which is given as follows

umi (bm,b−m) = Pgmi
N0 + Imi (bm,b−m)

, (5.8)

where gmi is the channel gain between the two devices in D2D pair dmi , and N0 is the

Gaussian white background noise. A D2D pair's utility is higher when she possesses an

RBG with lower interference Imi (bm,b−m).

The RBG a D2D pair dmi possesses is determined by an exchange-based mechanism,

which is affected by not only her reported CQI ψmi but also other D2D pairs' reported

CQIs, which are denoted by ψm−i. Given the CQIs ψm−i reported by other D2D pairs, a

rational D2D pair will choose the CQI that maximizes her utility. Specifically, let the

RBG allocation mechanism beM(ψmi , ψm−i,b0
m), which outputs a new allocation bm, the
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D2D pair dmi 's best response function is

BEm
i (ψm−i,b0

m) = arg max
ψ

ui(M(ψ, ψm−i,b0
m),b0

−m). (5.9)

5.4.2 Nash Equilibrium

The Nash equilibrium (NE) is a solution concept for predicting the outcome of a game

with rational players. Nash equilibrium is an action profile wherein each player is assigned

an action, which is her best response to the other players' actions in the profile. Therefore,

if all players follow this action profile, no player has incentive to deviate from the action

described in the profile. A formal definition of the Nash Equilibrium in the resource

exchange game is as follows:

Definition 11 (Nash Equilibrium). In the resource exchange game in service areamwith a

mechanismm(ψmi , ψm−i,b0
m), an action profile Ψm = {ψm1 , ψm2 , ...} is a Nash Equilibrium

if and only if ∀dmi ∈ Dm

BEm
i (ψm−i,b0

m) = ψmi . (5.10)

Note that the corresponding equilibrium action ψmi of a D2D pair dmi is not necessarily

equal to its true experienced CQI ψmi , i.e., it is possible that a mechanism eventually has

an equilibrium where some D2D pairs choose to report their CQIs untruthfully. In such a

case, since the mechanism receives forged reports, it cannot provide efficient allocation.

To prevent the undesirable untruthful reporting behaviours, the proposed mechanism

should be strategy-proof [15]. A strategy-proof mechanism promises that the truthful

action profile, i.e., that all players report their private information truthfully, is a Nash

equilibrium. The formal definition of a strategy-proof mechanism in the proposed game

is as follows:

Definition 12 (Strategy-proof Mechanism). A mechanismM with an allocation function

m(Ψm,b0
m) is a strategy-proof mechanism if and only if the action profile {ψm,∗i } is a

Nash equilibrium for all b0
m.

If the mechanism is strategy-proof, there exists Nash equilibrium where all players
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truthfully report their private information, that is, the experienced CQI in the proposed

game. Therefore, the correctness of information collected by themechanism is guaranteed,

and the truth-telling issue is resolved.

5.5 T-REX: A Trading-based Resource Exchange Mech-

anism

We propose theTrading-based Resource EXchange (T-REX)mechanism for resolv-

ing the resource exchange problem in the proposed D2D resource allocation framework.

Firstly, the T-REX mechanism collects the CQIs from all D2D pairs in a service area. The

preference of each D2D pair on RBGs is then constructed according to the reported CQIs.

Then the T-REX mechanism constructs an exchange graph according to the preferences

of D2D pairs. The mechanism in turn identifies the exchange sequence by searching for

cycles in the exchange graph. After the exchange sequence is derived, all involved D2D

pairs and traders are then requested to perform resource exchanges accordingly.

5.5.1 Preference on RBG

We define the preference of a D2D pair on the RBGs based on her expected utility in

(5.8). A D2D pair experiences different level of interference in different RBGs. The less

interference an RBG has, the higher utility the D2D pair has if she possesses the RBG,

and thus the more preferred she is. The preference of D2D pair dmi can be represented as

a relation≻mi . We define RBG j ≻mi k with RBG j, k ∈ B if and only if dmi prefers RBG

j over RBG k. Formally speaking, the preference ≻mi of a D2D pair dmi is as follows

j ≻mi k ⇔ Imi (bm|bm
i =j,b−m) < Imi (bm|bm

i =k,b−m). (5.11)

Finally, we denote the preference profile of all D2D pairs in Dm as ≻m = (≻m1 ,≻m2

, ...,≻m|Dm|). Notice that the preference of a D2D pair does not affected by the prefer-

ences of other pairs in the same service area since there is no intra-area interference in the
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proposed framework.

The preference of the eNodeB on the RBGs, on the other hand, cannot be constructed

in the same way since these RBGs are specifically for D2D communications only. Thus,

it is pointless to define the eNodeB's preference according to her experienced interference

in these RBGs. Instead, we propose the trader approach here. For each service area m,

there is a set of (virtual) traders tmi ∈ Tm, i = 1 ∼ |B−1
m |. The eNodeB internally assigns

each unallocated RBG j ∈ |B−1
m | to a trader. A trader's preference ≻tr,mi for the RBGs

is given by a trader preference function Fm
i (·). It should be noted that these traders are

not the actual players in the resource exchange game since their preferences are directly

controlled by the eNodeB. The traders are tools offered by the T-REX mechanism for the

eNodeB to regulate the resource exchange game.

Notice that the resource exchange game with only D2D pairs involved can be con-

sidered a variant of the house allocation problem [72], in which a strategy-proof solution

called the Top-Trading Cycle Algorithm (TTCA) is illustrated. Nevertheless, when there

are unallocated RBGs, TTCA only provides a locally optimal performance, as we will

illustrate in Section 5.6.

5.5.2 Mechanism Design

The T-REX mechanism works as follows: a resource exchange graph is initialized

with all D2D pairs and traders in a service area as vertices. For each vertex, the prefer-

ence is determined by either the corresponding reported CQI ψmi (D2D pair) or the trader

preference function Fm
i (·) (trader). In addition, each vertex is also marked with an RBG

according to the initial allocation bm
0 . After the initial graph is defined, each vertex con-

structs a directed edge to the vertex owning her most preferred RBG in the current graph.

The T-REXmechanism then searches cycles in the graph, which always exists because

each vertex has exactly one directed edge. When a cycle is found, the vertices in the

cycle exchange their RBGs with each other according to their edges, and we eliminate

them from the graph. It should be noted that it is possible for a vertex to have a directed

edge pointing to itself, which means that the owner already possesses the most preferred
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Figure 5.3: An example of the T-REX mechanism

RBG. In such a case, the vertex is simply removed from the graph. Then, the remaining

edges in the graph are reconstructed according to the preference of each vertex on the

RBGs held by remaining vertices, and the T-REX mechanism again identifies cycles. The

exchange procedure is executed repeatedly until all vertices are removed from the graph.

The pseudo-code of the T-REX mechanism is shown in Algorithm 3.

We illustrate an example of the T-REX mechanism. We consider a D2D service area

with 3 D2D pairs and 5 RBGs. The preferences of D2D pairs and traders are listed in

Fig. 5.3. The T-REX mechanism constructs the resource exchange graph as shown in

Fig. 5.3. We can see that a cycle is formulated among D2D pairs 1, 2, and Trader 1. An

exchange sequence {(s1, s2), (s2, d1)} is then identified. Then, D2D pairs 1, 2, and Trader

1 are removed from the graph, and the edges are reconstructed. In the reconstructed graph,

D2D pair 3's directed edge points to herself since her most preferred RBG in the current

graph is RBG 3. Since she already possessed the desired RBG, she is directly removed

from the graph. The T-REX mechanism ends at the third round since all D2D pairs are

removed from the graph.

The T-REX mechanism operates in one service area. When multiple service areas

exist, the T-REX mechanism can function independently in these areas. Although it is

possible that the resulting RBG allocation in one area affects the preferences of D2D pairs
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in other service areas, the overall RBG allocation b will converge to a stable one when

the T-REX mechanism is applied sequentially in all areas in arbitrary orders.

Theorem 12. The T-REX mechanism converges in a D2D system with multiple service

areas.

Proof. We prove the convergence of the T-REX mechanism by showing that all exchange

sequences are beneficial exchanges. Let b0
m be the initial RBG allocation. Then, let C

be a cycle found in the resource exchange graph and Sc be the corresponding exchange

sequence. The resulting RBG allocation is bm = EX(b0
m,Sc).

Case 1: dmi ̸∈ C. In this case, the RBG allocated to D2D pair dmi is unaffected by the

exchanges. Therefore, her experienced interference remains unchanged.

Case 2: dmi ∈ C. In this case, the RBG allocated to D2D pair dmi is changed. Let k

and j be the RBG allocated to D2D pair dmi before and after the exchanges. Since dmi ∈ C,

we have j ≻mi k, which means Imi (bm|bm
i =j,b−m) < Imi (bm|bm

i =k,b−m). Therefore, the

interference experienced by D2D pair dmi is lower under the new allocation bm.

Concluding from the above two cases, all D2D pairs experience equal or higher inter-

ference after any exchange identified by the T-REX mechanism. Therefore, all exchanges

in the T-REX mechanism are beneficial exchanges according to Definition 10, and the

convergence of the T-REX mechanism in multiple service areas is guaranteed by Theo-

rem 11.

The complexity of the T-REXmechanismwith a givenFm
i (·) ismax{O(|B|2), O(|B|Fm

i (·))}.

This comes from the fact that at least one vertex is removed from the graph G at each iter-

ation (Line 7 to 21), and it takes at most |G| ≤ |B| steps to update the edges andO(Fm
i (·))

to update the preferences of traders in each iteration. Therefore, when O(Fm
i (·)) is poly-

nomial, the complexity of the T-REX mechanism is polynomial.

The key in the T-REXmechanism is the trader preference function. The eNodeB regu-

lates the resource allocation through defining the trader preference function in the T-REX

mechanism. Different choices on trader preference functions will result in different RBG

allocations even if the eNodeB receives same CQI reports from D2D pairs. Next, we

provide some trader preference function candidates.
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Algorithm 3 T-REX Mechanism
Input: Ψm = {ψmi }, {Fmi }, and b0

m

Output: Exchange Sequence Sm and Allocation bm
1: bm = b0

m;
2: Sm = [ ];
3: for all dmi in Dm do
4: constructs ≻mi based on ψmi ;
5: end for
6: constructs a resource exchange graph G with each dmi ∈ Dm and tmi ∈ Tm as vertices;
7: while G is not empty do
8: for all v in Tm do
9: constructs ≻mv according to Fmv (x);
10: end for
11: for all vertices v in G do
12: constructs a directed edge e(v, v′) where a(v′) ≻mv a(v′′)∀v′′ ∈ G;
13: end for
14: find a cycle C in G;
15: for all vertices v in C with edge e(v, v′) do
16: if v ̸= v′ then
17: append (v,v') to Sm;
18: end if
19: end for
20: exclude all vertices in C from G;
21: end while
22: bm = EX(b0

m,Sm);

5.5.3 Cycle-Complete Preference

First, we propose a cycle-complete preference (CYC), which enhances the allocation

of RBGs according to the preferences of D2D pairs. First, we define an incomplete cycle

in the resource exchange game.

Definition 13 (Incomplete Cycle). An incomplete cycle ω is an open, directed path with

no repeated vertex in the graph; i.e., a path that could be closed into a cycle only if there

is an additional directed edge connected from the tail to the head vertex.

The primary operation of the CYC preference is to ensure that when an incomplete

cycle ω with trader tmi as the tail vertex exists, the trader tmi always chooses the RBG

possessed by the head D2D pair of the incomplete cycle ω as her most preferred RBG in

that round. A new directed edge is connected from the trader tmi to the head D2D pair,

and the incomplete cycle ω is now complete. With the CYC addition, all D2D pairs in

the incomplete cycle will derive their most preferred RBGs. In cases where there is no

139



D2D	
  1	


1	


D2D	
  2	


2	
D2D	
  3	


3	


Trader	
  1	


4	


1st	


2nd	


D2D	
  Pair	
  2	
  
Misreports	


D2D	
  1	


1	


D2D	
  2	


2	
D2D	
  3	


3	


Trader	
  1	


4	


1st	


Figure 5.4: Cheating in CYC preference

incomplete cycle with tail vertex as tmi , the trader tmi just randomly chooses a RBG j ∈ Bm

as her preferred RBG.

When multiple incomplete cycles end at the same trader, a reasonable choice for the

CYC preference is to choose the largest incomplete cycle. With this choice, we greedily

maximize the number of D2D pairs receiving their preferred RBGs. We define the set of

incomplete cycles with tail vertex tmi in round l as Ωtmi ,l
, and the set of incomplete cycles

with n vertices as Ωn
tmi ,l
⊂ Ωtmi ,t

. The trader preference function Fm
i,CY C is given by

Fm
i,CY C(Ωtmi ,l

) = {head(RAND(ω)) ≻tr,mi bj, ∀bj ̸= head(ω), ω ∈ Ωnl
tmi ,l

, nl = max
Ωj

tm
i

,l
̸=∅
j},

(5.12)

where the head vertex of ω is head(ω).

Unfortunately, a T-REX mechanism with CYC preference is not strategy-proof. An

example of cheating is shown in Fig. 5.4. In this D2D service area, D2D pair 2 prefers

RBG 4most, which is held by Trader 1. Her second preferred RBG is RBG 1, which is held

by D2D pair 1. However, the largest incomplete cycle ending at Trader 1 is {d1, d3, t1}.

According to the CYC preference, Trader 1will choose RBG 1 as her most preferred RBG.

D2D pair 2 does not have the chance to exchange with either Trader 1 or D2D pair 1.

Nevertheless, it can be seen that if D2D pair 2 sends a forged CQI report to choose RBG

1 as her most preferred RBG, a new incomplete cycle ω′ = {d2, d1, d3, t1} is formed.

In the manipulated resource exchange graph, Trader 1 will choose RBG 2 as her most
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preferred RBG, and D2D pair 2 can exchange with D2D pair 1 to get her second preferred

RBG, which is better than the results in the original resource exchange graph. Therefore,

D2D pair 2 has the incentive to cheat when CYC preference is applied. In conclusion, the

T-REX mechanism with CYC preference is not strategy-proof.

5.5.4 Sufficient Conditions of Strategy-proofness

We now discuss the sufficient conditions of the trader preference function to make the

T-REXmechanism strategy-proof. As observed in the previous section, the primary prob-

lemwith the CYC preference is that the preferences of traders are related to the preferences

of D2D pairs. This results in the possibility for that D2D pairs could cheat in the game

by influencing the preferences of traders. Based on this observation, we now propose the

sufficient conditions for a strategy-proof T-REX mechanism.

Theorem 13. When the preferences of traders are unrelated to the preferences of D2D

pairs, the T-REX mechanism with the implemented trader preference function is strategy-

proof.

Proof. Since the trader preferences are not related to the preferences of D2D pairs, the

problem is equivalent to an allocation problem with D′
m = {Dm,Tm}, Bm = B. In this

equivalent problem, all nodes are considered as D2D pairs with independent preferences.

We first denote the cycle found in round k of the procedure as Ck, the D2D pair set in

Ck as Nk, and the set of RBGs exchanged in this round as Bk. Assume that a D2D pair

dmi has a CQI ψi. Without losing generality, we assume dmi ∈ Nk when reporting ψi.

Let bm and b′
m be the allocation return by the T-REX mechanism when dmi reports ψi

and ψ′
i ̸= ψi, respectively. Also, letN1, N2, ... andN ′

1, N
′
2, ... be the corresponding cycles

formed in round 1, 2, ... given dmi reporting ψi and ψ′
i. First we show that it is not possible

for a dmi ∈ Nk to break into Cr, r = 1, 2, ..., k − 1 by reporting ψ′
i. Since dmi ∈ Nk, no

edge e(j, i) exists ∀dmj ∈ ∪0<r<kNr. Thus, given any ψ′
i ∈ Rl, Nr = N ′

r∀r < k and

dmi ̸∈ ∪0<r<kN
′
r. So dmi cannot derive any RBG in ∪0<r<kBr by reporting ψ′

i. However,

since bmi is the RBG dmi derived by reporting ψi, the constructed preference≻i has already
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chosen the most preferred RBG in B − ∪0<r<kBr. Thus bmi ≽i b
′m
i . This completes the

proof for strategy-proofness.

In addition to the strategy-proofness, we see that the final RBG allocation of Algorithm

3 is Pareto optimal.

Theorem 14 (Pareto Optimal). Given the trader preference ≻tr, the allocation returned

by Algorithm 3 is Pareto optimal when ≻i is strict for all dmi ∈ Dm.

Proof. We prove this by contradiction. Let bm be the output allocation of Algorithm 3.

We assume that there exists a set of D2D pairs Db ⊂ Dm which can form an exchange

sequence and derive a new allocation b′
m that ∀dmj ∈ Db, b

′m
j ≽i bmj , and ∃dmi ∈ Db,

b
′m
i ≻i bmi . Without losing generality, let i = 1, 2, ..., |Db| , dmi ∈ Nki

, ki ≥ kj when

i ≥ j.

We check each D2D pair's possessed RBG inbm. For dm1 , since it belongs toNki
, it has

chosen the most preferred RBG in {bmi |∀dmi ∈ ∪r=ki,ki+1,...Nr}. In addition, ∀dmi ∈ D′
m,

≻i is strict. Thus, b
′m
1 = bm1 . We can repeat this statement from dm2 to dm|Db| and conclude

that b′m
i = bmi , ∀dmi ∈ D′

m. We reach a contradiction here. Thus, there exists no D2D

pairs that can get better RBGs than in the allocation bm without harming others. In short,

the allocation bm is Pareto optimal.

5.5.5 Strategy-proof Preference Designs

In the following, we propose three trader preference functions which are strategy-

proof.

Randomized Preference

We now propose a strategy-proof trader preference function: RANdomized preference

(RAN). In the RAN preference, each trader randomly generates her preference on RBGs.

Let the set that contains all possible preferences on RBG set B be P (B). The trader

preference function of the RAN preference is defined as:

Fm
i,RAN(B) = RAND(P (B)). (5.13)
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Theorem 13 guarantees that the RAN preference is strategy-proof, since the preferences

of traders are not related to the preferences of traders.

Nevertheless, since the preferences of traders are randomly chosen, it is possible that

traders may choose each other's RBGs as their most preferred RBGs. In such a case,

an inter-trader exchange will occur. But it is meaningless to the system because both

traders in fact belong to the same eNodeB. This also eliminates the possibility of D2D

pairs exchanging with these traders, leading to an inefficient RBG allocation

To enhance the efficiency while maintaining strategy-proofness, we propose the mod-

ified RAN algorithm, which we call D2D-preferred RANdomized preference (DRAN).

Recall that Bm(b0
m) represents the RBGs allocated to D2D pairs in the initial allocation

b0
m. We use these RBGs to determine the first nth highest preferred RBGs for all traders.

