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Abstract

Recent research on high-speed cryptography has been striving for performance by
twiddling with instructions, but without an automated tool, writing fast software
takes much precious labor effort.

We present a tool with a simple interface for crypto developers to generate fast
modular multiplication routlneﬁ i =4F f;?gv keystrﬂkeﬁ you provide the prime as the
modulus and it produces se.l.ve&‘al canghdate r.e.sglts oru:éi:rg,merates them all for bench-

mark. Specifically, we a"uto

code generation for mqﬁitlp'hca

and modular reductlim. .
The high—qualitylbfode
multiplication Compilgd by

faster than the convolved
o 8
s'iIBh\;gs GCC, and is 4 to 8

times faster than the G.:N.[P-{HO iplicati ol
e ._'"Il- M-:I':m |-'. . ”"l
= i e exd N NS

. T . ¥ 24

S " e
Keywords: multi-precision multiplication, modular multiplication, pseudo-Mersenne
primes, high-speed cryptography, ARM11, convolved multiplication.
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Chapter 1

Introduction

Multi-precision arithmetic is essential in public-key.cryptography, such as RSA and
elliptic Curve Cryptography (E€C);'even somie hash.funetions and message authen-
tication codes are based on multi=precision modulasarithmetic (MASH-1, Poly1305
[Ber05]). They all require efficient C(;Hl.putatiO.I.lS in F,.

...-— L

Why is software performance so 1mpﬂ!‘f.a-n1; in cryptography? Imagine a cloud
i

server cluster that encrypts transmrtted data Most of the time, these computers
do nothing but perform eryptographic operations. Even-a 10% speedup would save

10% less power and time, and leavesamore processor resources for other operations.

1.1 Motivation

Recent research on high-speed cryptography has been striving for performance by
exploiting hardware limitations and twiddling with instructions, but the precious
labor effort is hardly regarded. Without an automated tool for producing and auto-
tuning code for best performance, implementers would struggle with assembly to
come up with programs that outperform a compiler-optimized C counterpart.
Although the literature exhibits a number of multiplication and reduction tech-
niques, translating each method into assembly does not automate the overall process.

A good choice of number representation, a proper application of algorithms and a



thorough knowledge of variant architectural irregularities and specialties, all of the
three intervene the process, and make it even more complicated.

In the thesis, we investigate the viability of automation by starting with one
of the most fundamental cryptographic primitives: multi-precision modular mul-
tiplication. Specifically, we automatized the choice of number representation and
the code generation for multiplication modulo a pseudo-Mesenne prime. We chose
to benchmark on the ARM11 processor family because these RISC processors are
less complex than other CISC variants as x86, and sufficiently serve as our primary

experimental target.

1.2 Problem Statement

We formally define the problem as follows.

Problem Given p =2" —k, a pseufd@Mersenne prime with small positive k, pro-

duce efficient routines for thf unﬂ (zyy) @y, where z,y € F,,.
| 1 &

By efficient, we mean the lowdzr the number of elock cycles on the platform in
+ | I 11
question, the better. ' -

1.3 Contributions

Our contributions include:

e We present a tool with a simple interface for crypto developers to generate fast
modular multiplication routines in a few keystrokes: you provide the prime as

the modulus and it throws out several candidate results or enumerates them

all.

e We extend the principle of the hybrid multiplication method to put multi-
precision multiplication and modulo reduction together, and incorporate them

to work with the mixed-radix representation.



e Even without auto-tuning and enumerating, the tool produces high-quality
code comparable to the fastest one enumerated. The produced code runs
up to 16.4% faster than the convolved multiplication compiled by defacto-
standard compilers such as gce, and is 4 to 8 times faster than the GMP

modular multiplication.




Chapter 2

Preliminaries

B LS ey
This section summarizes necessary’ i‘n%q;rrjr:natl(:)_’é t0 understand the approach we take.

We first introduce the pstiuﬂbﬁflerse 1
N ]

resentations for large in'lf':eg_grls.