The rest of the unallocated RBGs are then randomly chosen as the (n+1)th to Lth highest

preferred RBGs for all traders. With this modified preference, we eliminate the possibility

of traders exchanging RBGs with each others. The trader preference function of DRAN

is

Fm
i,DRAN(b0

m,B) = {RAND(P (Bm(b0
m))) ≻tr,mi RAND(P (B−1

m (b0
m)))}.(5.14)

Prioritized Preference

Finally, it remains to illustrate how the T-REX mechanism can be configured for dif-

ferent objectives, such as D2D pair prioritization. We consider the case that D2D pairs

are prioritized. Some D2D pairs should be granted priority to receive an allocated RBGs

with greater transmission quality. We can realize the prioritization with the proposed PRI-

oritized preference (PRI). Without losing generality, we assume the priority order is the

same as the D2D pair's numbering. Recalling that the RBG allocated to D2D pair dmi in

bmi , the trader preference function of the PRI preference is

Fm
i,PRI(bm) = {{b0,m

i ≻tr,mi b0,m
j iff i < j} ≻di RAND(P (B−1

m (bm)))}. (5.15)
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At the first round, all traders choose the RBG b0,m
1 as their most preferred RBG. Therefore,

all traders will have direct edges to the D2D pair dm1 in the first round. When D2D pair

dm1 belongs to an incomplete cycle ending at a trader, the cycle will be complete, and D2D

pair dm1 receives her most preferred RBG. Additionally, when D2D pair dm1 ∼ dmi are

removed from the graph, all traders construct directed edges to D2D dmi+1 according to

PRI preference, and D2D pair si+1 now has a higher probability to receive her preferred

RBG. In such a design, D2D pairs with higher priority are more likely to get the RBGs

they prefer. Plus, Theorem 13 again ensures that the PRI preference is strategy-proof.

5.6 Simulation Results

We study a D2D communication scenario to examine the efficiency of the proposed

framework and the T-REX mechanism in allocating RBGs. We consider a system with

one BS governing a typical 19 hexagonal service area topology. The length of the service

area edge is 100m. The system has M dedicated RBGs. Each service area has N D2D

pairs using a transmission power of 23dBm. Their locations are uniformly given with in

the area. We initiate the RBG assignment by randomly allocating N RBGs to those N

D2D pairs in each service area. For the signal loss model, we apply the D2D outdoor-to-

outdoor path loss model and antenna gain suggested in 3GPP LTE-Advanced Release 12

contributions [3].

The preference of RBGs is based on the D2D pairs' measurements on the interference

in each RBG. The interference is mainly caused by those D2D pairs served in different

areas. We assume that the D2D pairs in the same area measure the interference at the same

time. Therefore, their measurements do not include the interference from the D2D pairs

in the same area.

Then, we simulate the system in multiple rounds. In each round, we randomly choose

a service area and apply the simulating resource allocation mechanism. If the applied

mechanism does not alter the allocation in all service areas, the simulation goes to the

next round and the process repeats. The loop process terminates when there exists no

service area that would like to alter its allocation under the simulating mechanism.
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Figure 5.5: Simulation Results: Interference

5.6.1 Interference Mitigation

We measure the average system interference experienced by D2D pairs under the T-

REX mechanism with two strategy-proof preferences (RAN and DRAN), as well as the

greedy cycle-complete preferences (CYC). We compare the T-REX mechanism with the

Random, Local Exchange, and Couple Only mechanisms. The Random mechanism, in

which all RBGs are randomly assigned to D2D pairs, is considered as a baseline with no

optimization applied. In Local Exchange mechanism, D2D pairs exchange with the RBGs

held by other D2D pairs only. This can be implemented in a distributed way through the

D2D-Tirggered mode in our framework or by using TTCA algorithm. It represents the

case that the eNodeB generally is not involved in the resource re-allocation. In the Cou-

ple Only mechanism, an exchange occurs only when both pairs have lower interference

immediately after the exchange. This mechanism represents the case that D2D pairs have

very limited information about the preferences of other pairs and therefore it is not pos-

sible to have an exchange sequence with more than two pairs involved. We measure the

efficiency of each mechanism with the interference experienced by D2D pairs in their
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possessed RBGs.

We first evaluate the impact of number of D2D pairs on the efficiency of the T-REX

mechanism. We preserve 15 RBGs and adjust the number of D2D pairs from 6 to 15 in

the simulation. The simulation results are shown in Fig. 5.5(a). We first observe that the

T-REX mechanism significantly outperforms the Random, Local Exchange, and Couple

Only mechanisms in terms of average interference. The Couple Only mechanism has a

little improvement in interference compared to the Random mechanism, while the Local

Exchange mechanism has better performance than the Couple Only one.

Nevertheless, all T-REX mechanisms perform much better because of the granting of

unallocated RBGs from the BSs to the D2D pairs through traders. We also observe that all

T-REX RAN, DRAN, and CYC mechanisms perform similarly. This suggests that when

the T-REX mechanism converges, the resulting allocation is very close to (or is) the opti-

mal one. Additionally, the strategy-proof T-REX RAN and DRAN mechanisms perform

equally well with non-strategy-proof T-REX CY mechanism in terms of interference. We

also observe that when the number of D2D pairs increases, there is an increase in the inter-

ference level under all T-REX mechanisms. The increase is due to the decrease of RBGs

preserved by the BS. Since there are fewer RBGs for exchange, the room for improve-

ments through the exchange is smaller. Additionally, we also observe that as the number

of D2D pairs increases, the effect of trader preference functions becomes insignificant.

This result comes from the decrease in available RBGs in the BS.

Finally, we simulate with 6D2D pairs and adjust the number of available RBGs from 6

to 15. The results are shown in Fig. 5.5(b). We observe that when the number of available

RBGs increases, the interference decreases in all schemes, and the interference mitigation

of the T-REX mechanism from the Random scheme increases.

5.6.2 Convergence Rounds

Next, we compare the average convergence rounds of different mechanisms in the sim-

ulations. The results are shown in Fig. 5.6. First, the Couple Only mechanism converges

in less than 15 rounds in all simulations since there is only a limited number of D2D pairs
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Figure 5.6: Simulation Results: Convergence

that can exchange with this mechanism. For the Local mechanism, on the other hand, the

convergence rounds increase to around 40 ∼ 60 rounds, which is significantly higher than

those of the Couple Only mechanism. In return, her performance is also much better than

that of the Couple Only mechanism, as we have seen in Fig. 5.5.

Then, we observe that T-REX mechanisms with different trader preference functions

have different numbers of convergence rounds even if they perform similarly in terms of

interference mitigation (Fig. 5.5). T-REX RAN has the largest number of convergence

rounds in all simulations. This is due to the fact that inter-trader exchanges, which only

occur in RAN, reduces the probability that a D2D pair possesses her desired RBG from the

BS. This significantly slows down the convergence speed. For others, the T-REX DRAN

and T-REXCYCmechanisms have similar numbers of convergence rounds. Additionally,

the greedy cycle-complete method in T-REX CYC mechanism leads to less number of

convergence rounds since no random process is involved in the T-REX CYC mechanism.
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Figure 5.7: Simulation Results: Prioritization

5.6.3 Prioritization using T-REX PRI mechanism

Finally, we illustrate the prioritization effect when using PRI preference in the T-REX

mechanism. We simulate the D2D system with 8 D2D pairs per area and 15 available

RBGs. We assume that the D2D pairs in each area are prioritized according to their num-

bering, that is, D2D pair 1 has the highest priority while D2D pair 8 has the lowest priority

in their area. We simulate with T-REX DRAN and PRI mechanisms, and the average in-

terference experienced by D2D pairs with different priorities are shown in Fig. 5.6.3.

We observe that those D2D pairs with higher priorities (lower numbers) indeed expe-

rience lower average interference when T-REX PRI mechanism is applied. For T-REX

DRAN mechanism, there is no significant difference between D2D pairs in terms of av-

erage interference. In conclusions, the T-REX mechanism with PRI preference indeed

prioritized the D2D pairs by offering better RBGs to D2D pairs with higher priorities.

5.7 Related Work

Regarding resource allocation in D2D communications within a cellular system, Yu

[73] proposed resource sharing modes and the corresponding closed form solutions to de-

termine the optimized resource allocation for D2D communication underlying cellular net-

works. Fodor [7] demonstrated the major difficulties in D2D transmission design, in view

of peer discovery and resource allocation. When D2D devices co-exist with traditional
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cellular ones, the resources for D2D devices should be carefully allocated to minimize in-

terference. In such an approach, Wang [74] presented a resource sharing scheme allowing

D2D UEs to reuse resources from multiple cellular users. Zulhasnine [75] proposed an

algorithm to assign D2D devices to shared resource blocks with acceptable interference.

Zhu [76] presented an algorithm to maintain tolerable interference among D2D UEs shar-

ing different RBGs. Chen [77] investigated the coexistence of D2D and cellular users

given partial frequency reuse. The interference limited area is proposed to limit mutual

interference.

In addition, the D2D transmission may be virtual, relayed by the eNodeB, or direct.

The mode selection further complicates the problem. Janis [78] proposed a method to al-

locate resources and assign transmission modes to D2D devices with limited interference

to cellular ones. Belleschi [79] proposed a single-cell formulation for D2D communica-

tion, in which a D2D device may adopt the D2D or cellular modes to minimize the over-

all power. A load-control algorithm was introduced to approximate the optimal solution

for the NP-hard formulation. Nevertheless, most existing works only consider centralized

schemes with eNodeB assigning the radio resource for D2D devices. In such an approach,

periodic or on-demand report of channel status from D2D devices to eNodeB are required,

since the interference perceived by D2D devices is unknown to eNodeB. However, most

of theexisting literature does not address the issues caused by the rationality of D2D de-

vices and users, such as truth-telling. As we have illustrated in Section 5.1, rational D2D

devices and users may untruthfully report their information and behave maliciously in

order to achieve better performance for themselves. When rationality is a concern, the

mechanisms proposed above may receive forged information from the D2D devices and

therefore be unable to make correct decisions.

There exist few works on tackling the truth-telling problem in D2D communications.

Xu [80] formulated a sequential second-price auction for the D2D resource allocation.

Users' payoff is maximized and the system sum rate is improved using the proposed re-

source allocation algorithm. Nevertheless, such approaches require a monetary transfer

process, which significantly increases the complexity of implementation in the cellular
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network. It may be preferable to have a direct mechanism involving no payment process.

5.8 Summary

In this chapter, we proposed a novel resource-exchange-basedD2D resource allocation

framework for an LTE - Advanced system. We showed that the convergence of any algo-

rithm in the framework is guaranteed when all performed exchanges are beneficial. Based

on the idea of beneficial exchange, we proposed the Trader-assisted Resource Exchange

(T-REX) mechanism. The T-REX mechanism identifies the beneficial exchanges through

analysing the corresponding exchange graph. The eNodeB participates in the exchange

process through designing the trader preference functions. This design is critical to the

convergence speed, as has been shown in the simulations. Through game-theoretic analy-

sis, we also proved that when the trader preference functions are properly designed, the T-

REX mechanism is strategy-proof. This prevents the eNodeB from receiving forged CQI

reports from rational D2D devices and users. Finally, we evaluated the performance of the

T-REX mechanism through simulations. The simulations with the parameters suggested

in the latest 3GPP technical contribution showed that the T-REX mechanism significantly

mitigates the interference experienced by D2D devices.
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Chapter 6

Chinese Restaurant Game: Social

Learning vs. Network Externality

6.1 Introduction

How agents in a network learn and make decisions is an important issue in numerous

research fields, such as social learning in social networks, machine learning with commu-

nications among devices, and cognitive adaptation in cognitive radio networks. Agents

make decisions in a network in order to achieve certain objectives. However, the agent's

knowledge on the system may be limited due to the limited ability in observations or

the external uncertainty in the system. This impaired his utility since he does not have

enough knowledge to make correct decisions. The limited knowledge of one agent can

be expanded through learning. One agent may learn from some information sources, such

as the decisions of other agents, the advertisements from some brands, or his experience

in previous purchases. In most cases, the accuracy of the agent's decision can be greatly

enhanced by learning from the collected information.

6.1.1 Traditional Social Learning

The learning behavior in a social network is a popular topic in the literature. Let us

consider a social network in an uncertain system state. The state has an impact on the
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agents' rewards. When the impact is differential, i.e., one action results in a higher reward

than other actions in one state but not in all states, the state information becomes critical

for one agent to make the correct decision. In most social learning literature, the state

information is unknown to agents. Nevertheless, some signals related to the system state

are revealed to the agents. Then, the agents make their decisions sequentially, while their

actions/signals may be fully or partially observed by other agents. Most of existing works

[81--84] study how the believes of agents are formed through learning in the sequential

decision process, and how accurate the believes will bewhenmore information is revealed.

One popular assumption in traditional social learning literature is that there is no network

externality, i.e., the actions of subsequent agents do not influence the reward of the former

agents. In such a case, agents will make their decisions purely based on their own believes

without considering the actions of subsequent agents. This assumption greatly limits the

potential applications of these existing works.

6.1.2 Network Externality

The network externality, i.e., the influence of other agents' behaviors on one agent's

reward, is a classic topic in economics. How the relations of agents influence an agent's be-

havior is studied in coordinate game theory [85]. When the network externality is positive,

the problem can be modeled as a coordination game: When one agent makes a decision,

the subsequent agents are encouraged to make the same decision in two aspects: the prob-

ability that this action has the positive outcome increases due to this agent's decision, and

the potential reward of this action may be large according to the belief of this agent.

When the externality is negative, it becomes an anti-coordination game, where agents

try to avoid making the same decisions with others [86--88]. The negative network ex-

ternality plays an important rule in many applications in different research fields. One

important application is spectrum access in cognitive radio networks. In spectrum access

problem, secondary users accessing the same spectrum need to share with each other. The

more secondary users access the same channel, the less available access time or higher

interference for each of them. In this case, the negative network externality degrades the

152



utility of the agents making the same decision. As illustrated in [89], the interference from

other secondary users will degrade a secondary user's transmission quality and can be con-

sidered as the negative network externality effect. Therefore, the agents should take into

account the possibility of degraded utility when making the decisions. Similar character-

istics can also be found in other applications, such as service selection in cloud computing

and deal selection in Groupon website.

The combination of negative network externality with social learning is difficult to an-

alyze. When the network externality is negative, the game becomes an anti-coordination

game, where one agent seeks the strategy that differs from others' to maximize his own

reward. Nevertheless, in such a scenario, the agent's decision also contains some infor-

mation about his belief on the system state, which can be learned by subsequent agents

through social learning algorithms. Thus, subsequent agents may then realize that his

choice is better than others, and make the same decision with the agent. Since the net-

work externality is negative, the information leaked by the agent's decision may impair

the reward the agent can obtain. Therefore, rational agents should take into account the

possible reactions of subsequent players to maximize their own rewards.

6.1.3 Chinese Restaurant Game

Chinese restaurant process, which is a non-parametric learning methods in machine

learning [90], provides an interesting non-strategic learning method for unbounded num-

ber of objects. In Chinese restaurant process, there exists infinite number of tables, where

each table has infinite number of seats. There are infinite number of customers entering

the restaurant sequentially. When one customer enters the restaurant, he can choose either

to share the table with other customers or to open a new table, with the probability being

predefined by the process. Generally, if a table is occupied by more customers, then a

new customer is more likely to join the table, and the probability that a customer opens

a new table can be controlled by a parameter [91]. This process provides a systematic

method to construct the parameters for modeling unknown distributions. Nevertheless,

the behavior of customers in Chinese restaurant game is non-strategic, which means they
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follow predefined rules without rational concerns on their own utility. We observe that

if we introduce the strategic behaviors into Chinese restaurant process, the model can be

a general framework for analyzing the social learning with negative network externality.

To the best of our knowledge, no effort has been made to bring rationality concerns into

such a decision making structure in the literature.

By introducing the strategic behavior into the non-strategic Chinese restaurant process,

we propose a new game, calledChinese Restaurant Game, to formulate the social learn-

ing problem with negative network externality In our previous work [92], we have studied

the simultaneous Chinese restaurant game without social learning where customers make

decisions simultaneously. In this chapter, we will study the sequential Chinese restaurant

game with social learning where customers make decisions sequentially. Let us consider a

Chinese restaurant with J tables. There areN customers sequentially requesting for seats

from these J tables for having their meals. One customer may request one of the tables in

number. After requesting, he will be seating in the table he requested. We assume that all

customers are rational, i.e., they prefer bigger space for a comfortable dining experience.

Thus, one may be delighted if he has a bigger table. However, since all tables are available

to all customers, he may need to share the table with others if multiple customers request

for the same table. In such a case, the customer's dining space reduces, due to which the

dining experience is impaired. Therefore, the key issue in the proposed Chinese restaurant

game is how the customers choose the tables to enhance their own dining experience. This

model involves the negative network externality since the customer's dining experience

is impaired when others share the same table with him. Moreover, when the table size

is unknown to the customers, but each of them receives some signals related to the table

size, this game involves the learning process if customers can observe previous actions or

signals.

In the rest of this chapter, we first provide detailed descriptions on the systemmodel of

Chinese restaurant game in Section 6.2. Then, we study the sequential game model with

perfect information to illustrate the advantage of playing first in Section 6.3. In Section

6.4, we show the general Chinese restaurant game framework by analyzing the learning
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behaviors of customers under the negative network externality and uncertain system state.

We provide a recursive method to construct the best response for customers, and discuss

the simulation results in Section 6.5. In Section 6.6, we illustrate how the traditional

spectrum access problem can be formulated as a Chinese restaurant game. Finally, we

summarize this chapter in Section 6.8.

6.2 System Model

Let us consider a Chinese restaurant with J tables numbered 1, 2, ..., J and N cus-

tomers labeled with 1, 2, ..., N . Each customer requests for one table for having a meal.

Each table has infinite seats, but may be in different size. We model the table sizes

of a restaurant with two components: the restaurant state θ and the table size functions

{R1(θ), R2(θ), ..., RJ(θ)}. The state θ represents an objective parameter, which may be

changed when the restaurant is remodeled. The table size function Rj(θ) is fixed, i.e., the

functions {R1(θ), R2(θ), ..., RJ(θ)} will be the same every time the restaurant is remod-

eled. An example of θ is the order of existing tables. Suppose that the restaurant has two

tables, one is of size L and the other is of size S. Then, the owner may choose to number

the large one as table 1, and the small one as table 2. The decision on the numbering can

be modeled as θ ∈ {1, 2}, while the table size functions R1(θ) and R2(θ) are given as

R1(1) = L, R1(2) = S, and R2(1) = S, R2(2) = L. Let Θ be the set of all possible state

of the restaurant. In this example, Θ = {1, 2}.

6.2.1 Chinese Restaurant Game

We formulate the table selection problem as a game, calledChineseRestaurantGame.