&

F

T

foire
.;pf;.thé‘form p = 2™ — k with

& 7
Definition 1. A pseu-d__g_—

k< 2m. L W, _ J\'-‘f'
e R
- e - e ® = i ¥
Some such primes attract attentionizbecause their modular reduction requires

only additions and multiplications by k. In FIPS 186-2 [Nat00], NIST recommended

prime fields for elliptic curves with pseudo-Mersenne moduli:

Drgg = 2192 — 264 _ |
Dagy = 2224 2% 1
Dosg = 2256 — 9224 1 9192 4 996 _ |
Doy = 2384 2128 _ 096 | 932 |

D521 = 2521 1.

Except ps1a, the form as the sum or difference of powers of 232 makes fast reduction



routines possible on 32-bit processors.

In the thesis, we confine the primes with rather small k, for example & < 32.
Several cryptography schemes and libraries intended at high speed, such as Ed25519
IBDL 12| and Poly1305 [Ber05] in the library NaCl [HS13], has chosen primes 22%° —

19 and 2'3% — 5, for their simplicity of modular reduction.

2.2 Radix Representations

Let W be the word size of the processor (e.g. 8, 16, 32 or 64 bits) and p the m-bit
prime modulo for F,,.

Implementations usually degompose an m-bit number x as n unsigned integers

(T0, 1, -, 1) with @ =30 2,278 where n = [ /W] and each z; € [0,2" —1].

Definition 2. The unique /representation of.a._as assum..of multiples of powers of

2" as given above, is called the mdixiﬂfﬁ representation of .

'-l‘?'-.l.r"' |
Algorithm [I] shows the standard wayl lto add/twe numbers on F,. Although on

most processors with the add—wit‘ihicarry instr:u(;tion, overflow checks in the loop
can be implicit, these consecutive word-wide additions still hinder possible paral-
lelization. Moreover, a costly comparison to p and a reduction modulo p may occur

unpredictably within each addition, which is invulnerable to timing attacks.

Algorithm 1 Addition in F, using radix-2" representation.

Require: a,b € [0,...,2"" —1]
Ensure: c=a+0 mod p
(g,¢0) < ag + by > ¢ is the carry bit.
fori=1—-n—-1do
(6,01‘) <—ai+bi+e

if e=1or ¢ > p then > Reduction modulo p.
cc—p
return c

Fortunately, the lazy-reduction technique gets rid of all these downfalls. By

trading off the number of limbs and not using each word to the full extent, these

>



excessive reductions can be shrunk into one and postponed until after several add

operations. The carry chain can also be eliminated to empower parallelism.

Definition 3. Let B be an integer smaller than W. We represent x as an n =
[m/B]-tuple (xq,21, ..., 25 1) with each x; € [0,2V —1] and x = 31— 225", This
non-ungiue representation of x is called the radiz-2P (redundant) representation of

x.

This a non-unique redundant representation does not enforce the bounds z; <
28 —1 on each limbs. An integer x is fully-reduced if each z; is below 23. For exam-
ple, on a 32-bit processor, a 5-limb radix-23? representation splits a 130-bit number
into five 32-bit parts. But with-a/more cost-effective:b-limb radix-2*° representation,
limb-wisely adding together 64fully-reduced Iiﬁtegers still conform to the redundant
representation since 64 X (_226 =1) < 2% Onl_y after then a reduction is needed to

allow another addition.

| . .
2.3 Multi-precision M[uli:lpli'c;ation Techniques
S | |

In the following subsections; wé gketch common niultiplication techniques: the row-
wise method, the column-wise method and th;e hybrid method. They all assumes
the radix-2" representation and need to cope with carry propagation. Their main
ideas differ in how they cache operands to use the register file efficiently. In order
words, they differs in how they reduce the number of reduplicate loads and stores.

We adopted the rhombus form [HWT1] to illustrate the structure of each method.

Also we rule out complex methods, such as the Karatsuba algorithm or FF'T meth-

ods, as they generally lead to high overhead on resource-limited processors.
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Figure 2.1: Row-wise method for 8-word numbers. Each point a partial product
a; X bj.

2.3.1 Row-Wise Method

Also called the schoolbook:-or the operand-scanning.method, the row-wise method
corresponds to how a primary schoolp Lrp_il would multiply @ and b — keep a word
a;, loop through b and accumulate a; X’b’f ’b ciry (Figure 2.1 - Whenever a partial
product a; x b; overflows,;the result. is carrled into the next partial product ¢; ;1.
The pitfall of the row-wise methpd is.that eadh’word of b is reloaded every time
as the outer loop walks through'a. “This is uncle\./er if the processor owns a large

bank of registers to store these value for later use. We can do better.

2.3.2 Column-Wise Method

The column-wise method is also called the Comba [Com90| or the product-scan
method because it walks through each accumulator and calculates all partial prod-
ucts in the same column (Figure. . The register usage is immediately visible. In
each column a bunch of 2-word partial products are added together and carried to
a third word, so totally 3 words of accumulator are required, but only 2 of them are

stored.

We do not always reduce x; below 28. In this case, we say z is reduced, depending on the
context.
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Figure 2.2: Column-wise method for 8-word numbers.
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=

Figure 2.3: Hybrid method for 8-word numbers. (d = 4)

2.3.3 Hybrid Method

The hybrid method |[GPWT™04] combines the advantages of both the row-wise and
column-wise methods. The basic idea is simple — perform the multiplication as if
the word size is actually Wd and do the inner large partial product, which consists
of d* word-wise multiplications, using the row-wise method (Figure . Often we
choose a proper d so that in each block, the 2d + 1 accumulators are all maintained
in the register file. We will later adopt the idea of putting all accumulators in the

register file when discussing how we extend the hybrid method to deal with the



convolved structure.




Chapter 3

Convolved Multiplication

3.1 Two Examples

Usually, modular reduction comes only after a full multiplication; they do not inter-
leave to maximize threughput. We ado_ih)ﬁgd t.he. 1deas from. Bernstein, who first used
floating points to speed Wp operationhs xr?éﬂ'ulo 2127 — 1Bér00] and modulo 213 — 5
[Ber(05], and later adopted-by: Schv!/aibe t(_;!;a_i_ccelerate arithietic modulo 2%°° — 19 on
a variety of platforms [Sehll} BD]L{lZ]. ' |

The first subsection exemplifies how the ﬁX—si;ed redundant representation on
Fai30_5 puts multiplication and reduction together; the second one shows that it is
not a cure-all — the mixed representation outworks on Fgi27_55. This is because
the bit length of the prime 2!27 — 25 is not a multiple of any integer, but 130 is a
multiple of 26.

The following examples assumes a 32-bit processor with a 32 x 32 to 64-bit
multiplication instruction. The methods described in the section do not necessarily
require prime moduli, but the examples are given with prime moduli because these
are practical in cryptography. After each example we provides several points to

consider on choosing limb sizes so it facilitates even more efficient calculations.

10



3.1.1 First Example

The field operations on Fois0_5 profits from the radix-22¢ representation. Multiplying
without reduction two 5-limb numbers a and b yields a wedge-shaped 9-limb ¢, with

each ¢; a 64-bit word:

co = apbg

c1 = aghy + aibg

¢y = apby + a1by + agby

c3 = agbs + a1by + asby + azby

Cq = a0b4 + a1b3 +a2b2 —|- a3b1 + a4bo

-yl DA
aq,bif +1I§%_b§ + a3-b§-+ ai@’«:"ﬁ
Ca"-."' 0252/1
A
:-’5?7;.?
b
o8 =

We then eliminat!'_é';lthe ¢
o

-~

which suggests 2130 E-B mo

and so on, yielding the _;éérjﬁltvf%
\NEIEY 4
co = aobo - 5" 14 4 5asbs + 5a!;,b2 + 5asby
c1 = agby + aibg + basby + Sasbs + Hagby
Ccy = agby + a1b; + asbg + basbs + Sasbs
c3 = agbs + a1bs + asb; + asbg + baysby
cy = agby + arbs + asby + azby + agby
Finally, rewriting 5a,b4 as a; x 5bs and precalculating 5b4 avoids recalculation

and better uses the 32 x 32 to 64 multiplication instruction.

To summarize, the overall convolved multiplication involves:

1. Precalculate 5b; to 5b,.

11



2. Carry out the multiplication in the coefficients ¢y to ¢4, using the method

described in Section [4.1]

3. Reduce the coefficients ¢ to ¢4, as in Section [3.1.3] so that the result can be

fed into another multiplication.