We first denoteX = {1, ..., J} as the action set (tables) that a customer may choose, where

xi ∈ X means that customer i chooses the table xi for a seat. Then, the utility function

of customer i is given by U(Rxi
, nxi

), where nxi
is the number of customers choosing ta-

ble xi. According to our previous discussion, the utility function should be an increasing

function of Rxi
, and a decreasing function of nxi

. Note that the decreasing character-
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istic of U(Rxi
, nxi

) over nxi
can be regarded as the negative network externality effect

since the degradation of the utility is due to the joining of other customers. Finally, let

n = (n1, n2, ..., nJ) be the numbers of customers on the J tables, i.e., the grouping of

customers in the restaurant.

As mentioned above, the restaurant is in a state θ ∈ Θ. However, customers may

not know the exact state θ, i.e., they may not know the exact size of each table before re-

questing. Instead, they may have received some advertisements or gathered some reviews

about the restaurant. The information can be treated as some kinds of signals related to

the true state of the restaurant. In such a case, they can estimate θ through the available

information, i.e., the information they know and/or gather in the game process. Therefore,

we assume that all customers know the prior distribution of the state information θ, which

is denoted as g0 = {g0,l|g0,l = Pr(θ = l), ∀l ∈ Θ}. The signal each customer received

si ∈ S is generated from a predefined distribution f(s|θ). Notice that the signal quality

may vary, depending on how accurate the signal can reflect the state. A simple example

is given as follows. Considering a signal space S = {1, 2} and the system state space

Θ = {1, 2}. Then, we define the signal distribution as follows:

Pr(s = θ|θ) = p , Pr(s ̸= θ|θ) = 1− p, 0.5 ≤ p ≤ 1. (6.1)

In such a case, the parameter p is the signal quality of this signal distribution. When p is

higher, the signal is more likely to reflect the true system state.

6.2.2 Belief on System State

We introduce belief, which is well-known in the Bayesian game literature [83], to

describe how a customer estimates the system state θ. Since customers make decisions

sequentially, it is possible that the customers who make decisions later learn the signals

from those customers who make decisions earlier. Let us denote the signals customer i

learned, excluding his own signal si, as hi = {s}. With the help of these signals hi,

his own signal si, the prior distribution g0, and the conditional distribution f(s|θ), each
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customer i can estimate the current system state in probability with the belief being defined

as

gi = {gi,l|gi,l = Pr(θ = l|hi, si,g0), ∀l ∈ Θ} ∀i ∈ N. (6.2)

According to the above definition, gi,l represents the probability that system state θ is

equal to l conditioning on the collected signals hi, received signal si, the prior probability

g0, and the conditional distribution f(s|θ). Notice that in the social learning literature,

the belief can be obtained through either non-Bayesian updating rule [81, 82] or fully

rational Bayesian rule [83]. For the non-Bayesian updating rule, it is implicitly based on

the assumption that customers are only limited rational and follows some predefined rules

to compute their believes. Their capability to maximize their utilities is limited not only by

the game structure and learned information, but also by the non-Bayesian updating rules.

In the fully rational Bayesian rule, customers are fully rational and have the potential to

optimize their actions without the restriction on the fixed belief updating rule. Since the

customers we considered here are fully rational, they will follow the Bayesian rule to

update their believes as follows:

gi,l = g0,lPr(hi, si|θ = l)∑
l′∈Θ g0,l′Pr(hi, si|θ = l′)

. (6.3)

Notice that the exact expression for belief depends on how the signals are generated and

learned, which is generally affected by the conditional distribution f(s|θ) and the game

structure.

6.3 Perfect Signal: Advantage of Playing First

We first study the perfect signal case, where the system state θ is known by all cus-

tomers. Let us consider a Chinese restaurant game with J tables and N customers. Since

θ is known, the exact sizes of tablesR1(θ), R2(θ), ..., RJ(θ) are also known by customers.

In Chinese restaurant game, customers make decisions sequentially with a predeter-

mined order known by all customers, e.g., waiting in a line of the queue outside of the

157



restaurant. Without loss of generality, in the rest of this chapter, we assume the order is

the same as the customer's number. We assume every customer knows the decisions of

the customers who make decisions before him, i.e., customer i knows the decisions of

customers {1, ..., i − 1}. Let ni = (ni,1, ni,2, ..., ni,J) be the current grouping, i.e., the

number of customers choosing table {1, 2, ..., J} before customer i. The ni roughly rep-

resents how crowded each tables is when customer i enters the restaurant. Notice that ni

will not be equal to n, which is the final grouping that determines customers' utilities. A

table with only few customers may eventually be chosen by many customers in the end.

A strategy describes how a player will play given any possible situation in the game.

In Chinese restaurant game, the customer's strategy should be a mapping from other cus-

tomers' table selections to his own table selection. Recalling that nj stands for the number

of customers choosing table j. Let us denote n−i = (n−i,1, n−i,2, ..., n−i,J) with n−i,j

being the number of customers except customer i choosing table j. Then, given n−i, the

best response of a rational customer i should be

BEi(n−i, θ) = arg max
x∈X

U(Rx(θ), n−i,x + 1). (6.4)

Notice that givenn−i, nj = n−i,j+1 if x = j. However, then−i may not be completely

observable by customer i since customers i + 1 ∼ N make decisions after customer i.

Therefore, as shown in the next subsection, customer i should predict the decisions of the

subsequent customers given the current observation ni and state θ.

6.3.1 Equilibrium Grouping

We first study the possible equilibria of Chinese restaurant game. Nash equilibrium is a

popular concept for predicting the outcome of a game with rational customers. Informally

speaking, Nash equilibrium is an action profile, where each customer's action is the best

response to other customers' actions in the profile. Since all customers use their best

responses, none of them have the incentive to deviate from their actions. We observe that

in Chinese restaurant game, the Nash equilibrium can be translated into the equilibrium
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grouping, which is defined as follows

Definition 14. Given the customer set {1, ..., N}, the table set X = {1, ..., J}, and the

current system state θ, an equilibrium grouping n∗ satisfies the following conditions

U(Rx(θ), n∗
x) ≥ U(Ry(θ), n∗

y + 1), if n∗
x > 0,∀x, y ∈ X. (6.5)

Obviously, there will be more than one Nash equilibrium since we can always ex-

change the actions of any two customers in one Nash equilibrium to build a new Nash

equilibrium without violating the sufficient and necessary condition shown in (6.5). Nev-

ertheless, the equilibrium grouping n∗ may be unique even if there exist multiple Nash

equilibria. The sufficient condition to guarantee the uniqueness of equilibrium grouping

is stated in the following Theorem.

Theorem 15. If the inequality in (6.5) strictly holds for all x, y ∈ X, then the equilibrium

grouping n∗ = (n∗
1, ..., n

∗
J) is unique.

Proof. We would like to prove this by contradiction. Suppose that there exists another

Nash equilibrium with equilibrium grouping n′ = (n′
1, ..., n

′
J), where n′

j ̸= n∗
j for some

j ∈ X. Since bothn∗ andn′ are equilibrium groupings, we have∑J
j=1 n

′
j = ∑J

j=1 n
∗
j = N .

In such a case, there exists two tables x and y with n′
x > n∗

x and n′
y < n∗

y. Then, since n∗

is an equilibrium grouping, we have

U(Ry(θ), n∗
y) > U(Rx(θ), n∗

x + 1). (6.6)

Since n′
x > n∗

x, n′
y < n∗

y, and U(·) is a deceasing function of n, we have

U(Rx(θ), n∗
x) > U(Rx(θ), n∗

x + 1) ≥ U(Rx(θ), n′
x), (6.7)

U(Ry(θ), n′
y) > U(Ry(θ), n′

y + 1) ≥ U(Ry(θ), n∗
y). (6.8)
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Since n′ is also an equilibrium grouping, we have

U(Rx(θ), n′
x) ≥ U(Ry(θ), n′

y + 1). (6.9)

According to (6.7), (6.8), and (6.9) we have

U(Rx(θ), n∗
x + 1) ≥ U(Rx(θ), n′

x) ≥ U(Ry(θ), n′
y + 1) ≥ U(Ry(θ), n∗

y),(6.10)

which contradicts with (6.6). Therefore, the equilibrium grouping n∗ is unique when the

inequality in (6.5) strictly holds.

A concrete example that the equilibrium grouping is and is not unique is as follows.

Consider a Chinese restaurant with 3 customers and 2 tables with size R1 and R2. When

R1 = R2, we have two equilibrium grouping, which are n1 = (1, 2) and n2 = (2, 1). The

equilibrium grouping is not unique in this case is because the inequality in (6.5) does not

strictly hold, whichmeans that one customermay have the same utility if he choose another

table given the decisions of others. In contrast, when R1 > R2 and U(R1, 3) < U(R2, 1),

we have a unique equilibrium grouping n3 = (2, 1) since all other grouping cannot be the

equilibrium output as we proved in Theorem 15.

The equilibrium grouping can be found through a simple greedy algorithm. In the

algorithm, customers choose their actions in the myopic way, i.e., they choose the tables

that can maximize their current utilities purely based on what they have observed. Let

ni = (ni,1, ni,2, ..., ni,J) with ∑J
j=1 ni,j = i − 1 be the grouping observed by customer i.

Then, customer i will choose the myopic action given by

BEmyopic
i (ni, θ) = arg max

x∈X
U(Rx(θ), ni,x + 1). (6.11)

We check if the greedy algorithm indeed outputs an equilibrium grouping. Let n∗ =

(n∗
1, n

∗
2, ..., n

∗
J) be the corresponding grouping. For a table j with n∗

j > 0, suppose cus-
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tomer k is the last customer choosing table j. According to (6.11), we have

U(Rj(θ), nk,j + 1) ≥ U(Rj′(θ), nk,j′ + 1) ≥ U(Rj′(θ), n∗
j′ + 1), ∀j′ ∈ X. (6.12)

Note that (6.12) holds for all j, j′ ∈ X with n∗
j > 0, i.e., U(Rj(θ), n∗

j) ≥ U(Rj′(θ), n∗
j′ +

1), ∀j, j′ ∈ X with n∗
j > 0. According to Definition 14, the output grouping n∗ from the

greedy algorithm is an equilibrium grouping.

6.3.2 Subgame Perfect Nash Equilibrium

In a sequential game, we will study the subgame perfect Nash equilibrium. Subgame

perfect Nash equilibrium is a popular refinement to the Nash equilibrium under the se-

quential game. It guarantees that all players choose strategies rationally in every possible

subgame. A subgame is a part of the original game. In Chinese restaurant game, any

game process begins from player i, given all possible actions before player i, could be a

subgame.

Definition 15. A subgame in Chinese restaurant game is consisted of two elements: 1) It

begins from customer i; 2) The current grouping before customer i is ni = (ni,1, ..., ni,J)

with
∑J
j=1 ni,j = i− 1.

Definition 16. A Nash equilibrium is a subgame perfect Nash equilibrium if and only if it

is a Nash equilibrium for any subgame.

We would like to show the existence of subgame perfect Nash equilibrium in Chinese

restaurant game by constructing one. Basically, as a rational customer, customer i should

predict the final equilibrium grouping according to his current observation on the choices

of previous customers ni and the system state θ. Then, he may choose the table with

highest expected utility according to the prediction. Following from this idea, we derive

the best response of customers in a subgame.

We first implement the prediction part through two functions as follows. First, let

EG(Xs, N s) be the function that generates the equilibrium grouping for a table setXs and

number of customersN s. The equilibrium grouping is generated by the greedy algorithm
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shown in previous section with X being replaced by Xs and N being replaced by N s.

Notice that Xs could be any subset of the total table set X = {1, ..., J}, and N s is less or

equal to N .

Then, let PC(Xs,ns, N s), where ns denotes the current grouping observed by the cus-

tomer, be the algorithm that generates the set of available tables given ns in the subgame.

The algorithm removes the tables that already occupied by more than the expected number

of customers in the equilibrium grouping. This helps the customer remove those unrea-

sonable choices and correctly predict the final equilibrium grouping in every subgame.

The basic flow of this algorithm is shown as follows 1) calculate the equilibrium grouping

ne given the table set Xs and number of customers N s, 2) check if there is any overly

occupied table by comparing ns with ne. If so, 3) remove these tables from Xs and the

customers occupying these tables from N s, and go back to 1). Otherwise, the algorithm

terminates. The procedures of implementing PC(Xs,ns, N s) are described as follows:

1. Initialize: Xo = Xs, N t = N s

2. Xt = Xo, ne = EG(Xt, N t), Xo = {x|x ∈ Xt, nej ≥ nsj}, N t = N s −∑
x∈Xs\Xo nsx.

3. If Xo ̸= Xt, go back to step 2.

4. Output Xo.

Now, we propose a method to construct a subgame perfect Nash equilibrium. This

equilibrium also satisfies (6.5). For each customer i, his strategy in a subgame is

BEse
i (ni, θ) = arg max

x∈Xi,cand,ni,x<n
i,cand
x

U(Rx(θ), ni,candx ), (6.13)

whereXi,cand = PC(X,ni, N), N i,cand = N−∑
x∈X\Xi,cand ni,x, andni,cand = EG(Xi,cand, N i,cand).

The proposed best response BEse∗
i (ni, θ) chooses the table with the highest utility ac-

cording to the predicted equilibrium grouping ni,cand and candidate table set Xi,cand. The

equilibrium grouping ni,cand is obtained by EG(Xi,cand, N i,cand), where the candidate ta-

ble set Xi,cand is derived by PC(X,ni, N). In Lemma 6, we show that the above strategy

results in the equilibrium grouping in any subgame.
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Lemma 6. Given the available table setXs = PC(X,ns, N),N s = N−∑
x∈X\Xs nsx, the

proposed strategy shown in (6.13) leads to an equilibrium grouping n∗ = EG(Xs, N s)

over Xs.

Proof. We prove this by contradiction. Let n = (nj|j ∈ Xs) be the final grouping after all

customers choose their tables according to (6.13). Suppose that n ̸= n∗ = EG(Xs, N s),

then there exists some tables j that nj > n∗
j . Let table j be the first table that ex-

ceeds nsj in this sequential subgame. Since nj > n∗
j , there are at least n∗

j + 1 cus-

tomers choosing table j. Suppose the n∗
j + 1-th customer choosing table j is customer

i. Let ni = (ni,1, ni,2, ..., ni,J) be the current grouping observed by customer i before he

chooses the table. Since customer i is the n∗
j + 1-th customer choosing table j, we have

ni,j = n∗
j . Since table j is the first table exceeding n∗ after customer i's choice, we have

ni,x ≤ n∗
x ∀x ∈ Xs.

According to the definition of PC(·), none of the tables will be removed from candi-

dates. Thus, Xi,cand = Xs and N i,cand = N s. We have

ni,cand = EG(Xi,cand, N i,cand) = EG(Xs, N s) = n∗. (6.14)

However, according to (6.13), the customer i should not choose table j since ni,j =

n∗
j = ni,candj . This contradicts with our assumption that customer i is then∗

j+1-th customer

choosing table j. Thus, the strategy (6.13) should lead to the equilibrium grouping n∗ =

EG(Xs, N s).

Note that Lemma 6 also shows that the final grouping of the sequential game should be

n∗ = EG(X, N) if all customers follow the proposed strategy in (6.13). In the following

Lemma, we show that PC(Xs,ns, N s) removes the tables that are dominated by other

tables if all customers follow (6.13).

Lemma 7. Given a subgame with current grouping ns, if table j ̸∈ Xs = PC(X,ns, N),

then table j is never the best response of the customer if all other customers follow (6.13).

Proof. Let n′ = EG(X, N), and n∗ be the final grouping. We first show that for every

table under the final groupingn∗, there always exists a table providing a less or equal utility
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under the grouping n′. According to Lemma 6, the final grouping n∗ is an equilibrium

grouping overXs if all customers follow (6.13). Additionally, n∗
j = nsj since no customers

will choose table j. Assuming that there exists a table k ∈ Xs with n′
k < n∗

k. Since

n∗
j = nsj > n′

j , we have
∑
x∈X\{j} n

∗
x <

∑
x∈X\{j} n

′
x. Therefore, ∃k′ ∈ Xs that n′

k′ > n∗
k′ .

Since n′ and n∗ are equilibrium groupings over Xs, similar to (6.10), we have

U(Rk(θ), n′
k + 1) ≥ U(Rk(θ), n∗

k) ≥ U(Rk′(θ), n∗
k′ + 1) ≥ U(Rk′(θ), n′

k′) ≥ U(Rk(θ), n′
k + 1)(6.15)

The first and third inequalities are due to n′
k < n∗

k and n′
k′ > n∗

k′ , and the second and fourth

ones come from the equilibrium grouping condition in (6.5). The equation is valid only

when all equalities hold. Thus, if n′
k < n∗

k, ∃k′ ∈ Xs that U(Rk(θ), n∗
k) = U(Rk′(θ), n′

k′),

which means that we can always find a table k′ providing the same utility as U(Rk(θ), n∗
k)

under grouping n′. When n′
k ≥ n∗

k, we have U(Rk(θ), n∗
k) ≥ U(Rk(θ), n′

k). Therefore,

∀k ∈ Xs, ∃k′ ∈ Xs that U(Rk(θ), n∗
k) ≥ U(Rk′(θ), n′

k′).

Then, we show that table j is dominated by all other tables under n∗. Since table j is

removed by PC(X,ns, N), we have nsj > n′
j . Therefore, according the above discussion

and the fact that n′ is an equilibrium grouping, we have ∀k ∈ Xs,

U(Rk(θ), n∗
k) ≥ min

k′∈Xs
U(Rk′(θ), n′

k′) ≥ U(Rj(θ), n′
j + 1) > U(Rj(θ), nsj + 1). (6.16)

Since U(Rj(θ), nsj + 1) is the highest utility that can be offered by table j, it is dominated

by all other tables in Xs under the final grouping n∗. So, table j is never the best response

of the customer.

Theorem 16. There always exists a subgame perfect Nash equilibrium with the cor-

responding equilibrium grouping n∗ satisfying (6.5) in a sequential Chinese restaurant

game.

Proof. We would like to show that the proposed strategy in (6.13) forms a Nash equilib-

rium. Suppose customer i chooses table j in his round according to (6.13). Then, customer

i's utility is ui = U(Rj(θ), n∗
j) since based on Lemma 6, the equilibrium grouping n∗ will

be reached at the end.
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Now we show that table j is indeed customer i's best response. Let's assume that

customer i is the last customer, i.e, i = N , and chooses another table j′ ̸= j in his round,

then his utility becomes U(Rj′(θ), n∗
j′ + 1). However, according to (6.5), we have

u∗
j = U(Rj(θ), n∗

j) ≥ U(Rj′(θ), n∗
j′ + 1). (6.17)

Thus, choosing table j is never worse than choosing table j′ for customer N .

For the case that customer i is not the last customer, we assume that he chooses table

j′ instead of table j in his round. Since all customers before customer i follows (6.13), we

have ni,j ≤ n∗
j ∀j ∈ X. Otherwise, n∗ cannot be reached, which contradicts with Lemma

6.