We now analyze possible overflow conditions. Only if the constraints listed below

are all true for all inputs a and b, the convolved multiplication can be carried out.

e If each sum ¢, ..., cs exceeds 64-bit, it will takes three 32-bit registers to store.
That said, the limbs ¢q . .. cs must fit into 64-bit registers. In other words, the
sum agbg + Hayby + Hasbs + Saghs F Sasby (and thus its partial products) must

not overflow over 64-bit. =

Suppose a and b are not fully-reduced and of Suliich a;,b; < R for some R. Then

¢o is the one the most possible"%-bverﬂld{ﬁ;j We hayecy < (1+5+5+5+5)R? <
| ."‘_‘“- ._..' I’ _:'. I
264 _ 1, or R <G1.75 <[ | | ™= | |
< f | <= ||

e We rewrite bai1by ag aq X Hby,

(22— 1)/5 < 16 %227 | 14

o :
SO éz?muﬁtﬁ not overflow over 32-bit, or b; <
l :

3.1.2 Second Example

We now show that the radix-22% representation is inappropriate for the field Foi2r_os.

Since 2130 = 23 . 25 = 200, we have:

co = agbg + 200a;1bs + 200asb3 + 200azby + 200a4b;
c1 = agby + a1bg + 200a2b4 + 200a3bs + 200a4by
Cy = agby + arb; + asby + 200asbs + 200a4bs
c3 = agbs + a1by + asby + azbg + 200a4by

Cy = Cbob4 + CL1b3 + a/2b2 + CL3b1 + CL4b0

IThe upper bound for ¢ is actually smaller than 25* — 1, because we have not considered the
carry chain yet. We will still stick with this bound in the examples. See Section

12



Similarly, we observe two limits on the limb size:

e If a and b are not fully-reduced, of which each limb is less then R, then

co < 801R2 <204 — 1 or R < 1.13 x 227,

e We can rewrite 200a,bs as 8a; x 25by, or 10a; x 20by. Either case, these two

quantities must not cause a 32-bit overflow.

The large coefficient 200 is due to the ineffective use of limb sizes. They sum
up to 130 bits but the modulus 2?7 — 25 is only 127-bit long. Instead, we split 127
into 5 parts and let the i-th limb take [127/5 x ¢] = [25.44]| bits. This is more

cost-effective.

@I L i
Specifically, an element a,'bf 'Fzm- 95 1S r_@}-esente-d‘ as a tuple (ao, ..., as) where
v f..;;’d_ 5.
.\_u e o
o G
)

Now the new formmla‘se is:

!'-'-'.a

b aq 0y + 50&2()3 1 50 3b§".-‘}- OCL4bl
ey ) ?
1 = aobl-l— -.’fﬁ'lbq_ 4 + 56_&%3@%‘{‘55@41)2
3‘.
ca = aoby + Bagh 5 SR 50301 + 5004 (3.1)
L} "'jl. )
C3 = a0b3 + albg + a2b1 + Clgbo + 25&4()4

cy = apbs + 2a1bs +  agby + 2a3b; +  asb
But with looser limits:
o cp <201R%? < 2% —1 or R<1.12 x 2%,

e A possible approach is to rewrite 50a;b; as 2a; x 25b;, 2a;b; as 2a; x b; and
25a;b; as a; X 25b;, so we could reuse the values 2a; and 250;. These quantities

must not overflow either.

13



3.1.3 Reduction and Carry Chains

We continue with the example in Section[3.1.1]to demostrate the reduction on Faiso_j
using radix-22% representation.

To reduce a large coefficient ¢q, we carry ¢y — ¢;, which means replacing (¢, ¢;)
with (co mod 226 ¢; + |co/2%%]); carry ¢4 — ¢o means replacing (c4,co) with (¢4
mod 2% ¢y + 5| cy/2%]).

A complete carry chain cg — ¢ — ¢o — ¢3 — ¢4 — ¢g — ¢ produces appropriate

ranges for each word of ¢ to be fed into another multiplication:

26
Co, C2,C3,Cy S 2°° — ]-7

dy < 2%l DR

Note that each ¢; is reducedsbut not fully-reduced. We leave the tedious calcu-
lation for the upper bowid of ¢; udfil Sectiofi B3]
Nk o'

—_—

| '-l‘?'-.l.r"l" | -
. . | | ' .
3.2 Mixed-Radix ReHres_'E_ntatlon
Now we give the formal definition of«the mixed-radix representation.
Definition 4. Let n be an integer and B.=m/n.” Denote x as (zo,x1,...,Tp-1),

where x = ", 2,218 This is called the radiz-28 mized-radiz representation of x.

3.3 Formulating Representation Choice Criteria

We formulate the criteria for automating number representation selection, following
the same argument as in Section [3.1.1] If these constraints fail, the convolved
multiplication will not work properly. Our tool always checks these constraints
before generating the program. This section can be omitted without being lost in

the roadmap.

14



For simplicity, we will leave out the case for the mixed-radix representation

and only consider the radix-22 representation, for which B is a multiple of m, or

m = nbB.
Let p = 2™ — k. First, we deal with the possible overflow conditions during

reduction (carrying), assuming the carry chain ¢ = c¢; — ... — ¢,_1 = o — 1.

e Assume that before reduction, each limb of ¢ is bounded by R, ie. ¢; < R

then the carry ¢ — ¢; — ... — ¢,_1 should not overflow:

R R R oW
R—|—2—B—|—...—|——|—2(n 1)B§1_1/23_2 -1,
” 1J|[-:-£":'-’£ .J.ft-:'&
or @ B TN

A TRev - (3.2)

= L
e The carry ¢, ,."-‘3-# co S 10t-0Ve
n 3 -0

J ) - A=
P
= 1)+ k

=i

nﬁiﬁsizﬁ given the prime p.

This condition llmlfgjthe@ rT oL imb:
':___r-:. 2 . I.e:?__' ! H-‘T:-

-
e Finally, we examine the bou‘gdﬂﬁ'ﬁﬁ;agftar éarrymg co — Cq.

2w
2 —1 S 2B + k- 22(W—B).

(28 — 1)+2i3[(23—1)+k-2—3

In other words, after reduction, the upper bound for c is

Cy S 2B — ]_,
(3.3)
g < 2B 4 k. 22W-B)

Co, C2,y - -

Second, we deal with the possible overflow during multiplication. A convolved

15



multiplication modulo p = 2™ — k would yield
Cy = aobo + k- albn_l + k- agbn_g +---+ k - an_lbl.
e If cach a; and b; is bounded by S, then we have

< S 1+k(n—1)]<R<22" -1

Y

or
R

< G [t
@by <5 1+ k(n—1)

where R is defined in Equlatﬂohi@r -“.-"'L a‘!" .y

This is a necessary condition for such an representation to work with the con-
volved multiplication method.
It follows from Equation and Equation that, the result of summing ¢

numbers without reduction can still be the input of the multiplication, where

: R 2" —1 B 2(W-B)
t—mln{ T k=1 & }/(2 +k-2 ).

This result is significant for ECC point addition and doubling, because the result
of several big integer additions are often the input of a multiplication.

Similar arguments can be carried out for mixed-representation, but it is really

16



complicated and sometimes verification by hand is even faster and less prone to

error. We leave it for future work.

17



Chapter 4

Multiplication on Convolved

Structures

aoby apbr

(a) No data dependency in-between. (b) Operand reuse of a after rewriting.

Figure 4.1: Convolved structure. Reduced coefficients in rectangular markers.

Assume the radix-2” representation, where B is an integer, as Example 1 in Sec-

tion |3.1.1] We illustrate the convolved structure by shifting the left-hand half of the

rhombus to the top-right corner, aligning each column with the same accumulator

¢;. The reduced partial products to be multiplied by k are designated with rectan-

18



' '
a7 X l{bl
a7 X k’b7
CL7bO
ap X kb7
aobo
a0b7

Figure 4.2: Convolved method for.8-word numbers, split into 3 parts. (d = 3)

Y '
gular markers (Figure. In Figure h:e two triangular grids are disconnected
! | . _
because they expose little.or no p.'thsible'.!pperaind caching; whereas in Figure [4.1b)]
rewriting k - a;b; as a; X k:bi;s_uggq!st.s the possibility of reusing words of a (but not

b) between the two parts, shown:by the lines conné'cting in-between.

4.1 Convolved Multiplication

We follow the principle that hybrid method uses — keep all the accumulators in a
processed block in the register. The parameter d defines the number of columns
within a processed block, thus 2d registers are needed for accumulation. Figure
shows the structure for d = 3, which is split into 3 = [8/3] parts, and each part is
carried out using the row-wise method. Note that with the redundant representation,
there is no carry propagation among each column. Partial products of each column
could be summed simultaneously, which makes parallelism such as SIMD possible.