If ni,j′ < n∗
j′ , we have ni+1,j′ ≤ n∗

j′ . In addition, we have ni+1,j = ni,j ≤ n∗
j ∀j ∈ X \

{j′}, since other tables are not chosen by customer i. Thus, Xi+1,cand = PC(X,ni+1, N)

and N i,cand = N . According to Lemma 6, the final grouping should be n∗ = EG(X, N).

Thus, the new utility of customer i becomes u′
i = U(Rj′(θ), n∗

j′). However, according to

(6.13), we have

ui = U(Rj(θ), n∗
j) = arg max

x∈X,ni,x<n∗
x

U(Rx(θ), n∗
x) ≥ U(Rj′(θ), n∗

j′) = u′
i.(6.18)

Thus, choosing table j′ never gives customer i a higher utility.

If ni,j′ = n∗
j′ , and the final grouping is n′ = (n′

1, n
′
2, ..., n

′
J). Since customer i chooses

table j′ when ni,j′ = n∗
j′ , we have n′

j′ ≥ ni+1,j′ = ni,j′ + 1 = n∗
j′ + 1. Thus, we have

ui = U(Rj(θ), n∗
j) ≥ U(Rj′(θ), n∗

j′ + 1) ≥ U(Rj′(θ), n′
j′) = u′

i, ∀j′ ∈ X,(6.19)

where the first inequality comes from the equilibrium grouping condition in (6.5), and

the second inequality comes from the fact that U(R, n) is decreasing over n and n′
j′ ≥

n∗
j′ + 1. Thus, under both cases, choosing table j′ is never better than choosing table j.

We conclude that {BEse
i (·)} in (6.13) forms a Nash equilibrium, where the grouping being

the equilibrium grouping n∗.
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Finally, we show that the proposed strategy forms a Nash equilibrium in every sub-

game. In Lemma 7, we show that if the table j is removed by PC(X,ns, N), it is never

the best response of all remaining customers. Thus, we only need to consider the re-

maining table candidates Xs = PC(X,ns, N) in the subgame. Then, with Lemma 6, we

show that for every possible subgame with corresponding Xs, the equilibrium grouping

n∗ = EG(Xs, N s) will be achieved at the end of the subgame. Moreover, the above proof

shows that if the equilibrium grouping ns will be achieved at the end of the subgame,

BEse
i (·) is the best response function. Therefore, the proposed strategy forms a Nash

equilibrium in every subgame, i.e., we have a subgame perfect Nash equilibrium.

In the proof of Theorem 16, we observe that the sequential game structure brings ad-

vantages for those customers making decisions early. According to (6.13), customers who

make decisions early can choose the table providing the largest utility in the equilibrium.

When the number of customers choosing that table reaches equilibrium number, the sec-

ond best table will be chosen until it is full again. For the last customer, he has no choice

but to choose the worst one.

6.4 Imperfect Signal: How Learning Evolves

In Section 6.3, we have showed that in the Chinese restaurant game with perfect sig-

nal, customers choosing first have the advantages for getting better tables and thus higher

utilities. However, such a conclusion may not be true when the signals are not perfect.

When there are uncertainties on the table sizes, customers who arrive first may not choose

the right tables, due to which their utilities may be lower. Instead, customers who ar-

rive later may eventually have better chances to get better tables since they can collect

more information to make the right decisions. In other words, when signals are not per-

fect, learning will occur and may result in higher utilities for customers choosing later.

Therefore, there is a trade-off between more choices when playing first and more accu-

rate signals when playing later. In this section, we would like to study this trade-off by

discussing the imperfect signal model.
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In the imperfect signal model, we assume that the system state θ ∈ Θ = {1, 2, ..., L}

is unknown to all N customers. The sizes of J tables can be expressed as functions

of θ, which are denoted as R1(θ), R2(θ), ..., RJ(θ). The prior probability of θ, g0 =

{g0,1, g0,2, ..., g0,J} with g0,l = Pr(θ = l), is assumed to be known by all customers.

Moreover, each customer receives a private signal si ∈ S, which follows a p.d.f f(s|θ).

Here, we assume f(s|θ) is public information to all customers. When conditioning on the

system state θ, the signals received by the customers are uncorrelated.

In Chinese restaurant game with imperfect signal model, the customers make deci-

sions sequentially with the decision orders being their numbers. After a customer i made

his decision, he cannot change his mind in any subsequent time and his decision and sig-

nal are revealed to all other customers. Since signals are revealed sequentially, the cus-

tomers who make decisions later can collect more information for better estimations of

the system state. We assume customers are fully rational, which means they should apply

Bayesian learning rule in their decision making process [83]. Therefore, when a new sig-

nal is revealed, all customers follow the Bayesian rule to update their believes based on

their current believes. Derived from (6.3), we have the following belief updating function

gi,l = gi−1,lf(si|θ = l)∑
w∈Θ gi−1,wf(si|θ = w)

. (6.20)

6.4.1 Best Response of Customers

Since the customers are rational, they will choose the action to maximize their own ex-

pected utility conditioning on the information they collect. Let ni = (ni,1, ni,2, ..., ni,J) be

the current grouping observed by customer i before he chooses the table, where ni,j is the

number of customers choosing table j before customer i. Then, let hi = {s1, s2, ..., si−1}

be the history of revealed signals before customer i. In such a case, the best response of

customer i can be written as

BEi(ni,hi, si) = arg max
j

E[U(Rj(θ), nj)|ni,hi, si]. (6.21)
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From (6.21), we can see that when estimating the expected utility in the best response

function, there are two key terms needed to be estimated by the customer: the system

state θ and the final grouping n = (n1, n2, ..., nJ). The system state θ is estimated using

the concept of belief denoted as gi = {gi,1, gi,2, ..., gi,L} with gi,l = Pr(θ = l|hi, si).

Since the information on the system state θ in ni is fully revealed by hi, given hi, gi is

independent with ni. Therefore, given the customer's belief gi, the expected utility of

customer i choosing table j becomes

E[U(Rj(θ), nj)|ni,hi, si, xi = j] =
∑
w∈Θ

gi,wE[U(Rj(w), nj)|ni,hi, si, xi = j, θ = w].(6.22)

Note that the decisions of customers i + 1, ..., N are unknown to customer i when

customer i makes the decision. Therefore, a close-form solution to (6.22) is generally

impossible and impractical. In this chapter, we purpose a recursive approach to compute

the expected utility.

6.4.2 Recursive Form of Best Response

LetBEi+1(ni+1, hi+1, si+1) be the best response function of customer i+1. Then, the

signal space S can be partitioned into Si+1,1, ..., Si+1,J subspaces with

Si+1,j(ni+1,hi+1) (6.23)

= {s|s ∈ S, BEi+1(ni+1,hi+1, s) = j}, ∀j ∈ {1, ..., J}.

Based on (6.23), we can see that, given ni+1 and hi+1, BEi+1(ni+1,hi+1, si+1) = j

if and only if si+1 ∈ Si+1,j . Therefore, the decision of customer i + 1 can be predicted

according to the signal distribution f(s|θ) given by

Pr(xi+1 = j|ni+1,hi+1) =
∫
s∈Si+1,j(ni+1,hi+1)

f(s)ds. (6.24)

Let us define mi,j as the number of customers choosing table j after customer i (in-

cluding customer i himself). Then, we have nj = ni,j + mi,j , where nj denotes the final
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number of customers choosing table j at the end of the game. Moreover, according to the

definition ofmi,j , we have

mi,j =


1 +mi+1,j, xi = j;

mi+1,j, else.
(6.25)

The recursive relation ofmi,j in (6.25) will be used in the following to get the recursive
form of the best response function. We first derive the recursive form of the distribution
ofmi,j , i.e., Pr(mi,j = X|ni,hi, si, xi, θ) can be expressed as a function of Pr(mi+1,j =
X|ni+1,hi+1, si+1, xi+1 = j, θ = l), ∀ l ∈ Θ, 0 ≤ j ≤ J , as follows:

Pr(mi,j = X|ni,hi, si, xi, θ = l) =

{
Pr(mi+1,j = X − 1|ni,hi, si, xi, θ = l), xi = j,

Pr(mi+1,j = X|ni,hi, si, xi, θ = l), xi ̸= j,
(6.26)

=


∑

u∈{1,...,J}

∫
s∈Si+1,u(ni+1,hi+1) Pr(mi+1,j = X − 1|ni+1,hi+1, si+1 = s, xi+1 = u, θ = l)f(s|θ = l)ds, xi = j,∑

u∈{1,...,J}

∫
s∈Si+1,u(ni+1,hi+1) Pr(mi+1,j = X|ni+1,hi+1, si+1 = s, xi+1 = u, θ = l)f(s|θ = l)ds, xi ̸= j,

where hi+1 and ni+1 can be obtained using

hi+1 = {hi, si} and ni+1 = (ni+1,1, ..., ni+1,J), (6.27)

with

ni+1,k =


ni,k + 1, if xi = k,

ni,k, otherwise.
(6.28)

Based on (6.26), Pr(mi,j = X|ni,hi, si, xi, θ = l) can be recursively calculated.

Therefore, we can calculate the expected utility E[U(Rj(θ), nj)|ni,hi, si] by

E[U(Rj(θ), nj)|ni,hi, si] =
∑
l∈Θ

N−i+1∑
x=0

gi,lPr(mi,j = x|ni,hi, si, xi = j, θ = l)U(Rj(l), ni,j+x).

(6.29)

Finally, the best response function of customer i can be derived by

BEi(ni,hi, si) = arg max
j

∑
l∈Θ

N−i+1∑
x=0

gi,lPr(mi,j = x|ni,hi, si, xi = j, θ = l)U(Rj(l), ni,j+x).

(6.30)

With the recursive form, the best response function of all customers can be obtained

using backward induction. The best response function of the last customerN can be found
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as

BEN(nN, hN , sN) = arg max
j

∑
l∈Θ

gN,luN(Rj(l), nN,j + 1). (6.31)

Note that Pr(mN,j = X|nN,hN, sN , xN , θ) can be easily derived as follows:

Pr(mN,j = 1|nN,hN, sN , xN , θ) =


1, if xN = j,

0, otherwise.
(6.32)

As of the convergence of the recursive best response, which is based on the traditional

backward induction technique, it definitely converges since this game has finite players.

As a Chinese restaurant game with N players, only N recursive calls are required to derive

all the best responses.

6.5 Simulation Results

In this section, we verify the proposed recursive best response and corresponding equi-

librium. We simulate a Chinese restaurant with two tables {1, 2} and two possible states

θ ∈ {1, 2}. When θ = 1, the size of table 1 is R1(1) = 100 and the size of table 2

is R2(1) = 100r, where r is the ratio of table sizes. When θ = 2, R1(2) = 100r and

R2(2) = 100. The state is randomly chosen with Pr(θ = 1) = Pr(θ = 2) = 0.5. The

number of customers is fixed. Each customer receives a randomly generated signal si at

the beginning of the simulation. The signal distribution f(s|θ) is given by Pr(s = 1|θ =

1) = Pr(s = 2|θ = 2) = p , Pr(s = 2|θ = 1) = Pr(s = 1|θ = 2) = 1 − p, where

p ≥ 0.5 can be regarded as the quality of signals. When the signal quality p is closer to 1,

the signal is more likely to reflect the true state θ. With the signals, customers make their

decisions sequentially. After the i-th customer makes his choice, he reveals his decision

and signal to other customers. The game ends after the last customer made his decision.

Then, the utility of the customer i choosing table j is given by U(Rj(θ), nj) = Rj

nj
, where

nj is the number of customers choosing table j in the end.
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Figure 6.1: The effect of different Table Size Ratio and Signal Quality

6.5.1 Advantage of Playing Positions vs. Signal Quality

We first investigate how the decision order and quality of signals affect the utility of

customers. We fix the size of one table as 100. The size of the other table is r×100, where

r is the ratio of the table sizes. In the simulations, we assume the ratio r ∈ [0, 1]. When

the ratio r = 1, two tables are identical, but the utility of choosing each table may have

different utility since we may have odd customers. When r = 0, one table has a size of 0,

which means a customer has a positive utility only when he chooses the correct table.

Due to the complicated game structure in Chinese restaurant game, the effect of sig-

nal quality and table size ratio is generally non-linear. As shown in Fig. 6.1(a), when

the number of customers is 5, customer 5 has the largest utility when the signal quality

is high and the table size ratio is low, while customer 1 has the largest utility when the

signal quality is low and the table size ratio is high. This phenomenon can be explained
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as follows. When the table size ratio is lower, all customers desire the larger table since

even all of them select the larger one, each of them still have a utility larger than choosing

the smaller one. In such a case, customers who choose late would have advantages since

they have collected more signals and have a higher probability to identify the large table.

Nevertheless, when the signal quality is low, even the last customer cannot form a strong

belief on the true state. In such a case, the expected size of each table becomes less sig-

nificantly, and customers' decisions rely more on the negative network externality effect,

i.e., how crowded of each table. In such a case, the first customer has the advantage to

choose the table with fewer customers in expectation.

However, we observe that in some cases, customer 3 becomes the one with largest

utility. The reasons behind this phenomenon is as follows. In these cases, the expected

number of customers in the larger table is 3, and this table provides the customers a larger

utility at the equilibrium. Therefore, customers would try to identify this table and choose

it according to their own believes. Since customer 3 collects more signals than customers

1 and 2, he is more likely to identify the correct table. Moreover, since he is the third

customer, this table is always available to him. Therefore, customer 3 has the largest

expected utility in these cases.

Note that the expected table size is determined by both the signal quality and the table

size ratio. Generally, when the signal quality is low, a customer is less likely to construct

a strong belief on the true state, i.e., the expected table sizes of both tables are similar.

This suggests that a lower signal quality has a similar effect on the expected table size as a

higher table size ratio. Our arguments are supported by the concentric-like structure shown

in Fig. 6.1(a). The same arguments can be applied to the 10-customer scheme, which is

shown in Fig. 6.1(b). We can observe the similar concentric-like structure. Additionally,

we observe that when the table size ratio increases, the order of customer who has the

largest utility in the peaks decreases from 10 to 5. This is consistent with our arguments

since when the table size ratio increases, the equilibrium number of customers in the large

table decreases from 10 to 5. This also explains why customer 1 does not have the largest

utility when the table size ratio is high. In this case, the equilibrium number of customers
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Figure 6.2: Price of Anarchy with Different Utility Functions

in the large table is 5, and the large table provides higher utilities to customers in the

equilibrium. Since customer 5 can collect more signals than previous customers, he has

better knowledge on the table size than customer 1 to 4. Moreover, since customer 5 is

the fifth one to choose the table, he always has the opportunity to choose the large table.

In such a case, customer 5 has the largest expected utility when the table size ratio is high.

6.5.2 Price of Anarchy

We then investigate the efficiency of the equilibrium grouping in Chinese restaurant

game using price of anarchy, which is a popular measurement in game theory on the degra-

dation of the system efficiency due to rational behaviors of players. Basically, the price

of anarchy in a game-theoretic system is defined as the ratio of the social welfare under

worst equilibrium in the system to the one under the centralized-optimal solution. There-
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fore, when the price of anarchy is close or equal to 1, the rational behaviors generally do

not incur efficiency loss to the system.

We first define the social welfare function W (B) in Chinese restaurant game as the

sum of customers expected utilities, that is, W (B) = E[∑N
i=1 U(Rxi

(θ), nxi
)|B], where

B denotes the strategies of customers applied in Chinese restaurant game. Let BU be

the universal set of all possible strategies and BE be the set of all equilibria in Chinese

restaurant game, then the price of anarchy is defined as follows:

PoA = maxB∈BU W (B)
minB′∈BE W (B′)

. (6.33)

We simulate a 5-customer restaurant with two tables and two states. All other settings

are the same as the ones in Section 6.5.1 except the utility function. In this simulation, we

apply two utilities functions: U(R, n) = R/N andU(R, n) = log( R
n+10). The former rep-

resents the case that the resource is equally shared, while the latter roughly represents the

SINR-throughput in wireless networks. The centralized-optimal solution is found through

exhaustive search. The prices of anarchy under all combinations of signal quality and table

size ratio are shown in Fig. 6.2.

As shown in Fig. 6.2(a), when the utility function is set as R/n, the price of anarchy

is equal to one under most combinations except when the table size ratio is close to 0. The

reason that the price of anarchy is larger than 1 at these points is that the smaller table

is so small that all customers have a higher utility even sharing the larger one. In such

cases, the small table will not be chosen, and the resource provided by this table is lost

due to the rational behaviors of customers. For the scenario that the utility function is set

as U(R, n) = log( R
n+10), the price of anarchy never exceeds 1.06 (Fig. 6.2(b)). This is

because in such a scenario, a proper balance in loadings on tables will greatly increase

the social welfare, which is automatically achieved by the rational choices of customers

due to their concerns on negative network externality. Therefore, the rational behaviors in

Chinese restaurant game generally does not harm much on the system efficiency, and the

equilibrium we found is efficient even compared with the centralized-optimal solution.
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Figure 6.3: Average utility of Customers in Resource Pool scenario when r = 0.4

6.5.3 Case Study: Resource Pool and Availability scenarios

Finally we discuss two specific scenarios: the resource pool scenario with r = 0.4

and available/unavailable scenarios with r = 0. In resource pool scenario, the table size

of the second table is 40. Users act sequentially and rationally to choose these two tables

to maximize their utilities. In available/unavailable scenario, the second table size is 0,

which means that a customer has positive utility only when he chooses the right table. For

both scenarios, we examine the schemes with N = 3 and N = 5.

From Fig. 6.3, we can see that in the resource pool scenario with r = 0.4, customer 1

on average has significant higher utility, which is consistent with the result in Fig. 6.1(a).

Using 5-customer scheme shown in Fig. 6.3(a) as an example, the advantage of playing

first becomes significant when signal quality is very low (p < 0.6), or the signal quality is

high (p > 0.7). We also find that customer 5 has the lowest average utility for most signal

quality p. We may have a clearer view on this in the 3-customer scheme. We list the best

response of customers given the received signals in Fig. 6.3(c). We observe that when

signal quality p is large, both customer 1 and 2 follow the signals they received to choose

the tables. However, customer 3 does not follows his signal if the first two customers
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Figure 6.4: Average utility of Customers in Available/Unavailable scenario when r = 0

choose the same table. Instead, customer 3 will choose the table that is still empty. In this

case, although customer 3 may know which table is larger, he does not choose that table if

it has been occupied by the first two customers. The network externality effect dominates

the learning advantage in this case.