The above method applies to Example 1. For alternating mixed representa-
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Figure 4.3: Convolved method with mixed-radix representation. Two parts are done
with the row-wise method separatelyjl B}ap}g %;rows first, then dashed arrows.

ik L X - o <
that_the“same n;_lgtl"{\:)d is better carried out on

. The two parts are still pro-
.‘,,.-"'". i

=L, 4
tions as in Example 2, welobs ’Jgrve
s

odd r \“nfs“ ﬁréj;, then the even rows.

cessed using the row—w,lsé“’m hod W’c A
Correspondence betWeenq-Fi @11 n how that this reuses loaded
n.,_ ] =
operands more effectwely?, m _~_~_‘.“{._f Py
In the tools develop@_d \z{ﬁ\ choose use theld alﬂt‘se{;’cing (particularly d = 4

on ARM11) as described abpve*’rté.fbrq tlsf%hg rqlsult To achieve better per-
formance, we can also facﬂltate“'tl;e ai}lto tunﬁlg brnéchamsm to enumerate different

values for d or even split the convolved structure into more irregular parts.
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Chapter 5

Implementation

5.1 System Overview

The tool we developed is implemented in Haskell with a.little more than 1000 lines

of code. We summarize the pipeline fahs"-lfollm}vs:
Y L

Given an m-bit printe p = 2™ T k:;?_'fﬂﬁ'ielihput, the "system first searches for

a viable number representation folr an %bit number. For each possible case, the

corresponding formula set:for mdlt;iplication a'lnlﬂ reduction is generated to check
overflow conditions, as in the two examples of _Che;lf)ter or in Section

After the appropriate number representation is chosen, a number of intermediate
programs will be generated using the proposed multiplication method, either by
enumerating the parameter d or by choosing the default setting. These intermediate
programs are actually assembly programs on the target platform, but with a view of
infinite registers. Each of these intermediate programs is then converted to a form
similar to SSA to apply a simplified version of the optimized linear scan register
allocation. Some parameters of the register allocation algorithm is also tunable to
probe the minimum number of spills.

Finally, a bunch of runnable programs is ready for benchmark on the target

platfrom.
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5.2 The ARMI11 Processor Family

The ARM11 processor family was introduced by ARM in 2002 as the only imple-
mentation of the ARMv6 architecture. The most widely used processor from this
family is the ARM1136, others the ARM1156 and the ARM1176. We developed
and benchmarked the software described in this thesis on an ARM1136 processor,
more specifically on a Samsung GT 17500 Galaxy smartphone containing a Qual-
comm MSM7200A chip released in 2007. For details, please refer to the ARM1136
technical reference manuals. [ARMO09]. In the following, we summarize the features
most relevant to the implementations described in the thesis.

ARMI11 processors have a 32-bit instruction set and 16 architectural 32-bit inte-
ger registers. One register is used as, the stac.k.'pointer, one as the program counter,
so 14 registers are freely usable.

Instructions are issued ih order! orle instfuction pericycle. Except for multipli-
cation, the arithmetic instructions rele"g.uj; to the implementations in the thesis,
have a latency of 1 eycle. Multllbl catl(ﬂl 1nst;ruct10ns takes 2 cycles, but their 2
word output have a latency ;of 4 arlld 5 cy(;les. L.o:ads from cache have a latency of 3
cycles. : e

The instruction set is a standard RISC load-store instruction set except for two
features: free shifts and rotates and loads and stores of more than 32 bits. The later
yields better performance only in very special cases that we were not able to exploit

in our implementations.

5.2.1 Free shifts and rotates

All arithmetic instructions have three operands and the output does not necessarily
overwrite one of the inputs. Additionally, the second input operand can be shifted
or rotated by arbitrary distances provided as immediate value or through a register.

We use these features to speed up multiplication by k in precalculation. These shifts
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or rotates as part of arithmetic instructions do not decrease throughput or increase
latency of the instruction, they are essentially for free. However, the shifted or
rotated input value is required one stage earlier in the pipeline than a non-shifted
input. Therefore, using the output of one instruction as shifted or rotated input to

the next instruction imposes a penalty of one cycle.

5.2.2 Accessing the cycle counter.

Access to the 32-bit cycle counter is only possible from kernel mode, for example

using the following code:

unsigned int c;

asm volatile("mrc p15, 0; %0, ci15, 2':12, o t=r"(c));

In a posting to the eBATS'mailing list ebats@list . cr.yp.to from August 12,
2010, Bernstein publicized code for fa‘kerelimodule that gives access to the cycle

counter on ARM11 devices through;tﬁé Hln;lx deviceffile /dev/cpucycleséns.

5.3 Linear Registet AdlgCation.

Reducing register spilling is crucial to reducing memory accesses. Most recent re-
search on multiplication techniques precisely specifies when to load operands and
store intermediate results. To make the tool more general, we instead decided to
allocate and spill registers automatically.

For this work, we chose to use the linear scan register allocation [PS99] for several

reasons:

e The experimental results appeared satisfying. We may obtain better results
using more sophisticated methods, such as graph coloring or integer program-

ming. Traditional graph coloring is NP-complete, so is register allocation.
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e It is much easier to implement and runs faster. The overall enumeration time

can be reduced.

Specifically, we use an improved version of linear register scan algorithm with
optimized interval splitting (for details, refer to [WMO05]). In a nutshell, it works
as follows: first the use positions and lifetime interval of each variable are identified
through liveness analysis. Then it uses a heuristic based on the fixed interval infor-
mation and the use positions of the active and inactive intervals: the interval that
is not used for the longest time is spilled.

Since the generated code has no control flow, we can transform our programs into
a form similar to SSA |[CFR™91| (wecall it'the pseudo-SSA form) to further simply
the algorithm. Also, to deal with the ARMlll..-architectural irregularity, we allocate
registers as if each variable were used 1 cycle earlier,'\livhich reduces the load latency,

and would be used a few“eycles later, Whichl;réduces themultiplication latency.

i

5.4 Auto-Tuning ii | 11 |
i | ! .I

Auto-tuning is one of the core part of ouf' teol. -!Hleg.:ga we list several parameters that

can be tuned or enumerated:

1. The number representation and thus the corresponding limb size. Actually, it

always chooses a most effective one that passed all overflow checks.

2. The parameter d of the convolved multiplication, or more precisely, how the
convolved structure is split into several parts. We enumerate all possible com-
binations, of which each part contains no more than 5 columns. With 10
accumulators in the register file, there are still 4 registers free for use. The

default setting is as given in the two examples in Chapter [4

3. Register allocation. Ordinary arithmetic instructions has no latency, but mul-

tiplication instructions have a result latency of 5 cycles. For simplicity, we
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allocate registers as if each variable would be used 1 or 2 cycles later. The

default value is 1 cycle.
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Chapter 6

Results and Discussion

6.1 Convolved Method on’/ARM11

Table 6.1: Convolved method and GMP multiplication modulo 2%°° —19 on ARM11.

o B GMP
Prime Convolvéd'.:i’:f)'-o:al. - Multiply” Reduce
9130 5 233'.3 [Bos.2| |} T435:6+ 13823
. 1981.1 /119258

225 — 19 66
o I

8 “3054.5}

Table shows the modular multiplication time using the convolved method
and the GMP library 3.5.2 on ARMT1: The convolved method is up to 5 times
faster than the GMP counterpart, and is even faster than only a multiplication of
the GMP library. The GMP modular reduction is slower because it assumes no
particular form of the modulus.

Table and summarize the instruction counts for the convolved multipli-
cation on Fy2s5_19 and on Faso_5, using different number representations. In each
table, we compare the fastest one generated by our tool and the equivalent C code
compiled by GCC. They both follow the procedure of precalculation, multiplication

and reduction. The complex pipeline of GCC may interleave these three stages for

better performance.
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Table 6.2: Convolved method modulo 2?°®> — 19 on ARM11. Radix-2%%.

Instructions
Case Mem32 Mem64 MUL ADD Others ‘ Total Cycles
Best Enumerated 172 0 100 84 15 371 662.84
Default Setting 165 0 100 84 15 364 666.88
GCC 235 29 111 22 59 456 792.83

Table 6.3: Convolved method modulo 2'%° — 5 on ARM11. Radix-22.