However, when p is low, the best response of customer 1 is opposite, i.e., he will

choose the table that is indicated as the smaller one by the signal he received. At the

first glance, the best response of customer 1 seems to be unreasonable. However, such

a strategy is indeed customer 1's best response considering the expected equilibrium in

this case. According to Theorem 16, if perfect signals (p = 1) are given, the large table

should be chosen by customer 1 and 2 since the utility of large table is 100/2 = 50 is

larger than the that of the small table, which is 40/1 = 40, in the equilibrium. However,

when the imperfect signals are given, customers choose the tables based on the expected

table sizes. When signal quality is low, the uncertainty on the table size is large, which

leads to similar expected table sizes for both tables. In such a case, customer 1 favors the

smaller table because it can provide a higher expected utility, compared with sharing with

another customer in the larger table.

In the available/unavailable scenario, as shown in Fig. 6.4, the advantage of customer

1 in playing first becomes less significant. Using 5-customer scheme shown in Fig. 6.4(a)
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as an example, when signal quality p is larger than 0.6, customer 5 has the largest average

utility and customer 1 has smallest average utility. Such a phenomenon is because cus-

tomers should try their best on identifying the available table when r = 0. Learning from

previous signals gives the later customers a significant advantage in this case.

Nevertheless, we observe that the best responses of later customers are not necessary

always choosing the table that is more likely to be available. We use the 3-customer as an

illustrative example. We list the best response of all customers given the received signals

in Fig. 6.4(c). When the signal quality is pretty low (p = 0.55), we have the same best

response as the one in resource pool scenario, where the network externality effect still

plays a significant role. Using (s1, s2, s3) = (2, 2, 1) as an example, even customer 3 finds

that table 2 is more likely to be available, his best response is still choosing table 1 since

table 2 is already chosen by both customer 1 and 2, and the expected utility of choosing

table 1 with only himself is higher than that of choosing table 2 with other two customers.

As the signal quality p becomes high, e.g., p = 0.9, customer 3 will choose the table

according to all signals s1, s2, s3 he collected since the belief constructed by the signals is

now strong enough to overcome the loss in the network externality effect.

6.6 Application: Cooperative Spectrum Access in Cogni-

tive Radio Networks

Wewould like to illustrate an important application of Chinese restaurant game: coop-

erative spectrum access in cognitive radio networks. Traditional dynamic spectrum access

methods focus on identifying available spectrum through spectrum sensing. Cooperative

spectrum sensing is a potential scheme to enhance the accuracy and efficiency of detect-

ing available spectrum [93--95]. In cooperative spectrum sensing, the sensing results from

the secondary users are shared by all members within the same or neighboring networks.

These secondary users then use the collected results to make spectrum access decision

collaboratively or individually. If the sensing results are independent from each other,

the cooperative spectrum sensing can significantly increase the accuracy of detecting the
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Figure 6.5: Sequential Cooperative Spectrum Sensing and Accessing

primary user's activity. Secondary users can learn from others' sensing results to improve

their knowledge on the primary user's activity. After the available spectrum is detected,

secondary users need to share the spectrum following some predetermined access policy.

In general, the more secondary users access the same channel, the less available access

time for each of them, i.e., a negative network externality exists in this problem. There-

fore, before making decision on spectrum access, a secondary user should estimate both

the primary user's activity and the possible number of secondary users accessing the same

spectrum.

6.6.1 System Model

Weconsider a cognitive radio systemwith J channels,N secondary transmitter-receiver

pairs, and one primary user. We assume that the spectrum access behavior of secondary

users is organized by an access point through a control channel. Through the organization,

the secondary users can synchronize their channel sensing and selection time. Suppose

that the primary user is always active and transmitting some data on one of the channels.

In addition, the primary user's access time is slotted. At each time slot, each channel

has equal probability of 1/J to be selected by the primary user for transmission. The

secondary users' activities are shown in Fig. 6.5. At the beginning of each time slot, sec-

ondary users (transmitters) individually perform sensing on all channels 1 ∼ J . Then,

they follow a predefined order to sequentially determine which channel they are going to
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access in this time slot. Without loss of generality, we assume they follow the same order

as their indices. When making a decision, a secondary user i reports his decision and the

sensing result to the access point through a pre-allocated control channel. At the same

time, all secondary users also receive this report by overhearing. After all secondary users

have made their decisions, the access point announces the access policy of each channel

through the control channel: secondary users choosing the same channel equally share the

slot time. However, if the channel is occupied by the primary user, their transmission will

fail due to the interference from primary user's transmission.

Such a cognitive radio system can be modeled as a Chinese restaurant game. Let Hj

be the hypothesis that channel j is occupied by the primary user. Then, let the sensing

results of secondary user i ∈ {1, 2, ..., N} on channel j ∈ {1, 2, ..., J} be si,j . We use a

simple binary model on the sensing result in this example, where si,j = 1 if the secondary

user detected some activities on channel j and si,j = 0 if no activity is detected on channel

j. For secondary user i, his own sensing results are denoted as si = (si,1, si,2, ..., si,J). In

addition, the results he collected from the reports of previous users are denoted as hi =

{s1, s2, ...si−1}.

We define the belief of a secondary user i on the occupation of channels as gi =

{gi,1, gi,2, ..., gi,J}, where gi,j = Pr(Hj|hi, si). Let the probability of false alarm and

miss detection of the sensing technique on a single channel be pf and pm, respectively.

The probability of si conditioning on Hj is given by

Pr(si|Hj) = p1−si,j
m (1− pm)si,j

∏
k∈{1,...,J}\{j}

p
si,k

f (1− pf )1−si,k . (6.34)

Thus, we have the following belief updating rule

gi,j = gi−1,jPr(si|Hj)∑J
k=1 gi−1,kPr(si|Hk)

. (6.35)

With this rule, the belief of secondary user i is updated when a new sensing result is

reported to the access point. The available access time of a channel j within a slot is its

slot time, which is denoted as T . However, if the channel occupied by primary user, its
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access time becomes 0. Thus, we define the access time of channel j as

Rj(Hk) =


0, j = k.

T, otherwise.
(6.36)

Then, let xi be secondary user i's choice on the channels, and nj be the number of

secondary users choosing channel j. We define the utility of a secondary user i as

ui = U(xi) = Qxi
Rxi

(θ)
nxi

, (6.37)

where θ ∈ {Hj} is the hypothesis to be true and Qxi
is the channel quality of channel

xi. Here we assume that the secondary users are close to each other and share the simi-

lar channel conditions that are mainly determined by the external interference and back-

ground noise. The differences in channel gains are mainly influenced by the frequency

or time-dependent external interference. If the channel has higher quality, the secondary

users choosing the channel have higher data rates, and thus higher utility. Then, the best

response of secondary user i is as follows,

BEi(ni,hi, si) = arg max
x

∑
k∈{1,2,...,J}\{x}

gi,kE
[
QxT

nx
|ni,hi, si, Hk

]
. (6.38)

This best response function can be solved recursively through the recursive equations in

(6.26) and (6.30).

6.6.2 Simulation Results

We simulate a cognitive radio networkwith 3 channels, 1 primary user, and 7 secondary

transmitter-receiver pairs. When the channel is not occupied by the primary user, the

available access time for secondary users in one time slot is 100ms. Secondary users

(transmitters) sense the primary user's activity in all three channels at the beginning of the

time slot. We assume that the primary user has equal probability to occupy one of three

channels. Conditioning on the primary user's occupation of the channel, the probabilities
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of miss detection and false alarm in sensing one channel are 0.1. The channel quality

factor of channel 1 is Q1 = 1, while channel 2 and 3 are 1 − d and 1 − 2d. The d is the

degraded factor, which is within [5%, 50%] in the simulations.

We compare our best response strategy in (6.30) with the following four strategies: ran-

dom, signal, learning, and myopic strategies. In the random strategy, customers choose

their strategies randomly and uniformly, i.e., all J tables have equal probability of 1
J
to

be chosen under the random strategy. In the signal strategy, customers make their deci-

sions purely based on their own signal. Information from other customers, including the

revealed signals and their choices on tables, is ignored. The objective of signal strategy is

to choose the largest expected table size conditioning on his signal given by

xsignali = arg max
x

∑
l∈Θ

Pr(θ = l|si)QxRx(l). (6.39)

The learning strategy is an extension of the signal strategy. Under this strategy, the

customer learns the system state not only by his own signal but also by the signals revealed

by the previous customers. Therefore, the learning strategy can be obtained as

xlearni = arg max
x

∑
l∈Θ

gi,lQxRx(l), (6.40)

where gi,l = Pr(θ = l|hi, si,g0) is the belief of the customer on the state.

Finally, the myopic strategy simulates the behavior of a myopic player. The objective

of a customer under myopic strategy is maximizing his current utility, i.e., the customer

makes the decision according to his own signal, all revealed signals, and the current group-

ing ni as follows,

xmyopici = arg max
x

∑
l∈Θ

gi,l
QxRx(l)
ni,x + 1

. (6.41)

From (6.41), we can see that the myopic strategy is similar to the proposed best re-

sponse strategy except the Bayesian prediction of the subsequent customers' decisions.

The performance of all these four strategies will be evaluated in all simulations in the

following applications. They will be treated as the baseline of the system performance

without fully rational behaviors of customers.
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Figure 6.6: Spectrum Accessing in Cognitive Radio Network under Different Schemes
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The simulation results are shown in Fig. 6.6. From Fig. 6.6(a), 6.6(b), and 6.6(d), we

can see that secondary users have different utilities under different orders and schemes.

For both the myopic and the proposed best response schemes, secondary user 3 has a

larger utility than secondary user 1 when the degraded factor is low. This is because

secondary user 3 has the advantages in collecting more signals than secondary 1 to identify

the channel occupied by the primary user. Moreover, the loadings of the other two channels

are still far from their expected equilibrium loadings since only two secondary users have

made choices. Therefore, secondary user 3 has a larger utility than secondary user 1.

Nevertheless, when the degraded factor is high, we can see that secondary user 1's utility

is larger than that of secondary user 3. This is because when the degraded factor increases,

the quality difference among channels increases. In such a case, even secondary user

3 successfully identify the occupied channel, the channel that offers a higher utility in

the equilibrium is usually the one with fewer number of secondary users. The expected

number of secondary users accessing such a channel is generally 2 or even 1, and secondary

user 3 can no longer freely choose those channels. For secondary user 7, he usually has

no choice since there are six secondary users making decisions before him. Therefore, he

has the smallest utility.

Generally, the myopic scheme provides an equal or lower utility than the best response

scheme for secondary users making decisions early, such as secondary user 1, since sec-

ondary users in the myopic scheme do not predict the decisions of subsequent users. How-

ever, some secondary users eventually benefit from the mistakes made by early secondary

users. We can see from Fig. 6.6(b)and Fig. 6.6(c) that for some cases, customer 3 and 4

has a higher utility under the myopic scheme than under the best response scheme due to

the mistakes made by customer 1 and 2. We can also see from Fig. 6.6(e) that both best

response and myopic schemes provides the same average utilities of all secondary users.

In such a case, the utility loss of some secondary users in the myopic scheme will lead to

the utility increase of some other secondary users. For random and signal schemes, there

is no difference among the average utilities of secondary user 1, 3, and 7 since secondary

users do not learn from other agents' actions and signals under these two schemes. For the
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learning scheme, we can see that secondary user 1 has a significantly larger utility than

secondary user 3 and 7. This is because in the learning scheme, secondary users do not

take the negative network externality into account when making decisions on the channel

selection. Since secondary users who made decisions later are more likely to identify the

primary user's activity, they are more likely to choose the same channels, and their utilities

are degraded due to the negative network externality.

Let us take a deeper look at the average utility of all secondary users shown in Fig.

6.6(e). On one hand, we can see that both best response and myopic schemes achieve

highest average utilities of all secondary users. The network externality effects in spectrum

access force strategic secondary users to access different channels instead of accessing

the same high quality channels. On the other hand, learning and signal schemes lead to

poor average utilities since they do not consider the network externality in their decision

processes. All secondary users tend to access the same available high quality channel, and

therefore the spectrum resource in other available channels is wasted. This also explains

the phenomenon that learning scheme leads to poorer performance than signal scheme.

Under the learning scheme, secondary users are more likely to reach a consensus on the

primary user's activity and make the same choice on the channels, which degrades the

overall system performance.

Finally, we show the number of secondary users causing interference to the primary

user in Fig. 6.6(f). We can see that those schemes involving learning, which are best

response, myopic, and learning schemes, have low interference to the primary user. Sec-

ondary users who learn from others' signals efficiently avoid the channel occupied by the

primary user.

6.7 Related Work

A closely-related strategic game model to our work is the global game [96, 97]. In

the global game, all agents, with limited knowledge on the system state and information

held by other agents, make decisions simultaneously. The agent's reward in the game

is determined by the system state and the number of agents making the same decision
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with him. The influence may be positive or negative depending on the type of network

externality. An important characteristics of global game is that the equilibrium is unique,

which simplifies the discussion on the outcome of the game. It draws great attentions in

various research fields, such as financial crisis [98], sensor networks [99] and cognitive

radio networks [100]. Since all players in the global game make decisions simultaneously,

there is no learning involved in the global game.

In recent years, several works [101--105] make efforts to introduce the learning and

signaling into the global game. Dasgupta's first attempt was investigating a binary invest-

ment model, while one project will succeed only when enough number of agents invest in

the project in [101]. Then, Dasgupta studied a two-period dynamic global game, where the

agents have the options to delay their decisions in order to have better private information

of the unknown state in [105].

Angeletos et. al. studied a specific dynamic global game called regime change game

[102,103]. In the regime change game, each agent may propose an attack to the status quo,

i.e., the current politic state of the society. When the collected attacks are large enough,

the status quo is abandoned and all attackers receive positive payoffs. If the status quo

does not change, the attackers receive negative payoffs. Angeletos et. al. first studied a

signaling model with signals at the beginning of the game in [102]. Then, they proposed

a multiple stages dynamic game to study the learning behaviors of agents in the regime

change game in [103].

Costain provided a more general dynamic global game with an unknown binary state

and a general utility function in [104]. However, the positions of the agents in the game

are assumed to be unknown to simply the analysis. Nevertheless, most of these works

study the multiplicity of equilibria in dynamic global game with simplified models, such

as binary state, binary investment model, or lacking of position information. Moreover,

the network externality they considered in their models are mostly positive. By proposing

Chinese restaurant game, we hereby provides a more general game-theoretic framework

on studying the social learning in a network with negative network externality, which has

many applications in various research fields.
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6.8 Summary

In this chapter, we proposed a new game, called Chinese Restaurant Game, by com-

bining the strategic game-theoretic analysis and non-strategic machine learning technique.

The proposed Chinese restaurant game can provide a new general framework for analyz-

ing the strategic learning and predicting behaviors of rational agents in a social network

with negative network externality. By conducting the analysis on the proposed game, we

derived the optimal strategy for each agent and provided a recursive method to achieve

the equilibrium. The tradeoff between two contradictory advantages, which are making

decisions earlier for choosing better tables andmaking decisions later for learningmore ac-

curate believes, is discussed through simulations. We found that both the signal quality of

the unknown system state and the table size ratio affect the expected utilities of customers

with different decision orders. Generally, when the signal quality is low and the table size

ratio is high, the advantage of playing first dominates the benefit from learning. On the

contrary, when the signal quality is high and the table size ratio is low, the advantage of

playing later for better knowledge on the true state increases the expected utility of later

agents. Our simulations also showed that the price of anarchy under Chinese restaurant

game is close to one, which suggests that the efficient loss due to the rational behaviors

of customers is close to zero. The small price of anarchy is achieved by the loading bal-

ance among tables, which is automatically achieved in Chinese restaurant game. Finally,

we illustrated a specific application of Chinese restaurant game in wireless networking:

the cooperative spectrum access problem in cognitive radio networks. We showed that

the overall channel utilization can be improved by taking the negative network externality

into account in secondary users' decision process. The interference from secondary users

to the primary user can also be reduced through learning from the sensing results of others.
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Chapter 7

Stochastic SVC Multicasting model

using Chinese Restaurant Game

7.1 Introduction

With the development of multimedia compression and the advance of wireless net-

working techniques, multimedia content delivery over wireless networks becomes more

and more popular, e.g., mobile video download/upload, live video streaming [11] and In-

ternet Protocol TV (IPTV) [12, 13]. One challenging issue in such wireless multimedia

delivery systems is how to maintain the quality of service due to the scare resource in

wireless networks and heavy loading from heterogeneous demands.

Video 1, Layer 1


Video 1, Layer 2


Video 2, Layer 1


Total resource 
(time, resource blocks, etc..)


Resource Allocation


Subscriber 5  
(new arrival) 

Subscriber 1 Subscriber 2 Subscriber 3 Subscriber 4 

Req{Video1, Layer 1+2} 
Video 2, Layer 2 (closed)


Video Multicasting Server 

SVC Video Layers


Figure 7.1: A SVC multicasting platform offering two 2-layer videos
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Multicasting in wireless communications is a natural solution to the overloading prob-

lem in wireless live video streaming and IPTV. When multiple wireless users within a

certain range are requesting for the same multimedia content, the transmitter can simply

broadcast one copy of the content to all receivers, which is called multicasting. The ser-

vice provider may categorize users into several multicasting groups according to their de-

mands in contents, and then perform multicasting in delivering. However, challenges still

exist in such a group-based multicast approach since each multicast group still requires

resource to function. How the limited resource should be allocated to each group is an

important issue. Moreover, heterogeneous users may use devices with different computa-

tional capabilities. A device with low computation capability may not be able to decode

the received high-quality content. Therefore, the service provider needs to deliver the

same content in multiple qualities, such as in standard resolution (SD) and high resolution

(HD), to satisfy these heterogeneous demands. This introduces serious redundancy in the

delivery and therefore further aggravates the overloading issue.

Scalable video coding (SVC) is a promising technique to resolve the content redun-

dancy issue [14]. It provides a flexible design to encode the videos into a series of data

streams, each of which represents a layer of the video. The base layer (layer 1) can be

decoded independently without the information stored in other data streams. It also has a

low decoding requirement in computation capability. Other layers are called enhancement

layers, which contain extra information to reconstruct a higher quality video. A receiver

may derive a higher quality video by decoding the base layer and subsequent enhance-

ment layers. Therefore, the redundancy in delivery can be greatly reduced with such a

technique. By combining multicasting and SVC techniques, the cross-layer design shows

great potentials in enhancing the quality of multimedia delivery service. An example is

illustrated in Fig. 7.1, where a video multicasting server is offering two SVC videos, each

with two layers. Four users are already using the service, while subscriber 2∼4 request

for video 1 and subscriber 1 requests for video 2. Three multicasting groups, each for a

specific layer of a video, are formed according to their requests for the video and layers.

Notice that the transmission of video 2's layer 2 is suspended because no users are request-
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ing it. Notice that when subscriber 5 arrives the system, he sends a request to the video

server for the video 1 with both layers. If the video server accepts the request, subscriber 5

will join the multicasting groups for video 1's layer 1 and layer 2. The resource allocation

of each multicasting group will then be determined according to the channel conditions

and demands of users.