Instructions
Case Mem32 Mem64 MUL ADD Others ‘ Total Cycles
Best Enumerated 40 0 25 37 13 115 235.33
GCC 43 8 25 28 29 133 241.41

For the case of Fa2ss_19 in Tablg @, oﬁt:-method requires much less memory
access, and runs 16% faster thensthe GCC counterpért. Even with the default set-
ting, the result is comparable with 'fhe__fast(lasf ‘enumerated one. Note that GCC is
equipped with more advanced instm%&}%@éfie&luhng and register allocation mecha-
nisms. It also uses double-word mlb . ory:fizg_;cessll i:nstructio_ns supported by ARMI11.

For the case of Faso_5 1n Tadl! @: :t_he g%er!}erated code also contains less in-
struction, but the cycle count is _1-10t= as signiﬁcalnlt.'dWe conclude that the convolved
method outperforms more on larger mloduli.

We expect to reduce the running time even more by interleaving the three pro-

cedures, as in the complex pipeline of GCC.

6.2 Drawbacks of Traditional Methods on ARM11

In this section, we discuss why traditional multiplication techniques work poorly
on ARMI11. Specifically, we estimate the theoretical speed lower bound for the
operand-caching multiplication, and show that it can run slower than a modular
multiplication using the convolved multiplication.

As one of the fastest multiplication methods present by 2011, the operand-
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caching method [HW11] aims at reducing the number of loads on embedded plat-
forms, such as an 8-bit ATmegal28 microcontroller. In Table we list the lowest
number of memory accesses, multiplications and additions described in the original
paper, and estimate the cycles needed to carry out one multiplication on ARMI11.
We compare this with the automatically generated 255-bit convolved method, of

which the cycle count is actually measured on a ARM11 processor.

Table 6.4: Lower cycle bound for 256-bit operand-caching multiplication on ARM11.
Theoretical minimum values in italic, can only be larger.

Instructions
Method Radix LDR STR MUL ADD Cycles
Operand-Caching 2328 limbs 34 21 64 192 665

Convolved (mod 22%° — 19)42%9 “10limbs. = 110"+ 62 100 84 662.84

Interestingly, the result suggests that a modular multlphcatlon can even run
faster then the operand-caching meth?)d.amﬁhopt reduction, although the latter has
fewer instructions. Recall from Selc I1on ﬁialmon ARM11, each 32 x 32-bit mul-
tiplication takes 2 cyeles! Althou gl tha! result |has a latency of 5 cycles, we can
carefully schedule the 1nstruct10ns ﬂo hide thesd: l% cycle latencies. Traditional mul-
tiplication techniques such as the operand-caching method, however, requires each
multiplication to set carry flags, which takes 6 cycles. Another source of latency is
that the algorithm assumes use the result of a load in the next instruction, which

causes a penalty latency of 1 cycle. The total cycle count is therefore at least

34 x 2421464 x 6+ 192 = 665.

28



Chapter 7

Conclusion

We presented a domain specific.eompiler framework that automates the cumbersome
process of tuning and coding for-fast modulax Ir'riultiplication on ARM11. Specifically,
we choose to use the convolved multlphcatlon on pseudo-Mersenne prime fields, and
proposed a multiplication method on the Convolved structure The generated code

r-'-

may run faster than a hand-eraft countpi’pﬁr-t We also showed that multiplication
| |
using radix-2"" representation may fauser!a seriptis hottleneck on ARMII.

Future Works. We have four primary goals f(br the tool:

e Integration of domain specificlanguages;~ Extending the compiler to handle
elliptic curve point multiplication reutines is more practical but checking over-

flow conditions is more completed for complex formulae.

e Early pruning for enumeration. A good pruning heuristic, such as the length

of the program, may decrease the benchmark time for running all programs.

e SIMD. The convolved method has a structure that can benefit from SIMD

improvements.

e Using Hoopl. Hoopl [RDPJ10] is a Haskell library for dataflow analysis and

code transformation for better code quality and performance.
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Subsidiary goals include more advanced multiplication techniques and more
prime forms. For example, the Karatsuba multiplication may speed up multipli-
cation only a little, but requires more complicated overflow checks. In such cases,
possible erroneous inductions or programs may be subject to formal verification.
The convolved method may also be used on generalized pseudo-Mersenne primes.

We also consider adopt signed number representations, as in [JG02, BDL¥12].
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