7.1.1 Scalable Video Coding Multicasting System

The cross-layer design of SVC multicasting system has been discussed in the litera-

ture. A popular approach is the utility-based approach [106], where users are assumed

to have some utilities if they receive and decode the demanding videos correctly. Un-

der such an approach, the objective of the system is maximizing the total users' utilities

given the current demands and the channel conditions. Generally, given a snapshot of the

multicasting system, the multiple multicast resource allocation problem can be reduced

to a 0-1 Knapsack problem if the selectable resource allocation pattern is not continuous,

e.g., finite set of modulation and coding schemes. Since the 0-1 Knapsack problem is

NP-hard, approximated algorithms are required to efficiently solve the resource alloca-

tion problem. Several approximated algorithms with different objectives for the snapshot

optimization have been proposed in the literature. A straightforward greedy algorithm is

proposed in [107] while a pseudo-polynomial algorithm for minimizing the total energy

consumption is proposed in [13]. In [12], the authors proposed an envelop-based approxi-

mated algorithm and gave a tight error bound. Dynamic programming approaches, which

make use of the sequential utility increment structure in SVC technique, are introduced

in [11, 108, 109]. This problem becomes more challenging when it comes to cognitive

radio [110]. In [111] the authors illustrate how to jointly consider the availability of chan-

nels with the video multicasting decisions. A similar opportunistic multicasting approach

is shown in [112] to enhance the QoS in WiMAX system. Pricing has been shown to be

a powerful tool for regulating the subscribers' actions in a video streaming service [113].

In [114], a pricing approach is proposed to transform the utility into the immediate revenue

with different priorities in layers.
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However, most existing works on SVC multicasting system focus on the static case,

i.e., considering the snapshot scenario where the demands from users are given. In prac-

tice, the SVC multicasting system will be highly dynamic in a long run due to the changes

of channel conditions, user demands, and the reserved resource for the service. There-

fore, there is a need of stochastic analysis to find a policy that can regulate the demands

of users to maintain QoS. In the literature, there are works investigating the policy design

of stochastic multicasting system in wired networks [115]. However, to the best of our

knowledge, there is no existing work on the stochastic analysis on the SVC multicasting

system over wireless networks.

7.1.2 Economic Value of SVC Multicasting System

In addition, from the service provider's perspective, the economic value of a SVC

multicasting system may be the most important factor. A commercial service provider

will provide such a service only when significant economic value can be achieved [113].

Taking into account such a factor, we discuss a subscription-based economic model with

different pricing schemes, where we involve rational users' selfish nature. Researchers

have discovered that the rational behaviors of users should be seriously considered in de-

signing any system with users applying actions and making decisions [56,116]. A system

works well in a centralized-control system may fail in a user-oriented system since the

rational users focus on their own utilities instead of overall system performance. The self-

ish behaviors of users may eventually degrade the system efficiency or service provider's

revenue [113]. Some incentive designs may be required to regulate the behaviors of users

in order to improve the system efficiency [117]. By considering rational users' selfish na-

ture, we propose to use game theory to analyze how users react under different pricing

schemes.

In light of these concerns, we study a dynamic SVC multicasting system with stochas-

tic user arrival and heterogeneous user demand in this chapter. Specifically, we propose

a Multi-dimensional Markov Decision Process (M-MDP) framework to analyze the op-

timal load balancing and economic efficient policies for the dynamic SVC multicasting
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system. The M-MDP framework is a stochastic extension [118] to the Chinese restau-

rant game [92,119], in which the authors investigate how the negative network externality

and social learning influence the decisions of rational users. The network externality ef-

fect also exists in our framework, as the amount of demands on each video influences the

resource allocation and thus differentiates the quality of services to the users requesting

different videos.

In this chapter, we introduce a subscription system to help the service provider to regu-

late the subscription requests from the heterogeneous users. We consider two subscription

pricing schemes: one-time charge and per-slot charge scheme. We prove that both pric-

ing schemes achieve the same optimal revenue. In addition, we prove that the complex

M-MDP optimization problem can be reduced to the traditional average MPD problem

when the optimal pricing strategy is adopted, and the solution can be effectively derived

through the proposed approximate algorithms.

7.1.3 Contributions

In summary, our main contributions are shown as follows:

1. We develop a Markov decision process based stochastic framework to analyze the

resource allocation in a SVCmulticasting systemwith heterogeneous user demands.

By considering the stochastic user arrival, such a framework is more general than

the existing snapshot-based approaches in the literature.

2. We propose a game-theoreticmodel to analyze the behaviors of heterogeneous users.

We study how rational and intelligent users submit their demands, i.e., subscriptions,

under two pricing schemes: one-time charge scheme and per-slot charge scheme,

and derive the equilibrium conditions of the game. To the best of our knowledge,

this chapter is the first work bringing game theoretic analysis to the SVC multicast

system.

3. We theoretically evaluate the economic value of the SVCmulticasting system. Specif-

ically, we investigate the revenue-maximized policy and pricing strategies in both
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one-time charge and per-slot charge schemes, which are hard to derive due to the

coupling effects in both terms. By proving that the maximum revenue under both

schemes is equivalent under all policies, we transform the complexM-MDP revenue

maximization problem to a traditional average-reward MDP problem, due to which

we can derive the optimal policy and pricing strategies in an efficient way. Both

theory and simulation results confirm that the derived solution not only maximizes

the expected revenue but also optimizes the social welfare.

The rest of the chapter is organized as follows. In Section 7.2, we describe a general

SVC multicasting system where users have heterogeneous preferences and computation

capabilities. In Section 7.3, we formulate the system as a game-theoretic M-MDP frame-

work for investigating the rational behaviors of users under such a subscription-based SVC

multicasting system. Then, the equilibrium conditions of the system are derived in Sec-

tion 7.4, where the expected subscription requests from users under certain pricing scheme

strategies are analyzed. In Section 7.5, the optimal pricing strategies that maximize the

revenue of the service provider under both pricing schemes are derived. By applying opti-

mal pricing strategies, we reduce the complex M-MDP problem into a traditional average

MDP problem and derive the revenue-maximized subscription regulation policy in Sec-

tion 7.6. Finally, the simulation results are discussed in Section 7.7, and we summarize

this chapter in Section 7.8.

7.2 System Model

We consider a video multicasting service with one video server and multiple potential

users who arrive and depart stochastically. The service is offering multiple choices of a

SVC video. Given the limited resource (time, bandwidth, etc..), the service provider needs

to determine the video server's resource allocation given the current demands for videos.

In addition, the provider also determines the prices of the video multicasting services,

which may be dynamically adjusted. On the other hand, the potential users request for

the service when they arrive the system. Their requests are based on their preferences,
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computation capabilities, and the price of the service. The objective of the service provider

is maximizing its revenue, while the users aim to seek for best experience, i.e., highest

utility, in the video multicasting service.

7.2.1 Video Server

Let us consider a video server which is capable of serving at mostN subscribers. The

server provides videos denoted by J = {1, 2, ..., J}. Each video is encoded by SVC and

an encoded video steam contains K layers. The server transmits the layers of each video

periodically on the same channel. All layers are transmitted with the same interval but at

different time period so they do not interfere with each other.

A subscriber can decode a video if he receives at least the base layer (layer 1), while the

quality of the video will be enhanced if he successfully decodes more subsequent layers.

Let layer k be the k-th layer of the video, a subscriber may decode the video up to layer

k only when all layer 1 ∼ k are successfully received. In Fig. 7.1, we illustrate a SVC

multicasting server with 5 subscribers, while the server is offering J = 2 videos, each

withK = 2 layers.

The reception of the layer is determined by two factors: the supported modulation

and coding scheme (MCS) at the subscriber side and the MCS applied on the layer at the

video server side. On the subscriber side, let gi ∈ G be the maximum MCS supported by

subscriber i, where G is the universe set of the MCSs. In this chapter, we assume that gi

is a random variable with a probability density function f(gi).

On the video server side, the video server needs to determine the MCS applied on

each layer of each video. Let gj,k be the MCS applied on layer k of video j. When a

video stream is transmitted with the MCS gj,k, all users with channel quality g ≥ gj,k can

successfully receive this stream.

The applied MCS gj,k determines the required resource (transmission time) to transmit

the layer. We denote Rj,k(gj,k) as the required resource to transmit layer k of video j to

users withMCS gj,k. TheRj,k(gj,k) should be a decreasing function of gj.k since a layer can

be transmitted in a shorter time if a higher-level MCS with higher throughput is applied.
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The video server may choose to stop transmitting layer k. We define Rj,k(gc) ≡ 0. The

gc represents the case that the transmission of this layer is disabled and therefore no users

can receive this layer. Finally, let Rtotal be the total available resource, which is the total

transmission time in our system. As the overall resource is limited to Rtotal, we have a

firm constraint that Rtotal ≥ ∑
j,k Rj,k(gj,k).

Notice that the resource should be dynamically allocated according to the current re-

alization of users' channel qualities in order to maximize the delivery efficiency. Let

s = {nsj,k} be the current system state, where nj,k be the number of users requesting

video j 's layer k stream. The state s represents the current loading of the video server.

Then, we denote the dynamic resource allocation rule as D(s) = {gj,k|∀j, k}. The alloca-

tion rule takes the current system state s as input and outputs the corresponding MCS for

each layer. The D(s) may be implemented with different objectives, such as efficiency

maximization or fairness constraints. In a utility-based system [12, 107], a common and

reasonable choice of D is the overall utility maximization, that is,

D(s) = arg max
gj,k

E[ui({gj,k})] (7.1)

under the resource constraintRtotal ≥ ∑
j,k Rj,k(gj,k), where ui is the utility of user i. In a

wireless system with finite choices of the lowest channel quality, e.g., limited choices of

MCS in WiMAX, this problem has been shown to be NP-hard [12]. Therefore, heuristic

approaches are required and can be found in the literature [11, 12, 107--109].

7.2.2 User Valuation

In our system, users with different preferences arrive stochastically. In general, there

are some users who have strong preference on a certain type of videos, e.g., sport fans

always subscribe to the sport news channels. On the other hand, there are also some users

that may not have a strong preference on the type of videos. They can enjoy all videos

they successfully receive and decode.

Users with similar preferences usually have similar valuations on video content and
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quality. However, their devices may have different capabilities in receiving and decoding

the videos. For instance, users who prefer the sport news may subscribe to the same

channels, but some of them are only equipped with mobile phones. With such a limited

capability device, only base layer can be decoded and displayed correctly. Therefore,

users' abilities to have better video quality may be limited.

We model all the aforementioned properties with the following notations. Users are

categorized into types, which is denoted by t ∈ {1, 2, .., , T} = T. A type t = (Jt, kt)

user prefers videos jt ∈ Jt and is equipped with a device capable of decoding the SVC-

encoded video up to layer kt. We denote the valuation function on video j ∈ J with

maximum decoded layer k as vj(k). Then, a type t user's valuation on video j with max-

imum consecutively received layer k is denoted as

vt(j, k) =


vj(k), j ∈ Jt, k ≤ kt;

vj(kt), j ∈ Jt, k > kt;

0, else.

(7.2)

Note that a user has positive valuations on the service only if he receives and decodes

his preferred video jt ∈ Jt successfully. In addition, when |Jt| = 1, the type t user

prefers only one video, we call them as concentrated users. Otherwise, we call them

casual users. Finally, as a stochastic model, we assume users with different types arrive

independently. We describe the arrival process of type t users with a Poisson process with

the average arrival rate λ̄t.

7.2.3 Payment System

We consider a subscription-based payment system as the revenue source of the service

provider. We assume that the video service is private and all transmissions are encrypted.

Therefore, users who enter the system should subscribe to one of the videos in order to

correctly decrypt the corresponding data streams. A subscription contains two terms: the

subscribed video j and the desired maximum layer k. When a subscription is accepted

by the video server, the decryption keys of video j 's layer 1 ∼ k streams are delivered
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to the user. However, the receiving of these streams is not guaranteed due to the natural

instability characteristics of the channel quality g. This is characterized by f(g). We

assume the channel qualities of all users are independent from each other and among time

slots.

The price for a subscription, which is determined by the service provider, should be

properly chosen in order to maximize its expected revenue. We model it as a function

of the current state s = (ns1,1, ns1,2, ..., nsJ,K). In this chapter, two pricing schemes are

considered.

1. One-time charge: a payment P e
j,k(sa) is charged as soon as the user's subscription

(j, k) is accepted, and no further payments are required. The sa denotes the system

state when the user arrives at the system.

2. Per-slot charge: At each time slot, as long as the user stays in the system with a valid

subscription, he is charged with a price of Pj,k(s), where s is the current state of the

system.

Notice that a subscription can be canceled by a user at any time. In this model, we

assume the time period of a user staying in the system is an exponential process with the

average departure rate µ̄. The subscription is canceled immediately when the user leaves

the system.

7.3 Game Theoretic Formulation

In our model, we assume that users are rational and thus naturally selfish. Therefore,

we need to consider users' selfish behaviors when evaluating and designing the pricing

schemes and strategies, and game theory is powerful mathematical tool that analyzes the

strategic interactions among multiple selfish decision makers [56].

We consider a subscription game where the players are the potential subscribers and

the service provider. The service provider determines and announces at the beginning of

the game the service price, {P e
j,k(s)} for one-time charge scheme or {Pj,k(s)} for per-slot
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charge scheme, while the potential subscribers submit their requests after receiving the

announcements from the service provider.

The objective of the service provider is to maximize the expected revenue in the sys-

tem. Notice that users are rational with the objective of maximizing their own utility under

the rules given by the service provider. As a result, the service provider needs to carefully

determine the pricing strategy by taking into account the response of selfish users.

A user's objective is to maximize its own utility by choosing the best subscription.

As described in Section 7.2, users arrive stochastically. When a type t user arrives, he

determines whether to subscribe to the service with a specific video at certain layers. To

subscribe to the service, the user sends a subscription request and will receive the corre-

sponding video stream if the server accepts the request. Note that since the system state

and the channel quality are changing over time, the service quality is dynamic.

The expected utility of the user with subscription (j, k) is conditioned on the system

state s when he arrives. Let the system state at time slot l be sl. A type t user with a valid

subscription (j, k) has an immediate valuation on the service, vt(j, k), where k ≤ kt is the

maximum successfully decoded layer at current time slot. In addition, there is a cost of

using the service, which is the charged payment determined by the pricing scheme. Given

the state and costs, the expected utility of a type t user if he submits a subscription (j, k)

is as follows

E[ut(j, k)|s] = −c(s, j, k, 0) (7.3)

+
ld∑
l=la

(E[vt(j, k)|s = sl, k̄ ≤ k]− c(sl, j, k, 1)),

where c(s, j, k, e) is a common pricing function depending on the pricing scheme, s is the

state when the user arrives the system, and la and ld are the user's arrival and departure time

indices, respectively. Specifically, c(s, j, k, 0) is the entrance fee to request a subscription

(j, k) before using the service, which will be zero under the per-slot charge scheme. The

c(s, j, k, 1) is the per-slot charge when the user is in the system, which will be zero under

the one-time charge scheme. A rational user will choose the subscription that maximizes
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the expected utility in (7.3) when arriving at the system.

7.4 Equilibrium Conditions

Nash equilibrium is a solution concept for predicting the outcomes of a game with the

assumption that all players are fully-rational. Nash equilibrium describes an action profile,

where each player's action is the best response to other players' actions in the profile. Since

all players apply their best responses, none of them has the incentive to deviate from their

actions described in the profile.

TheNash equilibrium of the proposed video subscription game can be analyzed through

the following procedures. We first model the selfish users' behaviors through a multi-

dimensional Markov decision process (MDP) by fixing the pricing function c(·). The

steady state and the expected utilities can then be calculated, and therefore the users' equi-

librium conditions can be derived. With the equilibrium conditions of users, we then derive

the equilibrium conditions for the service provider to maximize the revenue.

7.4.1 Users' BehaviorModelingUsingMulti-DimensionalMarkovDe-

cision Process

The video subscription game, when the pricing function c(·) is given, can be formu-

lated as a multi-dimensional Markov decision process (M-MDP) [118]. A Markov deci-

sion process describes a stochastic system where the transition between states is partially

or fully determined by a decision maker [120]. The objective of the decision maker, the

subscriber in our model, is to maximize his expected reward. In a traditional MDP, there

is only one decision maker and the optimal solution that maximizes the unique expected

reward can be found using dynamic programming [120]. However, since there are mul-

tiple decision makers with their own utility functions in our game, the traditional MDP

cannot be directly applied here.

In the proposedM-MDP framework, we consider a discrete-timeMarkov systemwhere

a time slot has a duration of Ts. The arrival and departure probability of each type t of
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subscribers can be approximate to λt = λ̄tTs and µ = µ̄Ts, respectively, when Ts is suf-

ficient small. The system state is s = (nsj,k|j ∈ {1...J}, k ∈ {1...K}) ∈ S, where nsj,k

denotes the number of users subscribing video j with maximum subscribed layer k. The

server can serve up toN users, therefore we have the boundary constraints ∑
j,k n

s
j,k ≤ N

on the states.

The action of a user is the subscription request a = (j, k). Different types of users may

have different action space due to the limitation in computation capability. The action

space of a type t user is At = Jt × Kt ∪{(0, 0)}, where (0, 0) represents that he does

not subscribe to any video and leaves the system immediately. Note that users will not

subscribe the unpreferred videos since their valuations on those videos are zero. Therefore,

we denote V (j, k) ≡ vj(k) to describe any subscriber's valuation on the video if he indeeds

submit a request (j, k). Therefore, after taking the action a = (j, k), the user can obtain

an immediate reward as follows

R(s, j, k) = E[U(j, k)|s] = Vj,k(s)− c(s, j, k, 1). (7.4)

where U(j, k) is the common utility function of any subscriber in the system if he indeeds

request for (j, k). In general, the immediate reward is the expected valuation of the suc-

cessfully decoded video Vj,k(s) minus the subscription payment, which happens to be the

expected utility of a type t user with subscription (j ∈ Jt, k) in state s. For the case that

(j, k) = (0, 0), we let R(s, 0, 0) = 0, ∀s.

Policy is an important concept in Markov decision process. A policy is an action

profile which describes a decision of the decision maker at a certain state in the stochastic

system. In our model, a policy is denoted as a function π(s, t) : S × T 7→ At, which

describes the subscription decision of type t user arriving in state s.
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7.4.2 Expected Reward under Transition Probability

A rational user will make the decision to maximize the expected reward defined as

follows

W (s, j, k) = E[
∞∑
l=le

(1− µ)t−1R(sl, j, k)|s] (7.5)

where µ is the departure rate, and thus 1 − µ is the probability that the user will stay at

next time slot. Note that 1− µ can also be considered as the discount factor of the future

utility. In the steady state, the Bellman equation of the expected reward can be written as

follows

W (s, j, k) = R(s, j, k) + (1− µ)
∑

Pr(s′|s, π, j, k)W (s′, j, k) (7.6)

where Pr(s′|s, π, j, k) denotes the transition probability from s to s′ when the user takes

the action (j, k) under the policy π. Notice that this transition probability is conditioned

on the fact that he is not leaving the system at next time slot. Otherwise he will not receive

the rewards from next time slot. Let ej,k be a standard basis vector. Then, the transition

probability of a user with a subscription (j, k) is given as follows:

Pr(s′|s, π, j, k) (7.7)

=



∑
t∈T,s′=s+eπ(s,t)

λt, ∃t ∈ T, s′ = s + eπ(s,t)

and π(s, t) ̸= (0, 0);

(nsj′,k′)µ, s′ = s− ej′,k′;

(nsj,k − 1)µ, s′ = s− ej,k, ns
′
j,k ̸= 0;

1− µ(N(s)− 1)− λ(s, π), s = s′, ns
′
j,k ̸= 0;

1− µN(s)− λ(s, π), s = s′, ns
′
j,k = 0;

0, else.

where N(s) = ∑
j,k n

s
j,k and λ(s, π) = ∑

t∈T 1(π(s, t) ̸= (0, 0))λt.

Since users are assumed to be rational, a type t user should choose the subscription that
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maximizes his expected utility when he arrives at the system. Recalling that c(s, j, k, 0) is

the initial subscription fee for (j, k), which will be zero under the per-slot charge scheme

and non-negative under the one-time charge scheme, the optimal policy under the expected

rewardW (s, j, k) is given by

π(s, t) ∈ arg max
(j,k)∈At

W (s + ej,k, j, k)− c(s, j, k, 0), (7.8)

Notice that when the server is full, new users will not be allowed to enter, i.e., ∀N(s) = N ,

π(s, t) = (0, 0) ,∀t ∈ T.

The Nash equilibrium is achieved when (7.6) and (7.8) are satisfied, which are denoted

as the equilibrium conditions. When the equilibrium conditions are met, each type of users

has chosen the subscription that maximizes the expected utility. Therefore, they have no

incentive to deviate, and a Nash equilibrium is achieved.

7.4.3 Average Revenue Maximization for Service Provider

The objective of the service provider is to maximize his revenue in the system under

the rational response of subscribers. Let π and W be the policy and expected rewards

derived in (7.6) and (7.8) under the pricing function c(·). Then, let Q(s) be the expected

revenue in state s. The best response of the service provider is the solution to the following

optimization problem:

max
c(·)

lim
N→∞

1
N
E[

N∑
l=1

Q(sl)], (7.9)

under the constraints

W ∗(s + eπ∗(s,t), π
∗(s, t))− c(s, j, k, 0) ≥ 0, ∀s, t, (7.10)

where π∗ andW ∗ satisfy the equilibrium conditions in (7.6) and (7.8).

Note that the state transition probability in this problem is different from the one ob-
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Figure 7.2: An illustration of State Transition in the proposed M-MDP system

served by users in (7.7), and can be written as follows

Pr(s′|s, π) = (7.11)

∑
t∈T,s′=s+eπ(s,t)

λt, ∃t ∈ T, s′ = s + eπ(s,t)

and π(s, t) ̸= (0, 0);

(nsj,k)µ, s′ = s− ej,k;

1−N(s)µ− λ(s, π), s = s′;

0, else.

An illustration of the state transition is shown in Fig. 7.4.3.

With primal-dual transformation [120], the expected average revenue can be given as

follows:

g(π) =
∑
s∈S

Pr(s|π)Q(s), (7.12)

where Pr(s|π) is the stationary distribution of the states under policy π.

7.5 Optimal Pricing Strategies

In this section, we would like to discuss the optimal pricing strategy that maximizes

the expected revenue under a given policy while satisfying the user equilibrium conditions

in (7.6) and (7.8). Since the policy is given and fixed, the optimization problem is sim-
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plified. This helps us to have an initial understanding on how the service provider should

determine the price in order to maximize its expected revenue given a known pattern on

the subscription requests from users and constraints from the corresponding equilibrium

conditions.

7.5.1 Optimal Pricing in One-time Charge Scheme

In one-time charge scheme, a user is charged with a state-dependent subscription fee

P e
j,k(s) when his subscription (j, k) is accepted, and no future payments are required.

Therefore, we have c(s, j, k, 1) = 0 and c(s, j, k, 0) = P e
j,k(s) ≥ 0 for all s, j, k. Let

W (s, j, k) be the expected reward derived by solving (7.6) through dynamic program-

ming or matrix operations. Since the policy π is fixed, the transition probability is fixed.

Therefore, the original revenue optimization problem can be solved in a state-wise way.

Since the server can serve at most N users, we have N(s) ≤ N for all s. When

N(s) = N , all requests will be rejected, which leads to zero revenue. When N(s) < N ,

the revenue maximization problem can be written as follows

max
{P e

j,k
(s)}

Pr(s|π)
∑

t∈T,π(s,t)̸=(0,0)
λtP e

π(s,t)(s), (7.13)

under the constraint in (7.6) and (7.8). We first relax the constraint set by letting all sub-

scribers derive non-negative expected rewards if they follow the policy π(s, t) and ignore

(7.8). We then have the following relaxed constraint set

W (s + eπ(s,t), π
∗(s, t))− P e

π(s,t)(s) ≥ 0, ∀s, t. (7.14)

Clearly, the solution to the relaxed optimization problem is ∀t ∈ T, P e
π(s,t)(s) = W (s+

eπ(s,t), π
∗(s, t)). By applying the solution to all s ∈ S, we have the optimal pricing strategy

for the relaxed problem:

∀s, t, N(s) < N, P e
π(s,t)(s) = W (s + eπ(s,t), π

∗(s, t)). (7.15)
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Then, we derive the following theorem.

Theorem17. Apolicy π(s, j)with the pricing strategyP e
j,k(s) = W (s+ej,k, j, k) ∀s, N(s) <

N, j ∈ J, k ∈ K satisfies (7.8) for all s ∈ S.

Proof. Notice that the expected utility from a subscription (j, k), which isW (s+ej,k, j, k)−

P e
j,k(s), becomes zero under every state, every type, and every subscriptionwhenP e

j,k(s) =

W (s + ej,k, j, k) ∀s, N(s) < N, j ∈ J, k ∈ K. Therefore, the (7.8) is always satis-

fied.

From Theorem 17, we can see that there is always a solution to the optimization prob-

lem in (7.13) and the solution can be described as

P e
j,k(s) = W (s + ej,k, j, k) ,∀s ∈ S, N(s) < N. (7.16)

7.5.2 Optimal Pricing in Per-slot Charge Scheme

In per-slot charge scheme, a user is charged with a state-dependent Pj,k(s) at each slot

he stays, and no entrance fee is required. Therefore, we have c(s, j, k, 1) = Pj,k(s) ≥ 0

and c(s, j, k, 0) = 0 for all s, j, k. We would like to derive the optimal pricing strategy

under the constraints in (7.8).

Let Pr(s|π) be the stationary probability that the system is in state s under policy

π. Since the policy π is fixed, the transition probability is fixed. Therefore, the original

revenue maximization problem can be written as

max
{Pj,k(s)}

∑
s∈S

Pr(s|π)
∑

j∈J,k∈K

nsj,kPj,k(s) (7.17)

under the constraints in (7.8).

Let Rj,k, Wj,k, Vj,k, and Pj,k be the 1−by−|S| matrix representation of R(s, j, k),

W (s, j, k) Vj,k(s), and Pj,k(s) over S. Then, let L(π) be the state transition probability

matrix under policy π, which is a |S|−by−|S|matrix with terms Pr(s′|s, π) over S. From
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(7.4) and (7.6), we have

(I − (1− µ)L(π))Wj,k = Rj,k = Vj,k − Pj,k, ∀j, k

Therefore, the constraints in (7.8) can be re-written as

(I − (1− µ)L(π))−1(Vj,k − Pj,k) = Wj,k, , ∀j, k (7.18)

W (s + eπ(s,t), π(s, t)) ≥ 0, ∀π(s, t) ̸= (0, 0) (7.19)

W (s + eπ(s,t)), π(s, t))−W (s + ej,k, j, k) ≥ 0,

∀π(s, t) ̸= (0, 0), (j, k) ∈ At (7.20)

W (s + eπ(s,t), π(s, t)) ≤ 0,

∀π(s, t) = (0, 0), (j, k) ∈ At (7.21)

which is a set of linear constraints over P = {Pj,k(s)|s ∈ S, j ∈ J, k ∈ K}. Therefore, the

original maximization problem is equivalent to the following linear programming prob-

lem:

max
P

∑
s∈S

Pr(s|π)
∑

j∈J,k∈K

nsj,kPj,k(s) (7.22)

with the constraints in (7.18) - (7.21), which can be solved by standard linear programming

methods.

7.6 Revenue-Maximized Policy

Finding revenue-maximized policy is challenging since the policy, revenue function

and the pricing strategy couple together as discussed in previous sections. In such a case,

the traditional MDP solvers cannot be directly applied for the revenue-maximizationMDP

problem. Therefore, there is a need for a more efficient approach. In this section, we

will first prove that the maximum revenue under both pricing schemes is equal for any

given policy. Then, we will show that there exists an optimal pricing strategy in per-slot

charge scheme which always satisfies the equilibrium conditions while maximizing the
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expected revenue. Moreover, such an optimal pricing strategy makes the per-state revenue

independent from the policy. In such a case, we can reduce the original complex revenue

maximization problem to a traditional average-reward MDP problem that can be solved

efficiently.

7.6.1 Revenue-Maximization Problem

In this subsection, we discuss how to formulate the revenue-maximization problem.

We will use the one-time charge scheme for illustration. However, the per-slot charge

scheme can be formulated in a similar way. From (7.16), we can see that the optimal price

is equal to users' expected reward, which means that the revenue is maximized when the

expected rewards are maximized. Let L(π) be the state transition matrix and Q∗(s, π) be

the revenue vector over states, which is

Q∗(s, π) =
∑

t∈T,π(s,t)̸=(0,0)
λtW (s + eπ(s,t), π(s, t)), (7.23)

whereW (s, j, k) satisfies (7.6). Then, the revenue optimization problem becomes

max
π

lim
N→∞

1
N

N∑
l=1

L(π)l−1Q∗(s0, π), (7.24)

which is a Markov decision process concerning the average expected reward. Unfortu-

nately, the immediate reward V∗ depends on the policy π, due to which, the linear pro-

gramming or the traditional iteration-based algorithms cannot be directly applied here. A

dynamic approach may be applied by iteratively updating the V∗ and π. However, the

convergence cannot be guaranteed.

7.6.2 Equality in Optimal Revenue and Policy

Here we state one of our main results in the revenue optimization problem.

Theorem 18. Let Revone,∗ and Revper,∗ be the optimal revenue of the proposed system

under one-time charge and per-slot charge schemes. Then, Revone,∗ = Revper,∗.
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Proof. The proof contains two parts. In the first part, we prove that given any pricing

strategy under the one-time charge scheme with a given policy π, we can always find

a feasible solution under the per-slot charge scheme reaching the same revenue. In the

second part, we prove vice versa. When these two directions hold for any policy, we can

conclude that the optimal revenue under per-slot charge scheme is never larger or lower

than under the one-time charge scheme and therefore Revone,∗ = Revper,∗.

Part I: Let {P e
j,k(s)} be the solution to the optimization problem in (7.13). From

(7.16), we have

P e
π(s,t)(s) = W one(s + eπ(s,t), π

∗(s, t)), ∀π(s, t) ̸= (0, 0).

Then we construct the per-slot charge prices that reaches the same revenue. Let P ′
j,k(s) =

Vj,k(s), ∀s, j, k. With such a price, we haveRper(s, j, k) = Vj,k(s)−P ′
j,k(s) = 0 and there-

foreW per(s, j, k) = 0, which satisfies (7.6) and (7.8) under any given policy. Moreover,

asWper is a linear transform of Rper(s, j, k) = Vj,k(s)− P ′
j,k(s), there exists a transform

matrix A(π) withWper = A(π)Rper = A(π)V − A(π)P′ = 0. Notice that sinceWone is

a linear transform of V with the same transform matrix A(π), we have Wone = A(π)V,

which leads toWone = A(π)P′.

The expected total payment by a user with subscription (j, k) under the per-slot charge

scheme can be written using Bellman equation as follows:

P total,per
j,k (s) = P ′

j,k(s) + (1− µ)
∑
s′∈S

Pr(s′|s, π)P total,per
j,k (s′) (7.25)

Let Pt′ be the matrix form of P total,per
j,k (s). The solution Pt′ to the above Bellman equation

function is Pt′ = A(π)P′ = Wone. Finally, a type t user that arrives in state s submits the

subscription π(s, t) to the system. The per-slot charge payment starts as soon as he enters

the system, where the state becomes s+eπ(s,t). Therefore, the expected revenue generated

from the type t user under π with P ′
j,k(s) is

P total,per,t = P total,per
π(s,t) (s + eπ(s,t)) = W one(s + eπ(s,t), π

∗(s, t)), (7.26)
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which is exactly the same as the optimal one-time charge price P e
j,k(s). Therefore, the

expected revenue Revper under the per-slot charge scheme with price {P ′
j,k(s) = Vj,k(s)}

should be equal to the one under the one-time charge scheme with price {P e
j,k(s)}. As a

result, Revper,∗ ≥ Revper = Revone,∗.

Part II: Let {Pj,k(s)} be a feasible solution to the optimization problem in (7.22)

and P is its matrix form. Since it is a feasible solution, it should satisfy (7.18) - (7.21).

Recalling the Bellman equation in (7.25) and let Pt be the matrix form of the expected

revenue generated by a type t user under {Pj,k(s)}, we have Pt = A(π)P. In addition, the

expected rewardW per
j,k (s) in matrix form is

Wper = A(π)Rper = A(π)V− A(π)P = W one − A(π)P. (7.27)

According to the above discussion and (7.18), we have

P total′,per,t ≤ W one(s + eπ(s,t), π
∗(s, t)), ∀π(s, t) ̸= (0, 0)

whichmeans that the expected revenue from user t is bounded byW one(s+eπ(s,t), π
∗(s, t)).

Therefore, the expected overall revenue is

Revper = Pr(s|π)
∑
t∈T

λtP total,per
π∗(s,t) (s)

≤ Pr(s|π)
∑
t∈T

λtW one(s + eπ(s,t), π
∗(s, t))

= Revone,∗.

Therefore, we haveRevone,∗ ≥ Revper for all feasible {Pj,k(s)}, which meansRevone,∗ ≥

Revper,∗. Combining the results in Part I and II, we conclude thatRevone,∗ = Revper,∗.

From Theorem 18, we can see that both pricing schemes have the same maximum

expected revenue when the optimal pricing strategies are applied. In other words, these

two schemes are equivalent in terms of revenue optimization. Moreover, in the Part I of

the proof, we observe that a simple pricing strategy under the per-slot charge scheme leads
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to the same optimal revenue under the one-time charge scheme, which is

P ∗
j,k(s) = Vj,k(s), ∀s ∈ S, j ∈ J, k ∈ K. (7.28)

Since the revenue under such a pricing strategy reaches the same optimal value of the one-

time charge scheme, it is also the optimal solution to the per-slot charge scheme. Such a

pricing strategy is very useful since the price and per-state revenue is now independent

from the policy. The optimal policy can then be derived by formulating the problem as a

traditional average-reward MDP with V (s) = ∑
j,k n

s
j,kP

∗
j,k(s) as its immediate reward.

7.6.3 Algorithm for Finding Revenue-Maximized Policy

In Algorithm 4, we propose a value iteration method to find the ϵ-optimal solution.

Since both pricing schemes share the same optimal revenue under the same policy, the

policy found through Algorithm 4 is optimal under both pricing schemes.

Algorithm 4 Value Iteration for Revenue-Maximization Solution
1: Initialize πo,W v,o

2: while 1 do
3: ∀s ∈ S, πn ← arg maxπ(s){V (s) + ∑

s′∈S Pr(s′|s, π(s))W v,o(s′)}}
4: ∀s ∈ S,W v,n(s)← V (s) + ∑

s′∈S Pr(s′|s, πn)W v,o(s′)
5: W v,d ← W v,n −W v,o

6: if maxW v,d −minW v,d < ϵ then
7: Break
8: else
9: W v,o ← W v,n

10: end if
11: end while
12: Output πn andW v,n

The convergence and optimality of such an algorithm is guaranteed as shown in [120].

Notice that under the optimal pricing strategy P ∗
j,k(s), the per-state revenue is

V (s) =
∑

j∈J,k∈K

nsj,kP
∗
j,k(s) =

∑
j∈J,k∈K

Vj,k(s), (7.29)

which is the overall user's valuation on the system, i.e., social welfare, in state s. Therefore,

the solution to the revenue-maximization problem also maximizes the social welfare of the
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system. As a result, we have the following corollary.

Corollary 4. When ϵ→ 0, the revenue-maximized policy derived in Algorithm 4 is equiv-

alent to a socially-optimal policy.

Nevertheless, the value-iteration algorithm 4 converges slowly as ϵ → 0 since the

revenue-optimization problem is an average-reward MDP system. Next, we will propose

an approximate algorithm based on a discounted MDP model.

7.6.4 Approximate Optimal Policy

Here we propose a discounted MDP model as an approximation to the average-reward

MDP. By modeling the revenue-optimization problem as a discounted MDP system, we

propose an approximate algorithm which converge to the optimal policy in significantly

less rounds.

We first model the revenue-optimization problem as a γ-discounted Markov decision

process. We introduce γ as a discounted factor for the service provider on the future

revenue, where 1 > γ > 0. Then, letW γ(s) be the expected total revenue if the current

state is s, then we have

W γ(s) =
∞∑
l=0

E[(1− γ)lV (sl)|s0 = s], (7.30)

Notice that when γ is close to 0, the expected reward is arbitrarily close to the average

expected reward. Given the γ, we can derive the γ-optimal policy through the following

process. According to the Bellman equation, the expected total revenue can be written as

follows:

W γ(s) = V (s) + (1− γ)
∑
s′∈S

Pr(s′|s, π)W (s′), (7.31)

where transition probability Pr(s′|s, π) is given in (7.11).

For the optimal policy, the service provider should choose the action that maximizes
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its expected total revenue at every state, which is as follows:

πγ(s) = arg max
π

∑
t∈T

λtW γ(s + eπ(s,t)). (7.32)

Notice that both (7.31) and (7.32) are coupling together. These two equations describes

the optimality conditions of the proposed γ-discounted MDP.

7.6.5 Policy Iteration γ-Optimal Algorithm

As shown in literature [120], the γ-optimal policy πγ and expected rewardW γ can be

solved by policy iteration algorithm. We provide such an algorithm in Algorithm 5.

Algorithm 5 Policy Iteration for γ-Optimal Solution
1: Initialize πo
2: while 1 do
3: SolveW n using (7.31) with π = πo

4: Solve πn using (7.32) withW = W n

5: if πn = πo then
6: Break
7: else
8: πo ← πn

9: end if
10: end while
11: Output πn andW n

Notice that the convergence of Algorithm 5 is guaranteed as this is a traditional dis-

counted MDP problem with a fixed discounted factor [120]. In addition, the algorithm

terminates in polynomial time, which is much faster than Algorithm 4. In all of our sim-

ulations, the approximated algorithm converges in less than ten rounds with the resulting

revenue loss less than 1% when the discounted factor γ is 0.01. We provide further dis-

cussions on this through simulations in Section 7.7.

7.7 Simulation Results

We evaluate the efficiency of the proposed approach through simulations. We consider

a SVC multicasting service over a WiMAX network. The wireless system parameters
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Table 7.1: Transmission Throughput
Quality Modulation Data Rate (Mbps)

1 BPSK 1/2 3.8768
2 QPSK 1/2 7.7552
3 QPSK 3/4 11.6336
4 QAM32 1/2 15.512
5 QAM32 3/4 23.2688
6 QAM64 2/3 31.0256
7 QAM64 3/4 34.904

follow the WiMAX standard, in which 7 level of MCSs are chosen and given in Table 7.1.

Then, let each MCS's lowest required SINR be g1 ∼ g7. According to the requirements,

the channel quality is quantized to seven levels G = {1, 2, 3, 4, 5, 6, 7}. A user with the

channel quality g ∈ G can receive data streams transmitted by up to g-th MCS. In all

simulations, we assume g is uniformly distributed in these seven levels in every time slot.

Let the data rates offered by the MCSs be r1 ∼ r7, where the exact values are given in

Table 7.1. A data stream with a bit-rate of R requires R/rm time to transmit at each slot

if MCSm is chosen.

We simulate a SVC multicasting server which provides two videos, MOBCAL and

STOCKHOLM, recorded by SVT Sveriges Television AB [121]. We use JSVM reference

software [122] to encode each video into a three-layer spatial-scaled H.264 SVC video

stream. The resulting video bit-rates, resolutions, and peak-signal-to-noise-ratio (PSNR)

of each video with different layers can be found in Table 7.2.

The server can serve up to 12 users, while the total available service time per second

is a ratio between 0% and 100%. There are four types of users with their preferences on

videos with different computation capabilities, which are specified in Table 7.3. The user's

valuations on each layer of each video are shown in Table 7.2. Finally, the user arrival and

departure parameters are set to be 0.04 and 0.01.

The resource allocation ruleD, which determines the appliedMCS {gj,k} in each state,

is maximizing the expected overall valuation given the current demands of videos and

corresponding layers from the users. The optimal solution is derived through exhaustive

search in the simulations. Notice that any approximated approach to the snapshot-based
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Table 7.2: Video Specifications
MOBCAL

Layer Bit-Rate (kbps) Resolution PSNR User Valuation
1 315.33 360i 29.74 0.5
1,2 1660.83 720i 33.38 0.75
1,2,3 10719.41 1080i 33.80 1

STOCKHOLM
Layer Bit-Rate (kbps) Resolution PSNR User Valuation
1 319.75 360i 29.70 0.8
1,2 1480.32 720i 33.68 0.9
1,2,3 6806.29 1080i 34.01 1

Table 7.3: User Specifications
Type Preferred Video(s) Maximum Layer
1 MOBCAL 2
2 STOCKHOLM 2
3 STOCKHOLM 3
4 MOBCAL,STOCKHOLM 3

optimization problem in the literature is applicable to our system.

We evaluate the system efficiency through two performance metrics: average social

welfare, which is the total users' valuations on the service, and average revenue of the

proposed SVC multicasting system. For the social welfare performance, we compare two

policies: revenue-maximized policy and free subscription policy. The revenue-maximized

policy is given by Algorithm 4 with ϵ = 0.0001. The free subscription policy is the

solution to (7.6) and (7.8) without payment, i.e., P e
j,k = Pj,k = 0, ∀j, k. Free subscription

represents the case that all users that are capable of evaluating the expected service quality

are free to subscribe any video without any payment. By comparing these two policies,

we can evaluate the efficiency loss when no pricing scheme is applied.

For the performance of the average revenue, we compare three pricing schemes: opti-

mal one-time charge pricing, optimal per-slot charge pricing, andmaximum fixed entrance

fee. The first two schemes are the proposed pricing schemes as discussed in Section 7.6,

while the third one is the pricing schemewith a fixed entrance fee, which is widely adopted

in current video subscription services. In the simulation, the entrance fee for the maximum
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Figure 7.3: System Performance under Different Server Capacity

fixed entrance fee scheme is chosen as P e = mins,t,π(s,t)̸=(0,0) W
indv(s + eπ(s,t), π(s, t)),

where W indv is the expected reward under the free subscription policy. Note that with

such a fixed payment, the free subscription policy still satisfies (7.8).

7.7.1 Effect of Server Capacity

We first study how the server capacity influences the social welfare and the revenue by

adjusting the server capacity N from 4 to 12 while keeping all other settings unchanged.

The simulation results are shown in Fig. 7.3.

From Fig. 7.3(a), we can see that the proposed revenue-maximized policy achieves

better average social welfare performance compared with the free subscription policy un-

der all server capacities, which verifies that there will be an efficiency loss if no pricing

scheme is applied. Notice that under both policy the social welfare per capacity decreases
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Table 7.4: Expected revenue under different discounted factor γ
γ 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.001 0

Convergence round 4 4 4 4 4 5 5 5 5 4 3 1080
Revenue 5.1838 5.3158 5.3887 5.3887 5.3888 5.4000 5.4987 5.4987 5.5394 5.5421 5.5424 5.5425
Efficiency 0.9353 0.9591 0.9723 0.9723 0.9723 0.9743 0.9921 0.9921 0.9995 0.9999 1 1
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with the expansion of the server capacity. This is due to the negative network externality

effect in this system. When the server capacity increases, it is more likely that there will

be more users with different demands, which means more multicasting groups simultane-

ously. Given the fixed amount of service time ratio, each multicasting group receives less

service time. This generally impairs all users' utilities in this system and therefore reduces

the social welfare per user.

From Fig. 7.3(b), we can see that both optimal per-slot charge pricing and one-time

charge pricing result in the same revenue under all scenarios, which verifies our conclusion

in Theorem 18. Moreover, the revenue under both optimal pricing schemes is significantly

higher than the fixed entranced fee as the later one loses a large amount of revenue from

users with higher valuations on the service. Again, both pricing schemes have lower rev-

enue per capacity when the server capacity expands. The negative network externality in

this system also has a negative effects on the revenue in this case.

7.7.2 Effect of Service Time Ratio

Then, we investigate how the amount of service time affects the efficiency of the SVC

multicasting system under different policies. We control the service time ratio in the sys-

tem from 0 to 100% with other settings unchanged. The simulations results are shown in

Fig. 7.4.

From Fig. 7.4(a), we observe that the revenue-maximized policy always achieves

better performance than the free subscription policy. For the performance of the average

revenue shown in Fig. 7.4(b), we again observe that both optimal pricing schemes have

higher revenue than the fixed entrance fee. Notice that the revenue under fixed entrance fee

does not always increase when the service time ratio increases. This phenomenon comes

from the fact that the optimal resource allocation problem in (7.1) is nonlinear. When

the service time increases, it is possible that some streams eventually get less resource

in order to improve the transmission quality of other streams along with the increased

resource under the optimal allocation. In such a case, the fixed entrance fee scheme has a

lower revenue since the price under this scheme is constrained by the video stream with

216



lowest expected reward. Nevertheless, our proposed pricing schemes are resistant to this

effect since the expected revenue under our pricing schemes are equal to the overall social

welfare, which is maximized and nondecreasing with the increases of service time when

the optimal solution in (7.1) is applied.

7.7.3 Efficiency of Approximate Algorithm

Finally, we evaluate the convergence speed and solution quality of the proposed γ−optimal

algorithm. We set the maximum number of users as 8 and the service time ratio as 10%

with other settings unchanged. Then, we control the discounted factor γ in Algorithm 5

from 0.1 to 0.001, and compare it with the ϵ−optimal solution derived in Algorithm 4 with

ϵ = 0.00001. The simulation results are shown in Table 7.4.

We observe that when the discounted factor γ decreases, the resulting expected revenue

with Algorithm 5 is closer to the optimal one with Algorithm 4. When γ is 0.01, there

is only 0.01% revenue loss from Algorithm 5. When γ decreases to 0.001, the derived

policy is the same as the one from Algorithm 4, and the expected revenue is equal under

both algorithms. In addition, the convergence round never exceeds 5 under any simulated

γ. In contrasts, Algorithm 4 requires 1080 rounds to converge. We conclude that the

proposed γ−optimal algorithm provides efficient approximate solutions to the revenue-

maximization problem with much less computational complexity.

7.8 Summary

In this chapter, we proposed a novel framework to study a general stochastic SVC

multicasting system. This framework supports stochastic user arrival and heterogeneous

user preferences and is applicable to existing resource allocation algorithms in the litera-

ture. A subscription-based payment system was studied in this framework for exploring

the economic value of the system with rational users. The responses of selfish users under

two pricing schemes, one-time charge scheme and per-slot charge scheme, were discussed

and the equilibrium conditions were derived as the constraints of the corresponding rev-
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enue optimization problem for the service provider. We theoretically proved that both

pricing schemes reach the same optimal revenue under all policies, and the optimal pric-

ing strategies and policies which maximize the expected revenue of the system can be

efficiently derived by reducing the M-MDP problem to a traditional average-reward MDP

problem. Moreover, we showed that the revenue-maximized policy is a socially-optimal

policy, which means that the proposed optimal policy also maximizes the social welfare.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this dissertation, we propose novel game-theoretic approaches to several resource

management problems in the state-of-the-art wireless systems, which are heterogeneous

networks, D2D communication, and multicasting system. All the studied systems share

the same characteristic that devices may selfishly compete for the limited resource in the

wireless system, as we illustrated in each chapter. In such systems, we observe undesired

operations which are unexpected from traditional perspectives. The system performance

is also degraded due to fierce competitions among participants. Therefore, we propose

novel game-theoretic solutions for each problem to tackle in order to regulate the selfish

behaviors of participants while keeping reasonable efficiency and practicability.

In Chapter 2, we proposed a femtocell cell-breathing control framework for determin-

ing the optimal coverage of the femtocell and allocating limited femtocell backhaul data

rate to MSes fairly and efficiently. FEVER mechanism, a novel Virtual Election based

mechanism to collect allMSes' channel quality information, was proposed. FEVERmech-

anism was shown to be truthful, and we proved that through different choice of selected

vote order, the balance between system throughput and allocation fairness among MSes

can be maintained. We also demonstrated the implementation of FEVER mechanism in

different subscriber group modes by proposing SG-FEVER mechanism. The LTE-based

realistic simulation results not only verify the performance enhancement under FEVER
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mechanism, but also show the benefits of Hybrid mode to the overlay system.

In Chapter 3, we demonstrate how to maximize the profit of an unlimited data plan

through femtocell systems and specialized contract designs. When the service quality of

an MS is verifiable, we employ the service differentiation in the differentiated contracts to

maximize the service provider's profits. By contrast, when the service quality cannot be

verified, the incentive compatible condition is to prevent MSs from cheating when signing

the contract. We prove that only flat fee contracts are incentive compatible in a split-

spectrum system, and the differentiated contracts can be incentive compatible in shared-

spectrum systems. We conclude that a service provider can indeed derive more profits

from MSs by 1) introducing femtocell services, and 2) provide differentiated contracts.

The former increasesMSs' valuation on the service, while the latter derives more customer

surplus fromMSs using the femtocell service, while offering otherMSs an affordable deal.

In Chapter 4, we study the carrier aggregation design in LTE-Advanced system through

a game-theoretic perspective. We first address the heterogeneous carrier quality and QoS

requirements of UEs by modeling the resource allocation problem in carrier aggregation

as a utility-based non-linear optimization problem. Given that the optimization problem

is NP-hard, we aim to find an efficient algorithm to find the near-optimal solution. Addi-

tionally, we address the potential threats from the selfish UEs, who may report their QoS

requirements untruthfully and therefore induce an unfair and inefficient resource alloca-

tion, by proposing a truthful auction design. The proposed auction provides an efficient

greedy algorithm to satisfy the QoS requirements of UEs through carrier aggregation with

reasonable computation time. Additionally, it guarantees the existence of truthful Nash

equilibrium and therefore prevents the rational UEs from reporting manipulated QoS re-

quirements. The simulation results verified that the proposed auction design for carrier

aggregation enhances the LTE-Advanced system's capability to satisfy UE's QoS require-

ments.

In Chapter 5, we proposed a novel resource-exchange-based D2D resource allocation

framework for an LTE - Advanced system. We showed that the convergence of any algo-

rithm in the framework is guaranteed when all performed exchanges are beneficial. Based
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on the idea of beneficial exchange, we proposed the Trader-assisted Resource Exchange

(T-REX) mechanism. The T-REX mechanism identifies the beneficial exchanges through

analysing the corresponding exchange graph. The eNodeB participates in the exchange

process through designing the trader preference functions. This design is critical to the

convergence speed, as has been shown in the simulations. Through game-theoretic analy-

sis, we also proved that when the trader preference functions are properly designed, the T-

REX mechanism is strategy-proof. This prevents the eNodeB from receiving forged CQI

reports from rational D2D devices and users. Finally, we evaluated the performance of the

T-REX mechanism through simulations. The simulations with the parameters suggested

in the latest 3GPP technical contribution showed that the T-REX mechanism significantly

mitigates the interference experienced by D2D devices.

In Chapter 6, we proposed a new game, called Chinese Restaurant Game, by combin-

ing the strategic game-theoretic analysis and non-strategic machine learning technique.

The proposed Chinese restaurant game can provide a new general framework for analyz-

ing the strategic learning and predicting behaviors of rational agents in a social network

with negative network externality. By conducting the analysis on the proposed game, we

derived the optimal strategy for each agent and provided a recursive method to achieve

the equilibrium. The tradeoff between two contradictory advantages, which are making

decisions earlier for choosing better tables and making decisions later for learning more

accurate believes, is discussed through simulations. We found that both the signal quality

of the unknown system state and the table size ratio affect the expected utilities of cus-

tomers with different decision orders. Generally, when the signal quality is low and the

table size ratio is high, the advantage of playing first dominates the benefit from learn-

ing. On the contrary, when the signal quality is high and the table size ratio is low, the

advantage of playing later for better knowledge on the true state increases the expected

utility of later agents. Finally, we illustrated a specific application of Chinese restaurant

game in wireless networking: the cooperative spectrum access problem in cognitive radio

networks. We showed that the overall channel utilization can be improved by taking the

negative network externality into account in secondary users' decision process. The inter-
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ference from secondary users to the primary user can also be reduced through learning.

In Chapter 7, we proposed a novel framework to study a general stochastic SVC mul-

ticasting system. This framework supports stochastic user arrival and heterogeneous user

preferences and is applicable to existing resource allocation algorithms in the literature. A

subscription-based payment system was studied in this framework for exploring the eco-

nomic value of the system with rational users. The responses of selfish users under two

pricing schemes, one-time charge scheme and per-slot charge scheme, were discussed and

the equilibrium conditions were derived as the constraints of the corresponding revenue

optimization problem for the service provider. We theoretically proved that both pricing

schemes reach the same optimal revenue under all policies, and the optimal pricing strate-

gies and policies which maximize the expected revenue of the system can be efficiently

derived by reducing the M-MDP problem to a traditional average-reward MDP problem.

Moreover, we showed that the revenue-maximized policy is a socially-optimal policy,

which means that the proposed optimal policy also maximizes the social welfare.

8.2 Future Work

Along with the development of heterogeneous network and device-to-device commu-

nications, there exists a trend on next-generation wireless networking system favoring a

more open, distributed and user-oriented network scenario, such as liquid cell and local

IP access (LIPA) in LTE-Advanced. Assisted by some existing infrastructure such as base

stations and backhaul, a distributed network can be more flexible in resource allocation,

while a user-oriented network responds to the user’s demands and requirementsmore suit-

ably and rapidly. Nevertheless, such a scenario increases the participant ratio and power of

users in the network configuration and deployments. As we illustrated in this dissertation,

these potentially rational and selfish users may perform unexpected and undesired oper-

ations in the wireless network. These selfish operations, if not regulated, may decrease

the system performance or even harm the system stability. How an open, distributed, and

user-oriented wireless system could regulate these powerful and selfish users is a serious

challenge in next-generation wireless networks. This challenge potentially could be well
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addressed by game theory through extending the approaches we proposed in this disser-

tation.

Additionally, the security and privacy become important concerns in wireless net-

works. People rely on the Internet in their daily life. The advances of cloud computing

make individuals and enterprises tend to store, access, and compute their valuable infor-

mation on the Internet. All the information should be securely processed, especially for

the access part, since they may be confidential and critical to the owners. Additionally,

popular online social networks such as Facebook and Twitter become one of the main

mediums for people to interact with their friends and relatives. These interactions are

conducted through the Internet, while most of them are private and should not be known

by others. As a result, people demand for always-online, secure, and privacy-preserving

Internet service, which could be achieved only by wireless networking services. The next-

generation wireless networks should not only provide high-speed and stable Internet con-

nections, but also let users access their requested contents securely. However, the threats

from malicious attackers and hackers grow significantly in recent years. The future wire-

less network service is expected to be more distributed, complex, and user-oriented. These

characteristics make the system much more difficult to defend itself from the attackers,

or requires a significant high cost to provide secure wireless communications. How the

system should defend those malicious attackers considering the corresponding cost and

loss is also a critical issue. Potentially, this issue could also be addressed by game theory.

We may take both attackers and networks as players, while their attack/defense operations

as their actions. The corresponding cost and loss can be formulated as the utility of the

players. In such an approach, we can investigate how network and attackers interact with

each other through game theory. Base on the results, we may apply various solution con-

cepts in game theory to find a desirable solution which maintains the security requirement

in a rational and cost efficient way.

In sum, we have explored the potentials of game theory to regulate the selfish behaviors

of participants in the resource allocation problems in next-generation wireless networks in

our previous work. In the future, we would like to extend the proposed resource allocation

223



approaches to more advanced transmission techniques and novel network scenarios, such

as CoMP, liquid cell, and LIPA. Additionally, we may explore the potentials of game

theory in addressing the security design in wireless networks, especially for the attack/

counterattack interactions between attackers and networks. We believe that game theory

can be powerful tools to address these on-the-rise issues. Our ultimate goal is to establish a

general game-theoretic framework that includes both the resource allocation and security

aspects of the wireless network system in order to have a comprehensive view on the

challenges next-generation wireless network.
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